
B
R

IC
S

R
S

-03-29
C

hristensen
etal.:

A
R

untim
e

S
ystem

for
X

M
L

Transform
ations

in
Java

BRICS
Basic Research in Computer Science

A Runtime System for
XML Transformations in Java

Aske Simon Christensen
Christian Kirkegaard
Anders Møller

BRICS Report Series RS-03-29

ISSN 0909-0878 October 2003



Copyright c© 2003, Aske Simon Christensen & Christian
Kirkegaard & Anders Møller.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/29/



A Runtime System for
XML Transformations in Java

Aske Simon Christensen, Christian Kirkegaard, and Anders Møller∗

BRICS†, Department of Computer Science
University of Aarhus, Denmark
{aske,ck,amoeller}@brics.dk

Abstract

We show that it is possible to extend a general-purpose programming language
with a convenient high-level data-type for manipulating XML documents while
permitting (1) precise static analysis for guaranteeing validity of the constructed
XML documents relative to the given DTD schemas, and (2) a runtime system
where the operations can be performed efficiently. The system, named XACT, is
based on a notion of immutable XML templates and uses XPath for deconstructing
documents. A companion paper presents the program analysis; this paper focuses
on the efficient runtime representation.

1 Introduction

There exists a variety of approaches for programming transformations of XML [6] doc-
uments. Some work in the context of a general-purpose programming language; for
example, JDOM [14], which is a popular package for Java allowing XML documents
to be manipulated using a tree representation. A benefit of this approach is that the
full expressive power of the Java language is directly available for specifying the trans-
formations. Another approach is to use domain-specific languages, such as XSLT [9],
which is based on notions of templates and pattern matching. This approach often al-
lows more concise programs that are easier to write and maintain, but it is difficult to
combine it with more general computations, access to databases, communication with
Web services, etc.

Our goal is to integrate XML into general-purpose programming languages to make
development of XML transformations easier and safer to construct. We propose XACT,
which integrates XML into Java through a high-level data-type representing immutable
XML fragments, a runtime system that supports a number of primitive operations on

∗Supported by the Carlsberg Foundation contract number ANS-1069/20.
†Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.

1



such XML fragments, and a static analysis for detecting programming errors related to
the XML operations.

The main contribution of this paper is the description of the XACT runtime system.
We present a suitable runtime representation for XML templates that efficiently sup-
ports the operations in the XACT API. The companion paper [16] contains a description
of the static analysis of XACT programs.

We first, in Section 2, describe the design of the XACT language and motivate
our design choices. Section 3 then gives a brief overview of the results from [16]
about providing static guarantees for XML transformations written in XACT. Section 4
presents our runtime system and discusses time and space complexity of the operations.

The most closely related work is that on XDuce and Xtatic by Hosoya, Pierce,
and Gapayev [13, 11], XQuery by Fern´andez, Sim´eon, Wadler, and others [3], and
WASH/CGI by Thiemann [21]. XDuce is a functional language for defining XML
transformations based on regular expression types and a corresponding mechanism for
pattern matching. The Xtatic project aims to integrate the ideas from XDuce with
the object model of C#. XQuery is a functional language that can be viewed as a
generalization of SQL to the richer data model of XML. WASH/CGI models XML
transformations in Haskell by embedding DTD into Haskell’s type system. The paper
[16] contains a comprehensive survey of the relation between these and other projects
and XACT.

2 The XACT Language

The XACT language introduces XML transformation facilities into the Java program-
ming language such that XML documents, from a programmer’s perspective, are first-
class values on equal terms with basic values, such as booleans, integers, and strings.
Programmers can thereby combine the flexibility and power of a general-purpose pro-
gramming language with the ability to express XML manipulations at a high level of
abstraction. This combination is convenient for many typical transformation tasks. Ex-
amples are transformations that rely on communication with databases and complex
transformation tasks, which may involve advanced control-flow depending on the doc-
ument structure. In these cases, one applies XACT operations while utilizing Java li-
braries, for example, the sorting facilities, string manipulations, HTTP communication,
etc. We choose to build upon Java because it is widely used and a good representative
for the capabilities of modern general-purpose programming languages.

We build XML documents fromtemplatesas known from the JWIG language [8].
This approach originates from MAWL [17, 1] and<bigwig> [5], and was later re-
fined in JWIG, where it has shown to be a powerful formalism for XHTML document
construction in Web services. Our aim is to extend the formalism to general XML
transformations where both construction and deconstruction is supported.

A template is a well-formed XML fragment containing named gaps:template gaps
occur in place of elements, andattribute gapsoccur in place of attributes. The notation
for templates is given byxml in the following grammar:

2



xml := str (character data)
| <name atts>xml</name> (element)
| <[g]> (template gap)
| xml xml

atts := name="value" (attribute)
| name=[g] (attribute gap)
| ε
| atts atts

Here, str denotes a string of XML character data,name denotes a qualified XML
name,g denotes a gap name, andvalue denotes an XML attribute value. Construction
of a larger template from a smaller one is accomplished bypluggingvalues into its
gaps. The result is the template with all gaps of a given name replaced by values. This
mechanism is flexible because complex templates can be built and reused many times.
Gaps can be plugged in any order; construction is not restricted to be bottom-up, in
contrast to traditional tree-like models, such as XDuce.

Deconstruction of XML data is also supported in XACT. An off-the-shelf lan-
guage for addressing nodes within XML trees is available, namely W3C’s XPath lan-
guage [10]. XPath is widely used and has despite its simplicity shown to be versatile
in existing technologies, such as XSLT and XQuery. The XACT deconstruction mech-
anism is also based on XPath. We have identified two basic deconstruction operations,
which are powerful in combination with plugging. The first isselect, which returns the
subtemplates addressed by an XPath expression. The second isgapify, which replaces
the subtemplates addressed by an XPath expression with gaps. Select is convenient
because it permits us to pick subtemplates for further processing. Gapify permits us
to dynamically introduce gaps, which is important for a task such as performing minor
modifications in an XML tree. Altogether, this constitute an algebra over templates,
which allows typical XML manipulations to be expressed at a high level of abstraction.

We have chosen a value-based programming model as in functional languages. This
model is generally more “clean” since operations have no side-effects, and templates
are thought of as unchangeable values. A Java class that implements the value-based
model is said to beimmutable. Such classes are favored because their instances are
safe to share, value-factories can be implemented, and tread-safety is guaranteed [2].
All Java value classes, such asInteger andString, are for these reasons immutable.
Our templates inherit the properties and benefit by being easier to use and less prone to
error than mutable frameworks, such as JDOM and JAXP [20].

The Java classXML, which represents templates, has the methods shown in Table 1.
The class is immutable, so the value represented by a given template object is never
altered after instantiation. All parameters of typeGap, XPath andDTD are assumed to
be constants and may be written as strings.

The staticconstant method creates anXML instance from a constant string argu-
ment, andtoString returns the string representation of anXML instance. The syntax
for templates is the one given by the grammar above. Thegetmethod constructs a tem-
plate from a non-constant string, typically originating from some external data source,
and checks the result for validity with respect to the given DTD schema. In addition,

3



static XML constant(String s) - creates a template from the constant strings
String toString() - returns the textual representation of this template
boolean equals(Object o) - determines equality of this template ando
int hashCode() - returns the hash code of this template
XML plug(Gap g, XML x) - insertsx into all g gaps in this template
XML plug(Gap g, String s) - as the previous operation, but for string
XML plug(Gap g, XML[] xs) - inserts the entries inxs into theg gaps in this template
XML plug(Gap g, String[] ss) - as the previous operation, but for string entries
XML[] select(XPath p) - returns the array of subtemplates hit byp
XML[] cut(XPath p) - as the previous, but returns only maximal disjoint subtemplates
XML gapify(XPath p, Gap g) - replaces all subtemplates hit byp by g gaps
XML close() - returns this template with all gaps removed
String text() - returns the concatenation of top level chardata
XML cast(DTD d) - throws runtime exception if this template is invalid relative tod
XML analyze(DTD d) - instructs the analyzer to statically validate this template relative tod
static XML smash(XML[] xs) - merges the entries ofxs into a single template
static XML get(String s, DTD d) - creates a template from the strings and checks validity relative tod

Table 1: Methods in the immutableXML class for performing basic XACT operations.

runtime validation of a template according to a given DTD schema is provided by the
castmethod, which serves the same purpose as the usual cast operations in Java. Both
get andcast throw a runtime exception in case the given template is invalid.

Theequalsmethod determines equality ofXML instances, and thehashCodemethod
returns a consistent hash code for anXML instance.

Template construction is provided by theplug method, which is overloaded to
accept a template, a string, or arrays of these as second parameter. Invoking the non-
array variants will plug the given string or template into all occurrences of the given
gap name. The array variants will, in document order, plug all occurrences of the given
gap name with entries from the given array. If the array has superfluous entries these
will be ignored, and conversely, the empty string will be plugged into superfluous gaps.
An exception is thrown if one attempts to plug a template into an attribute gap.

Template deconstruction is provided by theselect, cut, andgapify methods.
Each method takes an XPath expression as parameter, which on evaluation returns a
set of nodes within the given template. Invoking theselect method gives an array
containing all the subtemplates rooted at nodes in the XPath evaluation result. Thecut
method gives a similar array, but the entries are here required to be non-overlapping,
such that if one node in the XPath evaluation result is an ancestor of another, then
only the ancestor is considered. The returned subtemplates ofcut are consequently
maximal and disjoint. Thegapify method returns a template where all subtemplates
rooted at nodes in the XPath evaluation result have been replaced by gaps of the given
name.

Extraction of character data from a template is provided by thetextmethod, which
returns the concatenation of top level character data as a string. Theclose method
eliminates all gaps in a template, which is accomplished by removing template gaps
and for attribute gaps, the whole attribute is removed. The result will by construction
represent a well-formed XML document. Invoking the staticsmash method concate-
nates the entries of the given template array into a single template.

4



Theanalyzemethod instructs the compile-time analyzer to check for validity rela-
tive to a given DTD, as described in Section 3. This operation has no effects at runtime.
A complete XML transformation typically begins with a number ofget operations that
read the transformation input and ends inanalyze andtoString operations that pro-
duce the transformation output and checks that it is valid.

In order to integrate XACT tightly with the Java language, we provide special syn-
tax for template constants. This relieves programmers from tedious and error-prone
character escaping. A templatexml may be written[[xml]], which after character
escaping is equivalent toXML.constant("xml"). Transformations that use this syn-
tax are desugared by a simple preprocessor, which is bundled with the XACT packages.
Also, a number of useful macros for commonly occurring tasks are provided as meth-
ods of theXML class. For example, thedelete macro effectively deletes the subtrees
selected by an XPath expression by performing agapify operation with a fresh gap
name. The complete list of macros is presented in [16].

We now consider an example, originating from [12], where an address book is
filtered in order to produce a phone list. An address book here consists of anaddrbook
root element, containing a sequence ofperson elements, each having aname, anaddr,
and an optionaltel element as children. The filtration outputs aphonelist root
element, containing a sequence ofperson elements, where only those having atel
child remains, and with alladdr elements eliminated. The following method shows
how this is implemented with XACT:

XML phonelist(XML book) {

XML[] persons = book.select("/addrbook/person[tel]");

XML list = XML.smash(persons).delete("//addr");

return [[<phonelist><[list]></phonelist>]].plug("list",list);

}

One may additionally wish to sort the phone list alphabetically by name. Java has built-
in sorting facilities for arrays, so this is accomplished by implementing aComparator
class, calledPersonComparator, with the followingcompare method:

int compare(Object o1, Object o2) {

XML x1 = (XML) o1, x2 = (XML) o2;

String s1 = XML.smash(x1.select("/person/name/text()")).text();

String s2 = XML.smash(x2.select("/person/name/text()")).text();

return s1.compareTo(s2);

}

The phone list can then be sorted by inserting the following line into thephonelist
method:

Arrays.sort(persons, new PersonComparator());

The example shows how a complex transformation task can be easy and intuitive to
express using the XACT language.

5



3 Static Guarantees

The design of XACT enables precise static analysis for guaranteeing absence of cer-
tain programming errors related to XML document manipulation. In the companion
paper [16], we present a data-flow analysis that, at compile-time, checks the following
correctness properties of an XACT program:

output validity — that eachanalyze operation is valid in the sense that the given
XML template is guaranteed to be valid relative to the given DTD schema; and

plug consistency— that eachplug operation is guaranteed to succeed, that is, tem-
plates are never plugged into attribute gaps.

Additionally, the analysis can detect and warn the programmer if the specified gap for
a plug operation is never present and if an XPath expression in aselect, cut, or
gapify operation will never select any nodes.

The crucial property of XACT that makes this analysis feasible is that the XML
templates are immutable. Analyzing programs that manipulate mutable data structures
is known to be difficult [19, 18]. The absence of side-effects means that we do not have
to model the complex aliasing relations that otherwise may arise.

Our analysis is an application of the standard data-flow analysis framework [15],
but with a very specialized lattice structure consisting ofsummary graphs, originally
introduced in [4] and later refined in [7] and [16]. Informally, a summary graph is
a graph whose nodes represent elements, attributes, and gaps occurring in template
constants or in DTD schemas, and whose edges represent template or string plug oper-
ations. A subset of the nodes are designated as roots. Additionally, a summary graph
contains information about which template gaps and attribute gaps are present. Every
summary graph represents a set of concrete XML templates: the language of a sum-
mary graph is the set of XML templates that can be obtained by unfolding the graph,
starting from a root and plugging templates and strings into the gaps according to the
edges and the gap presence information.

The notion of summary graphs constitutes a suitable abstraction of the concrete
XML templates that appear at runtime. Each XACT operation can be modeled pre-
cisely as a transformation of summary graphs. For example, a template plug operation
combines two summary graphs by adding appropriate edges; every template constant
and DTD schema occurring in the given program can be converted into a correspond-
ing summary graph; and XPath expressions can be modeled precisely by a process of
symbolic evaluation on the summary graphs.

The analysis is conservative in the sense that it never misses an error, but it might
report false errors. Our experiments in [16] indicate that the analysis is both precise and
efficient enough to be practically useful, and that it produces helpful error messages if
potential errors are detected.

4 Runtime System

We have now presented a high-level language for expressing XML transformations
and briefly explained that the design permits precise static analysis. However, such a

6



framework would be of little practical value if the operations could not be performed
efficiently at runtime. In this section, we present a data structure addressing this issue.

4.1 Requirements

To qualify as a suitable representation for XML templates in the XACT framework, our
data structure must support the following operations:

• Creation: Given the textual representation of an XML template, build the struc-
ture representing the template.

• Combination: Thesmash, plug andclose operations operate directly on XML
templates and must be supported directly by the data structure.

• Navigation: The tasks of converting a template to its textual representation,
checking the template for validity according to a given schema, or evaluating
an XPath expression on a template, all require means for traversing the XML
data in various ways. In general, we must have a mechanism for pointing at a
specific node in the XML tree. We call such an XML pointer anavigator. It must
support operations for moving this pointer around the tree. To support all XPath
axis evaluations, we must be able to move to thefirst child andfirst attributeof
an element node, theparentandnext/previous siblingof any tree node, and the
next/previous attributeof an attribute node.

• Extraction: The result of evaluating an XPath expression on the structure, using
its navigation mechanism, is a set of navigators. From this set of navigators, we
must be able to obtain the result of theselect, cut andgapify operations.

A naive data structure that trivially supports all of these operations is an explicit XML
tree withnext, previous, parentandfirstchildpointers in all nodes, similarly to a JDOM
tree. If such a data structure is used, we are forced to copy all parts of the operand struc-
tures that constitute parts of the result in order to adhere to the immutability constraint.
The doubly-linked nature of the structure prohibits any sharing between individual
XML values. The running times for the XACT operations operating on such a structure
would thus be at least linear in the size of the result, which is certainly unsatisfactory.

4.2 The basic approach

The main problem with the doubly-linked tree structure is that it prevents sharing be-
tween templates. To enable sharing, we use a singly-linked tree, that is, a tree with only
firstchild andnextpointers but without theparentandpreviouspointers. This structure
permits sharing as follows: Whenever a subtree of an operand occurs as a subtree of
the result, the corresponding pointer in the result simply points to the original operand
subtree and thus avoids copying that subtree.

Thesmash operation is trivial in this representation. We simply point to the roots
of all operands. This takes time proportional to the number of templates.

To perform a non-arrayplug operation,x.plug(g, y), we copy just the portion
of x that is not part of a subtree that will occur unmodified in the result. More precisely,
this is the tree consisting of the paths from the root ofx to all g gaps inx. Any pointer

7



g g

g g

(i) (ii)

a b

g g

a b a bc

gg

c

(iv)(iii)

g

ca b

Figure 1: The effect of performing the non-arrayplug operation,c = a.plug(g, b).
Part (i) shows the two templates,a andb, wherea contains twog gaps. Part (ii) shows
the naive approach for representingc, where everything has been copied. Part (iii)
shows the basic approach from Section 4.2 where only the paths ina that lead tog gaps
are copied and new edges are added to the root ofb. Part (iv) shows the lazy approach
from Section 4.3 where a plug context node is generated for recording the fact thatb has
been plugged into theg gaps ofa. If the structure in (iv) is later traversed completely,
the one in (iii) is obtained.

that branches out of these paths in the result points back to the corresponding subtree
of x. The ends of the paths, that is, the places where theg gaps ofx are, point to
the root ofy. They structure is never copied. Note that, in general, this operation
will create a DAG rather than a tree, since multiple occurrences ofg in x will result
in multiple pointers from the result to the root ofy. This operation is depicted in Part
(iii) of Figure 1. The arrayplug operation is performed similarly, except that the path
end pointers point to distinct templates. Theclose operation duplicates the paths to
all gaps and removes the gaps from the duplicate.

To be able to find the paths to theg gaps efficiently, we must have additional infor-
mation in the tree. In each node, we keep a record of the number of occurrences of each
gap name in the subtree rooted at that node. Since the occurrence of gaps is usually
sparse, this gap presence information can be shared between many nodes and thus will
not constitute a large space overhead. Combining this information when constructing
new templates is also straightforward. Now, when aplug operation intog traverses the
tree looking forg gaps, it simply skips all subtrees where the gap presence information
indicates that nog gaps exist. This narrows the search down to the paths from the root

8



to theg gaps. Thus, the execution time for aplug operation is proportional to the total
number of ancestor nodes of allg gaps inx.

With no parentandpreviouspointers, navigation in the singly-linked structure is
not as straightforward as in the doubly-linked case. However, since all navigation starts
out at the root, we can simply let all navigators remember the traversed path, and then
backtrack along this path whenever a backward step is requested. In other words, we
let the navigators contain the backward pointers that the XML structure itself omits.
Since navigators are always specific to one XML value, we do not restrict sharing by
keeping these pointers while the navigator is used. Any navigator step is still performed
in constant time, so this additional bookkeeping does not impact the execution time of
the algorithm using the navigator.

Theselect operation now simply returns a set of pointers to the nodes pointed to
by the navigators resulting from the XPath evaluation. No copying is performed. The
total time for performing theselect operation is proportional to the XPath evaluation
time.

Thecut operation needs to filter out all hits that are descendants of other hits. This
can be accomplished by traversing all the navigator paths in parallel, from the bottom
up, merging paths as they coincide and throwing away any hit whose path hits the end
of another path. If we assume that the XPath evaluator returns its results in document
order, this process can be done in time proportional to the total number of ancestors of
the hits. Since the XPath evaluator has visited at least all of these nodes to reach the
hits, the time used by the XPath evaluation is at least proportional to this total number
of ancestors. Thus, the total time for performing thecut operation is proportional to
the XPath evaluation time.

Thegapify operation is performed in a manner similar to aplug operation, ex-
cept that the ends of the paths are indicated by the XPath hits, rather than by gaps of
a specific name. Instead of navigating downward through the tree using the gap pres-
ence information, thegapify algorithm navigates upward using the navigator paths.
Again assuming that the XPath hits are sorted by document order, this can be done in
time proportional to the total number of ancestors of the hits. Thus, the total time for
performing thegapify operation is proportional to the XPath evaluation time.

So, to summarize, the execution times for the operations will be as follows:

• constructing a tree of sizen from its textual representation using theconstant
operation:O(n +

∑
g #ancestors(g))

• smash of k templates:O(k)

• plug into g: O(#ancestors(g))

• close: O(#ancestors of all gaps)

• select, cut or gapify: O(XPath evaluation time)

• converting a template of sizen to its textual representation using thetoString
operation:O(n)

Regarding memory usage, the operations add only minimally to the memory already
used to hold the constant and input templates, since the gap/hit paths that are recon-
structed are usually sparse compared to the complete XML trees.

9



These figures are satisfactory, but we can still do better in some cases, especially
when we do not need to traverse the whole result of an operation. This leads us to a
further refinement, as explained in the following.

4.3 A lazy data structure

Often, a complete XML transformation will contain several intermediate results that
will never be output in their entirety. It may be the case that only parts of these in-
termediate templates end up in the final result. Or they may even never be output but
simply used as operands for further XPath matchings whose results are used in the
decision logic of the transformation. For these reasons, the explicit tree construction
outlined above is often wasteful, even though it only reconstructs the parts of the result
that could not be shared with the operands. What we need is a structure that allows
the operations to be performed without any reconstruction taking place until the corre-
sponding parts of the tree are needed by a navigator.

To accomplish this, we introduce specialplug contextnodes in the XML tree, rep-
resenting aplug or close operation performed on the subtree. A plug context node
has a sequence of children, which are the roots of the left-hand side of the operation.
Additionally, it contains aplug functionwhich maps a gap name and an index into the
XML tree that is plugged into that particular gap. Specifically, if a plug context node
has the childrenx1 . . . xn and the plug functionf , then it represents the XML template
x1 . . . xn where theith g gap (in document order, counting from one) is replaced by
f(g, i). Part (iv) of Figure 1 illustrates the lazy variant of the plug operation.

Thesmash operation can be performed exactly as before. To perform aplug or
close operation, we simply create a new plug context node and let it point to the roots
of the old tree. The plug function is then as follows:

x.plug(g, y): λ(h, i).if h = g then yelse <[h]>
x.plug(g, y1. . .yk): λ(h, i).if h = g thenif i ≤ k then yi

else ""
else <[h]>

x.close(): λ(h, i).ε

Here,"" is the empty string, andε is the empty XML sequence. This makes no
difference for template gaps, but for an attribute gap, plugging the empty string will
result in an attribute whose value is the empty string, whereas the empty XML sequence
will remove the attribute gap, as required by theclose operation. Similarly, in this
formalism, plugging a template gap into an attribute gap of the same name will preserve
the attribute gap.

To iterate in this structure, we need to push the plug context nodes further down
the tree as we go, so that the node at which we want our navigator to point is always
represented directly by a concrete XML node, i.e. not a plug context node.

We refer to this process of pushing down plug context nodes asnormalization. Let
x1 . . . xn be a sequence of XML nodes. This sequence is said to benormalizedif it is
either empty orx1 is a concrete node. Suppose we have a mechanism for transforming
an unnormalized sequence into a normalized one representing the same XML tree.
Then we can build a simple navigator (supporting just thefirst child, first attribute,

10



norm(y1 . . . ym) = ε

norm({y1 . . . ym, c}x2 . . . xn) = norm(x2 . . . xn)

norm(y1 . . . ym) = z1z2 . . . zl

norm({y1 . . . ym, c}x2 . . . xn) = norm(apply(z1, c){z2 . . . zl, c\z1}x2 . . . xn)

apply("text", c) = "text"

apply(<[g]>, c) = c(g, 1)

apply(<e a1 . . . ak>x1 . . . xn</e>, c) = <e {a1 . . . ak, c}>{x1 . . . xn, c\a1 . . . ak}</e>
apply(name="value", c) = name="value"

c(g, 1) = "text"
apply(name=[g], c) = name="text"

c(g, 1) = ε

apply(name=[g], c) = ε

c(g, 1) = <[g]>

apply(name=[g], c) = name=[g]

Figure 2: The normalization process.{x1 . . . xn, c} denotes a plug context node with
childrenx1 . . . xn and plug functionc, and"text" denotes a chardata node with content
text.

next siblingandnext attributeoperations) on top of this mechanism by transforming
sequences of successor (or children) nodes into normalized sequences incrementally as
we traverse the tree. We can then build a full-featured navigator on top of this simple
navigator in the same manner as for the plain, singly-linked structure. Theselect,
cut andgapify operations can now be implemented exactly as before.

When the plug context nodes are pushed down the tree during the normalization
process, the plug functions contained in them change. Since the gap index given to a
plug function refers to a global position in the XML template, the plug context for a
portion of the template will need to account for all the gaps that precede this portion.
More precisely, if the plug context for a sequence of nodesx1 . . . xn is c, then the plug
context for a subsequencexi . . . xj will differ from c in a way depending on the pres-
ence of gaps inx1 . . . xi−1. This new context, which we will denote byc\x1 . . . xi−1,
is given by the functionλ(h, i).c(h, i+gp(x1 . . . xi−1, h)), where gp(x1 . . . xi−1, h) is
the number ofh gaps inx1 . . . xi−1. This number is available through the gap presence
information in the tree.

The normalization process is shown in Figure 2. Normalization proceeds recur-
sively by applying the context to the first of its normalized children and putting the rest
of its children into a new plug context node. This application of the context is where
the actual context evaluation takes place. The key cases here are the application on
a template gap,<[g]>, or attribute gap,name=[g], where the plug function is used.
Note also how the context update mechanism,c\x1 . . . xn, is used to skip the gaps of
the first component in a sequence or the attributes in an element.

11



Normalization, as described in Figure 2, pushes all plug context nodes through
every branch of the tree. This is wasteful, since a plug context node will have no effect
if none of the gap names it covers (that is, those mapping to anything but the gap itself)
occur in the subtree covered by the plug context node. In the actual implementation, a
plug context node is only created if it has any effect. Otherwise, its contents are used
directly instead. This ensures that the part of the tree through which a particular plug
context node is pushed is exactly the ancestors of the involved gaps.

When a normalization has been performed, the internal state of the XML template
representation of the normalized template is updated to point to the normalized version.
Thus, any pushing down of a plug context node is done at most once. When a template
has been traversed completely, its representation has essentially changed into the plain
version.

In the plain singly-linked structure, computation of the gap presence information
is trivial. The gap presence of any node is simply the sum of the gap presences of
its children. This is not so when plug context nodes are present. Fortunately, the gap
presence of a context node can be calculated from the gap presences of its children and
the targets of its plug function, using the formula

gp({x1 . . . xn, c}, h) =
∑

g

gp(x1...xn,g)∑

i=1

gp(c(g, i), h).

The actual quantities in the gap presence do not have to be calculated for every opera-
tion. The gap presence is represented in a lazy manner, where the count for a particular
gap is not calculated until this count is specifically asked for by the navigation algo-
rithm.

Let us now compare the efficiency of this new representation to the plain one. The
constant andsmash operators are of course exactly as before. The non-arrayplug
andclose operations take constant time. The arrayplug operation takes time propor-
tional to the number of right-hand-side templates. The time used by theselect, cut
andgapify operations are still proportional to the time used by the XPath evaluation.
Similarly, the time used bytoString is proportional to the time used to traverse the
template. However, because of the plug context nodes that need to be pushed down
through the tree, the navigation steps can no longer be performed in constant time. In
the worst case, a plug context node will be pushed through all ancestors of the involved
gaps, but because of the internal updating, each push will be performed at most once.
Since a single push takes constant time, the extra time used by this pushing during
traversal is exactly the sum over all operations performed on the template of the time
used by that operation in the plain implementation. For this reason, the worst-case
amortized execution times for the lazy implementation are identical to the execution
times stated for the plain implementation. However, the lazy implementation has the
ability to perform its work on a demand basis, which can lead to great savings in prac-
tice.

12



4.4 Java issues

One of the prominent features of immutable, or functional-style, data manipulation is
that it works fluently in a multi-threaded environment. For this to work properly in
the Java implementation, care must be taken when the internal state of a representation
changes. This happens when the result of a normalization replaces the plug context
node, and when the gap presence for a particular gap is queried and calculated. These
situations are of course properly synchronized in the implementation so that no thread
will see the data structure in an inconsistent state.

A ubiquitous Java feature is the ability to compare objects using theequalsmethod.
This is easily (albeit not very efficiently) done for XML templates by a simple, parallel,
recursive traversal. However, to conform to the Java guidelines, any implementation of
equals must be consistent with the corresponding implementation of thehashCode
method. Specifically, two identical objects (according to theequals method) must
have identical hash codes. A (non-trivial) hash code for an XML template must thus
reflect the entire XML tree. It would seem that maintaining such a hash code for the re-
sult of aplug operation is a costly affair. However, if the hash function is chosen such
that it is associativeandcommutative with respect to concatenation of XML data, the
hash code for the result of aplug operation can be calculated from just the hash codes
and gap presence information of its constituents. This also enables a more efficient
implementation ofequals: Whenever two compared subtemplates have different hash
codes, their equality can be rejected right away. Furthermore, whenever two subtem-
plates originate from the same original subtemplate unmodified, their object identity
verifies their equality.

5 Conclusion

We have presented an overview of the XACT language, focusing on the runtime system.
The design of XACT provides high-level primitives for programming XML transfor-
mations in the context of a general-purpose language, and, as shown in [16], it permits
a precise static analysis. A special feature of the design is that the data-type is im-
mutable, which at the same time is convenient to the programmer and a necessity for
precise analysis. However, it also makes it nontrivial to construct a runtime system that
efficiently supports all the XACT operations, which is the problem being attacked in
this paper.

Our prototype implementation, which consists of the runtime system and the static
analyzer supporting the full Java language, is available on the XACT home page:
http://www.brics.dk/Xact/. Our future work will involve experiments with the
prototype implementation to investigate our conjecture that the data structure is suffi-
ciently efficient to be useful in practice.

Also, we plan to integrate XACT into the JWIG system for developing Web ser-
vices [8]. In such services, XML transformations occur frequently both in the underly-
ing XML databases and in the communication with other programs, such as browsers
or other Web services. High-level and efficient approaches for developing Web ser-
vices together with the ability of obtaining static guarantees of validity of the output

13



are becoming increasingly important.

References

[1] David Atkins, Thomas Ball, Glenn Bruns, and Kenneth Cox. Mawl: a domain-
specific language for form-based services.IEEE Transactions on Software Engi-
neering, 25(3):334–346, May/June 1999.

[2] Joshua Bloch.Effective Java Programming Language Guide. Addison-Wesley,
June 2001.

[3] Scott Boag et al. XQuery 1.0: An XML query language, November 2002. W3C
Working Draft.http://www.w3.org/TR/xquery/.

[4] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static validation
of dynamically generated HTML. InProc. ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, PASTE ’01, pages 221–
231, June 2001.

[5] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The<bigwig>
project.ACM Transactions on Internet Technology, 2(2):79–114, 2002.

[6] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible
Markup Language (XML) 1.0 (second edition), October 2000. W3C Recommen-
dation.http://www.w3.org/TR/REC-xml.

[7] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Static
analysis for dynamic XML. Technical Report RS-02-24, BRICS, May 2002.
Presented at Programming Language Technologies for XML, PLAN-X, October
2002.

[8] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extend-
ing Java for high-level Web service construction.ACM Transactions on Program-
ming Languages and Systems, 25(6), November 2003.

[9] James Clark. XSL transformations (XSLT) specification, November 1999. W3C
Recommendation.http://www.w3.org/TR/xslt.

[10] James Clark and Steve DeRose. XML path language, November 1999. W3C
Recommendation.http://www.w3.org/TR/xpath.

[11] Vladimir Gapayev and Benjamin C. Pierce. Regular object types. InProc. 17th
European Conference on Object-Oriented Programming, ECOOP’03, volume
2743 ofLNCS. Springer-Verlag, July 2003.

[12] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing
language. InProc. 3rd International Workshop on the World Wide Web and
Databases, WebDB ’00, volume 1997 ofLNCS. Springer-Verlag, May 2000.

14



[13] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML process-
ing language.ACM Transactions on Internet Technology, 3(2), 2003.

[14] Jason Hunter and Brett McLaughlin. JDOM, 2001.http://jdom.org/.

[15] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks.
Acta Informatica, 7:305–317, 1977. Springer-Verlag.

[16] Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. Static anal-
ysis of XML transformations in Java. Technical Report RS-03-19, BRICS, May
2003. Submitted for journal publication.

[17] David A. Ladd and J. Christopher Ramming. Programming the Web: An
application-oriented language for hypermedia services.World Wide Web Jour-
nal, 1(1), January 1996. O’Reilly & Associates. Proc. 4th International World
Wide Web Conference, WWW4.

[18] John C. Reynolds. Intuitionistic reasoning about shared mutable data structure.
In Jim Davies, Bill Roscoe, and Jim Woodcock, editors,Millennial Perspectives
in Computer Science, Proc. 1999 Oxford–Microsoft Symposium in Honour of Sir
Tony Hoare, pages 303–321. Palgrave, November 2000.

[19] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape anal-
ysis via 3-valued logic.ACM Transactions on Programming Languages and Sys-
tems, 24(3):217–298, 2002.

[20] Sun Microsystems. Java API for XML processing.
http://java.sun.com/xml/jaxp/, 2001.

[21] Peter Thiemann. WASH/CGI: Server-side Web scripting with sessions and typed,
compositional forms. InProc. 4th International Symposium on Practical Aspects
of Declarative Languages, PADL ’02, January 2002.

15



Recent BRICS Report Series Publications

RS-03-29 Aske Simon Christensen, Christian Kirkegaard, and Anders
Møller. A Runtime System for XML Transformations in Java.
October 2003. 15 pp.

RS-03-28 Zolt́an Ésik and Kim G. Larsen. Regular Languages Definable
by Lindström Quantifiers. August 2003. 82 pp. This report su-
persedes the earlier BRICS report RS-02-20.

RS-03-27 Luca Aceto, Willem Jan Fokkink, Rob J. van Glabbeek, and
Anna Ingólfsdóttir. Nested Semantics over Finite Trees are
Equationally Hard. August 2003. 31 pp.

RS-03-26 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time. August 2003. 23 pp. Extended version of a pa-
per appearing in Hu and Rodrı́guez-Artalejo, editors,Sixth In-
ternational Symposium on Functional and Logic Programming,
FLOPS ’02 Proceedings, LNCS 2441, 2002, pages 134–151.
This report supersedes the earlier BRICS report RS-02-30.

RS-03-25 Biernacki Dariusz and Danvy Olivier.From Interpreter to Logic
Engine: A Functional Derivation. June 2003.

RS-03-24 Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A Func-
tional Correspondence between Call-by-Need Evaluators and
Lazy Abstract Machines. June 2003. 13 pp.

RS-03-23 Korovin Margarita. Recent Advances inΣ-Definability over
Continuous Data Types. June 2003. 26 pp.

RS-03-22 Ivan B. Damg̊ard and Mads J. Jurik. Scalable Key-Escrow.
May 2003. 15 pp.

RS-03-21 Ulrich Kohlenbach.Some Logical Metatheorems with Applica-
tions in Functional Analysis. May 2003. 55 pp. Slighly revised
and extended version to appear inTransactions of the Ameri-
can Mathematical Society.

RS-03-20 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Ro-
hde. Fast Partial Evaluation of Pattern Matching in Strings.
May 2003. 16 pp. Final version to appear in Leuschel, editor,
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, PEPM ’03 Proceedings, 2003.
This report supersedes the earlier BRICS report RS-03-11.


	Introduction
	The Xact Language
	Static Guarantees
	Runtime System
	Requirements
	The basic approach
	A lazy data structure
	Java issues

	Conclusion

