
B
R

IC
S

R
S

-02-24
C

hristensen
etal.:

S
tatic

A
nalysis

for
D

ynam
ic

X
M

L

BRICS
Basic Research in Computer Science

Static Analysis for Dynamic XML

Aske Simon Christensen
Anders Møller
Michael I. Schwartzbach

BRICS Report Series RS-02-24

ISSN 0909-0878 May 2002

Copyright c© 2002, Aske Simon Christensen & Anders Møller &
Michael I. Schwartzbach.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/24/

Static Analysis for Dynamic XML

Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach
BRICS, Department of Computer Science

University of Aarhus, Denmark

Abstract

We describe the summary graph lattice for dataflow analysis of pro-
grams that dynamically construct XML documents. Summary graphs
have successfully been used to provide static guarantees in the JWIG lan-
guage for programming interactive Web services. In particular, the JWIG
compiler is able to check validity of dynamically generated XHTML doc-
uments and to type check dynamic form data. In this paper we present
summary graphs and indicate their applicability for various scenarios. We
also show that summary graphs have exactly the same expressive power as
the regular expression types from XDuce, but that the extra structure in
summary graphs makes them more suitable for certain program analyses.

1 Introduction

XML documents will often be generated dynamically by programs. A common
example is XHTML documents being generated by interactive Web services in
response to requests from clients. Typically, there are no static guarantees that
the generated documents are valid according to the DTD for XHTML. In fact, a
quick study of the outputs from many large commercial Web services shows that
most generated documents are in fact invalid. This is not a huge problem, since
the browsers interpreting this output are quite forgiving and do a fair job of
rendering invalid documents. Increasingly, however, Web services will generate
output in other XML languages for less tolerant clients, many of whom will
themselves be Web services.

Thus it is certainly an interesting question to statically guarantee validity of
dynamically generated XML. Our approach is to perform a dataflow analysis of
the program generating XML documents. This is a standard technique that is
basically just parameterized by the finite lattice used to abstract the computed
values and the transfer functions modeling the statements. The contribution
described in this paper is the definition of an appropriate lattice of summary
graphs that strikes a balance between expressive power and complexity. We
show how summary graphs have been used to efficiently analyze realistic Web
services with great accuracy. Also, we discuss what kind of operations on XML
values that successfully can be captured by such dataflow analysis. Finally,

1

we show that summary graphs have the same expressive power as the regular
expression types of XDuce [5, 7, 6].

2 XML Templates

We have concretely analyzed programs in the JWIG language, which is an ex-
tension of Java designed for programming interactive Web services. JWIG is a
descendant of the <bigwig> language [2]. For the current discussions, we only
need to consider how XML documents are built. JWIG is based on the notion
of XML templates, which are just sequences of XML trees containing named
gaps. A special plug operation is used to construct new templates by inserting
existing templates or strings into gaps in other templates. Using XHTML as an
example, the main method of a JWIG program manipulating templates could
look like:

public void main() {

XML wrapper = [[<html>

<head>

<title>JWIG Example</title>

</head>

<body>

<[contents]>

</body>

</html>]];

XML item = [[<[text]> <[items]>]];

XML x = [[<ul class=[kind]> <[items]>]];

for (int i=0; i<n; i++) {

x = x<[items = item<[text=i]];

}

show wrapper<[contents=x]<[kind="large"];

}

Gaps appear either as template gaps, such as contents, or as attribute gaps,
such as kind. Both strings and templates may be plugged into template gaps,
whereas attribute gaps only allow strings. The plug operation, x<[g=y], returns
a copy of x where copies of y have been inserted into all g gap. Template
constants are denoted by [[. . .]].

Note that XML values need not be constructed bottom-up, since gaps can
be left in templates as targets for later plug operations. Also, a plug operation
will fill in all occurrences of the given gap, even if they originate from different
subtemplates. The more common language design of building XML values from
constructors is a special case of this mechanism, since e.g. a construction like
l[X] from XDuce corresponds to [[<l><[g]></l>]] <[g=X]. The plug
operation has proved itself to be flexible and intuitive. Also, it is convenient

2

to write larger constant fragments in ordinary XML syntax rather than using
nested constructor invocations.

3 Summary Graphs

We want to perform dataflow analysis of programs constructing XML values by
plugging together templates. This key ingredient for such an analysis is a finite
lattice for summarizing the state of a computation for each program point.
Based on earlier experiences [10, 1], we have defined the lattice of summary
graphs. Such a graph has as nodes the set of template constants occurring
in the given program. The edges correspond to possible pluggings of gaps with
strings or other templates. Given a concrete program, we let G be the set of gap
names that occur and N be a set of template indices denoting the instances of
XML template constants. A summary graph SG is formally defined as follows:

SG = (R, T, S, P)

where:

R ⊆ N is a set of root nodes,
T ⊆ N × G × N is a set of template edges,
S : N × G → REG is a string edge map, and
P : G → 2N × Γ × Γ is a gap presence map.

Here Γ = 2{OPEN,CLOSED} is the gap presence lattice whose ordering is set inclu-
sion, and REG is the set of regular languages over the Unicode alphabet.

Intuitively, the language L(SG) of a summary graph SG is the set of XML
documents that can be obtained by unfolding its templates, starting from a root
node and plugging templates and strings into gaps according to the edges. The
presence of a template edge (n1, g, n2) ∈ T informally means that the template
with index n2 may be plugged into the g gaps in the template with index n1,
and a string edge S(n, g) = L means that every string in the regular language
L may be plugged into the g gaps in the template with index n.

The gap presence map, P , specifies for each gap name g which template
constants may contain open g gaps reachable from a root and whether g gaps
may or must appear somewhere in the unfolding of the graph, either as template
gaps or as attribute gaps. The first component of P (g) denotes the set of
template constants with open g gaps, and the second and third components
describe the presence of template gaps and attribute gaps, respectively. Given
such a triple, P (g), we let nodes(P (g)) denote the first component. For the
other components, the value OPEN means that the gaps may be open, and
CLOSED means that they may be closed or never have occurred. At runtime,
if a document is shown with open template gaps, these are treated as empty
strings. For open attribute gaps, the entire attribute is removed. We need the
gap presence information in the summary graphs to 1) determine where edges
should be added when modeling plug operations, 2) model the removal of gaps

3

that remain open when a document is shown, and 3) detect that plug operations
may fail because the specified gaps have already been closed.

This unfolding of summary graphs is explained more precisely with the fol-
lowing formalization:

unfold(SG) = {d | ∃r ∈ R : SG, r ` t(r) ⇒ d where SG = (R, T, S, P)}
Here, t(n) denotes the template with index n. The unfolding relation, ⇒, is
defined by induction in the structure of the XML template. For the parts that
do not involve gaps the definition is a simple recursive traversal:

SG, n ` str ⇒ str

SG, n ` xml1 ⇒ xml ′1 SG, n ` xml2 ⇒ xml ′2
SG, n ` xml1 xml2 ⇒ xml ′1 xml ′2

SG, n ` atts ⇒ atts ′ SG , n ` xml ⇒ xml ′

SG, n ` <name atts> xml </ name> ⇒ <name atts ′> xml ′ </ name>

SG, n ` ε ⇒ ε

SG, n ` name=" str" ⇒ name=" str "

SG , n ` atts1 ⇒ atts ′1 SG, n ` atts2 ⇒ atts ′2
SG, n ` atts1 atts2 ⇒ atts ′1 atts ′2

For template gaps we unfold according to the string edges and template edges
and check whether the gap may be open:

str ∈ S(n, g)
(R, T, S, P), n ` <[g]> ⇒ str

(n, g, m) ∈ T (R, T, S, P), m ` t(m) ⇒ xml
(R, T, S, P), n ` <[g]> ⇒ xml

n ∈ nodes(P (g))
(R, T, S, P), n ` <[g]> ⇒ <[g]>

For attribute gaps we unfold according to the string edges, and check whether
the gap may be open:

str ∈ S(n, g)
(R, T, S, P), n ` name=[g] ⇒ name=" str"

n ∈ nodes(P (g))
(R, T, S, P), n ` name=[g] ⇒ name=[g]

Using a function close that removes all remaining gaps in an XML template,
we now define the language of a summary graph by:

L(SG) = {close(d) | d ∈ unfold(SG)}

4

Summary graphs for a given program form a lattice where the ordering is defined
as one would expect:

(R1, T1, S1, P1) v (R2, T2, S2, P2) ⇔
R1⊆R2 ∧ T1⊆T2 ∧ ∀n ∈ N, g ∈ G : S1(n, g)⊆S2(n, g) ∧ P1(g)vP2(g)

where the ordering on gap presence maps is defined by componentwise set inclu-
sion. This respects language inclusion: if SG1 v SG2, then L(SG1) ⊆ L(SG2),
but the converse implication is false.

Continuing the previous example, the summary graph inferred for the XML
value being shown to the client is:

<ul class=[kind]>
 <[items]>

<[text]>
<[items]>

contents
kind
items
text

Gap presence: (Ø,{CLOSED},{CLOSED})
(Ø,{CLOSED},{CLOSED})
({2,3},{OPEN},{CLOSED})
(Ø,{CLOSED},{CLOSED})

<html>
 <head>
 <title>JWIG Example</title>
 </head>
 <body>
 <[contents]>
 </body>
</html>

"large"

text

contents

kind

items

items

1 2

3

0(−?[1−9][0−9]*)

It is relatively simple to define appropriate transfer functions and perform a
standard monotone dataflow analysis for the JWIG language [3]. The most
interesting example is the template plug operation, z = x <[g = y] where y is
of type XML. This operation assigns to z a copy of x where y has been plugged
into all g gaps. It is modeled by the following transfer function:

(Rz , Tz, Sz, Pz) =
(Rx,
Tx ∪ Ty ∪ {(n, g, m) | n ∈ nodes(Px(g)) ∧ m ∈ Ry)},
λ(m, h).Sx(m, h) ∪ Sy(m, h),
λh.if h=g then Py(h)

else (px ∪ py,merge(tx, ty),merge(ax, ay))
where Px(h) = (px, tx, ax) and Py(h) = (py, ty, ay))

where

merge(γ1, γ2) = if γ1 ={OPEN} ∨ γ2 ={OPEN} then {OPEN} else γ1 ∪ γ2.

The tuples (Rx, Tx, Sx, Px) and (Ry, Ty, Sy, Py) denote the summary graphs that
are associated to x and y at the entry point, and (Rz , Tz, Sz, Pz) is the summary

5

graph for z at the exit point. The roots in the resulting graph are those of the x
graph since it represents the outermost template. The template edges become
the union of those in the two given graphs plus a new edge from each node that
may have open gaps of the given name to each root in the second graph. The
string edge sets are simply joined without adding new information. For the gaps
that are plugged into, we take the gap presence information from the second
graph. For the other gaps we merge the information appropriately.

The set of regular expressions describing computed string values are deter-
mined through a separate dataflow analysis. Thus we obtain summary graphs
that conservatively describe all computed XML values at each program point;
for more details see [3]. The worst-case complexity for this algorithm is O(n6),
where n is the size of the program.

4 Static Guarantees in JWIG

Based on the inferred summary graphs, various static guarantees can be issued.
First we must deal with a self-inflicted problem stemming from the lib-

eral gap-and-plug mechanism. We need to know that whenever a gap is being
plugged, it is actually present in the XML value. However, this information
is directly available in the gap presence map component, and a trivial inspec-
tion suffices. Note that in the special case of constructors, corresponding to
[[<l><[g]></l>]] <[g=X], this property trivially holds.

Second, we need to validate the XML values being generated. This is de-
pendent of the XML language in question, which must first be specified. We
could use ordinary DTDs for this purpose, but have instead chosen the XML
schema language DSD2 [9], which is a further development of DSD [8]. We have
a general algorithm that given a summary graph SG and a DSD2 schema can
verify that every document in L(SG) validates according to the schema. The
DSD2 schema for XHTML is more comprehensive than most others, since it
specifies correct formats for attribute values that are URIs and includes several
context-sensitive requirements that are only stated as comments in the official
DTD.

The final analysis is specific to XHTML and verifies that the form data
expected by the server is actually present in the last document being shown to
the client.

These analyses are fully specified in [3]. They have rather high worst-case
complexities, but are in practice able to handle realistic program. The following
table shows statistics for some small to largish benchmarks.

Name Lines Templates Largest Graph Total Time

Chat 80 4 (2,6) 5.37
Guess 94 8 (2,4) 7.15
Calendar 133 6 (5,14) 7.03
Memory 167 9 (7,13) 9.72
TempMan 238 13 (11,22) 7.72
WebBoard 766 32 (9,22) 9.77
Bachelor 1,078 88 (47,107) 115.64
Jaoo 3,923 198 (33,93) 36.00

6

To indicate the scale of each benchmark, we give the number of lines of code
and the number of template constants. We also show the size of the largest
summary graph computed for each benchmark by indicating the number of
nodes (reachable from the roots) and the number of edges. The time, measured
in seconds, is the total for inferring summary graphs and performing the three
subsequent analyses.

5 Analyzing Deconstruction

The present version of the JWIG language does not contain any mechanism for
deconstruction of XML values. However, the summary graph analysis can—with
simple modifications—easily handle this.

We extend the JWIG language with a notion of deconstruction based on
XPath [4] that generalizes most other proposals. Since we are working on XML
values containing gaps, we get two variations.

The select expression looks like x>[path], where x is an XML value and path
is a location path. The result is an array of XML values corresponding to those
subtrees that are rooted by the elements of the computed node set. The XML
value x is first closed, that is, all gaps are removed, as was the case before show
operations. Other deconstruction mechanisms can clearly be obtained as special
cases. For example, the pattern matching of XDuce corresponds to writing a
selector path for each case and trying them out in turn.

By exploiting the gap mechanism, we can also introduce a complementary
operation that replaces parts of an XML values by gaps. The gapify expression
looks like x>[path=g], where x is an XML value, path is a location path, and
g is an identifier. The result is a copy of x where the subtrees rooted by the
computed node set are replaced by gaps named g. Again, x is first closed. If x
is the XML value:

<html>

<head><title>JWIG example</title></head>

<body>

<ul class="large">

0 1 2 3

</body>

</html>

then the result of x>[//li[text()>’0’] is the following XML array with three
entries:

{ [[1]], [[2]], [[3]] }

and the result of x>[//li[text()>’0’ = g] is the “negative image” in form of
the XML value with gaps named g in place of the selected subtemplates:

<html>

<head><title>JWIG example</title></head>

7

<body>

<ul class="large">

0 <[g]> <[g]> <[g]>

</body>

</html>

The summary graph analysis can be extended with transfer functions for select
and gapify. In [3], the close operation only occurs in connection with show

operations. However, because of our extensions with the select and gapify we
now need to model close operations separately. We must remove all gaps that
might be open according to the gap presence map. To model that a template
gap is removed, one simply adds a template edge to a node with an empty
template. For attribute gaps, we need a small modification of the string edge
component of the summary graph structure:

S : N × G → REG × {÷}
The new element ÷ represents the possibility that the designated attribute
might be removed. The definition of the unfolding relation is extended with a
rule describing this meaning:

÷ ∈ S(n, g)
(R, T, S, P), n ` name=[g] ⇒ ε

To model that an attribute gap is removed in a close operation, we just add ÷
to the appropriate string edge. The gap presence map of the result of a close
operation maps all gaps to (∅, {CLOSED}, {CLOSED}).

The core observation when modeling select and gapify operations is in both
cases that an XPath selector path can be evaluated symbolically on a summary
graph. The resulting node set is represented abstractly by assigning a status
to each element in all templates assigned to nodes in the summary graph. The
possible status values are:

• all : every occurrence of this element belongs to the node set in every
unfolding of the summary graph;

• some: at least one occurrence of this element belongs to the node set in
every unfolding of the summary graph;

• definite: the conditions for both all and some are satisfied;

• none: no occurrences of this element belong to the node set in any un-
folding of the summary graph;

• don’t know : none of the above can be determined.

This forms a 5-valued logic reminiscent of the logic used when analyzing validity
with respect to DSD2 schemas [3]. Based on these status values, it is straight-
forward conservatively to compute summary graphs for the results of select and
gapify.

8

For a select expression, all subtemplates whose root elements do not have
status none are added to the summary graph, inherit all relevant edges, and are
made the only root nodes.

For a gapify expression, all subtemplates whose root elements do not have
status none are replaced by a gap named g. If the status is some or don’t know,
the new gap will have a template edge to a copy of the old subtemplate. The
gap presence map of the new summary graph will be

λh.if h=g then (hits , any, {CLOSED}) else (∅, {CLOSED}, {CLOSED})
where hits is the set of all template nodes containing an element with status
different from none, and any is {OPEN} if there is an element with status definite
or some, {CLOSED} if all elements have status none, and {OPEN, CLOSED}
otherwise.

Continuing the example from Section 4, the result of the select expression is
described by

Gap presence: text (Ø,{CLOSED},{CLOSED})

<[text]>
1

0|(−?[1−9][0−9]*)

and the result of the gapify expression by

<ul class=[kind]>
 <[items]>

<html>
 <head>
 <title>JWIG Example</title>
 </head>
 <body>
 <[contents]>
 </body>
</html>

"large"

contents

kind

items

items
<[items]>

<[text]>

text

<[g]>

g

1 2

3

4

Gap presence: contents
kind
items
g

(Ø,{CLOSED},{CLOSED})

({3},{OPEN,CLOSED},{CLOSED})
text (Ø,{CLOSED},{CLOSED})

(Ø,{CLOSED},{CLOSED})

(Ø,{CLOSED},{CLOSED}) 0|(−?[1−9][0−9]*)

items

items

We are currently implementing the select and gapify operations and the associ-
ated extensions of the summary graph analysis in the JWIG system to test the
analysis precision and performance in practice.

Deconstruction is mainly relevant for XML values that are imported from
external sources. To obtain non-trivial analyses, we need to obtain summary
graph descriptions of such values. In practice this will by done by performing
automatic translations from DTDs or DSD2 schemas. We believe that such
translations can be made sufficiently precise. As an example, consider the fol-
lowing DTD:

<!ELEMENT card (name,title?,phone+,logo)>

9

<!ELEMENT name (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT logo EMPTY>

<!ATTLIST logo src CDATA #REQUIRED>

It is exactly captured by the following summary graph:

<card>
 <[name]>
 <[title]>
 <[phone]>
 <[logo]>
</card>

<name>
 <[pcdata]>
</name>

title

name

title

<title>
 <[pcdata]>
</title>

<phone>
 <[pcdata]>
</phone>
<[phone]>

phone

phone

phone

pcdata

pcdata

pcdata

U*

U*

U*

<logo src=[cdata]/>
logo

U*

cdata

where all gaps are closed and U is the set of all Unicode characters. For a richer
schema language as DSD2 the translation will of course become more complex,
and it will in some cases be necessary to perform conservative approximations.

6 Regular Expression Types

Summary graphs turn out to have the same expressive power as the regular
expression types of XDuce [5]. To be exact, this comparison only holds for a
restricted version of summary graphs. Since XDuce does not support attributes,
those must be left out. Also, summary graphs allows for restrictions on character
data appearing in element contents, which is also not supported by XDuce.

Regular expression types are essentially solutions to recursive equations us-
ing the operators () (the empty value), l[T] (singleton element), S|T (union),
and S,T (sequencing). For example, the derived operator T* is defined by the
equation:

X = T,X | ()

A regular expression type defines a set of XML values corresponding to all
finite unfoldings. It is now a simple matter to build inductively a summary
graph that defines the same set of XML values. The four operators are modeled
by summary graphs as follows:

10

�
�

�
�

<l><[g]></l>

�� ��-

- -

�
�

�
�

-

�
�

�
�

-

HHHj
���*

���*
HHHj

l[T] T

<[g]><[h]>

g

g

h
S,T

S|T <[g]>
g

()

g

S

T

S

T

All gaps are closed in these summary graphs. An edge to a variable is modeled
by an edge to the root node of the summary graph corresponding to its right-
hand side. For example, the derived summary graph for T* is:

$'
?

�
�

�
�

--

?

�
�

�
� ?

�
�

�
�

<[g]> <[g]><[h]>

T

g

gg

h

Note that the sequencing operator is associative as required in XDuce. The
inverse translation is equally straightforward, but requires that the summary
graph is first normalized. First, all open gaps are translated into closed ones by
adding a template edge to an empty template. Second, all non-empty template
constants are decomposed into one of the forms <l><[g]></l> or <[g]><[h]>.
This is done by repeatedly applying the rewritings sketched by:

�����*

-HHHHHj

�����*

-HHHHHj

-

�
�

�
���

�����*

-

@
@

@
@@R

HHHHHj�
�

�
�
�����*

HHHHHj

�
�

�
�

�
�

�
�<[g]><[h]>

g

h Y

X

�����*

-HHHHHj
�
�

�
�

-�
�

�
�

<l><[g]></l> X
g

�
�

�
�

�
�

�
�

<l>X</l>

XY B

B

Given a normalized summary graph, we first assign a type variable to each node.
Then for each node of the form:

�
�

�
�

-<l><[g]></l>
X g

Y1, Y2, . . . , Yn

we define the type equations:

11

X = l[Y]
Y = Y1 | . . . | Yn

for each node of the form:

�
�

�
�
�����*

HHHHHj

<[g]><[h]>
X

g

h
Z1, Z2, . . . , Zk

Y1, Y2, . . . , Yn

we define the type equations:

X = Y ,Z
Y = Y1 | . . . | Yn

Z = Z1 | . . . | Zk

and for empty nodes:

�
�

�
�X

we define the type equation:

X = ()

Finally, for the root nodes R1, . . . , Rn we define the type equation:

R = R1 | . . . | Rn

and the type R is the final result of the translation. These two translations
demonstrate the close relationship between our approach and that of XDuce.

Our analysis is thus also able to infer regular expression types for programs
that dynamically construct XML values. This result does not directly apply to
XDuce, since we infer different types for variables at each program point. It
is, however, possible to subsequently verify a subtype relationship between each
declared and inferred type. The resulting type reconstruction algorithm is of
course not complete with respect to the type rules of XDuce [5]; in fact, their
abilities to accept programs are most likely incomparable.

Note that the summary graph lattice contains extra structure in the form
of the root sets and the gap presence maps. Also, the lattice order is more
fine-grained than the language inclusion used as subtyping in XDuce. All this
constitutes a scaffolding that is required during analysis but is not needed to
express the final results. Note also that the analysis uses a kind of constructor
polyvariance, since constructors in the summary graph are represented once for
each invocation site. We believe that similar ideas would need to be developed
for XDuce, if flow-sensitive type reconstruction were to be attempted directly.

12

7 Conclusion

We have presented the lattice of summary graphs as a convenient means for
abstracting sets of XML values during dataflow analyses of programs that dy-
namically construct XML documents. Summary graphs have been used in the
fully implemented JWIG language, and we have indicated the applicability for
other scenarios.

References

[1] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static
validation of dynamically generated HTML. In Proc. ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering, PASTE ’01, June 2001.

[2] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The
<bigwig> project. ACM Transactions on Internet Technology, 2(1), 2002.

[3] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Ex-
tending Java for high-level Web service construction. Technical Report
RS-02-11, BRICS, March 2002. Submitted for journal publication.

[4] James Clark and Steve DeRose. XML path language, November 1999. W3C
Recommendation. http://www.w3.org/TR/xpath.

[5] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing
language. In Proc. 3rd International Workshop on the World Wide Web
and Databases, WebDB ’00, volume 1997 of LNCS. Springer-Verlag, May
2000.

[6] Haruo Hosoya and Benjamin C. Pierce. Regular expression pattern match-
ing for XML. In Proc. 28th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’01, January 2001.

[7] Haruo Hosoya, Jerome Vouillon, and Benjamin C. Pierce. Regular expres-
sion types for XML. In Proc. 5th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’00, September 2000.

[8] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. The DSD
schema language. Automated Software Engineering, 2002. Kluwer. Prelim-
inary version in Proc. 3rd ACM SIGPLAN-SIGSOFT Workshop on Formal
Methods in Software Practice, FMSP ’00.

[9] Anders Møller. Document Structure Description 2.0. In preparation, 2002.

[10] Anders Sandholm and Michael I. Schwartzbach. A type system for dynamic
Web documents. In Proc. 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’00, January 2000.

13

Recent BRICS Report Series Publications

RS-02-24 Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Static Analysis for Dynamic XML. May 2002.
13 pp.

RS-02-23 Antonio Di Nola and Laurent¸iu Leuştean. Compact Represen-
tations of BL-Algebras. May 2002. 25 pp.

RS-02-22 Mogens Nielsen, Catuscia Palamidessi, and Frank D. Valen-
cia. On the Expressive Power of Concurrent Constraint Pro-
gramming Languages. May 2002. 34 pp.

RS-02-21 Zolt́an Ésik and Werner Kuich. Formal Tree Series. April 2002.
66 pp.

RS-02-20 Zolt́an Ésik and Kim G. Larsen. Regular Languages Defin-
able by Lindstr̈om Quantifiers (Preliminary Version). April 2002.
56 pp.

RS-02-19 Stephen L. Bloom and Zolt́an Ésik. An Extension Theorem
with an Application to Formal Tree Series. April 2002. 51 pp. To
appear in Blute, editor, Category Theory and Computer Science:
9th International Conference, CTCS ’02 Proceedings, ENTCS,
2002 under the titleUnique Guarded Fixed Points in an Additive
Setting.

RS-02-18 Gerth Stølting Brodal and Rolf Fagerberg. Cache Oblivious
Distribution Sweeping. April 2002. To appear in 29th Interna-
tional Colloquium on Automata, Languages, and Programming,
ICALP ’02 Proceedings, LNCS, 2002.

RS-02-17 Bolette Ammitzbøll Madsen, Jesper Makholm Nielsen, and
Bjarke Skjernaa. On the Number of Maximal Bipartite Sub-
graphs of a Graph. April 2002. 7 pp.

RS-02-16 Jǐr ı́ Srba. Strong Bisimilarity of Simple Process Algebras: Com-
plexity Lower Bounds. April 2002. 33 pp. To appear in29th In-
ternational Colloquium on Automata, Languages, and Program-
ming, ICALP ’02 Proceedings, LNCS, 2002.

RS-02-15 Jesper Makholm Nielsen.On the Number of Maximal Indepen-
dent Sets in a Graph. April 2002. 10 pp.

RS-02-14 Ulrich Berger and Paulo B. Oliva. Modified Bar Recursion.
April 2002. 23 pp.

