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Abstract Consistency checking is a fundamental computational problem in ge-
netics. Given a pedigree and information on the genotypes of some of the indi-
viduals in it, the aim of consistency checking is to determine whether these data
are consistent with the classic Mendelian laws of inheritance. This problem arose
originally from the geneticists’ need to filter their input data from erroneous in-
formation, and is well motivated from both a biological and a sociological view-
point. This paper shows that consistency checking is NP-complete, even in the
presence of three alleles. Several other results on the computational complexity
of problems from genetics that are related to consistency checking are also of-
fered. In particular, it is shown that checking the consistency of pedigrees over
two alleles can be done in polynomial time.

AMS SUBJECTCLASSIFICATION (1991): 68Q25, 92D10.
CR SUBJECTCLASSIFICATION (1991): F.2.2, J.3.
KEYWORDS AND PHRASES: Consistency checking, pedigrees, genotypes, NP-
completeness, satisfiability, polynomial time complexity.

1 Introduction

Since the early days of development of the fields of (molecular) biology and genetics,
mathematicians have thought that these fields needed an appropriate mathematical foun-
dation, and that their development could benefit from a formal mathematical treatment.
Despite these early calls for the “mathematization” of biology from some members of
the mathematical community, it is only recently that the level of aspiration and the new
challenges that have arisen in molecular biology and genetics have made these sciences
increasingly dependent on mathematical modelling, mathematical analysis, and compu-
tation. In fact, modelling and algorithmic techniques from combinatorics and computer
science are showing promise in helping the life sciences attain their goals. The reason
for this interest in combinatorics and computer science in the life sciences is at least
twofold. On the one hand, many parts and processes of the human body, and living
organisms in general, work on a discrete basis, and it is on the discrete domain that



combinatorics and computer science excel. On the other, the amount of available data
in the life sciences has increased, and will continue increasing, by orders of magni-
tude, and the analysis of these data requires automation and sophisticated algorithmic
techniques.

A paradigmatic problem from the field of genetics in which the use of algorith-
mic techniques is by now widespread, and is embodied in software tools like Allegro
[6], Genehunter [11], Merlin [1] and Pedcheck [12], is that of linkage analysis.Link-
age analysisis a well established, statistical method used to relate genes in the human
genome to some biological trait that an individual possesses. Example traits that may
be investigated range from simple ones like blood type and eye colour to those that may
predispose an individual for a disease. Genes causing major diseases (e.g., Parkinson’s
disease, obesity and anxiety) have already been discovered using this technique [2].

In order to track the inheritance of genetic traits, geneticists use computation struc-
tures called pedigrees. Apedigreedescribes the family relations amongst a collection
of individuals, and (possibly partial) information on their genotypes—i.e., on the pairs
of alleles at a locus in their genome. (Anallele is one of the possible forms a gene
may have.) Pedigrees are the subject of algorithmic analysis via methods like linkage
analysis.

A computational problem that is closely related to that of linkage analysis iscon-
sistency checking. Given a pedigree and information on the genotypes of some of the
individuals in it, the aim of consistency checking is to determine whether these data are
consistent with the classic Mendelian laws of inheritance (see, e.g., the reference [10]
and Sect. 2). If it turns out that the inheritance of the genotypes in the pedigree is in
conflict with the Mendelian laws of inheritance, then the pedigree and the information
on the genotypes areinconsistent. If no such conflict arises, then the data areconsistent.

The problem of consistency checking arose originally from the geneticists’ need to
filter their input data from erroneous information, because inconsistent data are unde-
sirable. According to [4], it is essential that all Mendelian inconsistencies be eliminated
prior to linkage analysis as “a few inopportunely placed errors, if ignored, can tremen-
dously affect evidence for linkage.” Furthermore, as reported in [12], in many real-life
cases the manual identification of inconsistencies can be very difficult, time consuming,
and sometimes unsuccessful. It would therefore be most helpful to have automatic tool
support for this task.

Another motivation for consistency checking is its applicability in determining fam-
ily relationships. A DNA test is very useful in genealogical investigations, paternity is-
sues and criminal investigations. For instance, the point of paternity issues has recently
been brought up in the Danish press [3], where it is claimed that up to 10% of the
Scandinavian population have wrong paternal information, and that the interest of such
investigations is growing rapidly. This could be accelerated by the growing possibilities
in society for performing DNA tests. According to [7], it is now possible to get a 10
marker fingerprint of a chromosome for approximately 300 euro by utilizing a DNA
sampling kit at your own home. Thus it seems that genealogy studies based on genetic
data have the possibility of becoming widely accessible in the near future. Of course,
these studies must be based on consistent genealogical data to be meaningful. Note that
it is not only with respect to humans that the verification of family relationships is rel-
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evant. For instance, it is important that a horse breeder has the ability to document the
family relationships of his/her horses, and that a botanist is certain of the family rela-
tionship of plants used in an experiment. Basically all living organisms are based on
DNA, and can thus be subjected to consistency checking.

Hence, consistency checking is a well motivated problem from both a biological
and a sociological viewpoint. Another issue is whether it is computationally feasible.
The aim of this paper is to show that consistency checking is NP-complete, and thus
that the existence of consistency checking algorithms that have polynomial worst case
complexity is unlikely—cf., e.g., the claim by O’Connell and Weeks that their “new
genotype-elimination algorithm is guaranteed to detect every Mendelian inconsistency
efficiently and quickly” [13, pp. 1739–1740]. To the best of our knowledge, this is a
new result in both computer science and genetics.

The first step in our technical developments is one of modelling and formalization,
as is often the case in situations in which the computational problem at hand is pre-
sented using informal models and notations in the original literature. After discussing
some of the biological background for our work (Sect. 2), we therefore propose a sim-
ple formal model for pedigrees and associated genotype information, argue that this
model is in agreement with the informal one used in the genetics literature, and use
it to formalize the consistency checking problem (Sect. 3). The consistency checking
problem is shown to be NP-complete in Sect. 4, even in the presence ofthreealleles.
Our proof of NP-hardness for this problem is based on a reduction from 3SAT (a clas-
sic NP-complete problem—see, e.g., [15]), and uses pedigrees with loops. As stated
in [13], consistency checking of “pedigrees with loops. . . continues to pose daunting
computational challenges.” This is confirmed by the use of looping pedigrees in our
NP-completeness proof, and by the fact that pedigrees without loops can be checked
for consistency in polynomial time (Thm. 4). Moreover, since we wish to use our re-
sult to infer the hardness of consistency checking in genetically meaningful situations,
we offer a detailed discussion of the reasonableness from a genetic viewpoint of our
encoding of 3SAT in terms of pedigrees and genotype information. Sect. 5 presents
results on the computational complexity of three problems from the genetics literature
that are closely related to consistency checking. In particular, we show that checking
consistency of pedigrees overtwo alleles is in P.

A full account of the work presented in this extended abstract may be found in [8],
to which the reader is referred for more details, and information on further results and
future work.

Related WorkAs previously mentioned, linkage analysis is a statistical method used
to relate genes in the human genome to some biological trait that an individual pos-
sesses. Like this method, other pedigree analysis techniques involve calculations with
probability distributions describing the likelihood of gene transmission from one gener-
ation to the next. The study [16] investigates the structural complexity of two important
problems that are at the heart of many statistical pedigree analysis methods, viz. the
calculation of the so-calledmarginal probability, and that of computing the so-called
maximum likelihood. Both problems are shown NP-hard inop. cit. even for pedigrees
without inbreeding loops, and with focus on a single gene. These results counter the
common belief amongst practitioners that inbreeding loops are the main source of com-
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putational difficulty in pedigree analysis. Our NP-completeness result for the problem
of checking consistency of pedigree information offers another example of a fundamen-
tal problem in pedigree analysis that is complex even in the absence of inbreeding.

2 Biological Preliminaries

It is well understood that we inherit genetic material from our ancestors. The idea of
inheriting traits was discovered by Gregor Mendel (1865). Arguably, Mendel’s main
contribution to modern genetics was the Mendelian laws of inheritance. Since these
principles guide the development of the formal model presented in Sect. 3, we now
present Mendel’s laws, which specify the concept known asMendelian inheritance,
verbatim from [10], and discuss their impact on our work. For further background in-
formation on the concepts from genetics on which our work is based, we refer the reader
to [8, Appendix A].

Unit factors in pairs: Genetic characters are controlled by unit factors that exist in
pairs in individual organisms.
The unit factor, as Mendel describes it, is today known as agene. Genes occur in
pairs, a paternal and a maternal allele, which reside on each of the chromosomes
constituting a chromosome pair. This law implies that the genotype of an individual
should always be considered as a pair.
Dominance/Recessiveness:When two unlike unit factors responsible for a single
character are present in a single individual, one unit factor is dominant over the
other, which is said to be recessive.
Dominance and recessiveness refer to phenotype, and are not considered further in
our biological model. We assume that it is always the individual’s genotype, and
not its phenotype, that is considered known. That is, it is always the specific alleles
we use, and never an abstraction of the trait they code.
Segregation:During the formation of gametes, the paired unit factors separate and
segregate randomly so that each gamete receives one or the other with equal likeli-
hood.
The principle of segregation states that any combination of alleles, which form a
genotype, should be considered equally likely to occur. This means that all possible
combinations of the paternal and maternal alleles are possible.
Independent Assortment:During gamete formation, segregating pairs of unit fac-
tors assort independently of each other.
Independent assortment is central to the biological model. It states that each gene in
a chromosome is inherited independently of all other genes. This makes it possible
to consider only one gene at a time, as the gene under investigation is inherited
independently from all of the other genes. This is the main motivation forsingle
gene analysis, which is the type of analysis normally performed in genetics.

The Mendelian laws of inheritance have been chosen by many researchers as the starting
point in their investigations (see, e.g., the references [5,13,14]). Furthermore, a large
number of traits are today known to be caused by single gene disorders [9].
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PedigreesIn order to track the inheritance of genetic traits, geneticists use structures
calledpedigrees. In our setting, we always assume that a pedigree has some (possibly
incomplete) genotype information associated with it. A pedigree consists of individuals
and their family relations. (See Fig. 1-1.) Each individual has an associated genotype,
which we write just below the individual, that consists of two of the alleles for the gene
under consideration.

3

21
Legend:

Male individual

Female individual

AB Genotype informationAB

AA

AA

Figure 1 -1: Example of a pedigree.

The genotype of each individual in a pedigree is either known through a genotyping
process, or it is a set of genotypes which can be inferred from the Mendelian laws of
inheritance. As the principle of segregation states, an individual inherits one allele from
each parent.Genotype phaserefers to the heredity of each allele of the genotype for an
individual, that is, whether a given allele is inherited from the paternal or maternal side.
In general, by observing a chromosome pair, it is not possible to say which part is inher-
ited paternally or maternally. We have chosen to treat the genotype of each individual as
phase unknown, irrespective of the knowledge of that of its ancestors, unless otherwise
stated. When describing genotypes, we only write one of the equivalent genotypes (AB
is equivalent toBA).

Consistency CheckingA pedigree with associated genotype information isconsistent
when all observed or inferred genotypes are possible according to the Mendelian laws
of inheritance [14].

There can be several reasons for inconsistencies in a pedigree and its genotype in-
formation. For instance, a family relationship could be misspecified, or there could be
errors in the genotyping process or mutation. Generally it is not possible to determine
the source of error; it is simply established that the given genotype information is incon-
sistent with the pedigree under investigation. By way of example, consider the pedigree
shown in Fig. 1-2. (In this pedigree, and in what follows, whenever an individual has
no genotype information attached to it, then no genotype information is available for
him/her.) This pedigree is inconsistent in two places. One of the inconsistencies is due
to the fact that it is impossible that individual 5 could have inherited theC allele from
either of her parents. To observe the other inconsistency, it is necessary to reason about
more than two generations in the pedigree. The inconsistency appears because individ-
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ual 7 cannot have inherited hisC allele from individual 3, because individual 3 inherits
her alleles from parents that do not have aC allele.

3 4 5

21

6

7

CD

DF

ABAA

BCAA

Figure 1 -2: An inconsistent pedigree.

The example we have just presented does not capture the complexities that arise
when dealing with large pedigrees. Each test is simple, but considering that multiple
individuals can have different possible genotypes, and that the genotype of some in-
dividuals must be inferred by analyzing several generations, it should be clear that it
can be a daunting task to analyze pedigrees by hand. As pointed out in Sect. 1, looping
pedigrees present some special problems. Aloop in a pedigree is a sequence of arcs
that starts and ends in the same individual [13]. An example of a consistent, looping
pedigree is depicted in Fig. 1-3.

AA BC

AC AC

AA

AA BC

AA AA

AC AB

1 2 3 4

65 8

21201918

7

BC

9

141211 13 16 1715

10

Figure 1 -3: A consistent looping pedigree. The dotted line also represents a
parents-child relationship
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3 Formalizing Gene Inheritance and Mendelian Consistency

As already mentioned in Sect. 2, a pedigree is a fundamental computation structure
used in genetics. In order to reason about pedigrees and the genotype information that
they contain, we need a formal model for them. This we now proceed to present. We
first offer models for pedigrees, and their associated genotype information. Then we use
these models to formalize the consistency checking problem.

Definition 1 (Pedigree).A pedigreeconsists of a 4-tupleP = 〈V, F,p,m〉 where:

– V is a finite, non-empty set ofmembersof the pedigree, andF ⊆ V is the set of
founders,

– p,m : V \ F −→ V are thepaternalandmaternal functions, respectively, where

p(V \ F ) ∩m(V \ F ) = ∅
(that is, nobody can be both a mother and a father), and

– (n, n) 6∈ (p ∪ m)+, for everyn ∈ V , where(p ∪ m)+ stands for the transitive
closure of the binary relation obtained as the union of the graphs ofp andm (that
is, a member of the pedigree is never its own ancestor).

The setN = V \ F is usually referred to as the set ofnon-foundersof the pedigree.

The described constraints on a pedigree are introduced to consistently follow the un-
derlying biological model; observe, for instance, how the model makes it impossible
for an individual to mate with itself, as no individual in a given pedigree can be both
a father and mother. Note, furthermore, that, since the model specifies the sex of an
individual only via the paternal and maternal functions, the sex of a “leaf” in a pedi-
gree is not specified. In our examples and constructions, the sex of individuals in a
pedigree without offspring will be chosen arbitrarily, as it is immaterial in consistency
checking. Our pictorial representation of pedigrees (with associated genotype informa-
tion) is borrowed from the genetics literature, and has already been introduced in, e.g.,
Fig. 1-1. That figure represents a pedigree whose founders are individuals 1 and 2, who
are respectively the father and the mother of individual 3.

Consistency checking of a pedigree is based on its associated genotype information;
intuitively, the pedigree defines the structure of the family relationships that are being
modelled, and the genotype information is the data which must be consistent with the
structure. We now present a formal genotype model. In what follows, it is always as-
sumed that instances of this genotype model are in the context of a specific gene and
pedigree. We also assume a fixed, finite setA of allelesranged over byA, B etc.

In the following definitionTwo(A) denotes the family of non-empty subsets ofA
that contain no more than two elements.

Definition 2 (Genotype Information). Genotype informationis a partial functionG :
V ↪→ Two(A) that associates a genotype to (some of) the members of the pedigree.
The domain,dom(G), of the function is referred to as theset of genotyped membersof
the pedigree. The genotype informationG is completeif dom(G) = V .

LetG andG′ be two genotype information. We say thatG′ extendsG if dom(G) is
included indom(G′), andG andG′ coincide overdom(G).
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Remark 1.Note that in the definition above, a genotype information may be seen as
assigning anunorderedpair of elements to members of the pedigree. This indicates that
the phase of the alleles is unknown. If a pedigree member ishomozygousat a given
locus in its genome, i.e., the two alleles at that locus coincide, the functionG returns a
singleton set.

In the standard literature on genetics, and in our pictorial representation of pedi-
grees, the genotype{A,B} is given as the stringAB (or BA). In particular the geno-
type{A} is given asAA. In the remainder of this paper, we shall use these notations
interchangeably without further explanations.

Considering consistency for a specific gene amounts to checking whether the pedigree
and the genotype information are consistent according to the Mendelian law of segre-
gation (see page 4). The law of segregation implicitly defines the following constraint
on consistent genotype assignments:

Each individual must inherit precisely one allele from each of its parents.

Our order of business will now be to formalize this constraint, and what it means that a
genotype information is consistent with respect to a pedigree.

Definition 3 (Consistent Genotype Information).

1. A complete genotype informationG for a pedigreeP is consistentwith P if, when-
everv ∈ N :
(a) if G(v) = {A,B}, then eitherA∈ G(p(v)) andB∈ G(m(v)), or B∈ G(p(v))

andA∈ G(m(v));
(b) if G(v) = {A}, thenA is contained in bothG(p(v)) andG(m(v)).

2. A genotype information isconsistentwith P if it can be extended to a complete,
consistent genotype information forP .

In what follows, CONS will denote the problem of checking whether a given genotype
information is consistent with respect to a given pedigree.

4 Consistency Checking is NP-complete

Recall that CONS refers to the consistency checking problem with an arbitrary number
of alleles. We shall usenCONS to refer to the consistency checking problem for a gene
with n possible alleles. Our aim in the remainder of this section will be to show the
following result:

Theorem 1. nCONS (n ≥ 3) and CONS are NP-complete.

To prove this theorem, we shall first show that CONS, and thusnCONS (n ≥ 3), is in
NP. We then show that 3CONS is NP-hard.

It is not too hard to see that CONS is in NP. To this end, given any pedigreeP
with genotype informationG, it is sufficient to exhibit a certificate that is verifiable in
polynomial time. The certificate for an instance of problem CONS is a complete and
consistent genotype informationGc that extendsG in the sense of Def. 2. To check
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the consistency ofGc we only have to make sure that the conditions in Def. 3(1) are
satisfied for each non-founder of the pedigree. This only takes constant time for each
non-founder, and thus the whole consistency check takes linear time in the number of
non-founders of the pedigree. Note that the complexity of this consistency check is
independent of the number of possible alleles, which shows thatnCONS is in NP for
everyn.

Our order of business will now be to show that 3CONS is NP-hard. Note that this
is a strong indication that the structural complexity of consistency checking doesnot
depend on the number of alleles for a gene, if that number is at least three. We shall
stress the importance of this constant number of alleles from a genetic viewpoint later
in this section. Our NP-hardness proof for 3CONS is by reduction from 3SAT. The
central idea of the proof is that the structure of the pedigree along with the genotype
information, generated from some 3SAT instance, mimic the variables and clauses of
the input 3SAT instance as closely as possible. The constructed pedigree with genotype
information is consistent if, and only if, the 3SAT instance it models is satisfiable.

We recall, for the sake of clarity, that 3SAT is the special case of the satisfiability
problem for boolean formulae in which the input formulae are inconjunctive normal
form, and all of their clauses (i.e., disjunctions of literals) have exactly three literals—
where a literal is either a variable or a negated variable. Our aim, in the remainder of this
section, is to offer a polynomial time reduction from 3SAT to 3CONS. In fact, it is not
too hard to see that, without loss of generality, we can restrict ourselves to considering
boolean formulae in conjunctive normal form whose clauses have the formx ∨ y, x ∨ y,
x ∨ y ∨ z, or x ∨ y ∨ z, for some distinct variablesx, y, z. Indeed, any 3SAT instance
can be brought into that form in the following four steps:

1. Remove all clauses containing complementary literals (as they evaluate to true).
2. Replace multiple occurrences of the same literal within a single clause with a single

occurrence of the same literal (asl ∨ l = l, for every literall).
3. If a clause consists of a single literal, then

(a) remove all clauses that contain this literal (as it must be assigned the value true)
and

(b) remove all occurrences of its negation in other clauses (as they have to be
assigned the value false). If any clause reduces to the empty clause, then we
know that there is no assignment that can satisfy the clause, and the formula is
not satisfiable.

4. Finally, we put every clause in the formula into one of the formsx ∨ y, x ∨ y,
x ∨ y ∨ z, or x ∨ y ∨ z, for some distinct variablesx, y, z. This can be done by
introducing dummy variables. For instance, a clause of the formx∨y∨z is replaced
with (x∨ p)∧ (y ∨ z ∨ p), for some fresh variablep. (We use a different variablep
for each clause.)

It is clear that any instance of 3SAT can be rewritten to the form described above in
polynomial time, and that the resulting formula is satisfiable if, and only if, so was the
original one.

We are now ready to present our reduction from 3SAT to 3CONS. Letφ be an
instance of 3SAT. In light of the above discussion, we may assume thatφ is in conjunc-
tive normal form, and that its clauses have one of the formsx ∨ y, x ∨ y, x ∨ y ∨ z,
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or x ∨ y ∨ z, for some distinct variablesx, y, z. The construction of a pedigree with
associated genotype information fromφ proceeds in the following three steps:

1. Make variable gadgets for each of the variables inφ.
2. Make clause gadgets for each of the clauses inφ.
3. Combine the variable gadgets with the clause gadgets, and output the resulting

pedigree.

We start by describing the construction of the variable gadgets. In our construction,
we shall make use of three alleles, denoted byA, F andT. The allelesF andT are
intended to play the role of “true” and “false” in the 3SAT problem. The third alleleA
is an auxiliary dummy allele used for controlling inheritance patterns.

For each variablex that occurs inφ we construct the pedigreePx as shown in
Fig. 1-4. The pedigreePx consists of three genotyped members, and one ungenotyped
individual nx. The genotype ofnx can, however, be partly inferred by the Mendelian
laws, and has the formxA, where the “allelic variable”x takes either the valueF or
T. This is indicated byxA on the figure. Moreover, the allelex associated with the
individualnx is the only possible origin of aT or F allele that can be inherited further
from the inheritance point ofPx. We shall refer to individualnx in Fig. 1-4, as the
variable individual forx. The illustration on the left ofPx in Fig. 1-4 shows how the
variable gadgets are depicted in larger pedigrees.

Inheritance
Point

TF AA

xAAA

nx

nx

Figure 1 -4: The variable gadgetPx that is used in the proof showing that
3CONS is NP-complete.

The next step in the reduction is to construct a clause gadgetPγ , for each clauseγ
in the formulaφ. As we have already pointed out, there are only four different types
of clauses we need to consider, and each leads to a different type of clause gadget. The
four different types of clause gadget are depicted in Fig. 1-5.

In the following lemma we shall describe the connection between the consistency
of the clause gadgets, and the satisfiability of the clauses they model. We assume that
the only clauses that occur are of the form described above. Furthermore we assume the
notion of substitution of truth values both for variables in the clauses, and for the “allelic
variables” that occur in the gadgets. The lemma is proven by a simple case inspection,
and is left to the reader.
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Px∨y:

Px∨y:

Px∨y∨z:

Px∨y∨z:

TA

TA

FA

FA

nx ny

nx ny

nx ny nz

nx ny nz

Figure 1 -5: The pedigrees constructed for the four basic clause types along
with their connections with the appropriate variable gadgets. No-
tice the symmetry betweenPx∨y and Px∨y, and Px∨y∨z and
Px∨y∨z , respectively.
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Lemma 1. Let γ be a clause, and letρ be a variable assignment for this clause. Then
γρ evaluates to true iffPγρ is consistent.

Having constructed a variable gadget for each variable and a clause gadget for each
clause occurring inφ, we combine these gadgets as shown in Fig. 1-6, and output the
resulting pedigreePφ.
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Figure 1 -6: The general form of the pedigree constructed in the reduction from
3SAT. Notice that there exists a one to one correspondence be-
tween the number of variables and clauses inφ, and the number
of variable gadgets and clause gadgets, respectively, in the con-
structed pedigree.

Example 1.Let φ be the formula

(x ∨ u) ∧ (y ∨ u) ∧ (x ∨ y) ∧ (x ∨ y) . (1-1)

The pedigree produced from this formula by the construction described above is de-
picted in Fig. 1-7.

The following result states the correctness of our construction ofPφ from a 3SAT for-
mulaφ.

Lemma 2. Let φ be a 3SAT formula, and letρ be a variable assignment for this for-
mula. Thenφρ evaluates to true iffPφρ is consistent. In particular,φ is satisfiable iff
Pφ is consistent.

Since the pedigreePφ can be constructed in polynomial time from the formulaφ, the
lemma above allows us to conclude that 3CONS is NP-hard, and the proof of Thm. 1 is
now complete.
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TA

(x ∨ y)

nu nx ny

(x ∨ y)

FATA FA

(x ∨ u) (y ∨ u)

Figure 1 -7: The pedigree for the formula (1-1). Note that formula (1-1) is sat-
isfiable, and that the above pedigree is consistent.

The reference [8] also offers a reduction from 3SAT to CONS that uses a number of
alleles that is linear in the number of variables in the input 3SAT instance. This reduc-
tion, albeit possibly conceptually simpler than the one presented here, is not reasonable
from a genetic standpoint because the maximum number of alleles that can be expected
for a gene is roughly 100. Furthermore, although inbreeding does occur often in the
animal kingdom, it would still be critical from a genetic perspective if our modelling of
3SAT using pedigrees were based on severe inbreeding, and we have striven to avoid
this problem in our constructions. (The loops that arise in the pedigrees resulting from
our reductions are calledmarriage loopsin the pedigree literature—see, e.g., [16]—,
and are natural in real life pedigrees.) The question is whether our other modelling as-
sumptions are fair in light of the biological knowledge on consistency checking, e.g.,
the amount and form of genotype information in the real world. We now discuss these
aspects by analyzing the pedigree structure and the genotyped individuals produced by
the reduction outlined above.

Number of OffspringThe points were a large number of children from a single couple
can occur are the inheritance points of the variable individuals. Every occurrence of
the same variable implies that a child is constructed from the inheritance point. Theo-
retically, the reduction requires an arbitrary number of children from a single couple.
Although it can be argued from a complexity theoretic perspective that it is equally
complex to satisfy a formula in conjunctive normal form where at most three occur-
rences of a single variable are allowed (see, e.g., [15, Propn. 9.3]), it is also possible
to argue strongly on the subject from a biological viewpoint. Two arguments can be
brought forth, the first regarding an expansion of the structure, and the second regard-
ing the gender of the variable individuals. First, we have argued in [8] that it is possible
to model a variable gadget in such a way that no more than fifteen children are needed
in the reduction. Second, it is theoretically possible for male individuals to have a large
number of children, but with different women (the women still have an upper bound on
the number of offspring). This naturally requires that the variable individuals be males.
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Genotype HistoryThe aforementioned reduction from 3SAT to 3CONS requires geno-
type information five generations back. In the case of species with a lifespan of up to
five years this does not seem an unreasonable assumption. But for humans and animals
with a long lifespan, it can be doubtful whether such data exist. Although it can be
argued that it is just a matter of time before such genotype history does exist for hu-
mans, we have shown in [8] that it is possible to perform a reduction where there is
only genotype information for the individuals in the youngest generation of a pedigree,
at the price of using a larger number of dummy alleles.

As already remarked in Sect. 1, our reduction from 3SAT to 3CONS employs loop-
ing pedigrees. The following result offers strong evidence that this is most likely neces-
sary.

Theorem 2. Checking the consistency of non-looping pedigrees can be performed in
polynomial time.

5 Further Results

In this section we discuss briefly three new problems related to CONS motivated by the
underlying biology, and study their computational complexity.

Tolerance to Critical GenotypesAssume that it is revealed that some application of
pedigrees with genotype information is tolerant to a specific number, sayk, of critical
genotypes in the genotype information. (Acritical genotypeis genotype information
on an individual that, if removed, would make an inconsistent pedigree with genotype
information consistent.) We denote the problem of deciding whether there arek critical
genotypes in a CONS instance askCRIT. Since it is possible to reduce any CONS
instance to akCRIT instance in polynomial time, we have that:

Theorem 3. In the presence of at least three alleles,kCRIT is NP-complete for every
k ≥ 0.

Consistency Checking with Two AllelesAccording to [17, p. 274],single nucleotide
polymorphismsare utilized markers where two alleles exist. Consistency checking of
such data amounts to the problem 2CONS. A relevant question is whether 2CONS is
also NP-complete or whether it is polynomial time decidable. Three is often a magic
number, when it comes to the structural complexity of a computational problem. For
instance, 3COLORING and 3SAT are NP-complete, while 2COLORING and 2SAT
are polynomial time decidable (see, e.g., [15, pp. 185 and 198]). The same holds for
consistency checking in light of the following result:

Theorem 4. 2CONS is polynomial time decidable.

Phase Known Consistency CheckingIn this paper, we have focused on consistency
checking in a phase unknown setting. We now turn our focus to the task of consistency
checking where the phase of the genotype information is known. The motivation for this
type of investigation is that it is sometimes possible to infer the identity of the parent
from whom some allele originated (and thereby also the origin of the other allele).
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Definition 4. A phase known genotype informationis a partial functionGp : V ↪→
A×A. The genotype informationGp is completeif dom(Gp) = V .

A complete, phase known genotype informationGp for a pedigreeP is consistent
with P if wheneverv ∈ N andGp(v) =(A,B), thenA is one of the components of
G(p(v)), andB is one of the components ofG(m(v)).

A phase known genotype information isconsistentwith P if it can be extended to a
complete and consistent phase known genotype information forP .

Let PCONS be the problem of consistency checking a pedigree with phase known geno-
type information. We can argue that every CONS instance can be reduced in polynomial
time to a PCONS instance that is consistent if, and only if, so was the original CONS
instance. Since PCONS is easily seen to be in NP, we thus have that:

Theorem 5. In the presence of at least three alleles, PCONS is NP-complete.

AcknowledgmentsWe thank Mogens Nielsen for the initial inspiration on a possible
reduction showing that consistency checking is NP-complete, and Emmanuel Fleury
for fruitful discussions on the topic of this paper.
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