
B
R
IC
S
R
S-03-33

O
.D
anvy:

A
R
ationalD

econstruction
of
L
andin’s

SE
C
D
M
achine

BRICS
Basic Research in Computer Science

A Rational Deconstruction of
Landin’s SECD Machine

Olivier Danvy

BRICS Report Series RS-03-33

ISSN 0909-0878 October 2003

Copyright c© 2003, Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/33/

A Rational Deconstruction

of Landin’s SECD Machine

Olivier Danvy

BRICS ∗

Department of Computer Science
University of Aarhus †

October 2003

Abstract

Landin’s SECD machine was the first abstract machine for the λ-
calculus viewed as a programming language. Both theoretically as a model
of computation and practically as an idealized implementation, it has set
the tone for the subsequent development of abstract machines for func-
tional programming languages. However, and even though variants of the
SECD machine have been presented, derived, and invented, the precise
rationale for its architecture and modus operandi has remained elusive.
In this article, we deconstruct the SECD machine into a λ-interpreter,
i.e., an evaluation function, and we reconstruct λ-interpreters into a vari-
ety of SECD-like machines. The deconstruction and reconstructions are
transformational: they are based on equational reasoning and on a com-
bination of simple program transformations—mainly closure conversion,
transformation into continuation-passing style, and defunctionalization.

The evaluation function underlying the SECD machine provides a pre-
cise rationale for its architecture: it is an environment-based eval-apply
evaluator with a callee-save strategy for the environment, a data stack of
intermediate results, and a control delimiter. Each of the components of
the SECD machine (stack, environment, control, and dump) is therefore
rationalized and so are its transitions.

The deconstruction and reconstruction method also applies to other
abstract machines and other evaluation functions. It makes it possible
to systematically extract the denotational content of an abstract machine
in the form of a compositional evaluation function, and the (small-step)
operational content of an evaluation function in the form of an abstract
machine.

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

†Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark
E-mail: danvy@brics.dk

1

Contents

1 Introduction 3
1.1 Deconstruction of the SECD machine 4
1.2 Denotational content of the SECD machine 5
1.3 Overview . 6
1.4 Prerequisites and domain of discourse 6

2 Deconstruction of the SECD machine 7
2.1 The original specification of the SECD machine 7
2.2 A more structured specification 9
2.3 A higher-order counterpart . 11
2.4 A dump-less direct-style counterpart 12
2.5 A control-less direct-style counterpart 13
2.6 A stack-less counterpart . 14
2.7 A compositional counterpart . 15
2.8 Assessment . 17
2.9 Landin’s J operator . 17

3 Reconstructions of SECD-like machines 17
3.1 The original SECD machine . 17
3.2 A left-to-right SECD machine . 18
3.3 A properly tail-recursive SECD machine 18
3.4 A call-by-name SECD machine 20
3.5 A call-by-need SECD machine . 20
3.6 An SEC machine . 20
3.7 An EC machine . 21
3.8 An SC machine . 22
3.9 A C machine . 22
3.10 Higher-order abstract syntax . 23
3.11 de Bruijn indices . 23
3.12 An instruction set for the SECD machine 23
3.13 Assessment . 23
3.14 Related work . 23

4 Conclusion 24

A Toolbox 25
A.1 CPS transformation . 25
A.2 Delimited continuations . 25
A.3 Defunctionalization . 26
A.4 Closure conversion . 27

2

1 Introduction

Forty years ago, Peter Landin wrote a profoundly influencial article, “The Me-
chanical Evaluation of Expressions” [38], where, in retrospect, he outlined a
substantial part of the functional-programming research programme for the fol-
lowing decades. This visionary article stands out for advocating the use of the
λ-calculus as a meta-language and for introducing the first abstract machine
for the λ-calculus (i.e., in Landin’s terms, applicative expressions), the SECD
machine. However, and in addition, it also introduces the notions of ‘syntactic
sugar’ over a core programming language; of ‘closure’ to represent functional
values; of circularity to implement recursion; of thunks to delay computations;
of delayed evaluation; of partial evaluation; of disentangling nested applications
into where-expressions at preprocessing time; of what has since been called de
Bruijn indices; of sharing; of what has since been called graph reduction; of call
by need; of what has since been called strictness analysis; and of domain-specific
languages—all concepts that are ubiquitous in programming languages today.
The topic of this article is the SECD machine.

Since “The Mechanical Evaluation of Expressions,” many other abstract
machines for the λ-calculus have been invented, discovered, or derived [20].
In fact, the literature simply abounds with derivations of abstract machines—
though with one remarkable exception: there is no derivation of Landin’s original
SECD machine, even though it was the first such abstract machine. The SECD
machine is the starting point of many university courses and textbooks and it
has been the topic of many variations and optimizations, be it for its source
language (call by name, call by need, other syntactic constructs, including con-
trol operators), for its environment (de Bruijn indices, de Bruijn levels, explicit
substitutions, higher-order abstract syntax), or for its control (proper tail recur-
sion, one stack instead of two). Yet in forty years of existence, it has not been
derived or reconstructed. The common agreement is that there is something
special, something original and still unexplained about the SECD machine.

The goal of this article is to pinpoint and explain the originality of the
SECD machine. To this end, we show how to mechanically deconstruct the
SECD machine into an evaluator for applicative expressions and then how to
rationally reconstruct a variety of SECD-like machines. This deconstruction–
reconstruction is actually interesting in itself because it provides a bridge be-
tween small-step operational semantics (in the form of an abstract machine)
and denotational semantics (in the form of a compositional evaluation func-
tion). It is also general because it applies to other evaluators and other abstract
machines [2]. The derivation is based on a combination of simple, correct,
and well-known program-transformation tools, each of which is reviewed in ap-
pendix: CPS transformation [17, 52], delimited continuations [16], defunction-
alization [18,48], and closure conversion [38]. In fact, these transformations are
so classical that one could almost say that the present work could have been
carried out years ago, would it be only for Piet Hein’s gentle reminder that
Things Take Time [31].

3

1.1 Deconstruction of the SECD machine

The SECD machine is defined as one transition function over a quadruple—a
stack of intermediate values (of type S), an environment (of type E), a control
stack (of type C), and a dump (of type D):

run : S * E * C * D -> value

This transition function is complicated because it has several induction vari-
ables. Our single creative step is to first disentangle it into four transition func-
tions, each of which has one induction variable, i.e., operates on one element of
the quadruple:

run_c : S * E * C * D -> value

run_d : S * D -> value

run_t : term * S * E * C * D -> value

run_a : S * E * C * D -> value

Depending on the control stack, run c dispatches towards run d if the control
stack is empty, run t if the top of the control stack contains a term, and run a

if the top of the control stack contains an apply directive.

• We observe that these four functions are in defunctionalized form (the
control stack and the dump are defunctionalized data types and two of
the four functions are the corresponding apply functions), and we refunc-
tionalize them, eliminating the two apply functions:

run_t : term * S * E * C * D -> value

run_a : S * E * C * D -> value

where C = S * E * D -> value

D = S -> value

• We observe that the result is in continuation-passing style, and we trans-
form it back to direct style, eliminating the dump continuation:

run_t : term * S * E * C -> stack

run_a : S * E * C -> S

where C = S * E -> S

• We observe that the result is almost in continuation-passing style, mod-
ulo the reinitialization of a continuation when evaluating the body of a
λ-abstraction, and we transform it back to direct style with a control
delimiter, eliminating the control continuation:

run_t : S * E -> S * E

run_a : S * E -> S * E

• We observe that the result threads a data stack of intermediate results,
and we rewrite it to do without, eliminating the stack:

run_t : term * E -> value * E

run_a : value * value * E -> value * E

4

• We observe that the result is in closure-converted form, and we unconvert
it, eliminating the closures.

• We observe that the result is a compositional evaluator in direct style.

Given a disentangled—though altogether not unexpectable—transition func-
tion for the SECD machine, all the observations above are in some sense un-
avoidable as well as economical—though the author is well aware that to a man
with a hammer, the world looks like a nail. The order of these transformations,
however, is not fixed. Both closure unconversion and data-stack elimination
could occur earlier in the deconstruction.

1.2 Denotational content of the SECD machine

The end result of the deconstruction outlined in Section 1.1 shows that the
denotational content of the SECD machine is a (curried) evaluation function of
type

term -> E -> value * E

where term is the type of a term, value is the type of a value, and E is the type of
an environment mapping variables to values. This evaluator maps a term t into
an ML function. This denotation maps an environment e in which to evaluate
t into a pair (v, e’), where v is the value corresponding to t and e’ is the same
environment as e.

This evaluator is traditional in that it is composed of one ‘eval’ function
(run t above) to evaluate terms, and one ‘apply’ function (run a above) to apply
functions. (An alternative to this traditional eval–apply model is the push-enter
model of Krivine’s machine [36] and of the spineless tagless G-machine [44].)
This evaluator, however, is also unconventional in that:

1. its environment is managed in a callee-save fashion (witness the environ-
ment paired with the resulting value), and

2. it uses a control delimiter to evaluate the body of λ-abstractions.

It seems to us that these two properties account both for the specificity and for
the intriguing originality of Landin’s SECD machine:

Specificity: The two properties show that the evaluation mechanism of the
SECD machine is environment-based, that the environment is threaded
and saved in a callee-save fashion, and that the body of each λ-abstraction
is evaluated afresh. The rest—closures, stack, control, and dump—are
inessential programming artefacts.

Originality: Environments are usually managed in a caller-save fashion in inter-
preters, and relatively rare are programs that use delimited continuations.
(In fact, control delimiters were invented a quarter of a century after the
SECD machine [15, 16, 23, 25].)

5

1.3 Overview

We first detail the deconstruction of the SECD machine into a compositional
evaluator in direct style (Section 2). We then illustrate how to reconstruct a
variety of SECD-like machines (Section 3), including one with an instruction
set, and we conclude.

1.4 Prerequisites and domain of discourse

We use ML as a meta-language. We assume a basic familiarity with Standard
ML and with reasoning about ML programs. In particular, given two ML ex-
pressions e and e’ we write e ∼= e’ to express that e and e’ are observationally
equivalent.

The source language. The source language is the λ-calculus, extended with
literals (as observables). A program is a closed term.

structure Source

= struct

type ide = string

datatype term = LIT of int

| VAR of ide

| LAM of ide * term

| APP of term * term

type program = term

end

The (polymorphic) environment. We make use of a structure Env satisfy-
ing the following signature:

signature ENV

= sig

type ’a env

val empty : ’a env

val extend : Source.ide * ’a * ’a env -> ’a env

val lookup : Source.ide * ’a env -> ’a

end

The empty environment is denoted by Env.empty. The function extending an
environment with a new binding is denoted by Env.extend. The function fetching
the value of an identifier from an environment is denoted by Env.lookup.

Expressible and denotable values. There are three kinds of values: inte-
gers, the successor function, and function closures:

datatype value = INT of int

| SUCC

| CLOSURE of value Env.env * Source.ide * Source.term

6

Following Landin [38], function closures pair a λ-abstraction (i.e., its formal
parameter and its body) and the environment of its declaration.

The initial environment. We define the successor function in the initial
environment:

val e_init = Env.extend ("succ", SUCC, Env.empty)

2 Deconstruction of the SECD machine

We now substantiate the deconstruction outlined in Section 1.1.
Section 2.1 presents the SECD machine as originally specified and classi-

cally presented in the literature, i.e., as one tail-recursive transition function
run. Section 2.2 presents an alternative specification where run is disentangled
into four mutually (tail) recursive transition functions run c, run d, run t, and
run a, each of which has one induction variable. This disentangled definition is
in defunctionalized form, and Section 2.3 presents its higher-order counterpart.
This counterpart is in continuation-passing style, and Section 2.4 presents its
direct-style equivalent. This equivalent is almost in continuation-passing style,
which is characteristic of delimited control. Section 2.5 presents the correspond-
ing direct-style evaluator, which uses a control delimiter. This evaluator uses a
data stack of intermediate results. Section 2.6 presents the corresponding stack-
less evaluator. This evaluator is in closure-converted form. Section 2.7 present
the corresponding higher-order evaluator. This evaluator is compositional and
assessed in Section 2.8.

In addition, Section 2.9 reviews the J operator.

2.1 The original specification of the SECD machine

The SECD machine is a transition function over a state with four components:

• A stack register holding a list of intermediate results. This component
has type value list.

• An environment register holding the current environment. This compo-
nent has type value Env.env.

• A control register holding a list of control directives. This component has
type directive, where directive is defined as follows:

datatype directive = TERM of Source.term

| APPLY

• A dump register holding a list of triples. Each triple contains snapshots of
the stack, environment, and control registers. This component has type
(value list * value Env.env * directive list) list.

7

The SECD machine is defined with a set of transitions between its four
components. Here is its transitive closure:

(* run : S * E * C * D -> value *)

(* where S = value list *)

(* E = value Env.env *)

(* C = directive list *)

(* D = (S * E * C) list *)

fun run (v :: nil, e’, nil, nil) (* 1 *)

= v

| run (v :: nil, e’, nil, (s, e, c) :: d) (* 2 *)

= run (v :: s, e, c, d)

| run (s, e, (TERM (LIT n)) :: c, d) (* 3 *)

= run ((INT n) :: s, e, c, d)

| run (s, e, (TERM (VAR x)) :: c, d) (* 4 *)

= run ((Env.lookup (x, e)) :: s, e, c, d)

| run (s, e, (TERM (LAM (x, t))) :: c, d) (* 5 *)

= run ((CLOSURE (e, x, t)) :: s, e, c, d)

| run (s, e, (TERM (APP (t0, t1))) :: c, d) (* 6 *)

= run (s, e, (TERM t1) :: (TERM t0) :: APPLY :: c, d)

| run (SUCC :: (INT n) :: s, e, APPLY :: c, d) (* 7 *)

= run ((INT (n+1)) :: s, e, c, d)

| run ((CLOSURE (e’, x, t)) :: v’ :: s, e, APPLY :: c, d) (* 8 *)

= run (nil, Env.extend (x, v’, e’), (TERM t) :: nil, (s, e, c) :: d)

(* evaluate0 : Source.program -> value *)

fun evaluate0 t (* 9 *)

= run (nil, e_init, (TERM t) :: nil, nil)

Essentially:

1. The first clause specifies what to do if both the current list of control direc-
tives and the current dump are empty, which corresponds to terminating
the computation: the value on top of the stack is returned.

2. The second clause specifies what to do if the current list of control direc-
tives is empty but the current dump is not empty, which corresponds to
a function return: the computation should continue with the stack, en-
vironment, and control stored in the top-most component of the dump,
transferring the top-most value of the current stack onto the new stack.

3. The third clause specifies what to do if the top current control directive is
a literal, which corresponds to evaluating this literal: the corresponding
value should be pushed on the current stack.

4. The fourth clause specifies what to do if the top current control direc-
tive is an identifier, which corresponds to evaluating this identifier: the
corresponding value should be fetched from the current environment and
pushed on the current stack.

8

5. The fifth clause specifies what to do if the top current control directive is
a λ-abstraction, which corresponds to evaluating this λ-abstraction: the
corresponding function closure should be pushed on the current stack.
This closure groups the current environment and the two components of
the λ-abstraction, i.e., its formal parameter and its body.

6. The sixth clause specifies what to do if the top current control directive is
an application, which corresponds to evaluating an application: an apply
directive, the operator, and the operand should be pushed on the list of
control directives.

7. The seventh clause specifies what to do if the top current control directive
is an apply directive, the top of the current stack is the successor function,
and the next element in the current stack is an integer, which corresponds
to the application of the successor function: the current stack should be
popped twice and the integer should be incremented and pushed on the
stack.

8. The eighth clause specifies what to do if the top current control directive
is an apply directive, the top of the current stack is a closure, and there
is a next element in the current stack, which corresponds to a function
call: the stack should be popped twice and, together with the current
environment and the rest of the list of control directives, pushed on the
dump (thereby saving the current state of the machine). The current stack
should be initialized with the empty list, the current environment should
be initialized with the closure environment, suitably extended, and the
current list of directives should be initialized with the body of the closure.

9. Evaluation is initialized with an empty current stack, the initial environ-
ment, the expression to evaluate as a single control directive, and an empty
dump.

The SECD machine does not terminate for divergent source terms. If it becomes
stuck, an ML pattern-matching error is raised (alternatively, the co-domain of
run could be made value option and an else clause could be added). Otherwise,
the result of the evaluation is v for some ML value v : value.

2.2 A more structured specification

In the definition of Section 2.1, all the possible transitions are meshed together
in one recursive function, run. Let us factor run into several mutually recursive
functions, each of them with one induction variable.

In this disentangled definition,

• run c interprets the list of control directives, i.e., it specifies which transi-
tion to take if the list is empty, starts with a term, or starts with an apply
directive. If the list is empty, it calls run d. If the list starts with a term,
it calls run t, caching the term in an extra component (the first parameter
of run t). If the list starts with an apply directive, it calls run a.

9

• run d interprets the dump, i.e., it specifies which transition to take if the
dump is empty or non-empty, given a valid stack.

• run t interprets the top term in the list of control directives.

• run a interprets the top value in the current stack.

(* run_c : S * E * C * D -> value *)

(* run_d : S * D -> value *)

(* run_t : Source.term * S * E * C * D -> value *)

(* run_a : S * E * C * D -> value *)

(* where S = value list *)

(* E = value Env.env *)

(* C = directive list *)

(* D = (S * E * C) list *)

fun run_c (s, e, nil, d)

= run_d (s, d)

| run_c (s, e, (TERM t) :: c, d)

= run_t (t, s, e, c, d)

| run_c (s, e, APPLY :: c, d)

= run_a (s, e, c, d)

and run_d (v :: nil, nil)

= v

| run_d (v :: nil, (s, e, c) :: d)

= run_c (v :: s, e, c, d)

and run_t (LIT n, s, e, c, d)

= run_c ((INT n) :: s, e, c, d)

| run_t (VAR x, s, e, c, d)

= run_c ((Env.lookup (x, e)) :: s, e, c, d)

| run_t (LAM (x, t), s, e, c, d)

= run_c ((CLOSURE (e, x, t)) :: s, e, c, d)

| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e, (TERM t0) :: APPLY :: c, d)

and run_a (SUCC :: (INT n) :: s, e, c, d)

= run_c ((INT (n+1)) :: s, e, c, d)

| run_a ((CLOSURE (e’, x, t)) :: v’ :: s, e, c, d)

= run_t (t, nil, Env.extend (x, v’, e’), nil, (s, e, c) :: d)

(* evaluate1 : Source.program -> value *)

fun evaluate1 t

= run_t (t, nil, e_init, nil, nil)

Proposition 1 (full correctness) For any ML value t : Source.program,

evaluate1 t ∼= evaluate0 t

Proof: By equational reasoning and fixed-point induction [58]. The invari-
ants are as follows. For any ML values s : S, e : E, c : C, d : D, and t :

Source.term,

10

⎧⎪⎪⎨
⎪⎪⎩

run c (s, e, c, d) ∼= run (s, e, c, d)

run d (s, d) ∼= run (s, e, nil, d)

run t (t, s, e, c, d) ∼= run (s, e, (TERM t) :: c, d)

run a (s, e, c, d) ∼= run (s, e, APPLY :: c, d)

�

2.3 A higher-order counterpart

In the disentangled definition of Section 2.2, there are two possible ways to
construct a dump (nil and cons) and three possible ways to construct a list of
control directives (nil, cons’ing a term, and cons’ing an apply directive). (We
could phrase these constructions as two data types rather than as two lists.)

These data types, together with run d and run c, are in the image of defunc-
tionalization (run d and run c are the apply functions of these two data types).
The corresponding higher-order evaluator reads as follows.

(* run_t : Source.term * S * E * C * D -> value *)

(* run_a : S * E * C * D -> value *)

(* where S = value list *)

(* E = value Env.env *)

(* C = (S * E * D) -> value *)

(* D = S -> value *)

fun run_t (LIT n, s, e, c, d)

= c ((INT n) :: s, e, d)

| run_t (VAR x, s, e, c, d)

= c ((Env.lookup (x, e)) :: s, e, d)

| run_t (LAM (x, t), s, e, c, d)

= c ((CLOSURE (e, x, t)) :: s, e, d)

| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e,

fn (s, e, d) => run_t (t0, s, e,

fn (s, e, d) => run_a (s, e, c, d),

d),

d)

and run_a (SUCC :: (INT n) :: s, e, c, d)

= c ((INT (n+1)) :: s, e, d)

| run_a ((CLOSURE (e’, x, t)) :: v’ :: s, e, c, d)

= run_t (t, nil, Env.extend (x, v’, e’),

fn (s, _, d) => d s,

fn (v :: nil) => c (v :: s, e, d))

(* evaluate2 : Source.program -> value *)

fun evaluate2 t

= run_t (t, nil, e_init,

fn (s, _, d) => d s,

fn (v :: nil) => v)

The resulting evaluator is in continuation-passing style, with two nested con-
tinuations. It inherits the characteristics of the SECD machine, i.e., it threads

11

a stack of intermediate results, an environment, a control continuation, and a
dump continuation. As an evaluator, it is a bit unusual in that:

1. it has two continuations (C and D),

2. it threads a stack of intermediate results (S), and

3. the environment is saved by the recursive callees, not by the callers. (Usu-
ally, the environment is not threaded but saved across recursive calls.)

Otherwise the interpreter follows the traditional eval–apply schema identified by
McCarthy in his definition of Lisp in Lisp [41], by Reynolds in his definitional
interpreters [48], and by Steele and Sussman in their lambda-papers [51–54]:
run t is eval and run a is apply.

Proposition 2 (full correctness) For any ML value p : Source.program,

evaluate2 p ∼= evaluate1 p.

Proof: Defunctionalizing evaluate2 yields evaluate1, and defunctionalization
has been proved correct [5, 43]. �

2.4 A dump-less direct-style counterpart

The evaluator of Section 2.3 is in continuation-passing style and therefore it is
in the image of the CPS transformation [11]. Its direct-style counterpart reads
as follows, renaming run t as eval and run a as apply.

(* eval : Source.term * S * E * C -> stack *)

(* apply : S * E * C -> S *)

(* where S = value list *)

(* E = value Env.env *)

(* C = S * E -> S *)

fun eval (LIT n, s, e, c)

= c ((INT n) :: s, e)

| eval (VAR x, s, e, c)

= c ((Env.lookup (x, e)) :: s, e)

| eval (LAM (x, t), s, e, c)

= c ((CLOSURE (e, x, t)) :: s, e)

| eval (APP (t0, t1), s, e, c)

= eval (t1, s, e, fn (s, e) =>

eval (t0, s, e, fn (s, e) =>

apply (s, e, c)))

and apply (SUCC :: (INT n) :: s, e, c)

= c ((INT (n+1)) :: s, e)

| apply ((CLOSURE (e’, x, t)) :: v’ :: s, e, c)

= let val (v :: nil) = eval (t, nil, Env.extend (x, v’, e’),

fn (s, _) => s)

in c (v :: s, e)

end

12

(* evaluate3 : Source.program -> value *)

fun evaluate3 t

= let val (v :: nil) = eval (t, nil, e_init, fn (s, _) => s)

in v

end

Proposition 3 (full correctness) For any ML value p : Source.program,

evaluate3 p ∼= evaluate2 p.

Proof: CPS-transforming evaluate3 yields evaluate2, and the CPS transfor-
mation is meaning-preserving. �

2.5 A control-less direct-style counterpart

All but two of the calls to eval are tail calls in the evaluator of Section 2.4.
Thus, except for these two calls, the evaluator is in CPS. These two calls are
characteristic of delimited continuations [16,23]. To account for them, we use the
control delimiter reset. (Operationally, this control delimiter is moot because
no continuations are captured [16, 34]. It can therefore simply be defined as
taking a thunk and forcing it, as we do below; in general of course, the definition
is not as simple [26]. Section 3.6 analyzes the consequences of omitting reset
altogether.) With such a definition of reset, the direct-style counterpart of the
evaluator reads as follows:

(* (* mock-up *) reset : (unit -> ’a) -> ’a *)

fun reset thunk

= thunk ()

(* eval : Source.term * S * E -> S * E *)

(* apply : S * E -> S * E *)

(* where S = value list *)

(* E = value Env.env *)

fun eval (LIT n, s, e)

= ((INT n) :: s, e)

| eval (VAR x, s, e)

= ((Env.lookup (x, e)) :: s, e)

| eval (LAM (x, t), s, e)

= ((CLOSURE (e, x, t)) :: s, e)

| eval (APP (t0, t1), s, e)

= let val (s, e) = eval (t1, s, e)

val (s, e) = eval (t0, s, e)

in apply (s, e)

end

and apply (SUCC :: (INT n) :: s, e)

= ((INT (n+1)) :: s, e)

| apply ((CLOSURE (e’, x, t)) :: v’ :: s, e)

= let val (v :: nil, _)

= reset (fn () => eval (t, nil, Env.extend (x, v’, e’)))

in (v :: s, e)

end

13

(* evaluate4 : Source.program -> value *)

fun evaluate4 t

= let val (v :: nil, _)

= reset (fn () => eval (t, nil, e_init))

in v

end

Proposition 4 (full correctness) For any ML value p : Source.program,

evaluate4 p ∼= evaluate3 p.

Proof: CPS-transforming evaluate4 yields evaluate3, and the CPS transfor-
mation is meaning-preserving. �

2.6 A stack-less counterpart

In the evaluator of Section 2.5, eval and apply thread a data stack of interme-
diate results. The stackless counterpart of this evaluator reads as follows.

(* eval : Source.term * E -> value * E *)

(* apply : value * value * E -> value * E *)

(* where E = value Env.env *)

fun eval (LIT n, e)

= (INT n, e)

| eval (VAR x, e)

= (Env.lookup (x, e), e)

| eval (LAM (x, t), e)

= (CLOSURE (e, x, t), e)

| eval (APP (t0, t1), e)

= let val (v1, e) = eval (t1, e)

val (v0, e) = eval (t0, e)

in apply (v0, v1, e)

end

and apply (SUCC, INT n, e)

= (INT (n+1), e)

| apply (CLOSURE (e’, x, t), v’, e)

= let val (v, _)

= reset (fn () => eval (t, Env.extend (x, v’, e’)))

in (v, e)

end

(* evaluate5 : Source.program -> value *)

fun evaluate5 t

= let val (v’, _)

= reset (fn () => eval (t, e_init))

in v’

end

Proposition 5 (full correctness) For any ML value p : Source.program,

evaluate5 p ∼= evaluate4 p.

14

Proof: By equational reasoning and fixed-point induction. The invariants are
as follows, postscripting eval and apply with a 5 for evaluate5 and eval and
apply with a 4 for evaluate4.

For any ML values t : Source.term, e : E, and v, v0, and v1 : value,
⎧⎪⎪⎨
⎪⎪⎩

eval5 (t, e) ∼= (v, e) iff for all s : value list,
eval4 (t, s, e) ∼= (v :: s, e)

apply5 (v0, v1, e) ∼= (v, e) iff for all s : value list,
apply4 (v0 :: v1 :: s, e) ∼= (v :: s, e)

�

2.7 A compositional counterpart

The evaluators of Sections 2.3, 2.4, 2.5, and 2.6 represent functional values with
closures. In Section 1.4, this representation was epitomized by the definition of
values:

datatype value = INT of int

| SUCC

| CLOSURE of value Env.env * Source.ide * Source.term

A function closure pairs a source λ-abstraction and the environment of its dec-
laration.

Because of this representation, none of the evaluators above are composi-
tional in the sense of denotational semantics [49, 55, 58].1 On the other hand,
because they use closures, these evaluators are in closure-converted form. We
closure-unconvert the latest one as follows.

datatype value = INT of int

| SUCC

| FUN of value -> value

(* eval : Source.term -> E -> value * E *)

(* apply : value * value * E -> value * E *)

(* where E = value Env.env *)

fun eval (LIT n, e)

= (INT n, e)

| eval (VAR x, e)

= (Env.lookup (x, e), e)

| eval (LAM (x, t), e)

= (FUN (fn v

=> reset (fn ()

=> let val (v’, _)

= eval (t, Env.extend (x, v, e))

in v’

end)),

e)

1To be compositional, they should solely define the meaning of each term as a composition
of the meaning of its parts.

15

| eval (APP (t0, t1), e)

= let val (v1, e) = eval (t1, e)

val (v0, e) = eval (t0, e)

in apply (v0, v1, e)

end

and apply (SUCC, INT n, e)

= (INT (n+1), e)

| apply (FUN f, v, e)

= (f v, e)

(* evaluate6 : Source.program -> value *)

fun evaluate6 t

= reset (fn () => let val (v’, _) = eval (t, e_init)

in v’

end)

Proposition 6 (full correctness) For any ML value p : Source.program,

evaluate6 p ∼= evaluate5 p.

Proof: Closure-converting evaluate6 yields evaluate5, and closure conversion
is meaning-preserving. �

The evaluator above is not unique, though. We can also choose a callee-save
representation of functions:

datatype value = INT of int

| SUCC

| FUN of value * value Env.env

-> value * value Env.env

fun ...

| eval (LAM (x, t), e)

= (FUN (fn (v, e’)

=> reset (fn ()

=> let val (v’, _)

= eval (t, Env.extend (x, v, e))

in (v’, e’)

end)),

e)

and ...

| apply (FUN f, v, e)

= f (v, e)

In this evaluator, functions are passed the environment of their caller together
with their actual parameter and they return it with their result. With such an
interpreter, it would be very simple to obtain dynamic scope—in the clause for
λ-abstractions, one would just replace e by e’ in the recursive call to eval.

16

2.8 Assessment

Through a series of meaning-preserving steps, we have transformed the SECD
machine (i.e., a transition function) into an evaluator (i.e., a compositional
evaluation function). For each of these language processors—the original one,
the intermediate ones, and the final one—evaluating an ill-typed source term
is undefined (i.e., in ML, evaluation gets stuck and a pattern-matching error is
raised); evaluating a divergent source term diverges; and evaluating a well-typed
and convergent source term converges to a value.

It seems to us that this deconstruction of the SECD machine into an eval-
uation function sheds a new light on it. Its stack, environment, control, and
dump registers are explained as artefacts of a particular evaluation algorithm:
environment-based with a callee-save strategy, right-to-left call by value, and
with one data stack for intermediate results and two continuations, the inner
one for the current λ-abstraction. In Section 3, we show how different evaluation
algorithms give rise to different SECD machines.

On a structural note, we also observe that defunctionalizing the function
space of an evaluator leads one to deep closures (i.e., closures pointing to the
current branch of the environment tree), whereas defunctionalizing the function
space of a normal program leads one to flat closures (i.e., closures pointing to
a minimal copy of the values of the variables occurring free in a λ-abstraction).
Flat closures in an interpreter therefore yield deep closures in interpreted pro-
grams.

2.9 Landin’s J operator

Shortly after “The Mechanical Evaluation of Expressions,” Landin wrote “A
Generalization of Jumps and Labels” [37], in which he introduced first-class
control in programming languages, with the control operator J. J is a precursor
of call/cc in Scheme [35], and it has been described in the literature every ten
years henceforth [9, 22, 56]. The present deconstruction sheds a new light on it
(in a nutshell, J gives access to the meta-continuation of the interpreter) but
this new light distracts from the main point of this article—how to deconstruct
and then reconstruct the SECD machine, and we will report on it elsewhere.

3 Reconstructions of SECD-like machines

Each of the deconstruction steps of Section 2 is reversible. In this section, we
review briefly how to rationally reconstruct a variety of SECD-like machines.

3.1 The original SECD machine

Closure-converting the evaluator of Section 2.7, and then introducing a data
stack, CPS-transforming the result twice, defunctionalizing the result into four
mutually recursive transition functions, and merging them into one yields the
original SECD machine.

17

3.2 A left-to-right SECD machine

Changing the evaluation algorithm so that sub-terms in an application are eval-
uated from left to right, and proceeding as outlined in Section 3.1 yields an
SECD machine where sub-terms in an application are evaluated from left to
right. Conversely, it is also simple to modify the SECD machine and to de-
construct the result into an evaluation function where sub-terms are evaluated
from left to right. The relevant clause, in the evaluators of Section 2.7, reads as
follows:

| eval (APP (t0, t1), e)

= let val (v0, e) = eval (t0, e)

val (v1, e) = eval (t1, e)

in apply (v0, v1, e)

end

3.3 A properly tail-recursive SECD machine

It is a simple programming exercise to make any of the evaluators above properly
tail-recursive, by singling out the treatment of tail calls. The corresponding
SECD machine is properly tail recursive as well. Conversely, it is also simple to
modify the SECD machine to make it properly tail recursive and to deconstruct
the result into a properly tail-recursive evaluation function.

• In the original version of the SECD machine (Section 2.1), one adds the
following clause before the eighth:

| run ((CLOSURE (e’, x, t)) :: v’ :: nil, e, APPLY :: nil, d)

= run (nil, Env.extend (x, v’, e’), (TERM t) :: nil, d)

| run ((CLOSURE (e’, x, t)) :: v’ :: s, e, APPLY :: c, d) (* 8 *)

= ... (* as before *)

If the control register contains only one directive and this directive is
APPLY, the call is a tail call. The tail-call optimization consists in pushing
nothing on the dump.

• In the disantangled version (Section 2.2), one adds the following clause to
the definition of run a:

| run_a ((CLOSURE (e’, x, t)) :: v’ :: nil, e, nil, d)

= run_t (t, nil, Env.extend (x, v’, e’), nil, d)

| run_a ((CLOSURE (e’, x, t)) :: v’ :: s, e, c, d)

= ... (* as before *)

If the control stack is empty, the call is a tail call. The tail-call optimiza-
tion consists in pushing nothing on the dump.

Merging the clauses of this version yields the one just above.

18

• In the higher-order version (Section 2.3), one can tag the control con-
tinuation with an inherited boolean flag indicating whether the current
expression is in tail position, and extend run a with a new clause:

| run_a ((CLOSURE (e’, x, t)) :: v’ :: nil, e, c, true, d)

= run_t (t, nil, Env.extend (x, v’, e’), c, true, d)

| run_a ((CLOSURE (e’, x, t)) :: v’ :: s, e, c, false, d)

= ... (* as before *)

If the flag is true, the call is a tail call. The tail-call optimization consists
in composing no function with the dump continuation.

Defunctionalizing this version yields the one just above.

• In the dump-less version (Section 2.4), c is also tagged with an inherited
boolean flag and apply is extended with a new clause:

| apply ((CLOSURE (e’, x, t)) :: v’ :: nil, e, c, true)

= eval (t, nil, Env.extend (x, v’, e’), c, true)

| apply ((CLOSURE (e’, x, t)) :: v’ :: s, e, c, false)

= ... (* as before *)

If the flag is true, the source call is a tail call. The tail-call optimization
consists in calling eval tail-recursively.

CPS-transforming this version yields the one just above.

• In the control-less version (Section 2.5), the boolean flag is still inherited
and apply is extended with a new clause:

| apply ((CLOSURE (e’, x, t)) :: v’ :: nil, e, true)

= eval (t, nil, Env.extend (x, v’, e’), true)

| apply ((CLOSURE (e’, x, t)) :: v’ :: s, e, false)

= ... (* as before *)

If the flag is true, the source call is a tail call. The tail-call optimization
consists in calling eval tail-recursively.

CPS-transforming this version yields the one just above.

• In the stack-less version (Section 2.6), the boolean flag is still inherited
and apply is extended with a new clause:

| apply (CLOSURE (e’, x, t), v’, e, true)

= eval (t, Env.extend (x, v’, e’), true)

| apply (CLOSURE (e’, x, t), v’, e, false)

= ... (* as before *)

If the flag is true, the source call is a tail call. The tail-call optimization
consists in calling eval tail-recursively.

Introducing a stack in this version yields the one just above.

19

• The first compositional version (Section 2.7) is unsuited for tail-call op-
timization because functions are called non-tail recursively in the second
clause of apply. The second version is better suited: The denotation of
functions is passed a boolean flag indicating whether the call is a tail call:

datatype value = INT of int

| SUCC

| FUN of value * value Env.env * boolean

-> value * value Env.env

fun ...

| eval (LAM (x, t), e, b)

= (FUN (fn (v, e’, true)

=> eval (t, Env.extend (x, v, e), true)

| (v, e’, false)

=> ... (* as before *)),

e)

and ...

| apply (FUN f, v, e, b)

= f (v, e, b)

If the flag is true, the source function is called tail-recursively. The tail-call
optimization consists in calling eval tail-recursively.

Closure-converting this version yields the one just above.

3.4 A call-by-name SECD machine

It is a simple programming exercise to make any of the evaluators above call
by name, by delaying the evaluation of actual parameters with thunks [33].
More directly, one can also bypass the thunks and use a call-by-name CPS
transformation [30]. The corresponding SECD machine follows call by name as
well. Conversely, one can also modify the SECD machine to make it use thunks
and to deconstruct the result into a call-by-name evaluation function.

3.5 A call-by-need SECD machine

Threading a heap of memo-thunks is the canonical way to implement call by
need. The corresponding SECD machine follows call by need as well. In con-
trast, directly modifying the SECD machine to make it implement call by need
requires considerably more insight. The idea is developed elsewhere [4].

3.6 An SEC machine

In Section 2.5, the control delimiter serves no operational purpose since no
continuations are captured. Eliding it leads one to an abstract machine without
dump. Deconstructing this abstract machine into an evaluation function yields
an evaluator without control delimiters:

20

• Version 1:

datatype value = ... | FUN of value -> value

fun ...

| eval (LAM (x, t), e)

= (FUN (fn v => let val (v’, _) = eval (t, Env.extend (x, v, e))

in v’

end),

e)

• Version 2:

datatype value = ... | FUN of value * value Env.env

-> value * value Env.env

fun ...

| eval (LAM (x, t), e)

= (FUN (fn (v, e’)

=> let val (v’, _) = eval (t, Env.extend (x, v, e))

in (v’, e’)

end),

e)

As has been discussed in the literature [56], the dual existence of the control
and dump components in the SECD machine led Landin to a slightly com-
plicated control operator, J. Unifying these two components leads one to the
traditional escape and call/cc control operators [35, 48].

3.7 An EC machine

An evaluator without a data stack still has to save intermediate results. The
corresponding abstract machine saves them on the control stack.

The evaluator reads as follows:

fun eval (LIT n, e)

= (INT n, e)

| eval (VAR x, e)

= (Env.lookup (x, e), e)

| eval (LAM (x, t), e)

= (FUN (fn v => let val (v’, _) = eval (t, Env.extend (x, v, e))

in v’

end),

e)

| eval (APP (t0, t1), e)

= let val (v1, e) = eval (t1, e)

val (v0, e) = eval (t0, e)

in apply (v0, v1, e)

end

21

and apply (SUCC, INT n, e)

= (INT (n+1), e)

| apply (FUN f, v, e)

= (f v, e)

The abstract machine reads as follows:

datatype stackable = ENV of value Env.env

| TERM of Source.term

| VALUE of value

(* run_c : value * E * C -> value *)

(* run_t : Source.term * E * C -> value *)

(* run_a : value * value * E * C -> value *)

(* where E = value Env.env *)

(* C = stackable list *)

fun run_c (v, e, nil)

= v

| run_c (v, e, (ENV e’) :: c)

= run_c (v, e’, c)

| run_c (v1, e, (TERM t0) :: c)

= run_t (t0, e, (VALUE v1) :: c)

| run_c (v0, e, (VALUE v1) :: c)

= run_a (v0, v1, e, c)

and run_t (LIT n, e, c)

= run_c (INT n, e, c)

| run_t (VAR x, e, c)

= run_c (Env.lookup (x, e), e, c)

| run_t (LAM (x, t), e, c)

= run_c (CLOSURE (x, t, e), e, c)

| run_t (APP (t0, t1), e, c)

= run_t (t1, e, (TERM t0) :: c)

and run_a (SUCC, INT n, e, c)

= run_c (INT (n+1), e, c)

| run_a (CLOSURE (x, t, e’), v, e, c)

= run_t (t, Env.extend (x, v, e’), (ENV e) :: c)

run c interprets the control stack, run t is ‘eval’, and run a is ‘apply’.

3.8 An SC machine

An alternative to environments is to use substitutions. In such an interpreter,
there is no environment and therefore nothing for the callee to save. We leave
it as an exercise to the reader.

3.9 A C machine

An evaluator that is substitution based and uses no data stack yields an abstract
machine with a control stack. Again, we leave it as an exercise to the reader.

22

Suffice it to say that it is the same abstract machine as in Curien’s lecture notes
on abstract machines, control, and sequents [10].

3.10 Higher-order abstract syntax

Another alternative to environments is to use higher-order abstract syntax [45].
The corresponding machine is a higher-order version of the SECD machine with-
out an E register [13].

3.11 de Bruijn indices

Names, in source terms, can be replaced by their lexical offset. The correspond-
ing interpreters and abstract machines do not look up variables but fetch their
values directly from the environment.

3.12 An instruction set for the SECD machine

Using Wand’s technique of combinator-based compilers [57], the author and
his students have factored the evaluation function corresponding to the SECD
abstract machine into a byte-code compiler and a byte-code interpreter, i.e., a
virtual machine [1]. The resulting instruction set coincides with Henderson’s
in his textbook on the application and implementation of functional program-
ming [32]. Elsewhere, we also present a decompilation function for the virtual
SECD machine [3].

3.13 Assessment

We have outlined how the series of meaning-preserving steps used to deconstruct
the SECD machine into an evaluation function can be reversed to construct a
variety of SECD machines. In fact, the author and his students have shown
that this deconstruction–reconstruction methodology applies to other abstract
machines than the SECD machine, e.g., Krivine’s abstract machine, Felleisen
et al.’s CEK machine and its many variants, Hannan and Miller’s CLS ma-
chine, Schmidt’s VEC machine, Curien et al.’s Categorical Abstract Machine,
and Leroy’s ZINC machine [1, 2], as well as for call-by-need evaluators and
lazy abstract machines [4]. In fact, the method applies as well to other lan-
guage paradigms than functional programming, e.g., logic programming [7] and
also imperative programming and object-oriented programming. It also applies
to constructing abstract machines for normalization from normalization func-
tions [1, Section 3].

3.14 Related work

In his famous 700 follow-up article [39,42], Morris presents a “shorter equivalent”
of the SECD machine as an interpreter written in an applicative language. We
note, though, that while Morris’s interpreter is definitely shorter, it is not strictly

23

equivalent to the SECD machine. (For example, its environment is saved by the
callers, not by the callees.) Indeed, defunctionalizing the CPS counterpart of
Morris’s interpreter yields a different abstract machine that has one control
stack and no dump. (In fact, this abstract machine coincides with Felleisen et
al.’s CEK abstract machine [21, 24].)

In a similar way, in “Call-by-name, call-by-value, and the λ-calculus” [46],
Plotkin formalized the SECD machine with respect to a canonical, caller-save,
evaluation function that is similar to Morris’s. In the light of the reconstruction
presented here, the correctness proof of the SECD machine reduces to prov-
ing the equivalence between a caller-save and a callee-save evaluation function,
which is simpler.

4 Conclusion

We have characterized the denotational content of the SECD machine as an eval-
uator with a callee-save strategy for the environment and a control delimiter.2

In doing so, we have outlined a methodology for extracting the denotational
content of abstract machines in the form of a compositional evaluation func-
tion. This methodology is reversible and enables one to extract the (small-step)
operational content of evaluation functions in the form of an abstract machine
in a fairly mechanical way: one closure-converts its expressible and denotable
values to make them first-order; one CPS-transforms the closure-converted eval-
uation function to make it tail-recursive, i.e., iterative, and to materialize its
control flow into continuations; and one defunctionalizes these continuations to
make the evaluation function first order, thereby obtaining a transition function,
i.e., a finite-state, iterative abstract machine. Optionally, one introduces a data
stack to hold intermediate results. The methodology also scales to other eval-
uation functions and other abstract machines; in particular, it applies directly
to λ-calculi extended with computational effects à la Moggi, e.g., control and
state, and to other language paradigms than functional programming [1,2,4,7].

In passing, we have also presented a new application of defunctionalization
and a new example of control delimiters in programming practice.

Acknowledgments

The rational deconstruction presented here arose because of a discussion with
Mayer Goldberg in July 2002, at the occasion of our joint work on compilation
and decompilation [3]. The author is also grateful to Mads Sig Ager, Dariusz
Biernacki, and Jan Midtgaard for our subsequent joint study of the functional
correspondence between evaluation functions and abstract machines [1, 2, 4, 7].

2Landin was aware that abstract machines are interpreters, witness his introduction of the
SECD machine as a way of “interpreting” applicative expressions. (The quotes are his. The
other quotes in the abstract of his article occur when he wrote that his article contributes to
the “theory” of computing.)

24

A first version of this article was written in the early fall of 2002 [14]. It gave
rise to presentations at the University of Tokyo in September 2002, at INRIA-
Rocquencourt in December 2002, at the University of Rennes in December 2002,
and at the 2.8 Working Group on functional programming in January 2003. At
the time, there was no data-stack elimination.

The present version contains data-stack elimination and was written dur-
ing the summer of 2003. It has benefited from the comments of Mads Sig
Ager, Ma�lgorzata Biernacka, Dariusz Biernacki, Julia Lawall, Jan Midtgaard,
and Henning Korsholm Rohde. Thanks are also due to Harry Mairson, John
Reynolds, and Mitchell Wand for their input about the title as well as for their
encouraging words.

This work is supported by the ESPRIT Working Group APPSEM II (http:
//www.appsem.org).

A Toolbox

In this appendix, we review the elements of the toolbox mentioned in Section 1.

A.1 CPS transformation

A λ-term is transformed into continuation-passing style (CPS) by naming each
of its intermediate results, by sequentializing the computation of these results,
and by introducing continuations. Equivalently, such a term can be first trans-
formed into monadic normal form and then translated into the term model of
the continuation monad [29]. The CPS transformation is abundantly described
in the literature [19, 27, 47, 52].

For example, a term such as λf.λg.λx.f x (g x) is named and sequentialized
into

λf.λg.λx.let v1 = f x
in let v2 = g x

in v1 v2

and its call-by-value CPS counterpart reads as

λk.k (λf.λk.k (λg.λk.k (λx.f x (λv1.g x (λv2.v1 v2 k))))).

In both the sequentialized version and the CPS version, v1 names the result of
f x and v2 names the result of g x.

A.2 Delimited continuations

A λ-term uses delimited continuations when some of its intermediate continua-
tions are reinitialized to the identity function or when not all calls to a contin-
uation are evaluation-order independent [16]. For example, in contrast to the
CPS abstraction

λf.λk.f 42 k

25

which is strictly in continuation-passing style (all calls are tail calls and all
sub-terms are trivial), the non-CPS abstraction

λf.λk.k (f 42 (λa.a))

uses delimited continuations; the function denoted by f is passed an initial
continuation, and the result of its application is sent to k. This term is there-
fore evaluation-order sensitive [46, 48]. The direct-style counterpart of the first
abstraction,

λf.f 42

is an ordinary λ-term, whereas the direct-style counterpart of the second,

λf.reset(f 42)

uses the control delimiter reset [12, 16, 17, 26, 28, 34, 40]. Should the function
denoted by f capture its continuation, it would capture all of it in the first case
(and applying this captured continuation would be like a jump); in the second
case, however, it would capture only a delimited part of the continuation (and
applying this captured continuation would be like a call). In this article, we
make no other use of reset than to reinitialize the continuation.

A.3 Defunctionalization

In a higher-order program, first-class functions occur as instances of function
abstractions. Often, these function abstractions can be enumerated, either ex-
haustively or more discriminately using a control-flow analysis [50]. Defunction-
alization is a program transformation where function types are replaced by an
enumeration of the function abstractions in the source program.

Defunctionalization consumes the results of a control-flow analysis. A de-
functionalizer replaces:

• function spaces by an enumeration, in the form of a data type, of the
possible lambda-abstractions that can float there;

• function introduction by an injection into the corresponding data type;
and

• function elimination by an apply function dispatching over elements of the
corresponding data type.

For example, let us defunctionalize the following ML program:

fun aux f

= (f 1) + (f 10)

fun main (x, y)

= (aux (fn z => z)) * (aux (fn z => x + y + z))

26

The aux function is passed a first-class function, applies it to 1 and 10, and sums
the results. The main function calls aux twice and multiplies the results. All in
all, two function abstractions occur in this program, in main, as arguments of
aux.

Defunctionalizing this program amounts to defining a data type with two
constructors, one for each function abstraction, and its associated apply func-
tion. The first function abstraction contains no free variables and therefore the
first data-type constructor is constant. The second function abstraction con-
tains two free variables (x and y, of type integer), and therefore the second
data-type constructor requires two integers.

In main def, the first functional argument is thus introduced with the first
constructor, and the second functional argument with the second constructor
and the values of x and y. In aux def, the functional argument is passed to a
(second-class) function apply that eliminates it with a case expression dispatch-
ing over the two constructors.

datatype lam = LAM1

| LAM2 of int * int

fun apply (LAM1, z)

= z

| apply (LAM2 (x, y), z)

= x + y + z

fun aux_def f

= (apply (f, 1)) + (apply (f, 10))

fun main_def (x, y)

= (aux_def LAM1) * (aux_def (LAM2 (x, y)))

Defunctionalization was discovered by Reynolds thirty-two years ago [48].
Compared to closure conversion, it has been little used in practice since then,
and has only been formalized over the last few years [5, 6, 43]. More detail can
be found in Danvy and Nielsen’s study [18]. The key observation here is that
defunctionalizing a CPS program yields a transition function [2].

A.4 Closure conversion

In retrospect, closure conversion is a particular case of defunctionalization,
where the function space has only one constructor and the apply function is
inlined.

References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
From interpreter to compiler and virtual machine: a functional derivation.
Technical Report BRICS RS-03-14, DAIMI, Department of Computer Sci-
ence, University of Aarhus, Aarhus, Denmark, March 2003.

27

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
A functional correspondence between evaluators and abstract machines.
In Dale Miller, editor, Proceedings of the Fifth ACM-SIGPLAN Interna-
tional Conference on Principles and Practice of Declarative Programming
(PPDP’03), pages 8–19. ACM Press, August 2003.

[3] Mads Sig Ager, Olivier Danvy, and Mayer Goldberg. A symmetric
approach to compilation and decompilation. In Torben Æ. Mogensen,
David A. Schmidt, and I. Hal Sudborough, editors, The Essence of Compu-
tation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, number 2566 in Lecture Notes in Computer Science, pages 296–331.
Springer-Verlag, 2002.

[4] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between call-by-need evaluators and lazy abstract machines. Tech-
nical Report BRICS RS-03-24, DAIMI, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, June 2003.

[5] Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Design and correct-
ness of program transformations based on control-flow analysis. In Naoki
Kobayashi and Benjamin C. Pierce, editors, Theoretical Aspects of Com-
puter Software, 4th International Symposium, TACS 2001, number 2215 in
Lecture Notes in Computer Science, Sendai, Japan, October 2001. Springer-
Verlag.

[6] Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven de-
functionalization. In Mads Tofte, editor, Proceedings of the 1997 ACM SIG-
PLAN International Conference on Functional Programming, pages 25–37,
Amsterdam, The Netherlands, June 1997. ACM Press.

[7] Dariusz Biernacki and Olivier Danvy. From interpreter to logic engine by
defunctionalization. Technical Report BRICS RS-03-25, DAIMI, Depart-
ment of Computer Science, University of Aarhus, Aarhus, Denmark, June
2003. Presented at the 2003 International Symposium on Logic-based Pro-
gram Synthesis and Transformation (LOPSTR 2003).

[8] Hans-J. Boehm, editor. Proceedings of the Twenty-First Annual ACM Sym-
posium on Principles of Programming Languages, Portland, Oregon, Jan-
uary 1994. ACM Press.

[9] William H. Burge. Recursive Programming Techniques. Addison-Wesley,
1975.

[10] Pierre-Louis Curien. Abstract machines, control, and sequents. In Gilles
Barthe, Peter Dybjer, Lúıs Pinto, and João Saraiva, editors, Applied Se-
mantics – Advanced Lectures, number 2395 in Lecture Notes in Computer
Science, pages 123–136, Caminha, Portugal, September 2000. Springer-
Verlag.

28

[11] Olivier Danvy. Back to direct style. Science of Computer Programming,
22(3):183–195, 1994.

[12] Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr., ed-
itor, Proceedings of the Twenty-Third Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 242–257, St. Petersburg Beach,
Florida, January 1996. ACM Press.

[13] Olivier Danvy. The mechanical evaluation of higher-order expressions. In
Preliminary proceedings of the 14th Conference on Mathematical Founda-
tions of Programming Semantics, London, UK, May 1998.

[14] Olivier Danvy. A lambda-revelation of the SECD machine. Technical Re-
port BRICS RS-02-53, DAIMI, Department of Computer Science, Univer-
sity of Aarhus, Aarhus, Denmark, December 2002.

[15] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed
contexts. DIKU Rapport 89/12, DIKU, Computer Science Department,
University of Copenhagen, Copenhagen, Denmark, July 1989.

[16] Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand,
editor, Proceedings of the 1990 ACM Conference on Lisp and Functional
Programming, pages 151–160, Nice, France, June 1990. ACM Press.

[17] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, 1992.

[18] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Har-
ald Søndergaard, editor, Proceedings of the Third International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming
(PPDP’01), pages 162–174, Firenze, Italy, September 2001. ACM Press.

[19] Olivier Danvy and Lasse R. Nielsen. On one-pass CPS transformations.
Technical Report BRICS RS-02-03, DAIMI, Department of Computer Sci-
ence, University of Aarhus, Aarhus, Denmark, January 2002. Accepted in
the Journal of Functional Programming.

[20] Stephan Diehl, Pieter Hartel, and Peter Sestoft. Abstract machines for
programming language implementation. Future Generation Computer Sys-
tems, 16:739–751, 2000.

[21] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory
of Control and State in Imperative Higher-Order Programming Languages.
PhD thesis, Department of Computer Science, Indiana University, Bloom-
ington, Indiana, August 1987.

[22] Matthias Felleisen. Reflections on Landin’s J operator: a partly historical
note. Computer Languages, 12(3/4):197–207, 1987.

29

[23] Matthias Felleisen. The theory and practice of first-class prompts. In
Jeanne Ferrante and Peter Mager, editors, Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages, pages
180–190, San Diego, California, January 1988. ACM Press.

[24] Matthias Felleisen and Matthew Flatt. Programming languages and
lambda calculi. Unpublished lecture notes. http://www.ccs.neu.edu/
home/matthias/3810-w02/readings.html, 1989-2003.

[25] Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Be-
yond continuations. Technical Report 216, Computer Science Department,
Indiana University, Bloomington, Indiana, February 1987.

[26] Andrzej Filinski. Representing monads. In Boehm [8], pages 446–457.

[27] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials
of Programming Languages, second edition. The MIT Press, 2001.

[28] Martin Gasbichler and Michael Sperber. Final shift for call/cc: direct im-
plementation of shift and reset. In Simon Peyton Jones, editor, Proceedings
of the 2002 ACM SIGPLAN International Conference on Functional Pro-
gramming, SIGPLAN Notices, Vol. 37, No. 9, pages 271–282, Pittsburgh,
Pennsylvania, September 2002. ACM Press.

[29] John Hatcliff and Olivier Danvy. A generic account of continuation-passing
styles. In Boehm [8], pages 458–471.

[30] John Hatcliff and Olivier Danvy. Thunks and the λ-calculus. Journal of
Functional Programming, 7(3):303–319, 1997.

[31] Piet Hein. Grooks. The MIT Press, 1966.

[32] Peter Henderson. Functional Programming – Application and Implementa-
tion. Prentice-Hall International, 1980.

[33] Peter Z. Ingerman. Thunks: a way of compiling procedure statements with
some comments on procedure declarations. Communications of the ACM,
4(1):55–58, 1961.

[34] Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete
axiomatization of delimited continuations. In Olin Shivers, editor, Proceed-
ings of the 2003 ACM SIGPLAN International Conference on Functional
Programming, pages 177–188, Uppsala, Sweden, August 2003. ACM Press.

[35] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5

report on the algorithmic language Scheme. Higher-Order and Symbolic
Computation, 11(1):7–105, 1998.

[36] Jean-Louis Krivine. Un interprète du λ-calcul. Brouillon. Available online
at http://www.logique.jussieu.fr/~krivine, 1985.

30

[37] Peter Landin. A generalization of jumps and labels. Higher-Order and
Symbolic Computation, 11(1):125–143, 1998.

[38] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[39] Peter J. Landin. The next 700 programming languages. Communications
of the ACM, 9(3):157–166, 1966.

[40] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation.
In Carolyn L. Talcott, editor, Proceedings of the 1994 ACM Conference on
Lisp and Functional Programming, LISP Pointers, Vol. VII, No. 3, Orlando,
Florida, June 1994. ACM Press.

[41] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart,
and Michael I. Levin. LISP 1.5 Programmer’s Manual. The MIT Press,
Cambridge, Massachusetts, 1962.

[42] Lockwood Morris. The next 700 formal language descriptions. Lisp and
Symbolic Computation, 6(3/4):249–258, 1993.

[43] Lasse R. Nielsen. A denotational investigation of defunctionalization. Tech-
nical Report BRICS RS-00-47, DAIMI, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, December 2000.

[44] Simon L. Peyton Jones. Implementing lazy functional languages on stock
hardware: The spineless tagless G-machine. Journal of Functional Pro-
gramming, 2(2):127–202, 1992.

[45] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Mayer D. Schwartz, editor, Proceedings of the ACM SIGPLAN’88 Confer-
ence on Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 23, No 7, pages 199–208, Atlanta, Georgia, June 1988. ACM
Press.

[46] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical Computer Science, 1:125–159, 1975.

[47] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic
Computation, 6(3/4):233–247, 1993.

[48] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference
(1972), with a foreword.

[49] David A. Schmidt. Denotational Semantics: A Methodology for Language
Development. Allyn and Bacon, Inc., 1986.

31

[50] Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Tam-
ing Lambda. PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-
CS-91-145.

[51] Guy L. Steele Jr. Lambda, the ultimate declarative. AI Memo 379, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, November 1976.

[52] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1978. Technical report AI-TR-474.

[53] Guy L. Steele Jr. and Gerald J. Sussman. Lambda, the ultimate imperative.
AI Memo 353, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts, March 1976.

[54] Guy L. Steele Jr. and Gerald J. Sussman. The art of the interpreter or, the
modularity complex (parts zero, one, and two). AI Memo 453, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1978.

[55] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. The MIT Press, 1977.

[56] Hayo Thielecke. An introduction to Landin’s “A generalization of jumps
and labels”. Higher-Order and Symbolic Computation, 11(2):117–124, 1998.

[57] Mitchell Wand. Deriving target code as a representation of continuation
semantics. ACM Transactions on Programming Languages and Systems,
4(3):496–517, 1982.

[58] Glynn Winskel. The Formal Semantics of Programming Languages. Foun-
dation of Computing Series. The MIT Press, 1993.

32

Recent BRICS Report Series Publications

RS-03-33 Olivier Danvy. A Rational Deconstruction of Landin’s SECD
Machine. October 2003. 32 pp. This report supersedes the
earlier BRICS report RS-02-53.

RS-03-32 Philipp Gerhardy and Ulrich Kohlenbach. Extracting Her-
brand Disjunctions by Functional Interpretation. October 2003.
17 pp.

RS-03-31 Stephen Lack and Paweł Sobociński. Adhesive Categories. Oc-
tober 2003. 25 pp. Appears in Walukiewicz, editor, Foun-
dations of Software Science and Computation Structures, FoS-
SaCS ’04 Proceedings, LNCS 2987, 2004, pages 273–288.

RS-03-30 Jesper Makholm Byskov, Bolette Ammitzbøll Madsen, and
Bjarke Skjernaa. New Algorithms for Exact Satisfiability. Oc-
tober 2003. 31 pp.

RS-03-29 Aske Simon Christensen, Christian Kirkegaard, and Anders
Møller. A Runtime System for XML Transformations in Java.
October 2003. 15 pp.

RS-03-28 Zoltán Ésik and Kim G. Larsen. Regular Languages Definable
by Lindström Quantifiers. August 2003. 82 pp. This report su-
persedes the earlier BRICS report RS-02-20. Appears in The-
oretical Informatics and Applications, 37(3):179–241, 2003.

RS-03-27 Luca Aceto, Willem Jan Fokkink, Rob J. van Glabbeek, and
Anna Ingólfsdóttir. Nested Semantics over Finite Trees are
Equationally Hard. August 2003. 31 pp. To appear in Infor-
mation and Computation.

RS-03-26 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time. August 2003. 23 pp. Extended version of a pa-
per appearing in Hu and Rodrı́guez-Artalejo, editors, Sixth In-
ternational Symposium on Functional and Logic Programming,
FLOPS ’02 Proceedings, LNCS 2441, 2002, pages 134–151.
This report supersedes the earlier BRICS report RS-02-30.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

