
B
R

IC
S

R
S

-02-11
C

hristensen
etal.:

E
xtending

Java
forH

igh-LevelW
eb

S
ervice

C
onstruction

BRICS
Basic Research in Computer Science

Extending Java for
High-Level Web Service Construction

Aske Simon Christensen
Anders Møller
Michael I. Schwartzbach

BRICS Report Series RS-02-11

ISSN 0909-0878 March 2002

Copyright c© 2002, Aske Simon Christensen & Anders Møller &
Michael I. Schwartzbach.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/02/11/

Extending Java for
High-Level Web Service Construction

Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach

BRICS, Department of Computer Science

University of Aarhus, Denmark

We incorporate innovations from the <bigwig> project into the Java language to provide high-
level features for Web service programming. The resulting language, JWIG, contains an advanced
session model and a flexible mechanism for dynamic construction of XML documents, in particular
XHTML. To support program development we provide a suite of program analyses that at compile-
time verify for a given program that no run-time errors can occur while building documents or

receiving form input, and that all documents being shown are valid according to the document
type definition for XHTML 1.0.

We compare JWIG with Servlets and JSP which are widely used Web service development
platforms. Our implementation and evaluation of JWIG indicate that the language extensions
can simplify the program structure and that the analyses are sufficiently fast and precise to be
practically useful.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features; D.2.4 [Software Engineering]: Software/Program Verification

General Terms: Languages, Design, Verification

Additional Key Words and Phrases: Interactive Web Services, Data-Flow Analysis, XML

1. INTRODUCTION

The Java language is a natural choice for developing modern Web services. Its
built-in network support, strong security guarantees, concurrency control, and wide-
spread deployment in both browsers and servers, together with popular development
tools make it relatively easy to create Web services. In particular, JavaServer
Pages (JSP) [34] and Servlets [33], which are both Java based technologies, have
become immensely popular. However, both JSP, Servlets, and many other similar
and widely used technologies, such as ASP, PHP, and CGI/Perl, suffer from some
problematic shortcomings, as we will argue in the following and try to address.

1.1 Sessions and Web Pages

In general, JSP, Servlets, and related approaches provide only low-level solutions
to two central aspects of Web service design: sessions and dynamic construction of
Web pages.

A session is conceptually a sequential thread on the server that has local data,
may access data shared with other threads, and can perform several interactions
with a client. With standard technologies, sessions must be encoded by hand which
is tedious and error prone. More significantly, it is difficult to understand the

Authors’ address: Ny Munkegade, Bldg. 540, DK-8000 Aarhus C, Denmark.
Email: {aske,amoeller,mis}@brics.dk

2 · Christensen, Møller, and Schwartzbach

control-flow of an entire service from the program source since the interactions
between the client and the server are distributed among several seemingly unrelated
code fragments. This makes maintenance harder for the programmer if the service
has a complicated control flow. Also, it prevents compilers from getting a global
view of the code to perform whole-service program analyses.

The dynamic construction of Web pages is typically achieved by print statements
that piece by piece construct HTML fragments from text strings. Java is a general
purpose language with no inherent knowledge of HTML, so there are no compile-
time guarantees that the resulting documents are valid HTML. For static pages, it is
easy to verify validity [29], but for pages that are dynamically generated with a full
programming language, the problem is in general undecidable. Not even the much
simpler property of being well-formed can be guaranteed in this way. Instead of
using string concatenation, document fragments may be built in a more controlled
manner with libraries of tree constructor functions. This automatically ensures
well-formedness, but it is more tedious to use and the problem of guaranteeing
validity is still not solved.

The inability to automatically extract the control-flow of the sessions in a service
raises another problem. Typically, the dynamically generated HTML pages contain
input forms allowing the client to submit information back to the server. However,
the HTML page with the form is constructed by one piece of the service code, while
a different piece takes care of receiving the form input. These two pieces must agree
on the input fields that are transmitted, but when the control-flow is unknown to
the compiler, this property cannot be statically checked. Thorough and expensive
run-time testing is then required, and that still cannot give any guarantees.

The <bigwig> language [9] is a research language designed to overcome these
problems. Its core is a strongly typed C-like language. On top is a high-level no-
tion of sessions where client interactions resemble remote procedure calls such that
the control-flow is explicit in the source code [7]. Also, XHTML [30], the XML ver-
sion of HTML, is a built-in data type with operations for dynamically constructing
documents. The values of this data type are well-formed XHTML fragments which
may contain “named gaps”. Such fragments can be combined with a special “plug”
operation which inserts one fragment into a gap in another fragment. This proves
to be a highly flexible but controlled way of building documents. The client inter-
actions and the dynamic document construction are checked at compile-time using
a specialized type system [32] and a program analysis [8] performing a conservative
approximation of the program behavior to attack the problems mentioned above.
More specifically, <bigwig> services are verified at compile-time to ensure that 1)
a plug operation always finds a gap with the specified name in the given fragment,
2) the code that receives form input is presented with the expected fields, and 3)
only valid XHTML 1.0 is ever sent to the clients.

1.2 Contributions

In this paper we obtain similar benefits for Java applications. Our specific contri-
butions are to show:

—how the session model and the dynamic document model of <bigwig> can be
integrated smoothly into Java;

Extending Java for High-Level Web Service Construction · 3

—how the type system from [32] and the program analysis from [8] can be combined,
generalized, and applied to Java to provide even stronger static guarantees than
known from <bigwig>; and

—how our service model subsumes and extends both the Servlet and the JSP style
of defining Web services.

The integration into Java is achieved using a class library together with some ex-
tensions of the language syntax. The resulting language is called JWIG. When
running a JWIG service without applying the static analyses, a number of special
run-time errors may occur: If one of the three correctness properties mentioned in
the previous section is violated, an exception is thrown. The goal of the static anal-
yses is to ensure at compile-time that these exceptions never occur. In addition to
having this certainty, we can eliminate the overhead of performing run-time checks.

Such guarantees cannot be given for general Servlet or JSP programs. However,
we show that the structures of such programs are special cases in JWIG: Both
the script-centered and the page-centered styles can be emulated by the session-
centered, so none of their benefits are lost.

Our current implementation uses XHTML 1.0, but the approach generalizes in a
straightforward manner to an arbitrary interaction language described by an XML
schema, such as WML or VoiceXML.

A cornerstone in our program analyses is a novel notion of summary graphs which
provides a suitable abstraction of the sets of XML fragments that appear at run-
time. We show how these graphs can be obtained from a data-flow analysis and
that they comprise a precise description of the information needed to verify the
correctness properties mentioned above.

Throughout each phase of our program analysis, we will formally define in what
sense the phase is correct and we will give a theoretical bound on the worst-case
complexity. We expect the reader to be familiar with Java and monotone data-flow
analysis, and to have a basic understanding of HTML and XML.

1.3 Problems with Existing Approaches

In the following we give a more thorough explanation of the support for sessions
and dynamic documents in JSP and Servlets and point out some related problems.

The overall structure of a Web service written as a Servlet resembles that of a
CGI script. When a request is received from a client, a thread is started on the
server. This thread generates a response, usually an HTML page, and perhaps
has some side-effects such as updating a database. Before terminating it sends
to the client the response, which is dynamically created by printing strings to an
output stream. We call this a script-centered approach. The main advantages of
Servlets compared to CGI scripts are higher performance and a convenient API
for accessing the HTTP layer. A Servlet engine typically uses a thread pool to
avoid the overhead of constantly starting threads. Also, Servlets have the general
Java benefits of a sandboxed execution model, support for concurrency control, and
access to the large set of available Java packages.

A small Servlet program is shown in Figure 1. A client running this service is
guided through a sequence of interactions which we call a session: First, the service
prompts for the client’s name, then the name and the total number of invocations is

4 · Christensen, Møller, and Schwartzbach

import javax.servlet.*;

public class SessionServlet extends HttpServlet {

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

ServletContext context = getServletContext();

HttpSession session = request.getSession(true);

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<html><head><title>Servlet</title></head><body> ");

if (session.isNew()) {

out.println("<form action=\"SessionServlet\"> " +

"Enter your name: <input name=\" handle \"> " +

"<input type=\"submit\"></form> ");

session.putValue("state", "1");

} else {

String state = (String) session.getValue("state");

if (state.equals("1")) {

String name = (String) request.getParameter("handle ");

int users =

((Integer) context.getAttribute("users")).intValue() + 1;

context.setAttribute("users", new Integer(users));

session.putValue("name", name);

out.println("Hello " + name +

", you are user number " + users);

session.putValue("state", "2");

} else /* state.equals("2") */ {

String name = (String) session.getValue("name");

out.println("Goodbye " + name);

session.invalidate();

}}

out.println("</body></html> ");

}}

Fig. 1. Example Servlet code. The session flow is encoded into the HttpSession object, and
HTML documents are constructed by printing string fragments to a stream.

shown, and finally a “goodbye” page is shown. The ServletContext object contains
information shared to all sessions, while the HttpSession object is local to each
session. Both kinds of state are accessed via a dictionary interface. The overall
structure of the code resembles a switch statement that branches according to the
current interaction. The Servlet API hides the details of cookies and URL rewriting
which is used to track the client throughout the session. HTML documents are
generated by printing strings to the output stream.

A JSP service turns the picture inside out by being defined by an HTML docu-
ment with embedded code snippets. We call this a page-centered approach. Figure 2
shows a simple JSP program which dynamically inserts the current time together
with a title and a user name based on the input parameters. This approach is quite
similar to ASP and PHP, except that the underlying language and its run-time
model is safer and better designed. An implementation of JSP typically performs
a simple translation into Servlets. This model fits into situations where the ser-
vice presents pages that are essentially static but with a few dynamic fragments

Extending Java for High-Level Web Service Construction · 5

<html><head><title>JSP Demo</title></head><body>
Hello <%

String name = request.getParameter("who ");

if (name==null) name = "stranger";

out.print(name);

%>!
<p>
This page was last updated: <%= new Date() %>

</body></html>

Fig. 2. Example JSP page. Code snippets are embedded within the HTML code using special
<%...%> tags. When a client requests the page, the code snippets are replaced by the strings that
result from the evaluation.

inserted. For more complicated services the code tends to dominate the pages, such
that they converge towards straight Servlet implementations.

Both JSP and Servlets allow only a single interaction with the client before
termination. To simulate a sequential thread, the client is given a session identifier
that is stored either as a cookie, as an SSL session key, or in a hidden form field.
The local state associated with the thread is stored as attributes in an HttpSession

object from which it must be recovered when execution is later resumed. Thus, a
sequence of interactions must be encoded by the programmer in a state machine
fashion where transitions correspond to individual interactions. This is somewhat
cumbersome and precludes cases where the resident local state includes objects in
the heap or a stack of pending method invocations. However, it should be noted that
the state machine model implies other advantages when it is applicable. Specifically,
it allows robust and efficient implementations as evidenced by J2EE engines that
ensure scalability and transaction safety by dividing session interactions into atomic
transitions. If a Web service runs on a J2SE engine, then only the disadvantages
exist since every interaction is then typically handled by a new thread anyway.

Data that is shared between several session threads must in JSP and Servlets be
stored in a dictionary structure or an external databases. This is in many cases
adequate, but still conceptually unsatisfying in a language that otherwise supports
advanced scoping mechanisms, such as nested classes.

Finally, JSP and Servlets offer little support for the dynamic construction of
XHTML or general XML documents. JSP allows the use of static templates in
which gaps are filled with strings generated by code fragments. Servlets generate
all documents as strings. These techniques cannot capture well-formedness of the
generated documents, let alone validation according to some schema definition.
Well-formedness can be ensured by relying on libraries such as JDOM [19], where
XML documents are constructed as tree data structures. However, this loses the
advantages from JSP of using human readable templates and validity can still only
be guaranteed by expensive run-time checks.

Another concern in developing Web services is to provide a separation between
the tasks of programmers and designers. With JSP and Servlets, the designer must
work through the programmer who maintains exclusive control of the markup tags
being generated. This creates a bottleneck in the development process.

The JWIG language is designed to attack all of these problems within the Java

6 · Christensen, Møller, and Schwartzbach

framework. For a more extensive treatment of Servlets, JSP, and the many related
languages, we refer to the overview article on <bigwig> [9]. The central aspects of
JWIG are an explicit session model and a notion of higher-order XML templates,
which we will explain in detail in the following sections.

1.4 Outline

We begin by describing the special JWIG language constructs and packages in
Section 2. These extensions are designed to allow flexible, dynamic construction of
documents and coherent sessions of client interactions. In Section 3 we explain how
to obtain JWIG program flow graphs that abstractly describe the flow of strings
and XML templates through programs. These flow graphs form the basis of the
data-flow analyses that are described in Section 4. They culminate in the inference
of summary graphs which model the sets of XML documents that variables or
expressions may evaluate to at given program points. To compute this information
we need a preliminary string analysis. In Section 5 we describe how the results from
the summary graph analysis are used to verify that the run-time errors mentioned
earlier cannot occur for a given program. This involves the use of a novel XML
schema language, Document Structure Description 2.0. We provide an overview of
our implementation in Section 6, and evaluate it on some benchmark programs to
show that the analysis techniques are sufficiently fast and precise to be practically
useful. Finally, we describe ideas for future work in Section 7.

2. THE JWIG LANGUAGE

The JWIG language is designed as an extension of Java. This extension consists
of a service framework for handling session execution, client interaction and server
integration, and some syntactic constructs and support classes for dynamic con-
struction of XML documents.

2.1 Program Structure

A JWIG application is a subclass of the class Service containing a number of fields
and inner classes. An instance of this class plays the role of a running service.

A service contains a number of different sessions, which are defined by inner
classes. Each session class contains a main method, which is invoked when a client
initiates a session. The fields of a service object are then accessible from all sessions.
This provides a simple shared state that is useful for many applications. Concur-
rency control is not automatic but can be obtained in the usual manner through
synchronized methods. Of course, external databases can also be applied, for in-
stance using JDBC, if larger data sets are in use. The fields of a session object as
well as local variables in methods are private to each session thread. This approach
of applying the standard scope mechanisms of Java for expressing both shared
state and per-session state is obviously simpler than using the ServletContext and
HttpSession dictionaries in Servlets and JSP.

Figure 3 shows a JWIG service which is equivalent to the Servlet service from
Figure 1. In the following, we describe the new language constructs for defining
XML templates, showing documents to the clients, and receiving form input.

Session classes come in a number of different flavors, each with different purposes
and capabilities, as indicated by its superclass:

Extending Java for High-Level Web Service Construction · 7

import dk.brics.jwig.runtime.*;

public class MyService extends Service {

int counter = 0;

synchronized int next() { return ++counter; }

public class ExampleSession extends Session {

XML wrapper =

[[<html><head><title>JWIG</title></head>
<body><[body]></body></html>]];

XML hello =

[[<form>Enter your name: <input name=" handle ">
<input type="submit"></form>]];

XML greeting =

[[Hello <[who]>, you are user number <[count]>]];

XML goodbye =

[[Goodbye <[who]>]];

public void main() throws IOException {

show wrapper<[body =hello];

String name = receive handle ;

show wrapper<[body =greeting<[who =name,count =next()]];

exit wrapper<[body =goodbye<[who =name]];

}}}

Fig. 3. Example JWIG program. The MyService service contains one session type named
ExampleSession which has the same functionality as the Servlet in Figure 1.

—Service.Session is the most general kind of interaction pattern, allowing any
number of interactions with the client while retaining an arbitrary session state.
When a Service.Session subclass is initiated, a new thread is started on the
server, which lives throughout all interactions with the client. At all intermediate
interactions, after supplying the XML to be sent to the client, the thread simply
sleeps, waiting for the client to respond.

—Service.Page is used for simple requests from the client. A Service.Page is simi-
lar to a Service.Session, except that it allows no intermediate client interactions.
This is conceptually similar to the mechanism used in Servlet and JSP applica-
tions, where a short-lived thread is also initiated for each interaction.

—Service.Seslet is a special kind of session, called a seslet, that is used to interact
with the service from applets residing on the client or with other Web services.
A Service.Seslet does not interact with the client directly in the form of input
forms and e.g. XHTML output; instead, it is parameterized with an InputStream

and an OutputStream which are used for communication with the applet or Web
service on the client-side. The notion of seslets was introduced in [9].

For the remainder of this article we focus on Service.Session. In contrast to the ses-
sion API in Servlets and JSP, it provides a clear view of the service flow because the
sequences of interactions constituting sessions are explicit in the program control-
flow. This session-centered approach originates from the MAWL project [24].

We specify Service.Page by a separate class in order to illustrate that the script-
and page-centered approaches are special cases of the session-centered approach,

8 · Christensen, Møller, and Schwartzbach

SESSION
THREAD

PAGE
XHTML

Fig. 4. Client-server sessions in Web services. On the left is the client’s browser, on the right is a
session thread running on the server. The tread is initiated by a client request and controls the
sequence of session interactions.

and to identify applications of these simpler interaction models to allow implemen-
tations to perform special optimizations.

2.2 Client Interaction

Communication with the client is performed through the show statement which takes
as argument an XML template to be transmitted to the client. A session terminates
by executing the exit statement whose argument is an XML template that becomes
the final page shown. Intermediate XML templates need not conform to any XML
schema, but when they are used as arguments to show or exit statements they must
be valid XHTML 1.0 [30]. Otherwise, a ValidateException is thrown.

During client interactions, the session thread is suspended on the server. Thus,
the execution of the show statement behaves as a remote procedure call to the
client. Return values are specified by means of form fields in the document. For
all form elements, a default action attribute is automatically inserted with a URL
pointing to the session thread on the server. The responses from the client are
subsequently obtained using the receive expression, which takes as argument the
name of an input field in the XHTML document that was last shown to the client
and returns the corresponding value provided by the client as a String. If no such
input field was shown to the client, then no corresponding value is transmitted
and a ReceiveException is thrown. There may be several occurrences of a given
input field. In this case, all the corresponding values may be received in order of
occurrence in the document into a String array using the expression receive[]. The
non-array version is only permitted if the input field occurs exactly once; otherwise,
a ReceiveException is thrown. The array version cannot fail: In case there are no
fields, the empty array is produced.

Figure 4 illustrates the interactions of a session. In the JWIG example service in
Figure 3, the main method contains three client interactions: two show statements
and one exit statement. Clearly, the session flow is more explicit than in the
corresponding Servlet code in Figure 1.

Extending Java for High-Level Web Service Construction · 9

2.3 Dynamic Document Construction

In Servlets and JSP, document fragments are generated dynamically by printing
strings to a stream. In JWIG, we instead use a notion of XML templates. A
template is a well-formed XML fragment which may contain named gaps. A special
plug operation is used to construct new templates by inserting existing templates
or strings into gaps in other templates. These templates are higher-order, because
we allow the inserted templates to contain gaps which can be filled in later, in a
way that resembles higher-order functions in functional programming languages.
Templates are identified by a special data type, XML, and may be stored in variables
and passed around as any other type. Once a complete XHTML document has
been built, it can be used in a show statement.

Syntactically, the JWIG language introduces the following new expressions for
dynamic XML document construction:

[[xml]] (template constant)
exp1 <[g = exp2] (the plug operator)
([[xml]]) exp (XML cast)
get url (run-time template inclusion)

These expressions are used to define template constants, plug templates together,
cast values to the XML type, and to include template constants at run-time, respec-
tively. The url denotes a URL of a template constant located in a separate file,
and xml is a well-formed XML template according to the following grammar:

xml : str (character data)
| <name atts> xml </ name> (element)
| <[g]> (template gap)
| <{ stm}> (code gap)
| xml xml (sequence)

atts : ε (empty)
| name=" str" (attribute constant)
| name=[g] (attribute gap)
| atts atts (sequence)

Here, str denotes an arbitrary Unicode string, name an arbitrary identifier, g a gap
name, and stm a statement block that returns a value of type String or XML. Actual
XML values must of course be further constrained to be well-formed according to
the XML 1.0 specification [12]. Moreover, in this description we abstract away
all DTD information, comments, processing instructions, etc. In Figure 3, there
are four template constants: wrapper, hello, greeting, and goodbye. The hello

template, for instance, contains two gaps named who and count , respectively.
XML templates can be composed using the plug operation exp1 <[g = exp2] .

The result of this expression is a copy of exp1 with all occurrences of the gap
named g replaced by copies of exp2. This is illustrated in Figure 5. If exp2 is a
string, all special XML characters (<, >, &, ’, and ") are automatically escaped
by the corresponding XML character references. If exp1 contains no gaps named
g, a PlugException is thrown. A gap that has not been plugged is said to be
open. The exp2 expression is required to be of type String or XML. If it is not one

10 · Christensen, Møller, and Schwartzbach

who<[=who<h1>Hello <[]></h1> World!]

<h1>Hello World!</h1>

Fig. 5. The plug operation. The two XHTML templates in the top are combined to produce the
one below by plugging into the who gap.

of these, it is coerced to String. There are three kinds of gaps: template gaps,
attribute gaps, and code gaps. Both strings and templates may be plugged into
template gaps, but only strings may be plugged into attribute gaps. Attempts to
plug templates into attribute gaps will cause a PlugException to be thrown. When
a template is shown, all remaining open gaps are removed in the following way:
Each template gap is replaced by the empty string, and for each attribute gap,
the entire attribute containing the gap is removed. As an example, this removal
of attributes is particularly useful for checkboxes and radio buttons where checked

attributes either must have the value checked or be absent. One can use a template
containing the attribute gap checked=[c] and then plug checked into c whenever
the field should be checked and simply omit the plug otherwise.

The code gaps are not filled in using the plug operation: Instead, when a template
containing code gaps is shown, the code blocks in the code gaps are executed in
document order. The resulting strings or templates are then inserted in place of
the code. Because this does not happen until the template is shown, the code in
code gaps can only access variables that are declared in the service class or locally
within the code gap.

The plug operation is the only way of manipulating XML templates. Thus, our
XML type is quite different from both the string output streams in Servlets and JSP
and the explicit tree structures provided by JDOM. We exploit this to obtain a
compact and efficient run-time representation, and as a foundation for performing
our program analyses. The notion of code gaps allows us to directly emulate the
JSP style of writing services, which is often convenient, but while still having the
explicit notion of sessions and the guarantees provided by the program analyses.

In order to be able to perform the static analyses later, we need a simple restric-
tion on the use of forms and input fields in the XML templates: In input and button

elements we require syntactically that attributes named type and multiple cannot
occur as attribute gaps in elements defining input fields. The same restriction holds
for name attributes, unless the type attribute has value submit or image. In addition,
we make a number of simple modifications of the documents being shown and of
the field values being received:

(1) In HTML and XHTML, lists, tables, and select menus are not allowed to have
zero entries. However, it is often inconvenient to be required to perform special
actions in those cases. Just before a document is shown, we therefore remove
all occurrences of and similar constructs. For select menus, we add
a dummy option in case none are present.

Extending Java for High-Level Web Service Construction · 11

(2) If attempting to receive the selected value of a select menu that is not declared
as multiple or the value of a radio button set, then, if no option is either
pre-selected using checked or selected by the client, the null value is received
instead of throwing a ReceiveException — even though no name–value pair is
sent according to the XHTML 1.0/HTML 4.01 specification [31].

(3) For submit and image fields, we change the corresponding returned name–value
pair from X=Y to submit=X . This makes it easier to recognize the chosen
submit button in case of graphical buttons.

(4) For submit buttons, a single name–value pair is produced from the name and
the value attributes. However, for graphical submit buttons, that is, fields with
type="image", HTML/XHTML produces two name–value pairs, X .x and X .y
for the click coordinates, where X is the value of the name attribute, but the
value attribute is ignored. To obtain a clean semantics, we ensure by patching
the returned list of pairs that in every case, all three name–value pairs are
produced. For instance, with graphical submit buttons we add a submit=X
pair, and submit.x and submit.y contain the click coordinates. For normal
submit buttons, submit.x and submit.y contain the value -1.

Clearly, these restrictions and modifications do not impose any practical limitations
on the flexibility of the template mechanism. In fact, they serve as a convenience
to the programmer since many special cases in XHTML need not be considered.

As for other Java types, casting is required when generic containers or methods
are used. An XML template may be cast using the special syntax ([[xml]]) exp.
This is a promise from the JWIG programmer that any value that will ever be
contained in exp at this point will be legal to use in all situations where xml is
legal. If this is the case, the cast is said to be valid. At run-time, a CastException

is thrown if the sets of gaps and input fields in exp do not match those in xml . If
casting to a template with exactly one occurrence of a given field, then it is required
that the actual values also has exactly one occurrence of that field—except for radio
buttons, where multiple occurences count as one. For the gaps, two properties must
be satisfied: If the template being cast to has any gaps of a given name, then at least
one such gap must also exist in the actual value; and, if there is a template gap in
the template being cast to, then the actual value cannot contain any attribute gaps
of that name. Note that this run-time check is not complete since it only considers
gaps and input fields and not XHTML validity. However, if invalid XHTML is
produced, it will eventually result in a ValidateException at a show statement.

Alternatively, the ordinary cast (XML) exp may be used. It generates a Cast-

Exception if the actual type of exp is not XML, but no promises are made about the
gaps or input fields.

Large JWIG applications may easily involve hundreds of template constants. For
this reason, there is support for specifying these externally, instead of inlined in the
program source. The construct get url loads the XML template located at url at
run-time. This template can then later be modified and reloaded by the running
service.

When the service is analyzed, the template constant referred to by the get url
construct is loaded and treated as a constant in the analysis. The analysis is then
of course only valid as long as the template is unchanged. However, validity will be

12 · Christensen, Møller, and Schwartzbach

desugarer javacprogram
JWIG Java class

analyzer

analysis

filescode Web server

results

Fig. 6. The JWIG program translation process in our current implementation. The JWIG program
is desugared into Java code which is compiled to class files. These class files are used both in the
Web server and to perform the program analyses.

preserved if the template remains structurally the same. To obtain fresh security
guarantees, it is simply required to reinvoke the program analyzer.

These features can also be used to support cooperation between the program-
mers and the Web page designers. For a first draft, the programmers can create
some templates that have the correct structure but only a primitive design. While
the program is being developed using these templates, the designers can work on
improving them to give them a more sophisticated design. The program analyzer
will ensure that the structure of gaps and fields is preserved.

In addition to the main features mentioned above, a session object contains a
number of fields and methods that control the current interaction, such as, ac-
cess control using HTTP authentication, cookies, environment variables, SSL en-
cryption, and various timeout settings. The service object additionally contains a
checkpoint method which serializes the shared data and stores it on disk. This is
complemented by a rollback method which can be used in case of server crashes
to improve robustness.

To summarize, we have now added special classes and language constructs to sup-
port session management, client interactions, and dynamic construction of XHTML
documents. By themselves, we believe that these high-level language extensions
aid development of Web services. The extensions may cause various exceptions: a
ValidateException if one attempts to show an XML document which is not valid
XHTML 1.0; a ReceiveException if trying to receive an input field that occurs an
incompatible number of times; a PlugException if a plug operation fails because no
gaps of the given name and type exist in the template; and a CastException if an
illegal cast is performed because the gaps or fields do not match. In the following
sections, we show that it is possible to statically check whether the first three kinds
of exceptions can occur. This is possible only because of the program structure
that the new language constructs enforce. For instance, it is far from obvious that
similar guarantees could be given for Servlet or JSP services.

2.4 The JWIG Program Translation Process

The steps involved in compiling, analyzing, and running a JWIG program are de-
picted in Figure 6. First, the special syntactic constructs of JWIG are translated
into appropriate Java constructs by a simple source-to-source desugaring transfor-
mation. The resulting Java source files are compiled into Java class files as usual.

Extending Java for High-Level Web Service Construction · 13

class
files

flow graph
constructor

string
analysis

regular
languages

flow
graph analysis

summary graph summary
graphs

analysis
plug

analysis
resultsanalysis

receive

analysis
show

Fig. 7. Structure of the program analyzer.

These class files together with the accompanying externally specified XML template
constants constitute the Web service. Of course, an implementation is not forced to
have this structure: For instance, one could imagine a JWIG compiler that directly
produces class files instead of going via Java code.

The analysis works on the class file level. When the analyzer is invoked, it is given
a collection of class files to analyze. We call this collection the application classes ;
all others constitute the non-application classes. Exactly one of the application
classes must be a subclass of Service. For efficiency reasons, the application classes
can be just the few classes that actually constitute the JWIG service, not including
all the standard Java classes that the program uses. Our analyses are designed to
cope with this limited view of the program as an open system.

The soundness of the analyses that we describe in the following sections is based
on a set of well-formedness assumptions:

—all invocation sites in the application classes must either always invoke methods
in the application classes or always invoke methods in the non-application classes;

—no fields or methods of application classes are accessed by a non-application class;
—no XML operations are performed in non-application classes; and
—XML casts are always valid, according to the definition in the previous section.

These assumptions usually do not limit expressibility in practice. In some cases,
the second assumption can be relaxed slightly, for instance if some method called
from a non-application class does not modify any String or XML value that will
ever reach other application class methods. This makes it possible to safely use
callback mechanisms such as the Comparator interface. The assumption about casts
is deliberately quite strong: As ordinary casts, XML casts provide a back-door to
the programmer to bypass the static type system.

The structure of the program analyzer is shown in Figure 7. From the class files,
we first generate flow graphs. From these, we generate summary graphs, which we
analyze in three different ways corresponding to the properties mentioned in the
previous section.

2.5 An Example JWIG Program

We will use the following JWIG program throughout the remaining sections to
illustrate the various phases of the analysis. This admittedly rather artificial service
applies most JWIG-specific language constructs:

import dk.brics.jwig.runtime.*;

14 · Christensen, Møller, and Schwartzbach

public class Greetings extends Service {

String greeting = null;

public class Welcome extends Session {

XML cover = [[<html>
<head><title>Welcome</title></head>
<body bgcolor=[color]>

<{
if (greeting==null)

return [[Hello World!]];

else

return [[<[g]>]] <[g =greeting];

}>
<[contents]>

</body>
</html>]];

XML getinput = [[<form>Enter today’s greeting:
<input type="text" name=" salutation ">
<input type="submit"></form>]];

XML message = [[Welcome to <[what]>.]];

public void main() {

XML h = cover<[color ="white",contents =message];

if (greeting==null) {

show cover<[color ="red",contents =getinput];

greeting = receive salutation ;

}

exit h<[what =[[BRICS]]];

}

}

}

The first time the Welcome session is initiated, the client is prompted for a greeting
text in one interaction, and then in the next interaction the greeting is shown
together with a “Welcome to BRICS” message. For subsequent sessions, only the
second interaction is performed.

3. FLOW GRAPH CONSTRUCTION

Given a JWIG program, we first construct an abstract flow graph as a basis for
the subsequent data-flow analyses. The flow graph captures the flow of string and
XML template values through the program and their uses in show, plug, and receive
operations.

3.1 Structure of Flow Graphs

The nodes in this graph correspond to abstract statements:

x = exp; (assignment)
show x; (client interaction)
receive f ; (receive field)

Extending Java for High-Level Web Service Construction · 15

receive[] f ; (receive field array)
nop; (no operation)

where exp denotes an expression of one of the following kinds:

x (variable read)
"str" (string constant)
[[xml]] (XML template constant)
x <[g = y] (plug operation)
null (null value)
anystring (arbitrary string)

and x and y are program variables, g is a gap name, f is a field name, str is a
string constant, and xml is an XML template constant that does not contain any
code gaps. All code gaps in the original JWIG program are expressed using normal
gaps and plug operations in the flow graph, as will be explained in Section 3.3.

We assume that every variable occurring in the flow graph has a declared type:
STRING representing strings, or XML representing XML templates. These types are
extended to expressions as one would expect, and null has the special type NULL.
Let EXPSTRING denote the expressions of type STRING or NULL, and EXPXML

denote those of type XML or NULL.
The assignment statement evaluates its expression and assigns the value to the

given variable. The variable and the expression must have the same type. All
flow graph variables are assumed to be declared with a global scope. Evaluating
expressions cannot have side-effects. The argument to show statements is always
of type XML. As described later, we model receive expressions from the JWIG
program as pairs of statements, each consisting of a receive statement and an
assignment. The receive and receive[] statements record program locations where
input field values are received. The last kind of flow-graph statement, nop, is the
no-operation statement which we use to model all operations that are irrelevant to
our analyses, except for recording split and join points.

The expressions basically correspond to those in concrete JWIG programs, except
anystring which is used to model standard library string operations where we do
not know the exact result. In the plug operation, the first variable always has type
XML, and the second has type XML or STRING.

Each node in the graph is assigned an entry label and an exit label as in [28],
and additionally each XML template constant has a template label. All labels are
assumed to be unique. The union of entry labels and exit labels constitute the
program points of the program.

The graph has two kinds of edges: flow edges and receive edges. A flow edge
models the flow of data values between the program points. Each edge has as-
sociated one source node and one destination node, and is labeled with a set of
program variables indicating which values that are allowed to flow along that edge.
A receive edge goes from a receive node to a show node. Its presence indicates that
the control-flow of the program may lead from the corresponding show statement
to the receive statement without reaching another show first. We use these edges
to describe from which show statements the received field can originate.

16 · Christensen, Møller, and Schwartzbach

3.2 Semantics of Flow Graphs

Formally, the semantics of a flow graph is defined by a constraint system. Let V
be the set of variables that occur in the flow graph, XML be the set of all XML
templates, and STRING be the set of all strings over the Unicode alphabet. Each
program point ` is associated an environment E`:

E` : V → 2XML ∪ STRING

The entire set of environments forms a lattice ordered by pointwise set inclusion.
For each node in the graph we generate a constraint. Let entry and exit denote the
entry and exit labels of a given node. If the statement of the node is an assignment,
x = exp; , then the constraint is:

Eexit (y) =

{
Êentry(exp) if x = y

Eentry(y) if x 6= y

For all other nodes, the constraint is:

Eexit = Eentry

The map Ê` : EXP → 2XML ∪ STRING defines the semantics of flow graph expres-
sions given an environment E`:

Ê`(exp) =



E`(x) if exp = x

{str} if exp = "str"
{xml} if exp = [[xml]]

π(E`(x), g, E`(y)) if exp = x <[g = y]

∅ if exp = null

STRING if exp = anystring

The function π captures the meaning of the plug operation. Due to the previously
mentioned type requirements, the first argument to π is always a set of XML
template values. The function is defined by:

π(A, g, B) =
⋃

xml∈A,b∈B

{π(xml , g, b)}

where π is defined by induction in the XML template according to the definition
in Section 2.3:

π(xml , g, b) =



str if xml = str
<name π(attr , g, b)>
π(xml ′, g, b) </ name> if xml = <name attr> xml ′ </ name>

b if xml = <[g]>

<[h]> if xml = <[h]> and h 6= g

π(xml1, g, b) π(xml2, g, b) if xml = xml1 xml2

Extending Java for High-Level Web Service Construction · 17

π(attr , g, b) =



ε if attr = ε

name=" str" if attr = name=" str "

name=" b" if attr = name=[g] and b ∈ STRING
name=[h] if attr = name=[h]

and (h 6= g ∨ b ∈ XML)
π(attr1, g, b) π(attr2, g, b) if attr = attr1 attr2

This defines plug as a substitution operation where template gaps may contain both
strings and templates and string gaps may contain only strings.

For each flow edge from ` to `′ labeled with a variable x we add the following
constraint:

E`(x) ⊆ E`′(x)

to model that the value of x may flow from ` to `′.
We now define the semantics of the flow graph as the least solution to the con-

straint system. This is well-defined because all the constraints are continuous. Note
that the environment lattice is not finite, but we do not need to actually compute
the solution for any concrete flow graph.

In the following section we specify a translation from JWIG programs into flow
graphs. In this translation, each show statement, plug expression, and receive

expression occurring in the JWIG program has a corresponding node in the flow
graph. Also, each operand of a show or plug operation has a corresponding variable
in the flow graph. Correctness of such a translation is expressed as two require-
ments: 1) Let env be the least solution to the flow graph constraint system. If we
observe the store of a JWIG program at either a show or a plug operation during
some execution, then the value of each operand is contained in env `(x) where ` is
the node corresponding to the JWIG operation and x is the variable corresponding
to the operand. 2) If some session thread of an execution of the JWIG program
passes a show statement and later a receive expression without passing any other
show statement in between, then the flow graph contains a receive edge from the
node corresponding to the receive expression to the node corresponding to the show

statement.

3.3 From JWIG Programs to Flow Graphs

The flow graph must capture the flow of string and XML values in the original
JWIG program. Compared to <bigwig> and the flow graph construction in [8] this
is substantially more involved due to the many language features of Java. We divide
this data flow into three categories: 1) per-method flow of data in local variables,
2) data flow to and from field variables, and 3) flow of argument and return values
for method invocations. Since local variables are guaranteed to be private to each
method invocation, we model the first kind of data flow in a control-flow sensitive
manner. With field variables, this cannot be done because they may be accessed
by other concurrently running session threads, and because we are not able to
distinguish between different instantiations of the same class. The second kind of
data flow is therefore modeled in a control-flow insensitive manner.

The translation ignores variables whose type is not String, XML, or an array of any
dimension of these two. For each of the two analyzed types, a unique flow graph

18 · Christensen, Møller, and Schwartzbach

pool variable is created for representing all the values of that type that cannot be
tracked by the analysis. Pooled values include those assigned to and from Object

variables and arrays, and arguments and results of methods outside the application
classes. We add an assignment of anystring to the pool variable of type STRING to
be maximally pessimistic about the string operations in the non-application classes.
Something similar is not done for the XML type since we have assumed that XML
values are produced only inside the analyzed classes.

In addition to capturing data flow, the flow graph must contain receive edges
that reflect the correspondence between show and receive operations in the JWIG
program. This requires knowledge of the control flow in addition to the data flow.

Before the actual translation into flow graphs begin, each code gap is converted
to a template gap with a unique name, and the code inside the gap is moved to a
new method in the service class.

The whole translation of JWIG programs into flow graphs proceeds through a
sequence of phases, as described in the following. Since JWIG includes the entire
Java language we attempt to give a brief overview of the translation rather than
explain all its details. We claim that this translation is correct according to the
definition in the previous section, however it is beyond the scope of this article to
state the proof.

1. Individual methods. In the first phase, each method in the application classes
is translated individually into a flow graph. Each statement produces one or more
nodes, and edges are added to reflect the control flow inside the method. Each
edge is labeled with all local variables of the method. Nested expressions are flat-
tened using fresh local variables and assignments. The special JWIG operations are
translated into the corresponding flow graph statement or expression, and all irrele-
vant operations are modeled with nop nodes. Each receive expression is translated
into two nodes: a receive node and an assignment of anystring, since we need to
model the locations of these operations but have no knowledge of the values being
received. The control structures, if, switch, for, etc., are modeled with nop nodes
and flow edges, while ignoring the results of the branch conditions. XML casts
are translated into XML template constants. This is sound since we have assumed
that all casts are valid. Figure 8 shows the flow graph for the main method of the
example JWIG program in Section 2.5.

2. Code gaps. As mentioned, each code gap has been converted into a template
gap whose name uniquely identifies the method containing its code. Before every
show statement, a sequence of method calls and plug operations is inserted to ensure
that all code gaps that occur in the program are executed and that their results
are inserted. To handle code gaps that generate templates that themselves contain
code gaps, an extra flow edge is added from the end of the plug sequence to the
start. The analysis in [8] does not support code gaps.

3. Method invocations. The methods are combined monovariantly: each method
is represented only once in the flow graph for the whole program. This means that
the subsequent analyses that build on the flow graphs also are monovariant. To
estimate which methods can be called at each invocation site, a call graph of the
JWIG program is constructed using a class hierarchy analysis (CHA) [15; 35]. This

Extending Java for High-Level Web Service Construction · 19

nop

greeting=anystring

t1="white"

t2=cover<[=t1]

h=t2<[=message]contents

t2=t2<[=getinput]

t1="red"

t2=cover<[=t1]

contents

show t2

show t2

receive salutation

t2=[[BRICS]]

t2=h<[=t2]what

color

color

Fig. 8. Flow graph for the main method after Phase 1. All edges are here implicitly labeled with
the set of variables {h,t1,t2}.

gives us for each invocation site a set of possible target methods. Of course, other
call graph analyses could be applied instead, but CHA has proven to be fast and
sufficiently precise for these purposes.

For each method invocation, we need to transfer the arguments and the return
value, and to add flow edges to and from the possible target methods. The caller
method uses a set of special local variables for collecting the arguments and the re-
turn value. We first insert a chain of assignments to these caller argument variables.
Then we branch for each possible target method and add a chain of assignments
from the caller argument variables to the target method parameters, followed by a
flow edge to the target method entry point. Similarly, we add flow edges from the
method exit points and transfer the return value via a caller result variable. For
target methods in non-application classes, we use the pool variables in place of the
argument and return value variables of the target method.

Figure 9 shows an example of a flow graph for a method invocation where the
CHA has determined that there are two possible targets.

4. Exceptions. For every try-catch-finally construct, we add edges from all
nodes corresponding to statements in the try block to the entry node of the catch

block. These edges are labeled with all local variables of the method. This ensures
that the data flow for local variables is modeled correctly. Adding edges from all
nodes of the try blocks may seem to cause imprecision. A more complex analysis
would only add edges from the nodes that correspond to statements that actually
may throw exceptions that are caught by the catch block. However, our simple
approach appears to be sufficiently precise in practice.

20 · Christensen, Møller, and Schwartzbach

a1=exp1

a2=exp2

f1=a1 g1=a1

g2=a2f2=a2

G.m

x=y.m(exp1,exp2)

a3=g3

x=a3

a3=f3

*

a1,a2 a1,a2

g1,a2

g1,g2

g3

a3

F.m

a3

f3

f1,f2

f1,a2

Fig. 9. Modeling method invocations. Assuming that the invocation of m in the expression on the
left may lead to the classes F or G, the flow graph on the right is generated where F.m and G.m

are the flow graphs for the target methods. First, the actual parameters are evaluated, then they
are passed to the formal parameters for each method and the method bodies are processed, and
finally, the return value is collected and the flow is merged. The * label denotes all local variables
in the caller method.

In order to be able to set up the receive edges in a later phase, we also need to
capture the intraprocedural control flow of exceptions. For this purpose, we add a
special drain node for each method. For each statement, we add a flow edge with
an empty label to the drain node of its method. This represents the control flow for
uncaught exceptions within each method. This flow may subsequently lead either
to drain nodes for caller methods or to catch blocks. To model this, we use the CHA
information: For each target method of an invocation site, an edge is added from
the drain node of the target method to the drain node of the method containing
the invocation site. If the invocation site is covered by an exception handler within
the method, an extra edge is added from the drain node of the target method to
the entry of the handler.

5. Show and receive operations. The preceding phases have set up flow edges
representing all possible control flow in the program. This means that we at this
point are able to infer the correspondence between show and receive nodes to create
the receive edges by looking at the flow graph alone, without considering the original
JWIG program.

We treat the entry points of main methods of session classes as if they were show

statements that show a document with a single form containing no input fields. This
models the fact that no input fields can be read with receive until a document has
been shown.

For each program point ` in the flow graph we compute the set of show nodes
that according to the flow edges may lead to ` without passing another show node in
between. This is done with a fixed point iteration, starting with empty sets at each
program point. To each exit label of a show node n, we associate the singleton set
containing just n. For all other nodes, the sets at the entry points are propagated
to the exit points, and at join points, we take the union of the incoming sets. This
is essentially a simple forward data-flow analysis on the flow graph. Since there
are finitely many show nodes and we only apply monotone operations, the iteration
eventually terminates. For each receive and receive[] node, we then add a receive
edge to each node in the associated set.

Extending Java for High-Level Web Service Construction · 21

nop

nop

x[y]=z x=z x

*

*

Fig. 10. Shortcutting array updates. Assignments into arrays are modeled using weak update
where all entries are merged.

6. Arrays. Array variables are translated into variables of their base type. An
array is treated like a single entity whose possible values are the union of of its
entries. Construction of arrays using new is modeled with null values to reflect that
they are initially empty.

An assignment to an array entry is modeled using weak updating [13] where the
existing values of the array are merged with the new value. This is done by inserting
two nop nodes around the assignment and adding an edge bypassing it labeled by
the updated variable. This process is shown in Figure 10.

When one array variable is assigned to another, these variables become aliases.
Such aliased variables are joined into one variable. This variable will be treated
as a field variable and handled as described below, if at least one of its original
variables was a field variable. This joining is similar to the technique used in [35].

7. Field variables. As mentioned, we model the use of field variables in a flow-
insensitive manner where all instances of a given class are merged. This is done for
each field simply by adding flow edges labeled by the name of the field from all its
definitions to all its uses. To avoid constructing a quadratic number of edges, we
add a dummy “x=x” node to collect the definitions and the uses for each variable
x.

In <bigwig>, a simpler and more restrictive approach was chosen: All global
string variables were modeled with anystring, and for the global HTML variables,
which correspond to the XML field variables in JWIG, the initializer expressions
would dictate the types [8].

8. Graph simplification. Finally, we perform some reductions of the flow graph.
This is not necessary for correctness or precision of the subsequent analyses, but as
we show in Section 6.2, it substantially decreases the time and space requirements.

First, we remove all code that is unreachable from session entry points according
to the flow edges. We ignore edges that originate from method returns since these
edges do not indicate reachability.

Using a standard reaching definitions analysis on the flow graph [1; 28], we then
find for each assignment all possible uses of that definition. This gives us a set
of pairs of nodes where the first node is an assignment to some variable and the
second node contains an expression which uses that variable. Once this information
is obtained, we remove every flow edge and nop node in the graph, and then add
new flow edges corresponding to the definition–use pairs. Each new edge is labeled
with the single variable of the pair. Finally, a copy propagation optimization is

22 · Christensen, Møller, and Schwartzbach

performed to compress chains of copying statements [1].
These transformations all preserve the data flow. In the resulting flow graphs,

there are no nop nodes and all edges are labeled with a single variable, which is
crucial for the performance of the subsequent analyses.

This construction of flow graphs for JWIG programs is correct in the sense defined
in Section 3.2, both with and without the simplification phase.

3.4 Complexity

During the construction of the flow graph, we have performed two forward data-flow
analyses on the intermediate graphs: one for setting up the receive edges in Phase
5 and the reaching definitions analysis in Phase 8. In the following sections, we will
describe two more forward data-flow analyses on flow graphs. To bound the worst-
case time requirements for all these analyses, we make some general observations.
By implementing the analyses using a standard work-list algorithm rather than the
chaotic iteration algorithm [28], the time can be bound by:

O

(
t ·

∑
m∈nodes

|var(m)| · h ·
∑

m′∈succ(m)

|var (m′)|
)

where

—t is the maximum cost of computing one binary least-upper-bound operation or
one transfer function for a single variable;

—nodes is the set of flow-graph nodes;
—var (m) denotes the union of the labels of edges adjacent to the node m;
—h is the height of the lattice for a single variable; and
—succ(m) is the set of successor nodes of m.

For each node m, an environment associates two lattice elements to each variable
v in var(m), one for the entry label and one for the exit label. Each can change
at most h times. Because of the work-list, each change for an exit label can result
in at most

∑
m′∈succ(m) |var (m′)| binary least-upper-bound operations and transfer

function computations, that is, one for each variable in each successor node, without
any other environment changes for exit labels.

Phases 1-7 create at most O(n2) flow-graph nodes and O(n2) edges where n is the
textual size of the program. The reason for the quadratic increase in the number
of nodes is the encoding of argument transferring for method invocations in Phase
3 and the encoding of code gap execution in Phase 2.

The receive edge analysis in Phase 5 does not consider the variables at all. This
is equivalent to setting var (m) to contain just one variable. Since there are at most
O(n2) edges,

∑
m∈nodes |succ(m)| is O(n2). The lattice height, h, is the number of

show statements, which is O(n), and the time t is O(n). Therefore, this analysis
runs in time O(n4).

The complexity of the reaching definitions analysis in Phase 8 can also be bound
by the formula above. There are O(n) variables, the lattice height is O(n), and the
time t is O(n). Again, since there are O(n2) edges,

∑
m∈nodes |succ(m)| is O(n2).

Together, we get that this analysis runs in time O(n6). Since the other phases
of the flow-graph construction are linear in the size of the flow graph, the total

Extending Java for High-Level Web Service Construction · 23

t3=[[Hello World!]]

greeting=anystring

message=[[Welcome...]]

init=[[...]]

t2=[[BRICS]]

t2=h<[=t2]

t2=t2<[=t3]

t1="white"

t2=cover<[=t1]

h=t2<[=message]

show t2

t2=t2<[=getinput]

t1="red"

show t2

t3=t2<[=greeting]

t2=t2<[=t3]

t2=[[<[]>]]

receive

contents

c1

salutation

c1

what

contents

g

g

getinput=[[<form>...</form>]]

greeting=null

getinput

h t2

t2 t3

t3

t3

t3

greeting

greeting

message

cover

t1

t2

t1

t2

t2

t2

t2

t2

t2

t2

color

cover

cover=[[<html>...</html>]]

colort2=cover<[=t1]

show init
init

Fig. 11. Flow graph for the JWIG example program.

construction of the flow graph of a given JWIG program requires worst-case O(n6)
time. As shown in Section 6.2, this bound is rarely encountered in practice.

After the simplification phase, an extra property is satisfied: Since all flow edges
are definition–use edges, |var (m)| is O(1) for all nodes m. Since the flow graph still
contains only O(n2) nodes and edges, the formula above then reduces to:

O(n2 · h · t)

This will be used later to estimate the complexities of the remaining analyses.

3.5 Flow Graph for the Example

Figure 11 shows the flow graph that is generated for the JWIG program from
Section 2.5. The left part of the graph corresponds to the main method, the top
right part is the initialization of the field variables, and the bottom right part
corresponds to the code in the code gap. The thin edges are flow edges, and the
single thick edge is a receive edge. The show node in the top left corresponds
to the entry point of the session. The init template is a simple valid XHTML
document with a form that contains no fields. This models the fact that no input
values are receivable when session threads are initiated. Note that edges in the part
corresponding to the main method have changed compared to Figure 8 because of
the graph simplification phase.

24 · Christensen, Møller, and Schwartzbach

4. SUMMARY GRAPH ANALYSIS

To statically verify that a given JWIG program will never throw any of the special
JWIG exceptions we perform a summary graph analysis based on the flow graph
which contains all the information we need from the original program. Summary
graphs model how templates are constructed and used at run-time. This analysis
depends on a preliminary string analysis that for each string expression finds a
regular language that approximates the set of strings it may evaluate to. For each
analysis we define a lattice expressing an abstraction of the data values along with
a corresponding abstract semantics of the expressions and statements, and then
apply standard data-flow analysis techniques to find the least solutions.

4.1 String Analysis

Given a flow graph of a JWIG program, we must statically model which strings
are constructed and used at run-time. In [8] the corresponding analysis is mixed
into the summary graph analysis. Separating these analyses leads to a simpler
specification and implementation without damaging the analysis precision. We
describe here a rather simple analysis which is adequate for all our benchmarks.
However, it should be clear that a more precise string analysis capturing relevant
string operations easily could be applied instead, as explained in Section 7.

We first define a string environment lattice:

SE = Y → REG

where Y is the set of string variables that occur in the program and REG is the fam-
ily of regular languages over the Unicode alphabet. We choose regular languages for
modeling string sets because they fit elegantly into the validity analysis algorithm
in Section 5.5. The ordering on REG is language inclusion and SE inherits this
ordering pointwise. We compute an element of this lattice for every program point
with a forward data-flow analysis using standard techniques, such as the monotone
frameworks of [28; 20]: For every statement that can appear in the flow graph we
define a monotone transfer function SE → SE and then compute the least fixed
point by iteration. First, for each flow-graph string expression we define its abstract
denotation by extending every environment map Σ ∈ SE from variables to string
expressions, Σ̂ : EXPSTRING → REG:

Σ̂(exp) =


Σ(x) if exp = x,

{str} if exp = "str"
U∗ if exp = anystring

∅ if exp = null

where U denotes the Unicode alphabet.
For every string assignment statement x = exp; the transfer function is defined

by:

Σ 7→ Σ[x 7→ Σ̂(exp)]

that is, the string environment is updated for x to the environment value of exp.
Clearly, this is a monotone operation. For all other statements the transfer function
is the identity function, since they do not modify any string variables. The lattice

Extending Java for High-Level Web Service Construction · 25

is not finite, but by observing that the only languages that occur are either total
or subsets of the finitely many string constants that appear in the program, termi-
nation of the fixed point iteration is ensured. A more advanced string analyses, for
instance one modeling concatenations more precisely, would require widening for
ensuring termination.

The worst-case complexity of this analysis can be estimated by the formula from
the previous section. By the observation above, we only use a part of the lattice.
This part has height O(n) since there are at most O(n) string constants in the
program. The time t for performing a least-upper-bound or transfer function com-
putation is O(n). Thus, this particularly simple string analysis runs in worst-case
time O(n4) where n is the size of the original JWIG program.

The result of this analysis is for each program point ` a map: string` : Y → REG .
This analysis is correct in the following sense: For any execution of the program,
any program point `, and any string variable x, the regular language string`(x) will
always contain the value of x at `. That is, the analysis result is a conservative
upper approximation of the string flow.

4.2 Summary Graphs

Like the string analysis, the summary graph analysis fits into standard data-flow
frameworks, but it uses a significantly more complex lattice which we define in the
following. Let X , G, and N be respectively the sets of template variables, gap
names, and template labels that occur in the program. A summary graph SG is a
finite representation of a set of XML documents defined as:

SG = (R, T, S, P)

where

R ⊆ N is a set of root nodes,
T ⊆ N × G × N is a set of template edges,
S : N × G → REG is a string edge map, and
P : N × G → 2{OPEN,CLOSED} is a gap presence map.

Intuitively, the language L(SG) of a summary graph SG is the set of XML docu-
ments that can be obtained by unfolding its templates, starting from a root node
and plugging templates and strings into gaps according to the edges. Assume that
t : N → xml maps every template label to the associated template constant. The
presence of a template edge (n1, g, n2) ∈ T informally means that the t(n2) tem-
plate may be plugged into the g gaps in t(n1), and a string edge S(n, g) = L means
that every string in the regular language L may be plugged into the g gaps in t(n).
The gap presence map, P , specifies for each gap named g originating from the tem-
plate constant with label n whether or not g gaps may remain open in t(n). The
value OPEN means that the gaps may be open, and CLOSED means that they may
be closed or never have occurred. Recall from Section 2.3 that attributes with gaps
that remain open are removed when shown. An attribute gap labeled OPEN thus
means that the attribute may be removed.

This unfolding is explained more precisely with the following formalization:

unfold(SG) = {d ∈ XML | ∃r ∈ R : SG , r ` t(r) ⇒ d where SG = (R, T, S, P)}

26 · Christensen, Møller, and Schwartzbach

The unfolding relation, ⇒, is defined by induction in the structure of the XML
template. For the parts that do not involve gaps the definition is a simple recursive
traversal:

SG , n ` str ⇒ str

SG, n ` xml1 ⇒ xml ′1 SG, n ` xml2 ⇒ xml ′2
SG , n ` xml1 xml2 ⇒ xml ′1 xml ′2

SG, n ` atts ⇒ atts ′ SG, n ` xml ⇒ xml ′

SG, n ` <name atts> xml </ name> ⇒ <name atts ′> xml ′ </ name>

SG, n ` ε ⇒ ε

SG, n ` name=" str " ⇒ name=" str"

SG, n ` atts1 ⇒ atts ′1 SG, n ` atts2 ⇒ atts ′2
SG, n ` atts1 atts2 ⇒ atts ′1 atts ′2

There is no unfolding for code gaps since they have already been reduced to template
gaps in the flow graph construction. For template gaps we unfold according to the
string edges and template edges and check whether the gap may be open:

str ∈ S(n, g)
(R, T, S, P), n ` <[g]> ⇒ str

(n, g, m) ∈ T (n, g) (R, T, S, P), n ` t(m) ⇒ xml
(R, T, S, P), n ` <[g]> ⇒ xml

OPEN ∈ P (n, g)
(R, T, S, P), n ` <[g]> ⇒ <[g]>

For attribute gaps we unfold according to the string edges, and check whether the
gap may be open:

str ∈ S(n, g)
(R, T, S, P), n ` name=[g] ⇒ name=" str "

OPEN ∈ P (n, g)
(R, T, S, P), n ` name=[g] ⇒ name=[g]

The following function close is used on the unfolded templates to plug the empty
string into remaining template gaps and remove all attributes with gap values:

close(xml) =



<name close(atts)>
close(xml ′) </ name> if xml = <name atts> xml ′ </ name>

ε if xml = <[g]>

close(xml1) close(xml2) if xml = xml1 xml2
xml otherwise

Extending Java for High-Level Web Service Construction · 27

close(atts) =


close(atts1) close(atts2) if atts = atts1 atts2

ε if atts = name=[g]

atts otherwise

We now define the language of a summary graph by:

L(SG) = {close(d) ∈ XML | d ∈ unfold(SG)}
Compared to the summary graphs in [8] this definition differs in the following
ways: First of all, the gap presence map is added. The old algorithm worked under
the assumption that all incoming branches to join points in the flow graph would
agree on which gaps were open. This was achieved using a simple preliminary
program transformation that would convert the “implicit ε-plugs” of <bigwig> [5]
into explicit ones using the information from the DynDoc type system [32]. Since
JWIG does not inherit this implicit-plug feature from the <bigwig> design nor
uses a DynDoc-like type system we have added the gap presence map. This map
contains the information from the “gap track analysis” in [8], but in addition to
finding gaps that may be open it also tracks must information which we need to
verify the use of plug operations later.

Secondly, the present definition is more flexible in that it allows strings to be
plugged into template gaps. In [8], template gaps were completely separated from
attribute gaps. Thirdly, we generalize the flat string lattice to full regular languages
allowing us to potentially capture many string operations.

The summary graph abstraction has evolved through experiments during our
previous work on <bigwig>. We claim that it is in a finely tuned balance between
expressibility and complexity. First, summary graphs are strictly more expressive
than e.g. the regular expression types of XDuce [18]. These types can be sys-
tematically encoded as summary graphs by using nodes with templates containing
only gaps to represent the states of NFAs. Summary graphs are more expressive,
since they can similarly remember information about the paths from the roots to
given nodes. Another approach would be to use recursive types, however these
are even less expressive than regular expression types. On the other hand, any
summary graph may be captured as a regular tree language [14]. However, this
strictly richer formalism has a high computational complexity compared to sum-
mary graphs. Thus, summary graphs are just expressive enough to capture the
intricacies of normal control flow in programs and yet sufficiently tractable to allow
efficient analysis.

Note that our analysis is monovariant, in the sense that each template constant
is only represented once. It is possible to perform a more expensive analysis that
duplicates summary graph nodes according to some criteria, but we have not yet
encountered the need. On the other hand, our analysis is polyvariant in XML
element constructors, since these are analyzed separately for each occurrence in the
templates.

Let G be the set of all summary graphs. This set is a lattice where the ordering
is defined as one would expect:

(R1, T1, S1, P1) v (R2, T2, S2, P2) ⇔
R1 ⊆ R2 ∧ T1 ⊆ T2 ∧

∀n ∈ N, g ∈ G : S1(n, g) ⊆ S2(n, g) ∧ P1(n, g) ⊆ P2(n, g)

28 · Christensen, Møller, and Schwartzbach

{large}

kind

L

text

{OPEN,CLOSED}

<ul class=[]>
 <[]>

items
kind <[]>

<[]>items
text

items

{CLOSED} {CLOSED}

items

{OPEN}

Fig. 12. A summary graph whose language is a set of XML documents, each containing a ul list
with zero or more text items and a class attribute. The node on the left is a root, the dashed
lines show the gap presence for each gap, and L denotes some set of strings.

This ordering respects language inclusion: If SG1 v SG2, then L(SG1) ⊆ L(SG2).
Figure 12 shows an example summary graph consisting of two nodes, a single

template edge, and two string edges. The language of this summary graph is the
set of XML documents that consist of ul elements with a class="large" attribute
and zero or more li items containing some text from the language L. Note that
the gap presence of the items gap in the template of the left node contains OPEN,
so the empty template may be plugged in which corresponds to the case where the
list is empty.

4.3 Constructing Summary Graphs

At every program point ` in the flow graph, each template variable x ∈ X is asso-
ciated a summary graph, as modeled by the summary graph environment lattice:

SGE = X → G
which inherits its structure pointwise from G. We compute an element of the
lattice for every program point using yet another forward data-flow analysis. Let
[[xml]] n mean the template constant labeled n, and let tgaps(n) and agaps(n) be
the sets of template gap names and attribute gap names, respectively, that occur
in the template constant labeled n. Let gaps(n) = tgaps(n) ∪ agaps(n). Given
an environment lattice element ∆ ∈ SGE we define an abstract denotation for
template expressions, ∆̂ : EXPXML → G:

∆̂(exp) =



∆(x) if exp = x

const(gaps(n), n) if exp = [[xml]] n

tplug(∆(x), g, ∆(y)) if exp = x <[g = y]

and y has type XML

splug(∆(x), g, string`(y)) if exp = x <[g = y]

and y has type STRING

(∅, ∅,⊥,⊥) if exp = null

where ⊥= λm.λh.∅ and the auxiliary functions are:

const(A, n) = ({n}, ∅,⊥,
λm.λh.if n = m ∧ h ∈ A then {OPEN} else {CLOSED})

tplug((R1, T1, S1, P1), g, (R2, T2, S2, P2)) =

Extending Java for High-Level Web Service Construction · 29

(R1,
T1 ∪ T2 ∪ {(n, g, m) | OPEN ∈ P1(n)(g) ∧ m ∈ R2)},
λm.λh.S1(m)(h) ∪ S2(m)(h),
λm.λh.if g=h then P2(m)(h) else merge(P1(m)(h), P2(m)(h)))

merge(p1, p2) = if p1 ={OPEN} ∨ p2 ={OPEN} then {OPEN} else p1 ∪ p2

splug((R, T, S, P), g, L) =
(R,
T,
λm.λh.if g=h ∧ OPEN ∈ P (m)(h) then S(m)(h) ∪ L else S(m)(h),
λm.λh.if g=h then {CLOSED} else P (m)(h))

For template constants, we look up the set of gaps that appear and construct a
simple summary graph with one root and no edges. The tplug function models
plug operations where the second operand is a template expression. It finds the
summary graphs for the two sub-expressions and combines them as follows: The
roots are those of the first graph since it represents the outermost template. The
template edges become the union of those in the two graphs plus a new edge from
each node that may have open gaps of the given name to each root in the second
graph. The string edge sets are simply joined without adding new information.
For the gaps that are plugged into, we take the gap presence information from
the second graph. For the other gaps we use the merge function which sets gaps
to “definitely open” if they are so in one of the graphs and otherwise takes the
least upper bound. The splug function models plug operations where the second
operand is a string expression. It adds the set of strings obtained by the string
analysis for the string expression to the appropriate string edge, and then marks
the gap as “definitely closed”. The null constant is modeled by the empty set
of documents. Attempts to plug or show a null template yield null dereference
exceptions at run-time, and we do not wish to perform a specific null analysis.

Having defined the analysis of expressions we can now define transfer functions
for the statements. As for the other data-flow analysis, only assignments are in-
teresting. For every XML assignment statement x = exp; the transfer function is
defined by:

∆ 7→ ∆[x 7→ ∆̂(exp)]

and for all other statements the transfer function is the identity function.
By inspecting the tplug , merge, and splug functions it is clear that the transfer

function is always monotone. The lattice SGE is not finite, but analysis termina-
tion is ensured by the following observation: For any program, all summary graph
components are finite, except REG . However, the string analysis produces only a
finite number of regular languages, and we here use at most all possible unions of
these. So, only a finite part of SGE is ever used.

The result of this analysis is for each program point ` a map:

summary` : EXPXML → G
This analysis is conservative like the string analyses, that is, it is sound but not
complete: For any execution of the program, any program point `, and any XML

30 · Christensen, Møller, and Schwartzbach

expression exp, the set of XML documents L(summary`(exp)) will always contain
the value of exp at `.

The worst-case complexity of this analysis can also be estimated using the formula
from Section 3.4. The lattice height is the sum of the heights of the four summary
graph components. The node set N and the gap name set G both have size O(n),
again where n is the size of the original JWIG program. The height of the root
node component is thus O(n). For each template edge (n, g, n′) which is created
during the analysis, (n, g) determines a specific gap in a specific template in the
original JWIG program. Since there can be at most O(n) of these, we can at most
construct O(n2) template edges. Similarly, for the string edge and the gap presence
map components, all but O(n) pairs of elements from N and G are mapped to a
fixed element. For the string analysis, we have argued that the height of the used
part of the string lattice is O(n), so the string edge component has height O(n2).
The co-domain of the gap presence map has constant size, so this component has
height O(n). In total, the height h of the summary graph lattice is O(n2). For
the same reasons, the sizes of the summary graphs that are constructed are also
at most O(n2). All operations on summary graphs are linear in their sizes, so the
time t for computing a summary graph operation is O(n2). Inserting this in the
formula gives that the summary graph construction runs in time O(n6) in the size
of the program. Note that without the flow-graph simplification phase, the formula
would have given O(n8) instead of O(n6).

4.4 Summary Graphs for the Example

For the JWIG example program from Section 2.5, the following summary graph is
generated for the exit statement in the main method:

<html>...</html> Welcome ... BRICS

Hello World! <[]>

contents what

c1
c1

{white}

color

g

U*

g

Implicitly in this illustration, the gap presence map maps everything to {CLOSED},
and the string edge map maps to the empty language by default. Because of the
simple flow in the example program, the language of this summary graph is precisely
the set of XML documents that may occur at run-time. In general, the summary
graphs are conservative since they they may denote languages that are too large.
This means that the subsequent analyses can be sound but not complete.

5. PROVIDING STATIC GUARANTEES

The remaining analyses are independent of both the original JWIG program and
the flow graphs. All the relevant information is at this stage contained in the
inferred summary graphs. This is a modular approach where the “front-end” and

Extending Java for High-Level Web Service Construction · 31

“back-end” analyses may be improved independently of each other. Also, summary
graphs provide a good context for giving intuitive error messages.

5.1 Plug Analysis

We first validate plug consistency of the program, meaning that gaps are always
present when subjected to the plug operation and that XML templates are never
plugged into attribute gaps. This information is extracted from the summary graph
of the template being plugged into.

In the earlier works [32] a similar check was performed directly on the flow graphs.
Our new approach has the same precision, even though it relies exclusively on the
summary graphs. Furthermore, we no longer require the flow graph to agree on
the gap information for all incoming branches in the join points, as mentioned in
Section 4.2.

For a specific plug operation x <[g = y] at a program point `, consider the sum-
mary graph summary`(x) = (R, T, S, P) given by the data-flow analysis described
in the previous section. To perform the required checks we need to compute a map:

GP : (N → 2G) → 2{OPEN,CLOSED}

indicating for some gap occurrence function, which is either tgaps or agaps , whether
any g gaps of the given kind are present (OPEN) or absent (CLOSED) in the values
represented by the summary graph for x.

Given such a map, we express consistency of the plug operation as follows. Com-
pute t = GP(tgaps) and a = GP(agaps). These values respectively describe the
occurrence of template gaps and attribute gaps named g in the possible values of
x at `. The plug operation is consistent if and only if the following condition is
satisfied:

t = {OPEN} ∨ a = {OPEN} if y has type STRING, and
t = {OPEN} ∧ a = {CLOSED} if y has type XML.

This captures the requirement that string plug operations are allowed on all gaps
that are present, while template plug operations only are possible for template gaps.

To calculate the GP map, we perform a fixed point iteration on the summary
graph. We calculate the map:

Γ : N × (N → 2G) → 2{OPEN,CLOSED}

as the least solution to the constraint system that consists of the following two
constraints for each n ∈ N and M ∈ {tgaps , agaps}:(

g ∈ M(n) ∧ OPEN ∈ P (n)(g)
) ∨(∃h ∈ tgaps(n) : ∃(n, h, M) ∈ T : OPEN ∈ Γ(m, M)

) ⇒ OPEN ∈ Γ(n, M)(
g /∈ M(n) ∨ CLOSED ∈ P (n)(g)

) ∧(
∀h ∈ tgaps(n) : ∃(n, h, M) ∈ T : CLOSED ∈ Γ(m, M)

∨ ((h 6= g ∨ M = agaps) ∧ OPEN ∈ P (n)(h)
)

∨ S(n, h) 6= ∅
)

⇒ CLOSED ∈ Γ(n, M)

The value of Γ(n, M) contains OPEN if there exists an unfolding of the summary
graph, starting from n, which contains an open g gap of the type specified by

32 · Christensen, Møller, and Schwartzbach

M . Similarly, it contains CLOSED if there exists an unfolding which does not
contain any open g gaps of the right type. The first constraint specifies under
which conditions OPEN can be included in Γ(n, M): Either a potentially open g
gap of the right type is present in the template of the n node itself, or there is
a gap with a template edge to a node where such a gap may occur. The second
constraint specifies the conditions for CLOSED to be contained in Γ(n, M): If there
are g gaps of the right type in the template of the n node itself, then these gaps
must be potentially closed, and furthermore, for all template gaps in the template
of n, either something may be plugged in where there is no open g gap of the right
type, or the template gap may still be open and at the same time have a different
name or a different type than the ones we are looking for.

Again, the involved lattice is finite and the constraints are monotone, so the
least fixed point is well-defined and the iteration terminates. The GP map is then
defined pointwise as the union of Γ applied to the roots of the summary graph:

GP(M) =
⋃

n∈R

Γ(n, M)

As mentioned, the summary graphs that are constructed are conservative with
respect to the actual values that appear at run-time. However, the plug analysis
introduces no new imprecision, that is, this analysis is both sound and complete with
respect to the summary graphs: It determines that a given plug operation cannot
fail if and only if for every value in unfold(summary`(x)), the plug operation does
not fail. In other words, if the plug analysis detects no errors, it is guaranteed that
no PlugException will ever be thrown when running the program.

For a specific plug operation, the summary graph can be traversed at most 2|N |
times before reaching the fixed point. Each traversal takes time O(n2), where n is
the size of the JWIG program, because the summary graph can have at most O(n)
nodes and O(n2) edges. This is done for each of the O(n) plug operations, so in
total, the plug analysis takes time O(n4).

5.2 Receive Analysis

We now validate receive consistency, meaning that receive and receive[] opera-
tions always succeed. For the single-string variant, receive, it must be the case
that for all program executions, the last document being shown before the receive
operation contained exactly one field of the given name. Also, there must have
been at least one show operation between the initiation of the session thread and
the receive operation. If these properties are satisfied, it is guaranteed that no
ReceiveException will ever be thrown when running the program.

The array variant, receive[], always succeeds, so technically, we do not have to
analyze those operations. However, we choose to consider it as an error if we are
able to detect that for a given receive[] operation, there are no possibility of ever
receiving other that the empty array. This is to follow the spirit of Java where, for
instance, it is considered a compile-time error to specify a cast operation that is
guaranteed to fail for all executions.

In case the name of the field is either submit, submit.x, or submit.y, then we
know that it comes from a submit button or image. As described in Section 2.3,
exactly one value is then always generated. That is, in these cases, both receive

Extending Java for High-Level Web Service Construction · 33

and receive[] always succeed. For the remainder of this section, we thus assume
that the field name is not one among those three.

Given a receive operation, we need to count the number of occurrences of input
fields of the given name that may appear in every document sent to the client
in an associated show operation. For a concrete XHTML/HTML document, this
information is defined by Section 17.13.2 in [31]. For a running JWIG program, a
conservative approximation of the information can be extracted from the receive
edges in the flow graph and the summary graphs of the associated show operations.

Compared to the field analysis in <bigwig> [32], this situation differs in a number
of ways: 1) The present analysis works on summary graphs rather than on flow
graphs. 2) In the old analysis, the plug and receive analyses were combined. We
separate them into two independent analyses without losing any precision. 3) In
<bigwig>, a form is always inserted automatically around the entire document
body. That precludes documents from having other forms for submitting input to
other services. As described in Section 2.2, JWIG instead allows multiple forms by
identifying those relevant to the session by the absence of an action attribute in the
form element. 4) The notions of tuples and relations in [32] are in JWIG replaced
by arrays and receive[] operations.

Again, we will define a constraint system for computing the desired information.
This information is represented by a value of the following lattice, C:

*

1
0

The element 0 means that there are always zero occurrences of the field, 1 means
that there is always exactly one occurrence, ∗ means that the number varies de-
pending on the unfolding or that it is greater than one, � represents one or more
radio buttons, and ⊥ represents an unknown number. The constraint system ap-
plies two special monotone operators on C: ⊕ for addition and ⊗ for multiplication.
These are defined as follows:

⊕ ⊥ 0 � 1 ∗
⊥ ⊥ 0 � 1 ∗
0 0 0 � 1 ∗
� � � � ∗ ∗
1 1 1 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

⊗ ⊥ 0 � 1 ∗
⊥ ⊥ 0 ⊥ ⊥ ⊥
0 0 0 0 0 0
� ⊥ 0 � � ∗
1 ⊥ 0 � 1 ∗
∗ ⊥ 0 ∗ ∗ ∗

Assume that we are given a summary graph (R, T, S, P) corresponding to a specific
show statement. Two special functions are used for extracting information about
fields and gaps for an individual node in the summary graph:

count : N → GFP

allforms : N → 2GFP

34 · Christensen, Møller, and Schwartzbach

where GFP = (F → C) × (G → C) shows the number of occurrences of fields
and gaps in a specific form. The allforms function returns a set of such values,
corresponding to the various forms that may appear, and count counts disregarding
the form elements:

count(n) = (fcount(n, t(n)), gcount(n, t(n)))

allforms(n) =
⋃

k∈forms(t(n))

{(fcount(n, k), gcount(n, k))}

where

forms(xml) =



{xml} if xml = <form atts> xml ′ </form>
and atts does not contain action

forms(xml ′) if xml = <name atts> xml ′ </name>
and name 6= form

or atts contains action

forms(xml1) ∪ forms(xml2) if xml = xml1 xml2
∅ otherwise

gcount(n, xml)(g) =



gcount(n, xml1)(g)
⊕ gcount(n, xml2)(g) if xml = xml1 xml2

gcount(n, xml ′)(g)
⊕ gcount(n, atts)(g) if xml = <name atts> xml ′ </name>

1 if xml = <[g]>

and P (n, g) = {CLOSED}
∗ if xml = <[g]>

and OPEN ∈ P (n, g)
0 otherwise

gcount(n, atts)(g) =



gcount(n, atts1)(g)
⊕ gcount(n, atts2)(g) if atts = atts1 atts2

1 if atts = <[g]>

and P (n, g) = {CLOSED}
∗ if atts = <[g]>

and OPEN ∈ P (n, g)
0 otherwise

Extending Java for High-Level Web Service Construction · 35

fcount(n, xml)(f) =



fcount(n, xml1)(f)
⊕ fcount(n, xml2)(f) if xml = xml1 xml2

fcount(n, xml ′)(f) if xml = <name atts> xml ′ </name>
and name /∈ FIELDS

fc(n, atts) if xml = <name atts> xml ′ </name>
and name ∈ FIELDS
and atts contains name="f"

0 otherwise

The forms function finds the relevant form elements in the given template, gcount
counts the number of occurrences of a given gap name, and fcount counts the num-
ber of occurrences of a given field name. Note that the latter two functions need to
consider the gap presence map of the summary graph. For the field count we can
assume that only valid XHTML is shown because of the show analysis presented in
the next section, and we can exploit the restrictions about input field elements de-
scribed in Section 2.3. The set FIELDS = {input, button, select, textarea, object}
contains all names of elements that define input fields. The function fc(n, atts)
counts the number of name–value pairs that may be produced: If atts contains
type="radio", then it returns �; otherwise, if atts contains a type attribute with
value reset, submit, or image, or an attribute with name disabled or declare, it re-
turns 0; otherwise, if it contains type="checkbox" or an attribute named multiple, it
returns ∗, and otherwise it returns 1. In order to detect whether disabled or declare
occur, the gap presence map, P (n), needs to be consulted in case of attribute gaps.

With these auxiliary functions in place, we can now define the value fp ∈ C rep-
resenting the number of occurrences of f in the possible unfoldings of the summary
graph:

fp =
⊔
r∈R

Φ(r)

If for every root, the number of occurrences is always 0, always �, or always 1,
the final result is 0, �, or 1, respectively; if it sometimes is � and sometimes 1,
the result is 1; and otherwise it is ∗. The function Φ traverses the nodes in the
summary graph, looking for applicable forms:

Φ(n) =
⊔

(ff ,gg)∈allforms(n)

infields(n, (ff , gg)) t
⊔

(n,h,m)∈T, h∈tgaps(n)

Φ(m)

The left-hand factor counts the field occurrences for each form element that occurs
directly in the template of n, while the right-hand factor looks at the templates
that may be plugged into gaps in n.

infields(n, (ff , gg)) = ff (f) ⊕
⊕
h∈G

(gg(h) ⊗ infollow (n, h))

infollow (n, h) =
⊔

(n,h,m)∈T

infields(m, count(m))

Given a current node n and an element (ff , gg) of GFP representing the fields
and gaps directly available in a particular form, the infields function sums the

36 · Christensen, Møller, and Schwartzbach

field occurrences according to ff and those that may occur due to plug operations.
For the latter part, we iterate through the possible gaps and multiply each count
with the gap multiplicity. The infollow function follows the template edges and
recursively finds the number of field occurrences in the same way as outfollow but
now assuming that we are inside a form.

As usual, we can compute the least fixed point by iteration because the lattice
is finite and all operations are monotone. Since the count and allforms functions
never return ⊥, the result, fp, is always in the set {0, �, 1, ∗}. The desired properties
can now be verified by inspecting that:

fp ∈ {1, �} for receive operations, and
fp 6= 0 for receive[] operations.

for every summary graph computed for some show operation that is connected by
a receive edge to the receive operation in the flow graph.

Like the plug analysis, this receive analysis is both sound and complete with
respect to the summary graphs and the receive edges — assuming that only valid
XHTML is ever shown: For a receive f operation, the analysis determines that
it cannot fail if and only if for every label ` of a show node which has an edge to
the receive node, it is the case that in every XML document in L(summary`(x)),
each form without an action attribute produces exactly one f field value. A similar
property holds for receive[] operations.

For each receive and receive[] operation, we calculate fp for every summary
graph of an associated show operation. Thus, fp is calculated O(n2) times, where
n is the size of the original JWIG program. The auxiliary functions count and
allforms can be pre-computed in time O(n). Each argument to infields denotes
a specific form element in a template constant. Since there are O(n) template
nodes and O(n) form elements in the program, both Φ and infields are given at
most O(n) different values as arguments. Since the lattice has constant height, we
therefore iterate through the summary graph O(n) times. Each iteration performs
a single traversal of the summary graph which takes time O(n2). In total, the
receive analysis runs in time O(n5) in the size of the original JWIG program.

5.3 Show Analysis

For every show statement in the JWIG program, we have computed a summary
graph that describes how the XML templates are combined in the program and
which XML documents may be shown to the client at that point. This gives us
an opportunity to verify that all documents being shown are valid with respect to
some document type. In particular, we wish to ensure that the documents are valid
XHTML 1.0 [30] which is the most commonly used XML language for interactive
Web services. XHTML 1.0 is the official XML version of the popular HTML 4.01.
It is relatively easy to translate between the two, so in principle our technique works
for HTML as well.

Validity of an XML document means that it is well-formed and in addition sat-
isfies some requirements given by a schema for the particular language. The first
part, well-formedness, essentially means that the document directly corresponds to
a tree structure whose internal nodes are elements by requiring element tags to bal-
ance and nest properly. This part comes for free in JWIG, since all XML templates

Extending Java for High-Level Web Service Construction · 37

are syntactically required to be well-formed. The remaining validity requirements
specify which attributes a given element may have and which text and subelements
that may appear immediately below the element in the XML tree. Such properties
are specified using a schema language. In XHTML, the requirements are given by a
DTD (Document Type Definition) schema plus some extra restrictions that cannot
be formalized in the DTD language.

Our validation technique is parameterized by the schema description. Thereby
we expect that it will be straightforward to support for instance WML or VoiceXML
which are used for alternative interaction methods, in place of XHTML. Rather that
using DTD, we apply a novel schema language, Document Structure Description 2.0
(DSD2) [27]. This schema language is more expressive than DTD, so more validity
requirements can be formalized. The expressive power of DSD2 is comparable to
that of W3C’s XML Schema [36], but DSD2 is significantly simpler, as indicated
below.

5.4 The Document Structure Description 2.0 Language

The DSD2 language is designed as a successor to the schema language described
in [21; 22]. A DSD2 schema description of an XML language is itself an XML
document. A DSD2 processor is a tool that takes as input a DSD2 schema and an
XML document called the instance document. It then inserts default attributes and
contents in the instance document according to the schema and checks whether the
instance document with defaults inserted is valid. This is done by traversing the tree
structure of the instance document in a top-down manner. For every element node,
default attributes and contents are inserted and it is checked that all requirements
about the attributes and contents of the element are satisfied.

The following description of DSD2 is intended to give a brief overview—not to
define the language exhaustively. A normative specification document for DSD2 is
currently under development [27].

Conceptually, a DSD2 schema consists of a list of constraints. A constraint is
either a declaration, a requirement, a conditional constraint, or a default specifica-
tion. Furthermore, there are notions of string normalization, keys and references,
and options which we can ignore here. During the top-down traversal, the proces-
sor checks each element in turn. The current element is the one currently being
checked. This check of an individual element is performed in five steps:

(1) all applicable constraints are found;
(2) default attributes and contents are inserted;
(3) the requirements are checked;
(4) it is checked that all attributes of the current element are declared; and
(5) it is checked that the contents matches all contents declarations and that the

whole contents are declared.

The following description of the various types of constraints explains these steps in
more detail:

Declarations. A declaration constraint contains a list of attribute declarations
and contents declarations. An attribute declaration specifies that an attribute with
a given name is allowed in the current element provided that the value matches a

38 · Christensen, Møller, and Schwartzbach

given regular expression. A contents declaration is a regular expression over charac-
ters and element names that specifies a requirement for the presence, ordering, and
number of occurrences of sub-elements and character data. A contents declaration
only looks at elements that are mentioned in the regular expression. This subse-
quence of the contents is called the projected contents. If the expression contains
any character sub-expressions, all character data in the contents is included in the
projected contents. Checking a contents declaration succeeds if the projected con-
tents matches the regular expression. All attributes and contents that have been
matched by a declaration are considered to be declared.

Requirements. A requirement constraint contains boolean expressions that must
evaluate to true for the current element. Boolean expressions are built of the usual
boolean operators, together with attribute expressions which probe the presence
and values of attributes, element expressions which probe the name of the current
element, and parent and ancestor operators which probe whether certain properties
are satisfied for the elements above the current element in the instance document
tree.

Conditional constraints. A conditional constraint contains a list of constraints
whose applicability is guarded by a boolean expression. Only when the boolean
expression evaluates to true for the current element, the constraints within are
processed.

Defaults. A default constraint specifies a default value for an attribute or a de-
fault contents sequence for an empty element. In case of conflicts, for instance if
two default attributes with the same name are applicable, all but the one specified
last in the schema are ignored.

For convenience, specifications can be grouped and named for modularity and reuse.
Furthermore, the DSD2 schema can restrict the name of the root element: for exam-
ple, in XHTML, it must be html. DSD2 has full support for Namespaces [11]. For
XHTML, the namespace http://www.w3.org/1999/xhtml is used, and all elements
must use the empty namespace prefix.

As an example, the following snippet of the DSD2 description of XHTML 1.0
describes dl elements:

<if><element name="dl"/>

<declare>

<attribute name="compact"><string value="compact"/></attribute>

<repeat min="1"><union>

<element name="dt"/><element name="dd"/>

</union></repeat>

</declare>

<constraint ref="ATTRS"/>

</if>

These constraints show that a dl element may contain a compact attribute, provided
that its value is compact, and that it must contain at least one dt or dd sub-element.
Additionally, ATTRS, which is defined elsewhere, describes some additional common
attributes that may occur.

The following example (abbreviated with “...”) describes a elements:

<if><element name="a"/>

Extending Java for High-Level Web Service Construction · 39

<declare>

<attribute name="name"><stringtype ref="NMTOKEN"/></attribute>

<attribute name="shape"><stringtype ref="SHAPE"/></attribute>

...

<repeat><union>

<string/>

<contenttype ref="PHRASE"/>

...

</union></repeat>

</declare>

<constraint ref="HREFLANG"/>

...

<default name="shape" value="rect"/>

<require>

<not><ancestor><element name="a"/></ancestor></not>

</require>

</if>

This reads: If the current element is named “a”, then the sub-constraints are appli-
cable. First, the attributes name, shape, etc. are declared. The stringtype constructs
are references to regular expressions defining the valid attribute values. Then, a
contents declaration states that all text is allowed as contents together with some
contents expressions defined elsewhere. After that, there are some references to
constraint definitions and a default specification for the shape attribute. Finally,
there is a requirement stating that a elements cannot be nested. The latter con-
straint is an example of a validity requirement that cannot be expressed by DTD
or XML Schema.

As a final example, the following requirement can be found in the description of
input elements:

<require>

<or>

<attribute name="type">

<union><string value="submit"/><string value="reset"/></union>

</attribute>

<attribute name="name"/>

</or>

</require>

This states that there must be a type attribute with value submit or reset or a name

attribute. This is another validity requirement that cannot be expressed concisely
in most other schema languages. The whole DSD2 schema for XHTML 1.0 can be
found at http://www.brics.dk/DSD/xhtml1-transitional.dsd.

5.5 Validity Analysis

We show below how the DSD2 processing algorithm explained in the previous sec-
tion generalizes from concrete XML documents to summary graphs. In fact, the
DSD2 language has been designed with summary graph validation in mind. Since
the DSD2 language is a generalization of the DTD language, the following algo-
rithm could be adapted to DTD. One benefit of using DSD2 instead of DTD or
XML Schema is that it allows us to capture many more errors. Every validity re-
quirement that merely appear as comments in the DTD schema for XHTML can
be formalized in DSD2, as exemplified in the previous section. Of course, there still

40 · Christensen, Møller, and Schwartzbach

are syntactic requirements that even DSD2 cannot express. For instance, in tables,
the thead, tfoot, and tbody sections must contain the same number of columns, and
the name attributes of a elements must have unique values. Summary graphs clearly
do not have the power to count such numbers of occurrences, so we do not attempt
to also check these requirements. Still, our approach based on DSD2 captures more
syntactic errors than is possible with DTD. Only the uniqueness requirements spec-
ified by ID and IDREF attributes are not checked, but they do not play a central
role in the schema for XHTML anyway.

Recall from Section 2.3 that we make a few modification of the documents at
run-time just before they are sent to the clients. It is trivial to modify the valida-
tion algorithm to take these modifications into account. For instance, rather that
requiring one or more entries in all lists, the analysis permits any number since lists
with zero entries are always removed anyway.

Given a DSD2 schema and a summary graph SG = (R, T, S, P) associated to
some show statement, we must check that every XML document in L(SG) is valid
according to the schema. The algorithm for validating a summary graph with
respect to a DSD2 schema proceeds in a top-down manner mimicking the definition
of the unfolding relation in Section 4.2, starting from the root elements in the
templates of the summary graph root nodes. In contrast to the analyses described in
the previous sections, we will describe this one in a less formal manner because of the
many technical details involved. Rather than showing all the complex underlying
equation systems or describing the entire algorithm in detailed pseudo-code, we
attempt to present an concise overview of its structure.

For each root r ∈ R, we perform the following steps:

(1) Let p be a pointer to the root element in t(r).
(2) Check that the name of the p element is valid for a root element.
(3) Initialize M = ∅ and call check (r, p, c0).

If no violations are detected, SG is valid which implies that all documents in L(SG)
are valid. The check procedure is given a summary graph node n, a pointer p to an
element in t(n), and a context map c. It recursively checks validity of the p element
and the sub-trees below it, assuming the specified context. A context map assigns a
truth value to every parent and ancestor expression occurring in the schema. The
map c0 maps everything to false.

The set M is a global memoization set which consists of triples that—like the
arguments to check—contain a summary graph node, a pointer to an element in
the template of the node, and a context map. This set at all times describes
the elements and contexts that already have been checked. We use it to avoid
performing redundant computations. For a given schema and summary graph, there
are only finitely many possible memoization sets, so termination is guaranteed, even
in case of cycles in the summary graph.

The procedure check (n, p, c) does the following, essentially corresponding to the
five steps for checking individual elements in the algorithm from the previous sec-
tion, but now also considering gaps:

(1) If (n, p, c) ∈ M , then skip all the following steps; otherwise add (n, p, c) to M
and proceed.

Extending Java for High-Level Web Service Construction · 41

(2) Compute a new context map c′. This is done by re-evaluating each parent and
ancestor expression, based on the p element and the c map. Note that because
of the c map, this can be done in constant time in the size of the summary
graph and the templates.

(3) Find all constraints in the schema that are applicable for the p element. This is
done by traversing the schema and for each conditional constraint, evaluating
its boolean expression. If it evaluates to true, it is included. When evaluating
boolean expressions, the context map c′ is consulted for evaluating parent and
ancestor sub-expressions. We describe later more details on how the boolean
expressions are evaluated.

(4) Build a collection of defaults that should be inserted. This is done by traversing
the applicable defaults. An attribute default is included if the p element does
not have an attribute of that name. A contents default is included if the
contents of the p element is empty. In order to determine whether or not
attributes or contents occur, we need to consider the gap presence map, P , the
template edges, T , and the string edges, S, in case there are gaps among the
attributes or contents of the p element. Note that we do not actually insert
the defaults here but only collect them. When the defaults are collected, we
need to update c′ according to the collected defaults since default attributes
may affect the truth values of the parent and ancestor expressions.

(5) For each applicable requirement, check that its boolean expression evaluates to
true. If it does not, then the summary graph is not valid.

(6) For each attribute in the p element, including the collected default attributes,
check that it is declared by the applicable attribute declarations. An attribute is
declared by an attribute declaration if the attribute value matches the regular
expression of the declaration. In case the attribute is an attribute gap, this
amounts to checking inclusion of one regular language of Unicode strings in
another. However, it is possible that one attribute declaration specifies that
a given attribute may have one set of values and another declaration specifies
that the same attribute may also have another set of values. Therefore, in
general, we check that all values that are possible according to the string edges,
S, match some declaration. If some attribute is not declared, the summary
graph is not valid.

(7) For each contents declaration, check that the contents of p element matches the
declaration. As previously mentioned, a contents sequence matches a contents
declaration if the projected contents is in the language of the regular expression
of the declaration. In case there are no gaps in the contents, this is a simple
check of string inclusion in a regular language. If there are gaps, the situation is
more involved: The template edges from the gaps may lead to templates which
at the top-level themselves contain gaps. (The top-level of a template is the
sequence of elements, characters, and gaps that are not enclosed by other ele-
ments.) In turn, this may cause loops of template edges. Therefore, in general,
the set of possible contents sequences forms a context-free language, which we
represent by a context-free grammar. Without such loops, the language is reg-
ular. The problem of deciding inclusion of a context-free language in a regular
language is decidable [17], but computationally expensive. For that reason, we

42 · Christensen, Møller, and Schwartzbach

approximate the context-free language by a regular one: Whenever a loop is
found in the context-free grammar, we replace it by the regular language A∗

where A consists of the individual characters and elements occurring in the
loop. This allows us to apply a simpler regular language inclusion algorithm.
Although loops in summary graph often occur, our experiments show that it
is rare that this approximation actually causes any imprecision. In addition to
checking that all contents declarations are satisfied, we check that all parts of
the contents has been declared, that is, matched by some declaration. If not,
the summary graph is not valid. Again, if any declaration contains a character
sub-expression, all character data is considered declared.

(8) Look through the immediate contents of the p element. For each sub-element
p′ that occurs within t(n), call check (n, p′, c′) recursively. For each template
gap g in the contents, find all each outgoing template edge (n, g, n′) ∈ T and
call check (n′, p′, c′) recursively for every element p′ occurring at the top-level
of t(n′).

Note that, assuming a fixed schema, steps (1)-(7) can be performed in linear time
in the number of attributes in the current element and in the length of its contents,
independently of the rest of the t(n) template and of all the other templates. Be-
cause of the memoization, the entire algorithm for whole summary graphs therefore
runs in linear time in the size of the templates, which in a sense is optimal.

Also note that in contrast to the algorithm for validating XML documents, this
one does not have side-effects on the summary graphs: defaults are not inserted
in the templates, but the validity checks works as if they were inserted. It would
not be possible to explicitly insert the defaults, since each template in general is
evaluated in many different contexts during the validity check.

Evaluation of boolean expressions for conditional constraints and requirement
constraints is non-trivial because we have to consider all the possible unfoldings of
the summary graph. We apply a four-valued logic for that purpose. Evaluating a
boolean expression results in one of the following values:

true – if evaluating the expression on every possible unfolding would result in true;
false – if they all would result in false;
some – if some unfolding would result in true and others in false;
don’t-know – if the processor is unable to detect whether all, no, or some unfoldings

would result in true.

All boolean operators extend naturally to these values. The value don’t-know is
for instance produced by the conjunction of some and some. If the guard of a
conditional constraint evaluates to don’t-know, we terminate with a “don’t know”
message. However, for our concrete XHTML schema, this can in fact never happen.

Compared with the technique described in [8], we have now moved from an ab-
stract version of DTD to the more powerful DSD2 schema language. Furthermore,
by the introduction of four-valued logic for evaluation of boolean expressions, we
have repaired a defect that in rare cases caused the old algorithm to fail.

Our algorithm is sound, that is, if it validates a given summary graph it is
certain that all unfoldings into concrete XML documents are also valid. Because of
the possibility of returning “don’t know” and of the approximation of context-free

Extending Java for High-Level Web Service Construction · 43

languages by regular ones, the algorithm is generally not complete. An alternative
to our approach of “giving up” when these situations occur would be to branch
out on all individual unfoldings and use classical two-valued logic. This shows that
the problem is decidable. However, the complexity of the algorithm would then
increase significantly, and, for the XHTML schema, false errors can only occur in
the rare cases where we actually need to approximate context-free languages by
regular ones, as mentioned above.

6. IMPLEMENTATION AND EVALUATION

To make experiments for evaluating the JWIG language design and the performance
of the program analyses, we have made a prototype implementation. It consists
of the following components, roughly corresponding to the structure in Figures 6
and 7:

—a simple desugarer, made with JFlex [23], for translating JWIG programs into
Java code;

—the <bigwig> low-level run-time system [7] which in its newest version [25] is
based on a module for the Apache Web Server [3] and extended with Java support;

—a Java-based run-time system for representing and manipulating XML templates;
—a part of the Soot optimization framework for Java [37; 35], which converts Java

bytecode to a more convenient 3-address instruction code language, called Jimple;
—a flow graph package, which operates on the Jimple code generated by Soot and

also uses Soot’s CHA implementation;
—a finite-state automaton package with UTF16 Unicode alphabet and support for

all standard regular operations [26];
—a summary graph construction package which also performs the string analysis;
—a plug and receive analyzer which performs the checks described in Section 5.1

and 5.2; and
—a DSD2 validity checker with summary graph support.

All parts are written in Java, except the low-level run-time system which is written
in C. The Java part of the run-time system amounts to 3000 lines, and the analysis
framework is 12,500 lines.

6.1 Example: The Memory Game

To give a more complete example of a JWIG service, we present the well-known
Memory Game, where the player must match up pairs of cards lying face down.
First, the number of pairs is chosen, next the game itself proceeds iteratively, and
finally the player is congratulated. A snapshot of the game in progress is seen in
Figure 13.

The main session, presented in Figure 14, looks just like a corresponding se-
quential Java program. The templates being used are presented in Figure 15. The
construction of a grid of cards is performed by the makeCardTable method presented
in Figure 16. The class representing individual cards is seen in Figure 17. In all,
the Memory Game is written in 169 lines of JWIG.

By itself, the session concept and the XML templates simplify the program com-
pared to solutions in JSP or Servlets. Furthermore, since the example is analyzed

44 · Christensen, Møller, and Schwartzbach

Fig. 13. A snapshot of the Memory Game being played.

without errors, we know that no JWIG exceptions will be thrown while the game
is being played. In particular, we are guaranteed that all documents being shown
are valid XHTML according to the strict standard imposed by the DSD2 schema.

The JWIG run-time system, which is also used in the <bigwig> project, is tailor-
made for session-based Web services. Each session thread is associated a unique
URL which refers to a file on the server. This file at all times contains the most
recent page shown to the client. The session code runs as a JVM thread that
lives for the entire duration of the session. In contrast, sessions in Servlet and
JSP services run as short-lived threads where the session identity is encoded using
cookies or hidden input fields, as described in Section 1.3. This precludes sessions
from being bookmarked, such that the client cannot suspend and later resume a
session, and the history buffer in the browser typically gets cluttered with references
to obsolete pages. In our solution, the session URL functions as an identity of the
session, which avoids all these problems. These aspects are described in more detail
in [9].

If we introduce an error in the program, by forgetting the name attribute in the
input field in the welcome template, then the JWIG analyzer produces the following
output:

*** Field ‘howmany’ is never available on line 68

*** Invalid XHTML at line 49

--- element ’input’: requirement not satisfied:

<or xmlns="http://www.brics.dk/DSD/2.0/error">

<attribute name="type">

<union>

<string value="submit" />

<string value="reset" />

Extending Java for High-Level Web Service Construction · 45

public class Game extends Session {

public void main() {

// ask for number of cards

int howmany;

do {

show wrap <[body = welcome <[atmost = images.length]]);

howmany = Integer.parseInt(receive howmany);

} while (howmany < 1 || howmany > images.length);

// generate random permutation of cards

Card[] cards = new Card[howmany*2];

Random random = new Random();

for (int i = 0 ; i < howmany ; i++) {

for (int c = 0 ; c < 2 ; c++) {

int index;

do {

index = random.nextInt(howmany*2);

} while (cards[index] != null);

cards[index] = new Card(i);

}

}

// play the game

int pairsleft = howmany;

int moves = 0;

show makeCardTable(cards);

while (pairsleft > 0) {

// first card picked

int firstcard = Integer.parseInt(receive submit);

cards[firstcard].status = 1;

show makeCardTable(cards);

// second card picked

int secondcard = Integer.parseInt(receive submit);

cards[secondcard].status = 1;

moves++;

// check match

if (cards[firstcard].value == cards[secondcard].value) {

cards[firstcard].status = 2;

cards[secondcard].status = 2;

if (--pairsleft > 0)

show makeCardTable(cards);

} else {

show makeCardTable(cards);

cards[firstcard].status = 0;

cards[secondcard].status = 0;

}

}

// done, show result

exit farewell <[howmany = howmany, moves = moves];

}

}

Fig. 14. The main session of the Memory Game.

46 · Christensen, Møller, and Schwartzbach

private static final XML wrap = [[

<html>
<head><title>The JWIG Memory game</title></head>
<body><form><[body]></form></body>

</html>
]];

private static final XML welcome = [[

<h3>Welcome to the JWIG Memory game!</h3>
<p>How many pairs of cards do you want (from 1 to <[atmost]>)?</p>
<input type="text" name=" howmany"/>

]];

private static final XML farewell = wrap <[body = [[

<h3>Thank you for playing this game!</h3>
<p>You found all <[howmany]> pairs using <[moves]> moves.</p>

]]];

Fig. 15. Templates from the Memory Game.

private XML makeCardTable(Card[] cards) {

XML table = [[<table><[row]></table>]];

for (int y=0; y < (cards.length+COLS-1)/COLS; y++) {

XML row = [[<tr><[elem]></tr><[row]>]];

for (int x=0; x < COLS; x++) {

XML elem = [[<td><[contents]></td><[elem]>]];

int index = y*COLS+x;

if (index < cards.length) {

elem = elem <[contents = cards[index].makeCard(index)];

}

row = row <[elem = elem];

}

table = table <[row = row];

}

return wrap <[body = table];

}

Fig. 16. Generating a grid of cards in the Memory Game.

</union>

</attribute>

<attribute name="name" />

</or>

In the first line, the receive analysis complains that the howmany field is never
available from the client. The remainder of the error message is from the show
analysis, which notices that the input element violates the quoted constraint from
the XHTML schema. This particular validity error is not caught by DTD valida-
tion of the generated document. If the involved element contained gaps, the error
message would include a print of all relevant template and string edges and values
of the gap presence map, which shows the relevant plug operations. Clearly, such
diagnostics are useful for debugging.

Extending Java for High-Level Web Service Construction · 47

private class Card {

public int status;

public int value;

public Card(int value) {

this.status = 0;

this.value = value;

}

public XML makeCard(int index) {

switch(status) {

case 0:

return [[<input type="image" alt="card"
src=[image] name=[index] />]]

<[image = back_image, index = index];

case 1:

return [[]]

<[image = images[value], num = value];

case 2:

return [[]]

<[image = blank_image];

default:

return null;

}

}

}

Fig. 17. Representing a card in the Memory Game.

6.2 Performance

The JWIG implementation may be evaluated with respect to compile-time, analysis-
time, or run-time. The compile-time performance is not an issue, since JWIG pro-
grams are simply piped through a JFlex desugarer and compiled using a standard
Java compiler. The JWIG runtime performance is not particularly interesting,
since we reuse the <bigwig> runtime system and the standard J2SE JVM. The
critical component in our system is the extensive collection of static analyses that
we perform on the generated class files.

As shown in Figure 7, the static analysis is a combination of many components,
which we in the following quantify separately. Our benchmark suite, shown in
Figure 18, is a collection of small to medium sized JWIG services, most of which
have been converted from corresponding <bigwig> applications [8]. The right-most
column shows the total time in seconds for the entire suite of program analyses.
For all benchmarks, at most 150 MB memory is used.

The four larger ones are an XML template manager where templates can be
uploaded and edited (TempMan), an interactive Web board for on-line discussions
(WebBoard), a system for study administration (Bachelor), and a system for man-
agement of the JAOO 2001 conference (Jaoo).

Figure 19 shows the resources involved in computing the flow graphs on a 1 GHz
Pentium III with 1 GB RAM running Linux. For each benchmark we show the
time in seconds used by Soot, the time in seconds used by phases 1 through 7

48 · Christensen, Møller, and Schwartzbach

Name Lines Templates Shows/Exits Total Time

Chat 80 4 3 5.370

Guess 94 8 7 7.147

Calendar 133 6 2 7.029

Memory 167 9 6 9.718

TempMan 238 13 3 7.719

WebBoard 766 32 24 9.769

Bachelor 1078 88 14 115.641

Jaoo 3923 198 9 35.997

Fig. 18. The benchmark services.

Name Load Construct Size Before Simplify Size After

Chat 3.205 1.871 238/388 0.232 107/99

Guess 3.242 1.993 286/442 0.152 113/89

Calendar 3.276 2.241 386/672 0.254 124/127

Memory 3.284 2.227 451/765 0.292 143/127

TempMan 3.290 2.604 779/1437 0.883 200/192

WebBoard 3.244 2.660 878/1285 0.775 422/287

Bachelor 3.255 4.303 2278/3676 21.862 1059/914

Jaoo 3.557 5.647 3009/4407 14.045 1406/1008

Fig. 19. Flow graph construction.

Name Time Largest Size

Chat 0.103 2/1/5

Guess 0.105 2/1/3

Calendar 0.440 5/9/5

Memory 2.627 7/8/5

TempMan 0.203 11/13/9

WebBoard 1.189 9/11/11

Bachelor 24.673 47/83/24

Jaoo 5.067 33/45/48

Fig. 20. Summary graph construction.

described in Section 3, the size of the resulting flow graph, the time in seconds
used by the simplifying Phase 8, and the size of the simplified flow graph. The flow
graph sizes are shown as number of nodes and number of flow edges. The loading
time is dominated by initialization of Soot. Phases 1 through 7 of the flow graph
construction is seen to be linear in the program size. The time for the simplification
phase strongly depends on the complexity of the document constructions, which
explains the relatively large number for the Jaoo service. For all benchmarks, the
simplification phase substantially reduces the flow graph size. Furthermore, recall
that before the simplification phase, flow edges may have multiple variables, while
after simplification, they all have exactly one variable.

Figure 20 quantifies the computation of summary graphs, including the string
analysis. For each benchmark we show the total time in seconds and the size of the
largest summary graph, in terms of nodes, template edges, and non-trivial string
edges. The relatively large numbers for the Bachelor example correctly reflects that
it constructs complicated documents. Without graph simplification, the total time

Extending Java for High-Level Web Service Construction · 49

Name Plug Receive Show False Errors

Chat 0.002 0.004 0.953 0

Guess 0.015 0.002 1.638 0

Calendar 0.017 0.000 0.801 0

Memory 0.003 0.002 1.283 0

TempMan 0.004 0.015 0.720 0

WebBoard 0.016 0.003 1.882 0

Bachelor 0.133 0.009 61.406 0

Jaoo 0.059 0.002 7.620 0

Fig. 21. Summary graph analysis.

for the Memory example blows up to more than 15 minutes, while the Jaoo example
was aborted after 90 minutes. We conclude that summary graph construction
appears to be inexpensive in practice and that graph simplification is worth the
effort.

Figure 21 deals with the subsequent analysis of all the computed summary graphs.
For each benchmark we show the total time in seconds for each of the three analyses
and the total number of false errors generated by the conservative analyses. In all
cases, the times are smaller than for the other phases. Many benchmarks generated
errors, but by careful inspection, they were all seen to correctly identify actual
XHTML validity errors. Thus, the analysis appears to be precise enough to serve
as a real help to the programmer.

We conclude that the JWIG prototype implementation is certainly feasible to
use, but that there is room for performance improvements for the implementation.

7. PLANS AND IDEAS FOR FUTURE DEVELOPMENT

Our current system can be extended and improved in many different directions
which we plan to investigate in future work. These can be divided into language
design, program analysis, and implementation issues, and are briefly described in
the following.

7.1 Language design

So far, the design of JWIG has focused on two topics that are central to the de-
velopment of interactive Web services: sessions and dynamic construction of Web
documents. However, there are many more topics that could benefit from high-level
language-based solutions, as shown in [9].

One example is validation of form input. Many Web services apply intricate
JavaScript client-side code in the Web documents for checking that input forms
are filled in consistently. For instance, it is typical that certain fields must contain
numbers or email addresses, or that some fields are optional depending on values
entered in other fields. Proper error messages need to be generated when errors are
detected such that the clients have the chance to correct them, and extra checks need
to be performed on the server. The PowerForms language [6] has been developed
to attack the problem of specifying form input validation requirements in a more
simple and maintainable way based on regular expressions and boolean logic. It
should be straightforward to integrate PowerForms into JWIG.

50 · Christensen, Møller, and Schwartzbach

The current XML cast operation in JWIG is somewhat unsatisfactory for two
reasons: 1) if a cast fails due to invalid XHTML, an exception is not thrown im-
mediately since it is not detected until a subsequent show operation; and 2) its
expressiveness is limited—for instance, unions of templates cannot be expressed.
One solution to this may be to use DSD2 descriptions instead of constant templates
in the cast operations. However, to generalize the analyses correspondingly, a tech-
nique for transforming a DSD2 description of an XML language into a summary
graph is needed. We believe that this is theoretically possible—further investigation
will show whether it is also practically feasible.

Another idea is to broaden the view from interactive Web services to whole
Web sites comprising many services and documents. The Strudel system [16] has
been designed to support generation and maintenance of Web sites according to
the design principle that the underlying data, the site structure, and the visual
presentation should be separated. A notion of data graphs allows the underlying
data to be described, a specialized query language is used for defining the site
structure, and an HTML template language that resembles the XML template
mechanism in JWIG defines the presentation. We believe that the development of
interactive services can be integrated into such a process. For sites that comprise
both complex interactive session-based services and more static individual pages,
the concepts in the Service.Session and Service.Page classes could be applied.
JWIG could also benefit from a mechanism for specifying dependencies between
the pages or sessions and the data, for instance, such that pages are automatically
cached and only recomputed when certain variables or databases are modified.

We have shown that our template mechanism is suitable for constructing XHTML
documents intended for presentation. If the underlying data of a Web service is
represented with XML, as suggested by Strudel, we will need a general mechanism
for extracting and transforming XML values. Currently, we only provide the plug
operation for combining XML templates—a converse “unplug” operation would
be required for deconstructing XML values. Preliminary results suggest that our
notion of summary graphs and our analyses generalize to such general XML trans-
formations. XDuce [18] is a related research language designed to make type-safe
XML transformations. In XDuce, types are simplified DTDs where we instead
use the more powerful DSD2 notation. Furthermore, XDuce is a tiny functional
language while JWIG contains the entire Java language. Instead of relying on a
type system for ensuring that the various XML values are valid according to some
schema definition, we perform data-flow analyses based on summary graphs. Based
on these ideas, a current project aims to make JWIG a general and safe XML
transformation language.

7.2 Program analysis

The experiments indicate that the notion of summary graphs is suitable for mod-
eling the XML template mechanism and that the analysis precision is adequate.
However, the preliminary string analysis described in Section 4.1 can be improved.
The modular design of the analyses makes it possible to replace this simple string
analysis by a more precise one. For example, string concatenation operations could
be modeled more precisely by exploiting the fact that regular languages are closed
under finite concatenation. Because of loops in the flow graphs, this would in gen-

Extending Java for High-Level Web Service Construction · 51

eral produce context-free languages so a suitable technique for approximating these
by regular languages is needed. That essentially amounts to applying widening for
ensuring termination. Other operations, such as the substring methods, could also
easily be modeled more precisely than with anystring. An advanced version of such
an analysis would apply flow-sensitivity, such that e.g. if statements that branch
according to the value of a string variable would be taken into account, and instead
of modeling receive by anystring, the regular languages provided by PowerForms
specifications could be applied. A natural extension to these ideas would be to
add a “regular expression cast” operator to the JWIG language. As the other cast
operations, that would provide a back-door to the analysis which occasionally can
be convenient no matter how precise the analysis may be.

The current program analysis is based on the assumption that the medium used
for communication with the clients is XHTML. However, since the show analysis is
parameterized by a DSD2 description, validity with respect to any XML language
describable by DSD2 can be checked instead. Two obvious alternatives are WML,
Wireless Markup Language [38], which is used for mobile WAP devices with lim-
ited network bandwidth and display capabilities, and VoiceXML, Voice Extensible
Markup Language [4], for audio-based dialogs. Such languages can be described
precisely with DSD2. Only the receive analysis requires modification since it needs
to identify the forms and fields, or whatever the equivalent notions are in other
formalisms.

7.3 Implementation

Our current implementation is a prototype developed to experiment with the design
and test the performance. This means that there are plenty of ways to improve the
performance of the analysis and the run-time system.

We plan to apply the metafront syntax macros [10] in a future version to improve
the quality of the parsing error messages. This will also allow us to experiment with
syntax macros as a means for developing highly domain-specific languages in the
context of Java-based interactive Web services.

The application of Soot in the generation of flow graphs is sometimes a bottleneck
in the analysis, even though the theoretical complexity of this translation is trivial
compared to the other analysis phases. This suggests that we use a tailor-made
byte-code to flow-graph converter instead.

Finally, we believe that it is possible to significantly improve the run-time per-
formance for JWIG services by integrating the JWIG run-time system with a Java
Enterprise Edition server. For instance, this allows Service.Page to become essen-
tially as efficient as JSP code by exploiting that the threads are never suspended by
show statements. JRockit [2] is a commercial JVM implementation which is tuned
for Web servers with high loads. In particular, it supports light-weight threads
which will significantly reduce the overhead induced by our session model.

8. CONCLUSION

We have defined JWIG as an extension of the Java language with explicit high-level
support for two central aspects of interactive Web services: 1) sessions consisting of
sequences of client interactions and 2) dynamic construction of Web pages. Com-
pared to other Web service programming languages, these extensions can improve

52 · Christensen, Møller, and Schwartzbach

the structure of the service code. In addition to being convenient during devel-
opment and maintenance of Web services, this allows us to perform specialized
program analyses that check at compile-time whether or not run-time errors may
occur due to the construction of Web pages or communication with the clients
via input forms. The program analyses are based on a unique notion of summary
graphs which model the flow of document fragments and text strings through the
program. These summary graphs prove to contain exactly the information needed
to provide all the desired static guarantees of the program behavior.

This article can be viewed as a case study in program analysis. In contains a
total of seven analyses operating on different abstractions of the source program:
one for making receive edges during flow graph construction, the reaching definitions
analysis in the flow-graph simplification phase, the string analysis, the summary
graph construction, and the plug, receive, and show analyses. The whole suite of
analyses is modular in the sense that each of them easily can be replaced by a more
precise or efficient one, if the need should arise. If, for example, future experience
shows that the control-flow information in the flow graphs is too imprecise, one
could apply a variable-type analysis [35] instead of CHA. Or, if the string analysis
should turn out to be inadequate for developing, e.g., WML services, it could
be replaced by another. Analysis correctness is given by the correctness of each
phase. For instance, the flow graphs conservatively approximate the behavior of the
original JWIG programs, the summary graphs conservatively model the template
constructions with respect to the flow graphs, and the validity results given by the
show analysis are conservative with respect to the summary graphs.

The language extensions permit efficient implementation, and despite the theo-
retical worst-case complexities of the program analyses, they are sufficiently precise
and fast for practical use.

All source code for our JWIG implementation, including API specifications and
the DSD2 schema for XHTML 1.0, is available from http://www.brics.dk/JWIG/.

REFERENCES

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers - Principles, Techniques, and Tools.
Addison-Wesley, 1986.

Björn Antonsson, Joakim Dahlstedt, Mattias Joëlson, Marcus Lagergren, Staffan Larsen, David
Lindholm, Olof Lindholm, Peter Lönnebring, Mikael Vidstedt, and Calle Wilund. JRockit –
the faster server JVM, 2002. http://www.jrockit.com.

Brian Behlendorf et al. The Apache HTTP server project, 2002. http://httpd.apache.org/.

Linda Boyer, Peter Danielsen, Jim Ferrans, Gerald Karam, David Ladd, Bruce Lucas, and Ken-
neth Rehor. Voice eXtensible Markup Language, Version 1.0. W3C, May 2000. W3C Note,

http://www.w3.org/TR/voicexml/.

Claus Brabrand. <bigwig> Version 1.3 – Reference Manual. BRICS Notes Series NS-00-4, Septem-
ber 2000.

Claus Brabrand, Anders Møller, Mikkel Ricky, and Michael I. Schwartzbach. PowerForms: Declar-
ative client-side form field validation. World Wide Web Journal, 3(4):205–314, 2000.

Claus Brabrand, Anders Møller, Anders Sandholm, and Michael I. Schwartzbach. A runtime
system for interactive Web services. In Proc. 8th International World Wide Web Conference
(WWW8). Elsevier, 1999. Also in Computer Networks Vol. 31 No. 11-16: 1391-1401, Elsevier.

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static validation of dynamically
generated HTML. In Proc. Workshop on Program Analysis for Software Tools and Engineering
(PASTE 2001). ACM, 2001.

Extending Java for High-Level Web Service Construction · 53

Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The <bigwig> project. Transactions

on Internet Technology, 2(1), 2002.

Claus Brabrand and Michael I. Schwartzbach. The metafront system: Extensible syntax process-
ing. In preparation, 2002.

Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML. W3C, January 1999.
W3C Recommendation, http://www.w3.org/TR/REC-xml-names.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible Markup Lan-
guage (XML) 1.0 (Second Edition). W3C, October 2000. W3C Recommendation,
http://www.w3.org/TR/REC-xml.

David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and structures.
In Proc. Conference on Programming Language Design and Implementation (PLDI’90), pages
296–310. ACM, June 1990.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree
automata techniques and applications. http://www.grappa.univ-lille3.fr/tata, 1999.

Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented programs using
static class hierarchy analysis. In Proc. European Conference on Object-Oriented Programming
(ECOOP’95), volume 952 of LNCS, pages 77–101. Springer, August 1995.

Mary F. Fernandez, Dan Suciu, and Igor Tatarinov. Declarative specification of data-intensive Web
sites. In Proc. 2nd Conference on Domain-Specific Languages (DSL ’99). USENIX, October
1999.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing language. In Proc. 3rd
International Workshop on the Web and Databases (WebDB 2000), volume 1997 of LNCS,
pages 226–244. Springer, May 2000.

Jason Hunter and Brett McLaughlin. JDOM, 2001. http://jdom.org/.

John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks. Acta Informatica,

7:305–317, 1977.

Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. Document Structure Description 1.0,
2000. BRICS Notes Series NS-00-7. http://www.brics.dk/DSD/.

Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. The DSD schema language. Au-
tomated Software Engineering, 2002. To appear. Earlier version appears in ACM Proc. 3rd
Workshop on Formal Methods in Software Practice (FMSP 2000).

Gerwin Klein. JFlex - the fast scanner generator for Java, 2001. http://www.jflex.de/.

David A. Ladd and J. Christopher Ramming. Programming the web: An application-oriented
language for hypermedia services. In 4th Intl. World Wide Web Conference (WWW4). W3C,
1995.

Anders Møller. The <bigwig> runtime system, 2001. http://www.brics.dk/bigwig/runwig/.

Anders Møller. dk.brics.automaton - finite-state automata and regular expressions for Java, 2001.
http://www.brics.dk/automaton/.

Anders Møller. Document Structure Description 2.0. In preparation, 2002.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis.
Springer, 1999.

Gerald Oskoboiny. HTML Validation Service, 2001. http://validator.w3.org/.

Steven Pemberton et al. XHTML 1.0: The Extensible HyperText Markup Language. W3C,
January 2000. W3C Recommendation, http://www.w3.org/TR/xhtml1.

Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Specification. W3C, December 1999.
W3C Recommendation, http://www.w3.org/TR/html4.

Anders Sandholm and Michael I. Schwartzbach. A type system for dynamic Web documents. In
Proc. Principles of Programming Languages (POPL’00). ACM, 2000.

Sun Microsystems. Java Servlet Specification, Version 2.3, 2001.
http://java.sun.com/products/servlet.

54 · Christensen, Møller, and Schwartzbach

Sun Microsystems. JavaServer Pages Specification, Version 1.2, 2001.

http://java.sun.com/products/jsp.

Vijay Sundaresan, Laurie J. Hendren, Chrislain Razafimahefa, Raja Vallee-Rai, Patrick Lam,
Etienne Gagnon, and Charles Godin. Practical virtual method call resolution for Java. In
Proc. Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2000), pages 264–280. ACM, 2000.

Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML Schema Part
1: Structures. W3C, May 2001. http://www.w3.org/TR/xmlschema-1/.

Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon, and Phong Co.
Soot - a Java optimization framework. In Proc. IBM Centre for Advanced Studies Conference
(CASCON’99), pages 125–135. IBM, 1999.

WAP Forum. Wireless Markup Language, Version 2.0. Wireless Application Protocol Forum,
September 2001. http://www.wapforum.org/.

All <bigwig> papers are available from http://www.brics.dk/bigwig/.

Recent BRICS Report Series Publications

RS-02-11 Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Extending Java for High-Level Web Service
Construction. March 2002.

RS-02-10 Ulrich Kohlenbach. Uniform Asymptotic Regularity for Mann
Iterates. March 2002. 17 pp.

RS-02-9 AnnaÖstlin and Rasmus Pagh.One-Probe Search. February
2002. 17 pp.

RS-02-8 Ronald Cramer and Serge Fehr. Optimal Black-Box Secret
Sharing over Arbitrary Abelian Groups. February 2002.

RS-02-7 Anna Inǵolfsdóttir, Anders Lyhne Christensen, Jens Alsted
Hansen, Jacob Johnsen, John Knudsen, and Jacob Illum Ras-
mussen.A Formalization of Linkage Analysis. February 2002.
vi+109 pp.

RS-02-6 Luca Aceto, Zolt́an Ésik, and Anna Ingólfsdóttir. Equa-
tional Axioms for Probabilistic Bisimilarity (Preliminary Re-
port). February 2002. 22 pp.

RS-02-5 Federico Crazzolara and Glynn Winskel. Composing Strand
Spaces. February 2002. 30 pp.

RS-02-4 Olivier Danvy and Lasse R. Nielsen.Syntactic Theories in Prac-
tice. January 2002. 34 pp. This revised report supersedes the
earlier BRICS report RS-01-31.

RS-02-3 Olivier Danvy and Lasse R. Nielsen.On One-Pass CPS Trans-
formations. January 2002. 18 pp.

RS-02-2 Lasse R. Nielsen.A Simple Correctness Proof of the Direct-Style
Transformation. January 2002.

RS-02-1 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
The <bigwig> Project. January 2002. 36 pp. This revised
report supersedes the earlier BRICS report RS-00-42.

RS-01-55 Daniel Damian and Olivier Danvy.A Simple CPS Transforma-
tion of Control-Flow Information. December 2001.

