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Abstract

A partial evaluator is said to be Jones-optimal if the result of specializing
a self-interpreter with respect to a source program is textually identical to
the source program, modulo renaming. Jones optimality has already been
obtained if the self-interpreter is untyped. If the self-interpreter is typed,
however, residual programs are cluttered with type tags. To obtain the
original source program, these tags must be removed.

A number of sophisticated solutions have already been proposed. We ob-
serve, however, that with a simple representation shift, ordinary partial
evaluation is already Jones-optimal, modulo an encoding. The representa-
tion shift amounts to reading the type tags as constructors for higher-order
abstract syntax. We substantiate our observation by considering a typed
self-interpreter whose input syntax is higher-order. Specializing this in-
terpreter with respect to a source program yields a residual program that
is textually identical to the source program, modulo renaming.
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1 Introduction

Specializing an interpreter with respect to a program has the effect of translating
the program from the source language of the interpreter to the implementation
language (or to use Reynolds’s words, from the defined language to the defining
language [36]). For example, if an interpreter for Pascal is written in Scheme,
specializing it with respect to a Pascal program yields an equivalent Scheme
program. Numerous instances of this specialization are documented in the liter-
ature, e.g., for imperative languages [5,9], for functional languages [2], for logic
languages [7], for object-oriented languages [27], for reflective languages [31],
and for action notation [3]. Interpreter specialization is also known as the first
Futamura projection [15,16, 26].

One automatic technique for carrying out program specialization is partial
evaluation [6, 25]. An effective partial evaluator completely removes the in-
terpretive overhead of the interpreter. This complete removal is difficult to
characterize in general and therefore it has been characterized for a particular
case, self-interpreters, i.e., interpreters whose source language is (a subset of)
their implementation language. A partial evaluator is said to be Jones optimal
if it completely removes the interpretation overhead of a self-interpreter, i.e., if
the result of specializing a self-interpreter with respect to a well-formed source
program is textually identical to the source program, modulo renaming. Jones
optimality was obtained early after the development of offline partial evaluation
for untyped interpreters, with lambda-Mix [18, 25].

A typed interpreter, however, requires a universal data type to represent ex-
pressible values. Specializing such an interpreter, e.g., with lambda-Mix, yields
a residual program with many tag and untag operations. Ordinary, Mix-style,
partial evaluation is thus not Jones optimal [24].

Obtaining Jones optimality has proven a source of inspiration for a number
of new forays into partial evaluation, e.g., handwritten generators of program
generators [1,19], constructor specialization [10,33], type specialization [11,20–
23, 29], coercions [8], and more recently tag elimination [30, 37, 38] and staged
tagless interpreters [34]. Furthermore, the term “identical modulo renaming” in
the definition of Jones optimality has evolved into “at least as efficient” [17,25].

Here, we identify a simple representation shift of the specialized version of
a typed lambda-interpreter and we show that with this representation shift,
ordinary partial evaluation is already Jones optimal in the original sense.

Prerequisites and notation: We assume a basic familiarity with partial
evaluation in general, as can be gathered in Jones, Gomard, and Sestoft’s text-
book [25]. We use Standard ML [32] and the notion of higher-order abstract
syntax as introduced by Pfenning and Elliot [35] and used by Thiemann [39,40]:
Whereas the first-order abstract syntax of lambda-terms reads as

datatype foexp = FOVAR of string

| FOLAM of string * foexp

| FOAPP of foexp * foexp
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the higher-order abstract syntax of lambda-terms reads as

datatype hoexp = HOVAR of string

| HOLAM of hoexp -> hoexp

| HOAPP of hoexp * hoexp

where the constructor HOVAR is only used to represent free variables. For example,
the first-order abstract syntax of the K combinator λx.λy.x reads as

FOLAM ("x", FOLAM ("y", FOVAR "x"))

and its higher-order abstract syntax reads as

HOLAM (fn x => HOLAM (fn y => x))

2 The problem

The problem of specializing a typed interpreter is usually presented as fol-
lows [38]. Given

• a grammar of source expressions

datatype exp = LIT of int

| VAR of string

| LAM of string * exp

| APP of exp * exp

| ADD of exp * exp

• a universal type of expressible values

datatype univ = INT of int

| FUN of univ -> univ

• an environment Env : ENV

signature ENV

= sig

type ’a env

val empty : ’a env

val extend : string * ’a * ’a env -> ’a env

val lookup : string * ’a env -> ’a

end

• and two untagging functions app and add

exception TYPE_ERROR

(* app : univ * univ -> univ *)

fun app (FUN f, v)

= f v

| app _

= raise TYPE_ERROR
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(* add : univ * univ -> univ *)

fun add (INT i1, INT i2)

= INT (i1 + i2)

| add _

= raise TYPE_ERROR

a typed lambda-interpreter is specified as follows:

(* eval : exp -> univ Env.env -> univ *)

fun eval (LIT i) env

= INT i

| eval (VAR x) env

= Env.lookup (x, env)

| eval (LAM (x, e)) env

= FUN (fn v => eval e (Env.extend (x, v, env)))

| eval (APP (e0, e1)) env

= app (eval e0 env, eval e1 env)

| eval (ADD (e1, e2)) env

= add (eval e1 env, eval e2 env)

This evaluator is compositional, i.e., all recursive calls to eval on the right-
hand side are on proper sub-parts of the term in the left-hand side [41, page 60].
Specializing this evaluator amounts to

1. unfolding all calls to eval while keeping the environment partially static,
so that variables are looked up at specialization time, and

2. reconstructing all the remaining parts of the evaluator as residual syntax.

Unfolding all calls to eval terminates because the evaluator is compositional
and its input term is finite.

Specializing the interpreter with respect to the term

LAM ("x", APP (VAR "x", VAR "x"))

thus yields

FUN (fn v => app (v, v))

This specialization is not Jones optimal because of the type tag FUN and the
untagging operation app. (N.B. Danvy’s type coercions and (depending on the
annotations in the interpreter) Hughes’s type specialization would actually not
produce any result here [8, 21]. Instead, they would yield a type error because
the source term is untyped. Raising a type error at specialization time or at
run time is inessential with respect to Jones optimality.)
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3 But is it a problem?

An alternative reading of

FUN (fn v => app (v, v))

is as higher-order abstract syntax [35]. In this reading, FUN is the tag of a
lambda-abstraction and app is the tag of an application.

In that light, let us define the residual syntax as an ML data type by con-
sidering each branch of the evaluator and gathering each result into a data-type
constructor:

datatype univ_res = INT_res of int

| FUN_res of univ_res -> univ_res

| APP_res of univ_res * univ_res

| ADD_res of univ_res * univ_res

The corresponding generating extension is a recursive function that tra-
verses the source expression and constructs the result using the constructors of
univ res:

(* eval_gen : exp -> univ_res Env.env -> univ_res *)

fun eval_gen (LIT i) env

= INT_res i

| eval_gen (VAR x) env

= Env.lookup (x, env)

| eval_gen (LAM (x, e)) env

= FUN_res (fn v => eval_gen e (Env.extend (x, v, env)))

| eval_gen (APP (e0, e1)) env

= APP_res (eval_gen e0 env, eval_gen e1 env)

| eval_gen (ADD (e1, e2)) env

= ADD_res (eval_gen e1 env, eval_gen e2 env)

The interpretation of univ res elements is defined with a function eval res

that makes the following diagram commute:

exp
eval gen //

eval

%%JJJJJJJJJJJJJJJJJJ univ res

eval res

��
univ

First of all, we need a conversion function u2ur and its left inverse ur2u to write
eval res:

exception NOT_A_VALUE
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(* u2ur : univ -> univ_res *)

(* ur2u : univ_res -> univ *)

fun u2ur (INT i)

= INT_res i

| u2ur (FUN f)

= FUN_res (fn r => u2ur (f (ur2u r)))

and ur2u (INT_res i)

= INT i

| ur2u (FUN_res f)

= FUN (fn u => ur2u (f (u2ur u)))

| ur2u (APP_res _)

= raise NOT_A_VALUE

| ur2u (ADD_res _)

= raise NOT_A_VALUE

The corresponding evaluator reads as follows (the auxiliary functions app and
add are that of Section 2):

(* eval_res : univ_res -> univ *)

fun eval_res (INT_res i)

= INT i

| eval_res (FUN_res f)

= FUN (fn u => eval_res (f (u2ur u)))

| eval_res (APP_res (r0, r1))

= app (eval_res r0, eval_res r1)

| eval_res (ADD_res (r1, r2))

= add (eval_res r1, eval_res r2)

The generating extension, eval gen, is an encoding function from first-order
abstract syntax to higher-order abstract syntax. (In fact, it is the standard such
encoding (see appendix).) It maps a term such as

LAM ("x", APP (VAR "x", VAR "x"))

into the value of

FUN_res (fn v => APP_res (v, v))

With this reading of residual syntax as higher-order abstract syntax, or-
dinary partial evaluation (i.e., the generating extension) maps the first-order
abstract-syntax representation of λx.x x into the higher-order abstract-syntax
representation of λx.x x, and it does so optimally.

(Incidentally, partial evaluation (of an interpreter in a typed setting) con-
nects to Ershov’s mixed computation, since the specialized version of an eval-
uator is both (1) a residual program and (2) the data type used to represent
this residual program together with the interpretation of the constructors of the
data type [12–14].)
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4 An interpreter for higher-order abstract syn-
tax

Let us now verify that Jones optimality is obtained for a typed interpreter whose
input syntax is higher order. It is a simple matter to adapt the representation
of the input of the typed interpreter from Section 3 to be higher order instead
of first order. In the fashion of Section 2, the grammar of source expressions
and the universal type of expressible values read as follows:

datatype exp = LIT of int

| LAM of exp -> exp

| APP of exp * exp

| ADD of exp * exp

datatype univ = INT of int

| FUN of univ -> univ

The auxiliary functions app and add read just as in Section 2. As in Section 3,
we need a conversion function u2e and its left inverse e2u:

exception NOT_A_VALUE

(* u2e : univ -> exp *)

(* e2u : exp -> univ *)

fun u2e (INT i)

= LIT i

| u2e (FUN f)

= LAM (fn e => u2e (f (e2u e)))

and e2u (LIT i)

= INT i

| e2u (LAM f)

= FUN (fn u => e2u (f (u2e u)))

| e2u (APP _)

= raise NOT_A_VALUE

| e2u (ADD _)

= raise NOT_A_VALUE

The corresponding evaluator reads as follows:

(* eval : exp -> univ *)

fun eval (LIT i)

= INT i

| eval (LAM f)

= FUN (fn u => eval (f (u2e u)))

| eval (APP (e0, e1))

= app (eval e0, eval e1)

| eval (ADD (e1, e2))

= add (eval e1, eval e2)
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As in Section 3, we define the residual syntax as an ML data type by con-
sidering each branch of the evaluator and gathering each result into a data-type
constructor. The result and its interpretation (i.e., eval res and its two auxil-
iary conversion functions) are the same as in Section 3:

datatype univ_res = INT_res of int

| FUN_res of univ_res -> univ_res

| APP_res of univ_res * univ_res

| ADD_res of univ_res * univ_res

As in Section 3, we need two conversion functions ur2e and e2ur to write the
generating extension:

(* ur2e : univ_res -> exp *)

(* e2ur : exp -> univ_res *)

fun ur2e (INT_res i)

= LIT i

| ur2e (FUN_res f)

= LAM (fn e => ur2e (f (e2ur e)))

| ur2e (APP_res (e0, e1))

= APP (ur2e e0, ur2e e1)

| ur2e (ADD_res (e1, e2))

= ADD (ur2e e1, ur2e e2)

and e2ur (LIT i)

= INT_res i

| e2ur (LAM f)

= FUN_res (fn r => e2ur (f (ur2e r)))

| e2ur (APP (e0, e1))

= APP_res (e2ur e0, e2ur e1)

| e2ur (ADD (e1, e2))

= ADD_res (e2ur e1, e2ur e2)

The corresponding generating extension reads as follows:

(* eval_gen : exp -> univ_res *)

fun eval_gen (LIT i)

= INT_res i

| eval_gen (LAM f)

= FUN_res (fn r => eval_gen (f (ur2e r)))

| eval_gen (APP (e0, e1))

= APP_res (eval_gen e0, eval_gen e1)

| eval_gen (ADD (e1, e2))

= ADD_res (eval_gen e1, eval_gen e2)

It should now be clear that exp and univ res are isomorphic, since ur2e and
e2ur are inverse functions, and that eval gen computes the identity transforma-
tion up to this isomorphism. The resulting specialization is thus Jones optimal.
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5 But is it the real problem?

Jones’s challenge, however, is not for any typed interpreter but for a typed self-
interpreter. Such a self-interpreter, for example, is displayed in Taha, Makholm,
and Hughes’s article at PADO II [38]. We observe that the reading of Section 3
applies for this self-interpreter as well: its universal data type of values can be
seen as a representation of higher-order abstract syntax.

6 A self-interpreter for higher-order abstract syn-
tax

The second author has implemented a self-interpreter for higher-order abstract
syntax in a subset of Haskell, and verified that its generating extension computes
an identity transformation modulo an isomorphism [28].1 Therefore, Jones’s
challenge is met.

7 Related work

7.1 Specializing lambda-interpreters

The generating extension of a lambda-interpreter provides an encoding of a
lambda-term into the term model of the meta language of this interpreter. For
an untyped self-interpreter, the translation is the identity transformation, mod-
ulo desugaring. For an untyped interpreter in continuation-passing style (CPS),
the translation is the untyped CPS transformation. For an untyped interpreter
in state-passing style (SPS), the translation is the untyped SPS transformation.
And for an untyped interpreter in monadic style, the translation is the untyped
monadic-style transformation.

In that light, what we have done here is to identify a similar reading for a
typed self-interpreter, identifying its domain of universal values as a representa-
tion of higher-order abstract syntax. With this reading, type tags are not a bug
but a feature and ordinary partial evaluation is Jones optimal. In particular,
for a typed interpreter in CPS, the translation is the typed CPS transformation
into higher-order abstract syntax, and similarly for state-passing style, etc.

7.2 Jones optimality and higher-order abstract syntax

This article complements the first author’s work on coercions for type specializa-
tion [8] and the second author’s work on type specialization [29]. Our key insight
is that a specialized interpreter is a higher-order abstract syntax representation
of the source program. As pointed out by Taha in a personal communication
to the first author (January 2003), however, this insight in itself is not new.
Already in 2000, Taha and Makholm were aware that “A staged interpreter for

1The self-interpreter is available from the authors’ web page.
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a simply-typed lambda calculus can be modelled by a total map from terms to
what is essentially a higher-order abstract syntax encoding.” [37, Section 1.2].
Yet they took a different path and developed tag elimination and then tagless
interpreters to achieve Jones-optimal specialization of typed interpreters.

7.3 Type specialisation

The goal of type specialisation is to specialise both a source term and a source
type to a residual term and a residual type. It was introduced by Hughes,
who was inspired precisely by the problem of Jones optimality for typed in-
terpreters [20, 21]. The framework of type specialisation, however, allows more
than just producing optimal typed specialisers; traditional partial evaluation,
constructor specialisation, firstification, and type checking are comprised in it
(among other features). In contrast, we have solely focused on specializing
(unannotated) typed interpreters here.

8 Conclusion

The statement of Jones optimality involves two ingredients:

1. an evaluator that is in direct style and compositional, i.e., that is defined
by structural induction on the source syntax; and

2. a partial evaluator.

Our point is that if the partial evaluator, when it specializes the evaluator with
respect to an expression,

• unfolds all calls to the evaluator,

• keeps the environment partially static, so that variables can be looked up
at partial-evaluation time, and

• reconstructs everything else into a residual data type

then it computes a homomorphism, i.e., a compositional translation, from the
source syntax (data type) to the target syntax (data type). When the source and
target syntax are isomorphic, as in Section 4 and for lambda-Mix [18, 25], this
homomorphism is an isomorphism and the partial evaluator is Jones optimal.

Acknowledgments: Our insight about higher-order abstract syntax occurred
during the second author’s presentation at ASIA-PEPM 2002 [29]. The topic
of this article has benefited from discussions with Mads Sig Ager, Kenichi Asai,
John Hughes, Neil Jones, Nevin Heintze, Julia Lawall, Karoline Malmkjær, Hen-
ning Korsholm Rohde, Peter Thiemann, and Walid Taha, with special thanks
to Henning Makholm for a substantial as well as enlightening discussion in Jan-
uary 2003. We are also grateful to the anonymous reviewers for comments, with
special thanks to Julia Lawall.
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A Conversion between first-order and higher-
order abstract syntax

Given the data types foexp and hoexp of Section 1, the structure Env : ENV from
Section 2, and a structure Gensym : GENSYM

signature GENSYM

= sig

val new : string -> string

val reset : unit -> unit

end

implementing a generator of fresh variables, the conversion functions between
first-order abstract syntax and higher-order abstract syntax read as follows [35]:

(* f2h : foexp -> hoexp *)

fun f2h e

= let fun walk (FOVAR x) env

= Env.lookup (x, env)

| walk (FOLAM (x, e)) env

= HOLAM (fn v => walk e (Env.extend (x, v, env)))

| walk (FOAPP (e0, e1)) env

= HOAPP (walk e0 env, walk e1 env)

in walk e Env.empty

end

(* h2f : hoexp -> foexp *)

fun h2f e

= let fun walk (HOVAR x)

= FOVAR x

| walk (HOLAM f)

= let val x = Gensym.new "x"

in FOLAM (x, walk (f (HOVAR x)))

end

| walk (HOAPP (e0, e1))

= FOAPP (walk e0, walk e1)

in (Gensym.reset ();

walk e)

end
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