
B
R

IC
S

R
S

-02-39
B

loom
&

É
sik:

S
om

e
R

em
arks

on
R

egular
W

ords

BRICS
Basic Research in Computer Science

Some Remarks on Regular Words

Stephen L. Bloom
Zolt án Ésik

BRICS Report Series RS-02-39

ISSN 0909-0878 September 2002

Copyright c© 2002, Stephen L. Bloom & Zolt́an Ésik.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/39/

Some remarks on regular words

Stephen L. Bloom∗

Department of Computer Science

Stevens Institute of Technology

Hoboken, NJ 07030

Zoltán Ésik†

Institute for Informatics

University of Szeged

Szeged, Hungary

August 25, 2002

1 Introduction

While thinking of how to generalize some facts about ordinal words (label-
ings of ordinals) in [BlCho01] to linearly ordered words (labelings of linear
orders), the authors rediscovered the natural classes of the “regular words”
and the “discrete regular words”, described here. It turns out that these
words are isomorphic to the frontiers of regular trees, considered earlier by
Courcelle [Cour78], Heilbrunner [Heil80], and Thomas [Thom86]. The cur-
rent paper contains some new descriptions of this class related to properties
of regular sets of binary strings, and uses finite automata to decide various
natural questions concerning these words.

2 Preliminaries

A linearly ordered set, or “linear order”, is usually denoted P = (P,≤P), or
just P,Q, etc. We let 1 denote a one element linearly ordered set. ω denotes
the usual ordering on the nonnegative integers, ωop denotes the usual order
on the negative integers, isomorphic to the reverse of ω, and Q denotes the
linearly ordered set of the rational numbers.

∗Partially supported by NSF grant 0119916.
†Partially supported by BRICS, Aalborg, Denmark, and NSF grant 0119916.

1

2

In this paper, we assume all “alphabets” are initial subsets {a1, . . . , an}
of the countable set {a1, a2, . . .}. We sometimes use a, b or 0, 1 to denote
a1, a2, respectively. For a nonnegative integer n, we let [n] denote the set
{1, 2, . . . , n}, so that [0] is the empty set. A countable set is either finite or
countably infinite.

By a word on the alphabet A, we mean a labeled linearly ordered count-
able set. (We have no need here for labelings of uncountable linear orders.)
So, more formally, a word on A is a triple, (Lu,≤u, u), where (Lu,≤u) is a
countable linearly ordered set, and u : Lu → A is a function. We abbreviate
the triple (Lu,≤u, u) by just u. Two words u, v are isomorphic if there is
a bijection f : Lu → Lv such that for all x, y ∈ Lu,

x ≤u y ⇐⇒ f(x) ≤v f(y), and
v(f(x)) = u(x).

We usually identify isomorphic words. We call the linearly ordered set
(Lu,≤u), or just Lu for short, the underlying order of the word u.

We will be concerned with operations u, v 7→ uv, u 7→ uω, u 7→ uωop
,

(u1, . . . , uk) 7→ [u1, . . . , uk]η, k ≥ 1, on words, and corresponding operations
on linear orders. Each of these operations is defined by means of word
substitution. First, we define substitution for linear orders.

Definition 2.1 Suppose that (L,≤) is a linear order, and for each x ∈ L, let
(Kx,≤) be a linear order. The ordering

∑
x∈L Kx, obtained by substitution

of Kx for x ∈ L, is defined as follows: the underlying set is the set of pairs
(k, x) with x ∈ L and k ∈ Kx ordered by:

(k, x) ≤ (k′, x′) ⇐⇒ x < x′ or (x = x′ and k ≤ k′).

Definition 2.2 Let u be a word on the alphabet A = {a1, . . . , an}, and let
vai be a word on the alphabet B, for each i ∈ [n]. The alphabets A,B need
not be the same. We define w = u(a1/va1 , . . . , an/van), the word obtained
by substituting vai for each occurrence of ai in u as follows. Lw is the linear
order

∑
x∈Lu

Lu(x), defined just above, labeled as follows:

w(x, y) := vu(y)(x).

We call a word on a finite linear order a string, and use the usual notion
for them, so that for example, aba denotes the string u on the 3 element

3

chain, say 1 < 2 < 3, such that u(1) = u(3) = a and u(2) = b. In particular,
the empty word λ is a string. We let A∗ denote the set of all strings on
the alphabet A, and write A+ for A∗ − {λ}. We let aω denote the word
with underlying order the ordinal ω whose value at each point is the letter
a; similarly, aωop

is the word with underlying order ωop whose value at each
point is a.

Definition 2.3 The product of u, v, written uv, is w(a/u, b/v), where
w = ab. The right omega power of the word u, written uω, is w(a/u),
where w = aω. The left omega power, written uωop

, of a word u is w(a/u)
where w = aωop

.

The reason for the terminology “right” and “left” omega power is the fol-
lowing. The word uω is the initial solution (in the sense of [Cour78]) in the
class of words of the equation in the variable x,

x = ux.

Since x appears to the right of u, the result is called the right omega power
of u. Similarly, uωop

is the initial solution of

x = xu.

Suppose that (P,≤P) and (Q,≤Q) are linear orders. The sum P + Q is
defined as follows: P + Q is the disjoint union P ∪ Q, ordered so that
every element in P is less than each element in Q; otherwise, the elements
are ordered as in P or Q, respectively. We define two special cases of the
product of two linear orders. The linear order P ⊗ ω is

∑
i∈ω Pi, where

Pi = P , for each i ≥ 0. The linear order P ⊗ ωop is
∑

i∈ωop Pi, where
Pi = P , for each i < 0.

Corollary 2.4 Let u, v be words. The underlying order of uv is the sum of
the order of u and the order of v; the underlying order of uω is Lu ⊗ω, and
the underlying order of uωop

is Lu ⊗ ωop. 2

We need the following fact, a special case of a construction in [Heil80], proved
using a “back-and-forth” argument.

Lemma 2.5 For any nonempty finite set A = {a1, . . . , an} there is, up
to isomorphism, a unique word (P,≤, ρn) on A, whose underlying order is

4

infinite, with no least or greatest element, which has the following property.
For any x < y in P , and for each i ∈ [n], there is some z ∈ P with x < z < y
and ρn(z) = ai.

The underlying order of the word ρn is isomorphic to the rationals, Q.

Now, we define the shuffle [Heil80] of the finite sequence (u1, . . . , un) of
words by:

[u1, . . . , un]η := ρn(a1/u1, . . . , an/un). (1)

Thus, in particular, we may write

ρn = [a1, . . . , an]η.

The underlying order of the word [u1, . . . , un]η can be described in general
as follows. For linearly ordered sets P1, . . . , Pn, let S be the subset of

n⋃
i=1

{i} × Pi × Q

defined by:

1. For each q ∈ Q there is a unique i ∈ [n] such that for all x ∈ Pi,
(i, x, q) ∈ S. Moreover, if (j, y, q) ∈ S, then j = i, and y ∈ Pi.

2. if q < q′ in Q, then for each i ∈ [n] there is some q′′ in Q such that
q < q′′ < q′ and for all x ∈ Pi, (i, x, q′′) ∈ S.

The set S is ordered by:

(i, x, q) ≤ (j, y, q′) ⇐⇒ q < q′ or (q = q′ and x ≤ y in Pi).

We denote (S,≤) by [P1, . . . , Pn]η . We call it the shuffle of the linear orders
P1, . . . , Pn.

Proposition 2.6 If Li is the underlying order of the word ui, i ∈ [n], then
the underlying order of the word [u1, . . . , un]η is [L1, . . . , Ln]η. 2

Definition 2.7 The regular words on the alphabet A are those in the least
class of words containing the single letter words ai ∈ A, closed under the

5

operations of product, right and left omega power, and shuffle. A regular
expression over A is either a letter in A, or an expression of the form

uv, uω, uωop
, [u1, . . . , uk]η,

where u, v, uj are regular expressions, for j ∈ [k]. The word denoted by a
regular expression is defined in the obvious way. The size |w| of a regular
expression w is defined by induction as follows:

|ai| := 1, ai ∈ A

|uv| := 1 + |u| + |v|
|uω| = |uωop | := 1 + |u|

|[u1, . . . , un]η| := 1 +
n∑

i=1

|ui|.

Note that a regular word is not empty. Note also that we are not concerned
with regular sets of linear words - only one word at a time. Sets of labeled
linear orders accepted by generalized finite automata have been considered
recently in [BruyCar, BruyCar2, Car].

The regular expressions just defined were used in Heilbrunner [Heil80], ex-
tending those used by Courcelle [Cour78]. Neither Courcelle nor Heilbrunner
use the term “regular word”. Courcelle showed that any word (“arrange-
ment” is the term he used) is, up to isomorphism, the frontier of a leaf labeled
complete binary tree, i.e., a binary tree whose nonleaf nodes have both a left
and right successor. (Sometimes these trees are called “full binary trees”.)
He considered solving equations in the category of words; the initial solution
to equations is the frontier of a regular tree. Courcelle then described those
systems of equations that determine the discrete regular words (see below),
and introduced what he called regular expressions to denote these words
(no shuffle operation is involved). Heilbrunner gave an algorithm to solve
all such equations, and introduced the regular expressions above to denote
the solutions. We have taken the liberty of giving the name “regular word”
to a word denoted by the wider class of regular expressions.

Let G denote the set of words

ab, aω, aωop
, ρ1, ρ2, . . . , ρn, . . .

For an alphabet A, let GA denote the least class of words containing G ∪A
closed under substitution. Let W (A) denote the set of words containing
only letters in the alphabet A.

6

Proposition 2.8 The regular words on the alphabet A are precisely the
words in GA ∩ W (A).

Proof. It is enough to show that the regular words are closed under
substitution. This may be proved by induction on the structure of the
regular expression used to denote the word. 2

Proposition 2.9 The underlying linear orders of the regular words is the
least class RL of linear orders containing the singleton 1 and closed under
sum, shuffle, and P 7→ P ⊗ ω and P 7→ P ⊗ ωop. 2

Definition 2.10 We call a linear order regular if it is isomorphic to an
order in the class RL.

A prefix code C (or “code” for short) is a nonempty collection of strings
on {0, 1} such that no string in C is a proper prefix of any other string in
C. A prefix code is complete if for any string u not in C, C ∪ {u} is not a
prefix code. A code is regular if it is a regular subset of {0, 1}∗.
It is well known that one may represent the vertices of any binary tree by a
prefix-closed subset of the strings on the alphabet {0, 1}. A collection C of
strings is a (complete) prefix code iff C is the set of leaves of a (complete)
binary tree.

The next fact was pointed out by Heilbrunner [Heil80], who showed that the
regular words (together with the empty word) on A are the components to
initial solutions of systems of fixed point equations of the form

x1 = u1

...
xn = un,

where ui are nonempty words in (A ∪ {x1, . . . , xn})∗, such that no ui is xj ,
for any j.

Recall that a leaf-labeled regular tree over the alphabet A is a tree, whose
leaves are labeled by letters in A, which has a finite number of subtrees. A
tree is “locally finite” if for each node v, there is some path from v to a leaf.
The frontier of a tree t is the word on A whose underlying linear order is
the set of leaves of t ordered lexicographically, labeled as in the tree. From
now on, a tree is assumed to have its leaves labeled by letters in A.

7

Proposition 2.11 [Heil80] A word u on the alphabet A is regular iff u is
the frontier of a regular locally finite, binary tree t whose leaves C form a
regular complete prefix code. 2

We will need a slight extension of this result.

Proposition 2.12 A word u on the alphabet A is regular iff u is the frontier
of a regular locally finite, binary tree t whose leaves C form a regular prefix
code, not necessarily complete.

Proof. We need prove only one direction. Suppose that u is the frontier of a
regular, locally finite, tree t whose interior nodes have one or two successors.
We need to find a regular complete binary tree whose frontier is isomorphic
to u. Now since t has only a finite number of subtrees, there are only finitely
many subtrees, say t1, . . . , tN , which are not leaves, and, say, e1, . . . , ek which
are leaves. If N = 0, t is itself a leaf, the frontier of t is a letter, and the
corresponding C consists of just the empty string, a complete prefix code.
When N > 0, by choosing a variable xi for the tree ti, i = 1, . . . ,N , we
obtain a system of N equations, as follows. If ti is a tree whose root has
both a left and right successor, say the roots of the trees tl and tr respectively,
we indicate this fact by writing:

ti = 0.tl + 1.tr.

In the case ti has just a left successor, the root of the tree tl, we write

ti = 0.tl.

Similarly, for just a right successor. When one or both of the trees tl, tr is a
leaf, we write the label of the leaf instead.

Thus, we get N equations, each one of which has one of the following three
forms:

xi = 0.zj + 1.zk (2)
xi = 0.zj

xi = 1.zj ,

where the z’s range over {x1, . . . , xN} ∪ A. For example, if the root of the
tree ti has two successors, the equation for xi has the first form, where zj

8

is in A if zj is (the label of) a leaf and the left subtree of ti is zj, and zj is
xr if the left subtree of ti is the tree tr, etc. If the root of ti has only one
successor, then the equation for xi has one of the last two forms.

From the collection of all subtrees {t1, . . . , tN , e1, . . . , ek} of t we construct a
directed graph G = (V,E) whose vertices are the subtrees. There is an edge
u → v if the root of u has the root of the subtree v as either a right or left
successor. We say the degree of the subtree ti is the number of successors of
the root of ti. If u ∈ V is a leaf, u has degree 0. Note: since t is locally finite,
for each vertex u ∈ V there is some path in G to a vertex of degree 0. Let
∼ be the least equivalence on the vertices such that u ∼ v if there is a path
u ; v in G such that each vertex on the path has degree one, except perhaps
the last. Then, if [v] denotes the ∼-equivalence class of v, [v] contains exactly
one node of degree either 2 or 0. Indeed, let v = v0, v1, . . . , vs be a shortest
path in G from v to a vertex vs of degree 0. If each vertex vi, for each i < s,
has degree 1, then vs ∈ [v]. Otherwise, there is some vertex vi on the path
of degree 2, so vi ∈ [v]. Also, if v and v′ have degree 0 or 2 and v ∼ v′, then
v = v′.

We now modify the system of equations above, assuming that t1 is the given
binary tree. Depending on the degree of ti, we do one of three things. If the
root of ti has degree 2, we keep the original equation (2) for xi. Otherwise,
if a vertex ej of degree 0 belongs to [ti], replace xi on the right side of every
equation by the label, say aj of this leaf. If ti has degree 1 and if tk has
degree 2 and tk ∈ [ti], delete the original equation for xi and replace xi

on the right side of every equation by xk. We have to make some more
adjustments if i = 1, the index of the original tree. If there is a leaf in [t1],
the system can be replaced by x1 = a, if a is the label of the leaf. If there is
a tree of degree 2 in [t1], say tk, replace the equation for x1 by x1 = s, where
s is the right side of the equation for xk. In the new system, every equation
has the form (2) or the form x1 = a, for some a ∈ A. This system is a
description for a regular complete binary tree whose frontier is isomorphic
to the original word. 2

3 Language theoretic characterizations

We now turn to language theoretic characterizations of the regular words,
and the discretely ordered regular words, described below. We observe (in
Proposition 3.3) that regular words on an n-letter alphabet are determined

9

up to isomorphism by a partition of a regular complete prefix code into n
pairwise disjoint regular prefix codes. We prove, more generally, (in Propo-
sition 3.4) that a regular word on an n-letter alphabet is determined up to
isomorphism by any n pairwise disjoint regular subsets of {0, 1}∗ (whose
union is nonempty). Then, in Proposition 3.11, we show that there is an
algorithm to produce, for each regular expression w, an “A-automaton”
M(w) accepting a complete prefix code which determines a word isomor-
phic to the word denoted by w. The size of M(w) is proportional to the
number of symbols in w.

Any subset X of {0, 1}∗ is linearly ordered by the lexicographic order:
for u, v ∈ X,

u ≤` v ⇐⇒ ∃u1, u2, w ((v = uw) or (u = w0u1 and v = w1u2)).

Example. Let W be the regular set W = 1∗0. Then, the lexicographic
order on W is isomorphic to ω, via the map

1n0 7→ n.

Similarly, ωop is isomorphic to (0∗1,≤`).

Remark 3.1 Suppose that Bn = {b1, . . . , bn} is an n-element alphabet, or-
dered by b1 < b2 < . . . < bn. Then the strings on Bn are also linearly ordered
by the lexicographic order:

u ≤` v ⇐⇒ ∃u1, u2, w ((v = uw) or (u = wbiu1 and v = wbju2 and i < j)).

Proposition 3.2 For any nonempty, countable linear order (L,≤) there is
a complete prefix code P ⊆ {0, 1}∗ such that (L,≤) is isomorphic to (P,≤`).

Proof. Indeed, there is such a subset isomorphic to the usual ordering of
the rational numbers. One such set is

(11 + 0)∗10. (3)

(See [Thom86].) And there is an order preserving embedding of any count-
able linear order into the rationals. Since the strings in (11 + 0)∗10 form a
complete prefix code, we see that any countable linear order is isomorphic to
the lexicographic order on some prefix code. And Courcelle [Cour78] proved

10

that for any prefix code P and any nonempty word u = (P,≤`, u) there is a
complete prefix code C and a word w = (C,≤`, w) such that u is isomorphic
to w. (The argument given in Proposition 2.12 can be extended to give a
different proof of this result.) 2

Proposition 3.3 Suppose that C is a (complete) prefix code and ≤` is the
lexicographic order. Suppose that C is partitioned into R1, . . . , Rn, where
each set Ri, i ∈ [n], is regular. Then there is a regular word u(R1, . . . , Rn) =
(C,≤`, u), such that u(x) = ai iff x ∈ Ri, i ∈ [n]. Conversely, for any
regular word w on A, there is a family R1, . . . , Rn of disjoint regular subsets
of {0, 1}∗ such that R1∪. . .∪Rn is a complete prefix code and w is isomorphic
to u(R1, . . . , Rn).

Proof. Both directions follow immediately from the fact that, up to iso-
morphism, regular words are frontiers of (complete) locally finite, regular
trees. See Propositions 2.11 and 2.12. The set of words labeling leaves with
a particular label is a regular subset of {0, 1}∗. In fact, it follows from The-
orem 4.11.1 of [Cour83] that a locally finite binary tree t over A is regular
iff, for each a ∈ A the set of binary words which are leaves of t labeled a is
regular. 2

We note that prefix codes are not necessary to obtain a regular word. In
fact, we have the following.

Proposition 3.4 A word w is regular iff there is a family Ri, i ∈ [n], of
pairwise disjoint regular subsets of {0, 1}∗ whose union is nonempty such
that w is isomorphic to the word (

⋃
i∈[n] Ri,≤`, u), such that u(x) = ai ⇐⇒

x ∈ Ri, i ∈ [n].

Proof. We need prove only that any n pairwise disjoint regular sets whose
union is nonempty determine a regular word as indicated.

Let L =
⋃

i∈[n] Ri. The set L is regular, but is not necessarily a prefix code.
Thus, we first replace L by a prefix free set of strings on the ordered alphabet
B3 = {−1, 0, 1}. We then apply Proposition 3.3.

Define the set L̂ as the set of words obtained by putting −1 on the right of
each word in L:

L̂ := {x(−1) : x ∈ L}.

11

Then L̂ is a prefix free, regular subset of the strings on B3. Now if x and
xy ∈ L, then x(−1) ≤` xy(−1) in L̂. (Recall Remark 3.1.) Also, if x0y
and x1z are in L, then x0y(−1) ≤` x1z(−1) in L̂. Thus x 7→ x(−1) is an
order isomorphism (L,≤`) → (L̂,≤`). Now define the function w : L̂ → A
as follows.

w(x(−1)) := u(x).

Thus, the words w and u are isomorphic.

Now we let ϕ : {−1, 0, 1}+ → {0, 1}+ be the unique semigroup morphism
determined by:

ϕ(−1) := 00
ϕ(0) := 01
ϕ(1) := 10.

Note that ϕ(x) <` ϕ(y) when x < y ∈ {−1, 0, 1}. Since L̂ is prefix free, it
follows that ϕ(L̂) is a prefix code and ϕ : (L̂,≤`) → (ϕ(L̂),≤`) is an order
isomorphism. Thus, the word v is isomorphic to u, where

v(ϕ(x)) := w(x), x ∈ L̂.

Since ϕ(L̂) is regular, we have shown that u is isomorphic to a regular
word whose underlying order is the lexicographic ordering of a regular prefix
code. Thus, by Proposition 2.12, u is isomorphic to a regular word whose
underlying order is a regular, complete prefix code. 2

Remark 3.5 Essentially the same argument shows the following. A word w
is regular iff there is a family Ri, i ∈ [n], of pairwise disjoint regular subsets
of strings on an ordered alphabet b1, . . . , bk, with b1 < . . . < bk, whose union
is nonempty such that w is isomorphic to the word (

⋃
i∈[n] Ri,≤`, u), where

u(x) = ai ⇐⇒ x ∈ Ri, i ∈ [n].

Before introducing A-automata, we review some terminolgy. We will need
automata on only the binary input alphabet. A deterministic, finite automa-
ton (DFA) with alphabet {0, 1}, is a 4-tuple M = (Q, q0, δ, F), where Q is
a finite set of states, δ : Q× {0, 1} → Q is the transition function, q0 ∈ Q is
the initial state and F ⊆ Q is the set of final states. We immediately extend
the transition function to a function δ : Q × {0, 1}∗ → Q in the usual way.
M is accessible if for each state q there is some string x ∈ {0, 1}∗ such that

12

δ(q0, x) = q; a state q is coaccessible if there is some string x ∈ {0, 1}∗ such
that δ(q, x) is final. The behavior of a state q is the set of strings x such
that δ(q, x) ∈ F . The language L(M) accepted or determined by the DFA
M is the behavior of the initial state.

Definition 3.6 For an n-element alphabet A, an A-automaton

M = (Q, q0, δ, F)

is a DFA with n final states, labeled f1, . . . , fn, at least one of which is
accessible, and a sink state ⊥ such that δ(fi, x) = ⊥ = δ(⊥, x), for x ∈
{0, 1}, i ∈ [n]. An A-automaton M determines the word (L,≤`, µM) where
L = L(M), and, for x ∈ L, µM (x) = ai iff δ(q0, x) = fi.

We will show how to produce, for each regular word u, an A-automaton M
such that L(M) is a complete prefix code and µM is isomorphic to u.

Example. Let A be the k letter alphabet {a1, . . . , ak}. We define an A-
automaton determining the word ρk (see Lemma 2.5).

The (non sink) states are divided into three groups: c0, . . . , ck−1, d0, . . . , dk−1

and the final states f1, . . . , fk. The initial state is c0. The states ci are used
to count the number of 0’s modulo k; the states di are intermediate states.
The transition function is defined as follows:

δ(ci, 0) = ci+1, 0 ≤ i < k − 1
δ(ck−1, 0) = c0

δ(ci, 1) = di, 0 ≤ i < k

δ(di, 1) = ci, 0 ≤ i < k

δ(di, 0) = fi+1, 0 ≤ i < k.

For a string x, let |x|0 denote the number of 0’s in x. Now let B = (0+11)∗,
and for 0 ≤ i < n, let Bi be defined by:

x ∈ Bi ⇐⇒ x ∈ B and |x|0 ≡ i (mod n).

Thus B is the disjoint union of the sets Bi, i ∈ [n].

Lemma 3.7 For a string x ∈ {0, 1}∗, and integer 0 ≤ i < n, δ(c0, x) = ci

iff x ∈ Bi.

13

c

d

f

c d f

c

d

f

cdf

0

0

1

1

2

2

3

334 1 2

0 0

0
0

01

1

0

10

1

0

Figure 1: Most of the automaton for ρ4

Proof. Indeed, δ(ci, 11) = ci, so that only the number of 0’s determines the
resulting state. 2

Lemma 3.8 For any string x ∈ {0, 1}∗ and integer 0 ≤ i < n, δ(c0, x) = fi

iff x = y10 for some y ∈ Bi. 2

Now let C = B10. Then, (C,≤`) is a dense linear order, with no first or
last (see (3) above). We show that for any two strings x <` y in C, and any
0 ≤ i < n there is some z in C with x <` z <` y and δ(c0, z) = fi. There
are two cases.

First, suppose x = u(10) and y = u(11)r(10), where u ∈ B and r > 0. Then,
for any k > 0, the word zk = (u11)0k(10) belongs to B10 and x < zk < y.
For any 0 ≤ i < n, we can find an appropriate k such that δ(c0, u110k) = ci,
so that δ(c0, zk) = fi.

The second case is x = u0v(10) and y = u1w(10), where u0v and u1w belong
to B. Then, for any k > 0, if zk = u1w0k10, then

x < zk < y,

14

and u1w0k ∈ B10. For any choice of i ∈ [n] there is an appropriate value of
k such that δ(c0, zk) = fi. 2

We now give a direct construction which, applied to a regular expression
w, produces an A-automaton M such that u = µM is isomorphic to the
word denoted by w, and such that the underlying linear order of u is the
lexicographic order on a complete prefix code.

We make a preliminary observation.

Lemma 3.9 Let M0 be a B-automaton on the k-letter alphabet B. Let
M1, . . . ,Mk be A-automata, Then there is an A-automaton

M = M0 · 〈M1, . . . ,Mk〉

which accepts the strings yz such that y labels a path from the initial state
of M0 to some final state fj of M0, and z labels a path from the initial state
of Mj to a final state of Mj . The word determined by M is

v0(a1/v1, . . . , ak/vk),

where vj = µMj , j = 0, 1, . . . , k. Further, if the languages L(Mj), for
j = 0, 1, . . . , n, are all complete prefix codes, so is L(M).

Proof. Let 〈M1, . . . ,Mk〉 be obtained from the disjoint union of the states
of the n automata Mi, i ∈ [k], by identifying only the corresponding final
states in each, so now state f1 in M1 becomes the same state as f1 in M2,
etc. We also identify all sink states. The automaton 〈M1, . . . ,Mk〉 has k
initial states. For i ∈ [k], the i-th initial state is the initial state of Mi.
Then, let M = M0 · 〈M1, . . . ,Mk〉 be obtained from the disjoint union of
the states in M0 and 〈M1, . . . ,Mk〉 by identifying the sink states and the
i-th final state of M0 with the initial state of Mi. Then a string x labels a
path in M from the initial state of M0 to the final state fi iff x = yz where
y labels a path in M0 from the initial state of M0 to some accessible final
state, say fj in M0, and z labels a path in Mj from the initial state of Mj to
the final state fi in Mj. We omit the remaining routine verification. 2

Before stating the next Proposition, we define the size, |M |, of an A-
automaton M as the number of non sink states in M . The following
fact is immediate by construction.

15

Lemma 3.10 If M0 is a B automaton and Mi, i ∈ [k] are A-automata,
where B has k letters and Mi, for i ∈ [k] has n letters, then

|M0 · 〈M1, . . . , ,Mk〉| =
k∑

j=0

|Mj | − n(k − 1) − k.

Proof. We subtract n(k − 1) since we are identifying the corresponding
final states of each of the k automata M1, . . . ,Mk; and we subtract k since
we identify the exit state fi of M0 with the initial state of Mi, i ∈ [k]. 2

Proposition 3.11 There is an algorithm which, given a regular expression
w on the n-letter alphabet A, produces an A-automaton M(w) such that the
set of strings x accepted by M(w) is a complete prefix code Cw, and the word
denoted by w is isomorphic to µM(w). Further,

|M(w)| ≤ (n + 1)|w|.

Proof. By Lemma 3.9, we need only show how to find A-automata for
the basic words a, ab, aω, aωop

and ρk, k ≥ 1. We have already given the
automaton for ρk on a k-letter alphabet. It has size 3k.

For a letter a = ai ∈ {a1, . . . , an}, let M(ai) have a sink and final states
f1, . . . , fn, with fi as the initial state. The set of strings accepted by M(ai) is
the set consisting of the empty string, and it is labeled ai. Thus, |M(ai)| = n.

Now, if a = a1, and b = a2, an {a1, a2}-automaton for ab has an initial state
q0 aside from the final and sink states. The transition function is:

δ(q0, 0) = f1

δ(q0, 1) = f2.

Its domain is the complete prefix code {0, 1}.
We construct an {a} automaton for aω. There is one state aside from the
final state f1 and the sink, namely the initial state. The transition function
is defined by:

δ(q0, 1) = q0

δ(q0, 0) = f1.

16

Then the strings accepted by this automaton are those in 1∗0, and (1∗0,≤`)
is isomorphic to ω, via the map

1n0 7→ n.

There is a similar construction for aωop
.

As for the sizes of the resulting A-automata, our construction gives:

|M(ai)| = n

|M(uv)| = 1 + |M(u)| + |M(v)| − n

|M(uω)| = 1 + |M(u)|
|M(uωop

)| = 1 + |M(u)|

|M([u1, . . . , uk]η)| = 3k +
k∑

i=1

|M(ui)| − n(k − 1) − k

= 2k − n(k − 1) +
k∑

i=1

|M(ui)|, (4)

by Lemma 3.10.

Now, we prove by induction on the regular expression w, that |M(w)| ≤
(n + 1)|w|. In fact, it is easier to prove

|M(w)| ≤ (n + 1)|w| − 1.

When w = ai ∈ A, |M(ai)| = n = (n + 1)|ai| − 1. If w = uv, then

|M(uv)| = 1 + |M(u)| + |M(v)| − n

≤ 1 + (n + 1)(|u| + |v|) − 2 − n

by the induction hypothesis,

< (n + 1)(|u| + |v| + 1) − 1
= (n + 1)|uv| − 1.

When w = uω,

|M(uω)| = 1 + |M(u)|
≤ 1 + (n + 1)|u| − 1
≤ (n + 1)(|u| + 1) − 1
= (n + 1)|uω| − 1.

17

Similarly, if w = uωop
. Last, if w = [u1, . . . , uk]η, where ui are regular

expressions on the n-letter alphabet, by (4)

|M([u1, . . . , uk]η)| = 2k − n(k − 1) +
k∑

i=1

|M(ui)|

≤ 2k − (k − 1) +
k∑

i=1

|M(ui)|,

since n ≥ 1,

≤ k + 1 +
k∑

i=1

((n + 1)|ui| − 1),

by induction,

= 1 + (n + 1)
k∑

i=1

|ui|

≤ (n + 1)(1 +
k∑

i=1

|ui|) − 1

= (n + 1)|[u1, . . . , uk]η| − 1.

This completes the proof. 2

4 Discrete regular words

A linear order (L,≤) is discrete if there is no order embedding of Q into
L. (In [BruyCar, BruyCar2], a discrete linear order is called “scattered”.)
A word (Lu,≤u, u) is discrete when its underlying linear order is. Note that
any word isomorphic to a discrete word is discrete. In order to avoid the
term “not discrete”, we call a linear order (L,≤) quasi dense if there is an
order embedding Q → L. For example, all of the linear orders [P1, . . . , Pk]η

are quasi dense. In this section, we consider the question of when a regular
word is discrete, and give several characterizations of such words. In the
next section, we give polynomial time algorithm to decide when the regular
word determined by a given A-automaton is discrete.

Since every shuffle is quasi-dense, we have

18

Proposition 4.1 A regular word on the alphabet A is discrete iff it belongs
to the least class of words which contains the singletons a ∈ A, and is closed
under product, u, v 7→ uv, and the operations u 7→ uω and u 7→ uωop

. The
discrete regular orders are those isomorphic to the orders in the least class
of linear orders which contains the singleton 1, closed under sum and the
operations P 7→ P ⊗ ω and P 7→ P ⊗ ωop.

(Courcelle [Cour78] characterized the discrete regular words as the solutions
to a “quasi rational” system of fixpoint equations.)

Which are the regular (complete) prefix codes C such that (C,≤`) is dis-
cretely ordered?

We call a DFA M a monotone automaton if there is a partial order ≤ on
the state set Q such that the initial state is minimum, and if q′ = δ(q, a),
then q ≤ q′. Thus, the only loops possible in a monotone automaton are self
loops. We call a subset of {0, 1}∗ monotone if it is a regular set accepted
by some monotone DFA. (Thus, by definition, any monotone set is regular.)

For a detailed study and various characterizations of monotone automata,
their underlying semiautomata, and their languages, see the books [Pin86,
Eil76] and the paper [Brzo80]. In the last cited paper, monotone automata
are called “partially ordered automata”. This paper contains, among other
results, a proof of the fact that an automaton is “partially ordered” iff its
transition monoid is R-trivial.

Lemma 4.2 A subset of {0, 1}∗ is monotone iff its minimal automaton is
monotone.

Proof. Indeed, any morphic image of a monotone DFA is also monotone.
2

Proposition 4.3 [Brzo80] An accessible DFA M = (Q, q0, δ, F) on the in-
put alphabet X is monotone iff the binary relation v on Q is antisymmetric,
where q v q′ iff there is some string u ∈ X∗ such that δ(q, u) = q′. Thus,
an accessible DFA is not monotone iff it has at least two states q 6= q′ such
that δ(q, x) = q′ and δ(q′, y) = q for some strings, x, y ∈ X∗. 2

We will show that any discrete regular linear order is isomorphic to a mono-
tone subset of {0, 1}∗ which is a complete prefix code. We break the proof

19

into several easy parts. We sometimes identify a subset P of {0, 1}∗ with
the linearly ordered set (P,≤`).

Lemma 4.4 Suppose that P ⊆ {0, 1}∗. Then

1. (1∗0P,≤`) is isomorphic to P ⊗ ω.

2. (0∗1P,≤`) is isomorphic to P ⊗ ωop.

3. Suppose P,Q ⊆ {0, 1}∗. Then (0P ∪ 1Q,≤`) is isomorphic to
(P,≤`) + (Q,≤`).

Proof. We prove only the first statement. Suppose that u, v ∈ 1∗0P and
u ≤` v. We may write u = 1n0u′, v = 1m0v′, for some strings u′, v′ ∈ P .
Then either n < m or n = m and u′ ≤` v′ in P . This is exactly the definition
of P ⊗ ω. 2

Proposition 4.5 Let L be a discrete regular linear order. Then L is iso-
morphic to a monotone subset of {0, 1}∗ which is a complete prefix code.

Proof. Clearly, 1 has the required property, and we will show that it is
preserved by the operations P 7→ P ⊗ω, P 7→ P ⊗ωop and P,Q 7→ (P + Q).

The set consisting of the empty string is monotone, and a complete prefix
code. Ordered lexicographically, this set is isomorphic to 1.

Now assume that P is a monotone, complete prefix code. Then, by Lemma
4.4, 1∗0P , ordered lexicographically, is isomorphic to P ⊗ ω. If M is a
monotone DFA accepting P , then a monotone automaton M ′ accepting
1∗0P is obtained by adding a new initial state to the states of M , say q′0,
and defining the transition function to be the extension of the transition
function of M for which

δ(q′0, 1) := q′0
δ(q′0, 0) := q0.

By interchanging the 0’s and 1’s, we get a monotone DFA accepting 0∗1P ,
which, when ordered lexicographically, is isomorphic to P ⊗ ωop. Last, if
P,Q are monotone, complete prefix codes, so is 0P ∪ 1Q, which, when or-
dered lexicographically is isomorphic to P + Q, by Lemma 4.4. We show

20

how one may obtain a monotone DFA accepting 0P ∪ 1Q from monotone
DFA’s, say MP ,MQ, which accept P and Q, having initial states qP

0 and qQ
0 ,

respectively. Add a new initial state q′0 to the disjoint union of the states of
MP ,MQ, and define a new transition function extending those of MP and
MQ as follows:

δ(q′0, 0) := qP
0

δ(q′0, 1) := qQ
0 . 2

There is a slightly stronger converse.

Proposition 4.6 Suppose that C is a monotone prefix code (not necessarily
complete). Then C, ordered lexicographically, is a discrete regular linear
order.

Proof. Let M be the minimal DFA accepting C. We assume the states of
M are {q1, q2, . . . , qn}, and assume the initial state is q1. We use induction
on n. If n = 1, then M accepts either no strings or all strings. Neither is
a prefix code. If n = 2, C must consist of just the empty string, and the
initial state is the only final state. Otherwise, C cannot be a prefix code.
The codes accepted by a 3 state minimal, monotone DFA are:

{0}, {1}, {0, 1}, 0∗1, 1∗0.

The corresponding orders are isomorphic to 1,1,1 + 1, ωop, ω, respectively.
The proof is completed by the following observations: if C is a prefix code
and C = 0L1∪1L2, then at least one of L1, L2 is nonempty, and if nonempty,
both L1 and L2 are prefix codes. If C = 0∗1L, then L is a (complete)
prefix code; similarly if C = 1∗0L. Now assume n > 3. Either the initial
state has a self loop, or not. If not, then C = 0L1 ∪ 1L2, where L1 is the
behavior of the state δ(q1, 0) and L2 is the behavior of the state δ(q1, 1).
Hence, by induction, if both L1, L2 are nonempty, both are discrete regular
linear orders, and C determines a linear order isomorphic to their sum. If
L1 is empty, say, then C determines a linear order isomorphic to the one
determined by L2, which is a discrete regular linear order, by induction. If
both L1, L2 are empty, C is not a code.

If the initial state has a self loop on the letter 1, say, then C = 1∗0L, where
L is the behavior of the state δ(q1, 0). If L is empty, so is C, so C cannot
be a code. Otherwise, L determines an discrete regular linear order, by

21

induction, and the linear order determined by C is isomorphic to L ⊗ ω.
Similarly, if the initial state has a self loop on the letter 0, C will determine
a linear order isomorphic to L ⊗ ωop. The proof is complete. 2

Corollary 4.7 A linear order is discrete regular linear order iff it is iso-
morphic to the lexicographic ordering of a monotone, complete prefix code.

2

Corollary 4.8 A word w on the alphabet A is regular and discrete iff there
is a monotone A-automaton M = (Q, q0, δ, F) accepting a (complete) prefix
code such that w is isomorphic to µM .

The word “isomorphic” in Corollary 4.8 (and elsewhere) is crucial. A regular
complete prefix code C may not be monotone, but nonetheless (C,≤`) may
be discrete. Consider the set C = (01)∗(00 + 1), for example. The linear
order (C,≤`) is isomorphic to ω + ωop, and C is not monotone.

We summarize the above facts.

Theorem 4.9 For a word (Lw,≤w, w) on the alphabet A, the following are
equivalent.

1. w belongs to the least class of words containing the single letters a ∈ A,
closed under product, u, v 7→ uv, and the operations u 7→ uω and
u 7→ uωop

.

2. w is regular and Lw is a discrete (regular) linear order.

3. w is isomorphic to a regular word u, where Lu is a monotone, (com-
plete) prefix code.

4. w is isomorphic to a regular word u, where (Lu,≤`) is discrete and a
regular (complete) prefix code.

5. w is isomorphic to a word u(R1, . . . , Rn), where the sets Ri are regular,
pairwise disjoint, and

⋃
i∈[n] Ri is a monotone (complete) prefix code.

2

From Theorem 4.9 and Cantor’s normal form theorem [Sier58], we obtain
the following Corollary.

Corollary 4.10 An ordinal α is in RL iff α < ωω. 2

22

5 Some algorithms

The DFA’s that accept prefix codes are easily characterized. The proof of
the following fact is an easy exercise.

Proposition 5.1 An accessible DFA M = (Q, q0, δ, F) accepts a prefix code
iff for each final state q, there is no nonempty string x ∈ {0, 1}∗ such that
δ(q, x) is also final. An accessible DFA M = (Q, q0, δ, F) accepts a complete
prefix code iff it accepts a prefix code and for each coaccessible state q, either
q is final or both δ(q, 0) and δ(q, 1) are coaccessible. 2

Thus, every A-automaton accepts a prefix code.

Corollary 5.2 There is a polynomial time algorithm to determine, given a
DFA M on the alphabet {0, 1},

1. whether M accepts a monotone, (complete) prefix code, say P , and

2. if it does, whether (P,≤`) is well ordered.

Proof outline. First, in polynomial time, find the minimal automaton M
equivalent to M , and then check whether M has nontrivial cycles. Then,
check whether M satisfies the conditions in Proposition 5.1. If it does, the
lexicographic order on the language accepted by M is well-ordered iff there
is no path in M from the initial state to a final state which contains a loop
labeled 0. 2

We will show that there is a polynomial time algorithm to determine, given
a DFA M that accepts the language C ⊆ {0, 1}∗, whether the linear order
(C,≤`) is discrete.

Recall Definition 2.1.

Lemma 5.3 If (L,≤) is a discrete linear order, and for each x ∈ L, (Kx,≤)
is a discrete linear order, then

∑
x∈L Kx is also discrete. If (L,≤) is a

discrete linear order, and C ⊆ L, then C with the inherited order is also a
discrete linear order.

Proof. We prove only the first statement. Suppose that ϕ : Q → ∑
x∈L Kx

is an order embedding. Then, for each x ∈ L, unless ϕ−1(Kx) is empty or

23

has exactly one point, Kx is quasi dense. But then ϕ is in fact an order
embedding of Q into L, which is impossible. 2

For any C ⊆ {0, 1}∗, and any string u ∈ {0, 1}∗, the left quotient of C
by u, written u−1C, is the set {v ∈ {0, 1}∗ : uv ∈ C}. Note that if C
is a (complete) prefix code, and if a left quotient is nonempty, it is also a
(complete) prefix code.

Lemma 5.4 Suppose that C ⊆ {0, 1}∗ and (C,≤`) is quasi dense. Then
either (0−1C,≤`) or (1−1C,≤`) is quasi dense.

Proof. Let f : Q → C be an order embedding. Let Q0 be the set of
rationals q such that f(q) ∈ 0(0−1C), and let Q1 be Q − Q0. Then Q0 is
closed downward, and Q1 is closed upward. Thus, if Q0 is nonempty, 0−1C
is quasi dense. Similarly, if Q1 is nonempty 1−1C is quasi dense. 2

Lemma 5.5 Suppose that C ⊆ {0, 1}∗ is quasi dense. Then there is a string
u such that

u−1C, (u0)−1C and (u1)−1C

are quasi dense.

Proof. Suppose not. Then we will construct strings un, vn with the follow-
ing properties.

1. The length of both un and vn is n.

2. u−1
n C is quasi-dense.

3. The word vn differs from un only in the last letter.

4. For each n ≥ 1, vn(v−1
n C) is discrete.

5. C ⊆ ⋃
n≥1 vn(v−1

n C) ∪ {u0, u1, . . .} .

Define u0 = λ. Now assume that un has been defined such that u−1
n C is

quasi dense. Thus, by assumption, exactly one of (un0)−1C and (un1)−1C
is quasi dense. We define only un+1, since vn+1 is then determined.

un+1 :=

{
un0 if (un0)−1C is quasi-dense
un1 otherwise.

24

We prove our claims. It is clear that the first four items hold. As for the
last, any finite string x in C is either one of the ui or is in vn(v−1

n C), for some
n ≥ 1. Indeed, suppose that |x| = n. If n = 0, then x = u0. Otherwise, if x
is not the string un, then, there is a first letter where x differs from un, say,
the i-th. Then x ∈ vi(v−1

i C).

We will now show that these properties imply that C is discrete, contradict-
ing the assumption.

The words vn fall into two groups: those for which vn = un−10, the “zero-
group”, and those for which vn = un−11, the “one-group”. Note that if vn

is in the zero group, then un+1 = un1.

When ordered lexicographivally, the strings in the zero-group form a finite
chain or an omega-chain, the strings in the zero-group together with the
strings un, n ≥ 0, form an omega-chain, and the strings in the one-group
form a finite chain or an ωop-chain. Thus, the strings the strings un and vm,
n ≥ 0, m ≥ 1, form an linearly ordered set isomorphic to ω + k, for some
k ≥ 0, or to ω + ωop, a discrete linear order.

Thus,
⋃

n vn(v−1
n C) ∪ {u0, u1, . . .} is isomorphic to the poset obtained from

substituting either a singleton linear order or a discrete linear order vn(v−1
n C)

in the discrete order L. By Lemma 5.3, C is discrete. 2

Lemma 5.6 Suppose that C is a regular subset of {0, 1}∗. If (C,≤`) is
quasi dense, then there are strings r, s, t in {0, 1}∗ such that

r−1C = (r0s)−1C = (r1t)−1C 6= ∅.

Proof. Let G be the edge-labeled, directed graph whose vertices are those
left quotients x−1C of C such that (x−1C,≤`) is quasi dense. Thus C =
λ−1C is a vertex in G, and if x−1C belongs to G, then at least one of
(x0)−1C, (x1)−1C belongs to G, by Lemma 5.4. If (xi)−1C ∈ G there is
an edge x−1C → (xi)−1C, i ∈ {0, 1}. So each vertex of G has outdegree at
least one. Also, for each vertex x−1C in G, there is some string u such that
(xu)−1C, (xu0)−1C and (xu1)−1C belong to G, by Lemma 5.5. Let G be
the set of strong components of G is partially ordered by: S ≤ S′ if there is a
path from some vertex of S to some vertex of S′. Since C is regular, both G
and G are finite. Hence G has a maximal element, say S. If x−1C ∈ S, then
for any string v, if (xv)−1C belongs to G, then (xv)−1C belongs to S, since
S is maximal. Thus, choosing the string u such that (xu)−1C, (xu0)−1C

25

and (xu1)−1C all belong to G, since S is a strong component, there are
strings s, t such that (xu0s)−1C = (xu)−1C, and (xu1t)−1C = (xu)−1C.
Hence, letting r = xu, we have found r, s, t such that

r−1C = (r0s)−1C = (r1t)−1C.

Since each is quasi dense, each is nonempty. 2

There is a slightly stronger converse.

Lemma 5.7 Suppose that C is a not necessarily regular subset of {0, 1}∗
and r, s, t are strings such that

r−1C = (r0s)−1C = (r1t)−1C 6= ∅.
Then (C,≤`) is quasi dense.

Proof. Let y ∈ r−1C, and define ϕ : {0, 1}+ → C as the semigroup
morphism determined by the following conditions:

0 7→ r0sy
1 7→ r1ty.

Then, for example,

0110 7→ r0syr1tyr1tyr0sy.

Thus, the restriction of ϕ to a copy of Q, say to (11 + 0)∗10, is an order
embedding of Q into (C,≤`), proving C is quasi dense. 2

We have proved

Proposition 5.8 Let C be a regular subset of {0, 1}∗. Then (C,≤`) is quasi
dense iff there are strings r, s, t such that

r−1C = (r0s)−1C = (r1t)−1C 6= ∅.

Corollary 5.9 There is a polynomial time algorithm to decide, given a DFA
which accepts a subset C of {0, 1}∗, whether (C,≤`) is quasi dense.

Proof. We need only check for each coaccessible state q in the minimal
automaton for C, whether there are strings s, t such that

q = δ(q, 0s) = δ(q, 1t). (5)

Any efficient shortest path algorithm will solve this problem in polynomial
time. 2

26

Corollary 5.10 There is a polynomial time algorithm to decide, given an
A-automaton M , whether µM is discrete. 2

References

[BlCho01] S.L. Bloom and C. Choffrut. Long words: the theory of concate-
nation and ω-power. Theoretical Computer Science, vol. 259, (1-2)
2001, 533-548.

[BruyCar] V. Bruyère and O. Carton. Automata on linear orderings. Pro-
ceedings Mathematical Foundations of Computer Science, 2001, Lec-
ture Notes in Computer Science, vol. 2136.

[BruyCar2] V. Bruyère and O. Carton. Hierarchy among automata on linear
orderings. To appear TCS 2002 (IFIP conference at Montreal at the
end of August).

[Brzo80] J.A. Brzozowski and F.E. Fich. Languages of R-trivial monoids.
J. Comp. Systems Sci, 20, 1980, 32–49.

[Car] O. Carton. Accessibility on automata on scattered linear orderings.
To appear.

[Cour78] B. Courcelle. Frontiers of infinite trees. RAIRO Informatique, vol.
12, 1978, 319–337.

[Cour83] B. Courcelle. Fundamental properties of infinite trees. Theoretical
Computer Science, vol. 25, 1983, 95–169.

[Eil76] S. Eilenberg. Automata, Languages and Machines, vol. B. Academic
Press, New York, 1976.

[Heil80] S. Heilbrunner. An algorithm for the solution of fixed-point equa-
tions for infinite words. RAIRO Informatique, vol. 14, no. 2, 1980,
131–141.

[Pin86] J.-E. Pin. Varieties of Formal Languages. Plenum Publishing Corp.,
New York, 1986.

[Sier58] W. Sierpinski. Cardinal and Ordinal Numbers. Warsaw: PWN,
1958.

27

[Thom86] W. Thomas. On frontiers of regular trees. Theoretical Informatics
and Applications, vol. 20, 1986, 371–381.

Recent BRICS Report Series Publications

RS-02-39 Stephen L. Bloom and Zolt́an Ésik. Some Remarks on Regular
Words. September 2002. 27 pp.

RS-02-38 Daniele Varacca. The Powerdomain of Indexed Valuations.
September 2002. 54 pp. Short version appears in Plotkin, ed-
itor, Seventeenth Annual IEEE Symposium on Logic in Com-
puter Science, LICS ’02 Proceedings, 2002, pages 299–308.

RS-02-37 Mads Sig Ager, Olivier Danvy, and Mayer Goldberg.A Sym-
metric Approach to Compilation and Decompilation. August
2002. To appear in Neil Jones’s Festschrift.

RS-02-36 Daniel Damian and Olivier Danvy. CPS Transformation of
Flow Information, Part II: Administrative Reductions. August
2002. 9 pp. To appear in theJournal of Functional Program-
ming. This report supersedes the earlier BRICS report RS-01-
40.

RS-02-35 Patricia Bouyer. Timed Automata May Cause Some Troubles.
August 2002. 44 pp.

RS-02-34 Morten Rhiger. A Foundation for Embedded Languages. Au-
gust 2002. 29 pp.

RS-02-33 Vincent Balat and Olivier Danvy. Memoization in Type-
Directed Partial Evaluation. July 2002. 18 pp. To appear in
Batory and Consel, editors,ACM SIGPLAN/SIGSOFT Confer-
ence on Generative Programming and Component Engineering,
GPCE ’02 Proceedings, LNCS, 2002.

RS-02-32 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde.
On Obtaining Knuth, Morris, and Pratt’s String Matcher by Par-
tial Evaluation. July 2002. 43 pp. To appear in Chin, editor,
ACM SIGPLAN ASIAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, ASIA-PEPM ’02 Pro-
ceedings, 2002.

RS-02-31 Ulrich Kohlenbach and Paulo B. Oliva.Proof Mining: A Sys-
tematic Way of Analysing Proofs in Mathematics. June 2002.
47 pp.

RS-02-30 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time. June 2002.

