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A Length-Flexible Threshold

Cryptosystem with Applications

Ivan Damg̊ard and Mads Jurik

Aarhus University, Dept. of Computer Science, BRICS?

Abstract. We propose a public-key cryptosystem which is derived from
the Paillier cryptosystem. The scheme inherits the attractive homomor-
phic properties of Paillier encryption. In addition, we achieve two new
properties: First, all users can use the same modulus when generating
key pairs, this allows more efficient proofs of relations between different
encryptions. Second, we can construct a threshold decryption protocol
for our scheme that is length flexible, i.e., it can handle efficiently mes-
sages of arbitrary length, even though the public key and the secret key
shares held by decryption servers are of fixed size. We show how to apply
this cryptosystem to build:
1) a self-tallying election scheme with perfect ballot secrecy. This is a
small voting system where the result can be computed from the submit-
ted votes without the need for decryption servers. The votes are kept
secret unless the cryptosystem can be broken, regardless of the number
of cheating parties. This is in contrast to other known schemes that usu-
ally require a number of decryption servers, the majority of which must
be honest.
2) a length-flexible mix-net which is universally verifiable, where the size
of keys and ciphertexts do not depend on the number of mix servers, and
is robust against a corrupt minority. Mix-nets can provide anonymity by
shuffling messages to provide a random permutation of input ciphertexts
to the output plaintexts such that no one knows which plaintexts relate
to which ciphertexts. The mix-net inherits several nice properties from
the underlying cryptosystem, thus making it useful for a setting with
small messages or high computational power, low-band width and that
anyone can verify that the mix have been done correctly.
Keywords: length-flexible, length-invariant, mix-net, group decryption,
self-tallying, election, perfect ballot secrecy.

1 Introduction

1.1 Background

In [5], Paillier proposed a public-key cryptosystem which, like RSA,
uses computations with a composite modulus, but has some very at-
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tractive properties making it potentially interesting for applications
such as electronic voting and mix-nets: it is additively homomorphic
and decryption is efficient for all ciphertexts: there is no need to solve
discrete logarithms, as with additive homomorphic schemes derived
from El-Gamal encryption.

In [11] the system was generalized to handle arbitrary size mes-
sages (with the same modulus) and a threshold decryption protocol
was proposed. Unfortunately, this protocol can only handle efficiently
messages of length smaller than a threshold set at key generation
time, for longer messages a cumbersome multiparty computation
protocol is needed.

Another unsatisfactory property is that the secret key is essen-
tially the factorization of the modulus, so different users cannot use
the same modulus. This means that natural tasks such as proving in
zero-knowledge that two ciphertexts (from different public keys) con-
tain the same message become difficult and seem to require generic
solutions.

One possible application of homomorphic encryption is to build
mix-nets. These are protocols used to provide anonymity for senders
by collecting encrypted messages from several users and have a col-
lection of servers process these, such that the plaintext messages are
output in randomly permuted order. A useful property for mix-nets
is length-flexibility, which means that the mix-net is able to handle
messages of arbitrary size. More precisely, what we mean by this
is the following: although all messages submitted to a single run of
the mix-net must have the same length in order not to break the
anonymity, this common length can be decided freely for each run of
the mix-net, without having to change any public-key information.
This is especially useful for providing anonymity for e.g. E-mails.
One way to achieve length-flexibility is to use hybrid mix-nets. These
mix-nets use a public key construction to create keys for a symmetric
cipher that is used for encrypting the bulk of the messages.

Two length-flexible hybrid mix-nets have been proposed. Ohkubo
and Abe in [6] proposed a scheme in which verification of server
behavior relies on a generic method by Desmedt and Kurosawa [7].
This results in a system that is robust when at most the square
root of the number of mix servers are corrupt. After this Juels and
Jakobsson suggested in [13] that verification can be added by using
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message authentication codes (MACs), which are appended to the
plaintext for each layer of encryption. This allows tolerating more
corruptions at the expense of efficiency - for instance, the length of
the ciphertexts now depends on the number of mix servers as opposed
to [6], and each server has to store more secret material. Although the
system is verifiable, it is not universally verifiable, which means that
external observers cannot verify that everything was done correctly.

In [4] (with some minor pitfall corrected in [10]), Abe introduced
verifiable mix-nets using a network of binary switching gates, which
is based on the permutation networks of Waksman [1]. This mix-
network is robust with up to half of the mix servers being con-
trolled by an active and malicious adversary. One approach to make
this length-flexible would be to exchange El-Gamal with a verifiable
length-flexible encryption scheme. The cryptosystem in [11] however
does not support efficient and length-flexible threshold decryption.

Another application area for homomorphic encryption is elec-
tronic voting. In [17] Kiayias and Yung introduced a new paradigm
for electronic voting, namely protocols that are self-tallying, dispute-
free and have perfect ballot secrecy (STDFPBS for short). This
paradigm is suitable for, e.g. boardroom elections where a (small)
group of users want a maximally secure vote without help from ex-
ternal authorities. The main property is perfect ballot secrecy, which
means that for any coalition of voters (even a majority) the only in-
formation they can compute is what follows from the result and their
own votes, namely the tally of honest users’ votes. This is the best
we can hope for, and is the type of privacy that is actually achieved
by paper based elections. Self-tallying means that as soon as all votes
have been cast, no further interaction is needed to compute the re-
sult, it can be efficiently computed by just looking at all ballots,
which can be done, even by a (casual) third party. Dispute-freeness
means that no disputes between players can arise, because all faults
are detected in public.

In [17], it is argued that STDFPBS elections cannot be achieved
efficiently by traditional methods. For instance, large scale solutions
are typically not of this type because they assume that some set of
authorities are available to help with the election. The authorities
typically share a secret key that can be reconstructed by a majority.
In a small scale scenario we could let each voter play the role of
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an authority himself, but this would not give perfect ballot secrecy
because a corrupt majority would know how every single voter voted.
If we try to repair this by setting the threshold of the secret sharing
scheme to be the total number of voters, then even a single fault will
mean that the secret key is lost, and an expensive key generation
phase would be needed.

In [17] STDFPBS elections are achieved for a yes/no vote by us-
ing constructs based on discrete log modulo a prime. This results in a
tallying phase that needs to find a discrete log, which requires O(

√
u)

work when there are u voters. It also implies that generalization to
multi-way elections either results in larger ballots or much worse
complexity for the tallying phase. Given earlier work on electronic
voting, it is natural to speculate that this could be solved simply by
using Paillier encryption instead. However as noted in [17], this does
not work, we would lose some essential properties of the scheme.

1.2 Our Contribution

In this paper, we suggest a new public-key cryptosystem. It is a fur-
ther development of the scheme from [11], it is as efficient up to a
constant factor and inherits the homomorphic property. It is seman-
tically secure based on the Paillier and composite DDH assumptions,
or - at a moderate loss of efficiency - based only on the Paillier as-
sumption. It is also related to a Paillier-based scheme presented in
[15], but is more efficient and is also length-flexible.

We achieve two new properties. First, our scheme allow several
users to use the same modulus. This allows efficient zero-knowledge
proofs for relations between ciphertexts created under different pub-
lic keys. We apply this to construct STDFPBS elections, where the
tallying phase reveals the result with a small number of additions,
instead of O(

√
u) multiplications as in [17]. This also shows that

STDFPBS elections with all the essential properties can be based
on Paillier encryption, thus solving a problem left open in [17]. Fi-
nally, it implies a natural and efficient generalization to multi-way
elections.

Second, we propose a threshold decryption protocol where keys
can be set up so that messages of arbitrary length can be handled
efficiently with the same (fixed size) keys. In addition, the compu-
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tational work done by each server does not depend on the message
length, only the cost of a final public post-processing is message de-
pendent. We also give efficient zero-knowledge protocols for proving
various claims on encrypted values.

We combine these with ideas from [4, 6] to construct a mix-net
that has several desirable properties at the same time:

– Length-flexible: The public key does not limit the size of plain-
texts that can be encrypted and mixed efficiently. The length of
ciphertexts in a specific mix have to be fixed or anonymity will
be compromised.

– Length-invariant: The lengths of the keys and ciphertexts do
not depend on the number of mix servers.

– Provably secure: The system is provable secure in the ran-
dom oracle model under the Decisional Composite Residuosity
Assumption and composite DDH

– Universally verifiable: Anyone can verify the correctness of
the output from the mix-net.

– Strong correctness: Messages submitted by malicious users
cannot be changed once they have been submitted. This hold
even in the case of helping malicious servers.

– Order flexible: The mix servers do not need to be invoked
in a certain order. This improves resilience to temporary server
unavailability.

We note that all this is achieved by using public key encryption
everywhere, which in the passive adversary case makes it less efficient
than the Hybrid mix-nets that uses symmetric key crypto to encrypt
the messages.

2 Preliminaries

The notion of semantic security that will be used for the encryption
system is:

Definition 1. An adversary A against a public-key cryptosystem
gets the public key pk generated from security parameter k as in-
put and outputs a message m. Then A is given an encryption un-
der pk of either m or a message chosen uniformly in the message
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space and outputs a bit. Let p0(A, k), respectively p1(A, k), be the
probability that A outputs 1 when given an encryption of m, re-
spectively a random encryption. Define the advantage of A to be
Adv(A, k) = |p0(A, k) − p1(A, k)|. The cryptosystem is semanti-
cally secure if for any probabilistic polynomial time adversary A,
Adv(A, k) is negligible in k.

The systems in this paper use a modified version of the Damg̊ard-
Jurik generalization [11] of the Paillier cryptosystem [5]. The secu-
rity of this encryption scheme depends on the Decisional Composite
Residuosity Assumption first introduced by Paillier.

Conjecture 1 (The Decisional Composite Residuosity Assumption
(DCRA)). Let A be any probabilistic polynomial time algorithm,
and assume A gets n, x as input. Here n = pq is an admissible RSA
modulus of length k bits, and x is either random in Z∗

n2 or it is
a random n’th power in Z∗

n2 . A outputs a bit b. Let p0(A, k) be
the probability that b = 1 if x is random in Z∗

n2, and p1(A, k) the
probability that b = 1 if x is a random n’th power. Then |p0(A, k)−
p1(A, k)| is negligible in k.

The encryption is extended with some discrete logarithm construc-
tions, so the DDH assumption is also needed in a slightly modified
version to capture the group.

Conjecture 2 (The Decisional Diffie-Hellman (composite-DDH)).Let
A be any probabilistic polynomial time algorithm, and assume A
gets (n, g, ga mod n, gb mod n, y) as input. Here n = pq is an ad-
missible RSA modulus of length k bits, g is a element of Qn the
group of squares in Z∗

n. The values a and b are chosen uniformly
random in Zφ(n)/4 and the value y is either random in Qn or satisfies
y = gab mod n. A outputs a bit b. Let p0(A, k) be the probability
that b = 1 if y is random in Qn, and p1(A, k) the probability that
b = 1 if y = gab mod n. Then |p0(A, k) − p1(A, k)| is negligible in k.

Note that the number φ(n)/4 is not publicly known, so we cannot
choose an exponent r with the uniform distribution over Zφ(n)/4.
Throughout this paper, when an exponent is chosen, it will be from
the group ZN , where N is a sufficiently large value. This is done
to get a distribution of the elements gr that is statistically close to
the uniform distribution over the group generated by g. To get a
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difference in distribution smaller than 1/2k the value N = 2|n|+k can
be used. A result by Goldreich and Rosen [8] shows that gr mod n
for r ∈ {0, ..., 2|n|/2−1} is a pseudo random generator. So N = 2|n|/2

is another possible choice and will result in elements gr (for r ∈ ZN )
that cannot be distinguished from an uniform element from the whole
group generated by g.

In the Damg̊ard and Jurik paper [11] an algorithm for calculating
the discrete logarithm with respect to the element (n+1) is described.
In this paper we will use Ls to denote an application of this function,
that satisfies:

Ls((n + 1)m mod ns+1) = m mod ns

computing this function requires work O(s4k2) = O(s2|ns|2)

3 The Basic Cryptosystem

Key Generation: Choose an RSA modulus n = pq of length k
bits, with p = 2p′ +1 and q = 2q′ +1 where p, q, p′, q′ are primes.
Select an element g ∈ Qn, the group of all squares of Z∗

n, and
α ∈ Zτ , where τ = p′q′ = |Qn|. The public key is then (n, g, h)
with h = gα mod n and the private key is α.

Encryption: Given a plaintext m ∈ Z+, choose an integer s > 0
such that m ∈ Zns and a random r ∈ ZN , and let the ciphertext
be

Es(m, r) = (gr mod n, (hr mod n)ns

(n + 1)m mod ns+1)

Decryption: Given a ciphertext c = (G, H) = Es(m, r), s can be
deduced from the length of c (or attached to the encryption) and
m can be found as

m = Ls(H(Gα mod n)−ns

)

= Ls((g
αr mod n)ns

(n + 1)m(grα mod n)−ns

)

= Ls((n + 1)m mod ns+1) = m mod ns

Remark 1. The key generation above assumes that one knows τ and
hence the factorization when choosing α. However, one can also
choose α at random in ZN , that is, generate α, h = gα from n, g
only. This makes no difference to security, since the h produced will
have an indistinguishable distribution, and it allows to have n, g be
system constants used by all users.
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3.1 Security of the Cryptosystem

Theorem 1 (Semantic Security). Under conjecture 1 (DCRA)
and conjecture 2 (composite-DDH) the cryptosystem is semantically
secure with respect to definition 1.

The proof of this theorem can be seen in appendix A. This cryp-
tosystem may seem to be simply a combination of El-Gamal and
Paillier, and hence its security is inherently based on both the above
conjectures, but this is in fact not true. A simple modification makes
it possible to show semantic security based only on conjecture 1, us-
ing a technique from [15]. Given the same public key (n, g, h), we
can set g′ = gns

mod ns+1 (so that g′ generates the subgroup of
Z∗

ns+1 of order τ), and h′ = hns
mod ns+1. Encryption is E ′

s(m, r) =
(g′r mod ns+1, h′r(n + 1)m mod ns+1).

Theorem 2 (Semantic Security, modified system). Under con-
jecture 1 (DCRA) the modified cryptosystem is semantically secure
with respect to definition 1.

This was proved for s = 1 in [15], and follows in general in essen-
tially the same way: a ciphertext (G, H) is always of form (G, Gα(n+
1)m mod ns+1). Now, conjecture 1 implies that one cannot distin-
guish the case where G ∈< g′ > from the case where it is chosen
randomly in Z∗

ns+1 (with Jacobi symbol 1 with respect to n). In the
latter case, however, one can verify that if α is chosen large enough,
the ciphertext contains no Shannon information on the plaintext.

Since our basic system is more efficient, we describe our protocols
in the following in terms of the Es() encryption function, but they
can all be modified to use the E′

s() encryption function instead.

3.2 An Efficient Length-Flexible Threshold Cryptosystem

From the basic cryptosystem, a length-flexible threshold cryptosys-
tem can be constructed by using a threshold exponentiation based
on Shoups threshold signatures [9].

Key Generation: Choose an RSA modulus n = pq and a g ∈ Qn

as above. Pick the secret value a0 = α ∈ Zτ and some random
coefficients ai ∈ Zτ for 1 ≤ i ≤ t, where t ≥ w/2 is the threshold
of the system with w servers. The polynomial f(x) =

∑
0≤i≤t aix

i
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is created and the secret shares are calculated as αi = f(i). The
public value is h = gα mod n, and the values for verification are
hi = gαi mod n. The public key is (n, g, h), the verification values
(h1, ..., hw), and the private key of server i is αi.

Encryption: Given a plaintext m ∈ Z+, choose an integer s > 0,
such that m ∈ Zns, and pick a random r ∈ ZN . The ciphertext is
then

Es(m, r) = (gr mod n, (h4∆2r mod n)ns

(n + 1)m mod ns+1)

Threshold Decryption: Given a ciphertext c = (G, H) = Es(m,
r) each of the servers release the value:

di = G2∆αi mod n

and a proof that logg(hi) = logG4∆(d2
i ). The proof used for this

is shown in section 3.4. The di values, from the set S of servers
with legal proofs, are combined using Lagrange interpolation to
create the exponent 4∆2α:

d =
∏

d
2λS

i
i = G4∆2α = h4∆2r mod n where λS

i =
∏

j∈S\{i}
∆

j

j − i

The reason for the factor ∆ is to ensure λS
i ∈ Z. Now the h4∆2r

can be removed by calculating

H ′ = Hd−ns

= (n + 1)m mod ns+1

and the plaintext found as m = Ls(H
′ mod ns+1) mod ns.

3.3 A Proof Friendly Variant

The system from the previous section only works as long as legal
encryptions are submitted, so we would like a protocol allowing us to
prove in zero-knowlegde that a ciphertext is well formed. A standard
problem with building an efficient protocol of this type is that we
need all group elements used to have only large prime factors in their
orders. In our case, this can be ensured by squaring them before we
start the proofs, i.e., instead of trying to show that g has some desired
property, we prove that g2 has it. However, as we shall see, this only
implies that g or −g has the desired property. To handle this, we
define a slightly relaxed cryptosystem:
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Key Generation: As above
Encryption: Given a plaintext m ∈ Z+, choose an integer s > 0,

such that m ∈ Zns, and pick a random r ∈ ZN and b0, b1 ∈ {0, 1}.
The ciphertext is then

E±
s (m, r, b0, b1) = ((−1)b0gr mod n,

(−1)b1(h4∆2r mod n)ns

(n + 1)m mod ns+1)

Threshold Decryption: Given a ciphertext c = (G, H) = E±
s (m,

r, b0, b1), it is only decrypted if the Jacobi symbol of G and H is
1. Since G is squared the d value can be computed as above. To
decrypt H needs to be squared, so a slightly different computation
is made:

H ′ = H2d−2ns

= (n + 1)2m mod ns+1

and the plaintext is found as m = Ls(H
′)/2 mod ns.

Proving properties is now easier, since values can be squared to
make sure they are in Qn during the proof. In section 3.4 three
proofs are shown: 1) a proof that something is a legel encryption, 2)
a proof that something is a legal encryption of some publicly known
plaintext, and 3) the threshold decryption proof. In appendix B some
techniques for improving the complexity of most computations from
O(s3k3) to O(s2k3) are shown.

3.4 Proof for the Proof Friendly Variant

Proof of Legal Encryption The purpose of the proof is to prove
that given (G, H) there exist an r ∈ ZN and an m ∈ Zns such that
G = ±gr mod n and H = ±h4∆2r(n + 1)m.

Protocol for legal encryption
Input: n, g, h, c = (G, H)
Private input for P : r ∈ ZN and m ∈ Zns , such that c = E±

s (m, r, b0,
b1) for some b0 and b1.

1. P chooses at random r′ in {0, ..., 2|N |+2k2} and m′ ∈ Zns , where
k2 is a secondary security parameter (e.g. 160 bits). P sends c′ =
(G′, H ′) = E±

s (m′, r′, 0, 0) to V .
2. V chooses e, a random k2 bit number, and sends e to P .
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3. P sends r̂ = r′ + er and m̂ = m′ + em mod ns to V . V checks
that G, H, G′, H ′ are prime to n, have Jacobi symbol 1 and that
E±

s (2m̂, 2r̂, 0, 0) = (G′2G2e mod n, H ′2H2e mod ns+1) = c′2c2e,
and accepts if and only if this is the case.

The protocol above can be proven to be sound and complete hon-
est verifier zero-knowledge. This is enough for the election protocol
in section 5, since it will only be used in an non-interactive setting
using the Fiat-Shamir Heuristic and hash function H to generate the
challenge e = H(G, H, G′, H ′).

Proof of Legal Encryption of Certain Plaintext To protocol
for legal encryptions, can be altered to a protocol for proving that
something is a legal encryption of a certain plaintext m in the fol-
lowing way:

Protocol for legal encryption of message m
Input: n, g, h, c = (G, H), m ∈ Zns

Private input for P : r ∈ ZN , such that c = E±
s (m, r, b0, b1) for some

b0 and b1.

1. P chooses at random r′ in {0, ..., 2|N |+2k2}, where k2 is a sec-
ondary security parameter (e.g. 160 bits). P sends c′ = (G′, H ′) =
E±

s (0, r′, 0, 0) to V .

2. V chooses e, a random k2 bit number, and sends e to P .
3. P sends r̂ = r′ + er to V . V checks that G, H, G′, H ′ are prime

to n, have Jacobi symbol 1 and that E±
s (2em, 2r̂, 0, 0) = (G′2G2e

modn, H ′2H2e mod ns+1) = c′2c2e, and accepts if and only if this
is the case.

This protocol is also sound and complete honest verifier zero-
knowledge, which follows directly from the protocol above and the
observation, that if c′ is not the encryption of the plaintext 0 there
is only one e that can satisfy the last equation.

Decryption Proof To make the decryption share, the server cal-
culated the value

di = G2∆αi mod n
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The server needs to prove that this was indeed what it submitted,
but we have to allow a possible factor of −1, so we accept that
di = ±G2∆αi , which is why the value d2

i is used in the Lagrange
interpolation. What needs to be proven is that

αi = logg(hi) = logG4∆(d2
i ) mod p′q′

This can be done using a proof identical to that of Shoup RSA
Threshold signatures [9].

Proof: Given a hash function H that outputs a k2 bit hash, pick a
random r ∈ {0, ..., 2|n|+2k2 − 1} and calculate

ĝ = gr mod n, Ĝ = G4∆r mod n,

c = H(g, G4∆, hi, d
2
i , ĝ, Ĝ), z = αic + r

The proof is the pair (c, z).
Verification: For a proof to be accepted the following equation has

to hold

c = H(g, G4∆, hi, d
2
i , h

−c
i gz mod n, d−2c

i G4∆z mod n)

This proof of correctness is sound and statistical zero-knowledge
under the random oracle model. This is proven in Shoups paper on
Practical Threshold signatures [9] and is therefore omitted here.

3.5 Security of the Threshold Cryptosystems

Due to its homomorphic properties, our basic cryptosystem cannot
be chosen ciphertext secure, so we cannot hope to prove that the
threshold version is chosen ciphertext secure either. However, we can
show a result saying essentially that as long as the adversary does
not control the ciphertexts being decrypted, the threshold decryption
releases no information other than the plaintext.

Definition 2. A chosen plaintext threshold adversary A runs in
probabilistic polynomial time and can statically and actively corrupt
t < w/2 of the servers. In addition, for any efficiently samplable dis-
tribution D, he may request that a message m be chosen according
to D and then to see a random ciphertext containing m be decrypted
using the threshold decryption protocol. A threshold public-key cryp-
tosystem is secure against such an adversary if his view can be sim-
ulated in probabilistic polynomial time given only the public key.
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Note that since D is arbitrary, this includes the case where the
adversary chooses m himself. This type of security will be sufficient
in the mix-net below. Using a more elaborate decryption protocol,
where a ciphertext is randomized before it is decrypted, an even
stronger property can be shown, namely that security of the thresh-
old system is equivalent to security of the non-threshold version un-
der any attack. We omit this due to space limitations.

Lemma 1. The threshold cryptosystems are semantically secure un-
der Conjectures 1 and 2. They are also secure against any chosen
plaintext threshold adversary as defined above.

Proof. The semantic security follows from theorem 1 since an en-
cryption of m in the basic cryptosystem can be transformed into
an encryption of 4∆2m mod ns in the threshold systems by raising
the last component to the 4∆2’th power and in the last system by
multiplying with (−1)b0 and (−1)b1 .

The proofs of correctness used for the decryption shares are iden-
tical to the Shoup verification proofs for signatures shares in [9],
where they were proved sound and statistical zero-knowledge. Fur-
thermore, the secret sharing of the secret key is identical to the one
used in [9]. Hence, it is straightforward to construct a simulation
proof of security along the lines of the proof in [9]. A brief sketch:
Given the public key, we can simulate the shares of corrupt players
by choosing random values. We can then reconstruct the verification
values of honest servers using Lagrange interpolation “in the expo-
nent”. To simulate the adversary’s view of the decryption protocol,
we choose m according to D and construct a random ciphertext con-
taining m. In particular this means we know the relevant value of hr.
Given this and the shares of corrupt players, we can compute, with a
statistically close distribution, the contribution from honest servers
to the decryption. Their proofs of correctness can be simulated. By
soundness of the proofs, the adversary will not be able to contribute
bad values, so the decryption will output m, as desired. ut

3.6 Homomorphic Properties

The 3 above cryptosystems are all additive homomorphic, which
means that 2 encryptions can be combined to create a new encryp-
tion of the sum of the plaintexts in the original encryptions. The
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proof friendly cryptosystem can be shown to be additive homomor-
phic in the following way, which also works for the other 2 cryptosys-
tems:

E±
s (m0, r0, b00, b01)E

±
s (m1, r1, b10, b11)

= (G0, H0)(G1, H1)

= (G0G1, H0H1)

= E±
s (m0 + m1, r0 + r1, b00 ⊕ b10, b01 ⊕ b11)

Note that this also provides an easy way to re-randomize an encryp-
tion:

E±
s (m, r, b0, b1)E

±
s (0, r′, b′0, b

′
1) = E±

s (m, r + r′, b0 ⊕ b′0, b1 ⊕ b′1)

The homomorphism only works when the 2 encryptions use the
same s. To get around this, one of the following transformations can
be used either to increase or to decrease the s. Both however will
change the message inside the encryption.

Given an encryption (G, H) = E±
s (m, r, b0, b1), we can transform

it into an encryption using s′ > s by doing the following transfor-
mation:

(G′, H ′) = (G, Hns′−s

mod ns′+1)

= ((−1)b0gr, ((−1)b1(hr)ns

(n + 1)m)ns′−s

mod ns′+1)

= ((−1)b0gr, (−1)b1(hr)ns′
(n + 1)mns′−s

mod ns′+1)

= E±
s′ (mns′−s, r, b0, b1)

If the encryption (G, H) = E±
s (m, r, b0, b1) needs to be trans-

formed into an encryption using s′ < s, we can do the following:

(G′, H ′) = (Gns−s′
mod n, H mod ns′+1)

= (((−1)b0gr)ns−s′
mod n,

(−1)b1(hr)ns

(n + 1)m mod ns′
mod ns′+1)

= ((−1)b0grns−s′
mod n,

(−1)b1(hrns−s′
)ns′

(n + 1)m mod ns′
mod ns′+1)

= E±
s′ (m mod ns′, rns−s′, b0, b1)
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Since the order of g is relatively prime with n the value rns−s′ will
span just as big a subgroup of < g > as r alone.

4 Verifiable Length-Flexible Mix-net

4.1 The Mix-net Model

A mix-net is a network of servers that receive a number of encryp-
tions, perform a random permutation of these, and output the plain-
texts of the encryptions. This is done in such a way, that unless all
servers (or most in some schemes) cooperate no one can link the
input encryptions to the output plaintexts.

Note that for any single mix of messages, the inputs for the
servers must be of the same length, since otherwise one could match
the sizes of the inputs and outputs to find some information on
the permutation. For practical applications this means, that a fixed
upper bound will have to be decided for each mix, and all input
messages for that mix have to be of the chosen size. This bound can
chosen freely for each mix, however.

4.2 Adversaries

An adversary in [6] is defined by (tu, ts)
∗∗, where the ∗ is either A for

an active adversary or P for a passive adversary. The thresholds tu
and ts are the maximal number of users and servers respectively, that
can be controlled by the adversary. For example (tu, ts)

AP -adversary
means that the adversary can read and change any value for up to
tu users and view any value inside ts servers. A passive adversary
only observes the values passing a server or user, but does not try to
induce values into the process. An active adversary can attack the
protocol by changing any value or refuse to supply results in any
part of the protocol. The adversary is assumed to be non-adaptive,
meaning that the users and servers being controlled by the adversary
are decided in advance.

The mix-net in this paper is safe against these adversaries of
increasing strength (u is the number of users and w the number of
servers):

– (u− 2, w− 1)PP -adversary: Here the adversary can see any value
passing through all but 1 server and all but 2 of the users.
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– (u−2, w−1)AP -adversary: The adversary can see any value pass-
ing through all but 1 server and see and change any value inside
all but 2 users.

– (u− 2, b(w− 1)/2c)AA-adversary: This is the strongest adversary
that can see and change any value passing through all but 2 users
and less than half of the servers.

Compared to the length-flexible mix-net in [6], the 2 first adversaries
are the same, but the last one is improved from (u − 2, O(

√
w))AA

to (u − 2, b(w − 1)/2c)AA.

4.3 Security of the Mix-net

We will use a strong version of correctness, so even if users are work-
ing together with servers, they will not be able to change the message
once the mix has started.

Definition 3 (Strong Correctness). Given x encrypted messages
as input, where y of the encryptions are malformed. The mix-net will
output a permutation of the x−y messages with correct decryptions,
and discard all y malformed encryptions.

Definition 4 (Anonymity). Given a mix of x messages, and an
(tu, ts)

∗∗-adversary. Then the adversary should be unable to link any
of the x− tu messages with any of the x− tu uncorrupted users who
sent them.

Definition 5 (Universal Verifiability). Given the public view of
the protocol being all the information written to the bulletin board,
there exist a poly-time algorithm V that accepts only if the output of
the protocol is correct, and otherwise outputs reject.

Definition 6 (Robustness). Given an (tu, ts)
∗A-adversary the pro-

tocol should always output a correct result.

The mix-network presented can be shown to satisfy these definitions
under the different adversaries.

Theorem 3. The basic mix-network provides strong correctness and
anonymity (and robustness) against an (u − 2, w − 1)∗P -adversary,
where u is the number of users and w the number of servers.

16



Theorem 4. The mix-network with threshold decryption provides
strong correctness, anonymity, universal verifiability and robustness
against an (u − 2, b(w − 1)/2c)∗A-adversary, where u is the number
of users and w the number of servers.

4.4 The System

It is assumed that all communication in the protocol goes through
a bulletin board, that anyone can access to verify the result. This
means that the public key, and all outputs and proofs from the mix
servers are written to this bulletin board.

The mix-network can be built from the threshold cryptosystem
in the following way:

Key Generation: A trusted third party (TTP) generates n = pq
(as above) and g ∈ Qn. Depending on the model the server picks
the secrets the following way.
– Passive adversary model: For each mix server (0 < i ≤

w) the TTP picks a random value αi ∈ Zτ and sets α =∑
0<i≤w αi mod τ . The public value is computed as h = gα

modn. The public key posted is (n, g, h) and the private key
of server i is αi.

– Active adversary model: Here, the key generation takes
place exactly as described above for the threshold cryptosys-
tem. The public key (n, g, h) and the verification values (h1, ...,
hw) are posted to the bulletin board. The private key αi is
given to the i’th server in a secure way.

Encryption: The s have to be fixed for each mix, so given a m ∈
Zns , random values r ∈ ZN , b0, b1 ∈ {0, 1} are chosen. The ci-
phertext posted on the bulletin board is

E±
s (m, r, b0, b1) = ((−1)b0gr mod n,

(−1)b1(h4∆2r mod n)ns

(n + 1)m mod ns+1)

Mixing phase: Before the mixing begins any ciphertext (G, H),
where either G or H has Jacobi symbol -1 will be discarded as
being incorrect. If an illegal ciphertext with Jacobi symbol 1 have
been submitted it will be caught during decryption. Next set
I = {1, ..., w}. While I 6= ∅ pick an i ∈ I and let the i’th server
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make its mix permutation on the last correct output posted on
the bulletin board:

– Passive adversary model: Since the adversary is passive,
the mix server just do a random permutation and output a
re-encryption for each of the ciphertexts (G, H) using the ran-
dom values b0, b1, r:

(G′, H ′) = (G(−1)b0gr mod n,

H(−1)b1(h4∆2r mod n)ns

mod ns+1)

= (G, H)E±
s (0, r, b0, b1)

– Active adversary model: Here verification is needed to sat-
isfy the universal verifiability, correctness and robustness of
the system. To do this, the server picks a random permuta-
tion and creates a network of binary gates using the Waksman
construction [1]. This network consists of O(u log(u)) binary
gates and can create any permutation of the inputs. For each
binary gate a bit B is defined (and B̄ = 1 − B), determin-
ing if the gate should pass the encryptions straight through
the gate or switch them, depending on the complete permu-
tation of the mix. Each gate also has 2 ciphertexts (G0, H0)
and (G1, H1) as input. The server chooses 6 random values:
x0, x1 ∈ ZN and b00, b01, b10, b11 ∈ {0, 1}, and sets the 2 output
ciphertexts for the gate to

(G′
B, H ′

B) = (G0(−1)b00gx0, H0(−1)b10(h4∆2x0)ns

)

= (G0, H0)E
±
s (0, x0, b00, b10)

(G′
B̄, H ′̄

B) = (G1(−1)b01gx1, H1(−1)b11(h4∆2x1)ns

)

= (G1, H1)E
±
s (0, x1, b01, b11)

To prove this is done correctly the server needs to prove that
the B, satisfying the 2 equations above, really exist. This can
be done by showing that the difference between (G′

B, H ′
B) and

(G0, H0) is a legal encryption of 0 (and likewise for (G′
B̄
, H ′̄

B
)

and (G1, H1)) for some B ∈ {0, 1}. This can be done by using
4 concurrent runs of the legal encryption of the message 0
protocol using the technique from [3], that simulates the one

18



of the 2 statements it is unable to answer truthfully:

(G′
0G

−1
0 , H ′

0H
−1
0 ) and (G′

1G
−1
1 , H ′

1H
−1
1 )

are legal encryptions. of 0

or

(G′
1G

−1
0 , H ′

1H
−1
0 ) and (G′

0G
−1
1 , H ′

0H
−1
1 )

are legal encryptions. of 0

These proofs are posted to the bullitin board along with the
outputs and intermediate encryptions. If the proof of the mix
is incorrect or the server refuses to post a complete mix, any
output from the mix server is simply ignored, and the same
input is used again for the next mix server.

When the mix is over or if the server refuses to output a mix, the
server is removed from the set I := I\{i}.

Decryption: After the mixing has been performed the decryption
of each of the output ciphertexts (G, H) needs to be performed.
The removal of the hr part is different depending on the model
and is achieved the following way
– Passive adversary model: The servers perform a decryp-

tion by each calculating their decryption part di = Gαi mod n.
These values are removed from the encryption

H ′ = (H(
∏

0<i≤w

di)
−ns

)2 = ±(n + 1)2m mod ns+1

– Active adversary model: The servers check that at least
t+1 servers have performed a legal mix, in which case at least
1 of them is honest, and it is safe to decrypt the encryptions.
The value H ′ is computed as in the proof friendly threshold
decryption in section 3.3.

In both the passive and active model the value H ′ has the form
±(n + 1)2m if the input was a correct encryption. If it was not
a correct encryption it will have a power of h remaining: H ′ =
(hr)ns

(n + 1)2m. This is the case if and only if n - H ′ − 1 (since
n|(n + 1)2m − 1) and the decryption is aborted in this case. Oth-
erwise the message is decrypted as m = Ls(H

′ mod ns+1)/2 mod
ns.
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The order of the mix servers can be chosen arbitrarily, which means
that if server i is unavailable when it is supposed to mix, the server
i + 1 can do its mix. When server i gets back again it can perform
its mix on the last output as if nothing had happened.

In appendix B a method is shown, that optimizes all computa-
tions except the last public exponentiation, from using O(s3k3) time
to only O(s2k3).

4.5 Security Proofs

Proof sketch of theorem 3 and 4: The anonymity follows from the
semantic security of the encryption scheme, which ensures that if
just one server is honest, the adversary cannot track messages pass-
ing through this server. Furthermore, once this has happened, the
ciphertexts being processed can no longer be controlled by the adver-
sary. We can therefore apply Lemma 1 to show that the decryption
phase releases no side information to the adversary. Warning: many
technical details are omitted here due to space limitations.

Robustness is a result of the setup of the threshold decryption.
If any server refuses to do the mix they’re simply ignored and the
result can always be decrypted using the threshold decryption.

Strong correctness comes from the zero-knowledge proofs, which
ensure that the mix servers cannot change the message or tamper
with the correctness of the encryption.

The use of the bulletin board model with verification proofs at
all steps of the protocol ensures universal verifiability.

5 Self-Tallying Elections with Perfect Ballot
Secrecy

In this section it will be shown how to make a more efficient self-
tallying elections with perfect ballot secrecy based on the cryptosys-
tem introduced in this paper. Note that for all practical purposes
s = 1 will be sufficient for this application. This will only be a brief
walk-through of the technical details, so for a more in-depth expla-
nation the reader is referred to [17].
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The system uses the bulletin board model and it is assumed that
a safe prime product n and a generator g ∈ Qn is setup in advance1.

The modulus n can be generated once and for all. One option is
to let a trusted third party do this. Note that since the factorization
of n is never needed, not even in shared form, a trusted party solution
can be quite acceptable, for instance one could use a secure hardware
box that is destroyed after n has been generated.

Another option is to use a distributed protocol such as [16] or a
generic multiparty computation. Note that protocols for this purpose
can be set up such that no proper subset of the players can find the
factors of n, in other words, we still ensure perfect ballot secrecy
even if the players generate n themselves. This comes at the expense
of possibly having to restart the key generation if faults occur, but
this cost cannot be avoided if we need to handle dishonest majorities
and is consistent with the way corrective fault tolerance is defined
in [17].

Finally, at the expense of more work in the election itself, it is
even posible to generate n simply as random number large enough
so that it will be hard to factor completely. We postpone the details
of this to the final version of the paper.

The element g can be generated by jointly generating some ran-
dom value x ∈ Z∗

n and then defining g as g = x2 which will be in
Qn.

The bulletin board also participates in the protocol to ensure
that none of the actual voters will know the result before they vote.
With a self-tallying scheme, this type of fairness cannot be achieved
without such trust (see [17]). One may think of the bulletin board
as a party that must vote 0 (so it will not influence the result), and
is trusted to submit its vote only after all players have voted. The
bulletin board however does not have to participate in every step of
the protocol. It will only participate in: 1) the registration phase,
where it registers its public key, 2) the error correction of the ballot
casting, where it has some encrypted values it needs to reveal, and
3) the post ballot casting step, where it reveals its 0 vote, thereby
enabling everyone to calculate the result.

1 Accepting some extra conjectures, the techniques of [12] can be employed to in order
to use any RSA modulus n where φ(n)/4 is prime to ∆
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5.1 Setup Phase

The setup phase consists of two tasks. First the voter registration and
then the initialization of the voting system itself. In the registration
phase voters, that want to participate in the election, register on
the bulletin board. After all voters are registered, the voters need
to setup the values to be used in the protocol. Since voters can be
malicious in this part of the protocol there is an error correction step
to correct any problems encountered.

Voter Registration Voter i chooses the private key αi at random
in ZN and computes the value hi = gαi mod n. The voter registers
by posting the public key pki = (g, hi) on the bulletin board. Let
R be the set of all registered voters and for simplicity let’s assume
that R = {1, 2, ..., u}. To ensure fairness the bulletin board also
generates a public key pk0 and posts it on the bulletin board (we set
R0 = R ∪ {0}).

Initialization Each voter i ∈ R picks random values sij ∈ Zns for
each j ∈ R and random rij ∈ ZN for each j ∈ R0. The value si0 is
set to −∑

j∈R sij mod ns, which ensures that
∑

j∈R0
sij = 0 mod ns.

The voter i publishes the encryptions

cij = (Gij, Hij) = E±
s,pkj

(sij , rij)

for all j ∈ R0 along with a proof, that these are indeed legal encryp-
tions and the sum of the plaintexts is 0 modulo ns.

To prove these are legal encryptions, the proof from section 3.4
is used. To prove that the sum of the plaintexts in the encryptions
(Gi0, Hi0), ..., (Giu, Hiu) is 0, it is enough to look at the product
Hi0 · · ·H0u. The resulting value is

Hi0 · · ·Hiu = (hri0
0 · · ·hriu

u )ns

(n + 1)si0+···+siu

which is an ns’th power iff
∑

j∈R0
sij = 0 mod ns. The protocol for

ns’th powers from [11] can be used to prove this, since the voter
knows an ns’th root of this number, namely hri0

0 · · ·hriu
u .
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Error Correction of the Initialization Let Q1 be the set of
voters that either doesn’t supply all the encryptions or supply invalid
proofs. Any values submitted by voters in Q1 are simply ignored. The
values that the honest voters created for the voters in Q1 will remain
unused, which is a problem since the numbers should sum to 0. To
correct this, the honest voters open all encryptions assigned to voters
in Q1.

More formally for all i ∈ R\Q1 the voter i releases the values
sij , rij for all j ∈ Q1. Since these values are uniquely determined
by the encryption, this step can be verified by checking that cij =
E±

s,pkj
(sij , rij). Should a voter refuse to publish this information they

are simply added to Q1 and their values are revealed.

5.2 Ballot Casting

Ballot Casting Each voter j ∈ R\Q1 retrieves the encryptions cij

∀i ∈ R\Q1 and combines them:

cj =
∏

∀i∈R\Q1

cij = E±
s,pkj

(
∑

∀i∈R\Q1

sij, r)

for some value of r. Voter j decrypts cj using the private key αj to
get tj =

∑
∀i∈R\Q1

sij.

Voter j then submits the values dj = E±
s,pkj

(vj, rj) and xj =
vj + tj , where vj is the value representing the candidate voter j votes
for, say 0 or 1 for a yes/no election; the value rj ∈ ZN is chosen
at random. The easiest way to understand this is to note that if we
ignore the error correction (i.e., assume that no faults occur), then
the tj ’s will be a set of random numbers that sum to 0. So if we can
ensure that xj was formed by adding an allowable value of vj to tj ,
then res =

∑
j xj will be the election result, i.e., the sum of the vj

’s. Moreover, the randomness of the tj ensures that given the xj ’s,
all possible sets of vj ’s summing to res are equally likely.

To prove that dj is a legal encryption of an allowable value of vj ,
the proof from section 3.3 can be used to ensure that it is a correct
encryption, and the proof of a legal vote value in [11] (which is
logarithmic in the number of candidates) can be used on the second
value in the encryption to prove that a legal vj have been encrypted.
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To prove that dj is an encryption of the same vj , that was used to
make xj , the voter proves that

djcjE
±
s,pkj

(xj , 0)−1 = E±
s,pkj

(0, r′)

for some given r′ using the ns’th power proof from [11], and sends
this proof to the bulletin board. This time the required ns’th root

can be computed as: h
rj

j · (∏ G
4∆2αj

ij ) · 1. This holds iff the same vj

is used in dj and xj since

djcj(E
±
s,pkj

(vj + tj , 0))−1 = E±
s,pkj

(vj, rj)E
±
s,pkj

(tj , r)E
±
s,pkj

(−(xj), 0)

= E±
s,pkj

(vj + tj − (vj + tj), r
′)

= E±
s,pkj

(0, r′)

Error Correction of Ballot Casting Let Q2 be the set of voters
disqualified during the ballot casting. Again there are some values
that will not be used by the voters in Q2, and these are simply
published on the bulletin board as in the error correction of the
initialization.

However this time the values created by voters in Q2 have been
used by the honest voters (for any i ∈ Q2 the value of sii is only
know by i, and all honest voters j have used sij). To correct this the
values have to be published, but the secret values rij are unknown to
j. So for all i ∈ Q2 each j ∈ R0\(Q1∪Q2) (voters and bulletin board)
decrypts and reveals the plaintext of cij , which is sij and proves that

cijE
±
s,pkj

(sij, 0)−1 = E±
s,pkj

(0, r)

using the ns’th power proof from [11]. This time the required ns’th

root is: G
4∆2αj

ij · 1. Should anyone refuse to participate in the error
correction they’re simply added to Q2 and their values published as
before.

Now let Qbad = Q1∪Q2 denote all voters that have been removed
in the error correction steps, and let Rgood = R\Qbad be the voters
that completed the whole protocol honestly.

Post Ballot Casting When the ballot phase is over, and all parties
have either submitted their vote or been removed using the error
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correction, the bulletin board computes

c0 =
∏

∀i∈R\Qbad

ci0 = E±
s,pk0

(
∑

∀i∈R\Qbad

si0, r)

for some r and gets the plaintext t0 =
∑

∀i∈R\Qbad
si0 by decrypt-

ing c0. The bulletin board then posts t0 along with a proof that
c0E

±
s,pk0

(t0, 0)−1 is a ns’th power according to the proof in [11] (the

value is calculated as (
∏

G4∆2α0
i0 ) · 1).

5.3 Tallying

At this point the result can be computed as:

res = t0 +
∑

j∈Rgood

xj +
∑

i∈Rgood,j∈Qbad

sij −
∑

i∈Q2,j∈Rgood∪{0}
sij

=
∑

j∈Rgood

vi mod ns

The first sum is all the xj values that have been posted on the
bulletin board according to protocol. The values in the second sum
are the values of the disqualified voters that where revealed in the
error correction of the initialization and the first value revealed in
the error correction of the ballot casting. The third sum is the sum
of the second values revealed in the error correction of the ballot
casting.

For lack of space, we do not give formal definitions and proofs
of security here. However, perfect ballot secrecy follows since first,
we can ignore those encryptions that remain unopened, due to the
semantic security. What remains are the public numbers: xi’s, and
the numbers revealed during error correction. One then observes that
for any corrupted subset and given result, all possible sets of votes
from honest players leading to the given result are equally likely. The
correctness follows from the following observations:

R\Q1 = Rgood ∪ Q2 and R = Qbad ∪ Rgood
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which implies (using that only cij for i ∈ R\Q1 was used to get tj)

t0 +
∑

j∈Rgood

xj

=
∑

j∈Rgood

vj +
∑

j∈Rgood∪{0}
tj

=
∑

j∈Rgood

vj +
∑

i∈Rgood,j∈Rgood∪{0}
sij +

∑
i∈Q2,j∈Rgood∪{0}

sij mod ns

and now using ∀i ∈ Rgood:
∑

j∈R0
sij = 0 mod ns we get

t0 +
∑

j∈Rgood

xj +
∑

i∈Rgood,j∈Qbad

sij

=
∑

j∈Rgood

vj +
∑

i∈Rgood,j∈R0

sij +
∑

i∈Q2,j∈Rgood∪{0}
sij

=
∑

j∈Rgood

vj +
∑

i∈Q2,j∈Rgood∪{0}
sij mod ns

now subtracting the last sum we get the wanted result

res = t0 +
∑

j∈Rgood

xj +
∑

i∈Rgood,j∈Qbad

sij −
∑

i∈Q2,j∈Rgood∪{0}
sij

=
∑

j∈Rgood

vj mod ns

5.4 Efficiency Comparison to Scheme from [17]

The work of the 2 schemes are comparable in all steps of the protocol
except in the tallying phase. Here the protocol of [17] needs to do an
exhaustive search in a space of size 2u, which can be optimized to
O(

√
u) multiplications. However, the protocol above obtains the re-

sult of the election by simply adding the values posted to the bulletin
board.

Our scheme generalizes to multi-candidate elections in exactly
the same way as [11]. In particular, the tallying phase remains at
the same number of additions. For the scheme from [17], the search
for the result would take Ω((

√
u)l) multiplications for l candidates.
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Adversary A′:

1. Get public key n and forward it to A.
2. Get message m from A.
3. Return on m.
4. Get the encryption c = Es(m̂, r), where

- m̂ = m or
- m̂ uniformly random in Zns .

5. Calculate c′ = (c(n + 1)−m)2(n + 1)m mod ns+1

6. Send c′ to A.
7. Get the bit b from A
8. Return b.

Fig. 1. Algorithm for adversary A′ breaking the Damg̊ard-Jurik cryptosystem using
the adversary A.

A Security of the Cryptosystem

Before proving the security of the cryptosystem a lemma stating that
using only Qn does not degrade the security of the Damg̊ard-Jurik
cryptosystem.

Lemma 2. The Damg̊ard-Jurik cryptosystem using r ∈ Qn is as
semantically secure, with respect to definition 1, as the cryptosystem
where r ∈ Z∗

n.

Proof. To show that the security is equivalent, assume an adversary
A exits, that can break the semantically security of the quadratic
cryptosystem. Then the adversary A′ shown in figure 1 breaks the
original cryptosystem.

Given an encryption of the message m, the ciphertext c′ generated
by A′ will be a legal encryption of m with an uniform distribution
of the random r, which follows from:

(c(n + 1)−m)2(n + 1)m = (rns

(n + 1)m−m)2(n + 1)m

= (r2)ns

(n + 1)m

= Es(m, r2) mod ns+1

In the case that m̂ is chosen uniformly random from the message
space Zns the resulting c’ is

(c(n + 1)−m)2(n + 1)m = (rns

(n + 1)m̂−m)2(n + 1)m

= r2ns

(n + 1)2m̂−m

= Es(2m̂ − m, r2) mod ns+1
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Because gcd(2, n) = 1, the function 2m̂− m is a 1-1 permutation of
Zns . So the new encryption will be uniformly random in Zns since m̂
is. The probabilities for A′ are p0(A′, k) = p0(A, k) and p1(A′, k) =
p1(A, k), which means that the advantage of A′ is the same as for
A. ut

Given the lemma it is easy to prove that the dual key cryptosystem
is semantically secure.

Theorem 5 (Semantically Security). Under the conjectures 1
(DCRA) and 2 (composite-DDH) the cryptosystem is semantically
secure with respect to definition 1.

Proof. The proof is done in a 3 step hybrid reduction using the
composite-DDH conjecture and the semantical security of the Qua-
dratic variant of the Damg̊ard-Jurik cryptosystem (DCRA). Given
the public key (n, g, h), the following 4 pairs are indistinguishable
under conjecture 1 and 2:

1. (gk mod n, (hk)ns
(n + 1)m mod ns+1)

2. (gk mod n, (r)ns
(n+1)m mod ns+1), where r is uniformly random

in Qn

3. (gk mod n, (r)ns
(n + 1)m′

mod ns+1), where m′ is random in Zns

4. (gk mod n, (hk)ns
(n + 1)m′

mod ns+1)

If tuple 1 and 4 are indistinguishable then the dual key system is se-
mantically secure following the definition. If an adversary can distin-
guish between tuple 1 and 4 with advantage ε > 1

f(k)
for some poly-

nomial f(k), there will be an adversary able to distinguish between
a pair of consecutive tuples with probability larger than ε′ > 1

3f(k)
.

Each of the 3 pairs are shown below to be indistinguishable, thereby
showing that an adversary between the tuples 1 and 4 cannot exist.

The pairs 1 and 2 are indistinguishable due to a reduction to
composite-DDH. Assuming an adversary B having a non-negligible
advantage of distinguishing pairs 1 and 2, an adversary B′ can be
built that will break composite-DDH with the same advantage. The
algorithm for the adversary B′ can be seen in figure 2.

The 2 cases of y in the composite-DDH correspond to tuple 1
and 2 respectively:
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Adversary B′:

1. Get the composite-DDH tuple: (n, g, ga, gb, y).
2. Give the public key (n, g, h := ga) to B.
3. Get message m from B.
4. Give the encryption (gb, yns

(n + 1)m mod ns+1) to B.
5. Get the bit b from B.
6. Return b.

Fig. 2. Algorithm for adversary B′ that break composite-DDH given adversary B.

y = gab: Here y = gab = (ga)b = hb, which is the value used in tuple
1.

y uniformly random in Qn: This is a random value as in tuple 2.

Thereby tuple 1 and 2 are indistinguishable under the composite-
DDH assumption.

That pair 2 and 3 are indistinguishable follow directly from the
fact that the quadratic Damg̊ard-Jurik system is semantically secure
under DCRA. The encryption rns

(n+1)m mod ns+1 of a message m is
indistinguishable from the encryption of a random message m′ ∈ Zns :
rns

(n + 1)m′
mod ns+1.

The pairs 3 and 4 are indistinguishable following the same reduc-
tion as from 1 to 2. ut

B Optimization of the cryptosystem

In the description of the cryptosystems (and the mix-net) the no-
tation (h4∆2r)ns

mod ns+1 have been used for the simplicity of the
scheme. However, the number of bit operations needed to calculate
this is O((sk)3) = O(|msg|3), where k is the security parameter of
n and |msg| is the length of the messages encrypted. It is however
easy to transform this into something that can be computed more
easily by using the following equality:

(h4∆2r)ns

= (h4∆2ns

)r mod ns+1

The important thing to note is that the value h4∆2ns
is fixed for a

given s. This means that the value h∗
s = h4∆2ns

mod ns+1 can be
calculated by the decryption servers in advance and passed along
with the public key.
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Another nice attribute is that given the value h∗
s, it is possible in

time O(s2k3), to compute h∗
s+1 by the following method:

h∗
s+1 = (h∗

s mod ns+1)n mod ns+2

which works because

(h∗
s mod ns+1)n = (h4∆2ns

+ kns+1)n

= h4∆2ns+1

+ (h4∆2ns

)n−1

(
n

1

)
kns+1

+ (h4∆2ns

)n−2

(
n

2

)
k2n2(s+1) + ...

= h4∆2ns+1

= h∗
s+1 mod ns+2

This means that all exponentiations of h in the encryption and de-
cryption (and for mixing, proving and verifying in the mix-net) can
be reduced in complexity from O(s3k3) to O(s2k3) if the s′ used is
within a constant larger than a s used for a public generator value
h∗

s.
The encryption also has an exponentiation of the form (n + 1)m,

which can be computed using the formula

(n + 1)m = m +

(
n

1

)
(m − 1)n + ... +

(
n

s

)
(m − s)ns mod ns+1

thus achieving complexity O(s3k2) as shown in [14].
The only exponentiation that cannot be optimized is the last

public exponentiation of the combined server decryption value. The
reason is that the base of the exponentiation in this instance is not
fixed.
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