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Abstract

In 1978, Courcelle asked for a complete set of axioms and rules for the
equational theory of (discrete regular) words equipped with the operations
of product, omega power and omega-op power. In this paper we find a
simple set of equations and prove they are complete. Moreover, we show
that the equational theory is decidable in polynomial time.

1 Introduction

The theory of finite automata and regular languages on finite words has been
generalized to various linear and nonlinear structures. In many cases, the study
of such extensions was motivated by questions from formal logic. The linear
structures studied include omega words [Buch62], (countable) ordinal words
[Buch65, Chou78, Woj85, Bed96], and, more recently, all (countable) words on
discrete1 linear orders, by Bruyère and Carton, cf. [BruyCar, BruyCar2], where
there is a unified treatment.

Countable words2, i.e., finite or countably infinite labeled linear orders, were
already studied by B. Courcelle in the 1970’s. He singled out a subclass of
countable words that we call regular words. These words arise as initial solutions
of finite systems of recursion equations. Since each finite system of recursion

∗Partially supported by NSF grant 0119916.
†Partially supported by BRICS, Aalborg, Denmark, NSF grant 0119916, and by a grant

of the National Foundation of Hungary for Scientific Research.
1“Scattered” linear orders, in the terminology of [BruyCar, BruyCar2].
2“Arrangements” in the terminology of [Cour78].

1



1 INTRODUCTION 2

equations unfolds to a system of regular trees, it follows that the regular words
are exactly the frontiers of regular trees. This observation was made explicit
by Thomas in [Thom86]. He also gave a characterization of regular words in
terms of formal logic. He showed that a nonempty countable word, viewed as
the isomorphism class of a labeled linear order, is regular iff it consists of all
models of an ℵ0-categorical sentence of a certain monadic second-order logic.
In [BlEs02], the authors have shown that a countable word is regular iff it can
be defined on an ordinary regular language (which can be chosen to be a prefix
code) equipped with the lexicographical order such that the labeling function
satisfies a regularity condition.

Courcelle defined the operations of product, omega power and omega-op power,
and characterized the least class of words that can be generated from the letters
of an alphabet by a property of (regular) trees. It was shown by Heilbrunner
in [Heil80] that a word belongs to this class iff it is a nonempty discrete regular
word. An infinite collection of operations generating all regular words from
single letters, including those having dense suborderings, was also described in
[Heil80].

In this paper, our concern is the equational theory of words equipped with the
operations of product, omega power and omega-op power. Courcelle [Cour78]
asked for a complete set of axioms and rules for this theory. In this paper,
we find such a system. The axioms are the identities given in Definition 3.6,
and the rules are those of standard equational logic. Our methods also give a
polynomial time decision algorithm. (That the equational theory is decidable
follows from the result of Thomas [Thom86] to the effect that the equality of
the frontiers of regular trees is decidable. However, no elementary upper bound
seems to be known for this more general problem.) Moreover, it follows that
for any alphabet A, the algebra of discrete regular A-labeled words is freely
generated by A in the variety axiomatized by the equations in Definition 3.6.

Our results extend those in [BlCho01] concerning the equational theory of just
the operations of product and omega power. However, the arguments and meth-
ods used here are quite different. In particular, we have not used automata to
achieve the polynomial complexity bound.

1.1 Notation

ω is the linearly ordered set of the nonnegative integers; ωop is the linearly
ordered set {. . . ,−2,−1, 0}.
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2 Linear words

A linear word, (L,≤, u, A) consists of a linearly ordered set (L,≤), an “alpha-
bet” A and a “labeling function” u : L → A. When the alphabet A is fixed, we
say for short that u is a word on A, (or an “A-labeled word”) over the linear
order (L,≤). The linear order (L,≤) is the underlying linear order of u. When
L is empty, we have the empty word, written 1, on A (for any set A). If u, v
are words on A, we say v is a subword of u if the underlying linear order of v
is a subposet of that of u, and the labeling on the subposet agrees with that on
the superposet.

If u and v are words over A with underlying linear orders (Lu,≤) and (Lv,≤),
respectively, a morphism h : u → v is an order preserving function h : Lu → Lv

which preserves the labeling:

u(x) = v(h(x)), x ∈ Lu.

Thus, for any set A, the collection of words on A forms a category. Two words
u, v on A are isomorphic when they are isomorphic in this category, i.e., when
there are morphisms h : u → v, g : v → u such that u

h→ v
g→ u and v

g→ u
h→ v

are the respective identities. We write u ∼= v when u and v are isomorphic. We
usually identify isomorphic words.

We equip the collection of all words on A with several operations. Suppose that
u = (Lu,≤, u) and v = (Lv,≤, v) are words. The product u · v is the word
over the sum Lu + Lv, i.e., over the disjoint union of Lu and Lv ordered so that
x < y, for every x ∈ Lu, y ∈ Lv; for pairs in Lu or Lv, the order is the original
one. For x ∈ Lu + Lv,

(u · v)(x) =

{
u(x) if x ∈ Lu

v(x) if x ∈ Lv.

The omega power of u, denoted uω, is the word whose underlying order is
Lu × ω, ordered and labeled as follows:

(x, i) ≤ (y, j) ⇐⇒ i < j or (i = j and x ≤ y)
uω(x, i) = u(x).

Similarly, the omega-op power uωop

of u is the word whose underlying order is
Lu ×ωop, ordered and labeled as for uω, but now i, j range over the nonpositive
integers.

In the last section, we will also be considering the reverse operation u 7→ ur.
The underlying order of ur is (Lu,≥), i.e., the reverse of (Lu,≤). The labeling
function of the reverse is the same as that of u.

Remark 2.1 The operations just defined make sense also for “partial words”,
i.e., labeled partially ordered sets. For example, the underlying partial order of
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the product u · v is, as a set of pairs, ≤u ∪ ≤v ∪(Lu × Lv), where ≤u is the set
of ordered pairs (x, y) ∈ Lu such that x ≤ y; similarly for ≤v.

Note: the subcollection of all words on A whose underlying linear order is fi-
nite or countably infinite is closed under the operations of product, omega and
omega-op power. As mentioned in the Introduction, in [Heil80], the least col-
lection of words on A which contains the singletons labeled a ∈ A, closed under
product, omega and omega-op powers was shown to be the nonempty discrete
regular words, i.e., those nonempty discrete words isomorphic to the frontier of
a binary regular tree. (A word is discrete if there is no order embedding of the
rationals into its underlying linear order.)

3 Terms

All of our algebras (X, ·,ω ,ω
op

) are enrichments of a semigroup (X, ·) by two
unary operations x 7→ xω, and x 7→ xωop

. The basic models are the algebras
(AW, ·,ω ,ω

op

) of all finite and countable words on a the alphabet A, enriched
with the three indicated operations. For each such algebra, we let (ARd, ·,ω ,ω

op

)
denote the least subalgebra of AW containing the singletons, i.e., the subalgebra
of AW consisting of the discrete nonempty regular words.

Proposition 3.1 Suppose that A and B are sets and B is any algebra of words
on B equipped with the operations ·,ω ,ω

op

. Then any function A → B can be
extended to a homomorphism AW → B.

Proof. Given h : A → X , for each word u in AW define h](u) as the word
obtained by substituting a disjoint copy of h(a) for each x ∈ Lu, where u(x) = a.
It is a routine matter to show that h] is a homomorphism. 2

Definition 3.2 Let A be a fixed set.

1. A term on the alphabet A is either a letter a ∈ A, or t · t′, tω or tω
op

,
where t, t′ are terms on A.

2. When t is a term over the alphabet A, we let |t| denote the linear word
on A denoted by t. More precisely, |a| is a singleton set, labeled a. Using
induction, we define

|t · t′| := |t| · |t′|
|tω| := |t|ω

|tωop | := |t|ωop

.

3. An equation t = t′ is valid if |t| ∼= |t′|.
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4. The height of a term t, denoted h(t), is the number of nested ω and ωop

operations.

We sometimes add a term 1 of height 0 denoting the empty word. Terms
of height zero are called “finite terms”. Those of positive height are “infinite
terms”.

As usual, each term over A induces a term function XA → X over any algebra
X equipped with the operations ·,ω ,ω

op

. For a term t, the word |t| is just the
value of the function induced by t over the algebra AW when each letter a is
evaluated as the singleton word labeled a.

¿From Proposition 3.1 we immediately infer the following fact.

Proposition 3.3 For any terms t, t′ over A, t = t′ is valid iff t = t′ holds in
all algebras of words under any evaluation of the letters in A, i.e., when t = t′

holds in the variety generated by all word algebras.

Because we will always interpret the operation sign · as an associative opera-
tion, we allow ourselves to write terms such as t1 · t2 · · · tk, for k ≥ 3, with no
parentheses.

Definition 3.4 We assume a nonempty “alphabet” A. A primitive term (on
A) is either

1. a1 · · · ak, ai ∈ A, k ≥ 1 (a “finite” primitive term), or

2. a1 · · · ak(b1 · · · bm)ω, ai, bj ∈ A, k ≥ 0, m ≥ 1 (a “right infinite” primi-
tive term), or

3. (cm · · · c1)ωop

ak · · · a1, ai, cj ∈ A, k ≥ 0, m ≥ 1 (a “left infinite” primi-
tive term), or

4. (cm · · · c1)ωop

ak · · · a1(b1 · · · bn)ω, ai, bj, cl ∈ A, k ≥ 0, m, n ≥ 1 (a “bi-
infinite” primitive term).

A proper term is either

• a primitive term, or

• a term of the form t · t′ where t, t′ are proper terms and |t| has no greatest
element or |t′| has no least element, or

• a term of the form tω, or tω
op

, where t is a proper term and |t| either has
no least or no greatest element.
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An extended primitive term is either 1 or a primitive term; an extended
proper term is either 1 or a proper term.

Remark 3.5 If r, l are primitive terms such that |r| has a greatest and |l| has
a least element, then r · l is primitive. Indeed, r must have the form 3.4.1 or
3.4.3, and l must have the form 3.4.1 or 3.4.2.

Definition 3.6 [The axioms] Let Ax denote the following infinite set of equa-
tions, where x, y, z ∈ A are distinct letters.

(x · y) · z = x · (y · z) (1)
(x · y)ω = x · (y · x)ω (2)

(x · y)ωop

= (y · x)ωop · y (3)
(xn)ω = xω, n ≥ 2 (4)

(xn)ωop

= xωop

, n ≥ 2. (5)

Remark 3.7 In [BedCar98], Bedon and Carton define semigroups equipped
with an omega power operation satisfying (2) and (4). These semigroups are a
one-sorted version of Wilke algebras 3 [Wil91].

Proposition 3.8 Each equation in Ax is valid. 2

For terms t and t′, let us write Ax ` t = t′ iff t = t′ is derivable from the
equations in Ax by the rules of equational logic. It follows from Proposition 3.8
and Proposition 3.3 that any such equation is valid.

The following theorem is one of the main tools used to prove the completeness
of the axioms.

Theorem 3.9 For each finite term t there is a unique finite primitive term
a1 · · ·ak such that Ax ` t = a1 · · ·ak.

For each infinite term t there are extended primitive terms l, r and an extended
proper term m such that

• Ax ` t = l · m · r.
• |t| has a least element iff l 6= 1.

• |t| has a greatest element iff r 6= 1.

• if m 6= 1, either |l| does not have a greatest element or |m| has no least,
and either |m| has no greatest element or |r| has no least; if m = 1, then
either |l| has no greatest or |r| has no least.

3Wilke algebras are called “binoids” in [Wil91].
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• h(l · m · r) ≤ h(t).

Thus, since l · m · r is proper, for each term t there is a proper term t′ with
h(t′) ≤ h(t) and Ax ` t = t′.

Proof. The claim for finite terms is clear, using the associativity axiom.

Suppose now that t is an infinite term.

If t = (a1 · · · ak)ω , we let l = t and let m = r = 1; if t = (ak · · ·a1)ωop

, we let
l = m = 1 and let r = t.

We continue by induction on the structure of t.

Suppose that t = t1 · t2. If t1 is finite, so that t2 is infinite, let l = a1 · · · akl2,
m = m2 and r = r2, where Ax ` t2 = l2 · m2 · r2, by the induction hypothesis.
Similarly when t2 is finite and t1 is infinite.

Now assume t = t1 · t2 and both t1, t2 are infinite terms. Then, let

l = l1

m = m1 · (r1l2) · m2

r = r2.

Note that we need not worry about the case when r1 has a greatest and l2 has
a least element, by Remark 3.5. Also, Ax ` t = l · m · r, by the associativity
axiom (1).

If t = (t1)ω, and t1 is infinite, we let

l = l1

m = (m1 · r1l1)ω

r = 1.

Ax ` t = l · m · r, by axiom (2).

If t = (t1)ωop

where t1 is infinite, we let

l = 1
m = (r1l1 · m1)ωop

r = r1.

Ax ` t = l · m · r by axiom (3). This completes the proof. 2

Proposition 3.10 Suppose that t1, t2 are primitive terms. Then

|t1| ∼= |t2| ⇐⇒ Ax ` t1 = t2.
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In fact, for each primitive term there is a normal form. The normal form of
a finite term is itself. For a term of the form a1 · · · ak(b1 · · · bm)ω, we find
the shortest word b1 · · · bi such that b1 · · · bm is a power of b1 · · · bi, and then
apply the rewriting rule x(yx)ω ; (xy)ω to a1 · · ·ak(b1 · · · bi)ω as many times
as possible. Then |t1| ∼= |t2| iff t1 and t2 have the same normal form. The
normal form of a left infinite primitive term is obtained in the same way. Note
that the normal form of a finite, or left or right infinite primitive term is unique
modulo associativity. As for bi-infinite primitive terms, a normal form is a
term (bk · · · b1)ωop

a1 · · · am(c1 · · · cn)ω, where neither bk · · · b1 nor c1 . . . cn is a
nontrivial power of a word, moreover, if m 6= 0, then a1 is different from bk and
am is different from cn. However, the normal form may not be unique. In that
case, m = 0 holds for all normal forms, and the normal forms are equivalent
modulo the equation

(xy)ωop

(zy)ω = (yx)ωop

(yz)ω,

which is easily derivable from the axioms.

Now fix the alphabet A. A primitive word4 is either a finite word on A or
a word on A whose underlying linear order is isomorphic to ω, ωop or ωop + ω,
which is ultimately periodic (in both directions in the later case). Thus, the
nonempty primitive words are those denoted by primitive terms. Thus, for a
finite or countable alphabet A, there are only countably many primitive words
on A.

For each primitive word u on A, let bu be a new letter in an alphabet B disjoint
from the set of all terms on A. Let tu be a primitive term on A such that
|tu| = u. Since by Proposition 3.10 all such primitive terms are equivalent with
respect to the axioms, in the subsequent arguments we can fix the term tu for
each nonempty primitive word u. For example, we can take the lexicographically
least. Let σ denote the unique term homomorphism mapping terms over B to
terms over A such that

σ(bu) = tu

for each letter bu ∈ B. Let σ also denote the substitution that maps a linear
word on B to the corresponding word on A, so that for every term t on B,

|σ(t)| = σ(|t|).
Suppose that u is a linear word on A, with underlying order (L,≤), and suppose
v is a subword of u, with underlying linear order (L′,≤). We say v is closed
with respect to the successor relation if whenever x, y ∈ L and x is the
successor in L of y, then x ∈ L′ ⇐⇒ y ∈ L′.

A minimal successor closed subword of a word P is a nonempty subword of P
which is closed with respect to the successor relation and which does not contain
any proper nonempty subword with the same property.

4In the field of Combinatorics on Words, a “primitive word” is a finite nonempty word
which is not a proper power. This is not the way we are using the term.
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Proposition 3.11 Any minimal successor closed subword of a word is either
finite, or its underlying linear order is isomorphic to ω, ωop, or ωop + ω.

Proposition 3.12 For any term t over A, each minimal successor closed sub-
word of |t| is a primitive word.

Proof. Clear from Theorem 3.9, or by a straightforward induction. 2

Now, given a linear word P on A whose minimal successor closed subwords
are primitive, let P̂ denote the linear word on B whose points are the minimal
successor closed subwords of P , each labeled by the corresponding letter in B.
The order in P̂ is inherited from P .

Proposition 3.13 Suppose that P, Q are A-labeled words whose minimal suc-
cessor closed subwords are primitive. Then, P ∼= Q iff P̂ ∼= Q̂.

Proof. If P̂ ∼= Q̂, then clearly P ∼= Q.

Now let ϕ : P → Q be an isomorphism. We define an isomorphism ϕ̂ : P̂ → Q̂,
as follows. When M is a minimal subposet of P closed under the successor
relation, and x ∈ M , let ϕ̂(M) denote the minimal subposet of Q containing
ϕ(x) closed under the successor relation. 2

Lemma 3.14 Let P1 and P2 be words whose minimal successor closed subwords
are primitive.

• Suppose that P1 has no greatest element or that P2 has no least. Then

P̂1 · P2 = P̂1 · P̂2.

• Suppose that P 6= 1 and P has no least or no greatest. Then

P̂ ω = (P̂ )ω

and

P̂ωop = (P̂ )ωop

.

Proof. For P1 · P2: There exist no x ∈ P1 and y ∈ P2 such that in P1 · P2, y is
the successor of x. 2

Proposition 3.15 For each proper term t on the alphabet A there is a term
t̂ over the alphabet B such that σ(t̂) = t and h(t̂) < h(t) when t is infinite.
Moreover, if |t| = P , then |t̂| = P̂ .
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Proof. If t is primitive, then t̂ is a single letter, and σ(t̂) = t, by definition
of σ. If t = t1 · t2 is proper, then t̂ = t̂1 · t̂2, by the lemma. Since σ is a
homomorphism, using induction, σ(t̂) = t. If t = (t1)ω or (t1)ωop

, then t̂ is (t̂1)ω

or (t̂1)ωop

, respectively. Again σ(t̂) = t. 2

As mentioned earlier, if Ax ` t = t′, for terms t and t′, then the equation t = t′

is valid. We now prove the converse.

Theorem 3.16 The axioms are complete: any valid equation is derivable from
Ax.

Proof. Suppose that t1, t2 are terms on A such that |t1| ∼= |t2|. We use
induction on

h := max{h(t1), h(t2)}
to show that Ax ` t1 = t2. When h = 0, the only axiom needed is the asso-
ciativity axiom. Now suppose that h > 0, so that both t1, t2 must be infinite
terms. By Theorem 3.9, there are proper terms s1, s2 such that Ax ` ti = si,
and h(si) ≤ h(ti) ≤ h, i = 1, 2. Since |s1| ∼= |s2|, also |ŝ1| ∼= |ŝ2|, by Proposi-
tions 3.13 and 3.15. Now h(ŝi) < h, i = 1, 2. By induction,

Ax ` ŝ1 = ŝ2.

But, by Proposition 3.3, for any terms t, t′, and any term morphism ϕ, if Ax `
t = t′, then Ax ` ϕ(t) = ϕ(t′). Thus, in particular,

Ax ` σ(ŝ1) = σ(ŝ2),

i.e.,

Ax ` s1 = s2,

and thus,

Ax ` t1 = t2. 2

Corollary 3.17 There is an O(n3) algorithm to decide if an equation t = t′ is
valid, where n is the total number of symbols in the terms t, t′.

Proof. Our recursive algorithm first converts the terms t and t′ into proper
terms, using the constructive proof of Theorem 3.9. During the conversion,
the primitive subterms are brought into normal form and an ordered list of
the encountered normal forms is maintained. (We assume a lexicographic order
on the normal forms and that in case of ambiguity the lexicographically least
normal form is selected.) This can be done in O(n2) time. If t and thus t′ are
finite, we just compare the two sides for syntactic equality. If h(t), h(t′) > 0,
then, in linear time, we compute the terms t̂ and t̂′ and repeat the procedure.
Since h is at most n, and since the heights are reduced by one at each step, the
algorithm terminates in O(n3) time. 2
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Remark 3.18 There is a different argument to show that the complexity bound
can be reduced to O(n2).

Corollary 3.19 If t = t′ is valid, then h(t) = h(t′).

3.1 Adding reverse

In a more or less routine manner, we may now obtain an axiomatization of
the equational theory of linear words enriched with the operations of product,
omega and omega-op power and the reversal operation t 7→ tr. The axioms are
(1), (2), (4) together with

(xr)r = x (6)
(x · y)r = yr · xr (7)

(xω)r = (xr)ωop

. (8)

The axioms (3), and (5) are now redundant.

3.2 Adding 1

We may add a constant term 1 to denote the empty word (on any alphabet),
and then add the following axioms to those in Definition 3.6.

1 · x = x = x · 1
(1)ω = (1)ωop

= 1

1r = 1.

4 All axioms

For the reader’s convenience, we list the totality of the axioms.
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(x · y) · z = x · (y · z)
(x · y)ω = x · (y · x)ω

(x · y)ωop

= (y · x)ωop · y
(xn)ω = xω , n ≥ 2

(xn)ωop

= xωop

, n ≥ 2
(xr)r = x

(x · y)r = yr · xr

(xω)r = (xr)ωop

.

1 · x = x = x · 1
(1)ω = (1)ωop

= 1

1r = 1.

5 Free Algebras

The first theorem follows immediately from the proof of the Completeness The-
orem, Theorem 3.16.

Theorem 5.1 Let V be the variety of all models of Ax in Definition 3.6. For
any set A, the algebra freely generated by A in V is the algebra (ARd, ·,ω ,ω

op

)
of discrete, regular, A-labeled words.

Now, fix a set A and choose a set A disjoint from A and a bijection a 7→ a from
A → A.

We have defined the reverse ur of a word in CW as follows: the underlying
order of ur is (Lu,≥), the reverse of the underlying order (Lu,≤) of u, and the
labeling of points in Lu is the same as that in u. The enrichment of the algebra
(CW, ·,ω ,ω

op

) by this reverse operation is denoted just CW .

However, in the following case, we modify the labeling when applying the reverse
operation. Let ((A ∪ A)Rd, ·,ω ,ω

op

) denote the algebra of all regular, discrete
A ∪ A-labeled linear orders, in which the “reversal” operation is redefined as
follows.

ar := a

(a)r := a

On the other words in (A ∪ A)Rd, we have

(u · v)r := vr · ur

(uω)r := (ur)ωop

(uωop

)r := (ur)ω .



6 OTHER MODELS 13

The last equation follows from the previous one and the fact that (ur)r = u.

Theorem 5.2 Let V r be the variety of all models (X, ·,ω ,ω
op

,r ) of the identities
(1), (2), (4), (6), (7), and (8). For any set A, the algebra freely generated by
A in V r is (A ∪ A)Rd to X equipped with the above operations. By letting 1
denote the empty word in (A ∪ A)Rd, we obtain the algebra freely generated by
A in the variety of all models of the complete set of the identities in Section 4.

2

6 Other models

Aside from the countable word algebras AW , we mention three other classes of
models.

1. Uncountable words: For any infinite cardinal ℵ, and any fixed set A, the
collection of all words on A over linear orders of cardinality ≤ ℵ satisfies
all of the axioms above, with the same definition of the operations.

2. Partial words: As noted in Remark 2.1, the operations u·v, uω, uωop

, ur are
meaningful for labeled partially and not necessarily linearly ordered sets.
Further, for any infinite cardinal ℵ, and any fixed set A, the collection of
all A-labeled partially ordered sets of cardinality ≤ ℵ satisfies the axioms.

3. Languages of words: For any set A and any infinite cardinal ℵ, the col-
lection of all languages of words on A over linear (or partial) orders of
cardinal ≤ ℵ satisfies the axioms; a language of words is, as usual, a
subset of words, and the operations on subsets of words are defined as
follows:

U · V := {u · v : u ∈ U, v ∈ V }

Uω :=

{
{u1 · u2 . . . : ui ∈ U} if 1 /∈ U

{1} ∪ (U − {1})ω if 1 ∈ U

Uωop

:=

{
{. . . u2 · u1 : ui ∈ U} if 1 /∈ U

{1} ∪ (U − {1})ωop

if 1 ∈ U

U r := {ur : u ∈ U}
1 := {1}.

Each of these three classes of models generates the same variety as do the
countable words, since all free algebras are subalgebras of algebras in each class.
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7 Finite Axiomatizability

Using a slight modification of the analogous result in [BlCho01], we can show:

Theorem 7.1 For any finite subset E of the axioms enumerated in Section 4,
even the axioms involving the reverse operation r and the neutral element 1,
there is some prime number p and an algebra M such that each equation in E
is true in M , but the power identity (xp)ω = xω fails in M .

Thus, by the Compactness Theorem,

Corollary 7.2 There is no finite axiomatization for any of the varieties con-
sidered above.

Proof of Theorem 7.1. Let M = N ∪ {1,>,⊥}, the disjoint union of the
nonnegative integers with a three element set. Let p be a prime. Define the
operations x · y and xω on M as follows.

x · y :=



x + y if x, y ∈ N

x if y = 1
y if x = 1
> if exactly one of x, y is > and the other is in N ∪ {1}
⊥ otherwise.

xω :=


1 if x = 1
> if x ∈ N and p|x
⊥ otherwise.

xωop

:= xω

xr := x.

It is easy to check that (M, ·,1) is a commutative monoid. Now we verify some
of the axioms. We show that (x · y)ω = x · (y ·x)ω . There are three possibilities.

If (x · y)ω = 1, then x = y = 1, so that x · (y · x)ω = 1.

If (x · y)ω = >, then x, y ∈ N and p|(x + y). But then x · (y · x)ω = x · > = >.
Otherwise, (x · y)ω = (y · x)ω = ⊥ and x · ⊥ = ⊥.

Since the reverse operation is the identity function and since the omega power
operations is the same as the omega-op power operation, equations (6) and (8)
also hold in M . It follows now that (3) holds.

Last, if n < p, and x ∈ N, then xn = nx, so that p|nx iff p|x. Thus, for x ∈ N

and n < p, (xn)ω = xω; if x ∈ {>,⊥}, (xn)ω = xω = ⊥, for all n ≥ 1. Thus, if
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p is a prime larger than all exponents k used in the identities (xk)ω = xω and
(xk)ωop

= xωop

which occur in E, M is a model for E and the identities (1), (2),
(3), and all of the reverse axioms and the axioms involving 1. However,

(1p)ω = pω

= >
6= ⊥
= 1ω,

so that the identity (xp)ω = xω fails in M . 2

8 Conjectures and Open Problems

The algebras of (countable) words, equipped with the operations of product
and an initial fixed point operation, defined by Courcelle in [Cour78], can be
shown to form iteration algebras (or iteration theories) [BlEs93]. In fact, over
all categories, initial fixed points lead to iteration theories, cf. Ésik and Labella
[EsLa98]. We conjecture that the variety generated by algebras of words has a
finite axiomatization over the variety of all iteration algebras. Thomas [Thom86]
has shown, using methods and results of formal logic, that the equational theory
of this variety of iteration algebras is decidable. However, the methods applied in
[Thom86] do not provide an elementary upper bound, not even for the equational
theory of product, omega power and omega-op power. It would be interesting
to find upper and lower bounds.
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