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Abstract

We give a quantitative analysis of Gödel’s functional interpretation
and its monotone variant. The two have been used for the extraction
of programs and numerical bounds as well as for conservation results.
They apply both to (semi-)intuitionistic as well as (combined with
negative translation) classical proofs. The proofs may be formalized
in systems ranging from weak base systems to arithmetic and analysis
(and numerous fragments of these). We give upper bounds in basic
proof data on the depth, size, maximal type degree and maximal type
arity of the extracted terms as well as on the depth of the verifying
proof. In all cases terms of size linear in the size of the proof at input
can be extracted and the corresponding extraction algorithms have
cubic worst-time complexity. The verifying proofs have depth linear
in the depth of the proof at input and the maximal size of a formula
of this proof.
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1 Introduction

This paper investigates the complexity of the extraction algorithms for effec-
tive data (such as programs and bounds) from proofs provided by Gödel’s
functional (‘Dialectica’) interpretation and its monotone variant. The sub-
ject of extracting programs from proofs already has a long history. The tech-
niques used can be roughly divided in two categories according to whether
they are based on cut-elimination, normalization and related methods or on
so-called proof interpretations. The latter typically make use of functionals
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of higher type. Prominent proof interpretations are realizability interpreta-
tions, particularly Kreisel’s [41] modified realizability (see [52] for a survey)
and Gödel’s functional interpretation (first published in [21], see [3] for a sur-
vey). The no-counterexample interpretation (n.c.i.) due to Kreisel [39, 40] is
sometimes viewed as a simplification of the functional interpretation (it uses
only types of degree ≤ 2). In fact n.c.i. is not a real alternative since it has
a bad behavior with respect to the modus ponens rule MP. This is overcome
only if MP is interpreted by functional interpretation (see [34]).

Cut-elimination, normalization and the related ε-substitution method
globally rebuild the given proof thereby increasing its length in a potentially
non-elementary recursive way. In contrast, proof interpretations extract wit-
nessing terms by recursion on the given proof tree which remains essentially
unchanged in its structure. The latter techniques consequently enjoy full
modularity: the global realizers of a proof can be computed from realizers
of lemmas used in the proof. This suggests a radically lower complexity of
the procedure and a radically smaller size of the extracted programs. Even
though the latter would not be in normal form1 they can be used substan-
tially in many ways without having to normalize them. One merely exploits
properties which can be established inductively over their structure with the
use of logical relations (like, e.g., Howard’s [24] notion of majorizability).

Both (modified) realizability and functional interpretations are applicable
to a vast variety of formal systems and provide characterizations of their
provably total programs. They had originally been applied to arithmetic in
all finite types. They were subsequently adapted to various fragments thereof
all the way down to weak systems of bounded arithmetic [10, 33, 45] or –
more recently – the poly-time arithmetic of [5, 48]. They were extended to
analysis [16, 42, 50], type theories [19] and fragments of set theory [8].

Realizability and functional interpretations cannot be directly applied to
classical systems. A canonical manner of interpreting classical proofs would
be by first translating them to intuitionistic proofs via a so-called negative
translation and subsequently applying intuitionistic proof interpretations.
However this fails for (modified) realizability since it extracts empty pro-
grams from negative formulas. The problem can be partly overcome by using
an additional intermediate interpretation, the so-called Friedman-Dragalin
A-translation [14, 17] and its variants [11] 2. Unlike realizability interpreta-

1Normalization would bring back the aforementioned complexities.
2See, e.g., [6, 44] for examples of program extractions using this approach. One draw-
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tions, functional interpretations are sound for the so-called Markov principle
and therefore feature extraction of programs from arbitrary proofs in fairly
rich classical systems, like Peano arithmetic in all finite types PAω (see also
Section 5.3). Hence the need for an intermediate translation is avoided when
using functional interpretations. Moreover, monotone functional interpreta-
tion can extract programs from proofs T ` ∀xρ∃yτRec(x, y) in highly uncon-
structive systems T which contain, e.g., the binary König lemma. Here τ
is an arbitrary finite type, ρ is a finite type of degree (aka level) at most 1
and Rec(x, y) is a specification which must3 be decidable if T is classical (we
actually take it quantifier-free). This gives functional interpretations the abil-
ity of extracting programs and other effective data4 under certain conditions
from ineffective proofs (proof mining). Monotone-functional-interpretation-
based proof mining has already produced important results in computational
analysis and has helped to obtain new results in mathematical analysis (see,
e.g., [26, 28, 29, 31, 32, 35, 36, 37, 38]).

A natural question that arises is whether such applications which were
obtained ‘by hand’ could be automated or at least computer aided by im-
plementing functional interpretations. In order to evaluate the feasibility of
such a tool it is important to investigate the complexity aspects of functional
interpretations. In the present paper we obtain upper bounds on the size
of the terms which express the extracted programs. The interpretation al-
gorithms only write down the extracted terms, proceeding by recursion on
the input proof structure, see Section 3. It follows that their running time
is proportional with the size of the extracted terms. Hence we obtain the
time complexity of the extraction algorithms as a consequence of our quanti-
tative analysis. Let n denote the size of the input proof P and m denote the
maximal size of a formula of P. Due to the modularity of functional interpre-
tations, these algorithms feature an almost linear time complexity, namely
O(m2 · n) even for classical and analytical proofs. The almost refers to the
fact that m is much smaller than n in most practical cases. In any case this
time complexity is at most O(n3), a result previously obtained by Alexi in

back of this method is the limited modularity feature: only a restricted class of lemmas
can be used in the proof at input. In contrast, functional-interpretations-based techniques
feature full modularity: proofs at input may use arbitrary lemmas. See also [22] for
applications of a form of recursive realizability.

3This restriction is generally unavoidable for classical proofs but is not necessary for
intuitionistic proofs.

4Such as numerical bounds.
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[1] for an ad-hoc program-extraction technique for intuitionistic proofs only.
Since the design of Alexi’s technique was driven by the optimal-time-overhead
issue, cubic is probably the best worst-time-complexity one can expect from
any program-extraction technique. We also give upper bounds on depths of
the resulting verifying proofs – this is interesting for quantitative conserva-
tion results. In particular we obtain the feasibility of WKL–elimination for
Π0

2–sentences over primitive recursive arithmetic5 in all finite types by means
of syntactic translations. Our technique is immediately implementable and
in addition provides a term extraction procedure from analytical proofs.

There exists a research line in extractive proof theory which is aimed at
characterizing the classes of proofs from which programs belonging to certain
complexity classes are extracted. Usually the feasible complexity classes are
of interest, particularly poly-time, see for example [10, 48]. The issue of
characterizing the complexity of provably total function(al)s of a theory is
completely separate from the present paper’s topic. We are here concerned
with the performance of the extraction algorithm and not with the one of
the extracted programs.

The monotone variant of Gödel’s functional interpretation was developed
by the second author in [26]. It takes into account that most applications of
functional interpretation in recent years both to concrete proofs in numerical
analysis and to conservation results do not actually use terms which realize
the Gödel functional interpretation but terms which majorize6 (some) realiz-
ers. Monotone functional interpretation extracts majorizing terms which are
simpler than the actual realizers produced by functional interpretation. This
is due to the much simpler treatment of CT∧, see Proposition 3.22 and the
paragraph following Definition 4.16. Also the treatment of induction axioms
is much simpler, see Section 5. Moreover, the bound on verifying proof depth
is better in the monotone case if the underlying logical system fairly supports
monotone functional interpretation, see Remark 4.19.

1.1 Outline of the main results

We introduce the weak base system EILω, a short for ‘(weakly extensional)
extended intuitionistic equality logic in all finite types’. EILω contains only

5This was first shown in [2] for a second–order fragment with a formalized forcing
technique.

6Majorization is understood in the sense of Howard [24] mentioned before.
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the tools which are strictly necessary for carrying out the functional inter-
pretation even for the most rudimentary intuitionistic systems.

We present upper bounds for the following quantitative measures of real-
izing/majorizing terms t extracted from proofs P in both semi-intuitionistic7

and classical systems based on EILω up to the analytical system PAω+AC0+WKL:

• the maximal degree (arity) of a subterm of t, denoted mdg (mar);

• the depth of t, denoted d (assuming a tree representation of the terms);

• the size of t, denoted S (number of all constants and variables used to
build t).

We also give upper bounds on the depth8 of the verifying proof and time
overhead of the extraction algorithm, here denoted ∂v and θ respectively.
For the extraction procedure we consider both the usual [21] and the mono-
tone variant [26] of functional interpretation. We first consider a binary-
tree representation for terms, see also Footnote 32. Such a representation is
more intuitive and therefore provides a better exposition of the bounds for
mdg, mar. However it turns out that the same extracted terms have smaller
size if represented in a more economic manner using pointers9, see Section
3.4. Since their definition does not depend on the term representation, the
bounds for mdg and mar still hold. From Section 3.4 on it is tacitly assumed
that terms are represented in the economic manner. A representation for
types becomes necessary only at the moment that we are interested in the
space/time overhead of the extraction algorithm, see Section 3.5.

Let us denote by ∂ the depth and by Si , Sc, Sm the size (in the sense of
Definition 3.33) of P and for a formula A by

• vdg (var) the maximal degree (arity) of a variable occurring in A;

• id (fd, ld) the implication (forall, logical) depth of A, namely the max-
imal number of → (∀, all logical constants) on a path from root to
leaves in the usual tree representation of A; by fid :≡ max{fd , id};

7Here semi-intuitionistic means intuitionistic plus a version of Markov’s principle MK
and independence of premises for universal premises IP∀, see Section 3.1 for details.

8Proofs are represented as trees, see also the last paragraph of Section 1.2.
9It would be possible to extract other terms which have the same smaller size in binary-

tree representation. However, the bounds for mdg, mar no longer hold in such a case, see
also the remarks following Theorem 3.37.
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• qs the number of all quantifiers (including10 ∨) and free variables of A;

• ls the number of all ∀, ∃,∧,∨,→,⊥, = and free variables of A.

We prove that (relative to our underlying deductive framework EILω)

• mdg and mar do not depend on ∂; the difference between mdg (mar)
and the maximal degree (arity) of a variable occurring in an axiom of
P is linear (quadratic) in the maximal complexity of an axiom of P;

• d is linear in the maximal complexity of an axiom of P and ∂;

• S is linear in the size of P (here we use the economic representation
of terms); also exponential in logarithm of the maximal complexity of
an axiom of P and ∂ (this holds for the binary-tree representation of
terms as well);

• ∂v is linear in ∂ and the maximal complexity of an axiom of P .

More precisely, for semi-intuitionistic proofs P we have the following
situation (below ‘FI’ means ‘functional interpretation’):

usual FI monotone FI

mdg O(1) + vdg + id O(1) + vdg + id

mar O(1) + var + qs · id O(1) + var + qs · id

d O(ld) + qs · ∂ O(1) + qs · ∂
S O(Si) , O(ls · qs ∂

 ) O(Sm) , O(qs ∂
 )

∂v O(ld + ∂) O(qs + ∂)

θ O(qs · ls · Sm) O(qs · ls · Sm)

where vdg, var, id, qs, ls are maxima taken over all the axioms of P 11

of vdg, var, id, qs and ls respectively and ld, ls are maxima of ld, ls taken
over contractions A → A ∧ A of P.

10Since functional interpretation treats ∨ as an existential quantifier we count it as
quantifier.

11In fact it is sufficient to consider only the axioms of the transformed proof Ptr, see
Definition 3.8. Valid also for the subsequent definitions, including the classical case.
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For classical proofs P there exists k ∈ IN constant (independent of P)
such that (below ‘FI’ means ‘functional interpretation’):

usual FI monotone FI

mdg vdg + O(fid) vdg + O(fid)

mar var + O(qs · fid) var + O(qs · fid)

d O(ls · ∂) O(qs · ∂)

S O(Sc) , O(ls · qs k·∂
 ) O(Sm) , O(qs k·∂

 )

∂v O(ls + ∂) O(qs + ∂)

θ O(qs · ls · Sm) O(qs · ls · Sm)

where vdg, var, qs, ls are maxima taken over all the axioms of P of vdg,
var, qs and ls respectively and fid is the maximum of fid over all the
formulas of P .

Since they are not produced by functional interpretation, we normally
do not count the terms t1, t2 which appear in prime formulas t1 = t2 of con-
tractions A → A ∧ A and the quantifier axioms terms as part of the realizing
terms. We rather consider them as “black boxes” and use their type and
free variables information only (see Definition 3.10). From a programming
perspective, they may be considered as subprograms residing in libraries and
made accessible to the extracted program via references. The bounds for the
usual functional interpretation actually hold also if we count in the terms
mentioned above provided that instead of ld, ls one uses wd, respectively
ws, where

• wd is the whole depth of A, assuming a tree representation of A where
tree representations of the terms occurring in A are linked from the
corresponding leaves of the usual tree representation of A;

• ws is the whole size of A, i.e., the number of all logical constants of A
plus the number of all occurrences of variables and constants in A.

For mdg and mar also the maximal degree, respectively arity of constants
occurring in contraction and quantifier axioms terms must be counted in.
For more details see Remark 3.28.
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1.2 Notational conventions

The symbols :≡ and ≡ belong to the meta-level and mean equal by definition
to and is identical to respectively. The symbol = is used by abuse for equality
in both meta-level and formal systems.

For a set M we let M≤ω :≡ ∪n≤ω Mn. The symbol IN denotes the set of
natural numbers. For a function f : M ′ 7→ IN and M ⊆ M ′, M finite, we let

f(M) :≡max{f(m) |m ∈ M}.

An enumeration S1, . . . , Sn denotes an ordered tuple abbreviated S; we de-
note by {S} the set corresponding to S, by |S| the length of S and by S′, S′′ the
concatenation of S′ and S′′. If {S} ⊆ M ′ we abbreviate by f(S) :≡ f({S}).

Let k0 ∈ IN be a sufficiently large constant (k0 ≡ 10 suffices for our pur-
poses). For a labeled tree 4 we denote by ∂(4) the depth of 4 plus k0, by
∂L(4) the L depth of 4, namely the maximal number of L labels on a path
from root to leaves plus k0, by Lv(4) the set of labels of leaves of 4 and by
V t(4) the set of labels of all vertices of 4.

A (formal) proof in some logical system is a tree whose vertices are labeled
with formulas, such that the leaves are labeled with axioms and assumptions
and any parent vertex is labeled with the result of the application of an
instance of some rule to the labels of its sons. The edges which connect the
parent vertex with its sons are labeled with the name of the corresponding
rule. We denote by L(·) the labeling function on vertices and edges. We call
a proof complete if all its leaves are labeled with axioms only. Notice that
an incomplete proof is complete in the system extended with its assumptions
as axioms. We will denote proofs by ` or , possibly with bounds on the
depth attached, such as `n for a proof of depth at most n, n ∈ IN.

2 The weak base system EILω

In the following we introduce the system EILω 12 which forms in a sense
a weak base system containing exactly the tools needed to carry out the
functional interpretation. It extends intuitionistic logic in finite types with
appropriate combinators13, a cases operator D and some very basic arith-
metic needed to define characteristic functionals for quantifier-free formulas.

12A short for ‘(weakly extensional) extended intuitionistic logic in all finite types’.
13These allow the definition of λ-terms, see Definition 2.12.
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We also include C. Spector’s quantifier-free rule of extensionality ER0. This
allows an as extensional as possible treatment of higher type equality in the
context of functional interpretation14.

We first carry out a full quantitative analysis for the functional inter-
pretation of an extension EILω

++AC+IP∀+MK 15 of EILω into the quantifier-
free fragment of EILω. Due to the modularity of functional interpretation
this analysis immediately relativizes to further extensions of EILω with cer-
tain axioms like, e.g., induction. Suppose that we consider an additional
(closed) axiom A. Let us add to EILω new constants c of appropriate types
and the axiom16 ∀yAD(c, y) expressing that c satisfies the functional inter-
pretation of A. The quantitative analysis for the functional interpretation of
EILω

++AC+IP∀+MK immediately relativizes to this extension. Functional inter-
pretation now provides realizing terms t[c] built up out of the EILω-material
and c. The complexity analysis for the extended theory is then completed
by determining actual terms s which satisfy the functional interpretation
∃x∀yAD(x, y) of A and the complexity of the verifying proof ` ∀yAD(s, y).

There are two possible ways of handling λ-abstraction in a system like
EILω. We could treat λ-abstraction either as a primitive concept or as defined
by combinators. The treatment via combinators provides a finer complexity
analysis and reflects more faithfully the actual functional interpretation of a
Hilbert-style axiomatization17 of intuitionistic logic which we have – following
Gödel’s original formulation – used for EILω.

The combinators and projectors we use are more flexible than the usual
Σ and Π first introduced by Schönfinkel in [47]. Our Σ provide in particular

14Most applications of functional interpretation have been based on such an extensional
variant. For sentences containing only variables of type 0 or 1 the use of full extensionality
is admissible since the elimination-of-extensionality procedure from [42] is applicable.

15Here AC is the Axiom of Choice, IP∀ is Independence of Premises for universal premises
and MK is a variant of Markov’s principle, see Section 3.1. For EILω

+ see Definition 3.10.
16Here ∃x∀yAD(x, y) is the functional interpretation of A, see also Section 3.
17In a natural deduction context, it might be more natural to treat λ-abstraction as a

primitive concept. Natural deduction formulations of functional interpretation are pro-
vided by Diller-Nahm [13] (see also [46, 51]) and Joergensen [25]. In the former all cases
definitions for realizing terms of contractions are postponed to the end by collecting all
candidates and making a single final global choice. In the latter choices are local and one
has to apply a so-called ‘contraction lemma’ for each of them, i.e., whenever more than one
copy of an assumption gets cancelled. In any case, the analysis carried out in the present
paper can immediately be adapted to a system with λ-abstraction included as primitive
construct, see Remark 3.30.
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extensions of Schönfinkel Σ to tuples (see Definition 2.4) and our Π are
extensions of Schönfinkel Π to tuples. This is natural since we use tuples
of variables throughout our formulation of functional interpretation. The
design of our Σ and Π is made according to the actual constructs required
by functional interpretation while keeping the benefits of the usual Σ and
Π . The latter allow to avoid any notion of bound variables in terms and
are the most convenient in connection with logical relations18. Our Σ and
Π are in fact definable in terms of usual Σ and Π , though at the expense
of a rather artificial increase in the length of the verifying proof. The upper
bound on the size of the extracted terms would nevertheless still hold with
such a definition, see Remark 3.30.

2.1 The type structure FT

The set FT of all finite types is inductively generated by the rules

(i) o ∈ FT

(ii) If σ, τ ∈ FT then (στ) ∈ FT.

Intuitively type o represents the set of natural numbers and (στ) represents
the set of functions which map objects of type σ to objects of type τ. There
are many alternative notations in the literature for (στ), such as τ(σ), (σ)τ,
(σ → τ). We make the convention that concatenation of types is right asso-
ciative and consequently omit unnecessary parenthesis, writing δστ instead
of (δ(στ)). It can immediately be verified by induction over FT that each
σ ∈ FT has the form σ1 . . . σno with n ≥ 0. We abbreviate by:

• σ the ordered tuple of types σ1, . . . , σn

• στ the type σ1 . . . σnτ.

If p is a permutation of {1, . . . , n}, σp abbreviates the tuple σp1 , . . . , σpn .

Definition 2.1 For a type we define:

• the arity by ar(o) :≡ 0, ar(στ) :≡ ar(τ) + 1;

• the degree by dg(o) :≡ 0, dg(στ) :≡max{dg(σ) + 1 , dg(τ)} .

18One example of a logical relation is Howard’s majorizability which plays a key role in
most applications of functional interpretation [3, 26, 27, 28, 30, 31, 33, 35, 38].
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Let
dg(σ) :≡ max{dg(σ1) , . . . , dg(σn)}
ar(σ) :≡ max{ar(σ1) , . . . , ar(σn)} .

The following hold:

dg(στ) = max{dg(σ) + 1 , dg(τ)}
ar(στ) = ar(τ) + |σ|

2.2 Intuitionistic Equality Logic over FT (IELω)

Our formalization of IELω below is a slight modification of the axiomatic
calculus for multisorted intuitionistic predicate logic used by Gödel in his
original paper on functional interpretation [21]. The only differences are:

1. The syllogism and expansion are formulated as axioms instead of rules.
Gödel’s formulation with rules was designed to ease the formulation of
the soundness proof for the functional interpretation. Nevertheless for
the quantitative analysis it is more convenient to use the axiom versions
of

(a) the expansion rule
A → B

C ∨ A → C ∨ B
,

since the formula C may introduce realizing terms of arbitrary
complexities; also the formula complexity of the conclusion is
higher than the one of the premise;

(b) the syllogism rule
A → B , B → C

A → C
,

which would force us to consider the sum of quantitative measures
of both premises when computing upper bounds for quantitative
measures of the conclusion. We can immediately notice that the
mere Modus Ponens

A , A → B

B

avoids such a situation, since the formula complexity of the premise
A → B upper bounds that of the conclusion B.

12



2. The quantifier rules and axioms are formulated with tuples of variables
since we use tuples throughout the functional interpretation.

The language of IELω[C] contains, aside from the constants C, the fol-
lowing:

• denumerably many variables which we denote by letters x, y, z, u, v, w,
possibly capitalized or adorned with subscripts; x :≡ x1, . . . , xn denotes
a tuple of variables; in the same context we use x as metavariable for
an individual element of x; each of the variables is associated a unique
sort (mostly called type) which is an element of FT, such that there
exist denumerably many variables for each sort; we possibly indicate
the type of a variable by carrying it as a superscript, like xσ and then
xσ :≡xσ1

1 , . . . , xσn
n .

• a binary predicate constant =o for equality between objects of type o;

• logical constants ⊥, ∧, ∨, →, ∀x and ∃x (for each variable x).

Each of the constants in C is sorted as well, with the type possibly indicated
as superscript. We often do not indicate C and write IELω when the set
of constants is either clear from the context or not relevant. We use l as
metavariable for both variables and constants.

The terms of IELω are sorted, with their types possibly indicated in
superscripts and are inductively generated from variables and constants ac-
cording to the rule that if tστ and sσ are terms then (ts)τ is a term.

Terms are denoted by letters s, t, r, possibly adorned with subscripts;
tuples of terms are denoted like t :≡ t1, . . . , tn; in the same context we use t
as metavariable for an individual element of t.

We denote by V(t) the set of variables occurring in t and write t[x] to
indicate that {x} ⊆ V(t). If V(t) = ∅ we say that t is a closed term.

We make the convention that concatenation of terms is left associative
and consequently omit unnecessary parenthesis, writing rst instead of ((rs)t).

When writing down an expression it is always assumed that the terms
are well-formed, i.e. the types are fitting.

For tσ we denote by typ(t) :≡σ and by

• ar(t) :≡ ar(σ) the arity of t;

• dg(t) :≡ dg(σ) the degree of t.

13



For a term we define

• the depth by d(l) :≡ 0, d(ts) :≡max{d(t) , d(s)} + 1

• the size by S(l) :≡ 1, S(ts) :≡S(t) + S(s).

The subterm relation is defined as the reflexive transitive closure of
{(s, ts), (t, ts)}. We denote by s ≤ t the fact that s is a subterm of t. Obvi-
ously ≤ is a partial order relation. Let

mdg(t) :≡ max{dg(s) | s ≤ t}
mar(t) :≡ max{ar(s) | s ≤ t}.

We notice that:

• dg(t) ≥ dg(ts), hence mdg(r) = maxl≤r dg(l)

• ar(t) ≥ ar(ts), hence mar(r) = maxl≤r ar(l)

We abbreviate by:
t(s) :≡ t s1 . . . sm

t(s) :≡ t1(s), . . . , tn(s)

The formulas of IELω are inductively generated from prime formulas
so =o to and ⊥ according to the rule that if A and B are formulas then
(A ∧ B), (A ∨ B), (A → B), (∀xA) and (∃xA) are formulas.

Equality between terms s, t of type σ = σ1 . . . σno (1 ≤ n) is an abbrevi-
ation for ∀xσ1

1 . . . xσn
n (s x1 . . . xn =o t x1 . . . xn), where the variables x1, . . . , xn

do not occur in s, t. We abbreviate by s = t :≡ (s1 = t1), . . . , (sn = tn)
(hence a tuple of formulas).

∀x, ∃x abbreviate ∀x1 . . .∀xn and ∃x1 . . .∃xn respectively.
We abbreviate by A ↔ B :≡ ((A → B) ∧ (B → A)), ¬A :≡ (A → ⊥) and

s 6= t :≡¬(s = t). In order to avoid unnecessary parenthesis we make the
convention that ∀x, ∃x, ¬, ∧, ∨, →, ↔ is the decreasing order of precedence
and that → is right associative.

We denote formulas by letters A, B, C, possibly adorned with subscripts
or superscripts. We call a formula quantifier-free if it does not contain ∀, ∃,∨.
The subscript 0 always indicates a quantifier-free formula, such as A0, B0, C0.

We denote by Vf(A), Vb(A), V(A) the set of free, bounded, respectively
all variables occurring in A and write A(x) to indicate that {x} ⊆ Vf(A). We
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denote by C(A) the set of constants occurring in A and by vdg(A) :≡ dg(V(A)),
var(A) :≡ ar(V(A)), cdg(A) :≡ dg(C(A)), car(A) :≡ ar(C(A)).

For S ⊆ {∀, ∃,∧,∨,→} we define dS(·), the S-depth of a formula by

• dS(s =o t) :≡ dS(⊥) :≡ k0 (see Section 1.2 for k0)

• For Q ∈ {∀, ∃}, dS(QxA) :≡
{

dS(A) + 1, if Q ∈ S
dS(A) , if Q 6∈ S

• For � ∈ {∧,∨,→}, dS(A�B) :≡
{

max{dS(A) , dS(B)} + 1, if � ∈ S
max{dS(A) , dS(B)} , if � 6∈ S

For a formula A we define the following:

• the logical constants depth by ld(A) :≡ d∀,∃,∧,∨,→(A);

• the whole depth by wd(A) :≡ d′
∀,∃,∧,∨,→(A); here d′ differs from d just in

d′
S(s =o t) :≡ k0 + max{d(s) , d(t)}

• the implication depth by id(A) :≡ d
→(A) and the forall depth by

fd(A) :≡ d
∀(A); here d differs from d just in d

S(A0) :≡ k0;

• the forall/implication depth by fid(A) :≡max{fd(A) , id(A)};

• the quantifier size, denoted qs(A), is the number of quantifiers (includ-
ing ∨) occurring in A, when A is a closed formula and the quantifier
size of its universal closure in the general case;

• the logical constants size, denoted ls(A), is obtained by adding to qs(A)
the number of ∧,→,⊥, = occurring in A;

• the whole size, denoted ws(A), is obtained by adding to ls(A) the
number of all occurrences of variables and constants in A.

We present below the rules and axioms of IELω.
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Logical rules

MP : A , A → B ` B (modus ponens)

EXP : A ∧ B → C ` A → (B → C) (exportation)

IMP : A → (B → C) ` A ∧ B → C (importation)

QR∀ :

QR∃ :

B → A ` B → ∀zA

A → B ` ∃zA → B
(quantifier rules)

We denote by QR :≡ QR∀ + QR∃. At QR, z is not free in B.

Logical axioms

CT∨ :

CT∧ :

A ∨ A → A

A → A ∧ A
(contraction)

WK∨ :

WK∧ :

A → A ∨ B

A ∧ B → A
(weakening)

PM∨ :

PM∧ :

A ∨ B → B ∨ A

A ∧ B → B ∧ A
(permutation)

SYL : (A → B) ∧ (B → C) → (A → C) (syllogism)

EPN : (A → B) → (C ∨ A → C ∨ B) (expansion)

EFQ : ⊥ → A (ex falso quodlibet)

QA∀ :

QA∃ :

∀zA(z) → A(s)

A(s) → ∃zA(z)
(quantifier axioms)

We denote by QA :≡ QA∀ + QA∃. At QA, s is free for z in A

and the substitution is simultaneous.

For instances B(s) of QA which involve the constants s, we define the

• term depth of B(s) by td(B) :≡ d(s);

• term size of B(s) by ts(B) :≡Σs∈sS(s).
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Equality axioms

REF : x =o x (reflexivity)

SYM : x =o y → y =o x (symmetry)

TRZ : x =o y ∧ y =o z → x =o z (transitivity)

Remark 2.2 There exists k ∈ IN constant such that for all σ :

Higher-order equality

REF[σ] : IELω `k x =σ x (reflexivity)

SYM[σ] : IELω `k x =σ y → y =σ x (symmetry)

TRZ[σ] : IELω `k x =σ y ∧ y =σ z → x =σ z (transitivity)

Given a set of rules (axioms are comprised as rules with empty premise)
Rl whose formulas contain the constants C, we denote by IELω[Rl] the system
IELω[C] extended with the rules in Rl. We sometimes abbreviate IELω[Rl] with
a different denotation (like EILω below) and then (IELω[Rl])[Rl′] :≡ IELω[Rl ∪ Rl′].

2.3 The system EILω

Multisorted weakly extensional extended intuitionistic equality logic over FT,
which we denote by EILω, is obtained by extending IELω with exactly the
elements which are strictly necessary to carry out functional interpretation
even for IELω.

The language of EILω contains the following constants:

• the zero constant 0 ≡ Oo of type o and for each type ρ ≡ σo, the zero
constant Oρ defined by the axiom

AxO : Oρ(z
σ) = 0

(hence for any type there exists at least one constant)

• the successor constant S of type oo defined by the axiom

AxS :

{
S x 6= 0

S x = S y → x = y

17



• the boolean constants ν, I, E all of type ooo defined by the axioms

Axν : (x = 0 ∧ y = 0) ↔ ν x y = 0

AxI : (x = 0 → y = 0) ↔ I x y = 0

AxE : x = y ↔ E xy = 0

• for each

– n, m ∈ IN, n :≡ n0, n1, . . . , nm ∈ IN, n :≡n1, . . . , nm ∈ IN with
n0, n1, . . . , nm ≤ n and n1, . . . , nm ≤ n,

– permutations p :≡ p0, p1, . . . , pm and p :≡ p1, . . . , pm of {1, . . . , n}
– types τ, σ ≡ σ1, . . . , σn, δ ≡ δ1, . . . , δm

the combinator constant Σ
σ,δ,τ,m
p,p,n,n of type

– (σ0 δ1 σ1 . . . δm σm τ) (σ1 δ1) . . . (σm δm) σ τ,

where

– σj :≡σ(pj)1 , . . . , σ(pj)nj
with j ∈ 0, m and

– σj :≡ σ(pj)1 , . . . , σ(pj)
nj

with j ∈ 1, m

defined by the axiom

AxΣ : Σ
σ,δ,τ,m
p,p,n,n (x, y, z) = x(z0, y1(z

1), z1, . . . , ym(zm), zm)

• for each n ∈ IN, permutation p of {1, . . . , n} and types τ, σ ≡ σ1, . . . , σn,
the permutation constant P σ,τ

n,p of type (στ)σpτ defined by the axiom

AxP : P σ,τ
n,p (x, z′) = x(z)

• for each n, i ∈ IN, i ≤ n and types σ ≡ σ1, . . . , σn, the projector con-
stant Πσ

i of type σσi defined by the axiom

AxΠ : Πσ
i (z) = zi

• for each n, i ∈ IN, i ≤ n and types σ ≡ σ1, . . . , σn, the decision constant
Dσ

i of type oσ σσi defined by the axiom

AxD :

{
x = 0 → Dσ

i (x, z, z′) = zi

x 6= 0 → Dσ
i (x, z, z′) = z′i

Here |z| = |z′|.
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For simplicity we abbreviate by 1 :≡S0. The system EILω is finally obtained
by adding the quantifier-free tertium non datur axiom

TND0 : x = 0 ∨ ¬(x = 0)

and the quantifier-free extensionality rule

ER0 :
A0 → s1 = t1 , . . . , A0 → sn = tn

A0 → B0(s) → B0(t)
.

The formal proofs in the sequel will be in EILω if not otherwise indicated.

Remark 2.3 The constants P and Π are definable in terms of Σ and also
Oσo = Πo,σ

1 0. We nevertheless chose to define them separately since they play
a particular role.

Definition 2.4 As particular cases of Σ we distinguish the tuple-Schönfinkel
combinators Σ

σ,(δ),τ,1
(1n,1n),(1n),(n,0),(n) with defining axioms of shape

Σ
σ,(δ),τ,1
(1n,1n),(1n),(n,0),(n)(x, y, z) = x(z, y(z)) .

These are generalizations of the usual19 Schönfinkel combinators Σ to tuples
and will be used in the λ-abstraction Definition 2.12. The usual Schönfinkel
combinators Σ are in fact particular cases of our Σ of shape Σ

σ,(δ),τ,1
(11,11),(11),(1,0),(1)

with defining axioms Σ
σ,(δ),τ,1
(11,11),(11),(1,0),(1)(x, y, z) = x(z, y(z)). Also the usual

Schönfinkel projectors Π are particular cases of our Π of shape Π
(σ1,σ2)
1 with

defining axioms Π
(σ1,σ2)
1 (z1, z2) = z1.

Remark 2.5 The quantifier-free tertium-non-datur TND0 becomes derivable
in the presence of induction for propositional formulas. Moreover, in the pres-
ence of a modest amount of arithmetic, the constants D, I, ν, E are definable
and their axioms derivable. Therefore these axioms are in fact redundant in
any concrete application of functional interpretations, e.g., to HAω and frag-
ments thereof. Examples of the latter are systems of bounded arithmetic like
IPVω of [10] and the poly-time arithmetic LHA of [48] 20 .

19For the original definition of Schönfinkel Σ and Π see [47]. See also the last paragraph
before Section 2.1.

20Even though LHA was designed in a modified realizability context, the outline of a
similar functional-interpretation-generated system should be straightforward.
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Remark 2.6 The extensionality axiom

EA[σ] : xσ = yσ → fσo x =o fσo y ( let EA :≡ ∪σ EA[σ] )

is derivable in EILω for σ ≡ o, . . . , o hence EILω contains all equality axioms
for type o. This no longer holds in general when σ contains higher types
(follows from [53](3.5.10) and [24]). On the other hand, ER0 is derivable from
EA in EILω r ER0, hence the rule is strictly weaker than the axiom, but only
at higher types.

Remark 2.7 ` ⊥ ↔ 1 = 0 and ` x 6= 0 ↔ Ix1 = 0.

Remark 2.8 There exists k ∈ IN constant such that for all s, t, r, r1, r2,
B0, the following hold:

s = t `k B0(s) → B0(t) (1)

s = t `k r[s] = r[t]

r1 = r2, s = t `k r1(s) = r2(t). (2)

Proposition 2.9

dg(Σ
σ,δ,τ,m
p,p,n,n ) = max{dg(σ, δ) + 2 , dg(τ) + 1}
dg(Π

σ
i ) = dg(σ) + 1

dg(Dσ
i ) = dg(σ) + 1

dg(P σ,τ
n,p ) = max{dg(σ) + 2 , dg(τ) + 1}

ar(Σσ,δ,τ,m
p,p,n,n ) = ar(τ) + |σ| + |δ| + 1

ar(Πσ
i ) = ar(σi) + |σ|

ar(D
σ
i ) = ar(σi) + 2|σ| + 1

ar(P σ,τ
n,p ) = ar(τ) + |σ| + 1

�

In the proposition below we show how and at which cost in proof depth
the quantifier-free formulas can be viewed as prime formulas.

Proposition 2.10 (Association of terms to quantifier-free formulas)
There exists k ∈ IN constant and an association of terms to quantifier-free
formulas A0 7→ tA0 such that for all A0,

`k·ld(A0) A0(a) ↔ tA0 [a] = 0 . (3)
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Proof: The proof is by induction on the structure of A0, making use
of the boolean constants axioms. For prime formulas just take t⊥ :≡ 1,
tt1=t2 :≡Et1t2 then recursively define tB0∧C0 :≡ νtB0tC0 , tB0→C0 :≡ ItB0tC0 . �

Corollary 2.11 (TND and Stability for quantifier-free formulas)
There exists k ∈ IN constant such that for all A0,

`k·ld(A0) A0(a) ∨ ¬A0(a) (4)

`k·ld(A0) ¬¬A0(a) → A0(a) . (5)

Proof: The principle

STAB0 : ¬¬x = 0 → x = 0

follows immediately with constant-depth proof from TND0. Both (4) and (5)
follow immediately from TND0 and STAB0 respectively by (3) and (1). �

Definition 2.12 (λ-abstraction) To every term tτ one associates a term
(λxσ. t)στ , with V(λx. t) = V(t) − {x}, recursively defined as follows:

λx. xi :≡ Πσ
i

λx. t :≡ Π
(τ,σ)
1 t, if {x} ∩ V(t) = ∅

λx. (tδτsδ) :≡ Σ
σ,(δ),τ,1
(1n,1n),(1n),(n,0),(n)(λx. t)(λx. s), if {x} ∩ V(ts) 6= ∅ (6)

Proposition 2.13 (β-reduction) There exists k ∈ IN constant such that
for all t and r,

`k·d(t) ( λxσ. t[x] ) rσ =τ t[r] .

Proof: By straightforward induction on d(t), using (2) when the induction
step falls under (6). �

Proposition 2.14 The following hold:

d(λx. t) ≤ 2 · d(t)

S(λx. t) ≤ 3 · S(t)

mdg(λx. t) ≤ max{dg(x) + 1 , mdg(t)} + 1

mar(λx. t) ≤ max{mar(t) + 1 , ar(x)} + |x|

Proof: Structural induction on t, following Definition 2.12. �
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Remark 2.15 In order to increase readability we will omit the adornments
of Σ, P and Π from now on. We consider that this side information can be
figured out from the context in a straightforward way. On the other hand its
display would only complicate the exposition.

3 A quantitative analysis of functional

interpretation

Gödel’s functional (Dialectica) interpretation, which assigns a formula
AD ≡ ∃x∀yAD(x; y; a) with AD quantifier-free and x, y tuples of variables of
finite type (s.t. {x, y, a} = Vf(AD)) to each formula A(a) (with {a} = Vf(A)),
was first introduced in [21] and is also presented in [42](4), [53](3.5.1).

For notational simplicity we will omit tuples of free variables of formulas
but for the places where their presence is relevant. We shall denote by

B(a′)D ≡ ∃u∀v BD(u; v; a′)

C(a′′)D ≡ ∃g ∀h CD(g; h; a′′).

The interpretation is given by the following list of rules:

Definition 3.1 (Gödel’s functional interpretation)

AD :≡ (AD :≡A) for prime formulas A

(A ∧ B)D :≡ ∃x, u∀y, v [(A ∧ B)D :≡AD(x; y) ∧ BD(u; v)]

(∃zA(a, z))D :≡ ∃z, x ∀y [(∃zA(a, z))D :≡AD(x; y; a, z)]

(∀zA(a, z))D :≡ ∃X ∀z, y (∀zA(a, z))D (7)

(∀zA(a, z))D :≡ AD(X(z); y; a, z)

(A → B)D :≡ ∃Y , U ∀x, v (A → B)D (8)

(A → B)D :≡ AD(x; Y (x, v)) → BD(U(x); v)

(A ∨ B)D :≡ ∃zo, x, u∀y, v (A ∨ B)D

(A ∨ B)D :≡ (z = 0 → AD(x; y)) ∧ (Iz1 = 0 → BD(u; v))

Remark 3.2 For quantifier-free formulas A, AD = AD = A. The types and
lengths of x and y depend only on the logical structure of A. Notice that
Vf(A

D) = Vf(A) and Vb(A
D) = {x, y}.
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Proposition 3.3 By induction on the structure of the formula A it can be
easily proved that

qs(AD) = |x, y, a| = qs(A) (9)

�

Lemma 3.4 The following hold:

dg(Vb(C
D)) ≤ vdg(C) + id(C) − k0 + 1 (10)

ar(Vb(C
D)) ≤ var(C) + qs(C) · (id(C) − k0 + 1) (11)

Proof: The proof is by recursion on the structure of the formula C, following
the Definition 3.1. We simply notice that

• dg(Vb(·D)) may increase only at (8), with the quantity 1; (7) forces us
to start with 1 + vdg(C), since dg(X) = max{dg(x) , dg(z) + 1};

• ar(Vb(·D)) may increase with the quantity 1 at (7) and with at most
|x, v| ≤ qs(A → B) ≤ qs(C) at (8), hence

ar(Vb(C
D)) ≤ var(C) + fd(C) + qs(C) · (id(C) − k0) .

�

Definition 3.5 Let Ax be an arbitrary but fixed21 set of axioms. For a set
of closed terms Tm and a set of formulas Fm of EILω[Ax] we define

• the prerealization relation by PR[Tm, Fm] :≡{(t, A(a)) ⊆ Tm≤ω × Fm |
|t| = |x|, {a} = Vf(A) and typ(t(a)) = typ(x)}. For (t, A(a)) ∈ PR[Tm, Fm]

we abbreviate by {] t , A [} :≡∀y AD(t(a); y; a).

• the realization relation by

RR[Tm, Fm] :≡{ (t, A) ∈ PR[Tm, Fm] | EILω[Ax] ` {]t, A[} }

• the set of realizing tuple selections RTS [Fm, Tm] as the set of those
subsets of RR[Tm, Fm] which are functions from Fm to Tm≤ω.

21See also Definition 3.10 and especially Remark 3.11.
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We sometimes omit to specify Tm, Fm when they refer to all the closed
terms, respectively formulas of EILω[Ax]. The set Ax will be determined by
the context. Whenever (t, A) ∈ RR we denote this fact by t Dr A and say
that

• t is a realizing tuple for AD;

• t is a realizing term for AD;

• AD is realized by t or t.

We call

• realizer any realizing tuple or term;

• realizer-free a formula A for which |x| = 0.

Definition 3.6 We say that a proof P is realizer-free-normal if all realizer-
free formulas of P are located at the leaf level.

Remark 3.7 Let P be a realizer-free-normal proof. There exists no instance
of ER0 in P since the conclusion is quantifier-free and consequently realizer-
free. Realizer-free formulas of P may label only leaves of P which are left
premises of MP instances. Indeed, if the conclusion in any of the rules QR,
EXP, IMP is non-realizer-free then also the premise must be non-realizer-free.
For the MP rule, if the conclusion is non-realizer-free then also the A → B
premise must be non-realizer-free.

Definition 3.8 To any proof P in some extension of EILω we associate
a realizer-free-normal proof Ptr which is obtained from P by removing its
maximal subtrees rooted at vertices labeled with realizer-free formulas, yet
keeping these roots (which become assumptions in Ptr). There is a fairly
simple algorithm which transforms P to Ptr by recursion on proof structure.

Remark 3.9 The proofs we consider in the sequel are realizer-free-normal
if not otherwise specified. See also Remark 3.32.
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3.1 Axiom extensions of EILω. The system
EILω

++AC+IP∀+MK

Instances of the following three schemata are formulas whose correspondents
under functional interpretation can be realized by very simple terms, basically
projectors Π . This makes them the first to be considered for axiom exten-
sions of EILω since by allowing them in proofs in the domain of functional
interpretation causes no increase in complexity. Moreover the verifying proof
is in EILω and has a constant bound on its depth. The first two are logical
axioms, i.e. they are valid in classical logic; the third axiom is non-logical.

1. a variant of Markov’s principle

MK : ¬¬∃x A0(x) → ∃x¬¬A0(x) ;

the usual22 formulation of Markov’s principle

MK′ : ¬¬∃xA0(x) → ∃xA0(x)

can be deduced from MK with a proof which makes use of (5) and there-
fore has depth upper bounded by k ld(A0) for some k ∈ IN constant; on
the other hand the proof of MK from MK′ has constant depth;

2. Independence of Premises for universal premises

IP∀ : [ ∀x A0(x) → ∃y B(y) ] → ∃y [ ∀xA0(x) → B(y) ] ,

where y 6∈ Vf(∀xA0(x)) ;

3. the Axiom of Choice

AC : ∀x ∃y A(x, y) → ∃Y ∀x A(x, Y (x)) .

Another simple axiom extension of EILω is with realizer-free formulas
since the quantitative analysis does not get affected in any way. There is
a particular kind of such axiom extension which we consider in the sequel.
Strictly, the terms t1, t2 which appear in prime formulas t1 = t2 of contrac-
tions A → A ∧ A and terms s involved in quantifier axioms
A(s) ≡ ∀zB(z) → B(s) or A(s) ≡ B(s) → ∃zB(z) are part of the realizing
term (see Section 3.3). However we do not count them in the quantita-
tive analysis, but rather introduce new constants t̃1, t̃2, s̃ associated to terms

22We prefer the variant MK because the verifying proof of its functional interpretation is
much simpler than for MK′. In the latter case the depth of the verifying proof is k ld(A0)
for some k ∈ IN constant.
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t1, t2, s together with their defining axioms, such that any of the terms t1, t2, s
contributes as much as a unit (plus the number of its free variables) of size to
the realizing term. This is justified by the fact that we are merely interested
in the complexity of functional interpretation itself; the terms t1, t2, s are not
created by functional interpretation but are merely given as basic input data.

Definition 3.10 Let Ax be an arbitrary but fixed set of axioms and Thrf an
arbitrary but fixed set of realizer-free theorems of EILω[Ax]. We define below
two extensions EILω

+ and EILω
v of EILω[Ax]. The system EILω

+ is obtained by
simply adding Thrf to the set of axioms of EILω[Ax]. Let ·̃ be a map which
uniquely associates constants t̃ to terms t[a] of EILω[Ax] such that

dg(t̃) = max{dg(a) + 1 , dg(t)}
ar(t̃) = |a| + ar(t)

}
(12)

together with the defining axiom

Axt̃ : t[a] = t̃(a)

Let Tm be an arbitrary but fixed set of EILω[Ax] terms. The system EILω
v

is obtained by extending EILω
+ with the defining axioms Axt̃ for the newly

introduced constants t̃ associated to terms t ∈ Tm by (12).

Remark 3.11 All arbitrary but fixed items in the above definition are in
fact context-dependent and will be in the subsequent concrete occurrences
easy to figure out if not explicitly described.

3.2 The treatment of EILω rules

Remark 3.12 Recall that the formal proofs below are by default in EILω.
See Definition 3.5 for the meaning of the relations PR, RR and RTS below.

Lemma 3.13 The following hold for any proof P:

qs(V t(P)) = qs(Lv(P)) and ls(V t(P)) = ls(Lv(P)) (13)

V(V t(P)) = V(Lv(P)) and C(V t(P)) = C(Lv(P)) (14)

Proof: The following (in)equalities are immediate:

qs(A → ∀zB(z)) = qs(A → B(z)) qs(∃zA(z) → B) = qs(A(z) → B)

qs(A ∧ B → C) = qs(A → B → C) qs(B) ≤ qs(A → B)
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It follows by structural induction on P that qs(A) ≤ qs(Lv(P)) for any for-
mula A ∈ V t(P) and then qs(V t(P)) = qs(Lv(P)) is immediate. The argu-
ment for ls is identical and (14) has a similar proof, with ⊆ instead of ≤ .
�

Lemma 3.14 (MP) There exists k ∈ IN constant and an algorithm which,
given as input (t1, A(a)), (t2, t3, (A → B)(ã)) ∈ PR, produces as output
(t4, B(a′)) ∈ PR and the following hold (below {a1} :≡{a} − {a′} and
{ã} = {a} ∪ {a′}):

• t4 is obtained from t′4 :≡Σ(t3, t1, a1) = λa′. t3(ã, t1(a)) by replacing the
variables in a1 with constants O of appropriate type.

• {] t1 , A [} , {] t2, t3 , A → B [} `k {] t4 , B [}

• d(t4) ≤ qs(A → B) + d(t1, t3) (15)

S(t4) ≤ 1 + qs(A → B) · S(t1, t3) (16)

dg(t4) ≤ dg(t3) and ar(t4) ≤ ar(t3)

mdg(t4) ≤ max{mdg(t1, t3) , dg(t3) + 1}
mar(t4) ≤ max{mar(t1, t3) , ar(t3) + 1 , ar(a1)}

Proof: There exists k ∈ IN constant such that for all (t1, A),
(t2, t3, A → B) ∈ PR,

y :≡ t2(ã, t1(a), v)
∀y AD(t1(a); y)

AD(t1(a); t2(ã, t1(a), v))
k

x :≡ t1(a)
∀x, v (AD(x; t2(ã, x, v)) → BD(t3(ã, x); v))

AD(t1(a); t2(ã, t1(a), v)) → BD(t3(ã, t1(a)); v)
k

hence, by using MP once, we obtain that there exists k ∈ IN constant such
that for all (t1, A), (t2, t3, A → B) ∈ PR,

∀y AD(t1(a); y) ∀x, v (AD(x; t2(ã, x, v)) → BD(t3(ã, x); v))

BD(t3(ã, t1(a)); v)
k

Since by AxΣ there exists k ∈ IN constant such that for all (t1, A),
(t2, t3, A → B) ∈ PR, `k t3(ã, t1(a)) = t′4(a

′), and BD is quantifier-free, by us-
ing (1) we obtain that there exists k ∈ IN constant such that for all (t1, A),
(t2, t3, A → B) ∈ PR,

BD(t3(ã, t1(a)); v) `k BD(t
′
4(a

′); v)
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and we conclude that there exists k ∈ IN constant such that for all
(t1, A), (t2, t3, A → B) ∈ PR,

∀y AD(t1(a); y) ∀x, v (AD(x; t2(ã, x, v)) → BD(t3(ã, x); v))

∀v BD(t
′
4(a

′); v)
k

We have that

d(t4) ≤ |t1, a1| + 1 + max{d(t1) , d(t3)}
S(t4) ≤ 1 + (|t1, a1| + 1) · max{S(t1) , S(t3)} .

Inequalities (15) and (16) follow from

|t1, a1| + 1 ≤ qs(A) + 1 ≤ qs(A → B) ,

where for the last inequality we used that B is non-realizer-free. From

t3(ã, t1(a)) = t′4(a
′) = Σ(t3, t1, a1, a

′)

we obtain that

dg(t4) ≤ dg(t3) dg(a1) ≤ dg(Σ) = dg(t3) + 1

ar(t4) ≤ ar(t3) ar(Σ) = ar(t3) + 1

from which the remaining inequalities follow immediately. �

Lemma 3.15 (QR∀, QR∃) There exists k ∈ IN constant and an algorithm
which, given as input (t1, t2, A(a) → B(a′, z)) ∈ PR, produces as output
(t3, t4, A(a) → ∀z B(a′, z)) ∈ PR and the following hold ( {ã} :≡{a} ∪ {a′} ):

• t3 :≡P t1 = λã, x, z. t1(ã, z, x) and t4 :≡P t2 = λã, x, z. t2(ã, z, x)

• {] t1, t2 , A → B(z) [} `k {] t3, t4 , A → ∀z B(z) [}

• d(t3, t4) ≤ d(t1, t2) + 1 and dg(t3, t4) = dg(t1, t2)

S(t3, t4) ≤ S(t1, t2) + 1 and ar(t3, t4) = ar(t1, t2)

mdg(t3, t4) ≤ max{mdg(t1, t2) , dg(t1, t2) + 1}
mar(t3, t4) ≤ max{mdg(t1, t2) , ar(t1, t2) + 1}

A corresponding statement holds for QR∃ as well, with the same bounds.

28



Proof: By definition,

(A → B(a′, z))D ≡ ∃Y , U ∀x, v [AD(x; Y (x, v)) → BD(U(x); v; a′, z)]

(A → ∀zB(a′, z))D ≡ ∃Y , U ∀x, z, v [AD(x; Y (x, z, v)) → BD(U(x, z); v; a′, z)] .

By AxP , there exists k ∈ IN constant such that for all (t1, t2, A → B(z)) ∈ PR,

`k t3(ã, x, z, v) = t1(ã, z, x, v) and `k t4(ã, x, z) = t2(ã, z, x) .

Since AD(x; y) → BD(u; v; a′, z) is quantifier-free, by using (1) we obtain that
there exists k ∈ IN constant such that for all (t1, t2, A → B(z)) ∈ PR,

AD(x; t1(ã, z, x, v)) → BD(t2(ã, z, x); v; a′, z)

AD(x; t3(ã, x, z, v)) → BD(t4(ã, x, z); v; a′, z)
k .

Further, there exists k ∈ IN constant such that for all (t1, t2, A → B(z)) ∈ PR,

∀x, v (AD(x; t1(ã, z, x, v)) → BD(t2(ã, z, x); v; a′, z))

∀x, z, v (AD(x; t3(ã, x, z, v)) → BD(t4(ã, x, z); v; a′, z))
k .

Obviously,

• dg(t3) = dg(t1), dg(t4) = dg(t2), hence dg(t3, t4) = dg(t1, t2)

• ar(t3) = ar(t1), ar(t4) = ar(t2), hence ar(t3, t4) = ar(t1, t2)

and the inequalities in the conclusion of this Lemma follow immediately. �

Lemma 3.16 (EXP, IMP) The following holds:

{] t1, t2, t3 , A → (B → C) [} = {] t1, t2, t3 , A ∧ B → C [}.

Proof: By definition,

(A ∧ B → C)D ≡ ∃Y , V , G∀x, u, h

[AD(x; Y (x, u, h)) ∧ BD(u; V (x, u, h)) → CD(G(x, u); h)]

(A → B → C)D ≡ ∃Y , V , G∀x, u, h

[AD(x; Y (x, u, h)) → BD(u; V (x, u, h)) → CD(G(x, u); h)] .

�
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Theorem 3.17 There exists k ∈ IN constant and an algorithm A which
does the following. Let P be some proof of a formula A in EILω

+ and
s(·) ∈ RTS [Lv(P)] a realizing tuple selection for the set of leaves of P. Let
q :≡maxA∈Lv(P) q(sA) for q ∈ {d, S, dg, ar, mdg, mar} and q :≡ q(Lv(P)) for
q ∈ {qs, var}. Let23 ∂MP :≡ ∂MP(P), ∂QR :≡ ∂QR(P) and ∂ :≡ ∂(P). Let ∂ ∈ IN be
a number such that for all A ∈ Lv(P), `∂ {]sA, A[}. When A is presented with
P and s(·) at input, it produces as output (t, A) ∈ RR and the following hold:

d(t) ≤ d + ∂QR + qs · (∂MP − k0) (17)

S(t) ≤ (S + ∂QR − k0 + 1) · qs (∂MP−k)
 (18)

dg(t) ≤ dg and mdg(t) ≤ mdg + 1 (19)

ar(t) ≤ ar and mar(t) ≤ max{var , mar + 1} (20)

EILω
+ `∂+k ∂ {] t , A [} (21)

Proof: The algorithm proceeds by recursion on the structure of P, using the
algorithms in Lemmas 3.14 and 3.15 as subprocedures at the MP, respectively
QR recursion steps; (21) follows immediately. We notice that dg and ar do
not increase in the recursion, hence (19) and (20) are clear.

Let e ≡ e . . . en denote paths from some leaf to the root of P , i.e., (ei)i∈,n

denote edges such that e is incident with a leaf and en is incident with the
root of P. Let (de

i , Se
i )i∈,n be a sequence of pairs of natural numbers defined

by (de
 , Se

) :≡ (d , S) and for i ∈ 1, n,

(d
e
i , S

e
i ) :≡


(de

i− + qs , qs · Se
i− + 1), if L(ei) = MP

(de
i− + 1 , Se

i− + 1) , if L(ei) ∈ QR

(de
i− , Se

i−) , otherwise
.

Using (13) it follows that maxe de
n and maxe Se

n are upper bounds on d, S
respectively. Inequalities (17) and (18) follow now immediately24 . �
Remark 3.18 Let us suppose that only unary (i.e., with n = 1) ER0 is
allowed in the verifying proof. The n-ary ER0 can be obtained from unary
ER0 with a proof of depth proportional with n. It follows that we can upper
bound the depths of proofs of lemmas used in verifying MP and QR with
quantities proportional with qs. In consequence, (21) becomes

EILω
+ `∂+k·(qs+∂) {] t , A [} .

23 See Section 1.2 for the meaning of ∂MP(P), ∂QR(P) and ∂(P). Notice that QR∀, QR∃
and MP label edges in our EILω-proof-trees P and QR cumulates both QR∀, QR∃ labels.

24At (18) an intermediate upper bound is (S + ∂QR − k0) · qs (∂MP−k)
 +

∑(∂MP−k0)−1
i=0 qs i

 .
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3.3 Bounds for realizing terms for EILω
+ +AC+IP∀+MK

axioms

Remark 3.19 Recall that the formal proofs below are by default in EILω.

Proposition 3.20 There exists k ∈ IN constant such that for any instance
A of CT∨, WK∨, WK∧, PM∨, PM∧, SYL, EPN, EFQ, TND0, MK, IP∀, AC, there exists
a realizing tuple t for AD such that

d(t) ≤ k (22)

S(t) ≤ k (23)

mdg(t) ≤ k + vdg(A) + id(A) (24)

mar(t) ≤ k + var(A) + qs(A) · (id(A) − k0 + 2) (25)

EILω `k {] t , A [} (26)

Proof: We treat here SYL as an example, since it is the most complex among
the above listed axioms. The remaining axioms are treated in the Appendix.

We have

((A → B) ∧ (B → C) → (A → C))D ≡ ∃X, V , U ′, H, Y ′, G′ ∀y, u, v′, g, x′, h′

 AD(X(y, u, v′, g, x′, h′); y(X(y, u, v′, g, x′, h′), V (y, u, v′, g, x′, h′)))
→

BD(u(X(y, u, v′, g, x′, h′)); V (y, u, v′, g, x′, h′))


∧ BD(U

′(y, u, v′, g, x′, h′); v′(U ′(y, u, v′, g, x′, h′), H(y, u, v′, g, x′, h′)))
→

CD(g(U ′(y, u, v′, g, x′, h′)); H(y, u, v′, g, x′, h′))


−→ AD(x

′; Y ′(y, u, v′, g)(x′, h′))
→

CD(G
′(y, u, v′, g)(x′); h′)




from

((A → B) ∧ (B → C))D ≡ ∃Y , U, V ′, G ∀x, v, u′, h

((AD(x; Y (x, v)) → BD(U(x); v)) ∧ (BD(u
′; V ′(u′, h)) → CD(G(u′); h)))
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from

(A → B)D ≡ ∃Y , U ∀x, v (AD(x; Y (x, v)) → BD(U(x); v))

(B → C)D ≡ ∃V ′, G∀u′, h (BD(u
′; V ′(u′, h)) → CD(G(u′); h))

(A → C)D ≡ ∃Y ′, G′ ∀x′, h′ (AD(x
′; Y ′(x′, h′)) → CD(G

′(x′); h′))

and we can take (here {a} = Vf((A → B) ∧ (B → C) → (A → C)))

tX :≡ Π = λa, y, u, v′, g, x′, h′. x′

tH :≡ Π = λa, y, u, v′, g, x′, h′. h′

tU ′ :≡ P Σ = λa, y, u, v′, g, x′, h′. u(x′)

tV :≡ P Σ = λa, y, u, v′, g, x′. v′(u(x′))

tY ′ :≡ P (Σ Σ) = λa, y, u, v′, g, x′, h′. y(x′, v′(u(x′), h′))

tG′ :≡ P Σ = λa, y, u, v′, g, x′. g(u(x′))

The proofs of (22) and (23) are immediate, for (24) and (25) we use the results
in Proposition 2.9 plus (10), respectively (9, 11) and for (26) we use AxΣ, AxP ,
AxΠ , AxD and (1). �
Proposition 2.10 gives us an algorithm for associating terms tAD to for-
mulas A such that ` AD ↔ tAD = 0. Since V(tAD) = Vf(AD) these tAD are
generally not closed, whereas we want to produce closed realizing terms
for contractions A → A ∧ A. We could, of course, close these tAD via the
λ-abstraction algorithm of Definition 2.12, however there is a more efficient
way to achieve what we need.

Proposition 3.21 (Association of closed terms to all EILω
+ formulas)

There exists k ∈ IN constant and an association of terms to EILω
+ formulas

A 7→ tDA such that for all A (with {a} = Vf(A))

d(tDA) ≤ k · ld(A) (27)

S(tDA) ≤ k · ls(A) (28)

mdg(tDA) ≤ k + vdg(A) + id(A) (29)

mar(tDA) ≤ k + var(A) + qs(A) · (id(A) − k0 + 2) (30)

EILω
v `k·ld(A) AD(x; y; a) ↔ tDA(x, y, a) = 0 . (31)

The ·̃ constants in (31) are only those corresponding to terms occuring in A.
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Proof: Induction on the structure of A. For prime formulas just take
tD⊥ :≡ 1 and (below {a1} = V(t1), {a2} = V(t2), and {a} = Vf(t1 = t2))

tDt1=t2
:≡ Σ E t̃1 t̃2 = λa. E t̃1(a1) t̃2(a2)

and otherwise define (below {ã} = {a} ∪ {a′})
tDA∧B :≡ Σ ν tDA tDB = λx, u, y, v, ã. ν tDA(x, y, a) tDB(u, v, a′)

tD∃zA(a,z) :≡ P tDA(a,z) = λz, x, y, a. tDA(a,z)(x, y, a, z)

tD∀zA(a,z) :≡ Σ tDA(a,z) = λX, z, y, a. tDA(a,z)(X(z), y, a, z)

tDA→B :≡ Σ Σ I tDA tDB = λY , U, x, v, ã. I tDA(x, Y (x, v), a) tDB(U(x), v, a′)

tDA∨B :≡ Σ Σ ν I tDA tDB I 1 =
= λz, x, u, y, v, ã. ν (I z tDA(x, y, a)) (I (I z 1) tDB(u, v, a′))

The inequalities (27) and (28) are immediate, (29) and (30) follow from (10),
respectively (9, 11) and (31) follows using the axioms AxΣ, AxI, Axν, AxE.
�

Proposition 3.22 There exists k ∈ IN constant such that for any instance
A of CT∧ there exists a realizing tuple t for AD such that

d(t) ≤ k · ld(A)

S(t) ≤ k · ls(A)

mdg(t) ≤ k + vdg(A) + id(A)

mar(t) ≤ k + var(A) + qs(A) · (id(A) − k0 + 3)

EILω
v `k·ld(A) {] t , A [} . (32)

The ·̃ constants in (32) are only those corresponding to terms occurring in
A.

Proof: We have

(A ≡ B → B ∧ B)D ≡ ∃Y , X ′, X ′′ ∀x, y′, y′′

[ BD(x; Y (x, y′, y′′)) → BD(X
′(x); y′) ∧ BD(X

′′(x); y′′) ]

and we can take (here {a} = Vf(A) = Vf(B))

tX′ :≡ tX′′ :≡Π = λa, x. x

tY :≡ Σ D tDB = λa, x, y′, y′′. D(tDB(x, y′, a), y′′, y′)
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The proof of (32) is as follows:
By AxD, there exists k ∈ IN constant such that for all B,{

`k tDB(x, y′, a) = 0 → D(tDB(x, y′, a), y′′, y′) = y′′

`k I tDB(x, y′, a) 1 = 0 → D(tDB(x, y′, a), y′′, y′) = y′

and by using ER0, there exists k ∈ IN constant such that for all B,{
`k tDB(x, y′, a) = 0 → BD(x; D(tDB(x, y′, a), y′′, y′)) → BD(x; y′′)

`k I tDB(x, y′, a) 1 = 0 → BD(x; D(tDB(x, y′, a), y′′, y′)) → BD(x; y′) .

By TND0 and AxI, there exists k ∈ IN constant such that for all B,

`k tDB(x, y′, a) = 0 ∨ I tDB(x, y′, a) 1 = 0 .

¿From (31), there exists k ∈ IN constant such that for all B,

EILω
v `k·ld(B) BD(x; y′) ↔ tDB(x, y′, a) = 0,

hence there exists k ∈ IN constant such that for all B,{
EILω

v `k·ld(B) BD(x; y′) → BD(x; D(tDB(x, y′, a), y′′, y′)) → BD(x; y′′)

EILω
v `k·ld(B) ¬BD(x; y′) → BD(x; D(tDB(x, y′, a), y′′, y′)) → BD(x; y′) .

Since there exists k ∈ IN constant such that for all A, B, C,

A ∨ ¬A , A → B → C , ¬A → B → A

B → A ∧ C
k,

we finally obtain that there exists k ∈ IN constant such that for all B,

EILω
v `k·ld(B) BD(x; D(tDB(x, y′, a), y′′, y′)) → BD(x; y′) ∧ BD(x; y′′) .

Since there exists k ∈ IN constant such that for all B,

`k tY (a, x, y′, y′′) = D(tDB(x, y′, a), y′′, y′)

`k tX′(a, x) = x

`k tX′′(a, x) = x ,

by (1) we obtain that there exists k ∈ IN constant such that

EILω
v `k·ld(B) BD(x; tY (a, x, y′, y′′)) → BD(tX′(a, x); y′′) ∧ BD(tX′′(a, x); y′)

which gives (32). The other inequalities follow immediately from Proposition
3.21. �
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Proposition 3.23 There exists k ∈ IN constant such that for any instance
A(s) of QA∀, QA∃, there exists a realizing tuple t for AD such that

d(t) ≤ k + fd(A), when A(s) ∈ QA∀ and (33)

d(t) ≤ k, when A(s) ∈ QA∃
S(t) ≤ k + fd(A), when A(s) ∈ QA∀ and (34)

S(t) ≤ k, when A(s) ∈ QA∃
mdg(t) ≤ k + vdg(A) + id(A) (35)

mar(t) ≤ k + var(A) + qs(A) · (id(A) − k0 + 2) (36)

EILω
v `k {] t , A [} (37)

The ·̃ constants in (37) are only those corresponding to terms occurring in
A.

Proof: Let A(s) ≡ ∀zB(z, a′′) → B(s, a′′) be an instance of QA∀, s free for
z in B. Let a′ :≡V(s) and a :≡ a′, a′′ = Vf(A(s)). Also s ≡ s1, . . . , sn and let
ai :≡V(si) for i ∈ 1, n. We have

(∀zB(z) → B(s))D ≡ ∃Z, Y , X ∀x, y
[ BD(x(Z(x, y)); Y (x, y); Z(x, y)) → BD(X(x); y; s) ]

and we can take (recall from Definition 3.10 that s̃i(ai) = si)

tZi
:≡ Σ′ s̃i = [λui, a, x, y. ui(ai)]s̃i = λa, x, y. s̃i(ai)

tY :≡ Π = λa, x, y. y

tX :≡ P Σ s̃ = [λu, a, x. x(u1(a1), . . . , un(an))] s̃
= λa, x. x(s̃1(a1), . . . , s̃n(an))

¿From Proposition 2.9, typ(ui) = typ(s̃i) and (12) it immediately follows that

dg(Σ′) ≤ 2 + max{dg(a, x, y) , dg(si)}
ar(Σ′) ≤ 1 + |a, x, y| + ar(si)

dg(Π) ≤ 1 + dg(a, x, y)
ar(Π) ≤ |a, x, y| + ar(y)

dg(P ) ≤ 1 + dg(Σ) ≤ 3 + max{dg(a, x) , dg(s)}
ar(P ) ≤ 1 + ar(Σ) ≤ 2 + |a, x| + |s| + ar(x)
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and (35), (36) now follow immediately from (10), respectively (9, 11), also
using that |z| = |s| and typ(zi) = typ(si).

The inequalities (33) and (34) are immediate from |s| ≤ fd(A).
The proof of (37) uses the fact (which follows from (1)) that there exists

k ∈ IN constant such that for all A(s),

`k BD( x(s̃1(a1)...s̃n(an)) ; y; s̃1(a1)...s̃n(an) ) → BD( x(s̃1(a1)...s̃n(an)) ; y; s ) .

Let A(s) ≡ B(s, a′′) → ∃zB(z, a′′) be an instance of QA∃, s free for z in B.
The tuples a′, a and ai below are defined like in the QA∀ case above. We have

(B(s) → ∃zB(z))D ≡ ∃Y , Z, X ∀x, y [ BD(x; Y (x, y); s) → BD(X(x); y; Z(x)) ]

and we can take (recall from Definition 3.10 that s̃i(ai) = si)

tY :≡ Π = λa, x, y. y
tZi

:≡ Σ s̃i = (λui, a, x. ui(ai))s̃i = λa, x. s̃i(ai)
tX :≡ Π = λa, x. x

The inequalities (33) and (34) are trivial, (35), (36) follow with an argument
similar to the one in the QA∀ case. For (37) we use the fact (which follows
from (1)) that there exists k ∈ IN constant such that for all A(s),

`k BD( x ; y ; s1, . . . , sn ) → BD( x ; y ; s̃1( a1), . . . , s̃n(an) ) .

�

Notation 3.24 We will denote by qs(P) :≡max{2 , qs(Lv(P))} and

vdg(P) :≡ vdg(Lv(P)) var(P) :≡ var(Lv(P))

fd(P) :≡ fd(QA∀ ∩ Lv(P)) id(P) :≡ id(Lv(P))

ld(P) :≡ ld(CT∧ ∩ Lv(P)) ls(P) :≡ ls(CT∧ ∩ Lv(P))

fid(P) :≡ fid(V t(P)) ls(P) :≡ ls(Lv(P))

We will omit P when this will be clear from the context.

Theorem 3.25 There exists k ∈ IN constant such that for any proof P in
EILω

++AC+IP∀+MK and any non-realizer-free A ∈ Lv(P) there exists
tA such that tA Dr A and the following hold:
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• if A is not an instance of (CT∧, QA∀) then

d(tA) ≤ k

S(tA) ≤ k

mdg(tA) ≤ k + vdg + id

mar(tA) ≤ k + var + qs · id

EILω
v `k {] tA , A [}


(38)

• if A is an instance of CT∧, (38) holds except that

d(tA) ≤ k · ld

S(tA) ≤ k · ls

EILω
v `k·ld {] tA , A [}

• if A is an instance of QA∀, (38) holds except that

d(tA) ≤ k + fd

S(tA) ≤ k + fd

The ·̃ constants of EILω
v above25 are only those required by the terms tA and

hence are limited to those corresponding to terms occurring in A.

Proof: Follows immediately from Propositions 3.20, 3.22, 3.23 and k0 ≥ 10.
�
Theorem 3.26 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of a formula A in EILω

++AC+IP∀+MK

it produces as output t such that t Dr A and, with the notations 3.24 and
abbreviations26 ∂MP :≡ ∂MP(P), ∂QR :≡ ∂QR(P) and ∂ :≡ ∂(P), the following hold:

d(t) ≤ k · ld + ∂QR + qs · ∂MP (39)

S(t) ≤ (k · ls + ∂QR) · qs ∂MP
 (40)

mdg(t) ≤ k + vdg + id (41)

mar(t) ≤ k + var + qs · id (42)

EILω
v `k·(ld+∂) {] t , A [} (43)

25See also Definition 3.10 and Remark 3.11.
26See Footnote 23 for the meaning of ∂MP(P), ∂QR(P) and ∂(P).
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The ·̃ constants of EILω
v in (43) are among those corresponding to terms

occurring in the leaves of P.

Proof: Just a synthesis of the results in Theorems 3.17 and 3.25. For (39)
and (40) we use that fd ≤ qs and k0 ≥ 10, hence

max{k · ld , k + fd} + ∂QR + qs · (∂MP − k0) ≤ k · ld + ∂QR + qs · ∂MP
(max{k · ls , k + fd} + qs + ∂QR − k0 + 1) · qs (∂MP−k)

 ≤ (k · ls + ∂QR) · qs ∂MP


�

Notation 3.27 We will denote by

wd(P) :≡ max{wd(CT∧ ∩ Lv(P)) , td(QA ∩ Lv(P))}
ws(P) :≡ max{ws(CT∧ ∩ Lv(P)) , ts(QA ∩ Lv(P))}
cdg(P) :≡ cdg((CT∧ ∪ QA) ∩ Lv(P))

car(P) :≡ car((CT∧ ∪ QA) ∩ Lv(P))

We will omit P when this will be clear from the context.

Remark 3.28 Theorem 3.26 holds also when the terms t1, t2 which build
prime formulas t1 = t2 of contractions CT∧ and the quantifier axioms terms
s are counted as components of the global realizer (instead of just taking
the associated constants t̃1, t̃2, s̃). We only need to use wd, ws instead of
ld, ls and (41), (42) must be replaced with

mdg(t) ≤ max{k + vdg + id , cdg}
mar(t) ≤ max{k + var + qs · id , car}

Corollary 3.29 There exists k′ ∈ IN constant and an algorithm which does
the following. Given as input a proof P of a formula A ≡ ∀x ∃y B(x, y) with
{x, y} = Vf(B) in EILω

++AC+IP∀+MK it produces as output tY such that

EILω
v +AC+IP∀+MK `k′·max{ld+∂ , ld(B)} ∀x B(x, tY (x))

Proof: In this case we have AD ≡ ∃Y , U ∀x, v BD(U(x); v; x, Y (x)), hence
EILω

v `k·(ld+∂) ∀v BD(tU(x); v; x, tY (x)) by Theorem 3.26 and further

EILω
v `k·(ld+∂) ∃u ∀v BD(u; v; x, tY (x)) [ ≡ BD(x, tY (x)) ] (44)
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It can be easily proved by induction on ld(B) that there exists k′′ ∈ IN such
that for all formulas B,

EILω+AC+IP∀+MK `k′′· ld(B) B ↔ BD (45)

The conclusion now follows immediately by combining (44) and (45). �

Remark 3.30 If λ-abstraction were treated as primitive and Σ, P, Π were
defined in terms of it then (40) would still hold. E.g., for Σ defined as
λx, y, z. x(z0, y1(z

1), z1, . . . , ym(zm), zm) we would have S(Σ) ≤ 2 · |x, y, z| 2
and on the other hand |x, y, z| ≤ qs for all Σ which appear in t. Similarly
(40) would still hold if only Schönfinkel Σ and Π were allowed27. This follows
from the λ-abstraction Definition 2.12. There exists k ∈ IN constant such
that at most k · |x, y, z| 2 ≤ k · qs

2 tuple-Schönfinkel Σ and Π are needed to
simulate our Σ and any of these tuple-Schönfinkel Σ and Π can be defined28

in terms of at most k · |x, y, z| ≤ k · qs usual Schönfinkel Σ and Π.

Remark 3.31 If we allow only unary (see Remark 3.18) ER0 in the verifying
proof then (43) becomes

EILω
v `k·(ld+qs+∂) {] t , A [}

Remark 3.32 The algorithm of Theorem 3.26 can be applied to complete
proofs P in EILω

++AC+IP∀+MK after a preprocessing phase to Ptr via the
procedure of Definition 3.8. Since IELω ` A ↔ AD for any realizer-free as-
sumption A produced by the realizer-free-elimination procedure, the verify-
ing proof can use the same assumptions as Ptr. A complete verifying proof in
EILω

v can be produced by (re)including the parts of P which were eliminated
in the preprocessing phase.

3.4 Better bounds on the size of extracted terms

Smaller terms can be extracted if we use a simplification provided by the
definitional equation of Σ. The size of the extracted terms becomes linear

27See Definition 2.4 for the notions of “tuple-Schönfinkel” and “Schönfinkel” combinators
Σ. Also for “Schönfinkel” projectors Π .

28For Σ the proof is by induction on |z| of Definition 2.4. We have
Σ xy z z′ = x z z′ (y z z′) = Σ′ (xz) (yz) z′ hence Σ = λx, y, z. Σ′ (xz) (yz). For Π we can
use the iterated λ-abstraction λz1. (. . . λzn. zi).
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in the size of the proof at input. Nevertheless the use of extra Σ’s brings an
increase in type complexity. This can be avoided by using a more economical
representation of the realizing tuples by means of pointers to parts which
are shared by all members of a tuple. In such a setting all inequalities of
Theorem 3.26 remain valid.

The simplification is based on the observation that all terms t4 produced
by MP (see Lemma 3.14) contain a common part. Namely t1, O, which is
somehow redundant to count for all t4 in t4 - and this is what we have done
by now. We give below a small example. Consider the following proof of C
from A, A → B and B → C :

A , A → B

B
,

B → C

C

Let t1 Dr A, (t2, t3) Dr (A → B) and (t5, t6) Dr (B → C). The algorithm in
Lemma 3.14 first produces t4 Dr B defined as t4 ≡ Σ(t3, t1, O) and then pro-
duces the realizing tuple for C, namely t7 Dr C defined as

t7 ≡ Σ(t6, t4, O
′)

≡ Σ(t6, Σ(t13, t1, O), . . . , Σ(t
|t3|
3 , t1, O), O′)

We immediately notice that the tuple t1, O is common to all terms t4 ∈ t4
and is multiply included in t7. We describe below how it is possible to extract
realizing terms such that the common parts which were previously multiply
included are now counted only once for all the terms of a tuple.

Definition 3.33 For a proof P we define three size measures, denoted
Si(P), Sc(P), Sm(P), to be used in the semi-intuitionistic (i.e., what we have
already described), the classical and in the monotone case respectively. The
measure Sm(P) will be used also for the time upper bounds (see Section 3.5)
in all cases. All three size measures are obtained by adding the following
to the sum of qs(A → B) for all MP-right-premises A → B plus the sum of
qs(C) for all QR-conclusions qs(C) (below A are non-realizer-free leaves):

Si(P): the sum of qs(A) for non-CT∧ A plus the sum of ls(A) for CT∧ A;

Sc(P): the sum of ls(A) for all non-realizer-free leaves A;

Sm(P): the sum of qs(A) for all non-realizer-free leaves A.
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Obviously Sm(P) ≤ Si(P) ≤ Sc(P).

Definition 3.34 For the tuples t ≡ t1, . . . , tn extracted by the algorithm of
Theorem 3.26 we define a size measure, denoted Sz′(t) in the following way.
There exists m ≥ 0 and a tuple t′ such that each ti ∈ t is either of shape
ti ≡ P i

1(. . . P
i
m(ti)) or of shape ti ≡ P i

1(. . . P
i
m(ti(t′))) where {P i

j}m
j=1 and ti

are characteristic to ti and t′ is common to all ti in the corresponding subset
of t. It is possible that m = 0 and/or the aforementioned subset is ∅. We
define

Sz′(t) :≡m · |t| + Σt′∈t′ S(t′) + Σn
i=1 S(ti) .

Lemma 3.35 There exists k ∈ IN constant such that for any term P1(P2 x)
with P1, P2 permutations there exists a permutation P3 such that
`k P1(P2 x) = P3 x.

Proof: By AxP for P1 we get (P1(P2 x))(zp) = P2(x, z). We can now apply
AxP for P2 and we distinguish two cases:

• z ≡ up′, v and P2(x, up′) = x(u) hence P2(x, z) = x(u, v) ≡ x(zp′′) and
the last term is equal to P3(x, zp) via a definitional equation for P3.

• z, y ≡ up′ and P2(x, up′) = x(u) hence (P1(P2 x))(zp, y) = x(u) and the
last term is equal to P3(x, zp, y) via a definitional equation for P3.

�
Lemma 3.36 There exists k ∈ IN constant such that for any term
P1(. . . (Pm x)) with P1, . . . , Pm permutations there exists a permutation P0

such that `k·m P1(. . . (Pm x)) = P0 x.

Proof: Repeated applications of Lemma 3.35 and transitivity of equality.
�
Theorem 3.37 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of a formula A in EILω

++AC+IP∀+MK

it produces as output t such that t Dr A with (43) and (below #MP denotes
the number of MP instances in P)

Sz′(t) ≤ k · Si(P) (46)

3 #MP ≤ d(t) (47)

∂MP − k0 ≤ mdg(t) (48)

3 #MP ≤ mar(t) (49)
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Proof: The proof of (46) is by structural induction on P. For axioms A we
use the same realizing terms as before. When A is not an instance of CT∧ or
QA∀, (46) follows from |t| ≤ qs(A). If A ≡ B → B ∧ B then we notice that tDB
of Proposition 3.22 is common to all realizing tY , hence using (9) and (28),

Sz′(tX′ , tX′′, tY ) ≤ k′ · |Y , X ′, X ′′|+S(tDB) ≤ k′ · qs(A)+k′′ · ls(A) ≤ k · ls(A) .

If A ≡ ∀zB(z, a′′) → B(s, a′′) then the tuple s̃ of Proposition 3.23 is common
to all realizing tX , hence

Sz′(tZ , tY , tX) ≤ k′ · |Z, Y , X| + |s̃| ≤ k · qs(A) .

Nothing to prove for EXP and IMP instances, see Lemma 3.16.
For QR instances the proof is trivial using Lemma 3.15.
For MP instances we use Lemma 3.14 and further improve the result by

applying a number of Σ definitional equations. The algorithm in Lemma 3.14
is presented with the tuples t3 and t1, represented 29 as

t3 ≡ P ′
1(. . . P

′
m′(t0(t

′))) = P ′(t0(t′))

ti1 ≡ P i
1(. . . P

i
m(ti(t))) = Pi(t

i(t))

}
Using Lemma 3.36

and it produces (we assumed without loss of generality that 1 ≤ m′, m)

t4 ≡ Σ1(P
′(t0(t′)), P1(t

1(t)), . . . , Pn(tn(t)), O) =

= Σ2(Σ1, P
′, P1, . . . , Pn, t0(t

′), t1(t), . . . , tn(t), O) =

= Σ3(Σ2, t0, t
1, . . . , tn, t′, t, P ′, P1, . . . , Pn, Σ1, O) =

= P (Σ3, Σ2, P
′, t0, t1, . . . , tn, t′, t, P1, . . . , Pn, Σ1, O)

hence we can actually take

t4 ≡ (P Σ3 Σ2 P ′ t0)(t1, . . . , tn, t′, t, P1, . . . , Pn, Σ1, O) (50)

29In the case when t3 or t1 comes from a (sub)proof which involved CT∧ or QA∀ and no
MP then we have an exception in the sense that only a part of the terms in the tuple share
a common tuple, see also Definition 3.34. The reason should be obvious from the above
treatment of CT∧ and QA∀. The final shape of the term t4 in (50) below is nevertheless not
affected by this technical exception. After an MP all terms of the realizing tuple share a
common tuple.
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where t1, . . . , tn, t′, t, P1, . . . , Pn, Σ1, O is common to all t4 ∈ t4. Hence

Sz′(t4) ≤ |P, Σ3, Σ2| · |t4| + |Σ1, O| + Sz′(t3) + Sz′(t1)

≤ 3 · qs(A → B) + Sz′(t3) + Sz′(t1),

where for the last inequality we used that |t4| + max{1 , |O|} ≤ qs(A → B).
In order to prove the remaining inequalities it is useful to denote by cp(t)

the common tuple in the canonical representation of the tuple t (i.e., t′).
We have |cp(t1)| + |cp(t3)| + 1 ≤ |cp(t4)| because at least the constant Σ1

appears new at each MP application. It follows that for the final extracted
tuple t we have #MP ≤ |cp(t)|. Now (47) and (49) are immediate because
|cp(t)| ≤ d(t) and |cp(t)| ≤ mar(t). Also (48) is immediate once we notice
that dg(cp(t)) increases by at least 1 at each MP application; this is due to
the fact that ti enters cp(t4) and dg(ti) ≥ dg(t) + 1.

The proof that (43) still holds is by straightforward computations. �
We notice that the price to pay for having smaller realizing terms is an

increase in type complexity. This is unavoidable with the actual represen-
tation of terms. The maximal degree of the realizing term increases by at
least 1 at each MP application. This is due to the fact that subterms from
the private part, which have degree greater by at least 1 than the maximal
degree of the common part now enter the new common part.

We can avoid the increase in type complexity only by modifying the term
representation such that the terms in the common part are multiply pointed
from each member of the realizing tuple. In this way Σ3 is no longer needed
for feeding the common part to each member of the realizing tuple. The
increase in degree was due exactly to these Σ3’s. We can now state the
following theorem, where Sz is defined in the new pointer setting similarly
to Sz′, i.e., counting common parts only once.

Theorem 3.38 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of a formula A in EILω

++AC+IP∀+MK

it produces as output t such that t Dr A, Sz(t) ≤ k · Si(P) and the inequal-
ities of Theorem 3.26 all hold. �

Remark 3.39 The following inequalities are immediate:

S(t) ≤ Sz(t)

Si(P) ≤ (ls(P) + qs(P)) · 2∂(P) ≤ 3 · ls(P) · qs(P)∂(P) .

They just express the fact that the new bounds on size are indeed better.
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Remark 3.40 We will tacitly assume in the sequel that terms are repre-
sented with pointers in the manner described above.

3.5 Space and time complexity of the functional

interpretation algorithm

In a real-world implementation of the algorithm of Theorem 3.26 we ought
to count also the size of types associated to the EILω-constants as part of
the size of the realizing terms. This real-size of the extracted terms actually
gives also the time complexity of the algorithm30 since what this does is only
spelling down the extracted terms.

In order to compute the real-size we need to decide upon some represen-
tation of types. It turns out that the most efficient is to use dags 31. We
choose dags instead of normal binary trees32 because dags allow the reuse of
existent types via pointers. Hence given the input proof P we start with the
types of all variables and constants which appear in P and build the types
of constants which are produced by functional interpretation. We therefore
need to count for the real-size only the number of new type-nodes which
are created in order to represent the type of a newly created constant c.
By straightforward computations it follows that there exists k′ ∈ IN constant
such that for any formula C, the number of new type-nodes required by
Vb(C

D) is at most k′ · qs(C)2 · ls(C). Hence the number of new type-nodes
required by the new variables created in the interpretation of the leaves, right
MP–premises and QR–conclusions of P is at most k′ · qs · ls · Sm(P). Then
we can immediately see that whenever a new constant c of type στ is created
by the algorithm of Theorem 3.26, the types σ, τ are immediately available
from the existent terms or functional-interpretation-created variables. There
exists k′′ ∈ IN constant such that for any such new constant c created at a
leaf C, MP–instance of right–premise C or QR–instance of conclusion C of P,
at most k′′ · |σ|2 ≤ k′′ · qs(C)2 new type-nodes are necessary to represent the
type of c. Hence overall we have at most k′′ · qs · ls · Sm(P) newly created
type-nodes in this category. We can now state the following theorem.

30The space complexity follows immediately by the principle that the space overhead of
an algorithm is always less than its time overhead.

31Here “dag” is the usual acronym for “directed acyclic graph”.
32The representation with binary trees is in fact equivalent to the usual parenthesized-

strings representation.
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Theorem 3.41 There exists k ∈ IN constant such that the time overhead
of the algorithm in Theorem 3.38 is upper bounded by k · qs · ls · Sm(P).
�

4 Immediate extensions of the quantitative

analysis

4.1 Treatment of classical EILω. The system ECLω
++AC0.

So far we have considered only semi-intuitionistic systems. We describe in
the sequel how our complexity analysis can easily be adapted to classical logic
(and theories) as well by applying it to the image of the classical system under
a suitable negative translation. The so-called ‘negative’ or ‘double-negation’
translations have all in common the fact that the image of a formula is
(intuitionistically equivalent to) a negative formula 33. Negative translations
were initially produced by Gödel [20], Gentzen, Kolmogorov, Glivenko. We
use below a variant due to Kuroda of Gödel’s translation which we further
adapt such as to handle blocks of universal quantifiers.

Definition 4.1 (Kuroda’s N-translation) To a formula A one associates
AN ≡ ¬¬A∗, where A∗ is defined by structural induction on A as follows:

• A∗ :≡A, if A is a prime formula;

• (A�B)∗ :≡A∗�B∗, where � ∈ {∧,∨,→}

• (∃xA(x))∗ :≡∃x(A(x))∗

• (∀xA(x))∗ :≡∀x¬¬(A(x))∗, where A(x) 6≡ ∀yB(y, x)

Remark 4.2 AN is realizer-free iff A is realizer-free.

33By definition, a formula is called negative, respectively existential-free if it is built
up from negated prime, respectively prime formulas by means of ⊥, ∧, → and ∀
only. In our system negative formulas are trivially existential-free. On the other hand,
EILω ` s =o t ↔ ¬¬(s =o t) for any prime formula s =o t and hence also every existential-
free formula is equivalent to a negative formula.
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N-translation followed by functional interpretation gives a proof interpreta-
tion for theories based on classical logic 34. Remark 4.2 implies that given a
(complete) proof P in some classical system the following are equivalent:

• carry out the composed35 interpretation to Ptr;

• first do the N-translation of P, then apply the realizer-free-elimination
algorithm of Definition 3.8 and finally carry out the functional inter-
pretation of (PN)tr.

The former approach is obviously more efficient: one does not carry out the
N-translation of parts which subsequently get eliminated.

Let ECLω, ECLω
+ be the classical versions36 of EILω, EILω

+ respectively, ob-
tained by replacing TND0 with the full tertium-non-datur schema A ∨ ¬A. Let

AC0 : ∀x∃y A0(x, y) → ∃Y ∀x A0(x, Y (x))

be the quantifier-free axiom-of-choice (with x and y of arbitrary types).

Remark 4.3 The proof–size measure Sc is introduced in Definition 3.33.

Proposition 4.4 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of a formula A in ECLω

++AC0 it
produces as output a proof PN of AN in EILω

++AC0+MK and the following
hold:

• ∂(PN) ≤ k · ∂(P) and Si(PN) ≤ k · Sc(P);

•
qs(PN) ≤ qs(V t(PN)) ≤ k · qs(V t(P))

(13)
= k · qs(P)

ld(PN) ≤ ls(PN) ≤ ls(V t(PN)) ≤ k · ls(V t(P))
(13)
= k · ls(P)

• id(PN) ≤ k · fid(P); we must use fid(P) because in the N-translation
a ∀ brings two ¬, hence in fact two → due to our treatment of negation;

34Details of the use of negative translation in combination with functional interpretation
may be found, e.g., in [3, 27, 42].

35In fact parts which are produced by N-translation also need to be transformed.
36Below EILω

+-based systems will appear for verifying the functional interpretation of
proofs in ECLω

+-based systems. In virtue of Remark 4.2 it should be obvious that A is a
realizer-free axiom from Thrf of ECLω

+ (see Definition 3.10) if and only if AN is a realizer-free
axiom from Thrf of EILω

+.
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• no new variable or constant appears in PN, hence (using (14))

vdg(V t(PN)) ≤ vdg(V t(P)) = vdg(Lv(P))

var(V t(PN)) ≤ var(V t(P)) = var(Lv(P))

cdg(V t(PN)) ≤ cdg(V t(P)) = cdg(Lv(P))

car(V t(PN)) ≤ car(V t(P)) = car(Lv(P))

Proof: The algorithm proceeds by recursion on the structure of P , see [27]
for details. The proof of its correctness makes use of the following schemata
of intuitionistic logic:

¬¬(A → B) ↔ (A → ¬¬B) ↔ (¬¬A → ¬¬B) (51)

¬¬∀x¬¬A(x) ↔ ∀x¬¬A(x) (52)

A → ¬¬A (53)

These schemata have proofs in which the axiom instances and intermediate
formulas have size (depth) at most linear in the size (depth) of the formula to
be proved. We only need to further notice that there exists k′ ∈ IN constant
such that the following hold:

• the N-translation of any non-realizer-free axiom B of ECLω
++AC0 is a

theorem in EILω
++AC0+MK whose proof P ′ has the same structure for

all instances of B, in particular the same depth; all formulas which
appear in P ′ have size (depth) upper bounded by k′ times the maximal
size (depth) of B;

• any rule A1 [, A2] ` B of ECLω
++AC0 is interpreted under N-translation

to a proof P ′ of BN from AN
1 [, AN

2]; P ′ has the same structure for all
instances of the rule, in particular the same depth; all formulas which
appear in P ′ have size (depth) upper bounded by k′ times the maximal
size (depth) of A1 [, A2].

As an example we prove the above claim for AC0 and QR∀. The other axioms
and rules are even easier.

Case AC0: We prove that there exists k′ ∈ IN constant such that for all A0,

EILω
++AC0+MK `k′ [ ∀x∃y A0(x, y) → ∃Y ∀x A0(x, Y (x)) ]N (54)
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By (53), the conclusion of (54) is implied by

∀x¬¬∃y A0(x, y) → ∃Y ∀x¬¬A0(x, Y (x)) .

This follows from MK and AC0 with a IELω–proof of constant depth.

Case QR∀: B → A ` B → ∀zA. By induction hypothesis we have a proof
of ¬¬(B∗ → A∗). Then we use (51) and MP to get B∗ → ¬¬A∗ and by
QR∀, B∗ → ∀z¬¬A∗. If A 6≡ ∀yC then ∀z¬¬A∗ ≡ (∀zA)∗. If A ≡ ∀xA′ with
A′ 6≡ ∀yC then A∗ ≡ ∀x¬¬A′∗ and using (52) we get B∗ → ∀z, x¬¬A′∗ with
∀z, x¬¬A′∗ ≡ (∀zA)∗. In any case we obtain ¬¬(B → ∀zA)∗ (also using
(53)). Hence overall the deduction of (B → ∀zA)N from (B → A)N has con-
stant depth. �

Remark 4.5 The new quantifier axioms of PN are of shape ∀zB(z) → B(z)
and these can be realized with simple projectors Π instead of the terms tZ
of Proposition 3.23.

Remark 4.6 Except for those triggered by (A → A ∧ A)N, the contractions
CT∧ of PN are required by the N-translations of A ∨ ¬A, QA∀ and QR∃. In the
last two cases the verifying CT∧ is brought by the critical implication

(¬¬A → ¬¬B) → ¬¬(A → B) (55)

of (51). The use of (55) can be avoided in the case of IMP, EXP by using
axiom versions of these rules37, the non-critical converse of (55) and MP.

Remark 4.7 ((Ptr)N)tr = (PN)tr .

We are now able to describe an efficient algorithm for extracting realizing
terms from (complete) proofs P in ECLω

++AC0. First P is transformed to Ptr

and then to (Ptr)N via the algorithm of Theorem 4.4. In a second phase
(Ptr)N is transformed38 to ((Ptr)N)tr and the algorithm of Theorem 3.26 is
applied to it. Using Proposition 4.4, Theorems 3.38 and 3.41, Notation 3.24
and the abbreviations ∂ :≡ ∂(P), Sc :≡ Sc(P) and Sm :≡ Sm(P) we can state
the following theorem.

37The axiom versions of IMP and EXP are simply realized with projectors Π. This follows
immediately from the fact that (A → (B → C) )D ≡ (A ∧ B → C )D. See also Lemma 3.16
and the comment before the cases MK, IP∀, AC in the proof of Proposition A.1.

38Here only the parts produced by N-translation need to be transformed.

48



Theorem 4.8 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of a formula A in ECLω

++AC0 it
produces as output t such that t Dr AN and the following hold:

d(t) ≤ k · (ls + qs · ∂) (56)

S(t) ≤ Sz(t) ≤ k · Sc ≤ k · (ls + ∂) · (k · qs)
k·∂ (57)

mdg(t) ≤ vdg + k · fid (58)

mar(t) ≤ var + k · qs · fid (59)

EILω
v `k·(ls+∂) {] t , AN [} . (60)

The time overhead of the algorithm is upper bounded by k · qs · ls · Sm . The
·̃ constants of EILω

v in (60) are among those corresponding to terms occurring
in the leaves of PN. �

Remark 4.9 In the above theorem we use the more general quantity ∂ in-
stead of the more detailed ones ∂QR and ∂MP which appear in Theorem 3.26.
We do so because the N-translations of QR∀, QR∃, EXP and IMP trigger new
MP instances in PN. Hence ∂MP(PN) ≥ ∂(P) already.

Corollary 4.10 Let A ≡ ∀x ∃y A0(x, y) with A0 quantifier-free and
Vf(A0) = {x, y}. The theorem above holds also with A instead of AN, i.e.,
t Dr A with EILω

v `k·(ls+∂) ∀x A0(x, t(x)) and (56), (57), (58), (59).

Proof: There exists k′ ∈ IN constant such that, using (52) and (5),

EILω
++MK `k′· ld(A0) (∀x∃yA0(x, y))N → ∀x∃yA0(x, y) .

¿From (13) it follows that the quantity ld(A0) gets absorbed into ls. �

4.2 A quantitative analysis of monotone

functional interpretation

The second author realized in [26] that a much simpler extraction procedure
applies if the goal is to extract majorizing functionals t∗ for the realizing
terms t of AD , i.e., terms t∗ such that

M : ∃x [ t∗ maj x ∧ ∀a, y AD(x(a), y, a)] .

Here maj is W.A. Howard’s majorization relation (see [24]) and
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y maj x :≡ ∧ (y maj x). This is of significance since t∗ suffices for many
(if not most) applications of functional interpretation. These range from
conservation results (e.g., for weak König’s lemma [30]) to the proof mining
of concrete proofs [28, 31, 32, 35]. We noticed in Section 3 that the contrac-
tion A → A ∧ A is by far the most complicated axiom in the usual functional
interpretation. Monotone functional interpretation features a very simple
treatment of A → A ∧ A and therefore the extraction process for t∗ becomes
much simpler than the one for t.

Definition 4.11 Let EILω
M be an extension of EILω with the following:

• An inequality relation ≥o for type-o-objects with the usual axioms plus

1 ≥o I xo yo 1 ≥o ν xo yo 1 ≥o E xo yo .

Inequality for higher types is defined extensionally by

x ≥σo y :≡ ∀zσ ( x z ≥o x z ) .

The majorization relation is defined by maj o :≡ ≥o and

x∗ maj σo x :≡ ∀zσ, yσ ( z maj σ y → x∗ z maj o x y ) ,

where z maj σ y is an abbreviation for ∧σ∈σ(z maj σ y) .

• A maximum constant Mo of type ooo with the axioms

AxM : Mo x y ≥o x Mo x y ≥o y Mo maj Mo .

Maximum constants for higher types are defined by

Mσo :≡Σ Mo = λxσo, yσo, zσ. Mo (x z) (y z) .

• A schema of explicit definability for arbitrary quantifier-free formulas:

ED[A0] : ∃Y ∀a [ (1 ≥o Y (a)) ∧ (A0(a) ↔ Y (a) =o 0) ] .

• Axioms S maj S and O maj O.

Remark 4.12 In the presence of a minimal amount of arithmetic S maj S
and O maj O are immediately provable. Also the constants ≥o, ν, I, E and
Mo can be defined such that the remaining axioms of Definition 4.11 become
provable (see also Remark 2.5).
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Remark 4.13 The formulas Σ maj Σ, Π maj Π and P maj P hold in EILω
M

with proofs of depths proportional with the arities of Σ, Π and P respec-
tively. Then Mρ maj Mρ holds for arbitrary ρ with a formal proof of depth
proportional with ar(ρ) + 1.

Lemma 4.14 There exists k ∈ IN constant such that for any tuple of terms
s of EILω

M (with V(s) = {x}) there exist corresponding terms s∗ of EILω
M (with

V(s∗) = {x∗}) such that

EILω
M ` x∗ maj x → s∗ maj s . (61)

Proof: The constants O and S trivially majorize themselves by the last
clause of Definition 4.11. On the other hand, Σ M = λz, x, x′. M x x′ ma-
jorizes D and Π 1 = λxo, yo. 1 majorizes I, ν and E. Using Remark 4.13
we have that Σ, Π, P and M majorize themselves. The conclusion follows
immediately by induction on d(s). �

Corollary 4.15 Let s̃, s̃∗ be constants associated to terms s, s∗ like in Def-
inition 3.10. ¿From (61) it immediately follows that

` s̃∗ maj s̃ (62)

Definition 4.16 We denote by EILω
M,+ the system (EILω

M )+ where “+” in-

cludes all formulas s̃∗ maj s̃ as axioms. We take them as axioms because
we consider that the (formal) proof in (62) is not created by monotone func-
tional interpretation. Also let EILω

M,v be the corresponding (EILω
M )v.

In [26] realizing terms are presented for the monotone functional inter-
pretation of all axioms of EILω

M +AC+IP∀+MK. They are the same as for the
usual functional interpretation, except that

• A → A ∧ A is realized by terms ΣM = λa, x, y′, y′′. M y′ y′′ and
Π = λa, x. x; compare this with the results of Proposition 3.22;

• A ∨ A → A is realized by ΣM = λa, z, x, x′. M x x′ and Π ;

• A ∨ B → B ∨ A is realized by terms Π and Π 1;

• the schema ED itself is trivially realized by Π 1 = λa. 1;

51



• ∀zA(z) → A(s) is realized by terms obtained from the realizing terms
of the usual functional interpretation by replacing the constants s̃ with
the corresponding s̃∗ where s∗ are given by Lemma 4.14.

Using Remark 4.13 it follows that there exists k ∈ IN constant such that the
verifying proof for some axiom A of EILω

M +AC+IP∀+MK has depth upper
bounded by k · qs(A). The verifying proof for CT∧ makes use of ED.

Remark 4.17 The proof–size measure Sm is introduced in Definition 3.33.
The proof–depth measures ∂MP, ∂QR and ∂ are introduced in Section 1.2.
In the following theorem we will abbreviate by ∂MP :≡ ∂MP(P), ∂QR :≡ ∂QR(P),
∂ :≡ ∂(P) and Sm :≡ Sm(P).

Since monotone functional interpretation uses the same algorithm as the
usual functional interpretation for producing realizing terms for conclusions
given the realizing terms for premises, the following analogue of Theorem
3.38 holds.

Theorem 4.18 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of A in EILω

M,++AC+IP∀+MK it
produces as output t∗ such that, with the notations 3.24, the following hold:

d(t) ≤ k + ∂QR + qs · ∂MP
S(t) ≤ Sz(t) ≤ min{k · Sm , k · ∂QR · qs ∂MP

 } ≤ k · qs ∂
 (63)

mdg(t) ≤ k + vdg + id

mar(t) ≤ k + var + qs · id

EILω
M,v `k·(qs+∂) ∃x (t∗ maj x ∧ ∀a, y AD(x(a), y, a)) (64)

The time overhead of the algorithm is upper bounded by k · qs · ls · Sm .
The ·̃ constants of EILω

M,v in (64) are among those corresponding to terms
occurring in the leaves of P.

Proof: The rightmost inequality of (63) follows from a suitable adaptation
of Remark 3.39 to the monotone case. We now only need to comment on
(64). In order to build the verifying proof for MP we need to use the following
lemma:

(y1 maj x1) ∧ (y3 maj x3) → ∧ [ Σ(y3, y1, O) maj Σ(x3, x1, O) ] (65)

Using Remark 4.13 it follows that there exists k′ ∈ IN such that for all its
instances, lemma (65) has a proof of depth at most k′ · |y3, y1, O|. When used
for verifying MP, |y3, y1, O| ≤ qs hence (64) follows immediately. �
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Remark 4.19 If (65) were taken as axiom, the depth of verifying MP would
be upper bounded by a constant, just like in the case of usual functional
interpretation. On the other hand (65), Σ maj Σ, Π maj Π, P maj P and
M maj M would have constant-depth proofs in EILω

M if the underlying logical
system handled tuples of conjunctions more smoothly. In such a case (64)
could be replaced with

EILω
M,v `k·∂ ∃x (t∗ maj x ∧ ∀a, y AD(x(a), y, a))

Hence the bound on verifying proof depth would be better than in the usual
functional interpretation case, see (43). The smoother treatment of tuples of
conjunctions would actually be normal in our context with free use of tuples
in both quantifier axioms/rules and the extensionality rule ER0.

Let ECLω
M,+ be the classical variant of EILω

M,+. Combined with N-translation,
monotone functional interpretation carries over to ECLω

M,++AC0 and the upper
bounds on size and proof depth are smaller than in the functional interpre-
tation case. The following analogue of Theorem 4.8 + Corollary 4.10 holds.

Theorem 4.20 There exists k ∈ IN constant and an algorithm which does
the following. Given as input a proof P of A in ECLω

M,++AC0, it produces as
output t∗ such that, with the notations 3.24 and the abbreviations ∂ :≡ ∂(P)
and Sm :≡ Sm(P) the following hold:

d(t∗) ≤ k · qs · ∂
S(t∗) ≤ Sz(t∗) ≤ k · Sm ≤ (k · qs)

k·∂

mdg(t∗) ≤ vdg + k · fid

mar(t∗) ≤ var + k · qs · fid

EILω
M,v `k·(qs+∂) ∃x [ t∗ maj x ∧ ∀a, y (AN)D(x(a), y, a) ] (66)

For A ≡ ∀x∃y A0(x, y) with A0 quantifier-free and {x, y} = Vf(A0), (66) can
be replaced with

EILω
M,v `k·(ld(A0)+qs+∂) ∃Y [ t∗ maj Y ∧ ∀x A0(x, Y (x)) ] (67)

The time overhead of the algorithm is upper bounded by k · qs · ls · Sm .
The ·̃ constants of EILω

M,v in (66, 67) are among those corresponding to terms
occurring in the leaves of PN. �
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In concrete applications of monotone functional interpretation, EILω
M will

be extended by certain arithmetical (and even analytical) principles (see
Section 5 below).

In the presence of a modest amount of arithmetic we can make use of t∗

extracted by monotone functional interpretation in the following way. Let x,
y be of type o. Then (67) implies ∀x∃y ≤ t∗(x) A0(x, y) and therefore, using
bounded search applied to t∗ and a characteristic term tA0 for A0 one easily
constructs t such that ∀xA0(x, t(x)). This also works for x of type 1 using the
construction xM(i) :≡maxj≤i x(j) since xM maj x. Moreover, for sentences of
the form ∀x1 ∀z ≤1 s ∃yo A0(x, z, y) with s closed term one can easily obtain a
type-2-term t̂ from t∗ such that ` ∀x1 ∀z ≤1 s ∃y ≤o t̂(x) A0(x, z, y) by taking
t̂(x) :≡ t∗(xM , s∗) where s∗ is a majorizing term for s. The term t̂ provides a
uniform bound on y which is independent from z. See [30] for more details.
This feature of monotone functional interpretation is of crucial importance in
applications to numerical analysis [31, 32, 26, 28, 35, 38] where {z | z ≤1 s} is
used to represent compact Polish spaces. Since A0(x, z, y) is monotone (i.e.,
A0(x, z, y1) ∧ y2 ≥ y1 → A0(x, z, y2)) in most applications, the term t̂ will not
only be a bound but actually a realizer for ∃y.

Hence in this context monotone functional interpretation even provides a
realizer which is independent from z and of simpler structure than realizers
produced by the usual functional interpretation (see [26] for more on this).

5 Extensions to Arithmetic and

fragments of Analysis

Both Gödel’s functional interpretation and the monotone functional interpre-
tation apply to intuitionistic and, via the negative translation, also classical
arithmetic [21, 33, 53] (even in finite types) and fragments thereof [10, 33, 45].

5.1 Treatment of Primitive Recursive Arithmetic PRAω

Let us first consider Feferman’s system [16] PRAω (and its intuitionistic vari-
ant PRAω

i ) of primitive recursive arithmetic in all finite types, where only
quantifier-free induction and ordinary Kleene-primitive recursive functionals
are included.

Definition 5.1 Let PRAω
i be an extension of EILω with the following:
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• Kleene recursor39 constants R̂ρ with axioms

AxR̂ :

{
R̂ρ(0, y, z, v) =o z(v)

R̂ρ(Sx, y, z, v) =o y(R̂ρ(x, y, z, v), x, v)
.

• Axioms (the usual primitive recursive +, ∗, sg, | · | are defined by R̂o)

x =o y ↔ |x − y| =o 0

x =o 0 ∧ y =o 0 ↔ x + y =o 0

x =o 0 ∨ y =o 0 ↔ x ∗ y =o 0

(x =o 0 → y =o 0) ↔ sg(x) ∗ y =o 0

x 6=o 0 ↔ sg(x) =o 0


(68)

• An axiom of quantifier-free-induction (below “y < x” is the usual prim-
itive recursively definable strict order relation on natural numbers)

IA′0 : ∀f 1, xo(f(0) =o 0 ∧ ∀y < x(f(y) =o 0 → f(Sy) =o 0) → f(x) =o 0) .

The EILω-constants ν, I and E are immediately definable in PRAω
i from

(68). Also the (here primitive-recursive) closed terms associated to quantifier-
free-formulas A0 (which here may also contain ∨) like in Proposition 3.21 are
immediately provided in PRAω

i with PRAω
i ` tA0(a) =o 0 ↔ A0(a). Because of

this, IA′0 implies the following schema of quantifier-free-induction (below A0

are quantifier-free-formulas which here may contain ∨):

IA0 : A0(0) ∧ ∀x(A0(x) → A0(Sx)) → ∀xA0(x) .

The EILω-axiom TND0 : x =o 0 ∨ x 6=o 0 can be immediately derived from
IA0. The EILω-constant D can now easily be defined from R̂ in PRAω

i .

The axioms AxR̂ and (68) are realizer-free except for the implication
x · y =o 0 → ( x =o 0 ∨ y =o 0 ) whose functional interpretation is realized
by Π = λx, y. x. It follows that functional interpretation is immediately avail-
able for PRAω

i once realizing terms are provided for IA′0. Such terms of con-

stant size can be built using Kleene recursors R̂ and are equivalent to

λf, x. min y<x t[ f(0)=0∧ ( f(y)=0→ f(Sy)=0 )→ f(x)=0 ](f, x, y) .

39For all ρ the recursor R̂ρ can be defined from R̂o using λ-abstraction and hence the
EILω combinators in view of Definition 2.12. This property no longer holds for Gödel
recursor Rρ to be introduced in Section 5.3. See also Footnote 10 of [3].
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Since ≥ and M are PRAω
i -definable as well, the axioms added to EILω

in Definition 4.11 become derivable in PRAω
i . It follows that also monotone

functional interpretation is available for PRAω
i . In this case IA′0 is much simpler

realized by projectors Π = λf, x. x (no recursors are needed).

Theorem 5.2 All the quantitative results proved above for EILω in The-
orem 3.26 and EILω

M in Theorem 4.18 carry on to PRAω
i in the obvious way.

�

5.2 Extension to the analytical system PRAω+AC0+WKL.

The analogue of Theorem 5.2 for the classical system PRAω+AC0 holds as
well. The system PRAω+AC0 allows to derive the schemas of Σ0

1-induction and
∆0

1-comprehension (see [30]) and therefore contains the system RCA0 known
from reverse mathematics (see [49]).

Let us denote by WKL the binary König’s lemma. This important40 ana-
lytical principle simply asserts that every infinite binary tree has an infinite
path. The second author has proved in [30] by means of a combination of
functional interpretation and majorizability (a precursor of monotone func-
tional interpretation) that PRAω+AC0+WKL (which contains Friedman’s sys-
tem41 WKL0 of [18, 49]) is Π0

2-conservative over PRAω
i . Moreover, a witnessing

term can be provided. We give below a quantitative version of this result.
We follow closely the proof in Section 7 of [3] which is a simplification of the
more general method of [30].

Let PRAω be formulated over ECLω
M . We use the following convenient for-

mulations of the binary König’s lemma:

WKL : ∀f [ ∀k ¬Bnd(BTr(f), k) → ∃b∀ k (InSeg(Bin(b), k) ∈ BTr(f)) ]

WKL′ : ∀f ∃b∀ k [¬Bnd(BTr(f), k) → InSeg(Bin(b), k) ∈ BTr(f) ]

where (see Section 7 of [3] for full details)

• Bin and BTr are primitive recursive functionals which transform their
argument to a binary function, respectively a binary tree;

40See [49] for a comprehensive discussion of the vast mathematical applicability of WKL.
41Theorem I.10.3 of [49] gives a summary of important mathematical statements which

are theorems of WKL0. We only mention here the Heine-Borel covering lemma, the maxi-
mum principle, the separable Hahn-Banach theorem and Brouwer’s fixed point theorem.
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• InSeg is a primitive recursive functional which produces the length k
initial segment of the binary function Bin(b);

• Bnd is a primitive recursive predicate which expresses that the given
binary tree BTr(f) has depth at most k.

Remark 5.3 Below A0 is quantifier-free, x, y are type o and {x, y} = Vf(A0).

The following theorem expresses the fact that the WKL–elimination and term
extraction procedure from WKL–based proofs as developed in [30] is feasible
both w.r.t. the size of the extracted terms and the depth of the verifying
WKL–free proof. Although the feasibility of WKL–elimination was first shown
(for a fragment of second-order arithmetic) in [2], the forcing technique used
there does not provide any term extraction.

Theorem 5.4 There exists k ∈ IN constant and a functional-interpretation-
based algorithm which does the following. Given as input a proof

P : PRAω+AC0 `∂ WKL → ∀x ∃y A0(x, y)

it produces at output realizing terms t such that Sz(t) ≤ k · Sc(P) and

PRAω
i `k·(ls+∂) ∀x A0(x, t(x)) . (69)

The time overhead of the algorithm is upper bounded by k · qs · ls · Sm(P).

Proof:
The first step is to transform P : PRAω+AC0 `∂ WKL → ∀x ∃y A0(x, y) to

PN : PRAω
i +AC0+MK `k′·(ld(A0)+∂) WKL′ → ∀x ∃y A0(x, y) such that all state-

ments on PN in Proposition 4.4 hold. Here PN is obtained by a slight trans-
formation within PRAω

i +MK of the output from the N-translation algorithm
carried on P. There exist fixed proofs (hence with constant complexity) in
PRAω

i of WKL′ → WKL and WKL → WKLN. See also Lemmas 7.3.1 and 7.3.3 of [3].
The second step is to transform PN to the proof in (69) via a technique

based on functional interpretation and majorization. This technique is de-
scribed in Lemmas 7.4.1 and 7.4.2 of [3] and is an adaptation of the more
general technique of [30]. The elimination of WKL′ is achieved by weakening
WKL′ to a formula which is provable in PRAω

i . Since we are here interested
also in the realizing term for ∃y and not only in the WKL–conservation, we
use a (tuple-extended) variant of [3]–Lemma 7.4.1 where a realizer for ∃y is
provided as well. �
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Corollary 5.5 (quantitative WKL-conservation) There exists an algo-
rithm which transforms proofs

P : PRAω+AC0 `∂ WKL → ∀x ∃y A0(x, y)

into proofs
P ′ : PRAω

i `k·(ls+∂) ∀x∃y A0(x, y)

Remark 5.6 We could alternatively use a monotone functional interpre-
tation – version of [3]–Lemma 7.4.1 in the lines of Theorem 4.20. Then we
would first obtain a majorizing tuple t∗ for ∃ y and we could produce a re-
alizer by bounded search (up to t∗(x)) along the predicate tA0(x, y) = 0. In
such a case Theorem 5.4 would hold with (69) replaced by

PRAω
i `k·(ld(A0)+qs+∂) ∀x A0(x, t(x)) .

In many cases A0 is monotone in y and therefore bounded search is actually
not needed42. In such a case we would obtain terms t with Sz(t) ≤ k · Sm(P),
time overhead at most k · fid · qs · Sm(P) and

PRAω
i `k·(qs+∂) ∀x A0(x, t(x)) (70)

hence a full better performance than the algorithm of Theorem 5.4.

Remark 5.7 There are three ways to produce a variant of Theorem 5.4
where the input proof is P : PRAω+AC0+WKL `∂ ∀x ∃y A0(x, y). One way
to overcome the failure of the deduction theorem for weakly extensional
PRAω is via the elimination-of-extensionality procedure from [42]. This ap-
plies only when P contains just43 variables of type 0 or 1, but in fact
this is the case in most applications. We conjecture that the aforemen-
tioned procedure is feasible and hence the overall term extraction and WKL-
conservation is still a feasible process. However if we are mainly interested
in the term extraction rather than the WKL-conservation we can state a
monotone-functional-interpretation-based variant of Theorem 5.4 with the
verifying proof in PRAω

i +̃WKL and of the same depth as (70), where

42See also the remarks following Theorem 4.20.
43Under this type restriction we can allow the use of (full) extensionality axiom EA,

see also Remark 2.6. Hence in this setting we work with (fully) extensional PRAω which
features the deduction theorem.
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W̃KL : ∃B ∀f ∀ k [¬Bnd(BTr(f), k) → InSeg(Bin(B(f)), k) ∈ BTr(f) ]

is a strengthening of WKL′. If we are satisfied with a partial WKL-conservation
then we can use the fact that premises of ER0 are realizer-free and hence any
WKL instance used in the proof of such a ER0-premise gets discarded in the
preprocessing phase of the (monotone) functional-interpretation-algorithm.
We can thus consider that the input proof is in PRAω+AC0⊕WKL (see [30], p.
1246 for the meaning of ⊕ in this context). For this system the deduction
theorem holds w.r.t. ⊕ and we obtain (69) with PRAω

i extended with the N-
translations of conclusions of those ER0 instances in P whose sub-proof-trees
use WKL. See also Remark 3.32.

Remark 5.8 Even though the term extraction procedure of Theorem 5.4
is extremely feasible, the normalization of the extracted terms into ordinary
primitive recursive functions and the verification in (plain) primitive recursive
arithmetic would however trigger a non-elementary recursive complexity.

5.3 The case of Peano Arithmetic PAω and PAω+AC0+WKL

Already Gödel showed that the functional interpretation of full induction can
be realized by his impredicative recursors R for (simultaneous44) primitive
recursion in finite types, where (below i ∈ 1, |σ| with |σ| the length of σ)

AxR :

{
Ri

σ(x, y, 0) =σi
xi

Ri
σ(x, y, Sz) =σi

yi(R
1
σ(x, y, z), . . . ,R

|σ|
σ (x, y, z), z)

.

Gödel’s objective was to reduce the consistency of Peano arithmetic PA to
that of a quantifier-free calculus (called T) based on these R. In order to
achieve this he had to give a verifying proof for the functional interpretation
of induction which used only quantifier-free induction. For the applied pur-
pose of program extraction this is not required. We may use full induction
in the verifying proof as well. This simplifies matters substantially as was
already observed in [53](3.5.5.(iii)). Things are particularly simple if induc-
tion is formulated as a rule

IR :
A(0) , A(z) → A(Sz)

A(z)

44Simultaneous primitive recursion even in higher types can be reduced to ordinary
primitive recursion in higher types. This is particularly simple in the presence of ER0, see
[53].
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which nevertheless allows to derive the axiom schema of induction

IA : A(0) ∧ ∀z ( A(z) → A(Sz) ) → ∀zA(z) .

The treatment of IR under functional interpretation is fairly similar to that of
modus ponens MP. Recursors R have to be used in addition to Σ. Given that
t1 Dr A(z, a) and (t2, t3) Dr (A(z, a) → A(Sz, a)) one can prove45 in a con-

stant number of steps that t4 Dr ∀zA(z, a). Here t4 ≡ Σ R t1 (P t13) . . . (P t
|t3|
3 ) .

The monotone functional interpretation of IR is much the same as the usual
one if we use recursors R∗ which can easily be defined from R by a minor
modification (see also [24] for similar R+ recursors). Negative translation ap-
plies to IR just as it did for MP. Let Peano arithmetic in all finite types PAω be
formulated over ECLω plus IR and recursors R. The remarks above imply that
we can state the following consequence of (Corollary 4.10) of Theorem 4.8.

Theorem 5.9 There exists k ∈ IN constant and a functional-interpretation-
based algorithm which does the following. Given as input a proof
P : PAω+AC0 `∂ ∀x∃y A0(x, y) it produces a realizing tuple t such that
PAω

i `k·(ls+∂) ∀x A0(x, t(x)) and Sz(t) ≤ k · Sc(P). The time overhead of the
algorithm is upper bounded by k · qs · ls · Sm(P). �

In contrast to IR, the treatment of IA under usual functional interpretation
results in complexity issues similar to those of CT∧ in Proposition 3.22. This
is hinted by the fact that the derivation of IA from IR apparently needs
contraction A → A ∧ A. Let A be the induction formula; in order to realize
IA we need bounded search along the predicate tAD(x, y) =o 0. Here tAD is a
characteristic term for AD, see [45]. The monotone functional interpretation
of IA avoids this altogether (like before in the case of A → A ∧ A). Now
only a majorizing term for µy ≤ z [ tAD(x, y) =o 0 ] needs to be constructed
and we can simply use t∗ :≡Π = λx, z. z. Let PAω be formulated over ECLω

M

plus IA and the recursors R. The remarks above imply that we can state the
following result.

Theorem 5.10 All the quantitative results of Theorem 5.4 and the subse-
quent considerations carry on to the corresponding PAω-based systems in the
obvious way. �

45Obviously using IR.
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A Appendix

Below we complete the proof of Proposition 3.20. We first recall its statement.

Proposition A.1 There exists k ∈ IN constant such that for any instance
A of CT∨, WK∨, WK∧, PM∨, PM∧, SYL, EPN, EFQ, TND0, MK, IP∀, AC, there exists
a realizing tuple for AD such that

d(t) ≤ k (71)

S(t) ≤ k (72)

mdg(t) ≤ k + vdg(A) + id(A) (73)

mar(t) ≤ k + var(A) + qs(A) (id(A) − k0 + 2) (74)

`k {] t , A [} (75)

Proof: Only SYL was treated in the proof of Proposition 3.20. Below we
treat the remaining axioms, where {a} ≡ Vf(the corresp. axiom instance).

CT∨ : By definition,

(A ∨ A → A)D ≡ ∃Y , Y ′, X ′′ ∀z, x, x′, y′′

 z = 0 → AD(x; Y (z, x, x′, y′′))
∧

z 6= 0 → AD(x
′; Y ′(z, x, x′, y′′))


−→

AD(X
′′(z, x, x′); y′′)



and we can take

{
tY :≡ tY ′ :≡Π = λa, z, x, x′, y′′. y′′

tX′′ :≡ Π D = λa. D

WK∨ : By definition,

(A → A ∨ B)D ≡ ∃Y , Z, X ′, U ∀x, y′, v
AD(x; Y (x, y′, v))

−→ Z(x) = 0 → AD(X
′(x); y′)

∧
Z(x) 6= 0 → BD(U(x); v)
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and we can take


tY :≡ Π = λa, x, y′, v. y′

tZ :≡ O = λa, x. 0

tX′ :≡ Π = λa, x. x

tU :≡ O

WK∧ : By definition,

(A ∧ B → A)D ≡ ∃Y , V , X ′ ∀x, u, y′
AD(x; Y (x, u, y′)) ∧ BD(u; V (x, u, y′))

−→
AD(X

′(x, u); y′)



and we can take


tY :≡ Π = λa, x, u, y′. y′

tV :≡ O

tX′ :≡ Π = λa, x, u. x

PM∨ : By definition,

(A ∨ B → B ∨ A)D ≡ ∃Y , V , Z ′, U ′, X ′ ∀z, x, u, v′, y′

 z = 0 → AD(x; Y (z, x, u, v′, y′))
∧

z 6= 0 → BD(u; V (z, x, u, v′, y′))


−→ Z ′(z, x, u) = 0 → BD(U

′(z, x, u); v′)
∧

Z ′(z, x, u) 6= 0 → AD(X
′(z, x, u); y′)





and we can take



tY :≡ Π = λa, z, x, u, v′, y′. y′

tV :≡ Π = λa, z, x, u, v′, y′. v′

tZ′ :≡ Σ (Σ (Π I) Π) (Π 1) = λa, z, x, u. (I z 1)

tU ′ :≡ Π = λa, z, x, u. u

tX′ :≡ Π = λa, z, x, u. x
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PM∧ : By definition,

(A ∧ B → B ∧ A)D ≡ ∃Y , V , U ′, X ′ ∀x, u, y′, v′ AD(x; Y (x, u, y′, v′)) ∧ BD(u; V (x, u, y′, v′))
→

BD(U
′(x, u); v′) ∧ AD(X

′(x, u); y′)



and we can take


tY :≡ Π = λa, x, u, y′, v′. y′

tV :≡ Π = λa, x, u, y′, v′. v′

tU ′ :≡ Π = λa, x, u. u

tX′ :≡ Π = λa, x, u. x

EFQ : By definition,

(1 = 0 → A)D ≡ ∃x ∀y (1 = 0 → AD(x; y))

and we can take tx :≡O. �

EPN : By definition,

(A → B)D ≡ ∃Y , U ∀x, v (AD(x; Y (x, v)) → BD(U(x); v))

(C ∨ A)D ≡ ∃z, g, x∀h, y ((z = 0 → CD(g; h)) ∧ (z 6= 0 → AD(x; y)))

(C ∨ B)D ≡ ∃z′, g′, u∀h′, v ((z′ = 0 → CD(g
′; h′)) ∧ (z′ 6= 0 → BD(u; v)))

hence
(C ∨ A → C ∨ B)D ≡ ∃H, Y , Z ′, G′, U ′ ∀z, g, x, h′, v

 z = 0 → CD(g; H(z, g, x, h′, v))
∧

z 6= 0 → AD(x; Y (z, g, x, h′, v))


−→ Z ′(z, g, x) = 0 → CD(G

′(z, g, x); h′)
∧

Z ′(z, g, x) 6= 0 → BD(U
′(z, g, x); v)
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and further

((A → B) → (C ∨ A → C ∨ B))D ≡ ∃X, V , H, Y , Z ′, G′, U ′ ∀y, u, z, g, x, h′, v

 AD(X(y, u, z, g, x, h′, v); y(X(y, u, z, g, x, h′, v), V (y, u, z, g, x, h′, v)))
→

BD(u(X(y, u, z, g, x, h′, v)); V (y, u, z, g, x, h′, v))


−→ z = 0 → CD(g; H(y, u)(z, g, x, h′, v))
∧

z 6= 0 → AD(x; Y (y, u)(z, g, x, h′, v))


−→ Z ′(y, u)(z, g, x) = 0 → CD(G

′(y, u)(z, g, x); h′)
∧

Z ′(y, u)(z, g, x) 6= 0 → BD(U
′(y, u)(z, g, x); v)





and we can take



tX :≡ Π = λa, y, u, z, g, x, h′, v. x

tV :≡ Π = λa, y, u, z, g, x, h′, v. v

tH :≡ Π = λa, y, u, z, g, x, h′, v. h′

tZ′ :≡ Π = λa, y, u, z, g, x. z

tY :≡ P Σ = λa, y, u, z, g, x, h′. y(x)

tG′ :≡ Π = λa, y, u, z, g, x, h′, v. g

tU ′ :≡ Π = λa, y, u, z, g. u

TND0 : By definition,

[ x = 0 ∨ ¬(x = 0) ]D ≡ ∃z [ (z = 0 → x = 0) ∧ (Iz1 = 0 → ¬(x = 0)) ]

and we can take tz :≡λx. x.

The remaining axioms are of shape A → B such that AD ≡ BD and therefore
are immediately seen to be realized with projectors Π. For the reader’s conve-
nience we nevertheless give below the full details.

MK: We have [¬¬∃xA0(x) ]D ≡ ∃x¬¬A0(x) hence

[¬¬∃xA0(x) → ∃x¬¬A0(x) ]D ≡ ∃X ∀x [¬¬A0(x) → ¬¬A0(X(x)) ]
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and we can take tX :≡Π = λa, x. x.

IP∀: We have

[ ∀xA0(x) → ∃y B(y) ]D ≡ ∃X, y, u∀v [ A0(X(v)) → BD(u; v; y) ]

( ∃y [ ∀xA0(x) → B(y) ] )D ≡ ∃y, X, u∀v [ A0(X(v)) → BD(u; v; y) ]

hence ( [ ∀x A0(x) → ∃y B(y) ] → ∃y [ ∀xA0(x) → B(y) ] )D is

∃V, Y, X, U ∀x, y, u, v
A0(x(V (x, y, u, v))) → BD(u; V (x, y, u, v); y)

−→
A0(X(x, y, u, v)) → BD(U(x, y, u); v; Y (x, y, u))



and we can take


tV :≡ Π = λa, x, y, u, v. v

tY :≡ Π = λa, x, y, u. y

tX :≡ Π = λa, x, y, u. x

tU :≡ Π = λa, x, y, u. u

AC: We have

[ ∀x ∃y B(x, y) ]D ≡ ∃Y, U ∀x, v BD(U(x); v; x, Y (x)) ≡ [ ∃Y ∀xB(x, Y (x)) ]D

hence [ ∀x∃y B(x, y) → ∃Y ∀x B(x, Y (x)) ]D is

∃X, V, Y, U ∀y, u, x, v
BD(u(X(y, u, x, v)); V (y, u, x, v); X(y, u, x, v), y(X(y, u, x, v)))

−→
BD(U(y, u, x); v; x, Y (y, u, x))



and we can take


tX :≡ Π = λa, y, u, x, v. x

tV :≡ Π = λa, y, u, x, v. v

tY :≡ Π = λa, y, u. y

tU :≡ Π = λa, y, u. u
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