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Extracting Herbrand Disjunctions by
Functional Interpretation

Philipp Gerhardy Ulrich Kohlenbach∗

October 20, 2003

Abstract

Carrying out a suggestion by Kreisel, we adapt Gödel’s functional
interpretation to ordinary first-order predicate logic(PL) and thus de-
vise an algorithm to extract Herbrand terms from PL-proofs. The
extraction is carried out in an extension of PL to higher types. The
algorithm consists of two main steps: first we extract a functional re-
alizer, next we compute the β-normal-form of the realizer from which
the Herbrand terms can be read off. Even though the extraction is car-
ried out in the extended language, the terms are ordinary PL-terms.
In contrast to approaches to Herbrand’s theorem based on cut elim-
ination or ε-elimination this extraction technique is, except for the
normalization step, of low polynomial complexity, fully modular and
furthermore allows an analysis of the structure of the Herbrand terms,
in the spirit of Kreisel ([13]), already prior to the normalization step.
It is expected that the implementation of functional interpretation in
Schwichtenberg’s MINLOG system can be adapted to yield an efficient
Herbrand-term extraction tool.

∗Ulrich Kohlenbach partially supported by the Danish Natural Science Research Coun-
cil, Grant no. 21-02-0474.
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1 Introduction

Herbrand’s theorem states that for every proof in pure first-order logic with-
out equality of a sentence ∃xAqf (x) (Aqf always denotes a quantifier-free
formula), there is a collection of closed terms t1, . . . , tn witnessing that proof,

so that
n∨

i=1

Aqf (ti) is a tautology. Such a disjunction is called a Herbrand dis-

junction of A and the terms t1, . . . , tn are called Herbrand terms. Herbrand’s
theorem easily generalizes to tuples of existential quantifiers ∃xAqf (x), where
x = x1, . . . xk,

1 and via the Herbrand normal form AH to arbitrary formulas
A in prenex normal form. Moreover, it extends to open first order theories T
(i.e. theories whose axioms are purely universal sentences), where then the

disjunction is verifiable in T , i.e. T `
n∨

i=0

AH(ti) (and even is a tautological

consequence of a conjunction of finitely many closed instances of the non-
logical axioms of T ). First order logic with equality can be treated as the
special case, where T is an open axiomatization of equality. For first order
logic (with or without equality) the Herbrand terms are built up out of A-
material (resp. AH-material) only with possible help of some distinguished
constant symbol c in case A (resp. AH) does not contain any constant. For
open first order theories T they may in addition contain some of the con-
stants and function symbols occurring in the non-logical T -axioms used in
the proof. For more details see e.g. [20, 3, 6].

There are both model-theoretic and proof-theoretic proofs of Herbrand’s the-
orem. But whereas the former proofs are ineffective the latter provide a pro-
cedure for extracting Herbrand terms ti from a given proof of A. The actual
construction of Herbrand terms out of a given proof is of importance in the
area of computational logic and has also been used in significant applications
to mathematics (see [13, 14]).

The existing proof-theoretic approaches to Herbrand’s theorem are based on
cut elimination or related techniques like ε-elimination which involve global
transformations of the given proof. In his review [12] of [20], G. Kreisel sug-
gested the possibility of using Gödel’s functional (‘dialectica’) interpretation
FI ([8, 23]) to prove Herbrand’s theorem. To our knowledge this suggestion

1For notational simplicity we avoid below to write tuples.
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has never been taken up in the literature and the present note aims at filling
this lacuna: We give an extraction algorithm of Herbrand terms via func-
tional interpretation in the variant developed in [20] which we from now on
also call FI. The verifiability of the extracted disjunction as a tautology or
T -provable disjunction is achieved by a simple model theoretic argument. As
the case for open theories T immediately reduces (via the deduction theorem)
to that of first order logic without equality PL, we only treat the latter.

¿From a given PL-proof of a sentence ∃xAqf (x), FI extracts a closed term
t in an extension of typed λ-calculus by decision-by-case constants χA for
each quantifier-free formula A of L(PL). After computing the β-normal form
nf(t) of t, the Herbrand terms can be read off. The length of the resulting
Herbrand disjunction is bounded by 2#χ(nf(t)), where #χ(nf(t)) is the total
number of χ-occurrences in nf(t).

The significance of this FI-based approach to the extraction of Herbrand
terms is due to the following points:

1. FI has recently been successfully implemented by M.-D. Hernest ([9]) in
H. Schwichtenberg’s MINLOG system which also contains an efficient
normalization tool (‘normalization by evaluation’, see [2]). We expect
that this implementation can be adapted to yield a useful Herbrand-
term extraction tool.

2. Suppose that in a PL-proof of (1) ∃xAqf (x) classical logic is only used
to infer (1) from (2) ∀xAqf (x) →⊥, where (2) is proved intuitionis-
tically. Then already the original direct Gödel functional interpreta-
tion (i.e. without negative translation as a preprocessing step and also
without Shoenfield’s modification) can be used to extract a Herbrand
disjunction for (1) which will in general (though not always2) be sim-
pler than the detour through full classical logic. This is because the
type levels will be lower resulting in a more efficient normalization and
hence a shorter Herbrand disjunction.

3. When combined with known estimates ([1]) on the size of nf(t) we

2In the Statman example discussed below the original functional interpretation already
creates as high types as the Shoenfield variant does. This is unavoidable here since the
Statman example has the worst possible Herbrand complexity despite the fact that its
form (2) is provable in intuitionistic logic.
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immediately obtain bounds on Herbrand’s theorem which match the
most advanced estimates based on cut-elimination ([6, 7, 25]).

4. In [13] Kreisel discusses how to derive new results in mathematics by
analysing the structure of Herbrand terms, e.g. growth conditions, ex-
tracted from a given proof. This has been carried out in connection
with Roth’s theorem by Luckhardt in [14]. Often it will be possible
to read off some structural properties of the Herbrand terms already
from the FI-extracted E-PLω term t prior to normalization, e.g. by
analysing which constant and function symbols occur in the extracted
term, thereby establishing bounds on the complexity or independence
from parameters for the Herbrand terms prior to their actual construc-
tion via nf(t).

2 An FI-based approach to Herbrand’s The-

orem

FI is usually applied to (appropriate formulations of) intuitionistic arithmetic
(Heyting arithmetic) in all finite types. Already for the logical axioms and
rules the proof of the soundness of FI relies on some minimal amount of
arithmetic. Combined with negative translation FI extends to (higher type
extensions of) Peano arithmetic (PA). In the following we will use Shoenfield’s
variant which achieves this in one step and denote this form by FI as well.

To apply FI to first-order predicate logic(PL), we will adapt the soundness
proof from Shoenfield [20]. Shoenfield gives a soundness proof of FI for
PA which for logical axioms and rules only uses properties of arithmetic to
ensure the existence of decision-by-case terms for quantifier-free formulas. By
explicitly adding decision-by-case constants χA for all quantifier-free formulas
A in L(PL) to the language of PLω, we can re-use Shoenfield’s proof for the
soundness of FI of PL in E-PLω :=PL extended to all finite types (based on
extensionally defined equality).

We then can, for proofs of sentences ∃xAqf (x) in the language L(PL), extract
realizing terms t in the extended language E-PLω. After normalizing the E-
PLω-term t one can read off from the normal form nf(t) a collection of
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terms t1, . . . , tn for a Herbrand disjunction over A, where the ti again are
ordinary closed terms of PL without any higher type constructs and without
the decision-by-case constants.

Remark. At a first look one might think that the so-called Diller-Nahm ver-
sion ([5, 4]) of Shoenfield’s variant might be more suitable in connection with
Herbrand’s theorem: it avoids definitions by cases which depend on the prime
formulas in favour of definition of case-functionals which do not depend on
Aqf but only on cases x =0 0 versus x 6= 0. However, our technique of elim-
inating all definitions by cases by explicitly writing out all cases as different
terms does not distinguish between these two kinds of case-definitions. In
addition to not being beneficial, the Diller-Nahm variant actually relies on
a modest amount of arithmetic which is not available in our context of pure
logic.

We now describe the system of first-order predicate logic PL and its extension
E-PLω to all finite types, in which our proof will be carried out.

First-order predicate logic PL

I. The language L(PL) of PL:

As logical constants we use ¬,∨, ∀. L(PL) contains variables x, y, z, . . .
which can be free or bound, and constants c, d, . . .. Furthermore we
have, for every arity n, (possibly empty) sets of function symbols
f, g, . . . and predicate symbols P, Q, . . .. Formulas and terms are de-
fined in the usual way.

Abbreviations:

A → B :≡ ¬A ∨B, A ∧ B :≡ ¬(¬A ∨ ¬B), ∃xA(x) :≡ ¬∀x¬A(x).

II. Axioms of PL

(i) ¬A ∨ A

(ii) ∀xA(x) → A[t/x] (t free for x in ∀xA(x))

III. Rules of PL

(i) A ` B ∨A (expansion)
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(ii) A ∨A ` A (contraction)

(iii) (A ∨ B) ∨ C ` A ∨ (B ∨ C) (associativity)

(iv) A ∨B,¬A ∨ C ` B ∨ C (cut)

(v) A ∨B ` ∀xA(x) ∨B (∀ -introduction), where x is not free in B.

Note. As will be seen later, the degree of the terms extracted by FI depends
on the ¬-depth of formulas. We treat only Shoenfield’s calculus, but when
translating other calculi for PL into Shoenfield’s calculus, we extend Shoen-
field’s quantifier axioms and rules and the translation ∃xA(x) :≡ ¬∀x¬A(x)
to blocks of quantifiers, i.e.∃xA(x) :≡ ¬∀x¬A(x), to avoid an artificial blow-
up of the degrees when treating blocks of existential quantifiers.

Note. We assume w.l.o.g. that there exists at least one constant symbol, c,
in our language, as Herbrand’s theorem would fail otherwise.

Extensional predicate logic in all finite types

The set T of all finite types is defined inductively:

(i) 0 ∈ T, (ii) ρ, τ ∈ T => ρ → τ ∈ T

For convenience we write 0n → 0 for

n︷ ︸︸ ︷
0 → (0 → (. . . (0 → 0) . . .).

The language of E-PLω

The language E-PLω is based on a many-sorted version PLω of PL which
contains variables xρ, yρ, zρ, . . . and quantifiers ∀ρ, ∃ρ for all types ρ. As
constants E-PLω contains the constants c, d, . . . (at least one: c) of PL as
constants of type 0, and the function symbols f, g, . . . of PL as constants of
type 0n → 0 for functions of arity n. Furthermore E-PLω contains decision-
by-case constants χA of type 0n → 0 → 0 → 0 for all quantifier-free formulas
A in the original language L(PL), where n is the number of free variables
in A. E-PLω, moreover, contains a λ-abstraction operator. The predicate
symbols of E-PLω are the predicate symbols of PL and equality of type 0
(denoted by =0).
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Higher type equality in E-PLω is defined extensionally over type 0 equality:

s =ρ t :≡ ∀xρ1
1 , . . . , xρn

n (sx =0 tx),

where ρ = ρ1 → . . . → ρn → 0.

Formulas are defined in the usual way starting from prime formulas s =0 t
and P (t1, . . . , tn).

Remark. Below we often refer implicitly to the obvious embedding of PL
into E-PLω, where constants and variables of PL represented by their type
0 counterparts in E-PLω and (n-ary) function symbols of PL as constants
of type 0n → 0, in particular PL terms f(t1, . . . , tn) are represented by
((. . . (ft1) . . .)tn). Recall that the predicate symbols of E-PLω are those of
PL plus =0.

Terms of E-PLω

(i) constants cρ and variables xρ are terms of type ρ (in particular the
constants c, d, . . . of PL are terms of type 0),

(ii) if xρ is a variable of type ρ and tτ a term of type τ , then λxρ.tτ is a
term of type ρ → τ,

(iii) if t is a term of type ρ → τ and s is a term of type ρ, then (ts) is a
term of type τ. In particular, if t1, . . . , tn are terms of type 0 and f is
an n-ary function symbols of PL, then ((. . . (ft1) . . .)tn) is a term of
type 0 which we usually will write as f(t1, . . . , tn).

Axioms and Rules of E-PLω

(i) axioms and rules of PL extended to all sorts of E-PLω,

(ii) axioms for β-normalization in the typed λ-calculus: (λx.t)s =ρ t[s/x]
for appropriately typed x, t and s,

(iii) equality axioms for =0,
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(iv) higher type extensionality:

Eρ : ∀zρ, xρ1 , yρ1, . . . , xρk , yρk(

k∧
i=1

(xi =ρi
yi) → zx =0 zy),

where ρ = ρ1 → (ρ2 → (. . . → ρk) → 0) . . .),

(v) axioms for the constants χAqf
: Aqf (x) → χAqf

xyz =0 y and ¬Aqf (x) →
χAqf

xyz =0 z, where x are the free variables of the quantifier-free
formula Aqf of L(PL).

Definition 2.1. We define the type level lv(t) of a term t inductively over
the type of t as follows: lv(0) := 0 and lv(ρ → τ) := max(lv(τ), lv(ρ) + 1).
The degree dg(t) of a term t is then the maximum over the type levels of all
subterms of t.

Definition 2.2. Let M = {M,F} be a model for L(PL). Then Mω =
{Mω,Fω} is the full set-theoretic type structure over M , i.e. M0 :≡ M ,
Mρ→τ :≡ Mρ

Mτ and Mω :≡
⋃

ρ∈T Mρ. Constants, functions and predicates
of M retain their interpretation under F in Fω. λ-terms are interpreted in
the obvious way. Furthermore, Fω defines the following interpretation of χA:

For a, b, c ∈ M we define [χA]Mωabc :=

{
b if M |= Aqf (a)3

c otherwise.

Proposition 2.3. Mω is a model of E-PLω. If A is a sentence of L(PL)
and Mω |= A, then M |= A.

Proof. Obvious from the construction of Mω.

In the following ∃xAqf (x) will denote a closed formula. For open formulas
one can replace each free variable with new distinct constants, carry out the
extraction procedure and then reintroduce the variables to get a correspond-
ing Herbrand disjunction for the open case.

3More precisely, M |= Aqf (a) means that Aqf (x) holds inM provided the free variables
xi get assigned the element ai ∈ M.
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Lemma 2.4. If PL ` ∃xAqf (x) then FI extracts a closed term t0 of E-PLω

s.t. E-PLω ` Aqf (t).
The proof of Aqf(t) can actually be already carried out in the quantifier-free
fragment qf-WE-PLω (in the sense of [23]) of WE-PLω, where the latter is
the fragment of E-PLω which results by replacing the extensionality axioms
by the quantifier-free weak rule of extensionality due to [21] (see also [11]).

Proof. This is essentially Shoenfield’s proof in [20]. The only two cases to
note are the expansion rule and the contraction rule.

If B∨C has been inferred from B by the expansion rule we need an arbitrary
closed term of suitable type to realize C. Since we assumed there exists at
least one constant c of type 0, we can, using lambda abstraction, construct
closed terms λx.c0 of suitable type to realize C.

For the contraction rule the argument is somewhat more involved: Let A(a)
be an arbitrary formula with a denoting the free variables of A. To each
formula A Shoenfield assigns a formula A∗ ≡ ∀x∃yA′(x, y, a), where A′ is
quantifier-free. The quantifier-free skeleton Aqfs of A ∈ L(PL) is the formula
A with all quantifiers removed and distinct new variables substituted for the
quantified variables of A, i.e. Aqfs(b, a), where b are the new variables and a
are the original free variables of A. The formula A′ is a substitution instance
Aqfs([x, y], a) of Aqfs(b, a), where [x, y] denotes some tuple of terms which
do not contain any constants but are built up exclusively out of x, y. These
terms have been substituted for b. For simplicity we will in the following
consider only single variables x, y and a single parameter a, as the argument
easily generalizes to tuples of variables.

To interpret the contraction rule A∨A ` A we have to produce a realizer for
the conclusion

∀x3∃y3A
′(x3, y3, a)

from realizers of the premise

∀x1, x2∃y1, y2(A
′(x1, y1, a) ∨A′(x2, y2, a)),

where in general xi, yi will be of arbitrary type. However, the terms composed
of xi, yi instantiating Aqfs to yield A′ are of type 0, since A∗ interprets the
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first order formula A ∈ L(PL). The functional interpretation of the premise
yields closed terms t1, t2 s.t.

∀x1, x2, a
(
A′(x1, t1x1x2a, a) ∨A′(x2, t2x1x2a, a)

)
.

Substituting x1 for x2 gives

∀x1, a
(
A′(x1, t

′
1x1a, a) ∨A′(x1, t

′
2x1a, a)

)
,

where t′1x1a := t1x1x1a and t′2x1a := t2x1x1a.

Hence, after renaming x3 in the conclusion into x1, a term t3 realizing y3

(when applied to x1, a) must satisfy:

t3x1a =

{
t′1x1a if A′(x1, t

′
1x1a, a)

t′2x1a otherwise,

i.e.

t3x1a =

{
t′1x1a if Aqfs([x1, y](y/t′1x1a), a)
t′2x1a otherwise.

This term t3 can be defined via our decision-by-case constants for the quantifier-
free skeleton Aqfs of A as follows:

t3 := λx1, a, v.χAqfs
([x1, y](y/t′1x1a), a, t′1x1av, t′2x1av),

where v is a tuple of fresh variables of appropriate types such that t′1x1av is
of type 0.

Hence it is sufficient to have decision-by-case constants χA for each quantifier-
free formula A of L(PL). These have been explicitly added to the language
of E-PLω.

Example. As an example, consider the formula A ≡ ∃x∀y(P (x) ∨ ¬P (y)).
The Shoenfield translation A∗ of A is A∗ ≡ ∀f∃x¬¬(P (x) ∨ ¬P (f(x))),
which is classically equivalent to ∀f∃x(P (x) ∨ ¬P (f(x))). The matrix A′ ≡
(P (x) ∨ ¬P (f(x))) is an instance of Aqfs(b1, b2) ≡ P (b1) ∨ ¬P (b2), namely
Aqfs(x, f(x)).

Functional interpretation will extract from a proof of A, which necessarily
must use the contraction rule at least once, a functional Φ realizing x in f .

10



The term will also use some constant c, since A itself contains no constants.
An obvious Φ is the following:

Φ(f) :=

{
c if P (c) ∨ ¬P (f(c))
f(c) otherwise.

Lemma 2.5. If E-PLω ` Aqf(t) and nf(t) is the β-normal form of t, then
E-PLω ` Aqf(nf(t)).

Proof. Since t reduces to nf(t), we have E-PLω ` t =ρ nf(t).

Lemma 2.6. If t is of type 0, closed and in β-normal form, then there exist
closed terms t1, . . . , tn ∈ L(PL), s.t. Mω |= t = t1 ∨ . . . ∨ t = tn. Moreover,
n ≤ 2#χ(nf(t)), where #χ(nf(t)) is the total number of all χ-occurrences in
nf(t).

Proof. Since t is of type 0, closed and in β-normal form and has only constants
of degree ≤ 1 it contains no more λ-expressions: Assume there still is a λ-
expression λx.r left and assume w.l.o.g. that it is not contained in any other
λ-expression. Then if λx.r occurs with an argument (λx.r)s it could be
further reduced, which contradicts that t is in normal form. If λx.r occurs
without an argument it must be at least of type 1, and then since t is closed
either λx.r must occur in another λ-expression, since the function symbols of
PL only take arguments of type 0, or t ≡ λx.r. But this contradicts that λx.r
was not contained in any other term and that t was of type 0. Similarly, one
infers that the function symbols f always occur with a full stock of arguments
in t.

To read off the terms ti by consider a tree constructed from t by “evaluating”
the χ’s : choose any outermost χ and build the left (resp. right) subtree
by replacing the occurance of the corresponding term χ(s, t1, t2) in t with
t1 (resp. t2). Continue recursively on the left and right subtrees until all
χ’s have been evaluated. Every path in the tree from the root to a leaf then
represents a list of choices on the χ’s and thus every leaf is a term ti ∈ L(PL).

It follows trivially that Mω |= t = t1 ∨ . . . ∨ t = tn. As a simple estimate on
the length n we get n ≤ 2#χ(nf(t)).
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Theorem 2.7. Assume that PL ` ∃xAqf (x). Then there is a collection of
closed terms t1, t2, . . . , tn in L(PL) which can be obtained by normalizing a FI

extracted realizer t of ∃x s.t.
n∨

i=1

Aqf(ti) is a tautology. The terms ti are built

up out of the Aqf -material (possibly with the help of the distinguished constant
c in case Aqf does not contain any constant). Moreover, n ≤ 2#χ(nf(t)).
The theorem also extends to tuples ∃x of quantifiers.

Proof. The theorem follows from the above propositions and lemmas. By
the soundness of FI we can extract a closed term t in E-PLω realizing ‘∃x’.
We can assume that t consists exclusively of constants and function symbols
for L(PL) and some decision-by-case constants χB, restricted to quantifier-
free formulas B built up from predicates occurring in A by means of
propositional connectives. This restriction can be verified by a simple model-
theoretic argument: give all predicates not occurring in A a trivial interpre-
tation, e.g. interpret them as “always true”, and replace decision-by-case
expressions over such predicates by appropriate constants. In decision-by-
case constants over combinations of predicates occurring and predicates not
occurring in A, those not occurring in A can be absorbed.

We then normalize t to nf(t) and read off the terms t1, . . . , tn from nf(t) as in

lemma 2.6. Let M be an arbitrary model of L(PL), then Mω |=
n∨

i=1

Aqf(ti).

As the ti are already closed terms of L(PL), also M |=
n∨

i=1

Aqf (ti). Since

M was an arbitrary model, the completeness theorem for PL yields that

also PL `
n∨

i=1

Aqf (ti). Since
n∨

i=1

Aqf (ti) is quantifier-free it follows that it is a

tautology (note that PL is predicate logic without equality).

The FI-extracted term t consists of Aqf -material, decision-by-case constants
and λ-abstractions. The normal form nf(t) contains no more λ, the extracted
ti no more decision-by-case constants, so the result follows.

Corollary 2.8. Let T ω := WE-PLω + Γ, where all additional axioms of
the set Γ have a functional interpretation in by closed terms of WE-PLω

(provably in WE-PLω + Γ). If T ω ` ∃x0Aqf (x), then there is a collection

of terms t1, . . . , tn in L(PL), extractable via FI, s.t. T ω `
n∨

i=1

Aqf(ti). The

12



terms ti are built up out of the constant and function symbols of L(PL) which
occur (modulo the embedding of PL into WE-PLω) in Aqf and Γ.

Proof. It is sufficient to note that extending E-PLω with the axioms Γ adds
no new constants to the language. The corollary then follows by the same

arguments as in the proof of Theorem 2.7, except that
n∨

i=1

Aqf (ti) is no longer

a tautology, but provable in T ω.

Example (continued). For A ≡ ∃x∀y(P (x) ∨ ¬P (y)) the functional Φ re-
alizing x in f can be defined in E-PLω as Φ :≡ λf.χAqfs

(c, f(c), c, f(c)). This
new decision-by-case term is then applied to f , so that after normalization
and unfolding of the χA the Herbrand disjunction will be:

(P (c) ∨ ¬P (f(c))) ∨ (P (f(c)) ∨ ¬P (f(f(c))))

In order to give an estimate on the number of extracted PL-terms, we need
an estimate on the degree dg(t) of the FI-extracted E-PLω-term t.

Definition 2.9. Let A be a formula, then we define the degree dg(A) to
be the ¬-depth of A. Let φ be a proof, then dg(φ) is the maximum degree
of cut formulas occurring in φ and the end-formula of φ. The end-formula
always is purely existential, hence dg(φ) = max{1, dg(A1), . . . , dg(An)} for
cut formulas Ai in φ.

In Shoenfield’s variant of FI only negation increases the type of the functional
realizers. Since none of the derivation rules further increase the types, dg(φ)
correctly estimates degree of the FI-extracted E-PLω-term t. Refining a
result by Schwichtenberg [18, 19], Beckmann [1] proves the following bound
on normalization in the typed λ-calculus (which applies to our ‘applied’ λ-
calculus by treating our constant symbols as free variables):

Theorem 2.10. (Beckmann,[1]) Let t be a term in typed λ-calculus, then the

length of any reduction sequence is bounded by 2
‖t‖
dg(t)

Corollary 2.11. The number of terms extracted in Theorem 2.7 from a proof
φ can be bounded by 2

3‖t‖
dg(φ)+1.
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Proof. To give a bound on #χ(nf(t)) we use the following trick : from t
construct a term t′ by replacing every occurrance of χ by a term ((λx0.χ)c0).
Then ‖t′‖ ≤ 3 · ‖t‖ and t, t′ have the same normal form. For t′ consider
a normalization sequence of the following kind : first perform all possible
reduction steps except those on the terms substituted for the χ, then perform
the reductions on the ((λx0.χ)c0) terms. The length of such a reduction
sequence trivially is an upper bound on #χ(nf(t′)) = #χ(nf(t)).

By Definition 2.9 and Theorem 2.10 we can bound the length of any reduction
sequence of t′ and hence #χ(nf(t)) by 2

3·‖t‖
dg(φ). The result then follows from

Theorem 2.7.

Remark. The dependence of the size of the Herbrand disjunction extracted
by FI on the ¬-depth of cut formulas directly corresponds to the dependence
of the complexity of cut elimination (and hence the length of Herbrand dis-
junctions extracted by cut elimination) on the quantifier alternations in the
cut formulas.

As mentioned above, the extraction of realizing terms generalizes to tuples,
i.e. to formulas ∃xAqf (x). For arbitrary prenex formulas we first construct
the Herbrand normal form which then is a purely existential statement.

3 Discussion of bounds on Herbrand’s Theo-

rem

By an analysis of the E-PLω terms extracted by FI and using Beckmann’s
bounds on normalisation in the typed λ-calculus, we can extract bounds on
the size of a Herbrand disjunction (i.e. the number of disjuncts), which match
the best known bounds obtained via the cut elimination theorem [6, 7].

In [24, 25], Zhang gives a very technical proof that the hyperexponential com-
plexity of cut elimination and the length of Herbrand disjunctions depend
primarily on the quantifier alternations in the cut formulas, while quantifier
blocks and propositional connectives do not contribute to the height of the
tower of exponentials. These results on the length of the Herbrand disjunc-
tion follow easily from the extraction of Herbrand terms via FI, the bound

14



on the degree of extracted terms and Beckmann’s bounds on normalization.

In [22], Statman shows a hyperexponential lower bound on Herbrand’s theo-
rem, by describing formulas Sn for which there exist short proofs, but every
Herbrand disjunction must have size at least 2n. Later presentations of Stat-
man’s theorem are due to Orevkov and Pudlak [15, 16, 17]. The short proofs
given by Pudlak are of size polynomial in n, yielding FI-extracted terms of
size exponential in n (by [10]). The formulas occurring in the proof can be
shown to have ¬-depth at most n, but by careful analysis of the extracted
FI terms one can bound their degree by n − 1. Together with Corollary
2.11 this yields a match between an upper bound on the size of a Herbrand
disjunction for Sn and Statman’s lower bound as good as those obtained via
cut-elimination.
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