
B
R

IC
S

R
S

-03-2
D

anvy
&

López:
Tagging,E

ncoding,and
Jones

O
ptim

ality

BRICS
Basic Research in Computer Science

Tagging, Encoding, and Jones Optimality

Olivier Danvy
Pablo E. Mart ı́nez López

BRICS Report Series RS-03-2

ISSN 0909-0878 January 2003

Copyright c© 2003, Olivier Danvy & Pablo E. Mart ı́nez López.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/2/

Tagging, Encoding, and Jones Optimality ∗

Olivier Danvy

BRICS †

Department of Computer Science
University of Aarhus ‡

Pablo E. Mart́ınez López

LIFIA

Universidad Nacional de La Plata §

January 21, 2002

Abstract

A partial evaluator is said to be Jones-optimal if the result of specializing
a self-interpreter with respect to a source program is textually identical to
the source program, modulo renaming. Jones optimality has already been
obtained if the self-interpreter is untyped. If the self-interpreter is typed,
however, residual programs are cluttered with type tags. To obtain the
original source program, these tags must be removed.

A number of sophisticated solutions have already been proposed. We ob-
serve, however, that with a simple representation shift, ordinary partial
evaluation is already Jones-optimal, modulo an encoding. The representa-
tion shift amounts to reading the type tags as constructors for higher-order
abstract syntax. We substantiate our observation by considering a typed
self-interpreter whose input syntax is higher-order. Specializing this in-
terpreter with respect to a source program yields a residual program that
is textually identical to the source program, modulo renaming.

∗To appear in the proceedings of ESOP 2003 (extended version).
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark
E-mail: danvy@brics.dk

§CC. 11 Correo Central, (1900) La Plata, Bs.As. Argentina
E-mail: fidel@info.unlp.edu.ar

1

Contents

1 Introduction 3

2 The problem 4

3 But is it a problem? 6

4 An interpreter for higher-order abstract syntax 8

5 But is it the real problem? 10

6 A self-interpreter for higher-order abstract syntax 10

7 Related work 10
7.1 Specializing lambda-interpreters 10
7.2 Jones optimality and higher-order abstract syntax 10
7.3 Type specialisation . 11

8 Conclusion 11

A Conversion between first-order and higher-order abstract syn-
tax 12

2

1 Introduction

Specializing an interpreter with respect to a program has the effect of translating
the program from the source language of the interpreter to the implementation
language (or to use Reynolds’s words, from the defined language to the defining
language [36]). For example, if an interpreter for Pascal is written in Scheme,
specializing it with respect to a Pascal program yields an equivalent Scheme
program. Numerous instances of this specialization are documented in the liter-
ature, e.g., for imperative languages [5,9], for functional languages [2], for logic
languages [7], for object-oriented languages [27], for reflective languages [31],
and for action notation [3]. Interpreter specialization is also known as the first
Futamura projection [15,16, 26].

One automatic technique for carrying out program specialization is partial
evaluation [6, 25]. An effective partial evaluator completely removes the in-
terpretive overhead of the interpreter. This complete removal is difficult to
characterize in general and therefore it has been characterized for a particular
case, self-interpreters, i.e., interpreters whose source language is (a subset of)
their implementation language. A partial evaluator is said to be Jones optimal
if it completely removes the interpretation overhead of a self-interpreter, i.e., if
the result of specializing a self-interpreter with respect to a well-formed source
program is textually identical to the source program, modulo renaming. Jones
optimality was obtained early after the development of offline partial evaluation
for untyped interpreters, with lambda-Mix [18, 25].

A typed interpreter, however, requires a universal data type to represent ex-
pressible values. Specializing such an interpreter, e.g., with lambda-Mix, yields
a residual program with many tag and untag operations. Ordinary, Mix-style,
partial evaluation is thus not Jones optimal [24].

Obtaining Jones optimality has proven a source of inspiration for a number
of new forays into partial evaluation, e.g., handwritten generators of program
generators [1,19], constructor specialization [10,33], type specialization [11,20–
23, 29], coercions [8], and more recently tag elimination [30, 37, 38] and staged
tagless interpreters [34]. Furthermore, the term “identical modulo renaming” in
the definition of Jones optimality has evolved into “at least as efficient” [17,25].

Here, we identify a simple representation shift of the specialized version of
a typed lambda-interpreter and we show that with this representation shift,
ordinary partial evaluation is already Jones optimal in the original sense.

Prerequisites and notation: We assume a basic familiarity with partial
evaluation in general, as can be gathered in Jones, Gomard, and Sestoft’s text-
book [25]. We use Standard ML [32] and the notion of higher-order abstract
syntax as introduced by Pfenning and Elliot [35] and used by Thiemann [39,40]:
Whereas the first-order abstract syntax of lambda-terms reads as

datatype foexp = FOVAR of string

| FOLAM of string * foexp

| FOAPP of foexp * foexp

3

the higher-order abstract syntax of lambda-terms reads as

datatype hoexp = HOVAR of string

| HOLAM of hoexp -> hoexp

| HOAPP of hoexp * hoexp

where the constructor HOVAR is only used to represent free variables. For example,
the first-order abstract syntax of the K combinator λx.λy.x reads as

FOLAM ("x", FOLAM ("y", FOVAR "x"))

and its higher-order abstract syntax reads as

HOLAM (fn x => HOLAM (fn y => x))

2 The problem

The problem of specializing a typed interpreter is usually presented as fol-
lows [38]. Given

• a grammar of source expressions

datatype exp = LIT of int

| VAR of string

| LAM of string * exp

| APP of exp * exp

| ADD of exp * exp

• a universal type of expressible values

datatype univ = INT of int

| FUN of univ -> univ

• an environment Env : ENV

signature ENV

= sig

type ’a env

val empty : ’a env

val extend : string * ’a * ’a env -> ’a env

val lookup : string * ’a env -> ’a

end

• and two untagging functions app and add

exception TYPE_ERROR

(* app : univ * univ -> univ *)

fun app (FUN f, v)

= f v

| app _

= raise TYPE_ERROR

4

(* add : univ * univ -> univ *)

fun add (INT i1, INT i2)

= INT (i1 + i2)

| add _

= raise TYPE_ERROR

a typed lambda-interpreter is specified as follows:

(* eval : exp -> univ Env.env -> univ *)

fun eval (LIT i) env

= INT i

| eval (VAR x) env

= Env.lookup (x, env)

| eval (LAM (x, e)) env

= FUN (fn v => eval e (Env.extend (x, v, env)))

| eval (APP (e0, e1)) env

= app (eval e0 env, eval e1 env)

| eval (ADD (e1, e2)) env

= add (eval e1 env, eval e2 env)

This evaluator is compositional, i.e., all recursive calls to eval on the right-
hand side are on proper sub-parts of the term in the left-hand side [41, page 60].
Specializing this evaluator amounts to

1. unfolding all calls to eval while keeping the environment partially static,
so that variables are looked up at specialization time, and

2. reconstructing all the remaining parts of the evaluator as residual syntax.

Unfolding all calls to eval terminates because the evaluator is compositional
and its input term is finite.

Specializing the interpreter with respect to the term

LAM ("x", APP (VAR "x", VAR "x"))

thus yields

FUN (fn v => app (v, v))

This specialization is not Jones optimal because of the type tag FUN and the
untagging operation app. (N.B. Danvy’s type coercions and (depending on the
annotations in the interpreter) Hughes’s type specialization would actually not
produce any result here [8, 21]. Instead, they would yield a type error because
the source term is untyped. Raising a type error at specialization time or at
run time is inessential with respect to Jones optimality.)

5

3 But is it a problem?

An alternative reading of

FUN (fn v => app (v, v))

is as higher-order abstract syntax [35]. In this reading, FUN is the tag of a
lambda-abstraction and app is the tag of an application.

In that light, let us define the residual syntax as an ML data type by con-
sidering each branch of the evaluator and gathering each result into a data-type
constructor:

datatype univ_res = INT_res of int

| FUN_res of univ_res -> univ_res

| APP_res of univ_res * univ_res

| ADD_res of univ_res * univ_res

The corresponding generating extension is a recursive function that tra-
verses the source expression and constructs the result using the constructors of
univ res:

(* eval_gen : exp -> univ_res Env.env -> univ_res *)

fun eval_gen (LIT i) env

= INT_res i

| eval_gen (VAR x) env

= Env.lookup (x, env)

| eval_gen (LAM (x, e)) env

= FUN_res (fn v => eval_gen e (Env.extend (x, v, env)))

| eval_gen (APP (e0, e1)) env

= APP_res (eval_gen e0 env, eval_gen e1 env)

| eval_gen (ADD (e1, e2)) env

= ADD_res (eval_gen e1 env, eval_gen e2 env)

The interpretation of univ res elements is defined with a function eval res

that makes the following diagram commute:

exp
eval gen //

eval

%%JJJJJJJJJJJJJJJJJJ univ res

eval res

��
univ

First of all, we need a conversion function u2ur and its left inverse ur2u to write
eval res:

exception NOT_A_VALUE

6

(* u2ur : univ -> univ_res *)

(* ur2u : univ_res -> univ *)

fun u2ur (INT i)

= INT_res i

| u2ur (FUN f)

= FUN_res (fn r => u2ur (f (ur2u r)))

and ur2u (INT_res i)

= INT i

| ur2u (FUN_res f)

= FUN (fn u => ur2u (f (u2ur u)))

| ur2u (APP_res _)

= raise NOT_A_VALUE

| ur2u (ADD_res _)

= raise NOT_A_VALUE

The corresponding evaluator reads as follows (the auxiliary functions app and
add are that of Section 2):

(* eval_res : univ_res -> univ *)

fun eval_res (INT_res i)

= INT i

| eval_res (FUN_res f)

= FUN (fn u => eval_res (f (u2ur u)))

| eval_res (APP_res (r0, r1))

= app (eval_res r0, eval_res r1)

| eval_res (ADD_res (r1, r2))

= add (eval_res r1, eval_res r2)

The generating extension, eval gen, is an encoding function from first-order
abstract syntax to higher-order abstract syntax. (In fact, it is the standard such
encoding (see appendix).) It maps a term such as

LAM ("x", APP (VAR "x", VAR "x"))

into the value of

FUN_res (fn v => APP_res (v, v))

With this reading of residual syntax as higher-order abstract syntax, or-
dinary partial evaluation (i.e., the generating extension) maps the first-order
abstract-syntax representation of λx.x x into the higher-order abstract-syntax
representation of λx.x x, and it does so optimally.

(Incidentally, partial evaluation (of an interpreter in a typed setting) con-
nects to Ershov’s mixed computation, since the specialized version of an eval-
uator is both (1) a residual program and (2) the data type used to represent
this residual program together with the interpretation of the constructors of the
data type [12–14].)

7

4 An interpreter for higher-order abstract syn-
tax

Let us now verify that Jones optimality is obtained for a typed interpreter whose
input syntax is higher order. It is a simple matter to adapt the representation
of the input of the typed interpreter from Section 3 to be higher order instead
of first order. In the fashion of Section 2, the grammar of source expressions
and the universal type of expressible values read as follows:

datatype exp = LIT of int

| LAM of exp -> exp

| APP of exp * exp

| ADD of exp * exp

datatype univ = INT of int

| FUN of univ -> univ

The auxiliary functions app and add read just as in Section 2. As in Section 3,
we need a conversion function u2e and its left inverse e2u:

exception NOT_A_VALUE

(* u2e : univ -> exp *)

(* e2u : exp -> univ *)

fun u2e (INT i)

= LIT i

| u2e (FUN f)

= LAM (fn e => u2e (f (e2u e)))

and e2u (LIT i)

= INT i

| e2u (LAM f)

= FUN (fn u => e2u (f (u2e u)))

| e2u (APP _)

= raise NOT_A_VALUE

| e2u (ADD _)

= raise NOT_A_VALUE

The corresponding evaluator reads as follows:

(* eval : exp -> univ *)

fun eval (LIT i)

= INT i

| eval (LAM f)

= FUN (fn u => eval (f (u2e u)))

| eval (APP (e0, e1))

= app (eval e0, eval e1)

| eval (ADD (e1, e2))

= add (eval e1, eval e2)

8

As in Section 3, we define the residual syntax as an ML data type by con-
sidering each branch of the evaluator and gathering each result into a data-type
constructor. The result and its interpretation (i.e., eval res and its two auxil-
iary conversion functions) are the same as in Section 3:

datatype univ_res = INT_res of int

| FUN_res of univ_res -> univ_res

| APP_res of univ_res * univ_res

| ADD_res of univ_res * univ_res

As in Section 3, we need two conversion functions ur2e and e2ur to write the
generating extension:

(* ur2e : univ_res -> exp *)

(* e2ur : exp -> univ_res *)

fun ur2e (INT_res i)

= LIT i

| ur2e (FUN_res f)

= LAM (fn e => ur2e (f (e2ur e)))

| ur2e (APP_res (e0, e1))

= APP (ur2e e0, ur2e e1)

| ur2e (ADD_res (e1, e2))

= ADD (ur2e e1, ur2e e2)

and e2ur (LIT i)

= INT_res i

| e2ur (LAM f)

= FUN_res (fn r => e2ur (f (ur2e r)))

| e2ur (APP (e0, e1))

= APP_res (e2ur e0, e2ur e1)

| e2ur (ADD (e1, e2))

= ADD_res (e2ur e1, e2ur e2)

The corresponding generating extension reads as follows:

(* eval_gen : exp -> univ_res *)

fun eval_gen (LIT i)

= INT_res i

| eval_gen (LAM f)

= FUN_res (fn r => eval_gen (f (ur2e r)))

| eval_gen (APP (e0, e1))

= APP_res (eval_gen e0, eval_gen e1)

| eval_gen (ADD (e1, e2))

= ADD_res (eval_gen e1, eval_gen e2)

It should now be clear that exp and univ res are isomorphic, since ur2e and
e2ur are inverse functions, and that eval gen computes the identity transforma-
tion up to this isomorphism. The resulting specialization is thus Jones optimal.

9

5 But is it the real problem?

Jones’s challenge, however, is not for any typed interpreter but for a typed self-
interpreter. Such a self-interpreter, for example, is displayed in Taha, Makholm,
and Hughes’s article at PADO II [38]. We observe that the reading of Section 3
applies for this self-interpreter as well: its universal data type of values can be
seen as a representation of higher-order abstract syntax.

6 A self-interpreter for higher-order abstract syn-
tax

The second author has implemented a self-interpreter for higher-order abstract
syntax in a subset of Haskell, and verified that its generating extension computes
an identity transformation modulo an isomorphism [28].1 Therefore, Jones’s
challenge is met.

7 Related work

7.1 Specializing lambda-interpreters

The generating extension of a lambda-interpreter provides an encoding of a
lambda-term into the term model of the meta language of this interpreter. For
an untyped self-interpreter, the translation is the identity transformation, mod-
ulo desugaring. For an untyped interpreter in continuation-passing style (CPS),
the translation is the untyped CPS transformation. For an untyped interpreter
in state-passing style (SPS), the translation is the untyped SPS transformation.
And for an untyped interpreter in monadic style, the translation is the untyped
monadic-style transformation.

In that light, what we have done here is to identify a similar reading for a
typed self-interpreter, identifying its domain of universal values as a representa-
tion of higher-order abstract syntax. With this reading, type tags are not a bug
but a feature and ordinary partial evaluation is Jones optimal. In particular,
for a typed interpreter in CPS, the translation is the typed CPS transformation
into higher-order abstract syntax, and similarly for state-passing style, etc.

7.2 Jones optimality and higher-order abstract syntax

This article complements the first author’s work on coercions for type specializa-
tion [8] and the second author’s work on type specialization [29]. Our key insight
is that a specialized interpreter is a higher-order abstract syntax representation
of the source program. As pointed out by Taha in a personal communication
to the first author (January 2003), however, this insight in itself is not new.
Already in 2000, Taha and Makholm were aware that “A staged interpreter for

1The self-interpreter is available from the authors’ web page.

10

a simply-typed lambda calculus can be modelled by a total map from terms to
what is essentially a higher-order abstract syntax encoding.” [37, Section 1.2].
Yet they took a different path and developed tag elimination and then tagless
interpreters to achieve Jones-optimal specialization of typed interpreters.

7.3 Type specialisation

The goal of type specialisation is to specialise both a source term and a source
type to a residual term and a residual type. It was introduced by Hughes,
who was inspired precisely by the problem of Jones optimality for typed in-
terpreters [20, 21]. The framework of type specialisation, however, allows more
than just producing optimal typed specialisers; traditional partial evaluation,
constructor specialisation, firstification, and type checking are comprised in it
(among other features). In contrast, we have solely focused on specializing
(unannotated) typed interpreters here.

8 Conclusion

The statement of Jones optimality involves two ingredients:

1. an evaluator that is in direct style and compositional, i.e., that is defined
by structural induction on the source syntax; and

2. a partial evaluator.

Our point is that if the partial evaluator, when it specializes the evaluator with
respect to an expression,

• unfolds all calls to the evaluator,

• keeps the environment partially static, so that variables can be looked up
at partial-evaluation time, and

• reconstructs everything else into a residual data type

then it computes a homomorphism, i.e., a compositional translation, from the
source syntax (data type) to the target syntax (data type). When the source and
target syntax are isomorphic, as in Section 4 and for lambda-Mix [18, 25], this
homomorphism is an isomorphism and the partial evaluator is Jones optimal.

Acknowledgments: Our insight about higher-order abstract syntax occurred
during the second author’s presentation at ASIA-PEPM 2002 [29]. The topic
of this article has benefited from discussions with Mads Sig Ager, Kenichi Asai,
John Hughes, Neil Jones, Nevin Heintze, Julia Lawall, Karoline Malmkjær, Hen-
ning Korsholm Rohde, Peter Thiemann, and Walid Taha, with special thanks
to Henning Makholm for a substantial as well as enlightening discussion in Jan-
uary 2003. We are also grateful to the anonymous reviewers for comments, with
special thanks to Julia Lawall.

11

This work is supported by the ESPRIT Working Group APPSEM II
(http://www.tcs.informatik.uni-muenchen.de/~mhofmann/appsem2/).

The second author is a PhD student at the University of Buenos Aires and is
partially funded by grants from the ALFA-CORDIAL project Nr. ALR/B73011/
94.04-5.0348.9 and the FOMEC project of the Computer Science Department,
FCEyN, at the University of Buenos Aires.

A Conversion between first-order and higher-
order abstract syntax

Given the data types foexp and hoexp of Section 1, the structure Env : ENV from
Section 2, and a structure Gensym : GENSYM

signature GENSYM

= sig

val new : string -> string

val reset : unit -> unit

end

implementing a generator of fresh variables, the conversion functions between
first-order abstract syntax and higher-order abstract syntax read as follows [35]:

(* f2h : foexp -> hoexp *)

fun f2h e

= let fun walk (FOVAR x) env

= Env.lookup (x, env)

| walk (FOLAM (x, e)) env

= HOLAM (fn v => walk e (Env.extend (x, v, env)))

| walk (FOAPP (e0, e1)) env

= HOAPP (walk e0 env, walk e1 env)

in walk e Env.empty

end

(* h2f : hoexp -> foexp *)

fun h2f e

= let fun walk (HOVAR x)

= FOVAR x

| walk (HOLAM f)

= let val x = Gensym.new "x"

in FOLAM (x, walk (f (HOVAR x)))

end

| walk (HOAPP (e0, e1))

= FOAPP (walk e0, walk e1)

in (Gensym.reset ();

walk e)

end

12

References

[1] Lars Birkedal and Morten Welinder. Handwriting program generator gen-
erators. In Manuel Hermenegildo and Jaan Penjam, editors, Sixth Inter-
national Symposium on Programming Language Implementation and Logic
Programming, number 844 in Lecture Notes in Computer Science, pages
198–214, Madrid, Spain, September 1994. Springer-Verlag.

[2] Anders Bondorf. Compiling laziness by partial evaluation. In Simon L.
Peyton Jones, Guy Hutton, and Carsten K. Holst, editors, Functional Pro-
gramming, Glasgow 1990, Workshops in Computing, pages 9–22, Glasgow,
Scotland, 1990. Springer-Verlag.

[3] Anders Bondorf and Jens Palsberg. Compiling actions by partial evalua-
tion. In Arvind, editor, Proceedings of the Sixth ACM Conference on Func-
tional Programming and Computer Architecture, pages 308–317, Copen-
hagen, Denmark, June 1993. ACM Press.

[4] Wei-Ngan Chin, editor. ACM SIGPLAN Asian Symposium on Partial Eval-
uation and Semantics-Based Program Manipulation, Aizu, Japan, Septem-
ber 2002. ACM Press.

[5] Charles Consel and Olivier Danvy. Static and dynamic semantics process-
ing. In Robert (Corky) Cartwright, editor, Proceedings of the Eighteenth
Annual ACM Symposium on Principles of Programming Languages, pages
14–24, Orlando, Florida, January 1991. ACM Press.

[6] Charles Consel and Olivier Danvy. Tutorial notes on partial evalua-
tion. In Susan L. Graham, editor, Proceedings of the Twentieth Annual
ACM Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

[7] Charles Consel and Siau-Cheng Khoo. Semantics-directed generation of a
Prolog compiler. Science of Computer Programming, 21:263–291, 1993.

[8] Olivier Danvy. A simple solution to type specialization. In Kim G. Larsen,
Sven Skyum, and Glynn Winskel, editors, Proceedings of the 25th Inter-
national Colloquium on Automata, Languages, and Programming, num-
ber 1443 in Lecture Notes in Computer Science, pages 908–917. Springer-
Verlag, 1998.

[9] Olivier Danvy and René Vestergaard. Semantics-based compiling: A case
study in type-directed partial evaluation. In Herbert Kuchen and Doaitse
Swierstra, editors, Eighth International Symposium on Programming Lan-
guage Implementation and Logic Programming, number 1140 in Lecture
Notes in Computer Science, pages 182–197, Aachen, Germany, September
1996. Springer-Verlag. Extended version available as the technical report
BRICS-RS-96-13.

13

[10] Dirk Dussart, Eddy Bevers, and Karel De Vlaminck. Polyvariant con-
structor specialisation. In William L. Scherlis, editor, Proceedings of the
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 54–65, La Jolla, California, June 1995. ACM
Press.

[11] Dirk Dussart, John Hughes, and Peter Thiemann. Type specialization for
imperative languages. In Mads Tofte, editor, Proceedings of the 1997 ACM
SIGPLAN International Conference on Functional Programming, pages
204–216, Amsterdam, The Netherlands, June 1997. ACM Press.

[12] Andrei P. Ershov. On the essence of compilation. In E. J. Neuhold, edi-
tor, Formal Description of Programming Concepts, pages 391–420. North-
Holland, 1978.

[13] Andrei P. Ershov. Mixed computation: Potential applications and problems
for study. Theoretical Computer Science, 18:41–67, 1982.

[14] Andrei P. Ershov, Dines Bjørner, Yoshihiko Futamura, K. Furukawa, An-
ders Haraldsson, and William Scherlis, editors. Special Issue: Selected
Papers from the Workshop on Partial Evaluation and Mixed Computa-
tion, 1987, New Generation Computing, Vol. 6, No. 2-3. Ohmsha Ltd.
and Springer-Verlag, 1988.

[15] Yoshihiko Futamura. Partial evaluation of computation process – an ap-
proach to a compiler-compiler. Higher-Order and Symbolic Computation,
12(4):381–391, 1999. Reprinted from Systems · Computers · Controls 2(5),
1971.

[16] Yoshihiko Futamura. Partial evaluation of computation process, revisited.
Higher-Order and Symbolic Computation, 12(4):377–380, 1999.

[17] Robert Glück. Jones optimality, binding-time improvements, and the
strength of program specializers. In Chin [4], pages 9–19.

[18] Carsten K. Gomard and Neil D. Jones. A partial evaluator for the untyped
lambda-calculus. Journal of Functional Programming, 1(1):21–69, 1991.

[19] Carsten K. Holst and John Launchbury. Handwriting cogen to avoid prob-
lems with static typing. In Draft Proceedings, Fourth Annual Glasgow
Workshop on Functional Programming, Skye, Scotland, pages 210–218.
Glasgow University, 1991.

[20] John Hughes. An introduction to program specialisation by type inference.
In Functional Programming, Glasgow University, July 1996. Published elec-
tronically.

[21] John Hughes. Type specialisation for the lambda calculus; or, a new
paradigm for partial evaluation based on type inference. In Olivier Danvy,
Robert Glück, and Peter Thiemann, editors, Partial Evaluation, number

14

1110 in Lecture Notes in Computer Science, pages 183–215, Dagstuhl, Ger-
many, February 1996. Springer-Verlag.

[22] John Hughes. A type specialisation tutorial. In John Hatcliff, Torben Æ.
Mogensen, and Peter Thiemann, editors, Partial Evaluation – Practice and
Theory; Proceedings of the 1998 DIKU Summer School, number 1706 in
Lecture Notes in Computer Science, pages 293–325, Copenhagen, Denmark,
July 1998. Springer-Verlag.

[23] John Hughes. The correctness of type specialisation. In Gert Smolka,
editor, Proceedings of the Ninth European Symposium on Programming,
number 1782 in Lecture Notes in Computer Science, pages 215–229, Berlin,
Germany, March 2000. Springer-Verlag.

[24] Neil D. Jones. Challenging problems in partial evaluation and mixed com-
putation. In Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors,
Partial Evaluation and Mixed Computation, pages 1–14. North-Holland,
1988.

[25] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalua-
tion and Automatic Program Generation. Prentice-Hall International, Lon-
don, UK, 1993. Available online at http://www.dina.kvl.dk/~sestoft/
pebook/.

[26] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: A self-
applicable partial evaluator for experiments in compiler generation. Lisp
and Symbolic Computation, 2(1):9–50, 1989.

[27] Siau Cheng Khoo and Sundaresh. Compiling inheritance using partial eval-
uation. In Paul Hudak and Neil D. Jones, editors, Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation, SIGPLAN Notices, Vol. 26, No 9, pages 211–222, New
Haven, Connecticut, June 1991. ACM Press.

[28] Pablo E. Mart́ınez López. Type Specialisation for Polymorphic Languages.
PhD thesis, Department of Computer Science, University of Buenos Aires,
Buenos Aires, Argentina, 2003. Forthcoming.

[29] Pablo E. Mart́ınez López and John Hughes. Principal type specialisation.
In Chin [4], pages 94–105.

[30] Henning Makholm. On Jones-optimal specialization for strongly typed lan-
guages. In Walid Taha, editor, Proceedings of the First Workshop on Se-
mantics, Applications, and Implementation of Program Generation (SAIG
2000), number 1924 in Lecture Notes in Computer Science, pages 129–148,
Montréal, Canada, September 2000. Springer-Verlag.

[31] Hidehiko Masuhara, Satoshi Matsuoka, Kenichi Asai, and Akinori
Yonezawa. Compiling away the meta-level in object-oriented concurrent re-
flective languages using partial evaluation. In Proceedings of OOPSLA’91,

15

the ACM SIGPLAN Tenth Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, pages 300–315, Austin,
Texas, October 1995. SIGPLAN Notices 30(10).

[32] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[33] Torben Æ. Mogensen. Constructor specialization. In David A. Schmidt,
editor, Proceedings of the Second ACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation, pages 22–32,
Copenhagen, Denmark, June 1993. ACM Press.

[34] Emir Pasalic, Walid Taha, and Tim Sheard. Tagless staged interpreters
for typed languages. In Simon Peyton Jones, editor, Proceedings of the
2002 ACM SIGPLAN International Conference on Functional Program-
ming, Pittsburgh, Pennsylvania, September 2002. ACM Press.

[35] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In
Mayer D. Schwartz, editor, Proceedings of the ACM SIGPLAN’88 Confer-
ence on Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 23, No 7, pages 199–208, Atlanta, Georgia, June 1988. ACM
Press.

[36] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference
(1972).

[37] Walid Taha and Henning Makholm. Tag elimination or type specialization
is a type-indexed effect. In Proceedings of the 2000 APPSEM Workshop on
Subtyping and Dependent Types in Programming, Ponte de Lima, Portugal,
July 2000. http://www-sop.inria.fr/oasis/DTP00/.

[38] Walid Taha, Henning Makholm, and John Hughes. Tag elimination and
Jones-optimality. In Olivier Danvy and Andrzej Filinski, editors, Programs
as Data Objects, Second Symposium, PADO 2001, number 2053 in Lecture
Notes in Computer Science, pages 257–275, Aarhus, Denmark, May 2001.
Springer-Verlag.

[39] Peter Thiemann. Combinators for program generation. Journal of Func-
tional Programming, 9(5):483–525, 1999.

[40] Peter Thiemann. Higher-order code splicing. In S. Doaitse Swierstra, editor,
Proceedings of the Eighth European Symposium on Programming, number
1576 in Lecture Notes in Computer Science, pages 243–257, Amsterdam,
The Netherlands, March 1999. Springer-Verlag.

[41] Glynn Winskel. The Formal Semantics of Programming Languages. Foun-
dation of Computing Series. The MIT Press, 1993.

16

Recent BRICS Report Series Publications

RS-03-2 Olivier Danvy and Pablo E. Mart́ınez López. Tagging, En-
coding, and Jones Optimality. January 2003. To appear in
Degano, editor,Programming Languages and Systems: Twelfth
European Symposium on Programming, ESOP ’03 Proceed-
ings, LNCS, 2003.

RS-03-1 Vladimiro Sassone and Pawel Sobocinski.Deriving Bisimu-
lation Congruences: 2-Categories vs. Precategories. January
2003. To appear in Gordon, editor,Foundations of Software
Science and Computation Structures, FoSSaCS ’03 Proceed-
ings, LNCS, 2003.

RS-02-52 Olivier Danvy. A New One-Pass Transformation into Monadic
Normal Form. December 2002. 16 pp. To appear in Hedin,
editor, Compiler Construction, 12th International Conference,
CC ’03 Proceedings, LNCS, 2003.

RS-02-51 Gerth Stølting Brodal, Rolf Fagerberg, AnnaÖstlin, Christian
N. S. Pedersen, and S. Srinivasa Rao.Computing Refined Bune-
man Trees in Cubic Time. December 2002. 14 pp.

RS-02-50 Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and V. Vinay.
Circuits on Cylinders. December 2002. 16 pp.

RS-02-49 Mikkel Nygaard and Glynn Winskel. HOPLA—A Higher-
Order Process Language. December 2002. 18 pp. Appears
in Brim, Jan čar, Křetı́nský and Antonı́n, editors, Concurrency
Theory: 13th International Conference, CONCUR ’02 Proceed-
ings, LNCS 2421, 2002, pages 434–448.

RS-02-48 Mikkel Nygaard and Glynn Winskel.Linearity in Process Lan-
guages. December 2002. 27 pp. Appears in Plotkin, editor,
Seventeenth Annual IEEE Symposium on Logic in Computer
Science, LICS ’02 Proceedings, 2002, pages 433–446.

RS-02-47 Zolt́an Ésik. Extended Temporal Logic on Finite Words and
Wreath Product of Monoids with Distinguished Generators. De-
cember 2002. 16 pp. To appear in6th International Conference,
Developments in Language Theory, DLT ’02 Revised Papers,
LNCS, 2002.

