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Abstract

We extend our correspondence between evaluators and abstract ma-
chines from the pure setting of the λ-calculus to the impure setting of the
computational λ-calculus. Specifically, we show how to derive new ab-
stract machines from monadic evaluators for the computational λ-calculus.
Starting from a monadic evaluator and a given monad, we inline the com-
ponents of the monad in the evaluator and we derive the corresponding
abstract machine by closure-converting, CPS-transforming, and defunc-
tionalizing this inlined interpreter. We illustrate the construction first
with the identity monad, obtaining yet again the CEK machine, and then
with a state monad, an exception monad, and a combination of both.

In addition, we characterize the tail-recursive stack inspection pre-
sented by Clements and Felleisen at ESOP 2003 as a canonical state
monad. Combining this state monad with an exception monad, we con-
struct an abstract machine for a language with exceptions and properly
tail-recursive stack inspection. The construction scales to other monads—
including one more properly dedicated to stack inspection than the state
monad—and other monadic evaluators.
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1 Introduction

Diehl, Hartel, and Sestoft’s overview of abstract machines for programming-
language implementation [12] concluded on the need to develop a theory of
abstract machines. In previous work [2,5,8], we have attempted to contribute to
this theory by identifying a correspondence between interpreters (i.e., evaluation
functions in the sense of denotational semantics) and abstract machines (i.e.,
transition functions in the sense of operational semantics). The correspondence
is constructive. Starting from a compositional evaluator, we:

1. closure-convert its expressible and denotable values [20, 29];

2. materialize its control flow into continuations by CPS transformation [9,
25, 28]; and

3. defunctionalize these continuations [10, 27].
For all its simplicity, this correspondence has let us derive Krivine’s machine
from a call-by-name evaluator and Felleisen et al.’s CEK machine from a call-
by-value evaluator [2], as well as generalizations of Krivine’s machine and of
the CEK machine from normalization functions [1]. It has also let us reveal the
evaluator underlying Landin’s SECD machine, Schmidt’s VEC machine, Han-
nan and Miller’s CLS machine, and Curien et al.’s Categorical Abstract Ma-
chine [2,8]. We have also verified that the correspondence holds for call-by-need
evaluators and lazy abstract machines [3], logic programming [5], imperative
programming, and object-oriented programming, including Featherweight Java
and a subset of Smalltalk. The correctness of the abstract machines (resp. of
the evaluators) is a corollary of the correctness of the evaluators (resp. of the
abstract machines) and of the correctness of the transformations.

In this article, we take a next step by applying the methodology to evalu-
ators and abstract machines for languages with computational effects [4]. We
consider a canonical evaluator parameterized by a monad (Section 2). We then
successively consider five monads: the identity monad, the state monad, the ex-
ception monad, and the two possible combinations of the state monad and of the
exception monad (Sections 3 to 6). For each of these monads, we specify it and
we inline it in the monadic evaluator, obtaining an evaluator dedicated to this
computational effect. We then construct the corresponding abstract machine
by closure-converting, CPS-transforming, and defunctionalizing this dedicated
evaluator.

We then turn to the security technique of ‘stack inspection’ [18]. At ESOP
2003 [6], Clements and Felleisen debunked the myth that stack inspection is
incompatible with proper tail recursion. To this end, they presented a CESK
abstract machine implementing stack inspection in a properly tail-recursive way.
We characterize Clements and Felleisen’s stack inspection as a state monad (Sec-
tion 7). We also combine the stack-inspection state monad with the exception
monad and construct the corresponding abstract machine, which would be non-
trivial to construct from scratch (Section 8). We then present a monad that
accounts for stack inspection more precisely than the canonical state monad,
review related work, and conclude.
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2 A call-by-value monadic evaluator

As traditional [4, 15, 30], we specify a monad as a type constructor and two
polymorphic functions. (We use Standard ML [23].)

signature MONAD

= sig

type ’a monad

val unit : ’a -> ’a monad

val bind : ’a monad * (’a -> ’b monad) -> ’b monad

end

Our source language is the untyped λ-calculus with integer literals:

datatype term = LIT of int

| VAR of ide

| LAM of ide * term

| APP of term * term

where identifiers are represented with a value of type ide. Programs are closed
terms.

The corresponding expressible values are integers and functions:

datatype value = NUM of int

| FUN of value -> value M.monad

for a structure M : MONAD. We implicitly use ML’s built-in lifting monad to ac-
count for non-termination and ML’s built-in error monad to account for type
mismatch.

Our monadic interpreter uses an environment Env with the following signa-
ture:

signature ENV

= sig

type ’a env

val empty : ’a env

val extend : ide * ’a * ’a env -> ’a env

val lookup : ide * ’a env -> ’a

end

Throughout this article e denotes environments and eempty denotes the empty
environment.

Except for the identity monad, each monad comes with operations that need
to be integrated in the source language. Rather than systematically extending
the syntax of the source language with these operations, we hold some of them
in the initial environment. For example, rather than having a special form for
the successor function, we define it with a binding in the base environment:

val env_base = Env.extend ("succ",

FUN (fn (NUM i) => M.unit (NUM (i + 1))),

Env.empty)
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Applying the successor function to a function instead of to an integer yields an
ML pattern-matching error.

The evaluation function is defined by structural induction on terms:

(* eval : term * value Env.env -> value M.monad *)

fun eval (LIT i, e)

= M.unit (NUM i)

| eval (VAR x, e)

= M.unit (Env.lookup (x, e))

| eval (LAM (x, t), e)

= M.unit (FUN (fn v => eval (t, Env.extend (x, v, e))))

| eval (APP (t0, t1), e)

= M.bind (eval (t0, e),

fn v0 => M.bind (eval (t1, e),

fn v1 => let val (FUN f) = v0

in f v1

end))

Given a program, the main evaluation function calls eval with this term and
the initial environment:

fun main t

= eval (t, env_base)

In actuality, this evaluation function, eval, env base, and value are defined in
an ML functor parameterized with a structure M : MONAD.

3 From the identity monad to an abstract ma-

chine

We first specify the identity monad and inline it in the monadic evaluator of
Section 2, obtaining an evaluator in direct style. We then take the same steps
as in our previous work [2]: closure conversion, CPS transformation, and de-
functionalization. The result is Felleisen et al.’s CEK machine extended with
literals [14, 17].

3.1 The identity monad

The identity monad is specified with an identity type constructor and the cor-
responding two polymorphic functions:

structure Identity_Monad : MONAD

= struct

type ’a monad = ’a

fun unit a

= a

fun bind (m, k)

= k m

end

5



3.2 Inlining the monad in the monadic evaluator

Inlining this identity monad in the monadic evaluator of Section 2 yields a call-
by-value evaluator in direct style:

datatype value = NUM of int

| FUN of value -> value

val env_base = Env.extend ("succ",

FUN (fn (NUM i) => (NUM (i + 1))),

Env.empty)

(* eval : term * value Env.env -> value *)

fun eval (LIT i, e)

= NUM i

| eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= FUN (fn v => eval (t, Env.extend (x, v, e)))

| eval (APP (t0, t1), e)

= let val v0 = eval (t0, e)

val v1 = eval (t1, e)

val (FUN f) = v0

in f v1

end

fun main p

= eval (p, env_base)

3.3 Closure conversion

We defunctionalize the function space in the data type of values. There are two
function constructors:

• one in the denotation of lambda-abstractions, which we represent by a
closure, pairing the code of lambda-abstractions together with their lexical
environment, and

• one in the initial environment, which we represent by a specialized con-
structor SUCC.

We splice these two constructors in the data type of values:

datatype value = NUM of int

| CLO of ide * term * value Env.env

| SUCC

Closures are produced when interpreting lambda-abstractions, and the succes-
sor function is produced in the initial environment. Both are consumed when
interpreting applications.
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val env_base = Env.extend ("succ", SUCC, Env.empty)

(* eval : term * value Env.env -> value *)

fun eval (LIT i, e)

= NUM i

| eval (VAR x, e)

= Env.lookup (x, e)

| eval (LAM (x, t), e)

= CLO (x, t, e)

| eval (APP (t0, t1), e)

= let val v0 = eval (t0, e)

val v1 = eval (t1, e)

in case v0

of (CLO (x, t, e))

=> eval (t, Env.extend (x, v1, e))

| SUCC

=> let val (NUM i) = v1

in NUM (i + 1)

end

end

fun main p

= eval (p, env_base)

3.4 CPS transformation

We materialize the control flow of the evaluator using continuations:

datatype value = NUM of int

| CLO of ide * term * value Env.env

| SUCC

val env_base = Env.extend ("succ", SUCC, Env.empty)

(* eval : term * value Env.env * (value -> ’a) -> ’a *)

fun eval (LIT i, e, k)

= k (NUM i)

| eval (VAR x, e, k)

= k (Env.lookup (x, e))

| eval (LAM (x, t), e, k)

= k (CLO (x, t, e))

| eval (APP (t0, t1), e, k)

= eval (t0, e, fn v0 =>

eval (t1, e, fn v1 =>

(case v0

of (CLO (x, t, e))

=> eval (t, Env.extend (x, v1, e), k)

| SUCC

=> let val (NUM i) = v1

in k (NUM (i + 1))

end))
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fun main p

= eval (p, env_base, fn v => v)

The same evaluator is obtained by inlining the continuation monad in the
monadic evaluator of Section 2 and closure-converting the result.

3.5 Defunctionalization

We defunctionalize the function space of continuations. There are three function
constructors:

• one in the initial continuation, which we represent by a constructor STOP,
and

• two in the interpretation of applications, one with t1, e, and k as free
variables, and one with v0 and k as free variables.

We represent the function space of continuations with a data type with three
constructors and an apply function interpreting these constructors. As already
noted elsewhere [10, 11], the data type of defunctionalized continuations coin-
cides with the data type of evaluation contexts for the source language [13,14].

datatype value = NUM of int

| CLO of ide * term * value Env.env

| SUCC

datatype cont = STOP

| ARG of term * value Env.env * cont

| FUN of value * cont

val env_base = Env.extend ("succ", SUCC, Env.empty)

(* eval : term * value Env.env * cont -> value *)

fun eval (LIT i, e, k)

= apply_cont (k, NUM i)

| eval (VAR x, e, k)

= apply_cont (k, Env.lookup (x, e))

| eval (LAM (x, t), e, k)

= apply_cont (k, CLO (x, t, e))

| eval (APP (t0, t1), e, k)

= eval (t0, e, ARG (t1, e, k))

(* apply_cont : cont * value -> value *)

and apply_cont (STOP, v)

= v

| apply_cont (ARG (t1, e, k), v0)

= eval (t1, e, FUN (v0, k))

| apply_cont (FUN (CLO (x, t, e), k), v)

= eval (t, Env.extend (x, v, e), k)

| apply_cont (FUN (SUCC, k), NUM i)

= apply_cont (k, NUM (i + 1))
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fun main p

= eval (p, env_base, STOP)

This defunctionalized continuation-passing evaluator is an implementation of
the CEK machine extended with literals [14, 17], which we present next.

3.6 The CEK machine

• Source syntax (terms):

t ::= i | x | λx.t | t0 t1

• Expressible values (integers, closures, and predefined functions) and eval-
uation contexts (i.e., defunctionalized continuations):

v ::= i | [x, t, e] | succ

k ::= stop | fun(v, k) | arg(t, e, k)

• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , stop〉
〈i, e, k〉 ⇒eval 〈k, i〉
〈x, e, k〉 ⇒eval 〈k, e(x)〉

〈λx.t, e, k〉 ⇒eval 〈k, [x, t, e]〉
〈t0 t1, e, k〉 ⇒eval 〈t0, e, arg(t1, e, k)〉

〈arg(t1, e, k), v〉 ⇒cont 〈t1, e, fun(v, k)〉
〈fun([x, t, e], k), v〉 ⇒cont 〈t, e[x 7→ v], k〉

〈fun(succ, k), i〉 ⇒cont 〈k, i + 1〉
〈stop, v〉 ⇒final v

where ebase = eempty [succ 7→ succ]
einit = ebase

3.7 Summary and conclusion

We have presented a series of evaluators and one abstract machine that corre-
spond to a call-by-value monadic evaluator and the identity monad. The first
evaluator is a traditional one in direct style. The machine is the CEK machine.
The correctness of the evaluators and of the abstract machine is a corollary of
the correctness of the original monadic evaluator and of the transformations.

4 From a state monad to an abstract machine

We specify a state monad and inline it in the monadic evaluator, obtaining
an evaluator in state-passing style. Closure converting, CPS-transforming, and
defunctionalizing this state-passing evaluator yields a CEK machine with state.
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4.1 A state monad

We consider a state monad where the state is, for conciseness, one integer. We
equip this monad with two operations for reading and writing the state:

signature STATE_MONAD

= sig

include MONAD

type storable

type state

val get : storable monad

val set : storable -> storable monad

end

structure State_Monad : STATE_MONAD

= struct

type storable = int

type state = storable

type ’a monad = state -> ’a * state

fun unit a

= (fn s => (a, s))

fun bind (m, k)

= (fn s => let val (a, s’) = m s

in k a s’

end)

val get = (fn s => (s, s))

fun set i

= (fn s => (s, i))

end

We extend the base environment with two functions get and set:

val env_init

= Env.extend ("set",

FUN (fn (NUM i) => bind (State_Monad.set i,

fn i => unit (NUM i))),

Env.extend ("get",

FUN (fn _ => bind (State_Monad.get,

fn i => unit (NUM i))),

env_base))

Evaluation starts with an initial state state init : State Monad.state.

4.2 Inlining the monad in the monadic evaluator

Inlining this state monad in the monadic evaluator of Section 2 and uncurrying
the eval function and the function space in the data type of expressible values
yields a call-by-value evaluator in state-passing style:
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type storable = int

type state = storable

datatype value = NUM of int

| FUN of value * state -> value * state

val env_base = Env.extend ("succ",

FUN (fn (NUM i, s) => (NUM (i + 1), s)),

Env.empty)

val env_init = Env.extend ("get",

FUN (fn (_, s) => (NUM s, s)),

Env.extend ("set",

FUN (fn (NUM i, s) => (NUM s, i)),

env_base))

(* eval : term * value Env.env * state -> value * state *)

fun eval (LIT i, e, s)

= (NUM i, s)

| eval (VAR x, e, s)

= (Env.lookup (x, e), s)

| eval (LAM (x, t), e, s)

= (FUN (fn (v, s) => eval (t, Env.extend (x, v, e), s)), s)

| eval (APP (t0, t1), e, s)

= let val (v0, s’) = eval (t0, e, s)

val (v1, s’’) = eval (t1, e, s’)

val (FUN f) = v0

in f (v1, s’’)

end

fun main p

= (fn state_init => eval (p, env_init, state_init))

4.3 A CEK machine with state

As in Section 3, we closure-convert, CPS-transform, and defunctionalize the
inlined evaluator of Section 4.2. The result is a CEK machine with state [13].
The source language and evaluation contexts are as in the CEK machine of
Section 3.

• Expressible values (integers, closures, and predefined functions) and re-
sults:

v ::= i | [x, t, e] | succ | get | set
r ::= (v, s)
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• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , sinit , stop〉
〈i, e, s, k〉 ⇒eval 〈k, (i, s)〉
〈x, e, s, k〉 ⇒eval 〈k, (e(x), s)〉

〈λx.t, e, s, k〉 ⇒eval 〈k, ([x, t, e], s)〉
〈t0 t1, e, s, k〉 ⇒eval 〈t0, e, s, arg(t1, e, k)〉

〈arg(t1, e, k), (v, s)〉 ⇒cont 〈t1, e, s, fun(v, k)〉
〈fun([x, t, e], k), (v, s)〉 ⇒cont 〈t, e[x 7→ v], s, k〉

〈fun(succ, k), (i, s)〉 ⇒cont 〈k, (i + 1, s)〉
〈fun(get, k), (v, s)〉 ⇒cont 〈k, (s, s)〉
〈fun(set, k), (i, s)〉 ⇒cont 〈k, (s, i)〉

〈stop, r〉 ⇒final r

where ebase = eempty [succ 7→ succ]
einit = ebase [get 7→ get][set 7→ set]

and sinit is the initial state (e.g., −1).

4.4 Summary and conclusion

We have presented a series of evaluators and one abstract machine that cor-
respond to a call-by-value monadic evaluator and a state monad. The first
evaluator is a traditional one in state-passing style. The machine is a CEK ma-
chine with state. The correctness of the evaluators and of the abstract machine
is a corollary of the correctness of the original monadic evaluator and of the
transformations.

5 From an exception monad to an abstract ma-

chine

We specify an exception monad and inline it in the monadic evaluator, obtaining
an exception-oriented evaluator. We closure convert, CPS-transform, and de-
functionalize this exception-oriented evaluator and obtain a CEK machine with
exceptions. We then consider an alternative implementation of exceptions.

5.1 An exception monad

We consider an exception monad where, for conciseness, there is only one kind
of exception and it carries no values. We equip this monad with two operations
for raising and handling exceptions:

signature EXCEPTION_MONAD

= sig

include MONAD

datatype ’a E = RES of ’a | EXC

12



val raise_exception : ’a monad

val handle_exception : ’a monad * (unit -> ’a monad) -> ’a monad

end

structure Exception_Monad : EXCEPTION_MONAD

= struct

datatype ’a E = RES of ’a | EXC

type ’a monad = ’a E

fun unit a

= RES a

fun bind (RES a, k)

= k a

| bind (EXC, k)

= EXC

val raise_exception = EXC

fun handle_exception (RES a, h)

= RES a

| handle_exception (EXC, h)

= h ()

end

We extend the source language with a special form to handle an exception
(and the monadic evaluator with a branch for evaluating this special form), and
we extend the base environment with a function to raise an exception:

datatype term = ...

| HANDLE of term * term

fun eval ...

| eval (HANDLE (t0, t1), e)

= Exception_Monad.handle_exception (eval (t0, e),

fn () => eval (t1, e))

val env_init

= Env.extend ("raise",

FUN (fn _ => Exception_Monad.raise_exception),

env_base)

5.2 Inlining the monad in the monadic evaluator

Inlining this exception monad in the extended monadic evaluator yields a call-
by-value evaluator in exception-oriented style:

datatype ’a E = RES of ’a

| EXC

datatype value = NUM of int

| FUN of value -> value E

13



val env_base = Env.extend ("succ",

FUN (fn (NUM i) => RES (NUM (i + 1))),

Env.empty)

val env_init = Env.extend ("raise", FUN (fn _ => EXC), env_base)

(* eval : term * value Env.env -> value E *)

fun eval (LIT i, e)

= RES (NUM i)

| eval (VAR x, e)

= RES (Env.lookup (x, e))

| eval (LAM (x, t), e)

= RES (FUN (fn v => eval (t, Env.extend (x, v, e))))

| eval (APP (t0, t1), e)

= (case eval (t0, e)

of (RES v0) => (case eval (t1, e)

of (RES v1) => let val (FUN f) = v0

in f v1

end

| EXC => EXC)

| EXC => EXC)

| eval (HANDLE (t, h), e)

= (case eval (t, e)

of (RES a) => RES a

| EXC => eval (h, e))

fun main p

= eval (p, env_init)

5.3 A CEK machine with exceptions

As in Section 3 we closure-convert, CPS-transform, and defunctionalize the
inlined evaluator of Section 5.2. The result is a version of the CEK machine
with exceptions:

• Source syntax (terms):

t ::= i | x | λx.t | t0 t1 | t0 handle t1

• Expressible values (integers, closures, and predefined functions), results,
and evaluation contexts:

v ::= i | [x, t, e] | succ | raise

r ::= res(v) | exc
k ::= stop | fun(v, k) | arg(t, e, k) | exc(t, e, k)

14



• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , stop〉
〈i, e, k〉 ⇒eval 〈k, res(i)〉
〈x, e, k〉 ⇒eval 〈k, res(e(x))〉

〈λx.t, e, k〉 ⇒eval 〈k, res([x, t, e])〉
〈t0 t1, e, k〉 ⇒eval 〈t0, e, arg(t1, e, k)〉

〈t0 handle t1, e, k〉 ⇒eval 〈t0, e, exc(t1, e, k)〉
〈arg(t1, e, k), res(v)〉 ⇒cont 〈t1, e, fun(v, k)〉
〈arg(t1, e, k), exc〉 ⇒cont 〈k, exc〉

〈fun([x, t, e], k), res(v)〉 ⇒cont 〈t, e[x 7→ v], k〉
〈fun(succ, k), res(i)〉 ⇒cont 〈k, res(i + 1)〉
〈fun(raise, k), res(v)〉 ⇒cont 〈k, exc〉

〈fun(v, k), exc〉 ⇒cont 〈k, exc〉
〈exc(t1, e, k), res(v)〉 ⇒cont 〈k, res(v)〉
〈exc(t1, e, k), exc〉 ⇒cont 〈t1, e, k〉

〈stop, r〉 ⇒final r

where ebase = eempty [succ 7→ succ]
einit = ebase [raise 7→ raise]

5.4 An alternative implementation of exceptions

Alternatively, in the continuation-passing evaluator obtained after closure con-
version and CPS-transformation, we can exploit the type isomorphism between
a sum-expecting continuation and a pair of continuations:

value option -> answer ∼= (value -> answer) * (unit -> answer)

The resulting interpreter is equipped with two continuations. The correspond-
ing notion of computation, at the monadic level, also uses two continuations—a
normal continuation and a handler continuation. Defunctionalizing the inter-
preter with double-barreled continuations yields an abstract machine with two
stacks: a regular control stack and a stack of exception handlers. Architec-
turally, these two stacks are not a clever invention or a gratuitous variant, but
the consequences of a principled derivation.

5.5 Summary and conclusion

We have presented a series of evaluators and an abstract machine that corre-
spond to a call-by-value monadic evaluator and an exception monad. The first
evaluator is a traditional one in exception-oriented style. The machine is a
CEK machine with exceptions. We have also shown how to obtain an alterna-
tive implementation of exceptions with two continuations and how it leads to
an abstract machine with two stacks. The correctness of the evaluators and of
the abstract machines is a corollary of the correctness of the original monadic
evaluator and of the transformations.
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6 Combining state and exceptions

As is well known, there are two ways to combine the state and exception monads,
giving rise to different semantics [4]. We consider both combinations and derive
the corresponding abstract machines.

Both combinations of the state and exception monads are represented as
structures with the following signature:

signature STATE_AND_EXCEPTION_MONAD

= sig

include STATE_MONAD

datatype ’a E = RES of ’a | EXC

val raise_exception : ’a monad

val handle_exception : ’a monad * (unit -> ’a monad) -> ’a monad

end

The source language and the monadic evaluator are those of Section 5 with
a special form to handle exceptions. The base environment is extended with
functions get, set, and raise to read and write the state, and to raise an excep-
tion.

6.1 From a combined state and exception monad to an
abstract machine (version 1)

We consider the combination of the state and exception monads where the state
is passed both on successful termination and on exceptional termination. We
equip the monad with operations to read and write the state, and to raise
and handle exceptions. When an exception is handled, the state in which the
exception was raised is available, and execution can be resumed in that state:

structure State_And_Exception_Monad : STATE_AND_EXCEPTION_MONAD

= struct

datatype ’a E = RES of ’a | EXC

type storable = int

type state = storable

type ’a monad = state -> (’a E * state)

fun unit a

= (fn s => (RES a, s))

fun bind (m, k)

= (fn s => let val (a, s’) = m s

in case a

of (RES a) => k a s’

| EXC => (EXC, s’)

end)

val get = (fn s => (RES s, s))

fun set i

= (fn s => (RES s, i))
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val raise_exception = (fn s => (EXC, s))

fun handle_exception (t0, t1)

= (fn s => let val (a, s’) = t0 s

in case a

of (RES a) => (RES a, s’)

| EXC => t1 () s’

end)

end

We inline this combined monad in the monadic evaluator and closure con-
vert, CPS-transform, and defunctionalize the resulting evaluator to obtain the
following abstract machine with state and exceptions:

• Source syntax (terms):

t ::= i | x | λx.t | t0 t1 | t0 handle t1

• Expressible values (integers, closures, and predefined functions), results,
and evaluation contexts:

v ::= i | [x, t, e] | succ | get | set | raise

r ::= (res(v), s) | (exc, s)
k ::= stop | fun(v, k) | arg(t, e, k) | exc(t, e, k)

• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , sinit , stop〉
〈i, e, s, k〉 ⇒eval 〈k, (res(i), s)〉
〈x, e, s, k〉 ⇒eval 〈k, (res(e(x)), s)〉

〈λx.t, e, s, k〉 ⇒eval 〈k, (res([x, t, e]), s)〉
〈t0 t1, e, s, k〉 ⇒eval 〈t0, e, s, arg(t1, e, k)〉

〈t0 handle t1, e, s, k〉 ⇒eval 〈t0, e, s, exc(t1, e, k)〉
〈arg(t1, e, k), (res(v), s)〉 ⇒cont 〈t1, e, s, fun(v, k)〉
〈arg(t1, e, k), (exc, s)〉 ⇒cont 〈k, (exc, s)〉

〈fun([x, t, e], k), (res(v), s)〉 ⇒cont 〈t, e[x 7→ v], s, k〉
〈fun(succ, k), (res(i), s)〉 ⇒cont 〈k, (res(i + 1), s)〉
〈fun(get, k), (res(v), s)〉 ⇒cont 〈k, (res(s), s)〉
〈fun(set, k), (res(i), s)〉 ⇒cont 〈k, (res(s), i)〉

〈fun(raise, k), (res(v), s)〉 ⇒cont 〈k, (exc, s)〉
〈fun(v, k), (exc, s)〉 ⇒cont 〈k, (exc, s)〉

〈exc(t1, e, k), (res(v), s)〉 ⇒cont 〈k, (res(v), s)〉
〈exc(t1, e, k), (exc, s)〉 ⇒cont 〈t1, e, s, k〉

〈stop, r〉 ⇒final r

where ebase = eempty [succ 7→ succ]
einit = ebase [get 7→ get][set 7→ set][raise 7→ raise]

and sinit is the initial state.
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6.2 From a combined state and exception monad to an
abstract machine (version 2)

We consider the combination of the state and exception monads where the state
is passed on successful termination and discarded on exceptional termination.
We equip the monad with operations to read and write the state, and to raise and
handle exceptions. When handling an exception, execution cannot be resumed
in the state in which the exception was raised. One choice, which we take here,
is to use a so-called ‘snapback’ or transactional semantics and resume execution
in the state that was active when the handler was installed [16, 22]:

structure State_And_Exception_Monad’ : STATE_AND_EXCEPTION_MONAD

= struct

datatype ’a E = RES of ’a | EXC

type storable = int

type state = storable

type ’a monad = state -> (’a * state) E

fun unit a = (fn s => RES (a, s))

fun bind (m, k)

= (fn s => let val a = m s

in (case a

of (RES (a, s’)) => k a s’

| EXC => EXC)

end)

val get = (fn s => RES (s, s))

fun set i

= (fn s => RES (s, i))

val raise_exception = (fn s => EXC)

fun handle_exception (t0, t1)

= (fn s => let val a = t0 s

in case a

of (RES (a, s’)) => RES (a, s’)

| EXC => t1 () s

end)

end

We inline this combined monad in the monadic evaluator and closure con-
vert, CPS-transform, and defunctionalize the resulting evaluator to obtain the
following abstract machine with state and exceptions:

• Source syntax (terms):

t ::= i | x | λx.t | t0 t1 | t0 handle t1

• Expressible values (integers, closures, and predefined functions), results,
and evaluation contexts:

v ::= i | [x, t, e] | succ | get | set | raise

r ::= res(v, s) | exc
k ::= stop | fun(v, k) | arg(t, e, k) | exc(t, e, s, k)
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• Initial transition, transition rules (two kinds), and final transition:

t ⇒init 〈t, einit , sinit , stop〉
〈i, e, s, k〉 ⇒eval 〈k, res(i, s)〉
〈x, e, s, k〉 ⇒eval 〈k, res(e(x), s)〉

〈λx.t, e, s, k〉 ⇒eval 〈k, res([x, t, e], s)〉
〈t0 t1, e, s, k〉 ⇒eval 〈t0, e, s, arg(t1, e, k)〉

〈t0 handle t1, e, s, k〉 ⇒eval 〈t0, e, s, exc(t1, e, s, k)〉
〈arg(t1, e, k), res(v, s)〉 ⇒cont 〈t1, e, s, fun(v, k)〉

〈arg(t1, e, k), exc〉 ⇒cont 〈k, exc〉
〈fun([x, t, e], k), res(v, s)〉 ⇒cont 〈t, e[x 7→ v], s, k〉

〈fun(succ, k), res(i, s)〉 ⇒cont 〈k, res(i + 1, s)〉
〈fun(get, k), res(v, s)〉 ⇒cont 〈k, res(s, s)〉
〈fun(set, k), res(i, s)〉 ⇒cont 〈k, res(s, i)〉

〈fun(raise, k), res(v, s)〉 ⇒cont 〈k, exc〉
〈fun(v, k), exc〉 ⇒cont 〈k, exc〉

〈exc(t1, e, s, k), res(v, s′)〉 ⇒cont 〈k, res(v, s′)〉
〈exc(t1, e, s, k), exc〉 ⇒cont 〈t1, e, s, k〉

〈stop, r〉 ⇒final r

where ebase = eempty [succ 7→ succ]
einit = ebase [get 7→ get][set 7→ set][raise 7→ raise]

and sinit is the initial state.

6.3 Summary and conclusion

We have presented two combined monads accounting for state and exceptions
and the two abstract machines corresponding to a call-by-value monadic eval-
uator and these two monads. The design decisions of combining monads was
taken at the monadic level and the corresponding abstract machines were then
derived mechanically. The correctness of these abstract machines is a corollary
of the correctness of the original monadic evaluator and of the transformations.

7 Stack inspection as a state monad

Stack inspection is a security mechanism developed to allow code with different
levels of trust to interact in the same execution environment (e.g., the JVM or
the CLR) [18]. Before execution, all code is annotated with a subset R of a fixed
set of permissions P . For example, trusted code is annotated with all permis-
sions and untrusted code is only annotated with a subset of permissions. Before
accessing a restricted resource during execution, the call stack is inspected to
test that the required access permissions are available. This test consists of
traversing the entire call stack to ensure that the direct caller and all indi-
rect callers all have the required permissions to access the resource. Traversing
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the entire call stack prevents untrusted code from gaining access to restricted
resources by (indirectly) calling trusted code. Trusted code can prevent inspec-
tion of its callers for some permissions by explicitly granting those permissions.
Trusted code can only grant permissions with which it has been annotated.

Because the entire call stack has to be inspected before accessing resources,
the stack-inspection mechanism seems to be incompatible with global tail-call
optimization. However, Clements and Felleisen have shown that this is not true
and that stack inspection is in fact compatible with global tail-call optimiza-
tion [6]. Their observation is that the security information of multiple tail calls
can be summarized in a permission table. If each stack frame contains a permis-
sion table, stack frames do not need to be allocated for tail-calls—the permission
table of the current stack frame can be updated instead. This tail-recursive se-
mantics for stack inspection is similar to tail-call optimization in (dynamically
scoped) Lisp [26]. It is presented in the form of a CESK machine, the CM ma-
chine, and Clements and Felleisen have proved that this machine uses as much
space as Clinger’s tail-call optimized CESK machine [7]. In the CM machine,
the call stack is represented as evaluation contexts each containing a permission
table.

The language of the CM machine is the λ-calculus extended with four con-
structs:

1. R[t], to annotate a term t with a set of permissions R. When executed, the
permissions available are restricted to the permissions in R by making the
complement R = P \ R unavailable; t is then executed with the updated
permissions.

2. grant R in t, to grant a set of permissions R during the evaluation of a
term t. When executed, the permissions R are made available, and t is
executed with the updated permissions.

3. test R then t0 else t1, to branch depending on whether a set of permissions
R is available. When executed, the call stack is inspected using a predicate
called OK, and t0 is executed if the permissions are available; otherwise
t1 is executed.

4. fail, to fail due to a security error. When executed, the evaluation is
terminated with a security error.

Our starting point is a simplified version of Clements and Felleisen’s CM
machine. Their machine includes a heap and a garbage-collection rule to make
it possible to extend Clinger’s space-complexity analysis to the CM machine.
For simplicity, we leave out the heap and the garbage-collection rule from the
machine, and, without loss of generality (because the source language is un-
typed), we omit recursive functions from the source language. Clements and
Felleisen’s source language does not have literals; for simplicity, we do likewise
and we omit literals and the successor function from the source language.
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• Permissions and permission tables for a fixed set of permissions P :

R ⊆ P

m ∈ P → {grant ,no}

• Source syntax (terms):

t ::= x | λx.t | t0 t1 |
R[t] | grant R in t | test R then t0 else t1 | fail

• Expressible values (closures), outcomes, and evaluation contexts:

v ::= [x, t, e]
o ::= v | fail
k ::= stop(m) | arg(t, e, k, m) | fun(v, k, m)

• Initial transition, transition rules (two kinds), and final transitions:

t ⇒init 〈t, eempty , stop(mempty)〉
〈x, e, k〉 ⇒eval 〈k, e(x)〉

〈λx.t, e, k〉 ⇒eval 〈k, [x, t, e]〉
〈t0 t1, e, k〉 ⇒eval 〈t0, e, arg(t1, e, k, mempty)〉
〈R[t], e, k〉 ⇒eval 〈t, e, k[R 7→ no]〉

〈grant R in t, e, k〉 ⇒eval 〈t, e, k[R 7→ grant ]〉
〈test R then t0 else t1, e, k〉 ⇒eval 〈t0, e, k〉 if OK[R][k]
〈test R then t0 else t1, e, k〉 ⇒eval 〈t1, e, k〉 otherwise

〈fail, e, k〉 ⇒final fail
〈arg(t, e, k, m), v〉 ⇒cont 〈t, e, fun(v, k, mempty)〉

〈fun([x, t, e], k, m), v〉 ⇒cont 〈t, e[x 7→ v], k〉
〈stop(m), v〉 ⇒final v

where mempty denotes the empty permission table,

stop(m)[R 7→ c] = stop(m[R 7→ c])
arg(t, e, k, m)[R 7→ c] = arg(t, e, k, m[R 7→ c])
fun(v, k, m)[R 7→ c] = fun(v, k, m[R 7→ c])

and
OK[∅][k] = true

OK[R][stop(m)] = R ∩m−1(no) = ∅
OK[R][arg(t, e, k, m)]
OK[R][fun(t, k, m)]

}
= (R ∩m−1(no) = ∅) ∧ OK[R \m−1(grant)][k]

In the CM machine, evaluation contexts contain permission tables. We unzip
the CM evaluation contexts into CEK evaluation contexts and a list of permis-
sion tables that is managed last in, first out, i.e., a stack of permission tables.
Permissions, permission tables, source syntax, expressible values, and outcomes
remain the same as in the original CM machine. The OK predicate is changed
to inspect the stack of permission tables instead of the evaluation contexts:
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• Evaluation contexts:

k ::= stop | arg(t, e, k) | fun(v, k)

• Initial transition, transition rules (two kinds), and final transitions:

t ⇒init 〈t, eempty , mempty :: nil , stop〉
〈λx.t, e, ms, k〉 ⇒eval 〈k, ms, [x, t, e]〉
〈x, e, ms, k〉 ⇒eval 〈k, ms, e(x)〉

〈t0 t1, e, ms, k〉 ⇒eval 〈t0, e, mempty :: ms, arg(t1, e, k)〉
〈R[t], e, m :: ms, k〉 ⇒eval 〈t, e, m[R 7→ no] :: ms, k〉

〈grant R in t, e, m :: ms, k〉 ⇒eval 〈t, e, m[R 7→ grant ] :: ms, k〉
〈test R then t0 else t1, e, ms, k〉 ⇒eval 〈t0, e, ms, k〉 if OK[R][ms]
〈test R then t0 else t1, e, ms, k〉 ⇒eval 〈t1, e, ms, k〉 otherwise

〈fail, e, ms, k〉 ⇒final fail
〈arg(t, e, k), m :: ms, v〉 ⇒cont 〈t, e, mempty :: ms, fun(v, k)〉

〈fun([x, t, e], k), m :: ms, v〉 ⇒cont 〈t, e[x 7→ v], ms, k〉
〈stop, ms, v〉 ⇒final v

where

OK[∅][ms] = true
OK[R][nil ] = true

OK[R][m :: ms] = (R ∩m−1(no) = ∅) ∧OK[R \m−1(grant)][ms]

As we have already observed in previous work [2, 5, 8, 10], the evaluation
contexts, together with the cont transition function, are the defunctionalized
counterpart of a continuation. We can therefore “refunctionalize” this contin-
uation and then write the evaluator in direct style. The resulting evaluator
threads a state—the stack of permission tables—and can therefore be expressed
as an instance of the monadic evaluator with a state monad.

In the state monad for stack inspection, the storable values are permission
tables, and the state is a stack of storable values. The operations on the per-
mission tables are expressed as the monadic operations push empty, pop top,
mark complement no, mark grant, and OK. The stack inspection state monad is
implemented as a structure with the following signature:

signature STACK_INSPECTION_STATE_MONAD

= sig

include MONAD

type storable

type state

val push_empty : unit monad

val pop_top : unit monad

val mark_complement_no : permission Set.set -> unit monad

val mark_grant : permission Set.set -> unit monad

val OK : permission Set.set -> bool monad

end
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where permission is a type of permissions and Set.set is a polymorphic type of
sets.

The definitions of unit and bind are those of the state monad of Section 4:
push empty pushes an empty permission table on top of the permission-table
stack; pop top pops the top permission table off the permission-table stack;
mark complement no updates the topmost permission table by making the com-
plement of the argument set of permissions unavailable; mark grant updates the
topmost permission table by making the argument set of permissions available;
and OK inspects the permission stack to test whether the argument permissions
are available.

The source language is represented as an ML datatype:

datatype term = VAR of ide

| LAM of ide * term

| APP of term * term

| FRAME of permission Set.set * term

| GRANT of permission Set.set * term

| TEST of permission Set.set * term * term

| FAIL

The monadic evaluator corresponding to the unzipped version of the CM
machine reads as follows:

datatype value = FUN of value -> outcome monad

and outcome = FAILURE

| SUCCESS of value

(* eval : term * value Env.env -> value *)

fun eval (VAR x, e)

= unit (SUCCESS (Env.lookup (e, x)))

| eval (LAM (x, t), e)

= unit (SUCCESS (FUN (fn v => eval (t, Env.extend (x, v, e)))))

| eval (APP (t0, t1), e)

= bind (push_empty, fn () =>

bind (eval (t0, e), fn (SUCCESS v0) =>

bind (pop_top, fn () =>

bind (push_empty, fn () =>

bind (eval (t1, e), fn (SUCCESS v1) =>

bind (pop_top, fn () => let val (FUN f) = v0

in f v1

end))))))

| eval (FRAME (R, t), e)

= bind (mark_complement_no R, fn () => eval (t, e))

| eval (GRANT (R, t), e)

= bind (mark_grant R, fn () => eval (t, e))

| eval (TEST (R, t0, t1), e)

= bind (OK R, fn b => if b then eval (t0, e) else eval (t1, e))

| eval (FAIL, e)

= unit FAILURE
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The process is reversible. Starting from this state monad where the state is
a stack of permission tables and this monadic evaluator, it is a simple exercise to
reconstruct the unzipped CM machine by inlining the monad, closure converting
the expressible values, CPS-transforming the evaluator, and defunctionalizing
the resulting continuations.

8 Combining stack inspection and exceptions

As in Section 6, the (stack-inspection) state monad and the exception monad
can be combined in two ways. In Section 6, the two combinations gave rise
to significantly different semantics. In the case of stack inspection, the two
variants do not differ much. The reason is that the state represents the per-
missions available during execution. When handling an exception, it is crucial
for security that the permissions in effect at the time the handler was installed
are reinstated and execution resumed with those permissions. The snapback se-
mantics is therefore appropriate whether or not the state in which the exception
was raised is available.

8.1 A combined stack-inspection and exception monad

We consider the combination where the state is discarded when an exception
is raised. In Section 6 we put the raise operation in the initial environment.
Here, for diversity value, we add it to the language of Section 7 as a syntactic
construct:

datatype term = ...

| RAISE

| HANDLE of term * term

The combined stack inspection state monad and exception monad is imple-
mented as a structure with the following signature:

signature STACK_INSPECTION_STATE_AND_EXCEPTION_MONAD

= sig

include STACK_INSPECTION_STATE_MONAD

datatype ’a E = RES of ’a

| EXC

val raise_exception : ’a monad

val handle_exception : ’a monad * ’a monad -> ’a monad

end

The definition of the monad type constructor, unit, bind, raise exception, and
handle exception are as follows, using a type permission table to represent per-
mission tables:

type state = permission_table list

type ’a monad = state -> (’a * state) E
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fun unit a

= (fn s => RES (a, s))

fun bind (m, k)

= (fn s => (case m s

of (RES (a, s’)) => k a s’

| EXC => EXC))

val raise_exception = (fn s => EXC)

fun handle_exception (t0, t1)

= (fn s => (case t0 s

of (RES r) => RES r

| EXC => t1 s))

The definition of the monadic operations for manipulating permission stacks are
straightforwardly extended to account for exceptions. The monadic evaluator
is as in Section 7 with two extra clauses:

...

| eval (RAISE, e)

= raise_exception

| eval (HANDLE (t0, t1), e)

= handle_exception (eval (t0, e), eval (t1, e))

8.2 An abstract machine for stack inspection and excep-
tions

Inlining the monad in the monadic evaluator, closure converting the express-
ible values, CPS-transforming the evaluator, and defunctionalizing the resulting
continuations yields the following abstract machine with stack inspection and
exceptions. Permissions, permission tables, and the definition of OK are as in
the unzipped CM machine:

• Source syntax (terms):

t ::= x | λx.t | t0 t1 |
R[t] | grant R in t | test R then t0 else t1 | fail |
raise | t0 handle t1

• Expressible values (closures), results, outcomes, and evaluation contexts:

v ::= [x, t, e]
r ::= res(v, ms) | exc
o ::= r | fail
k ::= stop | arg(t, e, k) | fun(v, k) | exc(t, e, ms, k)

• Initial transition, transition rules (two kinds), and final transitions:
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t ⇒init 〈t, eempty , mempty :: nil , stop〉
〈x, e, ms, k〉 ⇒eval 〈k, res(e(x), ms)〉

〈λx.t, e, ms, k〉 ⇒eval 〈k, res([x, t, e], ms)〉
〈t0 t1, e, ms, k〉 ⇒eval 〈t0, e, mempty :: ms, arg(t1, e, k)〉

〈R[t], e, m :: ms, k〉 ⇒eval 〈t, e, m[R 7→ no] :: ms, k〉
〈grant R in t, e, m :: ms, k〉 ⇒eval 〈t, e, m[R 7→ grant ] :: ms, k〉

〈test R then t0 else t1, e, ms, k〉 ⇒eval 〈t0, e, ms, k〉 if OK[R][ms]
〈test R then t0 else t1, e, ms, k〉 ⇒eval 〈t1, e, ms, k〉 otherwise

〈raise, e, ms, k〉 ⇒eval 〈k, exc〉
〈t0 handle t1, e, ms, k〉 ⇒eval 〈t0, e, ms, exc(t1, e, ms, k)〉

〈fail, e, ms, k〉 ⇒final fail
〈arg(t, e, k), res(v, m :: ms)〉 ⇒cont 〈t, e, mempty :: ms, fun(v, k)〉

〈arg(t, e, k), exc〉 ⇒cont 〈k, exc〉
〈fun([x, t, e], k), res(v, m :: ms)〉 ⇒cont 〈t, e[x 7→ v], ms, k〉

〈fun([x, t, e], k), exc〉 ⇒cont 〈k, exc〉
〈exc(t, e, ms′, k), res(v, ms)〉 ⇒cont 〈k, res(v, ms)〉

〈exc(t, e, ms, k), exc〉 ⇒cont 〈t, e, ms, k〉
〈stop, r〉 ⇒final r

8.3 Summary and conclusion

We have presented a combined monad accounting for stack inspection and ex-
ceptions and the abstract machine corresponding to a call-by-value monadic
evaluator and this monad. The design decision of how to combine the monads
is taken at the monadic level and the construction of the corresponding ab-
stract machine is mechanical. Constructing abstract machines for a language
with stack inspection and other effects expressed as monads therefore reduces
to designing the desired combination of the monads and then mechanically de-
riving the corresponding abstract machine. The correctness of this abstract
machine is a corollary of the correctness of the original monadic evaluator and
of the transformations.

9 A dedicated monad for stack inspection

We observe that the state monad is overly general to characterize the compu-
tational behaviour of stack inspection:

type ’a monad = permission_table list -> permission_table list * ’a

This type would also fit if all permissions in the stack were updatable. However,
that is not the case—only the top permission table can be modified, and the
other permission tables in the stack are read-only.

Instead, we can cache the top permission table and make it both readable
and writable while keeping the rest of the stack read only. The corresponding
type constructor reads as follows:
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type ’a monad = permission_table * permission_table list

-> permission_table * ’a

Proposition 1 The type constructor above, together with the following defini-
tions of unit and bind, satisfies the three monadic laws.

fun unit a

= (fn (p, pl) => (p, a))

fun bind (f, g)

= (fn (p, pl) => let val (p’, a) = f (p, pl)

in g a (p’, pl)

end)

Proof: By straightforward equational reasoning. �
This monad provides a more accurate characterization of stack inspection.

As an exercise, we have constructed the corresponding abstract machine as
well as a new abstract machine corresponding to this stack-inspection monad
combined with the exception monad. The resulting abstract machines are sim-
ilar to the ones in Sections 7 and 8.

10 Related work

Since Moggi’s breakthrough [24], monads have been widely used to parameterize
functional programs with effects [4]. We are not aware, though, of the use of
monads in connection with abstract machines for computational effects.

For several decades abstract machines have been an active area of research,
ranging from Landin’s classical SECD machine [20] to the modern JVM [21].
As observed by Diehl, Hartel, and Sestoft [12], research on abstract machines
has chiefly focused on developing new machines and proving them correct. The
thrust of our work is a correspondence between interpreters and abstract ma-
chines [2, 8].

Stack inspection is used as a fine-grained access control mechanism for
Java [19]. It allows code with different levels of trust to safely interact in the
same execution environment. Before access to a restricted resource is allowed,
the entire call stack is inspected to test that the required permissions are avail-
able. Wallach, Appel, and Felten present a semantics for stack inspection based
on a belief logic [31]. Their semantics is not tied to inspecting stack frames, and
it is thus compatible with tail-call optimization. Their implementation, called
security-passing style, allows them to implement stack inspection for Java with-
out changing the JVM. Instead, they perform a global byte-code rewriting be-
fore loading. Fournet and Gordon develop a formal semantics and an equational
theory for a λ-calculus model of stack inspection [18]. They use this equational
theory to formally investigate how stack inspection affects known program trans-
formations such as inlining and tail-call optimization. Clements and Felleisen
present a properly tail-call optimized semantics for stack inspection based on
Fournet and Gordon’s semantics [6]. This tail-call optimized semantics is given
in the form of a CESK machine, which was the starting point for our work.
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11 Conclusion

We have extended our correspondence between evaluators and abstract machines
from the pure setting of the λ-calculus to the impure setting of the computa-
tional λ-calculus. Throughout, we have advocated that a viable alternative to
designing abstract machines for languages with computational effects and then
proving their correctness is to start from a monadic evaluator and a compu-
tational monad and to derive the corresponding abstract machine. We have
illustrated this alternative with standard monads as well as with new monads.
The identity monad leads us to the classical CEK machine. The state monad,
the exception monad, and mixes of both lead us to variants of the CEK machine
that we identify as such. We have also characterized Clements and Felleisen’s
properly tail-recursive stack inspection as a state monad and we have combined
it with an exception monad to construct a new abstract machine with properly
tail-recursive stack inspection and exceptions.

The contributions of this article are therefore as follows:

• a systematic construction of abstract machines for languages with compu-
tational effects from a monadic evaluator and a computational monad;

• concrete examples of the construction for the identity monad, a state
monad, an exception monad, and their combination;

• a characterization of Clements and Felleisen’s properly tail-recursive stack
inspection as a state monad and a reconstruction of the CM machine;

• the combination of the stack-inspection state monad with an exception
monad and the construction of the corresponding abstract machine; and

• a dedicated monad for properly tail-recursive stack inspection and how to
construct the corresponding abstract machine.

Constructing abstract machines for languages with effects is known to be a
challenge, one that is handled on a case-by-case basis. Our correspondence
between evaluators and abstract machines provides a methodology to construct
abstract machines for languages with effects. In addition, our characterization
of stack inspection as a monad makes it possible to combine stack inspection
with computational effects at a monadic level. We are therefore in position to
construct, e.g., a variant of Krivine’s machine with stack inspection as well as
variants of the Categorical Abstract Machine and of the SECD machine with
arbitrary computational effects expressed as monads.
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