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Abstract. Consistency checking is a fundamental computational problem in ge-
netics. Given a pedigree and information on the genotypes (of some) of the indi-
viduals in it, the aim of consistency checking is to determine whether these data
are consistent with the classic Mendelian laws of inheritance. This problem arose
originally from the geneticists’ need to filter their input data from erroneous in-
formation, and is well motivated from both a biological and a sociological view-
point. This paper shows that consistency checking is NP-complete, even with
focus on a single gene and in the presence of three alleles. Several other results
on the computational complexity of problems from genetics that are related to
consistency checking are also offered. In particular, it is shown that checking the
consistency of pedigrees over two alleles, and of pedigrees without loops, can be
done in polynomial time.

AMS SUBJECTCLASSIFICATION (1991): 68Q25, 92D10.
CR SUBJECTCLASSIFICATION (1991): F.2.2, J.3.
KEYWORDS AND PHRASES: Consistency checking, pedigrees, genotypes, NP-
completeness, satisfiability, polynomial time complexity, critical genotypes.

1 Introduction

A paradigmatic problem from the field of genetics in which the use of algorithmic tech-
niques is by now widespread, and is embodied in software tools like Allegro [9], Gene-
hunter [16], Merlin [1] and Pedcheck [20], is that of linkage analysis.Linkage analy-
sis is a well established, statistical method used to relate genes in the human genome
to some biological trait that an individual possesses. Example traits that may be in-
vestigated range from simple ones like blood type and eye colour to those that may
predispose an individual for a disease. Genes causing major diseases (e.g., Parkinson’s
disease, obesity and anxiety) have already been discovered using this technique [5].

In order to track the inheritance of genetic traits, geneticists use structures called
pedigrees. Apedigreedescribes the family relations amongst a collection of individuals,
and usually comes equipped with (possibly partial) information on their genotypes—
i.e., on the pairs of alleles at a locus in their genome. (Anallele is one of the possible



forms a gene may have.) Pedigrees are the subject of algorithmic analysis via methods
like linkage analysis.

A computational problem that is closely related to that of linkage analysis iscon-
sistency checking. Given a pedigree and information on the genotypes (of some) of the
individuals in it, the aim of consistency checking is to determine whether these data are
consistent with the classic Mendelian laws of inheritance (see, e.g., the reference [15]
and Sect. 2). If it turns out that the inheritance of the genotypes in the pedigree is in
conflict with the Mendelian laws of inheritance, then the pedigree and the information
on the genotypes areinconsistent. If no such conflict arises, then the data areconsistent.

The problem of consistency checking arose originally from the geneticists’ need
to filter their input data from erroneous information, because inconsistent data are un-
desirable. According to [25, p. 496], it is essential that all Mendelian inconsistencies
be eliminated prior to linkage analysis as “a few inopportunely placed errors, if ig-
nored, can tremendously affect evidence for linkage.” Furthermore, as reported in [20],
in many real-life cases the manual identification of inconsistencies can be very diffi-
cult, time consuming, and sometimes unsuccessful. It would therefore be most helpful
to have automatic tool support for this task.

Another motivation for consistency checking is its applicability in determining fam-
ily relationships. A DNA test is very useful in genealogical investigations, paternity
issues and criminal investigations. For instance, the point of paternity issues has re-
cently been brought up in the Danish press [6], where it is claimed that up to 10% of the
Scandinavian population have wrong paternal information, and that the interest for such
investigations is growing rapidly. This could be accelerated by the growing possibilities
in society for performing DNA tests. According to [10], it is now possible to get a 10
marker fingerprint of a chromosome for approximately 300 euro by utilizing a DNA
sampling kit at your own home. Thus it seems that genealogy studies based on genetic
data have the possibility of becoming widely accessible in the near future. Of course,
these studies must be based on consistent genealogical data to be meaningful.

A more philosophical motivation for consistency checking lies in the possibility
of achieving a deeper understanding of the history of different species. A large scale
effort as the Human Genome Diversity Project (see [12]) has an interest in assuring that
the family relationships amongst the genetic data used for their analysis are correct.
In their case, it is important that the individuals that are picked for DNA sampling are
indeed offspring from the original population of a geographical area. Note that it is
not only with respect to humans that the verification of family relationships is relevant.
For instance, it is important that a horse breeder has the ability to document the family
relationships of his/her horses, and that a botanist is certain of the family relationship
of plants used in an experiment. Basically all living organisms are based on DNA, and
can thus be subjected to consistency checking.

Hence, consistency checking is a well motivated problem from both a biological
and a sociological viewpoint. Another issue is whether it is computationally feasible.
The aim of this paper is to show that consistency checking is NP-completeeven if we
focus on genotype information for a single gene, and thus that the existence of consis-
tency checking algorithms that have polynomial worst case complexity is unlikely—cf.,
e.g., the claim by O’Connell and Weeks that their “new genotype-elimination algorithm
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is guaranteed to detect every Mendelian inconsistency efficiently and quickly” [21,
pp. 1739–1740]. To the best of our knowledge, this is a new result in both computer
science and genetics.

After discussing some of the biological background for our work (Sect. 2), we pro-
pose a simple formal model for pedigrees and associated genotype information, argue
that this model is in agreement with the one used in the genetics literature, and use it to
formalize the consistency checking problem with focus on a single gene (Sect. 3). The
consistency checking problem is shown to be NP-complete in Sect. 4, even in the pres-
ence ofthreealleles. Our proof of NP-hardness for this problem is based on a reduction
from 3SAT (a classic NP-complete problem—see, e.g., [23, Propn. 9.2, p. 183]), and
uses pedigrees with loops. As stated in [21, p. 1733], likelihood computations on, and
consistency checking of, pedigrees with loops continue to pose daunting computational
challenges. This is confirmed by the use of looping pedigrees in our NP-completeness
proof, and by the fact that pedigrees without loops can be checked for consistency in
polynomial time (Thm. 2). (Note, however, that the loops that arise in our construc-
tions are of the kind geneticists call “marriage loops” [24], and not loops arising from
inbreeding.) Moreover, since we wish to use our result to infer the hardness of consis-
tency checking in genetically meaningful situations, we offer a discussion of the rea-
sonableness from a genetic viewpoint of our encoding of 3SAT in terms of pedigrees
and genotype information. Sect. 6 presents results on the computational complexity of
three problems from the genetics literature that are closely related to consistency check-
ing. In particular, we show that checking consistency of pedigrees overtwo alleles is
in P (Thm. 4). On the other hand, checking consistency of phase known genotype in-
formation, and deciding whether a pedigree hask critical genotypes (withk ≥ 0) are
both NP-complete (Thms. 3 and 5). The final section of the paper (Sect. 7) is devoted
to some concluding remarks.

Related WorkAs previously mentioned, linkage analysis is a statistical method used to
relate genes in the human genome to some biological trait that an individual possesses.
Like this method, other pedigree analysis techniques involve calculations with proba-
bility distributions describing, e.g., the likelihood of gene transmission from one gener-
ation to the next. The study [24] investigates the structural complexity of two problems
whose solution is part and parcel of many statistical pedigree analysis methods, viz. the
calculation of the so-calledmarginal probability, and that of computing the so-called
maximum likelihood. The decision problems associated with both of these computa-
tional tasks are shown NP-hard inop. cit. even for pedigrees without inbreeding loops,
and with focus on a single gene.

There is a close connection between our NP-completeness result for the consistency
checking problem and the NP-hardness results from [24], but neither set of results im-
plies the other. For instance, a pedigree with genotype information is consistent if, and
only if, the maximum likelihood for that pedigree is positive. The consistency checking
problem can therefore be reduced to an instance of the decision version of the maxi-
mum likelihood problem. However, this does not yield our NP-completeness result as a
corollary. Moreover, we focus on consistency checking, an apparently very basic prob-
lem in genetics, with a purely combinatorial flavour, that does not involve any likelihood
computations.
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It is also interesting to look at similarities and differences in the proofs of the NP-
completeness result for consistency checking we offer here (see Thm. 1), and of Thms. 5
and 9 in [24]. Both sets of results use reductions from 3SAT. The reductions are, how-
ever, very different, and, at first sight, somewhat at odds with one another. In our proof
of Thm. 1, we focus on a single gene with three alleles. The use of three alleles in this
proof of NP-hardness of the consistency checking problem is most likely necessary be-
cause, as stated in Thm. 4, checking consistency of pedigrees overtwo alleles is in P.
The reduction employed in [24] instead uses only two alleles, and the threshold value
on, e.g., the maximum likelihood plays a crucial role in the proofs of the NP-hardness
results offeredibidem. Indeed, the pedigrees over two alleles generated by the reduc-
tions employed there arealwaysconsistent, as would be detected by the algorithm on
which the proof of our Thm. 4 is based.

In an effort to accelerate likelihood calculations, geneticists have proposed geno-
type elimination algorithms. The aim of these algorithms is to identify, and eliminate,
those genotypes that are not consistent with the observed phenotype information in
the pedigree. The first algorithm for genotype elimination was proposed by Lange and
Goradia in [18], where it was shown that the algorithm is correct for genotype elimina-
tion over non-looping pedigrees, but fails to detect all superfluous genotypes for inbred
pedigrees. An algorithm for genotype elimination that is correct also in the presence of
loops in pedigrees has been offered by O’Connell and Weeks in [21].

Genotype elimination algorithms may be used to detect Mendelian inconsistencies
and critical genotypes in pedigrees—see, e.g., the proof of Thm. 2, where we make use
of the aforementioned algorithm by Lange and Goradia to argue that pedigrees without
loops can be checked for consistency in polynomial time. This makes them suitable as
pre-processing steps in algorithms that assume that the input genotype data be consis-
tent. An example of such a use of genotype elimination algorithms is presented in [19],
where the authors propose a rule-based, iterative, heuristic algorithm, theblock ex-
tension algorithm, for the so-calledMinimum-Recombinant Haplotype Configuration
Problem. Although this problem is shown to be NP-hard inop. cit., the encouraging
preliminary experimental results given in that reference seem to indicate that the block
extension algorithm performs rather well in practice under the assumption that its in-
put data are consistent. As we show in this paper, however, checking the consistency
of the input data is itself computationally hard. The reference [19] also offers a poly-
nomial time algorithm for haplotype reconstructionwithout recombination; this algo-
rithm assumes input data with no missing genotypes, whose consistency can be checked
in linear time in the number of non-founders of the input pedigree. (See the proof of
Thm. 1.)

Finally, we remark that bioinformatics seems to be a rich mine of NP-completeness
results. In particular, the literature presents several such results in the field of protein
folding—see, e.g., those obtained independently by Berger and Leighton in [2], and
Crescenziet. al. in [4]. Both these references show that the protein folding problem in
the two-dimensional hydrophobic-hydrophilicmodel is NP-complete by reduction from
the Hamiltonian cycle problem, and contain pointers to related studies.
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2 Biological Preliminaries

It is well understood that we inherit genetic material from our ancestors. The idea of
inheriting traits was discovered by Gregor Mendel (1865). Arguably, Mendel’s main
contribution to modern genetics was the Mendelian laws of inheritance. Since these
principles guide the development of the formal model presented in Sect. 3, we now
present Mendel’s laws, which specify the concept known asMendelian inheritance,
verbatim from [15], and discuss their impact on our work. For further background in-
formation on the concepts from genetics on which our work is based, we refer the reader
to [11, Appendix A].

Unit factors in pairs: Genetic characters are controlled by unit factors that exist in
pairs in individual organisms.
The unit factor, as Mendel describes it, is today known as agene. Genes occur in
pairs, a paternal and a maternal allele, which reside on each of the chromosomes
constituting a chromosome pair. This law implies that the genotype of an individual
should always be considered as a pair.
Dominance/Recessiveness:When two unlike unit factors responsible for a single
character are present in a single individual, one unit factor is dominant over the
other, which is said to be recessive.
Dominance and recessiveness refer to phenotype, and are not considered further in
our biological model. We assume that it is always the individual’s genotype, and
not its phenotype, that is considered known. That is, it is always the specific alleles
we use, and never an abstraction of the trait they code.
Segregation:During the formation of gametes, the paired unit factors separate and
segregate randomly so that each gamete receives one or the other with equal likeli-
hood.
The principle of segregation states that any combination of alleles, which form a
genotype, should be considered equally likely to occur. This means that all possible
combinations of the paternal and maternal alleles are possible.
Independent Assortment:During gamete formation, segregating pairs of unit fac-
tors assort independently of each other.
Independent assortment states that each gene in a chromosome is inherited indepen-
dently of all other genes. Since the rest of this paper focuses on a single locus, this
principle is irrelevant for our developments. It is worth mentioning, however, that,
unlike the previously mentioned principles, independent assortment is no longer
believed to be unconditionally true. In fact, the primary aim of methods like link-
age analysis is to determine whether there arefragmentsof the genome that are
inherited in a pattern that is unlikely to occur purely by chance.

The Mendelian laws of inheritance have been chosen by many researchers in com-
putational genetics as the starting point in their investigations (see, e.g., the refer-
ences [8,21,22]). Furthermore, a large number of traits are today known to be caused
by single gene disorders [13].
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PedigreesIn order to track the inheritance of genetic traits, geneticists use structures
calledpedigrees. In our setting, we shall always assume that a pedigree has some (pos-
sibly incomplete) genotype information associated with it. A pedigree consists of in-
dividuals and their family relations. (See Fig. 1-1 for an example of a pedigree.) Each
individual has an associated genotype, which we write just below the individual, that
consists of two of the alleles for the gene under consideration. A basic relation amongst
individuals is thenuclear family, which consists of two parents and their common off-
spring.

3

21
Legend:

Male individual

Female individual

AB Genotype informationAB

AA

AA

Fig. 1-1: Example of a pedigree.

The genotype of each individual in a pedigree is either known through a genotyping
process, or it is a set of genotypes which can be inferred from the Mendelian laws of
inheritance. As the principle of segregation states, an individual inherits one allele from
each parent.Genotype phaserefers to the heredity of each allele of the genotype for an
individual, that is, whether a given allele is inherited from the paternal or maternal side.
In general, by observing a chromosome pair, it is not possible to say which compo-
nent is inherited paternally or maternally. We have chosen to treat the genotype of each
individual as phase unknown, irrespective of the knowledge of that of its ancestors, un-
less otherwise stated. When describing genotypes, we only write one of the equivalent
genotypes (e.g.,AB is equivalent toBA).

Consistency CheckingA pedigree with associated genotype information isconsistent
when all observed or inferred genotypes are possible according to the Mendelian laws
of inheritance [22].

There can be several reasons for inconsistencies in a pedigree and its genotype in-
formation. For instance, a family relationship could be misspecified, or there could be
errors in the genotyping process or mutation. Generally it is not possible to determine
the source of error; it is simply established that the given genotype information is incon-
sistent with the pedigree under investigation. By way of example, consider the pedigree
shown in Fig. 1-2. (In this pedigree, and in what follows, whenever an individual has
no genotype information attached to it, then no genotype information is available for
him/her.) This pedigree is inconsistent in two places. One of the inconsistencies is due
to the fact that it is impossible that individual 5 could have inherited theC allele from
either of her parents. To observe the other inconsistency, it is necessary to reason about
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more than two generations in the pedigree. The inconsistency appears because individ-
ual 7 cannot have inherited hisC allele from individual 3, because individual 3 inherits
her alleles from parents that do not have aC allele.

3 4 5

21

6

7

CD

DF

ABAA

BCAA

Fig. 1-2: An inconsistent pedigree.

The example we have just presented does not capture the complexities that arise
when dealing with large pedigrees. Each test is simple, but considering that multiple
individuals can have different possible genotypes, and that the possible genotypes of
some individuals must be inferred by analyzing several generations, it should be clear
that it can be a daunting task to analyze pedigrees by hand. As pointed out in Sect. 1,
geneticists maintain that looping pedigrees present some special problems. Aloop in
a pedigree is a sequence of arcs that starts and ends in the same individual [21]. (See
Def. 2 for a formal definition.) An example of a consistent, looping pedigree is de-
picted in Fig. 1-3. We invite the reader to find suitable genotypes for the ungenotyped
individuals in it.

3 Formalizing Gene Inheritance and Mendelian Consistency

As already mentioned in Sect. 2, a pedigree is a fundamental structure used in genetics.
In order to reason about pedigrees and the genotype information that they contain, we
need a formal model for them. Several formalizations of the notion of pedigree have
been presented in the literature on computational genetics. (See, e.g., [19,24].) We now
proceed to present the models for pedigrees and their associated genotype information
adopted in this study, and then use these models to formalize the consistency checking
problem.

Definition 1 (Pedigree).A pedigreeconsists of a 4-tupleP = 〈V, F,p,m〉 where:

– V is a finite, non-empty set ofmembersof the pedigree (ranged over byu, v),
– F ⊆ V is the set offounders,
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AA BC

AC AC

AA

AA BC

AA AA

AC AB

1 2 3 4

65 8

21201918

7

BC

9

141211 13 16 1715

10

Fig. 1-3: A consistent looping pedigree. The dotted line also represents a
parents-child relationship.

– p,m : V \ F −→ V are thepaternalandmaternal functions, respectively, where

p(V \ F ) ∩m(V \ F ) = ∅

(that is, nobody can be both a mother and a father), and
– the transitive closure of the binary relation obtained as the union of the graphs of

p andm is irreflexive (that is, a member of the pedigree is never its own ancestor).

The setN = V \ F is usually referred to as the set ofnon-foundersof the pedigree.

Remark 1.Note that the set of founders in a pedigree is always non-empty.

Note that, since the model specifies the sex of an individual only implicitly via the
paternal and maternal functions, the sex of a “leaf” in a pedigree (i.e., of an individ-
ual without offspring) is not specified. In our examples and constructions, the sex of
individuals in a pedigree without offspring will be chosen arbitrarily, as it is immate-
rial in consistency checking. Our pictorial representation of pedigrees (with associated
genotype information) is borrowed from the genetics literature, and has already been
introduced in Fig. 1-1. That figure represents a pedigree, consisting of a single nuclear
family, whose founders are individuals 1 and 2, who are respectively the father and the
mother of individual 3.

For the sake of precision, we now offer a formal definition of loop in a pedigree.
The following definition is based on that in [21].
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Definition 2 (Looping Pedigree).Let P = 〈V, F,p,m〉 be a pedigree. Two distinct
membersu andv of the pedigree are said tomateif they have an offspring in common—
that is, if there is a non-founderv′ of P such that{p(v′),m(v′)} = {u, v}. Such av′

is achild of u andv.
Themating graphassociated withP is the undirected graphGP whose set of nodes

includesV , and containsmating nodesMu,v for every pair(u, v) of members ofP that
mate. The edges in such a graph are those that connect membersu and v that mate
to the mating nodeMu,v, and those that connect such a mating node to the common
children ofu andv.

A loop in GP is a non-empty path consisting ofdistinctedges that starts and ends
in the same node.

Finally, we say that a pedigreeP is looping(or has a loop) if its associated mating
graphGP contains a loop.

8 109

7654

321

M1,2 M2,3

M6,7M5,6M4,5

Fig. 1-4: A pedigree illustrated as done throughout this paper, and its associated
mating graph as defined in Def. 2. The black dots are the mating nodes
and the grey dots are “person nodes”.

An example of a looping pedigree is given in Fig. 1-4, together with its associated
mating graph. One of the loops in that pedigree is due to inbreeding, and arises because
individuals4 and5 mate, and have a common ancestor. Another is a so-called marriage
loop, and stems from the matings between individual6 and the two brothers5 and7.

Consistency checking of a pedigree is based on its associated genotype information;
intuitively, the pedigree defines the structure of the family relationships that are being
modelled, and the genotype information is the data which must be consistent with the
structure. We now present a formal genotype model. In what follows, it is always as-
sumed that instances of this genotype model are in the context of a specific gene and
pedigree. We also assume a fixed, finite and non-empty setA of allelesranged over by
A, B, etc.

In what follows,Two(A) denotes the family of non-empty subsets ofA that contain
no more than two alleles. As described below, an element ofTwo(A) will be used to
represent a genotype over the set of allelesA.
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Definition 3 (Genotype Information). Let P = 〈V, F,p,m〉 be a pedigree. Ageno-
type informationfor P is a partial functionG : V ↪→ Two(A) that associates a geno-
type to (some of) the members of the pedigree. The domain,dom(G), of the function is
referred to as theset of genotyped membersof the pedigree. The genotype information
G is completeif dom(G) = V .

LetG andG′ be two genotype information. We say thatG′ extendsG if dom(G) is
included indom(G′), andG andG′ coincide overdom(G).

Remark 2.In the above definition, a genotype information may be seen as assigning
an unorderedpair of alleles to members of the pedigree. This indicates that the phase
of the alleles is unknown. If a pedigree member ishomozygousat a given locus in its
genome, i.e., the two alleles at that locus coincide, the functionG returns a singleton
set.

In the literature on genetics, and in our pictorial representation of pedigrees, the
genotype{A,B} is given as the stringAB (orBA). In particular, the genotype{A} is
given asAA. In the remainder of this paper, we shall use these notations interchange-
ably without further explanations.

Considering consistency for a specific gene amounts to checking whether the pedigree
and the genotype information are consistent according to the Mendelian law of segre-
gation (see page 5). The law of segregation implicitly defines the following constraint
on consistent genotype assignments:

Each individual must inherit precisely one allele from each of its parents.

Our order of business will now be to formalize this constraint, and what it means that a
genotype information is consistent with respect to a pedigree.

Definition 4 (Consistent Genotype Information).Let P = 〈V, F,p,m〉 be a pedi-
gree.

1. A complete genotype informationG for P is consistentwith P if, wheneverv ∈ N :
(a) if G(v) = {A,B}, then eitherA∈ G(p(v)) andB∈ G(m(v)), or B∈ G(p(v))

andA∈ G(m(v));
(b) if G(v) = {A}, thenA is contained in bothG(p(v)) andG(m(v)).

2. A genotype information forP is consistentwith P if it can be extended to a com-
plete, consistent genotype information forP .

A genotypeG(v) for a non-founder in a pedigree that satisfies the conditions of Def. 4(1)
is often referred to as apossible zygotefor the genotype pair{G(p(v)),G(m(v))}—
see, e.g., [18, p. 252].

4 Consistency Checking is NP-complete

In what follows, CONS will denote the consistency checking problem for genes with an
arbitrary number of alleles. We shall usenCONS to refer to the consistency checking
problem for a gene withn possible alleles, for some positive integern. Our aim in the
remainder of this section will be to show the following result:

10



Theorem 1. The problemsnCONS (n ≥ 3) and CONS are NP-complete.

Remark 3.The proviso in the statement of the above theorem that the number of alleles
n be larger than, or equal to, three is most likely necessary. In fact, in the presence of a
single allele, there is only one complete genotype information, viz. that which assigns
the only allele to each member of the pedigree, and that is consistent. Hence, in that
case, each genotype information is consistent with respect to every pedigree. Moreover,
as will be shown in Thm. 4, the problem2CONS is decidable in polynomial time.

To prove Thm. 1, we shall first show that CONS, and thusnCONS for everyn, is in
NP. We then show that 3CONS, and therefore CONS andnCONS for everyn ≥ 3, is
NP-hard.

It is not too hard to see that CONS is in NP. To this end, given any pedigreeP
with genotype informationG, it is sufficient to exhibit a certificate that is verifiable in
polynomial time. The certificate for an instance of problem CONS is a complete and
consistent genotype informationGc that extendsG in the sense of Def. 3. To check
the consistency ofGc we only have to make sure that the conditions in Def. 4(1) are
satisfied for each non-founder of the pedigree. This only takes constant time for each
non-founder, and thus the whole consistency check takes linear time in the number of
non-founders of the pedigree. Note that the complexity of this consistency check is
independent of the number of possible alleles, which shows thatnCONS is in NP for
everyn.

Our order of business will now be to show that 3CONS, and thus CONS, is NP-
hard. Note that this is a strong indication that the structural complexity of consistency
checking doesnotdepend on the number of alleles for a gene, if that number is at least
three. We shall stress the importance of this constant number of alleles from a genetic
viewpoint later in this section. Our NP-hardness proof for 3CONS is by reduction from
3SAT. The central idea of the proof is to build a pedigree with associated genotype
information from a 3SAT instance in such a way that the structure of the pedigree to-
gether with the genotype information mimic the variables and clauses of the input 3SAT
instance as closely as possible. The constructed pedigree with genotype information is
consistent if, and only if, the 3SAT instance it models is satisfiable.

We recall, for the sake of clarity, that 3SAT is the special case of the satisfiability
problem for boolean formulae in which the input formulae are inconjunctive normal
form, and all of their clauses (i.e., disjunctions of literals) have exactly three literals—
where a literal is either a variable or a negated variable. Our aim, in the remainder of this
section, is to offer a polynomial time reduction from 3SAT to 3CONS. In fact, it is not
too hard to see that, without loss of generality, we can restrict ourselves to considering
boolean formulae in conjunctive normal form whose clauses have the formx ∨ y, x ∨ y,
x ∨ y ∨ z, or x ∨ y ∨ z, for some distinct variablesx, y, z. Indeed, any 3SAT instance
can be brought into that form in the following four steps:

1. Remove all clauses containing complementary literals (as they evaluate to true). If
all clauses are removed in this step, then the original formula is satisfiable.

2. Replace multiple occurrences of the same literal within a single clause with a single
occurrence of the same literal (asl ∨ l = l, for every literall).

3. If a clause consists of a single literal, then
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(a) remove all clauses that contain this literal (as it must be assigned the value true)
and

(b) remove all occurrences of its negation in other clauses (as they have to be
assigned the value false).

If all clauses are removed in step 3a above, then the original formula is satisfiable.
If some clause reduces to the empty clause in step 3b, then we know that there is
no assignment that can satisfy the clause, and the formula is not satisfiable.

4. Finally, we put every clause in the formula into one of the formsx ∨ y, x ∨ y,
x ∨ y ∨ z, or x ∨ y ∨ z, for some distinct variablesx, y, z. This can be done by
introducing dummy variables. For instance, a clause of the formx∨y∨z is replaced
with (x∨ p)∧ (y ∨ z ∨ p), for some fresh variablep. (We use a different variablep
for each clause.) The complete set of reduction rules used in this step may be found
in Table 1-1.

2 literals 3 literals
0 negationsx ∨ y (no reduction) x ∨ y ∨ z (no reduction)
1 negation x ∨ y → (x ∨ p) ∧ (y ∨ p) x ∨ y ∨ z → (x ∨ p) ∧ (y ∨ z ∨ p)

2 negationsx ∨ y (no reduction) x ∨ y ∨ z → (x ∨ y ∨ p) ∧ (z ∨ p)

3 negations x ∨ y ∨ z (no reduction)

Table 1-1: The rules for step 4 in the transformation of 3SAT instances.
We pick a fresh variable p for each clause to be reduced.

It is clear that any instance of 3SAT can be rewritten to the form described above in
polynomial time, and that the resulting formula is satisfiable if, and only if, so was the
original one.

We are now ready to present our reduction from 3SAT to 3CONS. Letφ be an
instance of 3SAT. In light of the above discussion, we may assume thatφ is in conjunc-
tive normal form, and that its clauses have one of the formsx ∨ y, x ∨ y, x ∨ y ∨ z,
or x ∨ y ∨ z, for some distinct variablesx, y, z. Furthermore, we assume a fixed total
ordering on the variables, and that the variables always appear in clauses in an order
that is compatible with it. The construction of a pedigreePφ with associated genotype
informationGφ from a formulaφ proceeds in the following three steps:

1. Make variable gadgets for each of the variables inφ.
2. Make clause gadgets for each of the clauses inφ.
3. Combine the variable gadgets with the clause gadgets, and output the resulting

pedigree.

In the construction outlined below, the genotype informationGφ will be explicitly de-
scribed in stepwise fashion as we show howPφ is built.

We start by describing the construction of the variable gadgets. In our construction,
we shall make use of three alleles, denoted byA, F andT. The allelesT andF are
intended to play the role of “true” (denoted byT ) and “false” (denoted byF ) in the
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3SAT problem. The third alleleA is an auxiliary dummy allele used for controlling
possible inheritance patterns.

For each variablex that occurs inφ we construct the pedigreePx thus:

Px = 〈Vx, Fx,px,mx〉 ,

where

Vx = {fx, mx, vx, sx}
Fx = {fx, mx, sx}

px(vx) = fx and

mx(vx) = mx .

The genotype informationGφ assigns genotypeAA to bothmx (themotherof vx) and
sx (thespouseof vx), and genotypeTF to fx (thefatherof vx). The genotyped pedigree
Px is depicted in Fig. 1-5.

The pedigreePx consists of three genotyped members, and one ungenotyped indi-
vidualvx. The genotype ofvx can, however, be partly inferred by the Mendelian laws,
and has the formxA, where the “allelic variable”x takes either the valueF or T. This
is indicated byxA on the figure. Moreover, the allelex associated with the individ-
ual vx is the only possible origin of aT or F allele that can be inherited further from
the inheritance point ofPx. We shall refer to individualvx in Fig. 1-5, as thevariable
individual for x. The illustration on the left ofPx in Fig. 1-5 shows how the variable
gadgets are depicted in larger pedigrees.

Inheritance
Point

TF AA

xAAA

vx

vx

Fig. 1-5: The variable gadgetPx that is used in the proof showing that 3CONS
is NP-complete.

The next step in the reduction is to construct a clause gadgetPγ , for each clauseγ
in the formulaφ. As we have already pointed out, there are only four different types
of clauses we need to consider, and each leads to a different type of clause gadget.
The clause gadgets for clausesγ of the formx ∨ y andx ∨ y (respectively,x ∨ y ∨ z
andx ∨ y ∨ z) have the same pedigree structurePγ , but the genotype informationGφ
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assigns a different genotype to the one individual inPγ without offspring. In each pedi-
greePγ , we shall usecγ to denote this single “leaf”, andfγ andmγ to stand for its
father and mother, respectively. If the clauseγ contains three literals, the pedigreePγ

also contains individualsgf γ andgmγ , who are, respectively, the maternal grandfather
and grandmother ofcγ . The paternal and maternal functionspγ andmγ encode the
family structure that we have just described—that is:

pγ(u) =

{
fγ if u = cγ

gf γ if u = mγ andγ contains three literals

mγ(u) =

{
mγ if u = cγ

gmγ if u = mγ andγ contains three literals.

In what follows, we shall writeVγ for the set of individuals of the pedigreePγ .
The only new genotyped individual inPγ is its leafcγ . The genotypeGφ(cγ) is TA

if γ contains only positive literals, andFA otherwise.
The four different types of clause gadgets are depicted in Fig. 1-6, where we also

show how the clause gadgets will be linked to the variable gadgets in the construction of
the pedigreePφ. The genotype information associated with the leaves of these pedigrees
is used to code constraints on the values of the variables in a satisfying assignment for
the original clauses. For instance, the leaves of the pedigrees associated with the clauses
containing only positive literals have genotypeTA to represent the fact that one of
the variables in that clause must be assigned the truth value true in every satisfying
assignment.

Having constructed a variable gadget for each variable and a clause gadget for each
clause occurring inφ, we combine these gadgets, and output the resulting pedigreePφ.
The pedigreePφ = 〈Vφ, Fφ,pφ,mφ〉 is built thus:

– the setVφ of members ofPφ is the union of theVx’s (with x a variable occurring
in φ) and of theVγ ’s (with γ a clause ofφ);

– the setFφ of founders ofPφ is the union of theFx’s (with x a variable occurring in
φ);

– the functionspφ : Vφ\Fφ → Vφ andmφ : Vφ\Fφ → Vφ are obtained by extending
the paternal and maternal functions for the pedigreesPx andPγ thus:

pφ(u) =




sx if u = fγ , and the first variable ofγ is x

sy if u = mγ , andγ = x ∨ y for some variablex

sy if u = gf γ , andγ = x ∨ y ∨ z for some variablesx, z

sz if u = gmγ , andγ = x ∨ y ∨ z for some variablesx, y

mφ(u) =




vx if u = fγ , and the first variable ofγ is x

vy if u = mγ , andγ = x ∨ y for some variablex

vy if u = gf γ , andγ = x ∨ y ∨ z for some variablesx, z

vz if u = gmγ , andγ = x ∨ y ∨ z for some variablesx, y.

The pedigreePφ is depicted in Fig. 1-7.
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Px∨y:

Px∨y:

Px∨y∨z:

Px∨y∨z:

TA

TA

FA

FA

nx ny

nx ny

nx ny nz

nx ny nz

Fig. 1-6: The pedigrees constructed for the four basic clause types along with
their connections with the appropriate variable gadgets. Notice the
symmetry betweenPx∨y andPx∨y, andPx∨y∨z andPx∨y∨z, respec-
tively.
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Variable gadget for
the first variable in
the formula

the formula

Clause gadget for
the first clause in

Clause
level

Variable
level

Variable gadget for
the last variable in
the formula

the formula

Clause gadget for
the last clause in

γmγ2γ1

vx1 vx2 vx3 vx4 vxn

Parents-child
relationship

Fig. 1-7: The general form of the pedigree constructed in the reduction from
3SAT. Notice that there exists a one to one correspondence between
the number of variables and clauses inφ, and the number of variable
gadgets and clause gadgets, respectively, in the constructed pedigree.

Example 1.Let φ be the formula

(x ∨ u) ∧ (y ∨ u) ∧ (x ∨ y) ∧ (x ∨ y) . (1-1)

The pedigree produced from this formula by the construction described above is de-
picted in Fig. 1-8.

The following result states the correctness of our construction ofPφ from a 3SAT for-
mulaφ.

Proposition 1. A 3SAT formulaφ is satisfiable if, and only if, the genotype information
Gφ is consistent withPφ.

Proof. Throughout the proof, for a boolean formulaφ and an assignmentρ of truth
values to its variables, we useρ(φ) to stand for the allele corresponding to the truth
valueρ(φ)—that is,

ρ(φ) =

{
T if ρ(φ) = T

F if ρ(φ) = F .

We are now ready to prove the two implications separately.

– ‘ONLY IF’ I MPLICATION. Let ρ be an assignment of truth values to the variables
occurring inφ. We define the canonical extensionGρ

φ associated withρ of the geno-
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TA

(x ∨ y)

vu vx vy

(x ∨ y)

FATA FA

(x ∨ u) (y ∨ u)

Fig. 1-8: The pedigree for the formula (1-1). Note that formula (1-1) is satisfi-
able, and that the above pedigree is consistent.

type informationGφ thus:

Gρ
φ(u) =




Gφ(u) if u ∈ dom(Gφ)
ρ(x)A if u = vx for some variablex

ρ(x)A if u = fγ for some clauseγ whose first literal isx or x

ρ(y)A if u = mγ , whereγ = x ∨ y or γ = x ∨ y for somex

ρ(y)A if u = gf γ , whereγ = x ∨ y ∨ z or γ = x ∨ y ∨ z

for some variablesx, z

ρ(z)A if u = gmγ , whereγ = x ∨ y ∨ z or γ = x ∨ y ∨ z

for some variablesx, y

ρ(y ∨ z)A if u = mγ whereγ = x ∨ y ∨ z for some variablex

ρ(y ∧ z)A if u = mγ whereγ = x ∨ y ∨ z for some variablex.

Note that the genotype information defined above is complete for the pedigreePφ,
and extendsGφ.
We now proceed to prove that ifρ(φ) = T , thenGρ

φ is consistent withPφ. Assume,
to this end, thatρ(φ) = T . Thenρ(γ) = T for each clauseγ of φ. In particular, for
each clause ofφ containing only positive (respectively, negative) literals there is a
variable that occurs in it that is set toT (respectively,F ) by ρ. To show thatGρ

φ is
consistent withPφ we consider each non-founderu in Pφ, and argue thatGρ

φ(u) is
a possible zygote of the genotypes assigned to its parents byGρ

φ. Below, we only
present the details for three selected cases. The remaining ones are similar, and we
leave the details to the reader.
• CASEu = vx, FOR SOME VARIABLEx OCCURRING INφ. In this caseGρ

φ(u) =
ρ(x)A is one of the possible zygotes ofTF andAA, that are the genotypes
of u’s parents, no matter whatρ(x) is.

• CASE u = mγ , FOR SOME CLAUSEγ OF φ THAT CONTAINS THREE LIT-
ERALS. Assume that the variablesy andz occur in the second and the third
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literal in γ, respectively. By the definition ofGρ
φ, the parents ofu have geno-

typeρ(y)A andρ(z)A. It is a simple matter to see that bothρ(y ∨ z)A and
ρ(y ∧ z)A are possible zygotes ofρ(y)A andρ(z)A.

• CASE u = cγ , FOR SOME CLAUSEγ OF φ CONTAINING THREE POSITIVE

LITERALS. Sinceγ contains only positive literals, sayγ = x ∨ y ∨ z, then
Gρ

φ(cγ) = TA. As ρ(γ) = T , we have that eitherρ(x) = T or ρ(y ∨ z) = T .
By the definition ofGρ

φ, it follows that eitherGρ
φ(fγ) = TA orGρ

φ(mγ) = TA.
Since the individualcγ can inherit theA allele from either of its parents, we
infer thatGρ

φ(cγ) is a possible zygote ofGρ
φ(fγ) andGρ

φ(mγ), which was to be
shown.

– ‘I F’ I MPLICATION. Assume that the genotype informationGφ is consistent with
Pφ. This means that there is a complete, consistent genotype informationGc

φ for Pφ

that extendsGφ. We shall show how to construct from it a satisfying assignmentρ
for φ.
Note, first of all, that, because of the wayGφ is defined over variable gadgets,Gc

φ

must assign eitherTA orFA to each variable individualvx. Hence the genotype in-
formationGc

φ determines an assignmentρ of truth values to the variables occurring
in φ as follows:

ρ(x) =

{
T if Gc

φ(vx) = TA
F if Gc

φ(vx) = FA.

We now argue that thisρ is indeed a satisfying assignment forφ. To this end, it is
sufficient to show thatρ satisfies each of the clauses ofφ. This we now proceed to
prove by considering each of the possible forms a clauseγ of φ may take.
• CASE γ = x ∨ y. SinceGc

φ is consistent withPφ, we have thatGc
φ(fγ) is

contained in{ρ(x)A,AA}, and thatGc
φ(mγ) is contained in{ρ(y)A,AA}.

Moreover, asGc
φ(cγ) is TA, eitherGc

φ(fγ) or Gc
φ(mγ) must be equal toTA.

Because of the wayPφ is built, this can only happen if eitherGc
φ(vx) = TA or

Gc
φ(vy) = TA. This yields thatρ(x ∨ y) = T , which was to be shown.

• CASE γ = x ∨ y ∨ z. SinceGc
φ is consistent withPφ, we have that:

1. Gc
φ(fγ) is contained in{ρ(x)A,AA},

2. Gc
φ(gf γ) is contained in{ρ(y)A,AA},

3. Gc
φ(gmγ) is contained in{ρ(z)A,AA},

4. Gc
φ(mγ) is contained in{ρ(y)A, ρ(z)A, ρ(y)ρ(z),AA}, and

5. eitherGc
φ(fγ) = FA or Gc

φ(mγ) is contained in{FA,FF,FT}.
If Gc

φ(fγ) = FA holds, then, by item 1 above and the wayPφ was built, it
follows thatGc

φ(vx) = FA. Hence, by the definition ofρ, we have thatρ(x) =
F . We may therefore conclude thatρ satisfiesγ.
If Gc

φ(mγ) is contained in{FA,FF,FT}, then eitherGc
φ(gf γ) or Gc

φ(gmγ)
equalsFA. Again, we have that eitherGc

φ(vy) = FA orGc
φ(vz) = FA. Hence,

by the definition ofρ, it follows that eitherρ(y) or ρ(z) equalsF . We may
therefore conclude thatρ satisfiesγ.

The proofs for the other two cases follow similar lines, and are therefore omitted.

This completes the proof of the proposition. �
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Since the pedigreePφ can be constructed in polynomial time from the formulaφ, the
proposition above allows us to conclude that 3CONS is NP-hard, and the proof of
Thm. 1 is now complete.

4.1 Discussion

The reference [11] offers, amongst other things, an alternative reduction from 3SAT to
CONS that uses a number of alleles that is linear in the number of variables in the input
3SAT instance. This reduction, albeit possibly conceptually simpler than the one pre-
sented here, is not reasonable from a genetic standpoint because the maximum number
of alleles that can be expected for a gene is roughly 100 [14]. Furthermore, although
inbreeding does occur often in the animal kingdom, it would still be critical from a
genetic perspective if our modelling of 3SAT using pedigrees were based on severe in-
breeding, and we have striven to avoid this problem in our constructions. (The loops
that arise in the pedigrees resulting from our reductions are calledmarriage loopsin
the pedigree literature—see, e.g., [24]—, and are natural in real life pedigrees.) The
question is whether our other modelling assumptions are fair in light of the biological
knowledge on consistency checking, e.g., the amount and form of genotype information
in the real world. We now discuss these aspects by analyzing the pedigree structure and
the genotyped individuals produced by the reduction outlined above.

Number of OffspringThe points were a large number of children from a single cou-
ple can occur in our construction are the inheritance points of the variable individuals.
Every occurrence of the same variable implies that a child is constructed from the inher-
itance point. Theoretically, the reduction requires an arbitrary number of children from
a single couple. Although it can be argued from a complexity theoretic perspective that
it is equally complex to check for the satisfiability of formulae in conjunctive normal
form where at most three occurrences of a single variable are allowed (see, e.g., [23,
Propn. 9.3]), and thus that three children per couple are enough to reduce 3SAT to
3CONS, it is also possible to argue strongly on the subject from a biological viewpoint.
Two arguments can be brought forth, the first regarding an expansion of the structure,
and the second regarding the gender of the variable individuals. First, we have argued
in [11] that it is possible to model a variable gadget in such a way that no more than
fifteen children are needed in the reduction. Second, it is theoretically possible for male
individuals to have a large number of children, but with different women (the women
still have an upper bound on the number of offspring). This naturally requires that the
variable individuals be males.

Genotype HistoryThe aforementioned reduction from 3SAT to 3CONS requires geno-
type information five generations back. In the case of species with a lifespan of up to
five years this seems a reasonable assumption. But for humans and animals with a long
lifespan, it is doubtful whether such data exist. Although it can be argued that it is just
a matter of time before such genotype history does exist for humans, we have shown
in [11] that it is possible to perform a reduction where there is only genotype informa-
tion for the individuals in the youngest generation of a pedigree, at the price of using a
larger number of dummy alleles.
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5 The Complexity of Consistency Checking Non-looping Pedigrees

As already remarked in Sect. 1, our reduction from 3SAT to 3CONS employs looping
pedigrees. The following result, which seems to be folklore in the literature on compu-
tational genetics, offers strong evidence that this is most likely necessary.

Theorem 2. Checking the consistency of non-looping pedigrees can be performed in
polynomial time.

Our order of business will now be to prove the above theorem. In our proof, we shall
make use of the algorithm for genotype elimination proposed by Lange and Goradia
in [18]. Since we shall present a complexity analysis of that algorithm in what follows,
we offer a slight adaptation of the algorithm fromop. cit. in Table 1-2. (The only dif-
ference between the version of the algorithm presented in Table 1-2, and that from [18,
pp. 251–252] is that, in step A, for each pedigree member we list all of the genotypes
compatible with the genotype assignmentG, rather than those compatible with his/her
phenotype.)

INPUT: A pedigreeP = 〈V, F,p,m〉 with a genotype informationG for it.
OUTPUT: A mappingG′ : V → 2Two(A) such that:
• G′(v) is either empty or equals{G(v)}, for everyv ∈ dom(G), and
• for everyv ∈ V , it holds thatg ∈ G′(v) if, and only if,Gc(v) = g for some complete

and consistent genotype informationGc that extendsG.
LANGE-GORADIA ALGORITHM: On inputP with associated genotype informationG pro-
ceed as follows:

A. For each pedigree memberv, setG′(v) to {G(v)}, if v ∈ dom(G), and toTwo(A),
otherwise.
B. For each nuclear family:

1. Consider each mother-father genotype pair.
(a) Determine which zygote genotypes can result (according to the rules in

Def. 4(1)).
(b) If each child in the nuclear family has one or more of these zygote genotypes

among his current list of genotypes, then save the parental genotypes. Also
save any child genotype matching one of the created zygote genotypes.

(c) If any child has none of these zygote genotypes among his current list of
genotypes—i.e., is incompatible with the current parental pair of genotypes—
take no action to save any genotypes.

2. For each personv in the nuclear family, exclude fromG′(v) any genotypes not
saved during step 1 above.

C. Repeat step B until no more genotypes can be excluded.

Table 1-2: The Lange-Goradia Genotype Elimination Algorithm.

The correctness of the algorithm for non-looping pedigrees has been shown in [18,
pp. 254–255]. The proof relies upon the observation that two nuclear families in a non-
looping pedigree that share some individual haveexactlyone member in common.
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In light of the following result, the Lange-Goradia algorithm for genotype elimina-
tion can be used to decide the consistency of a non-looping pedigree with associated
genotype information.

Lemma 1. Assume thatP is a non-looping pedigree with associated genotype infor-
mationG. ThenG is consistent forP if, and only if, the setG′(v) returned by the Lange-
Goradia algorithm on input(P,G) is non-empty for every memberv of P .

Proof. Suppose thatG is consistent forP . This means that there is a complete, con-
sistent genotype informationGc for P that extendsG. By the post-condition of the
Lange-Goradia algorithm, the genotypeGc(v) is contained inG′(v) for every member
v of P . It follows thatG′(v) is non-empty for every memberv of P , which was to be
shown.

Conversely, assume that the setG′(v) returned by the Lange-Goradia algorithm
on input (P,G) is non-empty for every memberv of P . Lange and Goradia show
in [18, pp. 254–255] how to build a complete, consistent genotype informationGc such
that Gc(v) is contained inG′(v) for every memberv of P . By the post-condition of
the Lange-Goradia algorithm,G′(v) is either empty or equals{G(v)}, for everyv ∈
dom(G). By our assumption, we have thatG′(v) equals{G(v)}, for everyv ∈ dom(G).
It follows that the constructed genotype informationGc extendsG, completing the
proof. �

To finish the proof of Thm. 2, it is therefore sufficient to argue that the Lange-Goradia
algorithm has polynomial worst-case complexity. (Apparently, no such complexity anal-
ysis is available in the genetics literature [17].) To this end, let us assume that the input
pedigree consists ofn members, and thatm of them are founders. We shall prove that
the worst-case time complexity of the Lange-Goradia algorithm is polynomial inn and
m. (In fact, the algorithm is also polynomial in the cardinality of the allelic alphabetA,
but the precise upper bound depends on the data structures used to implement the list
of sets of genotypes associated with the pedigree.)

To this end, in light of step B of the algorithm, we begin by providing an upper
bound on the number of nuclear families that may exist in a pedigree withn members
andm founders. Such an upper bound on the number of nuclear families isn−m. This
follows because every non-founder in the pedigree can appear as a child inexactly one
nuclear family.

Remark 4.Then − m upper bound on the number of nuclear families can actually be
achieved, as witnessed by the pedigree

Pm = 〈{1, . . . , 2m − 1}, {1, m + 1, . . . , 2m − 1},p,m〉 , (1-2)

wherem > 0, andp(i) = i − 1 andm(i) = m + i − 1, for everyi ∈ {2, . . . , m}.
This pedigree, that is depicted in Fig. 1-9, hasm male members (one of whom is a

founder),m−1 female members (all of whom are founders) andm−1 nuclear families.

We are now in a position to offer an upper bound on the worst-case complexity of
the Lange-Goradia algorithm. Step A in the algorithm can be performed in timeO(n).
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Fig. 1-9: The pedigreePm.

Step B involves a loop that goes through all of the nuclear families in the pedigree. We
saw above that there are at mostn − m nuclear families to consider. For each nuclear
family, step 1a takes constant time, whereas steps 1b and 1c can be performed in linear
time in the number of children in the nuclear family under consideration. Since every
non-founder of the pedigree appears as child in exactly one nuclear family, it follows
that step B can be performed in timeO(n−m). Since step B can be performed at most
k2+k

2 · n times, wherek is the size of the allelic alphabet, we can therefore conclude
that the Lange-Goradia algorithm runs in timeO(n(n− m)). This completes the proof
of Thm. 2.

6 Further Results

In this section we discuss briefly three new problems related to CONS motivated by the
underlying biology, and study their computational complexity.

6.1 Tolerance to Critical Genotypes

A critical genotypeis genotype information on an individual that, if removed, would
make an inconsistent pedigree with genotype information consistent. Assume that it is
revealed that some application of pedigrees with genotype information is tolerant to a
specific number, sayk, of critical genotypes in the genotype information. We denote
the problem of deciding whether there arek critical genotypes in a CONS instance
as kCRIT. For example, the inconsistent pedigree depicted in Fig. 1-2 is in 1CRIT
because removal of genotype information from individual 1 or 2 results in a consistently
genotyped pedigree. Note that0CRIT is just the CONS problem. We shall now show
that:

Theorem 3. In the presence of at least three alleles,kCRIT is NP-complete for every
k ≥ 0.

Proof. Observe, first of all, thatkCRIT is in NP for everyk ≥ 0. This follows because
one can construct a nondeterministic Turing machine that, given a pedigreeP , genotype
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informationG for P , and a non-negative integerk, first guessesk genotype assignments
to be removed fromG, then guesses a complete extensionG′ of the resulting genotype
information, and finally proceeds to check, in time that is linear in the number of non-
founders inP , if G′ is consistent forP .

To complete the proof, it therefore suffices only to show that 3CONS can be reduced
to kCRIT in polynomial time, for everyk ≥ 0. This is immediate ifk = 0 because, as
remarked earlier,0CRIT is just the CONS problem.

������

������

AA

AA

BB

BB

2k

4k − 1

2

1 2k + 1

2k + 2

2k − 1

Fig. 1-10: The pedigreeP2k.

Assume now thatk is positive, and thatA andB are distinct alleles. Consider a
pedigreeP with associated genotype informationG. Build an instance ofkCRIT by
taking the disjoint union of the pedigreesP andP2k (see, equation 1-2 in Remark 4 for
the definition ofP2k), and extending the genotype informationG to P2k by assigning
genotypeAA to all of the male individualsi in P2k with i odd, and genotypeBB to all
of the male individualsi in P2k with i even. (For the sake of clarity, Fig. 1-10 depicts
the resulting pedigree with genotype information. Note that this genotype assignment
for P2k is inconsistent.)

We claim that genotype informationG is consistent forP if, and only if, the pedi-
gree and associated genotype information resulting from the above construction havek
critical genotypes.

Indeed, ifG is consistent forP , then the genotype information obtained by remov-
ing the genotypeAA from k members ofP2k is consistent for the disjoint union of
the pedigreesP andP2k. Conversely, assume that the pedigree and associated geno-
type information resulting from the above construction havek critical genotypes. Since
the genotype information forP2k can only be made consistent by removing at leastk
genotypes, we may therefore conclude thatG is consistent forP . �

Remark 5.The polynomial time reduction from 3CONS tokCRIT (k > 0) used in
the above proof produces a “disconnected” pedigree. It is, however, not too too hard to
modify it so that it yields a “connected” pedigree. To this end, consider a pedigreeP
with associated genotype informationG. Assume, without loss of generality, thatP has
a female memberu without offspring. We build a pedigreeP ′ and associated genotype
informationG′ as done in the above proof, but we add a new male founder, called0,
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whose genotype isBB. Individual0 is the father inP ′ of individual1 in P2k, andu is
his mother.

Claim. G is consistent withP if, and only if, (G′, P ′) is contained inkCRIT.

To see that the above claim holds, assume, first of all, thatG is consistent withP .
This means that there is a consistent, complete extensionGc of G over P . Consider
the genotype informationG′′ obtained fromG′ by removing the genotypeAA from
k members ofP2k. This genotype information is consistent forP ′. In fact, assuming
thatGc(u) = CD, say, the complete extension ofG′′ that agrees withGc overP , and
assigns genotypeBB to all of the members ofP2k, apart from1 that has genotypeBC,
is easily checked to be consistent withP ′.

Conversely, assume that(G′, P ′) is contained inkCRIT. As in the proof of Thm. 3,
since the genotype information forP2k can only be made consistent by removing at
leastk genotypes, we may readily conclude thatG is consistent forP .

6.2 Consistency Checking with Two Alleles

According to [26, p. 274],single nucleotide polymorphismsare utilized markers where
two alleles exist. Consistency checking of such data amounts to the problem 2CONS.
A relevant question is whether 2CONS is also NP-complete or whether it is polyno-
mial time decidable. Three is often a “magic number”, when it comes to the structural
complexity of a computational problem. For instance, 3COLORING and 3SAT are NP-
complete, while 2COLORING and 2SAT are polynomial time decidable (see, e.g., [23,
pp. 185 and 198]). The same holds for consistency checking of pedigrees in light of the
following result:

Theorem 4. The problem 2CONS is decidable in polynomial time.

Proof. Let G be a genotype information for a pedigreeP over an allelic alphabetA
of cardinality two, sayA = {A,B}. Assume, for use in our complexity analysis, that
P hasn members andm founders. We present a polynomial time algorithm to check
whetherG is consistent forP .

The algorithm consists of the following three steps:

1. Compute the set of members ofP that must be assigned genotypeAA or BB in
each complete, consistent extension ofG. Report the inconsistency ofG if some
of these members is wrongly genotyped byG. Otherwise, assign the appropriate
genotype to all of the members in these sets.

2. Check whetherP with the resulting genotype information contains a child with
genotypeAA that has a parent with genotypeBB, or a child with genotypeBB
that has a parent with genotypeAA. If such a child is found, then report the incon-
sistency ofG.

3. Check the consistency of each sub-pedigree consisting of a child and its two par-
ents all of whose members are fully genotyped in the extension ofG produced by
step 1 of the algorithm. If any of these sub-pedigrees has inconsistent genotype in-
formation, then report the inconsistency ofG. Otherwise report thatG is consistent
for P .
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We now argue that the above algorithm decides 2CONS, and has polynomial time
worst-case complexity.

The first step in the algorithm amounts to computing the sets MustAA and MustBB,
which are the least sets satisfying the following conditions:

– If v is a member ofP andG(v) = CC, whereC ∈ {A,B}, thenv ∈ MustCC;
and

– If v is a member ofP , andp(v),m(v) are contained in MustCC, whereC ∈
{A,B}, thenv ∈ MustCC.

These sets can be computed in timeO(n2). Moreover, a simple induction on the defini-
tion of the sets MustAA and MustBB shows that:

Claim. If v is contained in MustCC, whereC ∈ {A,B}, then each consistent geno-
type information that extendsG must assign genotypeCC to v.

Thus the algorithm reports genotype inconsistencies correctly in his first step.
Steps 2 and 3 of the algorithm can be carried out in timeO(n − m), and clearly

also report genotype inconsistencies correctly. The overall worst-case running time of
the algorithm is thusO(n2). Its correctness follows from the following:

Claim. Assume that the algorithm presented above reports thatG is consistent forP .
Let G′ be the extension ofG that is generated by step 1 of the algorithm. Then the
complete genotype informationG′c that extendsG′ by assigning genotypeAB to each
member ofP that is not contained in the domain ofG′ is consistent forP .

This claim can be shown by analyzing all the possible forms the genotype information
G′ may take on a sub-pedigree ofP consisting of a child and its two parents—where,
in light of step 3 of the algorithm, we need only consider the case in which at most two
individuals in the sub-pedigree under consideration are in the domain ofG′.

– If none of the individuals under consideration is genotyped byG′, then assigning
genotypeAB to all of them is consistent, and we are done.

– If only one of the individuals under consideration is genotyped byG′, then two
cases can arise:

• exactly one of the parents is genotyped, or
• the child is genotyped.

If the child is genotyped, then its genotype is a possible zygote ofAB andAB, that
are the genotypes assigned to its parents byG′c. Indeed, every member ofTwo(A)
is a possible zygote ofAB andAB.
If one of the parents is genotyped, then observe thatAB, the genotype assigned to
the child byG′c, is a possible zygote ofAB and each member of{AA,BB,AB}.

– If exactly two of the individuals under consideration are genotyped byG′, then, by
symmetry, we can limit ourselves to considering the following two sub-cases:

• the two parents are genotyped byG′, or
• one of the parents and the child are genotyped byG′.

25



If the two parents are genotyped byG′, then we can assume that they are not
homozygous—i.e., that it is not the case that they both have genotypeAA or
genotypeBB—, or else their child would have been genotyped at step 1 of the
algorithm. It is now tedious, but not hard, to check thatAB, the genotype assigned
to the child byG′c, is a possible zygote of each pair of non-homozygous genotypes
over allelesA andB.
If one of the parents and the child are genotyped byG′, then we can assume that it
is not the case that one of them has genotypeAA and the other has genotypeBB,
or else the genotyped pedigree would have been deemed to be inconsistent at step
2 of the algorithm. A tedious, but not hard, case analysis now suffices to check that
the genotype assigned to the child byG′ is a possible zygote ofAB, the genotype
assigned to the ungenotyped parent byG′c, and that of the parent genotyped byG′.

This completes the proof of the claim, and that of the theorem. �

Remark 6.The pedigree depicted in Fig. 1-2, modified so that individual 5 has geno-
typeAA, shows that the algorithm used in the above proof is incorrect in the presence
of more than two alleles. That genotyped pedigree would pass steps 1–3 in the algo-
rithm, but is inconsistent.

In light of Thms. 2 and 4, one can argue that 3CONS is indeed the simplest consistency
checking problem that is still intractable. In fact, restricting our attention to genes over
two alleles or to pedigrees without loops yields algorithmic problems that can be solved
in polynomial time.

6.3 Phase Known Consistency Checking

In this paper, we have considered consistency checking in a phase unknown setting—
that is, when it is not possible, by observing a chromosome pair, to say which compo-
nent is inherited paternally or maternally. We now briefly turn our focus to the task of
consistency checking where the phase of the genotype information is known. The mo-
tivation for this type of investigation is that it is sometimes possible to infer the identity
of the parent from whom some allele originated (and thereby also the origin of the other
allele).

Definition 5. A phase known genotype informationfor a pedigreeP = 〈V, F,p,m〉
is a partial functionGp : V ↪→ A × A. The genotype informationGp is completeif
dom(Gp) = V .

A complete, phase known genotype informationGp for a pedigreeP is consistent
with P if wheneverv ∈ N andGp(v) = (A,B), thenA is one of the components of
Gp(p(v)), andB is one of the components ofGp(m(v)).

A phase known genotype information isconsistentwith P if it can be extended to a
complete and consistent phase known genotype information forP .

As it is common in the genetics literature, in what follows we shall writeA|B for the
ordered pair(A,B).

Let PCONS be the problem of checking the consistency of a pedigree with phase
known genotype information.
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Theorem 5. In the presence of at least four alleles, PCONS is NP-complete.

Proof. Since PCONS is easily seen to be in NP, we need only show that this problem
is NP-hard. To this end, in light of Thm. 1, it is sufficient to argue that every 3CONS
instance can be reduced in polynomial time to a PCONS instance over four alleles that
is consistent if, and only if, so was the original 3CONS instance.

Recall that a CONS instance consists of a pedigreeP = 〈V, F,p,m〉 and a geno-
type informationG for it. We assume, without loss of generality, thatA is a totally
ordered set of three alleles that does not contain the alleleA, and write the members of
sets inTwo(A) in an order that is consistent with the total order. We assume, further-
more, that all “leaves” inP are male individuals. FromP andG, we build a PCONS
instance consisting of a pedigreeP ′ = 〈V ′, F ′,p′,m′〉 and a phase known genotype
informationGp : V ′ ↪→ (A ∪ {A}) × (A ∪ {A}) thus:

1. The setV ′ of members ofP ′ includesV . Moreover, it contains individualsui (with
i ∈ {1, 2, 3, 4}) for everyu ∈ dom(G);

2. F ′, the set of founders ofP ′, is equal toF ∪ {u1, u2 | u ∈ dom(G)};
3. the functionsp′ andm′ are given by:

p′(v) =




p(v) if v ∈ V \ F

u if u is a male individual, andv ∈ {u3, u4}
ui−2 if u is a female individual, andv ∈ {u3, u4}

m′(v) =




m(v) if v ∈ V \ F

u if u is a female individual, andv ∈ {u3, u4}
ui−2 if u is a male individual, andv ∈ {u3, u4}

.

4. The phase known genotype informationGp : V ′ ↪→ (A ∪ {A}) × (A ∪ {A}) is
defined as follows:

Gp(v) =




A|A if v ∈ {u1, u2} for someu ∈ dom(G)
B|A if v = u3 for someu ∈ dom(G), andG(u) = {B,C}
C|A if v = u4 for someu ∈ dom(G), andG(u) = {B,C}
B|B if v ∈ {u3, u4} for someu ∈ dom(G), andG(u) = {B}
undefined otherwise.

The idea underlying the construction presented above is depicted in Fig. 1-11. There
we present the pedigreee transformation applied to a genotyped male individual inP .
Note that, in the PCONS instanceP ′, all of the individuals inV are ungenotyped.
On the other hand, as exemplified in Fig. 1-11, all of the dummy individualsui (i ∈
{1, . . . , 4}) associated with au ∈ dom(G) are genotyped in such a way that the only
consistent phase known genotypes that may be assigned tou in P ′ are ordered pairs
whose components are the alleles inG(u).

We shall now prove thatG is consistent forP if, and only if,Gp is consistent forP ′

in a phase known setting.
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Phase knownPhase unknown

u1 u u2

u3 u4

A|A

B|A C|A

A|A
u

BC

Fig. 1-11: The scheme for reducing a pedigree with genotype information in
a phase unknown setting to a phase known setting. This illustrates
the reduction for a single male individual. The arrow denotes the
reduction, and the dashed lines indicate potential other family rela-
tionships.

Assume, first of all, thatG is consistent forP . Then there is a consistent, complete
genotype informationGc that extendsG. Our order of business is to construct a consis-
tent, complete extensionGp,c of Gp from Gc. This we do by definingGp,c(u) for each
u ∈ V as follows:

– if Gc(u) = {B}, then we setGp,c(u) = B|B;
– if Gc(u) = {B,C} andu ∈ V \ F , then, sinceGc is consistent, we have that,

say,B andC are contained inGc(p(u)) andGc(m(u)), respectively. In that case,
we setGp,c(u) = B|C. To resolve any ambiguity, we use, if necessary, the total
order onA to pick the smallest allele as the paternally inherited one inGp,c(u).
For instance, ifGc assigns genotype{B,C} to u and both of its parents, andB
is smaller thanC with respect to the total order on the allelic alphabet, then we
stipulate thatGp,c(u) = B|C;

– if Gc(u) = {B,C} andu ∈ F , then we arbitrarily setGp,c(u) = B|C.

Note that the genotype assignmentGp,c setsGp,c(u) to eitherB|C or C|B for the
individualu in the phase known pedigree in Fig. 1-11.

We now argue thatGp,c is consistent. To this end, it is sufficient to check the con-
sistency conditions given in Def. 5 for eachu ∈ V \ F . (Note that, for each suchu, it
holds thatp′(u) = p(u) andm′(u) = m(u).) We distinguish two cases, depending on
the formGp,c(u) takes.

– CASE Gp,c(u) = B|B. By the definition ofGp,c, we have thatGc(u) = {B}.
SinceGc is consistent for the pedigreeP , alleleB is contained in bothGc(p(u))
andGc(m(u)). By the definition ofGp,c, it follows thatB is a component of both
Gp,c(p′(u)) andGp,c(m′(u)), which was to be shown.

– CASE Gp,c(u) = B|C. By the definition ofGp,c, we have thatGc(u) = {B,C},
B ∈ Gc(p(u)) andC ∈ Gc(m(u)). By the definition ofGp,c, it follows thatB is
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a component ofGp,c(p′(u)), andC is a component ofGp,c(m′(u)), which was to
be shown.

Conversely, assume thatGp is consistent forP ′. Then there is a consistent, complete
extensionGp,c of Gp overP ′. Because of the wayP ′ andGp were built, the restriction
of the genotype assignmentGp,c to V agrees withG overdom(G), when order in the
genotype assignments is ignored. It is moreover consistent withP in a phase unknown
setting. �

7 Concluding Remarks

The results in this paper show that certain basic combinatorial problems in pedigree
analysis, viz. consistency checking and determining whether a genotyped pedigree has
some number of critical genotypes, are NP-complete, even if we focus on a single gene
with a fixed, small number of alleles. It follows that these problems are most likely
computationally intractable. It would be most interesting, however, to develop heuristic
algorithms for these problems, and evaluate their efficiency on real-life and/or randomly
generated data. In particular, we plan to develop and evaluate algorithms for consistency
checking based uponBinary Decision Diagrams[3] and various available SAT-solvers
and tautology checkers—see, e.g., the reference [7] for a survey. We believe that the
experimental evaluation of these algorithms would be of value, because consistency
checking routines, like genotype elimination ones, may be used as pre-processing steps
in algorithms for, e.g., linkage analysis and haplotype reconstruction [19].

From a theoretical viewpoint, we conjecture that the problem of computing the num-
ber of complete consistent extensions of a genotype information for a pedigree is#P -
complete [27]—i.e., it is as hard as counting the number of satisfying assignments of a
boolean formula. It would also be interesting to study the complexity of approximation
algorithms for computing the number of critical genotypes in a pedigree. We leave an
in-depth study of these problems as future work.
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