
B
R

IC
S

R
S

-02-53
O

.D
anvy:

A
Lam

bda-R
evelation

ofthe
S

E
C

D
M

achine

BRICS
Basic Research in Computer Science

A Lambda-Revelation of
the SECD Machine

Olivier Danvy

BRICS Report Series RS-02-53

ISSN 0909-0878 December 2003



Copyright c© 2002, Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/53/



A lambda-revelation of the SECD machine ?

Olivier Danvy

BRICS, Department of Computer Science, University of Aarhus
Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark

Phone: (+45) 89 42 33 69. Fax: (+45) 89 42 32 55. E-mail: danvy@brics.dk

Abstract. We present a simple inter-derivation between λ-interpreters,
i.e., functional evaluators for λ-terms, and abstract reduction machines
for the λ-calculus. The two key derivation steps are the CPS transforma-
tion and Reynolds’s defunctionalization. By transforming the interpreter
into continuation-passing style (CPS), its flow of control is made man-
ifest as a continuation. By defunctionalizing this continuation, the flow
of control is materialized as a first-order data structure.
The derivation applies not merely to connect independently known λ-
interpreters and abstract machines, it also applies to construct the ab-
stract machine corresponding to a λ-interpreter and to construct the
λ-interpreter corresponding to an abstract machine. In this article, we
treat in detail the canonical example of Landin’s SECD machine and we
reveal its denotational content: the meaning of an expression is a partial
endo-function from a stack of intermediate results and an environment
to a new stack of intermediate results and an environment. The corre-
sponding λ-interpreter is unconventional because (1) it uses a control
delimiter to evaluate the body of each λ-abstraction and (2) it assumes
the environment to be managed in a callee-save fashion instead of in the
usual caller-save fashion.

1 Introduction

The literature abounds with elegant derivations of abstract machines for the
lambda-calculus, with one remarkable exception: Landin’s original SECD ma-
chine [15]. It was the first such abstract machine, it is the starting point of many
university courses and textbooks, and it has been the topic of many variations
and optimizations, be it for its source language (call by name, call by need,
other syntactic constructs, including control operators), for its environment (de
Bruijn indices, de Bruijn levels, explicit substitutions, higher-order abstract syn-
tax), or for its control (proper tail recursion, one stack instead of two). Yet in
over thirty-five years of existence, it has not been derived or reconstructed.

The goal of this article is to show how to deconstruct the SECD machine into
a λ-interpreter (i.e., an evaluator for applicative expressions, i.e., lambda-terms).
We use a combination of simple tools and we do so in a way that generally applies
to other λ-interpreters and other abstract machines.

? December 2002.



1.1 What

We show that the denotational content of the SECD machine is a semantics
where the meaning of a term is a partial endo-function

S × E ⇀ S × E

where S is a domain of stack of intermediate values and E is a domain of envi-
ronments. This interpreter is unconventional in that its environment is managed
in a callee-save fashion.

The methodology used to reveal the denotational content of the SECD ma-
chine applies to variants of it and also is reversible. Starting from variants of the
SECD machine, it mechanically leads one to the corresponding direct-style eval-
uator. Conversely, starting from a canonical, direct-style evaluator for lambda-
terms—one that manages its environment in the usual caller-save fashion—the
methodology mechanically leads one to Felleisen’s CK, CEK, etc. abstract ma-
chines [8, 10], including control operators and state operations.

1.2 How

We use a combination of fold-unfold transformation, CPS transformation, and
defunctionalization.

Fold-unfold. We re-express the top-level loop of the SECD machine from one re-
cursive function to four mutually recursive functions. The reasoning uses Burstall
and Darlington’s fold-unfold strategy [4] and the correctness proof is by fixed-
point induction, as in Bekic’s theorem [25].

The CPS transformation. A λ-term is CPS-transformed by naming each of its
intermediate results, by sequentializing the computation of these results, and by
introducing continuations. Equivalently, such a term can be first transformed into
monadic normal form and then translated into the term model of the continua-
tion monad [13]. Alternatively, the CPS-transformation over types corresponds
to a double-negation translation.

For example, a term such as λf.λg.λx.f x (g x) is named and sequentialized
into

λf.λg.λx.let v1 = f x
in let v2 = g x

in v1 v2

and its CPS counterpart reads as

λk.k (λf.λk.k (λg.λk.k (λx.f x (λv1.g x (λv2.v1 v2 k)))))

under call by value. In both of the sequentialized version and the CPS version,
v1 names the result of f x and v2 names the result of g x.

2



Defunctionalization. In a higher-order program, first-class functions arise as in-
stances of function abstractions. Often, these function abstractions can be enu-
merated, either exhaustively or more discriminately using a control-flow analy-
sis [21]. Defunctionalization is a transformation where function types are replaced
by an enumeration of the function abstractions in this program.

Defunctionalization is to control-flow analysis what offline program special-
ization is to binding-time analysis [14]: It is a natural consumer of the results
of this program analysis. Whereas an offline program specializer evaluates the
static parts of a program and reconstructs its dynamic parts, a defunctionalizer
replaces:

– function spaces by an enumeration, in the form of a data type, of the possible
lambda-abstractions that can float there;

– function introduction by a construction into the corresponding data type;
and

– function elimination by an apply function dispatching over elements of the
corresponding data type.

For example, let us defunctionalize the function space int -> int in the fol-
lowing ML program:

fun aux f

= (f 1) + (f 10)

fun main (x, y)

= (aux (fn z => z)) * (aux (fn z => x + y + z))

The aux function is passed a first-class function, applies it to 1 and 10, and sums
the results. The main function calls aux twice and multiplies the results. All in
all, two function abstractions occur in this program, in main.

Defunctionalizing this program amounts to defining a data type with two
constructors, one for each function abstraction, and its associated apply function.
The first function abstraction contains no free variables and therefore the first
data-type constructor is constant. The second function abstraction contains two
free variables (x and y, of type integer), and therefore the second data-type
constructor requires two integers.

In main def, the first functional argument is thus introduced with the first
constructor, and the second functional argument with the second constructor
and the values of x and y. In aux def, the functional argument is passed to a
second-class function apply that eliminates it with a case expression dispatching
over the two constructors.

datatype lam = LAM1

| LAM2 of int * int

fun apply (LAM1, z)

= z

| apply (LAM2 (x, y), z)

= x + y + z

3



fun aux_def f

= (apply (f, 1)) + (apply (f, 10))

fun main_def (x, y)

= (aux_def LAM1) * (aux_def (LAM2 (x, y)))

Defunctionalization was discovered by Reynolds thirty years ago [19]. It has
been little used in practice since then, and has only been formalized over the last
few years [1, 2, 18]. More detail can be found in Danvy and Nielsen’s study [7].

1.3 Domain of discourse

We use ML as a meta-language. We assume a basic familiarity about Standard
ML and reasoning about ML programs. In particular, given two ML expressions
e and e’ we write e ∼= e’ to express that e and e’ are observationally equivalent.

The source language. The source language is the λ-calculus, extended with lit-
erals (as observables). A program is a closed term.

structure Source

= struct

type ide = string

datatype term = LIT of int

| VAR of ide

| LAM of ide * term

| APP of term * term

type program = term

end

The environment. We make use of a structure Env satisfying the following sig-
nature:

signature ENV

= sig

type ’a env

exception UNBOUND

val empty : ’a env

val extend : Source.ide * ’a * ’a env -> ’a env

val lookup : Source.ide * ’a env -> ’a

end

The empty environment is denoted by Env.empty. The function extending an
environment with a new binding is denoted by Env.extend. The function to fetch
the value of an identifier in an environment is denoted by Env.lookup. (Unbound
identifiers are handled by raising an exception, which never happens for closed
terms.)

4



Expressible and denotable values. There are three kinds of values: integers, the
successor function, and function closures:

datatype value = INT of int

| SUCC

| CLOSURE of value Env.env * Source.ide * Source.term

Function closures are canonically defined as pairing a λ-abstraction (i.e., its for-
mal parameter and its body) and the environment of its declaration, as promoted
by Landin [15] and used ever since.

The initial environment. We define the successor function in the initial environ-
ment:

val e_init = Env.extend ("succ", SUCC, Env.empty)

1.4 Overview

Section 2 presents the SECD machine as classically specified in the literature, i.e.,
as one tail-recursive function run. Section 3 presents an alternative specification
where run is disentangled into four mutually (tail) recursive functions run c,
run d, run t, and run s, each of which has one and only one induction variable.
Section 4 identifies that the disentangled definition is in defunctionalized form,
and presents its higher-order counterpart. This higher-order counterpart is in
continuation-passing style, and Section 5 presents its direct-style equivalent. This
direct-style equivalent is again in continuation-passing style would it be for the
fact that not all of its calls are tail calls, which is characteristic of delimited
control. Section 6 presents the corresponding direct-style evaluator, which uses
a control delimiter. Section 7 revisits the issue of compositionality and closures
in functional evaluators and presents the denotational content of the SECD
machine. Section 8 assesses the methodology of going back and forth between
lambda-interpreters and abstract machines, and Section 9 concludes.

2 The SECD machine as specified in the literature

The SECD machine is defined as a state-transition system with four components:

– A stack register holding a list of intermediate results. This component has
type value list.

– An environment register holding the current environment. This component
has type value Env.env.

– A control register holding a list of control directives. This component has
type directive, where directive is defined as follows:

datatype directive = TERM of term

| APPLY

5



– A dump register holding a list of triples. Each triple contains the previous
contents of the stack, environment, and control registers. This component
has type (value list * value Env.env * control) list.

The SECD machine is canonically defined as the following transitive closure
of a set of transitions between its four components [15].

(* run : S * E * C * D -> value *)

(* where S = value list *)

(* E = value Env.env *)

(* C = directive list *)

(* D = (S * E * C) list *)

fun run (v :: nil, e’, nil, nil) (* 1 *)

= v

| run (v :: nil, e’, nil, (s, e, c) :: d) (* 2 *)

= run (v :: s, e, c, d)

| run (s, e, (TERM (LIT n)) :: c, d) (* 3 *)

= run ((INT n) :: s, e, c, d)

| run (s, e, (TERM (VAR x)) :: c, d) (* 4 *)

= run ((Env.lookup (x, e)) :: s, e, c, d)

| run (s, e, (TERM (LAM (x, t))) :: c, d) (* 5 *)

= run ((CLOSURE (e, x, t)) :: s, e, c, d)

| run (s, e, (TERM (APP (t0, t1))) :: c, d) (* 6 *)

= run (s, e, (TERM t1) :: (TERM t0) :: APPLY :: c, d)

| run (SUCC :: (INT n) :: s, e, APPLY :: c, d) (* 7 *)

= run ((INT (n+1)) :: s, e, c, d)

| run ((CLOSURE (e’, x, t)) :: v :: s, e, APPLY :: c, d) (* 8 *)

= run (nil, Env.extend (x, v, e’), (TERM t) :: nil, (s, e, c) :: d)

(* evaluate0 : Source.program -> value *)

fun evaluate0 t (* 9 *)

= run (nil, e_init, (TERM t) :: nil, nil)

Essentially:

1. The first clause specifies that the machine terminates when both the current
list of control directives and the current dump are empty.

2. The second clause specifies what to do if the current list of control directives
is empty but the current dump is not empty, which corresponds to a function
return: the computation should continue with the stack, environment, and
control stored in the top-most component of the dump, transferring the top-
most value of the current stack onto the new stack.

3. The third clause specifies what to do if the top current control directive is
a literal, which corresponds to evaluating a literal: the corresponding value
should be pushed on the current stack.

4. The fourth clause specifies what to do if the top current control directive is an
identifier, which corresponds to evaluating an identifier: the corresponding
value should be fetched in the current environment and pushed on the current
stack.

6



5. The fifth clause specifies what to do if the top current control directive is
a λ-abstraction, which corresponds to evaluating a λ-abstraction: the cor-
responding function closure should be pushed on the current stack. This
closure groups the current environment, and the two components of the λ-
abstraction, i.e., its formal parameter and its body.

6. The sixth clause specifies what to do if the top current control directive is
an application, which corresponds to evaluating an application: an apply
directive, the operator, and the operand should be pushed on the list of
control directives.

7. The seventh clause specifies what to do if the top current control directive is
an apply directive, the top of the current stack is the successor function, and
the next element in the current stack is an integer, which corresponds to the
application of the successor function: the current stack should be popped
twice and the integer should be incremented and pushed on the stack.

8. The eighth clause specifies what to do if the top current control directive is
an apply directive, the top of the current stack is a closure, and there is a next
element in the current stack, which corresponds to a function call: the stack
should be popped twice and, together with the current environment and the
rest of the list of control directives, pushed on the dump (thereby saving the
current state of the machine). The current stack should be initialized with
the empty list, the current environment should be initialized with the closure
environment, suitably extended, and the current list of directives should be
initialized with the body of the closure.

9. Evaluation is initialized with an empty current stack, the initial environment,
the expression to evaluate as a single control directive, and an empty dump.

The SECD machine does not terminate for divergent terms. If it becomes stuck,
the result is an ML pattern-matching error (alternatively, the co-domain of run
could be made value option and an else clause could be added). Otherwise, the
result of the evaluation is v for some ML value v : value.

3 A more structured specification of the SECD machine

In the definition of Section 2, all the possible transitions are meshed together
in one recursive function, run. Instead, let us factor run into several mutually
recursive functions, each of them with one induction variable.

In this disentangled definition,

– run c interprets the list of control directives, i.e., it specifies which transition
to take if the list is empty, starts with a term, or starts with an apply
directive. If the list is empty, it calls run d. If the list starts with a term,
it calls run t, caching the term in a fifth component (the first parameter of
run t). If the list starts with an apply directive, it calls run s.

– run d interprets the dump, i.e., it specifies which transition to take if the
dump is empty or non-empty, given a valid stack.

– run t interprets the top term in the list of control directives.
– run s interprets the top value in the current stack.

7



(* run_c : S * E * C * D -> value *)

(* run_d : S * D -> value *)

(* run_t : Source.term * S * E * C * D -> value *)

(* run_s : S * E * C * D -> value *)

(* where S = value list *)

(* E = value Env.env *)

(* C = directive list *)

(* D = (S * E * C) list *)

fun run_c (s, e, nil, d)

= run_d (s, d)

| run_c (s, e, (TERM t) :: c, d)

= run_t (t, s, e, c, d)

| run_c (s, e, APPLY :: c, d)

= run_s (s, e, c, d)

and run_d (v :: nil, nil)

= v

| run_d (v :: nil, (s, e, c) :: d)

= run_c (v :: s, e, c, d)

and run_t (LIT n, s, e, c, d)

= run_c ((INT n) :: s, e, c, d)

| run_t (VAR x, s, e, c, d)

= run_c ((Env.lookup (x, e)) :: s, e, c, d)

| run_t (LAM (x, t), s, e, c, d)

= run_c ((CLOSURE (e, x, t)) :: s, e, c, d)

| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e, (TERM t0) :: APPLY :: c, d)

and run_s (SUCC :: (INT n) :: s, e, c, d)

= run_c ((INT (n+1)) :: s, e, c, d)

| run_s ((CLOSURE (e’, x, t)) :: v :: s, e, c, d)

= run_t (t, nil, Env.extend (x, v, e’), nil, (s, e, c) :: d)

(* evaluate1 : Source.program -> value *)

fun evaluate1 t

= run_t (t, nil, e_init, nil, nil)

Proposition 1 (full correctness). For any ML value t : Source.program,

evaluate1 t ∼= evaluate0 t

Proof. By fold-unfold [4]. The invariants are as follows. For any ML values s :

stack, e : environment, c : control, d : dump, and t : Source.term,




run c (s, e, c, d) ∼= run (s, e, c, d)

run d (s, d) ∼= run (s, e, nil, d)

run t (t, s, e, c, d) ∼= run (s, e, (TERM t) :: c, d)

run s (s, e, c, d) ∼= run (s, e, APPLY :: c, d)

�

8



4 A higher-order counterpart of the SECD machine

In the disentangled definition, there are two possible ways to construct a dump
(nil and cons) and three possible ways to construct a list of control directives
(nil, cons’ing a term, and cons’ing an apply directive). (We could phrase these
constructions as two data types rather than as two lists.)

These data types, together with run d and run c, are in the image of defunc-
tionalization (run d and run c are the apply functions of these two data types).
The corresponding higher-order evaluator reads as follows.

(* run_t : Source.term * S * E * C * D -> value *)

(* run_s : S * E * C * D -> value *)

(* where S = value list *)

(* E = value Env.env *)

(* C = (S * E * D) -> value *)

(* D = S -> value *)

fun run_t (LIT n, s, e, c, d)

= c ((INT n) :: s, e, d)

| run_t (VAR x, s, e, c, d)

= c ((Env.lookup (x, e)) :: s, e, d)

| run_t (LAM (x, t), s, e, c, d)

= c ((CLOSURE (e, x, t)) :: s, e, d)

| run_t (APP (t0, t1), s, e, c, d)

= run_t (t1, s, e,

fn (s, e, d) => run_t (t0, s, e,

fn (s, e, d) => run_s (s, e, c, d),

d),

d)

and run_s (SUCC :: (INT n) :: s, e, c, d)

= c ((INT (n+1)) :: s, e, d)

| run_s ((CLOSURE (e’, x, t)) :: v :: s, e, c, d)

= run_t (t, nil, Env.extend (x, v, e’),

fn (s, _, d) => d s,

fn (v :: nil) => c (v :: s, e, d))

(* evaluate2 : Source.program -> value *)

fun evaluate2 t

= run_t (t, nil, e_init,

fn (s, _, d) => d s,

fn (v :: nil) => v)

The resulting evaluator is in CPS, with two nested continuations, one for the
dump, and one for evaluating a root expression (i.e., the top-level expression
or the body of a λ-abstraction). It inherits the characteristics of the SECD
machine, i.e., it threads a stack of intermediate results, an environment, a control
continuation, and a dump continuation. As a lambda-interpreter, it is a bit
unusual in that:

1. it has two continuations,

9



2. it threads a stack of intermediate results, and
3. the environment is saved by the recursive callees, not by the callers. (Usually,

the environment is not threaded but saved across recursive calls.)

Otherwise the interpreter follows the traditional eval/apply schema identified by
McCarthy in his definition of Lisp in Lisp [16], by Reynolds in his definitional
interpreters [19], and by Steele and Sussman in their lambda-papers [22]: run t

is eval and run s is apply.

Proposition 2 (full correctness). For any ML value p : Source.program,

evaluate2 p ∼= evaluate1 p.

Proof. Defunctionalizing evaluate2 yields evaluate1, and defunctionalization has
been proved correct [1, 18].

5 Back to direct style

The evaluator of Section 4 is in continuation-passing style and therefore it is in
the image of the CPS transformation [5]. Its direct-style counterpart reads as
follows, renaming run t as eval and run s as apply.

(* eval : Source.term * S * E * C -> stack *)

(* apply : S * E * C -> S *)

(* where S = value list *)

(* E = value Env.env *)

(* C = S * E -> S *)

fun eval (LIT n, s, e, c)

= c ((INT n) :: s, e)

| eval (VAR x, s, e, c)

= c ((Env.lookup (x, e)) :: s, e)

| eval (LAM (x, t), s, e, c)

= c ((CLOSURE (e, x, t)) :: s, e)

| eval (APP (t0, t1), s, e, c)

= eval (t1, s, e, fn (s, e) =>

eval (t0, s, e, fn (s, e) =>

apply (s, e, c)))

and apply (SUCC :: (INT n) :: s, e, c)

= c ((INT (n+1)) :: s, e)

| apply ((CLOSURE (e’, x, t)) :: v :: s, e, c)

= let val (v :: nil) = eval (t, nil, Env.extend (x, v, e’),

fn (s, _) => s)

in c (v :: s, e)

end

(* evaluate3 : Source.program -> value *)

fun evaluate3 t

= let val (v :: nil) = eval (t, nil, e_init, fn (s, _) => s)

in v

end

10



Proposition 3 (full correctness). For any ML value p : Source.program,

evaluate3 p ∼= evaluate2 p.

Proof. CPS-transforming evaluate2 yields evaluate3, and the CPS transforma-
tion is meaning-preserving.

6 Back to direct style (continued)

Except for two, all the calls to eval are tail calls, in the evaluator of Section 5.
Except for these two calls, the evaluator is in CPS. These two calls are charac-
teristic of control delimiters [6, 9].

Using the syntactic sugar <<e>> as a control delimiter for e,1 the direct-style
counterpart of the evaluator reads as follows:

(* eval : Source.term * S * E -> S * E *)

(* apply : S * E -> S * E *)

(* where S = value list *)

(* E = value Env.env *)

fun eval (LIT n, s, e)

= ((INT n) :: s, e)

| eval (VAR x, s, e)

= ((Env.lookup (x, e)) :: s, e)

| eval (LAM (x, t), s, e)

= ((CLOSURE (e, x, t)) :: s, e)

| eval (APP (t0, t1), s, e)

= let val (s, e) = eval (t1, s, e)

val (s, e) = eval (t0, s, e)

in apply (s, e)

end

and apply (SUCC :: (INT n) :: s, e)

= ((INT (n+1)) :: s, e)

| apply ((CLOSURE (e’, x, t)) :: v :: s, e)

= let val (v :: nil, _) = <<eval (t, nil, Env.extend (x, v, e’))>>

in (v :: s, e)

end

(* evaluate4 : Source.program -> value *)

fun evaluate4 t

= let val (v :: nil, _) = <<eval (t, nil, e_init)>>

in v

end

Proposition 4 (full correctness). For any ML value p : Source.program,

evaluate4 p ∼= evaluate3 p.

Proof. CPS-transforming evaluate3 yields evaluate4, and the CPS transforma-
tion is meaning-preserving.
1 <<e>> is actually written reset (fn () => e) where reset is an ML function [11].

11



7 Compositionality, defunctionalization, and closures

The lambda-interpreters of Sections 4, 5, and 6 represent function closures as
introduced by Landin [15]. In Section 1.3, this representation was epitomized by
the definition of values:

datatype value = INT of int

| SUCC

| CLOSURE of value Env.env * Source.ide * Source.term

A function closure pairs a source λ-abstraction and the environment of its dec-
laration.

Because of this representation, none of the lambda-interpreters above are
compositional in the sense of denotational semantics [20, 23, 25]. To be compo-
sitional, they should solely define the meaning of each term as a composition of
the meaning of its parts. Yet if we view Landin’s closures as the result of defunc-
tionalization (with one data constructor and the apply function inlined in apply,
as in Reynolds’s original article on definitional interpreters [19]), we obtain a
lambda-interpreter that is compositional. This interpreter embodies the denota-
tional content of the SECD machine, be it in direct style, in continuation-passing
style, or with two levels of continuations.

Starting from the lambda-interpreter of Section 6, currying it to emphasize
that it maps a term to its meaning, and ignoring the control delimiter since
no delimited continuation is ever captured, the denotational counterpart of the
SECD machine therefore reads as follows:

datatype value = INT of int

| SUCC

| FUN of value -> value list * value Env.env

(* eval : Source.term -> S * E -> S * E *)

(* apply : S * E -> S * E *)

(* where S = value list *)

(* E = value Env.env *)

fun eval (LIT n)

= (fn (s, e) => ((INT n) :: s, e))

| eval (VAR x)

= (fn (s, e) => ((Env.lookup (x, e)) :: s, e))

| eval (LAM (x, t))

= (fn (s, e) =>

((FUN (fn v => eval t (nil, Env.extend (x, v, e)))) :: s, e))

| eval (APP (t0, t1))

= apply o (eval t0) o (eval t1)

and apply (SUCC :: (INT n) :: s, e)

= ((INT (n+1)) :: s, e)

| apply ((CLOSURE f) :: v :: s, e)

= let val (v :: nil, _) = f v

in (v :: s, e)

end

12



(* evaluate5 : Source.program -> value *)

fun evaluate5 t

= let val (v :: nil, _) = eval t (nil, e_init)

in v

end

The denotational content of the SECD machine is therefore that the meaning
of an expression is the mapping S × E ⇀ S × E where S is the domain of
stacks of intermediate results and E is the domain of environments. Evaluating
an ill-typed term is undefined (i.e., in ML, raises a pattern-matching error).
Evaluating a well-typed but divergent term diverges. Evaluating a well-typed
and convergent term converges to a value.

One can also observe that defunctionalizing the function space of a lambda-
interpreter leads one to deep closures (i.e., closures pointing to the current branch
of the environment tree), whereas defunctionalizing the function space of a nor-
mal program leads one to flat closures (i.e., closures pointing to a minimal copy
of the values of the variables occurring free in a lambda-abstraction).

8 Assessment

8.1 From abstract machines to lambda-interpreters

None of the steps from the SECD machine to either of the corresponding lambda-
interpreters is tied to the particular architecture of the SECD machine. There-
fore, these derivation steps can be applied to any variant of the SECD machine,
e.g., properly tail-recursive abstract machines, abstract machines with a single
control stack (i.e., without dump), and abstract machines that thread environ-
ments in the conventional caller-save fashion.

For example, in his famous 700 follow-up work [17], Morris presents a “shorter
equivalent” of the SECD machine as an interpreter written in an applicative lan-
guage. We note, though, that while Morris’s interpreter is definitely shorter, it
is not strictly equivalent to the SECD machine. (For example, its environment
is saved by the callers, not by the callees.) Indeed, defunctionalizing the CPS
counterpart of Morris’s interpreter yields a different abstract machine. For ex-
ample, this abstract machine has one control stack and no dump. (In fact, it
coincides with Felleisen’s CEK abstract machine [8, 10].)

8.2 From lambda-interpreters to abstract machines

All of the steps from the SECD machine to the corresponding lambda-interpreter
are reversible. Therefore these derivation steps can be applied to any lambda-
interpreter. For example, since there is no need for first-class continuations to
evaluate a λ-term, the control delimiter of Sections 6 and 7 can be dispensed
with and the resulting abstract machine has one control stack and no dump. As
has been discussed in the literature [24], the dual existence of the control and
dump components in the SECD machine has led Landin to a slightly complicated
control operator (the J-operator). Unifying these two components leads one to
the traditional escape and call/cc control operators.

13



In retrospect, the overall methodology of going from a lambda-interpreter to
an abstract machine is obvious: one CPS-transforms the interpreter to make it
tail-recursive, i.e., iterative, and one defunctionalizes the result to make it first
order, thereby obtaining a finite-state, iterative abstract machine. The overall
derivation is something that could come straight out of a textbook such as Es-
sentials of Programming Languages [12], except that this textbook does not use
off-the-shelf defunctionalization.

9 Conclusion

We have presented a methodology to relate lambda-interpreters and abstract
machines. The contributions of this article can be summarized as follows:

– a more structured specification of the SECD machine;
– a new application of defunctionalization;
– a lambda-revelation of the SECD machine, i.e., a revelation of its denota-

tional content;
– a methodology for inter-converting lambda-interpreters and abstract ma-

chines;
– informal applications of this methodology (e.g., for variants of the SECD

machine and for Felleisen’s CEK machine); and finally,
– a new example of control delimiters in programming practice.

The methodology directly applies to λ-calculi extended with computational ef-
fects à la Moggi, e.g., control and state.

References

1. Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Design and correctness
of program transformations based on control-flow analysis. In Naoki Kobayashi
and Benjamin C. Pierce, editors, Theoretical Aspects of Computer Software, 4th
International Symposium, TACS 2001, number 2215 in Lecture Notes in Computer
Science, Sendai, Japan, October 2001. Springer-Verlag.

2. Jeffrey M. Bell, Françoise Bellegarde, and James Hook. Type-driven defunction-
alization. In Mads Tofte, editor, Proceedings of the 1997 ACM SIGPLAN Inter-
national Conference on Functional Programming, pages 25–37, Amsterdam, The
Netherlands, June 1997. ACM Press.

3. Hans-J. Boehm, editor. Proceedings of the Twenty-First Annual ACM Symposium
on Principles of Programming Languages, Portland, Oregon, January 1994. ACM
Press.

4. Rod M. Burstall and John Darlington. A transformational system for developing
recursive programs. Journal of ACM, 24(1):44–67, 1977.

5. Olivier Danvy. Back to direct style. Science of Computer Programming, 22(3):183–
195, 1994.

6. Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

7. Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Harald
Søndergaard, editor, Proceedings of the Third International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming (PPDP’01), pages
162–174, Firenze, Italy, September 2001. ACM Press.

14



8. Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Con-
trol and State in Imperative Higher-Order Programming Languages. PhD thesis,
Department of Computer Science, Indiana University, Bloomington, Indiana, Au-
gust 1987.

9. Matthias Felleisen. The theory and practice of first-class prompts. In Jeanne Fer-
rante and Peter Mager, editors, Proceedings of the Fifteenth Annual ACM Sympo-
sium on Principles of Programming Languages, pages 180–190, San Diego, Cali-
fornia, January 1988. ACM Press.

10. Matthias Felleisen and Matthew Flatt. Programming languages and lambda
calculi. Unpublished lecture notes. http://www.ccs.neu.edu/home/matthias/

3810-w02/readings.html, 1989-2003.
11. Andrzej Filinski. Representing monads. In Boehm [3], pages 446–457.
12. Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Essentials of

Programming Languages, second edition. The MIT Press, 2001.
13. John Hatcliff and Olivier Danvy. A generic account of continuation-passing styles.

In Boehm [3], pages 458–471.
14. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and

Automatic Program Generation. Prentice-Hall International, London, UK, 1993.
Available online at http://www.dina.kvl.dk/~sestoft/pebook/.

15. Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308–320, 1964.

16. John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and
Michael I. Levin. LISP 1.5 Programmer’s Manual. The MIT Press, Cambridge,
Massachusetts, 1962.

17. Lockwood Morris. The next 700 formal language descriptions. Lisp and Symbolic
Computation, 6(3/4):249–258, 1993.

18. Lasse R. Nielsen. A denotational investigation of defunctionalization. Technical
Report BRICS RS-00-47, DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, December 2000.

19. John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998. Reprinted
from the proceedings of the 25th ACM National Conference (1972), with a fore-
word.

20. David A. Schmidt. Denotational Semantics: A Methodology for Language Devel-
opment. Allyn and Bacon, Inc., 1986.

21. Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Taming
Lambda. PhD thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-CS-91-145.

22. Guy L. Steele Jr. and Gerald J. Sussman. The art of the interpreter or, the modular-
ity complex (parts zero, one, and two). AI Memo 453, Artificial Intelligence Lab-
oratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, May
1978.

23. Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. The MIT Press, 1977.

24. Hayo Thielecke. An introduction to Landin’s “A generalization of jumps and
labels”. Higher-Order and Symbolic Computation, 11(2):117–124, 1998.

25. Glynn Winskel. The Formal Semantics of Programming Languages. Foundation
of Computing Series. The MIT Press, 1993.

15



Recent BRICS Report Series Publications

RS-02-53 Olivier Danvy. A Lambda-Revelation of the SECD Machine.
December 2003. 15 pp.

RS-02-52 Olivier Danvy. A New One-Pass Transformation into Monadic
Normal Form. December 2002. 16 pp. Appears in Hedin, editor,
Compiler Construction, 12th International Conference, CC ’03
Proceedings, LNCS 2622, 2003, pages 77–89.

RS-02-51 Gerth Stølting Brodal, Rolf Fagerberg, AnnaÖstlin, Christian
N. S. Pedersen, and S. Srinivasa Rao.Computing Refined Bune-
man Trees in Cubic Time. December 2002. 14 pp.

RS-02-50 Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and V. Vinay.
Circuits on Cylinders. December 2002. 16 pp.

RS-02-49 Mikkel Nygaard and Glynn Winskel. HOPLA—A Higher-
Order Process Language. December 2002. 18 pp. Appears
in Brim, Jan čar, Křetı́nský and Antonı́n, editors, Concurrency
Theory: 13th International Conference, CONCUR ’02 Proceed-
ings, LNCS 2421, 2002, pages 434–448.

RS-02-48 Mikkel Nygaard and Glynn Winskel.Linearity in Process Lan-
guages. December 2002. 27 pp. Appears in Plotkin, editor,
Seventeenth Annual IEEE Symposium on Logic in Computer
Science, Lics ’02 Proceedings, 2002, pages 433–446.

RS-02-47 Zolt́an Ésik. Extended Temporal Logic on Finite Words and
Wreath Product of Monoids with Distinguished Generators. De-
cember 2002. 16 pp. To appear in6th International Conference,
Developments in Language Theory, DLT ’02 Revised Papers,
LNCS, 2002.

RS-02-46 Zolt́an Ésik and Hans Leiß. Greibach Normal Form in Alge-
braically Complete Semirings. December 2002. 43 pp. An ex-
tended abstract appears in Bradfield, editor,European Associ-
ation for Computer Science Logic: 16th International Workshop,
CSL ’02 Proceedings, LNCS 2471, 2002, pages 135–150.

RS-02-45 Jesper Makholm Byskov. Chromatic Number in Time
O(2.4023n) Using Maximal Independent Sets. December 2002.
6 pp.


