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A Semantic Theory for Value–Passing Processes

Based on the Late Approach

Anna Ingólfsdóttir

BRICS∗

Department of Computer Science
Aalborg University, Denmark

Abstract

A general class of languages for value-passing calculi based on the late semantic ap-
proach is defined and a concrete instantiation of the general syntax is given. This is a
modification of the standard CCS according to the late approach. Three kinds of se-
mantics are given for this language. First a Plotkin style operational semantics by means
of an applicative labelled transition system is introduced. This is a modification of the
standard labelled transition system that caters for value-passing according to the late
approach. As an abstraction, late bisimulation preorder is given. Then a general class
of denotational models for the late semantics is defined. A denotational model for the
concrete language is given as an instantiation of the general class. Two equationally based
proof systems are defined. The first one, which is value-finitary, i. e. only reasons about a
finite number of values at each time, is shown to be sound and complete with respect to
this model. The second proof system, a value-infinitary one, is shown to be sound with
respect to the model, whereas the completeness is proven later. The operational and the
denotational semantics are compared and it is shown that the bisimulation preorder is
finer than the preorder induced by the denotational model. We also show that in general
the ω-bisimulation preorder is strictly included in the model induced preorder. Finally
a value-finitary version of the bisimulation preorder is defined and the full abstractness
of the denotational model with respect to it is shown. It is also shown that for CCSL

the ω-bisimulation preorder coincides with the preorder induced by the model. From this
we can conclude that if we allow for parameterized recursion in our language, we may
express processes which coincide in any algebraic domain but are distinguished by the
ω-bisimulation. This shows that if we extend CCSL in this way we obtain a strictly more
expressive language.

1 Introduction

In the original work of Milner on CCS [Mil80] and Hoare on CSP [Hoa78], processes are allowed
to exchange data in communications. In these original calculi the value-passing calculus is
interpreted in terms of the pure calculus in which communication is pure synchronization.
A process which is ready to input a value on a channel c (e. g. a prefixing with an input
action, c?x.p) is interpreted as a non-deterministic choice between pure terms of the form

∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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cv.p[v/x], where v ranges over the set of possible values, which in many cases is infinite. In
this approach, two processes that synchronize are both supposed to know each other’s channel
and value, i.e. the data variable is instantiated by the potential input values already when
the process reports the willingness or ability to communicate on the channel c.

In more recent work on the π-calculus [MPW92] this semantic approach is referred to as
early semantics due to the early instantiation of the data variables as described above. Its
counterpart, the late semantics, is also introduced in the same reference. Here the idea is that
the processes only synchronize on the channel name and that the input process has to accept
whatever value the output process has to offer. This may be interpreted as if the result of the
instantiation of the data variable is delayed until the process has received the value. The input
process reports the willingness to receive a value on a channel c by performing an action of the
form c? and thereby evolving to a function which waits for the value the output counterpart in
the communication provides. Symmetrically the result of reporting the willingness to output
an uninterpreted value on the channel c is given by the action c!. By performing this action
the process evolves to a term which basically consists of a data expression, i.e. the expression
whose value the sender wants to output, and a process expression, i.e. what remains to be
executed of the sender.

In a more recent version of the π-calculus, the Polyadic π-calculus presented in [Mil91],
the outcomes of input and output actions are modelled by extending the syntax with the new
constructions abstractions and concretions. The semantics for Thomsen’s plain CHOCS in
[Tho89] is based on the late approach although the author does not use that terminology.

In the literature the late semantic approach has been investigated in different ways, both
in connection with the π-calculus and higher order calculi (see e.g. [MPW91, Hen94, San93])
and also with the main focus on the simpler case where only first order values are allowed
(see e.g. [HL93a, HL93b, Ing93]). In this paper we will aim at contributing to the studies
of the late semantics of communicating processes. We will concentrate on processes which
allow for transmission of simple values only. Of course studying value-passing processes is
interesting in itself, but we also believe that it may give some insight into the nature of the
semantics of value passing processes, in particular the late semantic approach, which may be
useful in future studies of the semantics of the more complicated calculi of higher order or
mobile processes (such as the π-calculus).

In order to make our studies more complete, rather than giving only one type of semantics,
we follow the line of [Hen88a] and [HI93] and introduce a trinity of semantic descriptions for
a CCS like process language and show how they relate to one another. More precisely, first
we put forward an operational or behavioural semantics in terms of an extended version of
labelled transition systems and corresponding bisimulation based relations. Then we give
a denotational semantics following the Scott-Strachey approach, and axiomatic semantics
by means of equationally based proof systems. Like many researchers in the area of process
algebra we believe that the operational or the behavioural semantic model is the most natural
and intuitive one, but that different kinds of semantic descriptions give important alternative
views of the nature of the interpretation of process languages. For instance the interpretation
of an infinite process, modelled by an algebraic cpo, is fully specified by the interpretation
of its finitely computable approximations. This is not the case for many behaviourally based
semantics as will be explained in more detail later.

We start the study of the late semantic approach by defining a general class of syntax
for languages that support this approach. To this end we extend the standard notion of a
signature Σ, a set of syntactic operators, to that of applicative signature (Σ, C) where Σ is a
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signature in the original sense and C is a set of channel names. Then we define a concrete
language Late-CCS (CCSL) by instantiating the general applicative signature (Σ, C). This
language is a slight modification of the standard CCS where the syntax is basically the same as
for the Polyadic π-calculus although we use a slightly different notation and only allow for the
transmission of simple values in communications. Then we will give a behavioural semantics
to the language CCSL in terms of a Plotkin style operational semantics and a bisimulation
based preorder. Our main aim is to relate the behavioural view of processes we present here
to the domain-theoretical one. In the Scott-Strachey approach an infinite process is obtained
as a chain of finite and possibly partially specified processes. The completely unspecified
process is modelled by the bottom element of the domain and is syntactically denoted by the
constant Ω. An operational interpretation of this approach is to take divergence into account
and give the behavioural semantics in terms of a prebisimulation or bisimulation preorder
[Hen81, Wal90] rather than by the standard bisimulation equivalence [Par81, Mil83].

To reflect the late approach, the operational semantics is given in terms of an applicative
transition system, a concept that is a modification of that defined in [Abr90]. We generalize
the notion of bisimulation [Par81, Mil83] to be applied to applicative transition systems and
introduce a preorder motivated by Abramsky’s applicative bisimulation [Abr90]. To this
end we first introduce the notion of strong applicative prebisimulation and the corresponding
strong applicative bisimulation preorder. Following standard practice this preorder is obtained
as the largest fixed point of a suitably defined monotonic functional.

Next we define a general framework for denotational semantics for value-passing processes
using the late principle. For this purpose we introduce the general class of applicative (Σ, C)-
domains to model the semantics of the (Σ, C)-terms. These are a direct generalization of
Σ-domains originally introduced in [GTWW77] and used for instance in [Hen88a] to model a
pure calculus. In the denotational interpretation of a language in terms of a (Σ, C)-domain,
the idea of the late semantic approach is made explicit; the outcome of an input action is
modelled as a function which takes a value as an argument and returns an element of the
model, i.e. a process, whereas the outcome of an output action is modelled by a pair consisting
of the output value and the resulting process.

After having defined our general class of models, we will modify the definition of eval-
uation mapping, i.e. the unique mapping from the process algebra into the domain known
from the theory for pure processes. As we want to be able to reason about a subset of the
process algebra, we extend the definition slightly. For this purpose we introduce the notion
of recursively closed subsets of a process algebra. This extension of the definition allows us
to reason about the compact elements of an algebraic cpo at the syntactic level by means of
structural induction. This enables us to take advantage of the notion of algebraicity when
comparing the semantics defined by the model to other kinds of semantics such as behavioural
or axiomatic semantics.

Then we define a concrete denotational model for CCSL, the domain of Applicative Com-
munication Trees (ACT ) as an instantiation of the general class of (Σ, C)-domains, where Σ
is the signature consisting of the operators of CCSL. The model ACT is obtained by defining
a preorder K, which acts as a representation of the compact elements of the complete model.
Then we define the operators of Σ and C as monotonic functions over this preorder. Finally
we apply a general result (that, for instance, can be found in [Hen88a]) that says that a
preorder with monotonic operators induces a unique structure consisting of the algebraic cpo
obtained as completion by ideals of the preorder and the corresponding unique continuous
extension of the operators.
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By defining the operators in this way, i.e. first as monotonic endofunctions on the pre-
order that represents the compact elements and then extending them in a continuous way
to the whole domain, we ensure that they preserve compactness. By this we mean that the
result of applying an operator to a compact element is again a compact element. From an
intuitive point of view this is an important property; the compact elements represent the
finitely computable elements of the domain so if we expect an operator op to be finitely
computable, applying it to something finitely computable should again result in something
finitely computable. Note that this property is not automatically satisfied in an applicative
(Σ, C)-domain, or even a Σ-domain, as a continuous function does not necessarily map a
compact element into a compact element.

The definition of our model is motivated by the following models that have been studied
in the literature. In 1979, Milne and Milner [MM79] gave a domain theoretical definition of
the concept of communicating processes. This definition reflects the late semantic approach
described above. Each process has a collection of typed ports through which it may commu-
nicate with other processes. There are two types of communications: input and output. If
we abstract away from the types of the possible values then the input capability of a process
p along a channel c is modelled as an element of the domain V −→ P labelled by the channel
name c, where the domain of processes is denoted by the cpo P and the domain of values by
V . An output capability of p on c, on the other hand, is modelled as an element of V × P
labelled by c. A process is modelled as a set of communication capabilities or more precisely
as an element of the Smyth Power Domain [Smy78] over the domain of communication ca-
pabilities. The empty set is embedded into the domain in such a way that it becomes the
top element of the domain. This leads to a recursive domain equation over a suitable class of
domains. The domain of processes is then defined as the initial solution to this equation.

In [Abr91] Abramsky pointed out a disadvantage of this model: The use of the Smyth
Power Domain to model communicating processes rules out the possibility of any correspon-
dence with bisimulation as it only compares the processes in one direction, i. e. if the process
p is smaller than the process q in the preorder then q simulates p, given that p is conver-
gent, but not necessarily the other way around. Also the embedding of the empty set, which
corresponds to the inactive and convergent process nil as the top element of the model, is
intuitively incorrect as in the bisimulation based semantics, this process is not related to any-
thing but itself and the inactive divergent process Ω. In the same reference the author defined
a model to describe the semantics of pure processes. This model is similar to the model of
[MM79] and is also obtained as the initial solution to a recursive domain equation. The main
difference is that Abramsky, instead of the Smyth Power Domain, defined his model in terms
of the Plotkin Power Domain which is based on comparison both ways; p is smaller than q if
q simulates p and, in the case when p converges, p simulates q too. He added the empty set
to the model as an isolated element only comparable with itself and the bottom element of
the model in the obvious way. This also corresponds to the bisimulation interpretation of the
process nil. Abramsky then interpreted the calculus SCCS in the model and showed the full
abstractness of this interpretation with respect to a bisimulation based preorder.

In the paper we show that the model we define is basically the one presented in [MM79]
where the modifications of Abramsky’s are adopted. Thus we define a model which describes
value-passing based on the late approach as a solution to a recursive domain equation using
the Plotkin Power Domain but with the empty set adjoined as an isolated element. Then
we give an explicit representation of the compact elements of the solution by unfolding the
recursive definition and show that it coincides with the preorder K. This in turn implies that
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the two domains we have defined so-far in two different ways are isomorphic.
The definition of the denotational model supports in a natural way systems of equations

and inference rules. We define two such proof systems and prove their soundness and com-
pleteness with respect to the model. The two system are based on the same set of equations
and only differ in the way the infinite terms are dealt with. In the first one, the value-finitary
one, we make an extensive use of the ω-algebraicity of the model and say that t is provably
smaller than u, written t v u, if t(n) v u can be proven for all n where t(n) is a compact
approximation of t, i. e. t(n) is a syntactically finite term that that only reasons about the
first n values of the value space (which we take to be countable) and is interpreted as a
compact element in the model. Then the ω-algebraicity of the model, together with the fact
that the operators preserve compactness, enables us to reduce the proof of completeness and
soundness of this proof system to a proof of the same property for the sublanguage which
denotes exactly the compact elements of the model.

The second proof system, the value-infinitary one, is maybe more standard and is ob-
tained from the first one by replacing the compact approximations t(n) by the usual syntactic
approximations tn which may involve reasoning about an infinite number of values and are
therefore not necessarily interpreted as compact elements in the model. The soundness of
this system is obvious as it is weaker than the previous one. To prove the completeness, on
the other hand, turns out to be more complicated and is in the paper postponed until the
operational semantics is investigated. This will be explained later in this introduction.

Our next task is to compare the behavioural and the denotational semantics. One of the
results in the pure case presented in [Abr91] is that the denotational model given in that
reference is not fully abstract with respect to the bisimulation preorder which turns out to
be too fine. Intuitively this is due to the algebraicity of the model and the fact that the finite
elements in the model are denotable by syntactically finite terms. The algebraicity implies
that the denotational semantics of a process is completely decided by the semantics of its
syntactically finite approximations, whereas the same cannot be said about the bisimulation
preorder. In fact we need experiments of infinite depth and width to investigate bisimulation
while this is not the case for the preorder induced by the model as explained above. An
obvious consequence of this observation is that in general, a bisimulation preorder cannot be
expected to be modelled by an algebraic cpo given that the compact elements are denotable
by syntactically finite elements.

In [Hen81] Hennessy defined a term model for SCCS. This model is ω-algebraic and, as
expected, fails to be fully abstract with respect to the strong bisimulation preorder. In the
same reference the author introduces the notion of “the finitary part of a relation” and “a
finitary relation”. The finitary part of a relation R over processes, denoted by RF , is defined
by

pRF q iff ∀d.dRp ⇒ dRq
where d ranges over the set of syntactically finite processes. A relation R is finitary if RF = R.
Intuitively this property may be interpreted as algebraicity at the behavioural level provided
that syntactically finite terms are interpreted as compact elements in the denotational model;
if a relation is finitary then it is completely decided by the syntactically finite elements. The
“finitary part” of the bisimulation preorder is in [Abr91] referred to as the “finitely observable
part” of the preorder. In both [Hen81] and [Abr91] the full abstractness of the respective
denotational semantics with respect to <∼

F are shown. In [Abr91] it is also shown that if the
language is sort finite and satisfies a kind of finite branching condition, then <∼

F =<∼ω where <∼ω
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is the strong bisimulation preorder induced by experiments of finite depth, i.e. the preorder is
obtained by iterated application of the functional that defines the bisimulation. Note that in
general the preorder <∼ is strictly finer than the preorder <∼ω. However if the transition system
is image finite, i.e. if the number of arcs leading from a fixed state and labelled with a fixed
action is finite, then these two preorders coincide.

We show by an example that the bisimulation preorder is not finitary in the sense described
above and is strictly finer than the preorder induced by the model. Next we define the strong
applicative ω-bisimulation preorder for applicative labelled transition systems in the standard
way by iterative application of the functional that induces the bisimulation preorder. This
gives as a result a <∼ω preorder which in general is still too fine to match the preorder induced
by the denotational model. This we demonstrate by an example given in a language which
is a slight extension of our example language as it allows parameterized recursive definitions.
Intuitively the reason for this mismatch is that we still need infinite experiments to decide the
operational preorder, now because of an infinite breadth as an infinite number of values might
need to be observed. In other words, the preorder of the model is value-finitary whereas the
preorder <∼ω is not.

By an example, given in the language CCSL extended with parameterized recursion, we
show that, considered on the class of applicative labelled transition systems, the behavioural
preorder vω and a preorder induced by any algebraic cpo cannot coincide.

Motivated by the observations above we give a suitable definition of the notion of the
“finitary part”, which we refer to as the emvalue-finitary part, of the bisimulation preorder
to meet the preorder induced by the denotational model. We define the so-called compact
terms as the syntactically finite terms which only test and use a finite number of values. We
also show that these terms correspond exactly to the compact elements in the denotational
model in the sense that an element in the model is compact if and only if it can be denoted by
a compact term. This motivates a definition of the value-finitary part <∼

F of the bisimulation
preorder <∼ by

p <∼
F
q iff ∀c. c <∼ p⇒ c <∼ q

where c ranges over the set of syntactically compact terms. We also define yet another
preorder <∼

f
ω, a coarser version of <∼ω in which we only consider a finite number of values at

each level in the iterative definition of the preorder. Here it is vital that the set of values is
countable and can be enumerated as V al = {v1, v2, · · ·}. Thus in the definition of <∼

f
1 we only

test whether the defining constraints of the preorder hold when the only possible input and
output value is v1, and in general in the definition of <∼

f
n we test the constraints for the first n

values only. (Here we would like to point out that a similar idea originally appears in [HP80].)
It turns out that <∼

f
ω is the finitary part of <∼ in our new sense and that the model is fully

abstract with respect to <∼
f
ω. We will prove both these results in this paper using techniques

which are similar to those used by Hennessy in the aforementioned reference [Hen81]. We also
prove that the value-infinitary proof system, i. e. the one based on the syntactically finite
approximations is complete with respect to the preorder <∼ω. Finally we compare the value-
finitary and the value-infinitary semantics over our example language CCSL by proving that
the ω-bisimulation preorder <∼ω coincides with the preorder from the model. Thus we have
proven that all the semantic preorders we have considered so far, apart from the bisimulation
preorder <∼, coincide over this language.

As pointed out above, the example that shows that the preorder <∼ω in general does not
coincide with the preorder induced by the denotational model, is given in the language CCSL
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extended in such a way that recursive definitions can be parameterized over value expressions.
The reasoning above shows that this extended language is strictly more expressive than the
original one.

The structure of the paper is as follows: In Section 2 we define a general syntax for value-
passing languages that support the late semantic approach. The definition of the operational
semantics and the notion of applicative bisimulation are the subject of Section 3. In Section
4 we define the general class of (Σ, C)-domains and our concrete denotational model. In
Section 5 we give a equationally based value-finitary proof system and prove its soundness
and completeness with respect to the model. We also define a value-infinitary version of the
system and prove that it is sound with respect to the model. Section 6 contains two examples
that distinguishes the preorder v

ACT from <∼ and <∼ω respectively. These examples are followed
up by the definition of the value-finitary preorder <∼

f
ω. In Section 7 we give a definition of the

notion of the value-finitary part of a relation and a value-finitary relation over processes. In
the same section we prove that the preorder <∼

f
ω is value-finitary and that it coincides with

the value-finitary part of the preorder <∼. Then we prove the soundness and the completeness
of the value-finitary proof system with respect to the value-finitary bisimulation preorder <∼

f
ω

and of the value-infinitary system with respect to <∼ω. Finally we prove that the model is fully
abstract with respect to <∼ω, i. e. that the preorder from the model coincides with <∼ω. From
this we can conclude that all five preorders mentioned above coincide. In Section 8 we give
some concluding remarks.

2 Syntax

In this section we will extend the standard notion of a signature Σ and that of Σ-terms
used for the pure calculus in order to model processes with value-passing based on the late
approach. To this end we introduce the notion of applicative signature as a pair (Σ, C) where
Σ is a signature and C is a set (of channel names), and that of (Σ, C)-terms.

The general syntax is based on predefined expression languages for value expressions and
boolean expressions. Thus we assume some predefined syntactic category of expression Exp,
ranged over by e, including a countable, unordered set of values V al, ranged over by v, and a
set of value variables V ar, ranged over by x. We also assume a predefined syntactic category
BExp of boolean expressions, ranged over by be, with the only values T (true) and F (false).
BExp should at least include a test for equality between the elements of Exp. From such a
predicate a test for membership of a finite set can easily be derived. Value expressions are
supposed to be equipped with a notion of substitution of an expression for a value variable,
denoted by e[e′/x], and an evaluation function [[ ]] : Exp × VEnv −→ V al, where VEnv is
the set of value environments σ : V ar −→ V al. For closed expression we write [[e]] instead of
[[e]]σ. Furthermore we preassume an infinite set of process names PN , ranged over by P , Q,
etc, to be used in recursively defined terms. The set of (Σ, C)-terms is given as the triplet

T(Σ,C) = (T proc
(Σ,C), T

fun
(Σ,C), T

pair
(Σ,C))

of the sets generated by Σ and C according to the following syntax:

T proc
(Σ,C) : p ::= op(p), op ∈ Σ c?.f c!.o τ.p be→ p, p′,
T fun

(Σ,C) : f ::= [x]p,
T pair

(Σ,C) : o ::= (e, p),
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where we use the notation p to denote a vector of terms in T proc
(Σ,C) of a suitable length. We let t

range over the union of these three categories and f and o over T fun
(Σ,C) and T pair

(Σ,C) respectively.
To express recursive or infinite processes we add the process names in PN , ranged over by
P , and the recursive binding recP. , to the syntax and write T rec

(Σ,C)(PN) for the resulting
triplet of (Σ, C)-terms.

We have three kinds of actions, input actions of the form c?, c ∈ C, output actions of the
form c!, c ∈ C and the silent action τ . We write C? for {c?|c ∈ C} and C! for {c!|c ∈ C}.
The set Act = C! ∪ C? is ranged over by a whereas Actτ = C! ∪ C? ∪ {τ} is ranged over
by µ. The structure of this syntax is basically the same as the one suggested by Milner in
[Mil91] although the notation is slightly different. The action of inputting on channel c is
given by c? whereas the action of outputting on that channel is given by c!. The function
terms are of the form [x]p, where x is a data variable and p a process term. These correspond
to the abstractions in the aforementioned reference. The input prefixing becomes c?.[x]p. The
pair terms are of the form (e, p), where e is a data expression and p a process term. These
correspond to the concretions in [Mil91]. The output prefixing becomes c!.(e, p). We also
assume that we have a set of operators Σ, which is supposed to contain at least the symbol Ω
to model the divergent or completely unspecified process. The processes are obtained by the
input and output prefixing just described, prefixing with the silent action τ and by applying
the operators in Σ. We use the notation be −→ p, p′ to denote the standard conditional choice
usually written as “If be then p else p′ ”.

Prefixing by [x] binds the data variable x and the recP. construct is a binding construct
for the process name P . A value variable x is free if it is not in the scope of a prefix [x] and
a process name P is free if it is not in the scope of a recursion construct recP. . We shall
mainly be concerned with expressions which contain no free occurrences of value variables.
We denote the set of all value closed terms, process terms, functions terms and pair terms by
T(Σ,C)(PN), Tproc

(Σ,C)(PN), Tfun
(Σ,C)(PN) and Tpair

(Σ,C)(PN) respectively. These will be referred
to as processes, functions and pairs ranged over by p, f and o. We assume a notion of
substitution for both data variables and process names in terms defined in the usual way.

The language CCSL = (CCSproc
L ,CCSfun

L ,CCSpair
L ) (Late-CCS), ranged over by t, p, f, o

respectively, is obtained by taking Σ as {nil,Ω,+, |}∪{ R|R ∈ Ren}∪{−\c|c ∈ Chan} where
Ren is the set of finite1 permutations of Chan (the set PN is not indicated and is implicitly
assumed to be known). The process nil is the convergent, inactive process, Ω is the completely
unspecified or divergent one, p+q is a nondeterministic choice between p and q, p|q is a parallel
composition of p, q, p[R], p renamed by R, stands for the process p with its channels renamed
by R and p\c, p restricted on c, behaves like p apart from not being allowed to communicate on
channel c. The corresponding closed terms CCSL = (CCSproc

L ,CCSfun
L ,CCSpair

L ) are again
ranged over by t,p,o, f respectively. We let d range over syntactically finite or recursion free
closed terms. Note that f = [x]p can be considered as a function by using the convention
f(v) = ([x]p)(v) = p[v/x] where v ∈ V al.

In the theory to follow we will make an extensive use of the fact that the value domain
V al is countable and can therefore be written as V al = {v1, v2, v3, . . . , }. By defining Vn =
{v1, . . . , vn} we get that V al =

⋃
n Vn. From now on Vn will have this meaning.

1This restriction is of technical reasons which are not going to be explained further here.
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3 Operational Semantics

The operational semantics is given in terms of an applicative transition system, a slight
modification of a notion originally suggested by Abramsky [Abr90]. An applicative transition
system models the idea of looking at an input term as a prefixing of a function which is ready
to receive values along the prefixing channel. Furthermore it reflects the idea of looking at
an output term as a prefixing of a pair consisting of the value and the resulting process.

Definition 3.1 An applicative labelled transition system (ALTS) is a five tuple AT =
〈Con, V al,Act,−→, ↓〉 where

• Con is a set of configurations,

• V al is a set of Values,

• Act = ActCon ]ActPair ]ActFun is a set of actions,

• −→ is a transition relation

−→⊆ (Con×ActCon × Con)∪
(Con×ActPair × (V al × Con))∪
(Con×ActFun × (V al −→ Con)) and

• ↓⊆ Con is a convergence predicate.

We refer to States = Con ∪ (V al ×Con) ∪ (V al −→ Con) as the set of states. 2

Now we will define the so-called strong applicative prebisimulation (sa-prebisimulation) as
a further abstraction on the applicative transition system. More precisely we define it as the
greatest fixed point to a monotonic endofunction on the complete lattice 〈P(Con×Con),⊆〉.
For this purpose we extend our notion of relations over configuration so they apply to states.
Given a binary relation over Con we extend it pointwise to V al × Con by

for all c1, c2 ∈ Con and v1, v2 ∈ V al, (v1, c1)Rpair(v2, c2) iff c1Rc2 and v1 = v2

and to V al −→ Con by

for all f1, f2 ∈ V al −→ Con, f1 Rfun f2 iff f1(v)Rf2(v) for all v ∈ V al.

For any s, s′ ∈ States we write sRs′ if sRs′ or sRpairs′ or sRfuns′ depending on the types
of s and s′.

Definition 3.2 Let AT = 〈Con, V al,Act,−→, ↓〉 be an ALTS. We define F : P(Con ×
Con) −→ P(Con × Con) by:

if R ⊆ Con× Con then c1F(R)c2 iff for all µ ∈ Act
(i) c1

µ−→ s1 implies c2
µ−→ s2 for some s2 such that s1Rs2,

(ii) c1 ↓ implies (c2 ↓ and whenever c2
µ−→ s2 then c1

µ−→ s1 for some s1 such
that s1Rs2),

where s1, s2 ∈ States.
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Obviously F defined in this way is a monotonic endofunction over the complete lattice
〈P(Con × Con ),⊆〉. Thus the Knaster-Tarski fixed point theorem [Tar55] applies and the
greatest fixed point to F exists. We may therefore give the following definition:

Definition 3.3 (Strong Applicative Prebisimulation)
Let AT = 〈Con, V al,Act,−→, ↓〉 be an applicative labelled transition system and F be defined
as in Definition 3.2. Then R ⊆ P(Con×Con) is called a prebisimulation if it is a post-fixed
point to F , i.e. if R ⊆ F(R). We define the strong applicative bisimulation preorder <∼ as the
greatest fixed point to F , i.e.

<∼=
⋃

{R|R ⊆ F(R)}.
We define the strong applicative bisimulation equivalence as ∼=<∼ ∩ <∼

−1.

2

Similar results as for the pure case also hold here and are simply restated in the following
lemma.

Lemma 3.4

1. <∼ is a preorder,

2. ∼ is an equivalence relation.

So far we have given a definition of <∼ on an abstract ALTS. Now we define a concrete ALTS
by taking Con to be CCSproc

L as generated by the syntax in Section 2, where, as pointed
out before, CCSfun

L may be considered as a subset of V al −→ CCSproc
L . We let −→ be the

least transition relation closed under the rules of Figure 1 and the convergence predicate ↓
to be the least relation on CCSproc

L satisfying the rules in Figure 2. As usual the divergence
predicate ↑ is defined as the complement of ↓.

The basic rule for input has the form c?.[x]p c?−→ [x]p, the one for output is c!.(v,q) c!−→
(v,q) and that for communication expresses the fact that synchronization takes the form of
functions application:

p c?−→ f ,q c!−→ (v,q′)
p|q τ−→ f(v)|q′ .

As an example of an application of the inference rules, let us have a look at the processes given
by Ω and recP.P . By inspection of the rules it is not difficult to see that neither of them can
be proven to be convergent which means that they both are divergent. Furthermore we can
also see that neither of them can perform any action and therefore they must be equivalent
according to the late strong bisimulation semantics.

The bisimulation preorder <∼ defined on the ALTS as described above satisfies:

Theorem 3.5

1. <∼ is a pre-congruence with respect to the operators in Σ.

2. (a) For all p1,p2, p1
<∼ p2 implies τ.p1

<∼ τ.p2.

10



(input) c?.f c?−→ f

(output) c!.(e,p) c!−→ (v,p), [[e]] = v

(tau) τ.p τ−→ p

(ren)
p c?−→ [x]p′

p[R]
R(c)?−→ [x](p′[R])

p c!−→ (v,p′)

p[R]
R(c)!−→ (v,p′[R])

p τ−→ p′

p[R] τ−→ p′[R]

(res)
p c?−→ [x]p′

p\c′ c?−→ [x](p′\c′)
, c 6= c′

p c!−→ (v,p′)

p\c′ c!−→ (v,p′\c′)
, c 6= c′

p τ−→ p′

p\c′ τ−→ p′\c′

(choice)
p

µ−→ ct

p + q
µ−→ ct

(par)
p c?−→ [x]p′

p | q c?−→ [x](p′ | q)

p c!−→ (v,p′)

p | q c!−→ (v,p′ | q)

p τ−→ p′

p | q τ−→ p′ | q

(com)
p c?−→ [x]p′, q c!−→ (v,q′)

p | q τ−→ p′[v/x] | q′

(cond)
p

µ−→ ct

(be −→ p,q) µ−→ ct
[[be]] = T

q
µ−→ ct

(be −→ p,q)
µ−→ ct

[[be]] = F

(rec)
p[recP.p/P ] µ−→ p′

recP.p
µ−→ p′

Figure 1: Operational semantics for CCSL; (choice), (par) and (com) have symmetric coun-
terparts.

nil ↓
p ↓,p′ ↓
p + p′ ↓

p ↓,p′ ↓
p | p′ ↓

p ↓
p\c ↓

p ↓
p[R] ↓

p[Ω/P ] ↓
recP.p ↓

[[be]] = T,p1 ↓
be −→ p1,p2 ↓

[[be]] = F,p2 ↓
be −→ p1,p2 ↓

Figure 2: The convergence predicate

11



(b) For all c ∈ Chan and o1,o2, o1
<∼ o2 implies c!.o1

<∼ c!.o2.
(c) For all c ∈ Chan and f1, f2, f1 <∼ f2 implies c?.f1 <∼ c?.f2.

3. (a) For all p1, p2 ∈ CCSproc
L with {y|y free value-variable in p1, p2} ⊆ {x}, whenever

p1[v/x] <∼ p2[v/x] for every v ∈ V al then [x]p1
<∼ [x]p2.

(b) For all p1,p2 and v, p1
<∼ p2 implies (v,p1) <∼ (v,p2).

Proof

1. We have to prove that for any operator op ∈ Σ, p <∼ q ⇒ op(p) <∼ op(q). We will only
prove the statement for the case op = | , leaving the remaining cases to the interested
reader to check.

So assume p1
<∼ p2 and q1

<∼ q2. This means that there are sa-prebisimulations Rp and
Rq such that (p1,p2) ∈ Rp and (q1,q2) ∈ Rq. We define

Rp|Rq = {(p′
1|q′

1,p
′
2|q′

2) (p′
1,p

′
2) ∈ Rp, (q′

1,q
′
2) ∈ Rq}.

As (p1|q1,p2|q2) ∈ Rp|Rq it is sufficient to show that Rp|Rq is a sa-prebisimulation.
To prove this we proceed as follows:

(a) Assume that (p′
1|q′

1,p
′
2|q′

2) ∈ Rp|Rq and that p′
1|q′

1
µ−→ r1. We only consider the

following cases:

i. µ = c?, p′
1

c?−→ [x]p′′1 and r1 = [x](p′′1 |q′
1). Now there is a [y]p′′2 where p′

2
c?−→

[y]p′′2 and ([x]p′′1 , [y]p′′2) ∈ Rfun, i.e. for all v ∈ V al, (p′′1 [v/x], p′′2 [v/y]) ∈ Rp. As
q′

1 and q′
2 do not contain free value-variables this implies that for all v ∈ V al

((p′′1 |q′
1)[v/x], (p

′′
2 |q′

2)[v/y]) = ((p′′1 [v/x]|q′
1), (p

′′
2 [v/y]|q′

2)) ∈ Rp|Rq.

This shows that ([x](p′′1 |q′
1), [y](p

′′
2 |q′

2) ∈ (Rp|Rq)fun. Furthermore p′
2|q′

2
c?−→

[y](p′′2 |q′
2).

ii. µ = τ , p′
1

c?−→ [x]p′′1, q′
1

c!−→ (v,q′′
1) and r1 = p′′1[v/x]|q′′

1 . Then p′
2

c?−→
[y]p′′2 where ([x]p′′1 , [y]p′′2) ∈ Rfun

p , i.e for all v ∈ V al, (p′′1[v/x], p′′2 [v/y]) ∈ Rp.

Furthermore q′
2

c!−→ (v′,q′′
2) where ((v,q′′

1), (v′,q′′
2) ∈ Rpair

q , i.e. where v =
v′ and (q′′

1 ,q
′′
2) ∈ Rq. This implies that (p′′1 [v/x]|q′′

1 , p
′′
2[v/y]|q′′

2) ∈ Rp|Rq.
Furthermore p′

2|q′
2

τ−→ p′′2[v/y]|q′′
2 .

(b) Next assume that p′
1|q′

1 ↓. This implies that p′
1 ↓ and q′

1 ↓ and therefore that p′
2 ↓

and q′
2 ↓. This in turn implies that p′

2|q′
2 ↓. Now assume that p′

1|q′
1 ↓, p′

2|q′
2 ↓

and p′
2|q′

2
µ−→ r2. In the same way as in (a) we may show that p′

1|q′
1

µ−→ r1 for
some r1 such that (r1, r2) ∈ Rp|Rq.

2. Here we will only prove the last case, i.e. that f1 <∼ f2 implies c?.f1 <∼ c?.f2. So assume
that f1 = [x]p and f2 = [y]q and that [x]p <∼ [y]q. This implies that ([x]p, [y]q) ∈ Rfun

for some sa-prebisimulation R. We define c?.R = R ∪ {(c?.[x]p, c?.[y]q)}. Obviously
(c?.[x]p, c?.[y]q) ∈ c?.R. It is also easy to see that c?.R is an sa-prebisimulation.

3. This is just a rephrasing of the definition of the extension of the relations from Con to
V al −→ Con and V al × Con in the case when Con = CCSproc

L .

2
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4 Denotational Semantics

In the previous section we extended the standard notion of a signature Σ to that of applicative
signature (Σ, C). In this section we define the general class of (Σ, C)-domains which is a direct
generalization of the standard Σ-domains introduced in [GTWW77]. In fact the (Σ, C)-
domains are only a slight modification of the Natural Interpretations introduced in [HP80]
and applied in [HI93]. We also introduce the notion of recursively closed subsets of a process
algebra.

After having presented the general models we show how we may obtain a (Σ, C)-domain
by defining a preordered set that represents the compact elements, defining the operators as
monotonic functions over this set and then taking the domain to be the unique extension of
the kernel of the preorder and the induced monotonic functions to such a structure. We also
study the relationship between the evaluation mappings from our generic process language
into two arbitrary (Σ, C)-preorders. In what follows we abstract away from possible structures
or properties of the value domain V al and simply view it as being partially ordered by the
discrete order.

4.1 (Σ, C)-Orders and (Σ, C)-Domains

In this subsection we define the notion of applicative orders and applicative ordered (Σ, C)-
algebras. We borrow the notation from [Hen88a] and use the abbreviations pro for preorder,
po for partial order and cpo for complete partial order together with their domains. We
assume that the reader is familiar with basic domain theory and algebraic semantics. (See
e.g. [Plo81, Hen88a] for details.)

Definition 4.1 (Applicative Orders) A pair 〈A,<A〉 is an applicative pro/po/cpo if A =
(Aproc, Afun, Apair) and <A= (<Aproc, <Afun

, <Apair) are such that:

1. 〈Aproc, <Aproc〉 is a pro/po/cpo and

2. Afun ⊆ V al −→ Aproc and Apair ⊆ V al × Aproc are pro/po/cpos with the standard
induced ordering, i.e. <Afun

is the pointwise ordering and <Apair is defined by:

(v1, p1) <Apair (v2, p2) if v1 = v2 and p1 <Aproc p2.

A is said to be fully applicative if Aproc = A, Afun = V al −→ A and Apair = V al × A for
some A. In that case we refer to A as A. A is said to be finitely applicative if Apair = V al×A
for some A and

Afun = V al −→fin A = {f ∈ V al −→ A | {a|f(a) 6= ⊥} is finite}.
In this case we refer to A as Afin. An applicative cpo is said to be algebraic/ω-algebraic if
Aproc, Afun and Apair are algebraic/ω-algebraic cpos. 2

Here we want to point out that the partial order of compact elements of an applicative
algebraic cpo is in general not fully applicative but finitely applicative. We often write a-
pro/po/cpo as a shorthand for applicative pro/po/cpo.

Definition 4.2 ((Σ, C)-Orders) A four tuple 〈A,<A,ΣA, CA〉 is an applicative (Σ, C) −
pro/po/cpo if A = (Aproc, Afun, Apair) is such that

13



1. 〈A,<A〉 is an a-pro/po/cpo,

2. ΣA is a set of monotonic/monotonic/continuous functions opA : Aproc −→ Aproc,

3. CA = C!A ∪ C?A where:

(a) C!A is a set of monotonic/monotonic/continuous functions c!.A : Apair −→ Aproc

and

(b) C?A is a set of monotonic/monotonic/continuous functions c?A : Afun −→ Aproc.

An ω-algebraic applicative (Σ, C)− cpo is called a (Σ, C)-domain. For an algebraic cpo A we
use Comp(A) to denote the set of compact elements of A. Usually we use <, ≺, < etc. to
denote preorders but ≤, �, v to denote partial orders, including the complete ones. 2

Definition 4.3 A function f : A1 −→ A2, where 〈A1,≤1〉 and 〈A2,≤2〉 are algebraic cpos,
is said to be compact if it maps compact elements of A1 into compact elements of A2, i.e. if
f(Comp(A1)) ⊆ Comp(A2). 2

Next we extend the standard notion of homomorphisms for applicative orders.

Definition 4.4 A a-pro/po/cpo homomorphism from 〈A,<A〉 to 〈B,<B〉 is a monotonic
function h : Aproc −→ Bproc that satisfies

1. h(opA(a)) = opB(h(a)),

2. h(c?A.F ) = c?B .(h ◦ F ) and

3. h(c!A.(v, a)) = c!B .(v, h(a)).

We define hproc = h, hfun(F ) = h◦F for all F ∈ Afun and hpair(v, a) = (v, h(a)) for all (v, a) ∈
Apair. Sometimes we refer to the triplet h = (hproc, hfun, hpair) as such a homomorphism. 2

At times it is useful to be able to apply structural induction on a sublanguage of the full
language defined by an a-signature (Σ, C) and a set of process names PN . In particular we
want to be able to give recursive definitions on certain sublanguages (e.g. the language that
denotes the compact elements of the model). This motivates the following definition of a
recursively closed subset of a language.

Definition 4.5 S = (Sproc, Sfun, Spair) ⊆ T(Σ,C)(PN) is said to be recursively closed if the
following hold:

1. p = op(p1, . . . , pn) ∈ Sproc implies pi ∈ Sproc for i = 1, . . . , n,

2. [x]p ∈ Sproc implies p[v/x] ∈ Sproc for all v ∈ V al,

3. (e, p) ∈ Sproc implies p ∈ Sproc,

4. c?.f ∈ Sproc implies f ∈ Sfun,

5. c!.o ∈ Sproc implies o ∈ Spair,

6. be −→ p1, p2 ∈ Sproc implies p1, p2 ∈ Sproc,

14



7. recP.p ∈ Sproc implies P, p ∈ Sproc.

In this case we write S ⊆rec T(Σ,C)(PN). 2

Note that if Σ′ ⊆ Σ and C ′ ⊆ C then T(Σ′,C′) ⊆rec T(Σ,C)(PN).

Definition 4.6 Let S ⊆rec T(Σ,C)(PN), where S only contains value closed terms, 〈A,<A
,ΣA, CA〉 be an applicative (Σ, C) − pro and PEnvA be the set of process environments
ρ : PN −→ Aproc. A function

A[[ ]] : Sproc −→ (PEnvA −→ Aproc))

is an evaluation function if for each ρ ∈ PEnvA, A[[ ]]ρ : Sproc −→ Aproc is a (Σ, C)-pro
homomorphism, where S is the (Σ, C)-pro obtained by taking S with the discrete order and
the operators to be the syntactic ones from Σ and C, and if the following holds:

A[[P ]]ρ = ρ(P ) and

A[[ be→ p1, p2]]ρ =

{
A[[p1]]ρ if [[be]] = T,
A[[p2]]ρ if [[be]] = F.

If A is a cpo then, following standard practice, we may define

A[[recP.p]]ρ = Y λd.A[[p]]ρ[d/P ]

where Y is the least fixed point operator. 2

For closed terms the environments do not have any influence on the definition of the semantics.
For terms without process names, a mapping A[[t]] = A[[t]]ρ may be derived from the above
definition omitting the last clause of the definition and the occurrence of ρ in the others. Now
we show that recursively closed subsets of T(Σ,C)(PN) have at most one interpretation in an
a-(Σ, C)-pro. This is the subject of the next theorem.

Theorem 4.7 Let S = (Sproc, Sfun, Spair) ⊆rec T(Σ,C)(PN) and 〈A,<A,ΣA, CA〉 be an ap-
plicative (Σ, C) − pro. Then there is at most one evaluation mapping

A[[ ]] : Sproc −→ (PEnvA −→ A).

If 〈A,<A,ΣA, CA〉 is fully applicative then such an evaluation mapping exists.

Proof May be proved by structural induction and is left to the reader. 2

Note that if A is not fully applicative then a function term of the form [x]p, where p only

has x as a free variable, may fail to have an interpretation in A. For instance, if A is the a-po
of compact elements of some (Σ, C)-domain A and p is a process term denoting a compact
element of Aproc different from ⊥, then the function term [x]p fails to have an interpretation
in Afun.

The following result turns out to be useful in the next section.
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Corollary 4.8 Assume that

S = (Sproc, Sfun, Spair) ⊆rec (CCSproc
L ,CCSfun

L ,CCSpair
L ),

that 〈A,<A,ΣA, CA〉 and 〈B,<B ,ΣB , CB〉 are (Σ, C)-pros and that

ψ : 〈A,<A,ΣA, CA〉 −→ 〈B,<B ,ΣB, CB〉

is a (Σ, C)-pro homomorphism. If A[[ ]] : Sproc −→ 〈A,<A,ΣA, CA〉 and B[[ ]] : Sproc −→
〈B,<B ,ΣB, CB〉 are evaluation mappings, then B[[ ]] = ψ ◦ A[[ ]].

Proof It is easy to check that the mapping B[[[ ]]] defined by B[[[ ]]] = ψ ◦A[[ ]] is an evaluation
mapping from S to 〈B,<B ,ΣB , CB〉. By Theorem 4.7 such an evaluation mapping is unique
and the equality follows. 2

There is a standard way of extending a preorder with a least element to an algebraic
cpo, often called completion by ideals ([Hen88a, §3.3], [Win85]). If 〈A,<A〉 is a preorder, a
set X ⊆ A is downwards closed if whenever x ∈ X and y vA x then y ∈ X and directed if
whenever x, y ∈ X then, for some z ∈ X, x < z and y < z. An ideal in A is a non-empty,
directed and downwards closed subset of A. Let I(A) denote the set of all ideals in A. If A
has a least element then 〈 I(A),⊆〉 is an algebraic cpo. The compact elements of I(A) are
Comp(I(A)) = {↓ a|a ∈ A} where ↓ a = {x|x vA a}. I(A) is the unique algebraic cpo (up
to isomorphism) whose partial order of compact elements consists of the kernel of 〈A,vA〉,
i.e. 〈A/ =A,vA/=A

〉 where =A is the equivalence induced by vA. This is referred to as the
ideal completion of 〈A,vA〉. Note that if A/ =A is countable then I(A) is ω-algebraic.

We have the following standard theorem (see e.g. [Hen88a]).

Theorem 4.9 Let 〈M,vM 〉 be a partial order, 〈A,vA〉 a cpo and f : M −→ A be monotonic.
Then there is a unique continuous extension f̃ of f to I(M).

These results generalize to the applicative orders as follows. Let 〈A,<A,ΣA, CA〉 be a (Σ, C)-
pro. We may define a continuous (Σ, C) structure on I(A) = (I(Aproc),I(Afun),I(Apair)) as
follows: Let 〈A/ ≈,vA/≈〉 denote the a-po induced by 〈A,<A〉 and [ ]≈ : A −→ A/ ≈ denote
the quotient mapping. For opA ∈ ΣA, we define opA/≈ on A/ ≈ by opA/≈([x]≈) = [opA(x)]≈.
It is easy to see that this defines an operator in A/ ≈ that preserves the order. Now we
define opI(A) to be the unique continuous extension of opA/≈ as described in Theorem 4.9.
This gives continuous (Σ, C) structure that turns I(A) into a (Σ, C)-domain. We refer to
this domain as the domain induced by 〈A,<A,ΣA, CA〉. Furthermore, by Corollary 4.8, if
S ⊆rec T(C,Σ) and A[[ ]] : S −→ A is an evaluation mapping then I(A)[[ ]]|S = [ ]≈ ◦A[[ ]] where
I(A)[[ ]]|S means the restriction of the function I(A)[[ ]] to S. In particular this implies that
for all s1, s2 ∈ S

I(A)[[s1]] vI(A) I(A)[[s2]] iff A[[s1]] <A A[[s2]].

4.2 Definition of the Model

This section is devoted to defining the concrete model ACT . First we give a description of a
representation of the compact elements.
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Definition 4.10 We define K as the least set which satisfies:

1. ∅, {⊥} ∈ K,

2. c ∈ C, V ⊆fin V al and ∀v ∈ V. kv ∈ K implies {〈c?, λv.x ∈ V −→ kv,Ω〉} ∈ K,

3. c ∈ C, v ∈ V al and k ∈ K implies {〈c!, (v, k)〉} ∈ K,

4. k ∈ K implies {〈τ, k〉} ∈ K,

5. k1, k2 ∈ K implies k1 ∪ k2 ∈ K.

The preorder ≺ is defined as the least preorder on K which satisfies

1. {⊥} ≺ ∅
2. k1 ≺ k2 if ∀a ∈ k1∃b ∈ k2. a < b and ∀b ∈ k2∃a ∈ k1. a < b

where < is defined on the elements of the sets in K by

(a) ∀a.⊥ < a,

(b) 〈τ, k〉 < 〈τ, k′〉 iff k ≺ k′,

(c) 〈c?, f〉 < 〈c?, g〉 iff ∀v ∈ V al.f(v) ≺ g(v),

(d) 〈c!, (v, k)〉 < 〈c!, (v, k′)〉 iff k ≺ k′.

We let ≈=≺ ∩ ≺−1. 2

Definition 4.11 We define 〈K,≺K〉 to be 〈Kfin,≺fin〉, i.e. the finitely applicative preorder
induced by K. 2

Next we define the operators on the applicative preorder 〈K,≺K〉 and make sure that
they are monotonic.

Definition 4.12 We define ΣK as follows:

Constants:

nilK = ∅,
ΩK = {⊥}.

Prefixing:

c?K . = λf.{〈c?, f〉},
c!K . = λ(v, k).{〈c!, (v, k)〉},
τK . = λk.{〈τ, k〉}.

Nondeterminism:

+K = ∪.

Restriction:
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\cK = Fc

where Fc : Kproc → Kproc is defined by

Fc{⊥} = {⊥},
Fc∅ = ∅,

Fc{〈b?, f〉} =

{
{〈b?, Fc ◦ f〉} if b 6= c,
∅ otherwise,

Fc{〈b!, (v, k)〉} =

{
{〈b!, (v, Fck)〉} if b 6= c,
∅ otherwise,

Fc{〈τ, k〉} = {〈τ, Fck〉},
Fc(k1 ∪ k2) = (Fck1) ∪ (Fck2).

Renaming:

[R]K = GR

where GR : Kproc → Kproc is defined by

GR{⊥} = {⊥},
GR∅ = ∅,

GR{〈c?, f〉} = {〈R(c)?, GR ◦ f〉},
GR{〈c!, (v, k)〉} = {〈R(c)!, (v,GRk)〉},

GR{〈τ, k〉} = {〈τ,GRk〉},
GR(k1 ∪ k2) = (GRk1) ∪ (GRk2).

Parallel Composition:

|K = F

where F = int ∪ comm ∪ div where int = intin ∪ intout ∪ intτ and

intin(x, y) = {〈cx?, λv.F (fx(v), y)〉|〈cx?, fx〉 ∈ x}
∪ {〈cy?, λv.F (x, fy(v))〉|〈cy?, fy〉 ∈ y},

intout(x, y) = {〈cx!, (v, F (x′, y))〉|〈cx!, (v, x′)〉 ∈ x}
∪ {〈cy !, (v, F (x, y′))〉|〈cy !, (v, y′)〉 ∈ y},

intτ = {〈τ, F (x′, y)〉|〈τ, x′〉 ∈ x}
∪ {〈τ, F (x, y′)〉|〈τ, y′〉 ∈ y},

comm(x, y) = {〈τ, F (f(v), y′)〉 | ∃c, v.〈c?, f〉 ∈ x and 〈c!, (v, y′)〉 ∈ y}
∪ {〈τ, F (x′, g(v))〉 | ∃c, v.〈c?, g〉 ∈ y and 〈c!, (v, x′)〉 ∈ x}
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and

div(x, y) =

{
{⊥} if ⊥ ∈ x ∪ y,
∅ otherwise.

2

The reader may notice the close connection between the definition of the parallel operator
and the interleaving law presented later in the paper. We have the following result:

Lemma 4.13 〈K,≺K ,ΣK , CK〉 is a (Σ, C)-pro.

Proof We leave it to the reader to check that the operators defined by Definition 4.12 are
well-defined. The monotonicity of the operators nilK , ΩK , c?K , c!K , τK and +K is obvious.
To prove the monotonicity of the remaining operators we use the depth, d( ), of the elements
of K defined in the proof of Proposition 4.18. To prove the monotonicity of the restriction
and the renaming operators we prove by induction on d(k) that k ≺ k′ implies Fck ≺ Fck

′

and k ≺ k′ implies GRk ≺ GRk
′. To prove the monotonicity of the parallel operator with

respect to the induced ordering on K×K, we extend d to K×K by d(k1, k2) = d(k1)+d(k2).
Then we may prove that

(k1, k2) ≺ (k′1, k
′
2) implies F (k1, k2) ≺ F (k′1, k

′
2)

by induction on d(k1, k2). We leave the straightforward details of the proof to the reader. 2

Now we let 〈ACT,vACT ,ΣACT , CACT 〉 be the (unique) fully applicative (Σ, C)-domain in-
duced by 〈K,≺K ,ΣK , CK〉. The operators in ΣACT and CACT are compact.

4.3 Syntactically Compact Elements

Next we will show that the compact elements of the model ACT may be denoted in our
syntax by a recursively closed subset of the whole language. For this purpose we introduce
the so-called syntactically compact terms, coCCSL = (coCCSproc

L , coCCSfun
L , coCCSpair

L ).
As usual, syntactically finite terms are those without occurrences of recursion. We define

syntactically compact terms as the syntactically finite ones which only use a finite number of
values. Note that, as we are dealing with recursion free terms, the number of channels used
by the term is automatically finite. We start by introducing some notation.

Notation 4.14 Let w = (w1, . . . , wn) and p = (p1, . . . , pn) be vectors of values and processes
respectively. We write x : w −→ p for

x = w1 −→ p1, (x = w2 −→ p2, (. . . x = wn −→ pn,Ω) . . .).

(Intuitively x : w −→ p stands for the mapping that maps wi to pi for i = 1, . . . , n and all the
other values w ∈ V al into Ω.) Furthermore we let {w} = {wi|wn = (w1, . . . , wn), i ≤ n} and
similarly for {p}.

Definition 4.15 [Syntactically Compact Terms] The set of syntactically compact terms
is the triplet coCCSL = (coCCSproc

L , coCCSfun
L , coCCSpair

L ), where coCCSproc
L , coCCSfun

L

and coCCSpair
L are the least sets satisfying:
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1. nil,Ω ∈ coCCSproc
L ,

2. p ∈ coCCSproc
L implies op(p) ∈ coCCSproc

L , op = |, +, \, [R] , τ. ,

3. o ∈ coCCSpair
L , c ∈ C implies c!.o ∈ coCCSproc

L ,

4. f ∈ coCCSfun
L and c ∈ C implies c?.f ∈ coCCSproc

L ,

5. p ∈ coCCSproc
L and e ∈ Exp implies (e,p) ∈ coCCSpair

L ,

6. p1, . . . ,pn ∈ coCCSproc
L , v1, . . . , vn ∈ V al and x ∈ V ar implies [x]. x : (v1 . . . , vn) −→

(p1 . . . ,pn) ∈ coCCSfun
L .

We let coCCSL, coCCSproc
L , coCCSfun

L and coCCSpair
L be ranged over by ct, cp, cf and co

respectively (Note that by definition these terms are value closed.). We say that a term is
compact if it belongs to coCCSL. 2

Note that coCCSL ⊆rec CCSL. We have the following:

Theorem 4.16

1. There are unique evaluation mappings ACT [[ ]] : CCSL −→ ACT and K[[ ]] : coCCSL −→
K.

2. ACT [[ ]] | coCCSL
= [ ]≈ ◦K[[ ]] where

• f |A means the restriction of the function f to the set A,

• [ ]≈ is the quotient mapping with respect to the preorder ≺.

3. For any ct ∈ coCCSL, ACT [[ct]] ∈ Comp(ACT ).

4. For all ct1, ct2 ∈ coCCSL, ACT [[ct1]] v ACT [[ct2]] if and only if K[[ct1]] ≺K K[[ct2]].

5. For any c ∈ Comp(ACT ) there is a ct ∈ coCCSL such that ACT [[ct]] = c.

Proof

1. As ACT is a fully applicative (Σ, C)-cpo then, by Theorem 4.7,

ACT [[ ]] : CCSL −→ ACT

is well-defined and unique. The existence and uniqueness of K[[ ]] follows by a simple
structural induction on coCCSL.

2. As coCCSL is a recursively closed subset of CCSL, we get that ACT [[ ]]|coCCSL
is

an evaluation mapping on coCCSL. By construction of 〈ACT ,vACT ,ΣACT , CACT 〉,
[ ]≈ : K −→ ACT is a (Σ, C)-po homomorphism. It then follows from Corollary 4.8
that ACT [[ ]] | coCCSL

= [ ]≈ ◦K[[ ]].

3. and 4. follow immediately from 2. and the construction of ACT .

20



5. We start by proving that for any k ∈ K there is a ct ∈ coCCSL such that K[[ct]] = k.
First we prove the result for the set K which by definition equals Kproc. This may be
proved by induction on the definition of K. Then we may easily extend the proof to
Kfun and Kpair.

Next assume that c is a compact element of ACT . Then, by the construction of the
model, c = [k]≈ for some k ∈ K. From what we proved above we get that K[[ct]] = k
for some ct ∈ coCCSL. From 2. we get

ACT [[ct]] = [K[[ct]]]≈ = [k]≈ = c.

This completes the proof.

2

4.4 A Domain Equation for Applicative Communication Trees

In this section we will show an alternative but equivalent definition of the model ACT ; we
will show how it may be obtained as a solution to a recursive domain equation. The section
is mostly of historical interest and may safely be skipped by the reader.

The equation we put forward is basically the one of [MM79] where the modifications of
Abramsky’s, reported in [Abr91] and described in the introduction, are adopted. Thus we
define an algebraic cpo as a solution to a domain equation using the Plotkin Power Domain
with the empty set adjoined as an isolated element. Here the main difference is that we use
a different representation for the Plotkin Power Domain to the one used in [Abr91]. The
representation we use is the one due to Smyth, [Smy78] and will be described below. In the
definition of the domain we use the following operations on cpos:

Cartesian product × ([Plo81, §2 and §6]): Let 〈A,vA〉 and 〈A′,vA′〉 be two pos. We define
the partial order vA×A′ on A×A′ by:

(a, a′) vA×A′ (b, b′) if a vA b and a′ vA′ b′.

This construction extends to any number of pos. It preserves completeness and alge-
braicity. Countable products preserve ω-algebraicity. If A and A′ are algebraic cpos,
the set of compact elements can be obtained from the compact elements of A and A′

by Comp(A×A′) = Comp(A) ×Comp(A′).

Separated Sum
∑

i∈I ([Abr87, §3], [Plo81, §3 and §6],): Let I be a countable index set and
{Ai}i∈I be a family of I–indexed pos. The separated sum 〈∑i∈I Ai,v∑

i∈I
Ai
〉 is defined

as follows:∑
i∈I Ai = {⊥} ∪ (

⋃{{i} ×Ai|i ∈ I}),

x v∑
i∈I

Ai
y if x =⊥ or if for some i, x = 〈i, a〉 , y = 〈i, a′〉 and a vAi a

′,

where we write 〈i, a〉 for the elements of the disjoint union and ⊥ for the bottom el-
ement of the separated sum. The construction preserves completeness, algebraicity
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and ω-algebraicity. If each Ai is an algebraic cpo, the set of compact elements of
〈∑i∈I Ai,v∑

i∈I
Ai
〉 is given by

Comp(
∑
i∈I

Ai) = {⊥} ∪ (
⋃

{{i} × Comp(Ai)|i ∈ I}.

Function Space from a fixed set S, FS ([Plo81, §3] ): Let S be a fixed countable set. For a
po 〈A,vA〉 we define FS(A) = S −→ A, the set of all functions from S to A, with the
pointwise ordering vFS(A) as follows:

f vFS(A) g if ∀s ∈ S.f(s) vA g(s).

This construction preserves completeness, algebraicity and ω-algebraicity. The compact
elements of FS(A) can be obtained from those of A by Comp(FS(A)) = F fin

S (Comp(A))
where F fin

S (B) = {f ∈ S −→ B|{s ∈ S|f(s) 6= ⊥} is finite}. Note that the construc-
tions

∑
i∈I and FS(A) may just as well be defined for non-countable sets I and S but

then they do not preserve ω-algebraicity in general.

The Plotkin Power Domain ([Win85]): We give a construction of the Plotkin Power Domain
[Plo76] due to Smyth [Smy78] and described in [Win85]. Let 〈A,vA〉 be an ω-algebraic
cpo and M [A] the family of finite, non-empty sets of compact elements of A. The
Egli-Milner order on M [A] is defined by:

For X,Y ∈M [A], X vEM Y iff ∀x ∈ X∃y ∈ Y. x vA y and

∀y ∈ Y ∃x ∈ X.x vA y.

The Plotkin Power Domain of 〈A,vA〉, 〈P [A],vP [A]〉 is the ideal completion of the pre-
order 〈M [A],vEM 〉. As explained before, we know that 〈P [A],vP [A]〉 is an ω-algebraic
cpo and Comp(P [A]) = M [A]/ =EM (up to isomorphism).

In the definition to follow we shall use the empty set to interpret the process nil and the least
element of the domain to interpret the process Ω. As nil is an isolated element with respect
to bisimulation preorder, i.e. only related to itself and Ω, we adopt Abramsky’s modification
of the Plotkin Power Domain, i.e. we add the empty set to the domain in such a way that
it is only related to itself and the least element of the domain in the obvious way under the
extended Egli-Milner order. This may be described as follows:

Given an ω-algebraic cpo we write P 0[D] for the Plotkin Power Domain over D
with the empty set adjoined as an isolated element in the preorder. More precisely
the elements of P 0[D] are given by P [D] ∪ {∅} with the order:

X vP 0[D] Y if X,Y ∈ P [D] and X vP [D] Y

or Y = {∅} and (X = {∅} or X = ⊥).
(1)

All the constructions on pos described above may be turned into covariant continuous
functors in the category CPOE, the category of cpos with embeddings, in a straightforward
way. For the details we refer to [Plo81]. Now the standard theory in [Plo81] ensures that the
following definition is meaningful.
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Definition 4.17 Let C (the set of channels) and V al (the set of values) be countable sets
and let Act = {c?|c ∈ C} ∪ {c!|c ∈ C} ∪ {τ} (the set of actions). We define the applicative
cpo of applicative communication trees, 〈A,vA〉, as follows: 〈A,vA〉 is the initial solution in
CPOE of the recursive domain equation:

D = P 0[
∑

e∈Act

De]

where

• Dc? = FV al(D) = V al → D (as defined on page 22),

• Dc! = V al ×D and

• Dτ = D.

Then we define 〈A,vA〉 as the unique fully applicative ω-algebraic cpo induced by 〈A,vA〉.
For the sake of simplicity we refer to this domain as A or 〈A,v 〉. 2

From the general theory in [Plo81] we get a representation of the compact elements by
unfolding the recursive definition of A. Thus we define COMP =

⋃∞
n=0 COMPn where

COMP 0 = {⊥} and
COMP n+1 = M [

∑
e∈Act

(COMP n)e] ∪ {∅}

where (COMP n)c? = FV al(COMP n), (COMP n)c! = V al × COMPn and (COMP n)τ =
COMPn. We recall that for an algebraic cpo A, M [A] is defined as the family of non-empty
sets of compact elements of A. The empty set is added to the family COMPn as we are using
the power domain operator P 0 rather than P . Defining COMP in this way and ordering it by
v0

EM , the Egli-Milner preorder over COMP extended like in (1) above, gives a representation
of the compact elements of the ω-algebraic cpo A. This means that the kernel of the preorder
is isomorphic to the partial order of compact elements of the domain A, 〈Comp(A),vComp(A)〉.
(For the sake of simplicity we assume that the kernel is equal to Comp(A).) Now we prove
that 〈K,≺〉 defined above is equal to 〈COMP,v0

EM〉.

Proposition 4.18 〈K,≺〉 = 〈COMP,v0
EM 〉.

Proof First we prove that K = COMP . That K ⊆ COMP can be proved by showing that
COMP is closed under 1.− 6. in the definition of K and then use the fact that K is the least
set with this property. To prove the opposite inclusion, it is sufficient to show that, for every
n, COMPn ⊆ K.

Then we prove that the preorder ≺ coincides with the extended Egli-Milner preorder on
K. To prove ≺⊆v0

EM , as before it is sufficient to prove that v0
EM satisfies the definition of

≺. The details are straightforward and are left to the reader. To prove ≺⊇v0
EM we first

define the depth of the elements of K as follows:

1. d(∅) = d({⊥}) = 0,

2. d({〈µ, k〉}) = 1 + d(k),

3. d({a1, . . . , an}) = max{d({ai})|i ≤ n},
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4. d(f) = max{d(f(v))|v ∈ V al} (recall that {f(v)|v ∈ V al} is a finite set as f yields ⊥
on all but finitely many values in V al),

5. d(e, k) = d(k).

Then we prove by induction on d(k) that k v0
EM k′ ⇒ k ≺ k′. The details of the proofs are

straightforward and are left to the reader. 2

Proposition 4.18 has the following direct corollary.

Corollary 4.19 The algebraic cpos ACT and A are isomorphic.

5 Algebraic Laws and Proof Systems

In this section we will introduce proof systems supported by the model ACT . We proceed by
introducing first a system E to reason about finite processes that reflects the structure of K.
Then we extend this system to systems which take care of recursive processes in two different
ways and reason about soundness and completeness of both these extensions with respect to
the model.

The proof system E is equationally based where the equations reflect naturally the prop-
erties of the operators in the model. As an example the equations

X + (Y + Z) = (X + Y ) + Z

X + Y = Y +X

X +X = X

reflect the fact that the elements of K, and thus of ACT , are defined as sets and + as set
union. The inference rules describe the structure and the preorder of the model and their
interaction with the operators. Because of the two level structure of our syntax, we have the
equations

(res in) (a?.[x]X) \ c =

{
a?.[x](X \ c) if c 6= a
nil otherwise,

(res out) (a!.(e,X)) \ c =

{
a!.(e,X \ c) if c 6= a
nil otherwise,

(ren in) (a?.[x]X)[R] = R(a)?.[x](X[R]),

(ren out) (a!.(e,X))[R] = R(a)!.(e,X[R])

and the rules

(fun)
p[v/x] v q[v/x] for every v ∈ V

[x]p v [x]q

(pair)
[[e1]] = [[e2]], p v q
(e1, p) v (e2, q)
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(+1) X + (Y + Z) = (X + Y ) + Z
(+2) X + Y = Y +X
(+3) X +X = X
(+4) X + nil = X
(res+) (X + Y ) \ c = X \ c+ Y \ c
(resτ) (τ.X) \ c = τ.(X \ c)
(res in) (a?.[x]X) \ c =

{
a?.[x](X \ c) if c 6= a
nil otherwise

(res out) (a!.(e,X)) \ c =

{
a!.(e,X \ c) if c 6= a
nil otherwise

(res cond) (be −→ X,Y ) \ c = be −→ X \ c, Y \ c
(res nil) nil \ c = nil
(res div) Ω \ c = Ω
(ren+) (X + Y )[R] = X[R] + Y [R]
(renτ) (τ.X)[R] = τ.(X[R])
(ren in) (a?.[x]X)[R] = R(a)?.[x](X[R])
(ren out) (a!.(e,X))[R] = R(a)!.(e,X[R])
(ren cond) (be −→ X,Y )[R]c = be[R] −→ X[R], Y [R]
(ren nil) nil[R] = nil
(ren div) Ω[R] = Ω
(nil par) nil |X = X | nil = X

Figure 3: Equations

that allow us to prove inequalities over function terms and pairs. The first extension of E is
obtained by adding to E two new rules to take care of recursion. The new rules introduced
are

(rec) recP.p = p[recP.p/P ]

and

(ω − rule)
p(n) v q for all n

p v q

where t(n), the syntactically compact approximations of a term t, are defined in Definition
5.1. We write t vErec u if t v u can be proven using the rules given above and t v

E−ω
rec

u if
this inequality can be proven in the same system without applying the ω-rule.

Note here that the approximations that occur in the ω-rule are syntactically compact as
the number of values in the approximations is finite just as the depth of the approximation
is finite. Consequently we refer to this system as the value-finitary one. This correspondence
with the compact elements enables us to take advantage of the algebraicity of the model
when proving the completeness of the proof system. In the interleaving law the summation
notation is justified by equations (+1)-(+4) and an empty sum is understood as nil. {+Ω}
indicates that Ω is an optional summand of a term and Ω is a summand of the right hand
side if it is a summand of X or Y on the left hand side. To simplify the notation we assume
that i, j etc. in the sums

∑
i,

∑
j, etc. range over finite index sets I, J , etc.
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Let X =
∑

i τ.Xi +
∑

j a
′
j?.[x]X

′
j +

∑
k a

′′
k!.(vk,X

′′
k ){+Ω} and Y =

∑
l τ.Yl +

∑
m b′m?.[y]Y ′

m +∑
n b

′′
n!.(vn, Y

′′
n ){+Ω}. Then

X | Y = INTL(X,Y ) + COMM(X,Y ){+Ω}

where
INTL(X,Y ) = INTLτ (X,Y ) + INTLin(X,Y ) + INTLout(X,Y )

where
INTLτ (X,Y ) =

∑
i τ.(Xi|Y ) +

∑
l τ.(X|Yl)

INTLin(X,Y ) =
∑

j a
′
j?.[x](X

′
j |Y ) +

∑
m b′m?.[y](X|Y ′

m)
INTLout(X,Y ) =

∑
k a

′′
k!.(vk,X

′′
k |Y ) +

∑
n b

′′
n!.(v′n,X|Y ′′

n )

and
COMM(X,Y ) =

∑
j,n:a′

j=b′′n τ.X
′
j [vn/x]|Y ′′

n +
∑

k,m:a′′
k
=b′m τ.X

′′
k |Y ′

m[vk/y]

Figure 4: Interleaving Law

(ref) p v p

(trans)
p v q, q v r

p v r

(least) Ω v p

(sub)
pi v qi

op(p) v op(q)
op ∈ ∑

(pre)
p v q

µ.p v µ.q

(cond1)
[[be]] = T

be −→ p, q = p

(cond2)
[[be]] = F

be −→ p, q = q

(rec)
recP.p = p[recP.p/P ]

(inst)
pσ v qσ

for every inequation p v q
and closed instantiation σ

(ω − rule)
p(n) v q for all n

p v q

(pair)
[[e]] = [[e′]], p v q

(e, p) v (e′, q)

(fun)
p[v/x] v q[v/x] for every v ∈ V

[x]p v [x]q

(α− red)
[x]p = [y]p[y/x]

if y not free in p

Figure 5: The Proof System Erec
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Now we define the syntactically compact (or just compact for short) approximations used
in the ω-rule of the proof system.

Definition 5.1 [Compact Approximations] The n-th compact approximation of a term
is defined inductively by :

1. (a) p(0) = Ω

(b) i. P (n+1) = P ,
ii. (op(p))(n+1) = op(p(n+1)),

iii. (µ.u)(n+1) = µ.u(n+1),
iv. (recP.p)(n+1) = p(n+1)[(recP.p)(n)/P ],
v. (be −→ p, q)(n+1) = be −→ p(n+1), q(n+1),

2. ([x]p)(n+1) = [x](x ∈ Vn+1 −→ p(n+1),Ω),

3. ((e, p))(n+1) =

{
([[e]], p(n+1)) if [[e]] ∈ Vn+1,
([[e]],Ω) otherwise.

2

We remind the reader that Vn = {v1, . . . , vn} is the set of the n first values. The compact
approximations have the following fundamental properties:

Theorem 5.2 For all natural numbers n and all t ∈ CCSL

1. t(n) ∈ coCCSL, i.e. t(n) is a compact term.

2. t(n) v
E−ω

rec
t.

3. ACT [[t]]ρ =
⊔

nACT [[t(n)]]ρ for all ρ.

Proof

1. and 2. may be proved by an induction on n combined with an inner structural induction.

3. In what remains of the proof we write [[ ]] instead of ACT [[ ]]. We have to prove that⊔
[[t(n)]]ρ v [[t]]ρ and [[t]]ρ v ⊔

[[t(n)]]ρ. To prove the first inequality it is sufficient to
prove that [[t(n)]]ρ v [[t]]ρ for all n. This may be proved in the same way as a similar
property for the pure calculus given in Lemma 4.2.10 in [Hen88a]. The proof for the
opposite inequality, [[t]]ρ v ⊔

[[t(n)]]ρ, again follows the same pattern as the proof for
a similar property given in Theorem 4.2.11 in [Hen88a]. The main difference is when
t = [x]p ∈ CCSfun

L . For this case we may proceed as follows.

It is easy to see that

[[[x]p(0)]]ρ v · · · [[[x]p(n)]]ρ v · · · v [[[x]p]]ρ.

i.e. that [[[x]p]]ρ is an upper bound of the chain given above. We have to show that it is
the least upper bound of the chain. So assume

[[[x]p(0)]]ρ v · · · [[[x]p(n)]]ρ v · · · v f .

27



We have to show that [[[x]p]]ρ v f . So assume v ∈ V al. Then v ∈ VN for some N .
Therefore, for all n ≥ N ,

([[([x]p)(n)]]ρ)(v) = ([[[x]x ∈ Vn −→ p(n),Ω]]ρ)(v) =

[[p(n)[v/x]]]ρ v f(v).

By the structural induction, [[p[v/x]]]ρ is the least upper bound for the chain

[[p(0)[v/x]]]ρ v [[p(1)[v/x]]]ρ v · · · v [[p(n)[v/x]]]ρ v · · · .

This implies that ([[[x]p]]ρ)(v) v f(v). As v ∈ V al was arbitrary this implies that
[[[x]p]]ρ v f as wanted.

2

Next we prove the soundness and completeness of the proof system Erec with respect to
the model. To prove the completeness we introduce a notion of Ω-normal forms for compact
terms and a corresponding normalization theorem.

Definition 5.3 [Ω-normal form] A compact term ct ∈ coCCSL is said to be in Ω-normal
form if the following hold:

1. If ct = cp ∈ coCCSproc
L then cp has the form∑

i

ai.cti{+Ω}

where Ω is an optional summand and where cti is in Ω-normal form. The empty sum
is interpreted as nil.

2. If ct = (e, cp) ∈ coCCSpair
L then e = v ∈ V al and cp is in Ω-normal form.

3. If ct = [x]x : (v1, . . . , vn) −→ (cp1, . . . cpn) ∈ Fun then cpi is in Ω-normal form for
i ≤ n.

2

Lemma 5.4 For all ct ∈ coCCSL there is an Ω-normal form n(ct) such that n(ct) =E ct.

Proof First we define the depth, δ(ct) of a compact term ct by

1. δ(nil) = δ(Ω) = 0,

2. δ(cp \ c) = δ(cp[R]) = δ(cp),

3. δ(cp1 + cp2) = max{δ(cpi)|i ≤ n},
4. δ(cp1|cp2) = 1 + δ(cp1) + δ(cp2),

5. δ(pre.ct) = 1 + δ(ct),
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6. δ((e, cp)) = δ(cp),

7. δ([x].x : (v1, · · · , vn) −→ (cp1, · · · , cpn) = max{δ(cpi)|i ≤ n}.
To prove the result we prove the following stronger result:

For all ct ∈ coCCSL there is a Ω-normal form n(ct) such that n(ct) =E ct and
δ(n(ct)) ≤ δ(ct).

To prove this we proceed by induction on δ(ct). The details are left to the reader. 2

Note that the notion of Ω-normal forms and the normalization lemma extend to syntactically

finite terms in a natural way. This will be useful later in this study.
Now we will prove the soundness and completeness of the proof system Erec with respect

to the denotational semantics. We start with the following lemma.

Lemma 5.5 For all t,u ∈ CCSL, t vE u implies ∃m∀n ≥ m. t(n) vE u(n).

Proof This may be proved by induction on the depth of the proof for t vE u. The only
non-trivial case is the base case when the interleaving law is used. We leave it to the reader
to check the details of the proof. 2

Theorem 5.6 (Soundness and completeness of the value-finitary proof system) For
all t,u ∈ CCSL we have

t vErec u if and only if ACT [[t]] v ACT [[u]]

i.e. the proof system Erec is sound and complete with respect to the denotational semantics.

Proof

Soundness: The soundness of the ω-rule is the content of Theorem 5.2 whereas the soundness
of the (rec)-rule follows from the definition of the semantics of recP.p as a least fixed
point. What remains to prove is the soundness of E. This, in turn, can be proven by
reducing the proof to a proof of the soundness for syntactically compact terms with
respect to K.

The soundness of E over coCCSL with respect to K follows easily from the definition
of K and the fact that the elements of coCCSL denote exactly the elements of K. Now
we may proceed as follows:

Assume t vE u. Then, by Lemma 5.5, for some m, t(n) vE u(n) for all n ≥ m. As
t(n),u(n) ∈ coCCSL, the soundness of E with respect to K for this set implies

K[[t(n)]] ≺K K[[u(n)]] for all n ≥ m

or equivalently
ACT [[t(n)]] v ACT [[u(n)]] for all n ≥ m.

Theorem 5.2.3 implies
ACT [[t]] v ACT [[u]].
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Completeness: Again we reduce the proof to proving that E is complete for coCCSL with
respect to K. We first note that Theorem 5.2 and the ω-algebraicity of the model imply

ACT [[t]] v ACT [[u]] ⇒

∀n.ACT [[t(n)]] v ACT [[u]] ⇒

∀n∃m.ACT [[t(n)]] v ACT [[u(m)]] ⇒

∀n∃m.K[[t(n)]] ≺ K[[u(m)]].

(2)

If E is complete for coCCSL with respect to K then

K[[t(n)]] ≺ K[[u(m)]] ⇒ t(n) vE u(m). (3)

Now u(m) vErec u by Lemma 5.2.2 so (2), (3) and the ω-rule give

ACT [[t]] v ACT [[u]] ⇒ ∀n.t(n) vErec u ⇒ t vErec u.

Thus what remains to prove is the completeness of E over coCCSL with respect to K.
By Lemma 5.4 and the soundness of E it is even enough to prove the completeness for
Ω-normal forms with respect to K because:

Assume K[[ct1]] ≺ K[[ct2]]. By Lemma 5.4 cti =E ni, i = 1, 2 where ni, i = 1, 2
are Ω-normal forms. By the soundness of E with respect to K, K[[ni]] =
K[[cti]], i = 1, 2 and therefore K[[n1]] ≺ K[[n2]]. If E is complete for Ω-normal
forms with respect to K we may conclude that n1 vE n2. That ct1 vE ct2
now follows from the transitivity of the proof system.

To prove the completeness for the Ω-normal forms we proceed as follows:

Assume n1,n2 are Ω-normal forms. We have to prove that

K[[n1]] ≺ K[[n2]] ⇒ n1 vE n2.

We proceed by structural induction on n1.

n1 = nil + Ω: Obvious.
n1 = nil: ∅ = K[[nil]] ≺ K[[n2]] implies K[[n2]] = ∅ and therefore that

n2 = nil.
n1 =

∑
i≤n µi.ti{+Ω}, n ≥ 1: Then

K[[n1]] = {〈µi,K[[ti]]〉|i ≤ n}[∪{⊥}]
where ⊥ ∈ K[[n1]] if and only if Ω is a summand of n1. As K[[n1]] ≺ K[[n2]]
then n2 6= nil and n2 6= Ω, i.e. n2 has the form

n2 =
∑
j≤m

γj.uj{+Ω}

and
K[[n2]] = {〈γj ,K[[uj ]]〉|j ≤ m}[∪{⊥}]
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where m ≥ 1. Assume that 〈µi,K[[ti]]〉 ∈ K[[n1]]. Then µi = γji and
K[[ti]] ≺ K[[uji ]] for some ji ≤ m. By induction ti vE uji . As this holds
for any i we get that ∑

i≤n

µi.ti vE

∑
i≤n

γji .uji (4)

First assume that Ω is a summand in n1. As obviously

Ω vE

∑
j

γj.uj{+Ω}

we get, by (4), substitutivity and absorption of the proof system, that

n1 =
∑

i

µi.ti + Ω vE

∑
i

γji .uji +
∑
j

γj.uj{+Ω} =E n2

which proves the statement in this case.
Next assume that Ω is not a summand in n1. This implies that ⊥ 6∈ K[[n1]]
which in turn implies that ⊥ 6∈ K[[n2]]. We may therefore conclude that
Ω is not a summand of n2 either. In a similar way as before we get∑

j≤m

µij .tij
vE

∑
j≤m

γj.uj (5)

where {ij |j ≤ m} ⊆ {1, . . . n}. Now from (4), (5), the absorption and the
substitutivity of the proof system we get

n1 =
∑

i≤n µi.ti =E
∑

i≤n µi.ti +
∑

j≤m µij .tii

vE
∑

i≤n γji .uji +
∑

j≤m γj.uj =
∑

j≤m γj .uj = n2

which completes the proof for this case.

n1 ∈ coCCSfun
L , coCCSpair

L : Follows easily from the induction.

2

As a consequence of the soundness and completeness theorem above together with Theorem

5.2.3 we get the following useful corollary.

Corollary 5.7 For all ct ∈ coCCSL and u ∈ CCSL

ct vErec u implies ct vE u(n) for some n

and therefore
ct vErec u iff ct v

E−ω
rec

u.

The proof system we have introduced so far is nonstandard in that the ω-rule is based
on compact approximations instead of the more common syntactically finite ones. Let tn

denote the syntactically finite approximation derived from Definition 5.1 with 2. replaced by
([x]p)n+1 = [x]pn+1 and 3. by ((e,p))n+1 = ([[e]],pn+1) and let ≤Erec denote the corresponding
preorder. We refer to this system as the value-infinitary one. It is easy to see that following
holds.
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Lemma 5.8 For all t,u ∈ CCSL,

1. if t ≤Erec u then t vErec u,

2. if d is syntactically finite then d ≤Erec t iff d v
E−ω

rec
t.

The first part of Lemma 5.8 tells us that the new system is sound with respect to the de-
notational model. To reason about the completeness of this system turns out to be more
complicated. We will postpone the discussion to Section 6 where we show that the complete-
ness of the system follows from results regarding the bisimulation based semantics.

6 Comparison with the Operational Semantics

The subject of this section is to compare the denotational semantics and the operational
one given in the previous sections. First we show by an example, Example 6.1, that for the
language CCSL the bisimulation preorder, defined in Section 3, is too fine to coincide with
the partial order in the model in the sense that the model is not fully abstract with respect to
this behavioural preorder. This observation supports our intuition about that bisimulation is
in general too fine to be completely characterized by any semantics induced by an algebraic
cpo as explained in the introduction to this paper.

Example 6.1 As we only need an example from the pure calculus, we use the notation a.t =
c?.[x]t, a.t = c!.(v1, t) and \ a = \ c. Let aω = recY.a.Y and p = [recX.(aω +X|a)] \ a.
Then the first unfolding of p is p1 = [(aω + (recX.(aω +X)|a))|a] \ a, and the n+ 1-th one

pn+1 = [(

n︷ ︸︸ ︷
aω + ((aω + ((aω + . . . + ((aω +recX.(aω +X)|a))| a . . . |a))|a︸ ︷︷ ︸

n

] \ a.

The reader may convince himself that the behaviour of p can be given by the derivation
tree described by the infinite sum Ω +

∑
i∈ω τ

i.nil, i.e. a tree which has an infinite num-
ber of branches which all have a finite depth. Then, because of the algebraicity of the model,
ACT [[p + recP.τ.P ]] = ACT [[p]]. On the other hand, the left hand side has the transition
p + recP.τ.P

τ−→ recP.τ.P where recP.τ.P can perform an infinite sequence of τ -moves.
This move can therefore never be matched, up to bisimulation, by the right hand side p. This
implies that p + recP.τ.P 6<∼ p.

Obviously Example 6.1 rules out the possibility that the behavioural preorder <∼ characterizes
the preorder of the model over CCSL. Our second suggestion for a behavioural characteriza-
tion of the model is the weaker version of <∼, the strong applicative ω-bisimulation preorder,
derived from the function F by iterated application. This is a straight forward extension of
the ω-bisimulation for the pure calculus known from the literature [Mil83].

Definition 6.2 [Strong Applicative ω-Prebisimulation]
The kth sa-prebisimulation <∼k is defined inductively by:

1. <∼0= Con× Con,

2. <∼n+1= F(<∼n).

The sa-ω-prebisimulation <∼ω is defined as <∼ω=
⋂

k
<∼k and ∼ω=<∼ω ∩<∼ω

−1. 2
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For all k we have that <∼⊆<∼k+1⊆<∼k which implies that <∼⊆<∼ω.
Again this preorder is too fine to match the preorder from the model in general. This is

explained by the following example.

Example 6.3 If we extend our language with parameterized recursion we can define p =
P (1), where P is be given by

P (n) = c?x.[x](x ≤ n −→ nil,Ω) + P (n+ 1),

and q = p + c?.[x]nil. In any denotational semantics based on an algebraic cpo D, it is clear
that D[[p]] = D[[q]]. On the other hand q has the derivation q c?−→ [x].nil which can never be
matched by p up to <∼ω and consequently q 6<∼ω p.

Whether p and q can be expressed in our language CCSL is not obvious at this point but
later we will prove that they cannot.

Intuitively the reason for why <∼ω is too fine to match a preorder induced by an algebraic
cpo for processes with values in general is that the values give rise to a new kind of infinity.
We recall that in the model the preorder is decided completely by the compact elements.
We also recall that the compact elements both have finite “depth” and “width”, i.e. map all
but finite number of values to ⊥. These considerations motivate the following definition of
value-finitary strong applicative ω-prebisimulation. This definition is a slight modification of
the one given in [HP80].

Definition 6.4 [Value-Finitary Strong Applicative ω-Prebisimulation]
Let AT = 〈Con, V al,Act,−→, ↓〉 be an applicative labelled transition system, V ⊆ V al and
R ⊆ Con×Con. Then we define the V -restricted extension of R, R|V by

1. c1R|V c2 iff c1Rc2
2. (v1, c1)R|V (v2, c2) iff (v1 ∈ V or v2 ∈ V ) implies (v1 = v2 and c1Rc2).
3. f1R|V f2 iff f1(v)Rf2(v) for all v ∈ V .

The nth value-finitary sa-bisimulation preorder <∼
f
n is defined by:

1. <∼
f
0= Con× Con,

2. <∼
f
n+1= (F(<∼

f
n))|Vn+1 .

The value-finitary sa-ω-bisimulation preorder <∼
f
ω is defined by <∼

f
ω=

⋂
k

<∼
f
k with the derived

equivalence ∼f
ω=<∼

f
ω ∩(<∼f

ω)−1. 2

From this definition we get that (v1, c2) <∼
f
n (v2, c2) if and only if v1, v2 6∈ Vn or v1 = v2 ∈ Vn

and c1 <∼
f
n c2.

We note that R|V is decreasing in V , i.e. V ⊆ W implies R|V ⊇ R|W . This implies
that <∼

f
n+1⊆<∼

f
n for all n. We also note that the only difference between this definition and

Definition 6.2 is the restriction on the values in the definition of vf
n+1. Obviously <∼n⊆<∼

f
n for

all n which implies <∼⊆<∼ω⊆<∼
f
ω. It is easy to prove that <∼

f
ω actually is a preorder and has all

the properties stated in Theorem 3.5. The proof for this is straightforward and is left to the
reader. Now let us have a further look at our previous example, Example 6.3.
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Example 6.5 Let p and q be defined as in Example 6.3. Obviously p <∼ q and therefore
p <∼

f
ω q. We have also shown that q 6<∼ω p and thereby q 6<∼ p. On the other hand one may

show that q <∼
f
ω p by showing that q <∼

f
n p for all n by induction.

We summarize these results of this section in the following lemma:

Lemma 6.6

1. On any ALTS, <∼⊆<∼ω⊆<∼
f
ω.

2. There is an ALTS on which <∼
f
ω 6⊆<∼ω 6⊆<∼.

7 The Full Abstractness

We have already proven that he preorder vErec and the preorder induced by the denotational
model, which we from now on refer to asvACT , coincide over CCSL. In this section we will
prove that <∼

f
ω also coincides with these preorders over this language. Furthermore we prove

that the preorders <∼ω and ≤Erec also coincide. Finally we show that over the language CCSL,
all five preordered mentioned above, coincide. Here we want to remind the reader of, that
considered over a general ALTS, <∼ω is strictly included in <∼

f
ω. Also it should be clear from

Example 6.3 that in general ≤Erec cannot be expected to coincide with a preorder derived
from an algebraic model (although at this point it is not clear how the syntactically finite or
compact approximations should look like for languages with parameterized recursion).

To prove that vErec=<∼
f
ω over CCSL it is sufficient to prove the soundness and the com-

pleteness of the rules that define vErec with respect to <∼
f
ω over this language. Similarly, as

clearly ≤Erec⊆vErec, to prove that ≤Erec=<∼ω, it is sufficient to prove that the rules that define
≤Erec are sound and complete with respect to <∼ω over this language.

We start by proving the first of these three properties. In the proof we will use some
standard techniques which are used to prove similar completeness results in the literature
[Hen88a, AH92, HI93]. Therefore we start by defining a suitable notion of a “finitary part”,
i. e. the value-finitary part, of a relation over processes and that of a value-finitary relation.
The definition is based on the same idea as the one given in [Hen81]. The only difference is
that we use syntactically compact terms in our definition whereas Hennessy uses syntactically
finite or recursion-free terms. We will then show that the preorder <∼

f
ω is the value-finitary

part of the preorders <∼ and <∼
f
ω and therefore that <∼

f
ω is value-finitary in our sense. We start

by defining the value-finitary part of a relation over CCSL.

Definition 7.1 For any relation R over CCSL we define the value-finitary part of R, RF ,
by

tRFu iff for all ct ∈ coCCSL, ctRt implies ctRu.

R is value-finitary if R = RF . 2

The following lemma shows how we may structure the proof of full abstractness.

Lemma 7.2 Assume that the preorder �⊆ CCSL×CCSL satisfies the following conditions:

1. Value-finitariness: For all t,u ∈ CCSL t � u iff ∀ct. ct � t ⇒ ct � u.

2. Partial soundness: The proof system E−ω
rec is sound with respect to �.
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3. Partial completeness: For all ct ∈ coCCSL and t ∈ CCSL ct � t implies ct v
E−ω

rec
t.

Then for all t,u ∈ CCSL

t � u if and only if t vErec u.

Proof First we have:

t � u

iff ∀ct. ct � t ⇒ ct � u by 1.

iff ∀ct. ct v
E−ω

rec
t ⇒ ct vErec u by 2. and 3.

Now we proceed as follows: Assume t � u and therefore that

∀ct. ct v
E−ω

rec
t ⇒ ct v

E−ω
rec

u. (6)

As t(n) v
E−ω

rec
t and t(n) ∈ coCCSL then (6) implies that t(n) vErec u. As this holds for all n,

the ω-rule implies that t vErec u.
Next assume that t vErec u. To prove that t � u it is sufficient to prove that (6) holds.

So assume that ct v
E−ω

rec
t. Then, by transitivity of v

E−ω
rec

, ct v
E−ω

rec
u. 2

7.1 Value-finitariness

Following [Hen81] next we will prove that on coCCSL × CCSL the preorders <∼ and <∼
f
ω

coincide. Consequently they both have the same value-finitary part. To show this we need a
measure on coCCSL that both measures the structural depth of the term and the number of
values it uses. We give the following definitions.

Definition 7.3 For a syntactically finite term d we define the structural depth sd(d) by:

1. sd(nil) = sd(Ω) = 0,

2. sd(µ.d) = 1 + sd(d),

3. sd(op(d1, . . . , dn) = 1 +
∑n

i=1 sd(di), op ∈ Σ,

4. sd([x]d) = sd(e, d) = 1 + sd(d),

5. sd(be −→ d1, d2) = 1 + sd(d1) + sd(d2).

2

From this definition we can easily derive that if d
µ−→ t then sd(t) ≤ sd(d) − 1. Also

for all v ∈ V al, sd(d[v/x]) = sd(d) and therefore sd(([x]d)(v)) = 1 + sd(d).
The support of a compact term is the set of values the term uses in a non-trivial way.

Formally this is defined as follows:

Definition 7.4 The support of the term ct ∈ coCCSL, Supp(ct), is defined by structural
recursion as:
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1. Supp(nil) = Supp(Ω) = ∅,
2. Supp(op(cp1, . . . , cpn)) =

⋃n
i=1 Supp(cpi),

3. Supp(pre.ct) = Supp(ct),

4. Supp((e, cp)) = Supp(cp) ∪ {[[e]]},
5. Supp([x] (x : w −→ cp)) = {w} ∪ ⋃n

i=1 Supp(cpi).

Note that Supp(ct) is a finite set. We define the value-depth of ct, vd(ct) by vd(ct) =
min{n|Supp(ct) ⊆ Vn}. 2

Now we prove the following.

Proposition 7.5 For all ct ∈ coCCSL and t ∈ CCSL,

ct <∼
f
ω t if and only if ct <∼ t

and therefore (<∼
f
ω)F =<∼

F on CCSL.

Proof As the “if” part is already known it is sufficient to prove the “only if” part. To this

end we prove the following stronger result.

For all ct ∈ coCCSL and t ∈ CCSL

ct <∼
f
m t ⇒ ct <∼ t

for all m where m ≥M(ct) = sd(ct) + vd(ct).

The proof of this statement proceeds by induction on M(ct).

M(ct) = 0: We have two cases: ct = Ω, which is trivial, and ct = nil which we will have a
further look at. As nil ↓, the definition of <∼

f
m implies that t ↓. Furthermore as nil 6 µ−→

for all µ this is also true for t. This proves that ct = nil <∼ t.

M(ct) = k + 1: Assume we have proved the result for all ct′ with M(ct′) ≤ k and that
ct <∼

f
m t, where m ≥ M(ct) = k + 1. We want to prove that ct <∼ t. As F(<∼) =<∼, it is

sufficient to show that ctF(<∼)t. We proceed by case analysis on the structure of ct.

ct ∈ CCSproc
L :

1. Assume ct
µ−→ u. By definition of <∼

f
m, t

µ−→ u′ for some u′ such that u <∼
f
m−1

u′. Also, by definition of coCCSL, u ∈ coCCSL. Now vd(u) ≤ vd(ct) and
sd(u) < sd(ct). Thus m− 1 ≥ k ≥M(u) and by the induction u <∼ u′.

2. Now assume ct ↓, by definition of the preorder <∼
f
ω also t ↓. Furthermore

assume that ct ↓, t ↓ and that t
µ−→ u′. Then ct

µ−→ u for some u such that
u <∼

f
m−1 u′. In a similar way as before, the induction implies u <∼ u′, which

completes the proof in this case.
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ct ∈ coCCSfun
L : Then t and ct have the form t = [x]p′ where x ∈ V ar, p′ ∈ CCSproc

L

and ct = [y]p for some y ∈ V ar where p = y : w −→ cp′, for some w and cp′.
Our assumption is that [y]p <∼

f
m [x]p′, i.e. that p[v/y] <∼

f
m p′[v/x] for all v ∈ Vm.

We have to prove that [y]p <∼ [x]p′, i.e. that p[v/y] <∼ p′[v/x] for all v ∈ V al.
This is obviously true for v 6∈ {wn} as in that case p[v/y] ∼ Ω. So assume that
v ∈ {w}. As m ≥ vd(ct), {w} ⊆ Vm. Furthermore we know from the assumption
that for all wi, i ≤ n, p[wi/y] <∼

f
m p′[wi/x] and p[wi/y] ∼ cp′i. This implies that

cp′i <∼
f
m p′[wi/x]. Now we have that M(cp′i) < M(ct) = k + 1, i. e. M(cp′i) ≤ k.

As m ≥ k + 1 > k ≥ M(cp′i) the induction applies and we may conclude that
cp′i <∼ p′[wi/x]. Again, as cp′i ∼ p[wi/y], this implies that p[wi/y] <∼ p′[wi/y] as we
wanted to prove.

ct ∈ coCCSpair
L : Now ct = (v′, cp′) and t = (v′′,p′′). By the definition of the preorder

and the assumption on m, v′ = v′′ ∈ Vm and cp′ <∼
f
m p. As before m > k ≥M(cp′)

and the result follows from the induction.

2

We will now show that the preorder <∼
f
ω is finitary and therefore that it is the finitary part

of <∼. Again following closely [Hen81], we introduce the so called compact projections and
show some of their properties. The remainder of this section is devoted to this. We adopt
Abramsky’s definition of the sort of a term t, Sort(t), as the set of channel names it uses.

Definition 7.6 The sort of t ∈ CCSL, Sort(t) ⊆ Chan, is given by

1. Sort(p) = {c ∈ Chan|p a−→, chan(a) = c} ∪ ⋃{Sort(u)|∃µ.p µ−→ u},
2. Sort([x]t) =

⋃{Sort(t[v/x])|v ∈ V al},
3. Sort(e,q) = Sort(q).

2

Note that, because of our restriction to finite renamings, Sort(t) is finite for all t [Abr91,
AH92].

Definition 7.7 (Compact Projections) We define the n-th projection of t on coCCSL

inductively as follows:

1. (a) p[0] = Ω,

(b) p[n+1] =
∑{µ.t[n]|p µ−→ t} + {Ω|p ↑},

2. (a) ([x]p)[0] = [x]Ω,

(b) ([x]p)[n+1] = [x]x : (v1, · · · , vn+1) → ((p[v1/x])[n+1], · · · , (p[vn+1/x])[n+1]),

3. (v,p)[n+1] =

{
(v,p[n+1]) if v ∈ Vn+1,

(v,Ω) otherwise.
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Note that the sum in 1.(b) only makes sense as we are summing over a finite set (up to com-
mutativity, absorption and α-congruence). That this is the case may be proved by induction
on n. 2

The syntactically compact projections have the following properties:

Lemma 7.8 For all t ∈ CCSL and all n,

1. t[n] ∈ coCCSL,

2. t[n] ∼f
n t.

Proof Follows by a simple induction on n, combined with an inner induction on the structural
depth of t for the inductive step. 2

The following results investigate the relationship between a term t and its syntactically
compact projections in more detail.

Lemma 7.9 For all t,u ∈ CCSL

1. t[0] <∼
f
ω t[1] <∼

f
ω · · · <∼

f
ω t[n] <∼

f
ω · · · <∼

f
ω t.

2. If t[0] <∼
f
ω t[1] <∼

f
ω · · · <∼

f
ω t[n] <∼

f
ω · · · <∼

f
ω u then t <∼

f
ω u, i.e. t is a minimal upper bound 2

of the chain with respect to <∼
f
ω.

3. The term t is a minimal upper bound for the set App(t) = {ct ∈ coCCSL|ct <∼
f
ω t} with

respect to <∼
f
ω.

Proof

1. We first prove that for all n
t[n] <∼

f
ω t[n+1].

In order to do that we prove a slightly stronger result:

∀m ≥ n. t[n] <∼
f
m t[n+1].

We prove this by induction on n. The base case n = 0 is immediate as t[0] <∼
f
m t[1] for

all m is trivial. So assume
t[k] <∼

f
m t[k+1] for m ≥ k

and we will prove that
t[k+1] <∼

f
m+1 t[k+2] for m ≥ k.

To this end assume m ≥ k. We proceed by induction on the structural depth of t. We
have the following cases.

2Note that a minimal upper bound of a preorder is unique up to the induced equivalence.
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t = p ∈ CCSproc
L : Assume p[k+1] µ−→ t, then p

µ−→ u for some u such that u[k] = t.
Also p[k+2] µ−→ u[k+1] and by the induction , as m ≥ k, u[k] <∼

f
m u[k+1]. Thus the

first condition of the definition of the preorder <∼
f
m+1 is satisfied. We now note that

p ↓ if and only if p[i] ↓ for all i and the second condition of the definition can be
met in a similar way to the first one.

t = [x]p ∈ CCSfun
L : By definition

([x]p)[i+1] = [x]x : (v1, · · · , vi+1) → ((p[v1/x])[i+1], · · · , (p[vi+1/x])[i+1]).

We have to prove that

(([x]p)[k+1])(v) <∼
f
m+1 ([x]p[k+2])(v)

for all v ∈ V al. First we note that for all v ∈ Vk+1

([x]p)[k+1](v) ∼ (p[v/x])[k+1]

and
([x]p)[k+2](v) ∼ (p[v/x])[k+2]

and the result follows from the inner induction, the transitivity and the fact that
<∼⊆<∼

f
m+1. Otherwise if v 6∈ Vk+1 then ([x]p)[k+1](v) ∼ Ω and the result follows.

t = (v,p) ∈ CCSpair
L : Similar.

Next we prove t[n] <∼
f
ω t for all n. We know from Lemma 7.8 that t[k] <∼

f
k t for all k.

Furthermore for any m ≥ n
t[n] <∼

f
ω t[m] <∼

f
m t.

Thus t[n] <∼
f
m t for all m ≥ n which proves the statement.

2. To prove that t is a minimal upper bound of the chain assume

t[0] <∼
f
ω t[1] <∼

f
ω · · · t[n] <∼

f
ω · · · <∼

f
ω u.

As t ∼n t[n] this implies t <∼
f
n u for all n and therefore t <∼

f
ω u.

3. Follows from statement 1., as {t[n]|n = 1, · · ·} ⊆ App(t).

2

The following theorem is a direct consequence of the lemma above.

Theorem 7.10 Over CCSL following holds.

1. <∼
f
ω= (<∼

f
ω)F .

2. The preorder <∼
f
ω is the value-finitary part of <∼, i.e. <∼

F =<∼
f
ω.

Proof

39



1. That <∼
f
ω⊆ (<∼

f
ω)F is obvious so we only have to prove the other inclusion. Thus assume

∀ct ∈ coCCSL. ct <∼
f
ω t implies ct <∼

f
ω u.

This is equivalent to saying that App(t) ⊆ App(u) and the result follows from Lemma
7.9.

2. By Proposition 7.5, <∼
F = (<∼f

ω)F and the result follows from part 1. of this theorem.

2

7.2 Partial Soundness and Completeness

This subsection is devoted to the proof of the soundness of the proof system E−ω
rec and the

partial completeness of Erec with respect to <∼
f
ω.

We start by proving the soundness of the proof system E−ω
rec , i.e the proof system that

consists of the system Erec where the ω-rule is omitted. This follows from the following
Lemma.

Lemma 7.11 (Partial Soundness) The proof system E−ω
rec is sound with respect to <∼ over

CCSL.

Proof The soundness of E−ω
rec with respect to <∼ can be shown by proving

t v
E−ω

rec
u implies t <∼ u

by induction on the depth of the proof tree for t v
E−ω

rec
u. The details of the proofs are

omitted. 2

Here we want to point out that the ω-rule is not sound with respect to the preorder <∼ as
shown by Example 6.1. Furthermore at this point we have not proved the soundness of the
ω-rules for <∼ω or <∼

f
ω.

Next we prove the mentioned partial completeness result, i.e. that for all ct and t,

ct <∼ t ⇒ ct vErec t.

This proof follows very much the same pattern as the proof for a similar partial completeness
result in [AH92]. First we introduce the notion of head normal forms and prove a correspond-
ing normalization theorem.

Definition 7.12 A term in CCSproc
L is said to be in a head normal form if it has the form∑

i µiti.

2

Lemma 7.13 If p ∈ CCSproc
L and p ↓ then there is a head normal form, hnf(p), such that

p =E−ω
rec

hnf(p).
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Proof We prove the Lemma by induction on the length of the derivation of p ↓. We proceed
by a case analysis on the structure of p. 2

Here it is important to notice that we only use the partial proof system E−ω
rec in the normal-

ization procedure as the soundness of the ω-rule with respect to the preorder <∼
f
ω has not been

proven yet.

Notation 7.14 Let p, q ∈ CCSproc
L and t, u ∈ CCSL. To simplify the notation we will

in what follows use the following convention (where abs stands for abstraction and app for
application):

1. abs(t|u) for

(a) abs(p|q) = p|q,
(b) abs([x]t|p) = [x](t|p),
(c) abs(p|[x]t) = [x](p|t),
(d) abs((v, p)|q) = (v, p|q) = abs(p|(v, q).

2. app(t|u) for

(a) app([x]t|(v, p)) = t[v/x]|p,
(b) app((v, p)|[x]t) = p|t[v/x].

Using this notation we get that if p
µ−→ p′ then p|q µ−→ abs(p′|q) and q|p µ−→ abs(q|p′).

Furthermore if p c!−→ o and q c?−→ f then p|q τ−→ app(o|f) and q|p τ−→ app(f |o). We use
this notation to formulate the following lemma:

Lemma 7.15 For all p ∈ CCSproc
L , t ∈ CCSL and µ we have that p

µ−→ t implies p =Erec

p + µ.t.

Proof We prove the statement by proving that for all closed terms p, q and t following holds:

1. (p + µ.t)|q =Erec (p + µ.t)|q + µ.abs(t|q)

2. q|(p + µ.t) =Erec q|(p + µ.t) + µ.abs(q|t)
3. (p + a.t)|(q + a.u) =Erec (p + a.t)|(q + a.u) + τ.app(t|u).

The proof is basically identical to a proof for similar properties in [AH92] and is omitted. 2

Theorem 7.16 (Partial Completeness) For all ct ∈ coCCSL and tCCSL, ct <∼ t implies
ct v

E−ω
rec

t.

Proof It is sufficient to prove the result for ct in Ω-normal form as the general result follows
from the normalization result in Lemma 5.4, and the soundness of v

E−ω
rec

with respect to <∼.
We proceed by a case analysis on the form of ct but only give the details of the case where
ct = cp ∈ coCCSL. In this case t = p ∈ CCSproc

L .

41



To this end assume np <∼ p where np is an Ω-normal form and we will prove that np vErec p.
The proof proceeds by induction on sd(np), the structural depth of np defined in Definition
7.3. So assume the theorem is true for all np′ with sd(np′) ≤ k and that sd(np) = k+ 1. We
proceed by a case analysis on the form of np.

np = nil + Ω: Then np =E−ω
rec

Ω v
E−ω

rec
p.

np = nil: nil <∼ p implies p ↓. Thus p has a head normal form h(p) with h(p) =E−ω
rec

p.

As nil 6 µ−→, h(p) 6 µ−→ for all µ which implies that h(p) = nil. Therefore np =E−ω
rec

h(p) =E−ω
rec

p.

np =
∑

i µi.pi{+Ω}: We prove this case in three steps.

1. p+np vErec−ω p: Assume np
µ−→ p′ then µ = µi and p′ = pi for some i. As np <∼ p

this implies that p
µi−→ qi for some qi where pi

<∼ qi. By applying the induction
hypothesis we obtain that pi v

E−ω
rec

qi and, by substitutivity, that µi.pi v
E−ω

rec
µi.qi.

Thus by substitutivity and Lemma 7.15

p + µi.pi v
E−ω

rec
p + µi.qi =Erec−ω p.

Repeated use of this result, substitutivity and transitivity implies p + np v
E−ω

rec
p.

2. np v
E−ω

rec
p + np: If Ω is a summand of np then np v

E−ω
rec

np + Ω v
E−ω

rec
np + p.

So assume that np ↓. As np <∼ p this implies p ↓ and therefore that p has a head
normal form p =E−ω

rec
h(p) =

∑
j γj.qj . As the proof system E−ω

rec is sound with

respect to <∼, np <∼ h(p). Thus p
γj−→ qj implies that γj = µij for some ij and that

np
µij−→ pij for some pij such that pij

<∼ qj . Now by proceeding in a similar way
as in the previous case we get that

np = np+
∑
j

µij .pij
v

E−ω
rec

np+
∑
j

γj .qj v
E−ω

rec
np+ p.

3. Finally 1. and 2. imply np v
E−ω

rec
p.

The remaining cases can be proven in a similar way. 2

Theorem 7.17 (Soundness and completeness of the value-finite) For all t,u ∈ CCSL,

t <∼
f
ω u if and only if t vErec u.

Proof This follows from Theorem 7.2 as the conditions of the theorem are ensured by Theorem
7.10, Lemma 7.11 and Theorem 7.16. 2

Theorem 7.18 (Soundness and completeness for value-infinite proof system) For all
t,u ∈ CCSL,

t <∼ω u if and only if t ≤Erec u.
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Proof If we replace the “compact elements” t in Theorem 7.2 by “syntactically finite ele-
ments” d and vErec by ≤Erec , its statement still holds (and exactly the same proof applies).
Thus it is sufficient to prove that properties 1., 2. and 3. of that theorem hold for <∼ω with
these changes.

The proof of property 1., i.e. that

(∀d.d <∼ω p ⇒ d <∼ω q) implies p <∼ω q,

is a simplification of the proof of Theorem 7.10, the main difference being that we replace <∼
f
ω

by <∼ω, the “compact terms” by the “syntactically finite terms” and the “compact projections”
in Definition 7.7 by a similar notion of “syntactically finite projections” t{n} t[n] obtained from
the same definition with the second clause replaced by ([x]p){n+1} = [x]p{n+1} and the third
one by (v,p){n+1} = (v,p{n+1}). Property 2. is still the content of Lemma 7.11 and 3. can be
obtained in exactly the same way as the proof of Theorem 7.16 with the notion of Ω-normal
forms extended to syntactically finite terms instead of only applying to compact terms. The
details of the proof are left to the reader to check. 2

Finally we compare the value-finitary and value-infinitary semantics.

Theorem 7.19 ACT [[t]] v ACT [[u]] iff t <∼ω u.

Proof Clearly we only have to prove the “only if” implication”. We will give an outline of
the proof but refer to [Ing94, Chap.2-3] where the details of a similar proof are given. Let
(D,≺) be the preordered set defined in the same way as (K,≺) in Definition 4.10 but with
clause 2. replaced by

2.′ c ∈ C, f ∈ V al −→ D implies 〈c?, f〉 ∈ D.

Furthermore we define Dn as the subset of D consisting of elements of depth at most n,
ordered as before. We also define the operators exactly in the same way as on K. In the
following we write [[ ]] instead of ACT [[ ]] and v instead of v

ACT . Then the following holds
(up to isomorphism in some cases):

1. The unique (Σ, C)-domain induced by (D,≺,ΣD, CD) is isomorphic to ACT .

2. D0 / D1 / . . . is a directed ω-chain with ACT as the co-limit.

3. For each i there is projection mapping i : D −→ Di that has the following properties:

(a) If d ∈ ACT then di ∈ Di and di vACT d.

(b) If e ∈ Di and e v d ∈ ACT then e v di.

(c) d =
⊔

i d
i.

(d) If d is a syntactically finite closed process term then [[d]] ∈ Di for some i.

(e) For all i and p, [[p{i}]] = [[p]]i. (This property can be proven by induction on i; it
is language dependent and is actually the key to the proof of the full abstractness
of the model with respect to <∼ω for the language CCSL. Again we remind the
reader of that in general these two semantics do not coincide as explained earlier.)
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Now we proceed as follows:

[[p]] v [[p]] implies ∀i.[[p]]i v [[q]]i implies ∀i.[[p{i}]] v [[q{i}]].

By induction on i we may prove that

∀i.p{i} <∼ω q{i} <∼ω q

which in turn implies that p <∼ω q. 2

8 Conclusion

In this last section we will give a summary of the main result of this paper and suggest some
directions for further work.

In this paper we have defined a syntax and three kinds of semantics that support the
late approach for value-passing calculi. First we defined a general syntax that supports
this approach by extending the standard notion of a signature to the so-called applicative
signature, a pair (Σ, C) consisting of a signature Σ and a set of channels C. Then we defined
the language Late-CCS (CCSL) which is a modification of the standard CCS with values
due to the late semantic approach. This language is basically the π-calculus where the values
allowed for are restricted to be of the simple type only. The language is obtained as an
instantiation of the general class of languages we defined where the signature Σ is taken to
be the set of the standard operators of CCS.

Then we defined a Plotkin style operational semantics [Plo81], and a suitable extension of
the standard strong prebisimulation [Hen81, Wal90] to take value-passing based on the late
approach into account. Thus we introduce the notion of applicative labelled transition system
and the related notion of strong applicative bisimulation.

Next we have set up a general framework for describing the denotational semantics for
value-passing calculi which support the late approach. For this purpose the standard notion
of Σ-algebras and Σ-orders have been extended to (Σ, C)-algebras and (Σ, C)-orders.

A denotational model for Late-CCS is defined, an instantiation of the general class of
models we defined. The carrier set of this model is an ω-algebraic cpo and is obtained as a
ideal completion of the kernel of a suitably defined partial order. The operators are defined
by first defining them as monotonic functions on the preorder, taking the induced monotonic
functions on the kernel and taking their unique continuous extension to the whole cpo.

Of historical reasons the carrier of the model is also described as the solution to a recursive
domain equation. It is a direct extension of a similar equation given by Abramsky in [Abr91]
and a modification of the one given by Milne and Milner in [MM79]. As all the constructions
we use in the definition of the equation are standard and well known to preserve completeness
and ω-algebraicity the solution we obtain is an ω-algebraic cpo. By unfolding the recursive
definition we get a representation of the compact elements, a preorder that turns out to
coincide with our original preorder used to construct the model.

We have also presented two equationally based proof systems and compared them to the
model. The first one is based on the ability of approximating infinite terms by so-called
compact terms, syntactically finite terms which are interpreted as compact elements in the
model, and is proven to be sound and complete with respect to the model. The algebraicity
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of the model and the way we define the operators makes it possible for us to reduce the proof
of the soundness and completeness to a proof of the same property on a sub-language of the
actual language, the so-called compact terms. This is an inductively defined language which
denotes exactly the compact elements of the model.

The second proof system is based on the more standard syntactically finite approximation.
The soundness of this proof system follows directly from the soundness of the stronger proof
system based on the compact approximations. To prove the completeness of this system
we have to prove that if p is smaller than q in the model then necessarily all the syntactic
approximations of p have to be smaller than q in the model too. The proof of this property
turned out to be nontrivial and was postponed until the investigation of the operational
semantics.

Our next task was to compare the three different kinds of semantics we had put forward
so far. First we show that for Late-CCS the original late bisimulation is too strong to meet
the preorder of the model ACT . The algebraicity of the model implies that the preorder
in the model is completely determined by the compact elements. Behaviourally this can be
interpreted as meaning that the preorder may be obtained by some kind of finite observations.
This is not the case for bisimulation as it is well known even for the pure calculus. Therefore we
define a value-finitary version of the preorder <∼

f
ω is defined by mimicking the ω-algebraicity

of the model on the syntactical level and requiring that it is completely decided by the
syntactically compact elements. This preorder is shown to coincide with the preorder in the
model in the sense that the model is fully abstract with respect to it by proving that the
value-finitary proof system is sound and complete with respect to it.

We also show that the ω-prebisimulation <∼ω is in general strictly finer than <∼
f
ω but if

restricted to CCSL it is fully abstract with respect to the denotational model and thus
coincides with <∼

f
ω. To prove this we have to appeal to more general results regarding the

constructions of the type of model we offer. Thus we recall that the cpo ACT may be obtained
as the co-limit of an ω-chain of domains (Di)i∈ω each of which consist of trees of finite depth
but which are not necessarily value finite. Consequently each element d of ACT can be
approximated by an ω-chain (di)i∈ω of finitely deep trees which are not necessarily compact
elements. The key to the completeness proof is the observation that for any t ∈ CCSL and
any i, ACT [[t{i}]] = ACT [[t]]i where t{i} is the ith syntactically finite projection that appears
in the proof of the finitariness of <∼ω and di is the the projection on Di, the ith approximation
of the cpo ACT . This is a language dependent property that cannot be expected to hold in
such languages in general as Example 6.3 shows.

The example we used to distinguish <∼ω and <∼
f
ω was expressed in an extension of CCSL

that allows for parameterized recursive definitions. Therefore we may conclude that this
extension of CCSL is strictly more expressive than CCSL.

The main conclusion we can draw from the study performed in this paper is that opera-
tional semantics is more intuitive and in general more suitable for describing the semantics
for communicating processes than denotational semantics, in particular if the communication
involves exchange of data. However denotational models, based on an algebraic cpo, auto-
matically ensure the finitariness of the semantics, a property that is reasonable to require
from such a semantic description.

An obvious extension of this work would be to give a similar theory for the more useful
version of CCSL that allows parameterized recursion.
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