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Ö

stlin
&

P
agh:

O
ne-P

robe
S

earch

BRICS
Basic Research in Computer Science

One-Probe Search

Anna Östlin
Rasmus Pagh

BRICS Report Series RS-02-9

ISSN 0909-0878 February 2002



Copyright c© 2002, AnnaÖstlin & Rasmus Pagh.
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One-Probe Search?

Anna Östlin and Rasmus Pagh

BRICS??

Department of Computer Science
University of Aarhus, Denmark

{annao,pagh}@brics.dk

Abstract. We consider dictionaries that perform lookups by probing
a single word of memory, knowing only the size of the data structure.
We describe a randomized dictionary where a lookup returns the correct
answer with probability 1− ε, and otherwise returns “don’t know”. The
lookup procedure uses an expander graph to select the memory location
to probe. Recent explicit expander constructions are shown to yield space
usage much smaller than what would be required using a deterministic
lookup procedure. Our data structure supports efficient deterministic
updates, exhibiting new probabilistic guarantees on dictionary running
time.

1 Introduction

The dictionary is one of the most well studied data structures. A
dictionary represents a set S of elements (called keys) from some
universe U , along with information associated with each key in the
set. Any x ∈ U can be looked up, i.e., it can be reported whether
x ∈ S, and if so, what information is associated with x. We consider
this problem on a unit cost word RAM in the case where keys and
associated information have fixed size and are not too big (see be-
low). The most straightforward implementation, an array indexed by
the keys, has the disadvantage that the space usage is proportional
to the size of U rather than to the size of S. On the other hand,
arrays are extremely time efficient: A single memory probe suffices
to retrieve or update an entry.

It is easy to see that there exists no better deterministic one-
probe dictionary than an array. In this paper we investigate ran-
domized one-probe search strategies, and show that it is possible,
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Research Foundation.



using much less space than an array implementation, to find a given
table entry with probability arbitrarily close to 1. The probability
is over coin tosses performed by the lookup procedure. In case the
entry is not found, this is realized by the lookup procedure, and it
produces the answer “don’t know”. In particular, by iterating until
the table entry is found, we get a Las Vegas lookup procedure with
expected number of probes arbitrarily close to 1.

It should be noted that one-probe search is impossible if one
has no idea how much data is stored. We assume that the query
algorithm knows the size of the data structure – a number that only
changes when the size of the key set changes by a constant factor.
The fact that the size, which may rarely or never change, is the only
kind of global information needed to query the data structure means
that it is well suited to supporting concurrent lookups (in parallel
or distributed settings). In contrast, all known hash function based
lookup schemes have some kind of global hash function that must be
changed regularly. Even concurrent lookup of the same key, without
accessing the same memory location, is supported to some extent.
This is due to the fact that two lookups of the same key are not very
likely to probe the same memory location.

A curious feature of our lookup procedure is that it makes its
decision based on a constant number of equality tests. In this sense
it is comparison-based – however, the data structure is not implicit
in the sense of Munro and Suwanda [11], as it stores elements not in
S.

Our studies were inspired by recent work of Buhrman et al. [4]
on randomized analogs of bit vectors. They presented a Monte Carlo
data structure where one bit probe suffices to retrieve a given bit
with probability arbitrarily close to 1. In case of a sparse bit vector
(few 1s) the space usage is much smaller than that of a bit vec-
tor. When storing no associated information, a dictionary solves the
membership problem, which can also be seen as the problem of stor-
ing a bit vector. Our Las Vegas lookup procedure is stronger than
the Monte Carlo lookup procedure in [4], as a wrong answer is never
returned. The price paid for this is an expected bound on the num-
ber of probes, a slightly higher space usage, and, of course, that
we look up one word rather than one bit. The connection to [4] is
also found in the underlying technique: We employ the same kind

2



of unbalanced bipartite expander graph as is used there. Recently,
explicit constructions1 of such graphs with near-optimal parameters
have been found [14, 15].

Let u = |U | and n = |S|. We assume that one word is large
enough to hold one of 2u + 1 different symbols plus the information
associated with a key. (Note that if this is not the case, it can be
simulated by accessing a number of consecutive words rather than
one word – an efficient operation in many memory models.) Our
main theorem is the following:

Theorem 1. For any constant ε > 0 there exists a nonexplicit one-
probe dictionary with success probability 1 − ε, using O(n log 2u

n
)

words of memory. Also, there is an explicit construction using n ·
2O((log log u)3) words of memory.

Note that the space overhead for the nonexplicit scheme, a factor of
log 2u

n
, is exponentially smaller than that of an array implementation.

In the second part of the paper we consider dynamic updates to
the dictionary. The fastest known dynamic dictionaries use hashing,
i.e., they select (at random) a number of functions from suitable
families, which are stored and subsequently used (deterministically)
to direct searches.

A main point in this paper is that a fixed structure with random
properties (the expander graph) can be used to move random choices
from the data structure itself to the lookup procedure. The absence
of hash functions in our data structure has the consequence that
updates can always be performed in a very local manner. We show
how to deterministically perform updates by probing and changing
a number of words that is nearly linear in the degree of the ex-
pander graph (which, for optimal expanders, is at most logarithmic
in the size of the universe). If we augment our RAM model with an
instruction for computing neighbors in an optimal expander graph
with given numbers of vertices, an efficient dynamic dictionary can
be implemented.

Theorem 2. In the expander-augmented RAM model, there is a dic-
tionary where a sequence of a updates and b lookups in a key set of

1 Where a given neighbor of a vertex can be computed in time polylogarithmic in the
number of vertices.
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size at most n takes time O(a(log 2u
n

)1+o(1) + b + t) with probability

1− 2−Ω(t/(log 2u
n

)1+o(1)). The space usage is O(n log 2u
n

) words.

When the ratio between the number of updates and lookups is small,
the expected average time per dictionary operation is constant. In-
deed, if the fraction of updates is between (log 2u

n
)−1−o(1) and n−ω(1),

and for u = 2n1−Ω(1)
the above yields the best known probability, us-

ing space polynomial in n, that a sequence of dictionary operations
take average constant time. The intuitive reason why the probabil-
ity bound is so good, is that time consuming behavior requires bad
random choices in many invocations of the lookup procedure, and
that the random bits used in different invocations are independent.

1.1 Related work

As described above, this paper is related to [4], in scope as well as in
tools. The use of expander graphs in connection with the membership
problem was earlier suggested by Fiat and Naor [6], as a tool for
constructing an efficient implicit dictionary.

Yao [16] showed an Ω(log n) worst case lower bound on the time
for dictionary lookups on a restricted RAM model allowing words to
contain only keys of S or special symbols from a fixed set whose size
is a function of n (e.g., pointers). The lower bound holds when space
is bounded by a function of n, and u is sufficiently large. It extends
to give an Ω(log n) lower bound for the expected time of randomized
Las Vegas query schemes.

Our data structure violates Yao’s lower bound model in two ways:
1. We allow words to contain certain keys not in S (accessed only
through equality tests); 2. We allow space depending on u. The sec-
ond violation is the important one, as Yao’s lower bound can be
extended to allow 1. Yao also considered deterministic one-probe
schemes in his model, showing that, for n ≤ u/2, a space usage of
u/2 + O(1) words is necessary and sufficient for them to exist.

The worst case optimal number of cell probes for membership
was studied by Pagh in [13] in the case where U equals the set of
machine words. It was shown that three cell probes are necessary
when using m words of space, unless u = 2Ω(n2/m) or u ≤ n2+o(1).
Sufficiency of three probes was shown for all parameters (in most
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cases it followed by the classic dictionary of Fredman et al. [7]). In
the expected sense, most hashing based dictionaries can be made to
use arbitrarily close to 2 probes by expanding the size of the hash
table by a constant factor.

Dictionaries with sublogarithmic lookup time that also allow effi-
cient deterministic updates have been developed in a number of pa-
pers [1, 2, 8, 9, 12]. Let n denote an upper bound on the number of el-
ements in a dynamic dictionary. For lookup time t = o(log log n), the
best known update time is nO(1/t), achieved by Hagerup et al. in [9].
The currently best probabilistic guarantee on dynamic dictionary
performance, achieved by Dietzfelbinger and Meyer auf der Heide
in [5], is that each operation takes constant time with probability
1 − O(m−c), where c is any constant and m is the space usage in
words (which must be some constant factor larger than n). This im-
plies that a sequence of a updates and b lookups can be done in time
O(a + b + t) with probability 1−O(m−t/n).

2 Preliminaries

In this section we define (n, d, ε)-expander graphs and state lemmas
concerning these graphs. For the rest of this paper we will assume ε
to be a multiple of 1/d, as this makes statements and proofs simpler.
This will be without loss of generality, as the statements we show do
not change when rounding ε down to the nearest multiple of 1/d.

Let G = (U, V, E) be a bipartite graph and let S be a subset
of U . We denote the set of neighbors of a set S ⊆ U by Γ (S) =⋃

s∈S{v | (s, v) ∈ E}. For x ∈ U we write Γ (x) as a shorthand for
Γ ({x}).
Definition 1. A bipartite graph G = (U, V, E) is an (n, d, ε)-expander
graph if it is d-regular (i.e., the degree of all nodes in U is d) and
for each S ⊆ U with |S| ≤ n it holds that |Γ (S)| ≥ (1− ε)d|S|.
Lemma 1. For 0 < ε < 1 and d ≥ 1, if |V | ≥ (1−ε)dn(2u/n)1/εde1/ε

then there exists an (n, d, ε)-expander graph G = (U, V, E), |U | = u.

Proof. Let G = (U, V, E) be a randomly generated graph created by
the following procedure. For each u ∈ U choose d neighbors with
replacement, i.e., an edge can be chosen more than once, but then
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the double edges are removed. We will argue that the probability
that this graph fails to be a (n, d, ε)-expander graph is less than 1
for the choices of |V | and d as stated in the lemma. The degrees of
the nodes in U in this graph may be less than d, but if there exists a
graph that is expanding for degree less than d for some nodes, then
there exists a graph that is expanding for exactly degree d as well.

We must bound the probability that some subset of s ≤ n vertices
from U has fewer than (1− ε)ds neighbors. A subset S ⊆ U of size s
can be chosen in

(
u
s

)
ways and a set V ′ ⊆ V of size (1− ε)ds can be

chosen in
( |V |
(1−ε)ds

)
ways. The probability that such a set V ′ contains

all of the neighbors for S is ( (1−ε)ds
|V | )ds. Thus, the probability that

some subset of U of size s ≤ n has fewer than (1− ε)ds neighbors is
at most

n∑
s=1

(
u

s

)( |V |
(1− ε)ds

)(
(1− ε)ds

|V |
)ds

<
n∑

s=1

(ue

s

)s
( |V |e

(1− ε)ds

)(1−ε)ds(
(1− ε)ds

|V |
)ds

≤
n∑

s=1

((
(1− ε)ds

|V |
)εd

edu/s

)s

.

If the term in the outermost parentheses is bounded by 1/2, the sum
is less than 1. This is the case when |V | fulfills the requirement stated
in the lemma.

Corollary 1. For any constants α, ε > 0 there exist an (n, d, ε)-
expander G = (U, V, E) for the following parameters:

– d = O(log(2u/n)), |U | = u and |V | = O(n log(2u/n)).
– d = O(1), |U | = u and |V | = O(n (2u/n)α).

Theorem 3. (Ta-Shma [14]) For any constant ε > 0 and for d =
2O((log log u)3), there exists an explicit (n, d, ε)-expander G = (U, V, E)
with |U | = u and |V | = O(n · 2O((log log u)3)).

3 Static data structure

Our data structure is an array denoted by T . Its entries may contain
the symbol x for keys x ∈ S, the symbol ¬x for keys x ∈ U\S, or
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the special symbol ⊥ 6∈ U . (Recall our assumption that one of these
symbols plus associated information fits into one word.) We make
use of a (2n + 1, d, ε/2)-expander with neighbor function Γ . Given
that a random element in the set Γ (x) can be computed quickly, the
one-probe lookup procedure is very efficient.

procedure lookupε(x)
choose v ∈ Γ (x) at random;
if T [v] ∈ {x,¬x,⊥} then return; T [v] = x
else return don’t know ;

end;

The corresponding Las Vegas lookup algorithm is the following:

procedure lookup(x)
repeat

choose v ∈ Γ (x) at random;
until T [v] ∈ {x,¬x,⊥};
return T [v] = x;

end;

3.1 Analysis

The success probability of lookupε(x) and the expected time of lookup(x)
depends on the content of the entries in Γ (x) in the table. To guar-
antee success probability 1 − ε in each probe for x, the following
conditions should hold:

1. For x ∈ S, at least a fraction 1− ε of the entries T [v], v ∈ Γ (x),
contain x, and none contain ¬x or ⊥.

2. For x /∈ S, at least a fraction 1− ε of the entries T [v], v ∈ Γ (x),
contain either ¬x or ⊥, and none contain x.

By inserting ⊥ in all entries in the table except the entries in
Γ (S), condition 2. will be satisfied for all x /∈ S with |Γ (x)∩Γ (S)| ≤
εd. For those elements x not in S but with many neighbors in com-
mon with S we need some entries with content ¬x. We define the
ε-ghosts for a set S to be the elements with many neighbors in com-
mon with S, as follows.
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Definition 2. Given a bipartite graph G = (U, V, E), an element
u ∈ U is an ε-ghost for the set S ⊆ U if |Γ (u) ∩ Γ (S)| ≥ ε|Γ (u)|
and u /∈ S.

There are not too many ε-ghosts for a given set S, by the following
lemma from [4].

Lemma 2. There are at most n ε-ghosts for a set S of size n in a
(2n + 1, d, ε/2)-expander graph.

For the elements in S and the ε-ghosts for S we need to assign
entries in the table to fulfill conditions 1. and 2.

Definition 3. Let G = (U, V, E) be a bipartite d-regular graph and
let 0 < ε < 1. An assignment for a set S ⊆ U , is a subset A ⊆
E ∩ (S × V ) such that for v ∈ V , |A ∩ (S × {v})| ≤ 1. A (1 − ε)-
balanced assignment for S is an assignment A, where for each k ∈ S
it holds that |A ∩ ({k} × V )| ≥ (1− ε)d.

For expander graphs it is always possible to find a well balanced
assignment for sets that are not too large.

Lemma 3. If a graph G = (U, V, E) is an (n, d, ε)-expander then
there exists a (1−ε)-balanced assignment for every set S ⊆ U of size
at most n.

To show the lemma we will use Hall’s theorem [10]. A perfect
matching in a bipartite graph (U, V, E) is a set of |U | edges such
that for each u ∈ U there is an edge (u, x) ∈ E and for each v ∈ V
there is at most one edge (y, v) ∈ E.

Theorem 4. (Hall’s theorem) In any bipartite graph G = (U, V, E),
such that for each subset U ′ ⊆ U it holds that |U ′| ≤ |Γ (U ′)|, there
exists a perfect matching.

Proof of lemma 3. Let S = {s1, . . . , sn} be an arbitrary subset of U
of size n. Let G′ = (S, Γ (S), E ′) be the subgraph of G induced by
the nodes S and Γ (S), i.e., E′ = {(u, v) ∈ E | u ∈ S}. To prove the
lemma we want to show that there exists an assignment A such that
for each k ∈ S, |A∩ ({k} × V )| ≥ (1− ε)d. The idea is to use Hall’s
theorem (1− ε)d times by repeatedly finding a perfect matching and
removing the nodes from V in the matching.
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Since G is and (n, d, ε)-expander we know that for each subset
S ′ ⊆ S it holds that |Γ (S ′)| ≥ (1 − ε)d|S ′|. Assume that we have
i perfect matchings from S to non-overlapping subsets of Γ (S) and
denote by M the nodes from Γ (S) in the matchings. For each subset
S ′ ⊆ S it holds that |Γ (S ′) \M | ≥ ((1− ε)d− i)|S ′|. If (1− ε)d− i ≥
1 then the condition in Hall’s theorem holds for the graph Gi =
(S, (Γ (S) \ M), E ′ \ Ei), where Ei is the set of edges incident to
nodes in M , and there exists a perfect matching in Gi. From this it
follows that at least (1− ε)d non-overlapping perfect matchings can
be found in G′. The edges in the matchings defines a (1−ε)-balanced
assignment. 2

3.2 Construction

We store the set S as follows:

1. Write ⊥ in all cells not in Γ (S), and a “blank” symbol in cells of
Γ (S).

2. Find G ⊆ U \ S consisting of the elements x ∈ U \ S such that
less than a fraction (1− ε) of the entries Γ (x) contain ⊥.

3. Find a (1− ε)-balanced assignment for the set S ∪G.
4. For x ∈ S write x in assigned cells.

For x ∈ G write ¬x in assigned cells not containing ⊥.

By lemma 2 the set G found in step 2. contains at most n elements,
and by lemma 3 it is possible to carry out step 3. Together with
the results on expanders in section 2, this concludes the proof of
Theorem 1.

We note that step 2. takes time Ω(|U\S|) if we have only oracle
access to Γ . When the graph has some structure it is sometimes
possible to do much better. Ta-Shma shows in [14] that this step can
be performed for his class of graphs in time polynomial in the size
of the right vertex set, i.e., polynomial in the space usage. All other
steps are clearly also polynomial time in the size of the array.

In the dynamic setting, covered in section 4, we will take an
entirely different approach to ghosts, namely, we care about them
only if we see them. We then argue that the time spent looking for
a single ghost before it is detected is not too large, and that there
may not be too many different ghosts.
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4 Dynamic updates

For our dynamic dictionary we use a (4m, d, ε/3)-expander, where m
is an upper bound on the size of the set that can be handled. The
parameter m is assumed to be known to the query algorithm. Note
that m can be kept in the range n to 2n at no asymptotic cost, us-
ing standard global rebuilding techniques. The dictionary essentially
maintains the static data structure described in the previous section.
To facilitate efficient dynamic insertions and deletions of keys, we use
the following auxiliary data structures:

– A priority queue PQ with all elements in S plus some set G of
elements that appear negated in T . Each element has as priority
the size of its assignment, which is always at least (1− ε)d.

– Each entry T [v] in T is augmented with

• A pointer Tp[v] which, if entry v is assigned to an element,
points to that element in the priority queue.

• A counter Tc[v] that at any time stores the number of elements
in S that have v as a neighbor.

Since all elements in the priority queue are assigned (1− ε)d entries
in T , the performance of the lookup procedure is the desired one,
except when searching for ε-ghosts not in G. We will discuss this in
more detail later.

We first note that it is easy to maintain the data structure during
deletions. All that is needed when deleting x ∈ S is decreasing the
counters Tc[Γ (x)], and replacing x with ¬x or ⊥ (the latter if the
counter reaches 0). Finally, x should be removed from the priority
queue. We use a simple priority queue that requires space O(d +
n), supports insert in O(d) time, and increasekey, decreasekey,
findmin and delete in O(1) time. The total time for a deletion in
our dictionary is O(d).
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procedure delete(x)
if ¬ lookup(x) then return;
for v ∈ Γ (x) do

Tc[v]← Tc[v]− 1;
if T [v] = x then

p← Tp[v]; Tp[v]← null;
if Tc[v] = 0 then T [v]← ⊥ else T [v]← ¬x;

endif;
end;
remove x from PQ using the pointer p;

end;

When doing insertions we have to worry about maintaining a
(1 − ε)-balanced assignment. The idea of our insertion algorithm is
to assign all neighbors to the element being inserted. In case this
makes the assignment of other elements too small (easily seen using
the priority queue), we repeat assigning all neighbors to them, and
so forth. Every time an entry in T is reassigned to a new element,
the priority of the old and new element are adjusted in the priority
queue. The time for an insertion is O(d), if one does not count the
associated cost of maintaining assignments of other elements. The
analysis in section 4.1 will bound this cost. Note that a priori it is
not even clear whether the insertion procedure always terminates.
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procedure insert(x)
if lookup(x) then return;
insert x in PQ with priority 0;
for v ∈ Γ (x) do

if T [v] = ¬x then p← Tp[v];
Tc[v]← Tc[v] + 1;

end;
if p 6= null then remove ¬x from PQ and G using the pointer p;
while PQmin < (1− ε)d do

get from PQ a minimum priority element y with pointer py;
for v ∈ Γ (y) do

if Tp[v] 6= null then decrease priority of Tp[v] by one;
Tp[v]← pq; T [v]← y;

end;
adjust the priority of y to d;

end;
if last step of stage then “delete non-ghosts from G”;

end;

A final aspect that we have to deal with is ghosts. Ideally we
would like G to contain at all times the current list of ε-ghosts for S,
such that a (1−ε)-balanced assignment was maintained for all ghosts.
However, this leaves us with the hard problem of finding new ghosts
as they appear. We circumvent this problem by only including keys
in G if they are selected for examination and found to be ε-ghosts. A
key is selected for examination if a lookup of that key takes more than
log1/ε d iterations. The time spent on examinations and on lookups
of a ghost before it is found, is bounded in the next section.

The sequence of operations is divided up into stages, where each
stage (except possibly the last) contains m insert operations. After
the last insertion in a stage, all elements in G that are no longer
ε-ghosts are deleted. This is done by going through all elements in
the priority queue. Elements of G with at least (1 − ε)d neighbors
containing ⊥ are removed from the priority queue. Hence, when a
new stage starts, G will only contain ε-ghosts.
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4.1 Analysis

In this section we sketch the analysis of our dynamic dictionary.
We first analyze the total work spent doing assignments and reas-
signments. Recall that the algorithm maintains a (1 − ε)-balanced
assignment for the set S ∪G of elements in the priority queue. Ele-
ments enter the priority queue when they are inserted in S, and they
may enter it when they are ε-ghosts for the current set. It clearly suf-
fices to bound the work in connection with insertions in the priority
queue, as the work for deletions cannot be larger than this. We will
first show a bound on the number of elements in G.

Lemma 4. The number of elements in the set G never exceeds 2m.

Proof. Let S be the set stored at the beginning of a stage. G only
contains ε-ghosts for S at this point. Let S ′ denote the elements
inserted during the stage. New elements inserted into G have to be
ε-ghosts for S∪S ′. According to Lemma 2, since |S∪S ′| ≤ 2m, there
are at most 2m ε-ghosts for S ∪ S ′ (including the ε-ghosts for S).
Thus, the number of elements in G during a stage is at most 2m.

It follows from the lemma that the number of insertions in S ∪G
is bounded by 3 times the number of updates performed in the dictio-
nary. The remainder of our analysis of the number of reassignments
has two parts: We first show that our algorithm performs a num-
ber of reassignments (in connection with insertions) that is within a
constant factor of any scheme maintaining a (1− ε/3)-balanced as-
signment. The scheme we compare ourselves to may be off-line, i.e.,
know the sequence of operations in advance. Secondly, we give an off-
line strategy for maintaining a (1− ε/3)-balanced assignment using
O(d) reassignments per update. This proof strategy was previously
used for an assignment problem by Brodal and Fagerberg [3].

In the following lemmas, the set M is the set for which a balanced
assignment is maintained, and the insert and delete operations are
inserts and deletes for this set. In our data structure M corresponds
to S ∪G.

Lemma 5. Let G = (U, V, E) be a d-regular graph. Suppose O is a
sequence of insert and delete operations on a set M . Let B be an
algorithm that maintains a (1− ε

3
)-balanced assignment for M , and
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let C be our algorithm that maintains a (1− ε)-balanced assignment
for M . If B makes at most k reassignments during O, then C assigns
all neighbors to a key at most 3

ε
(k/d+ |M |start) times, where |M |start

is the initial size of M .

Proof. To show the lemma we will argue that the assignment of
C, denoted AC , will become significantly “less different” from the
assignment of B, denoted AB, each time C assigns all neighbors of a
key to that key. At the beginning |AB\AC | ≤ d|M |start, since |AB| ≤
d|M |start. Each of the k reassignments B performs causes |AB\AC | to
increase by at most one. This means that the reassignments made by
C during O can cause |AB\AC | to decrease by at most k + d|M |start
in total.

Each time C chooses a key k and assigns all entries in Γ (k) to
k we know that the assignment for k had size less than (1 − ε)d.
In particular, at least εd reassignments are done. At this point at
least (1 − ε

3
)d pairs (k, e) are included in AB, i.e., at most ε

3
d of

the neighbors of k are not assigned to k in AB. This means that at
least 2ε

3
d of the reassignments made by C decrease |AB\AC |, while

at most ε
3
d reassignments may increase |AB\AC |. In total, |AB\AC |

is decreased by at least ε
3
d when C assigns all neighbors to a key.

The lemma now follows, as |AB\AC | can decrease by ε
3
d at most

(k + d|M |start)/( ε
3
d) times.

Lemma 6. Let G = (U, V, E) be a (4m, d, ε/3)-expander. There ex-
ists an off-line algorithm maintaining a (1− ε

3
)-balanced assignment

for a set M , during a stage of 3m insertions, by performing at most
4dm reassignments, where |M | ≤ m at the beginning of the stage.

Proof. Let M ′ be the set of 3m elements to insert. Denote by M̃ =
M∪M ′; we have |M̃ | ≤ 4m. Let AM̃ be a (1− ε

3
)-balanced assignment

for M̃ (shown to exist in lemma 3).
The off-line algorithm knows the set M ′ of elements to insert from

the start, and does the following. First, it assigns neighbors to the
elements in M according to the assignment AM̃ , which requires at
most dm reassignments. Secondly, for each insertion of a key k ∈M ′,
it assigns neighbors to k according to AM̃ , which requires at most
d reassignments. This will not cause any element already in the set
to lose an assigned neighbor, hence no further reassignments are
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needed to keep the assignment (1 − ε
3
)-balanced. It follows that he

total number of reassignments during the 3m insertions is at most
4dm, proving the lemma.

The above two lemmas show that in a sequence of a updates to
the dictionary there are O(a) insertions in the priority queue, each of
which gives rise to O(d) reassignments in a certain off-line algorithm,
meaning that our algorithm uses O(ad) time for maintaining a (1−ε)-
balanced assignment for the set in the priority queue.

We now turn to analyzing the work done in the lookup proce-
dure. First we will bound the number of iterations in all searches for
elements that are not undetected ε-ghost. Each iteration has proba-
bility at least 1− ε of succeeding, independently of all other events,
so we can bound the probability of many iterations using Chernoff
bounds. In particular, the probability that the total number of iter-
ations used in the b searches exceeds 2

1−ε
b + t is less than e−

1−ε
8

t.

When searching for an element that is not an undetected ε-ghost,
the probability of selecting it for examination is bounded from above
by 1/d. In particular, by Chernoff bounds we get that, for k > 0, the
total number of examinations during all b lookups is at most b/d+k
with probability 1 − ( e

1+kd/b)
)b/d+k. For k = (e− 1)b/d + t/d we get

that the probability of more than eb/d+t/d examinations is bounded
by 2−t/d. Each examination costs time O(d), so the probability of
spending O(b + t) time on such examinations is at least 1 − 2−t/d.

We now bound the work spent on finding ε-ghosts. Recall that
an ε-ghost is detected if it is looked up, and the number of iterations
used by the lookup procedure exceeds log1/ε d. Since we have an
ε-ghost, the probability that a single lookup selects the ghost for
examination is at least εlog1/ε d−1 = Ω(1/d). We define d′ = O(d) by
1/d′ = εlog1/ε d−1. Recall that there are at most 2m ε-ghosts in a stage,
and hence at most 2a in total. We bound the probability that more
than 4ad′ + k lookups are made on undetected ε-ghosts, for k > 0.
By Chernoff bounds the probability is at most e−k/8d′ . Each lookup
costs O(log d) time, so the probability of using time O(ad log d + t)
is at least 1− e−t/8d′ log d.

To summarize, we have bounded the time spent on four different
tasks in our dictionary:
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– The time spent looking up keys that are not undetected ε-ghosts
is O(b + t) with probability 1− 2−Ω(t).

– The time spent examining keys that are not ε-ghosts is O(b + t)
with probability 1− 2−Ω(t/d).

– The time spent looking up ε-ghosts before they are detected is
O(ad log d + t) with probability 1− 2−Ω(t/d log d).

– The time spent assigning, reassigning and doing bookkeeping is
O(ad).

Using the above with the first expander of Corollary 1, having degree
d = O(log 2u

n
), we get the performance bound stated in Theorem 2.

Using the constant degree expander of Corollary 1 we get a data
structure with constant time updates. This can also be achieved in
this space with a trie, but a trie would use around 1/α word probes
for lookups of keys in the set, rather than close to 1 word probe,
expected.

5 Conclusion and open problems

In this paper we studied dictionaries for which a single word probe
with good probability suffices to retrieve any given information. It
is well known that three word probes are necessary and sufficient
for this in the worst case, even when using superlinear space. An
obvious open question is how well one can do using two cell probes
and a randomized lookup procedure. Can the space utilization be
substantially improved? Another point is that we bypass Yao’s lower
bound by using space dependent on u. An interesting question is:
How large a dependence on u is necessary to get around Yao’s lower
bound. Will space n log∗ u do, for example?
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