
B
R

IC
S

R
S

-01-55
D

am
ian

&
D

anvy:
A

S
im

ple
C

P
S

Transform
ation

ofC
ontrol-F

low
Inform

ation

BRICS
Basic Research in Computer Science

A Simple CPS Transformation of
Control-Flow Information

Daniel Damian
Olivier Danvy

BRICS Report Series RS-01-55

ISSN 0909-0878 December 2001

Copyright c© 2001, Daniel Damian & Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/55/

A Simple CPS Transformation

of Control-Flow Information

Daniel Damian∗ and Olivier Danvy

BRICS †

Department of Computer Science
University of Aarhus ‡

December 2001

Abstract

We build on Danvy and Nielsen’s first-order program transformation into
continuation-passing style (CPS) to design a new CPS transformation of flow
information that is simpler and more efficient than what has been presented in
previous work. The key to simplicity and efficiency is that our CPS transfor-
mation constructs the flow information in one go, instead of first computing an
intermediate result and then exploiting it to construct the flow information.

More precisely, we show how to compute control-flow information for CPS-
transformed programs from control-flow information for direct-style programs
and vice-versa. As a corollary, we confirm that CPS transformation has no
effect on the control-flow information obtained by constraint-based control-flow
analysis. The transformation has immediate applications in assessing the effect
of the CPS transformation over other analyses such as, for instance, binding-time
analysis.

Keywords

Program analysis, control-flow analysis, constraints, continuations, continuation-
passing style (CPS), CPS transformation, administrative reductions, one-pass
CPS transformation.

∗Current affiliation: LION Bioscience Ltd., Compass House, 80-82 Newmarket Road,
Cambridge CB5 8DZ, UK.

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: {damian,danvy}@brics.dk
Home pages: http://www.brics.dk/~{damian,danvy}

1

Contents

1 Introduction 3
1.1 CPS transformation of terms . 3
1.2 CPS transformation of flow information 4
1.3 This work . 4

2 Control-flow analysis for λ-terms 5
2.1 The language of λ-terms . 5
2.2 Control-flow analysis . 5
2.3 Control-flow analysis: an example . 6

3 CPS transformation and control-flow analysis 7
3.1 CPS transformation of terms . 7
3.2 CPS transformation of control flow . 8
3.3 Direct-style transformation of control flow 10
3.4 Preservation of flow . 12
3.5 CPS transformation of flow: an example 12

4 Conclusions and future work 13

List of Figures

1 The language of labeled λ-terms . 5
2 Control-flow analysis relation for a program p 6
3 Control-flow analysis . 6
4 CFA example . 7
5 First-order one-pass CPS transformation (labels omitted) 8
6 Transformation of control flow from direct style to CPS 10
7 Transformation of control flow from CPS into direct style 11
8 CPS transformation and analysis result 13

2

1 Introduction

The continuation-passing-style (CPS) transformation is a source-to-source program
transformation of λ-terms that makes explicit the continuation of each λ-expression [36,
44]. Continuations have been discovered in many contexts [37] and form an active area
of research [10, 39] with many applications, e.g., in compiler construction [1, 24, 43],
program transformation [46], partial evaluation [19, 25], multi-processing [2, 15, 49],
and, recently, goal-directed evaluation [12] and program security [50].

The call-by-value and call-by-name CPS transformations are due to Plotkin [36]
and yield λ-terms that are independent on the order of evaluation. The CPS trans-
formation has been extended to types [26, 47], which has led to the discovery of its
logical content [17, 28]. Over the last two years, both Palsberg and Wand [35] and
Damian and Danvy [6, 7, 9] have developed a CPS transformation of control-flow
information. They have used it to show that a CPS transformation does not affect
the control-flow information collected by a monovariant constraint-based control-flow
analysis.

Graphically:

control-flow
information

CPS transformation
of flow information

// control-flow
information

direct-style
program

CPS transformation
of terms

//

control-flow
analysis

OO

CPS
program

control-flow
analysis

OO

The canonical motivation for transferring the result of a program analysis across a
program transformation is that the transfer is likely to be cheaper than analyzing the
transformed program. In the present case, (1) the time complexity of control-flow
analysis is cubic in the size of the analyzed program and (2) the time complexity
of CPS-transforming control-flow information is linear in the size of the control-flow
information, which is again linear in the size of the analyzed program.

CPS transformations of flow information are based on CPS transformations of
terms.

1.1 CPS transformation of terms

The CPS transformation has motivated a long line of research. Plotkin [36] and
Steele [43] observed that it gives rise to large residual terms, due to so-called ad-
ministrative redexes. Both theoretically and practically, these administrative redexes
are in the way. For example, in his proof, Plotkin needs to interleave administrative
and essential reductions. Yet a practically useful CPS-transformed program need not
contain these redexes, and indeed, in his compiler, Steele performs all administrative
reductions immediately after the CPS transformation. As an alternative to adminis-

3

trative post-reduction, compact CPS programs can also be obtained by first bringing
the source program into monadic normal form and then introducing continuations [18].

Administrative redexes may be avoided altogether by using a one-pass CPS trans-
formation. Existing one-pass CPS transformations use a higher-order accumula-
tor [1, 11, 48] or are based on evaluation contexts [40, 42].

Graphically:

CPS with
administrative redexes

administrative
reductions

))RRRRRRRRRRRRR

direct style
one-pass

CPS transformation
//

CPS
transformation

77nnnnnnnnnnnnn

naming and
sequentialization ''PPPPPPPPPPPPP

CPS without
administrative redexes

monadic
normal form

introduction
of continuations

55llllllllllllll

A one-pass CPS transformation makes it possible to reason directly over CPS-
transformed terms. Unfortunately, existing one-pass CPS transformations are not
immediate to use, either because they are higher-order or because they are not
compositional. A higher-order accumulator requires a logical relation [13]. A non-
compositional transformation requires well-founded induction rather than ordinary
structural induction [40]. Fortunately, Danvy and Nielsen have recently discovered a
one-pass CPS transformation that is both first-order and compositional [14, 30].

1.2 CPS transformation of flow information

In our initial work [7], we considered only one step of the CPS transformation, namely
the introduction of continuations on terms in monadic normal form. We then turned
to transforming source terms into monadic normal form [6, 9].

In a related work [35], Palsberg and Wand considered the first phase of the CPS
transformation. In a followup work [6, 8], we addressed administrative reductions.

Therefore, the existing CPS transformations of flow information operate in two
passes. The first pass computes an intermediate result and the second pass exploits
it to construct the flow information.

In this article, we build on Danvy and Nielsen’s new one-pass CPS transforma-
tion [14, 30] and we present a new and simpler CPS transformation of control-flow
information that does not construct any intermediate result and thus is more efficient
to use. It is also simpler to prove correct. Indeed, proving predicates defined by struc-
tural induction on a CPS-transformed program is simplest done with a first-order and
compositionally-defined one-pass CPS transformation.

1.3 This work

We show how to directly construct control-flow information for a CPS program after
administrative reductions, without the need for an intermediate form. Our construc-
tion confirms that the CPS transformation does not affect the result of a monovariant

4

e ∈ Expr (terms) e ::= s | t

s ∈ Comp (serious terms, i.e., computations) s ::= e`0
0 e`1

1

t, K ∈ Triv (trivial terms, i.e., values) t ::= x | λπx.e`

x ∈ Ide (identifiers)
` ∈ Lab (term labels)
π ∈ Lam (λ-abstraction labels)

Figure 1: The language of labeled λ-terms

constraint-based control-flow analysis [6, 7, 9, 35]. It also opens the way to directly
investigating the effect of the CPS transformation on other analyses, as for instance,
binding-time analysis.

Graphically:

CPS with
administrative redexes Damian & Danvy

[6, 8]
))RRRRRRRRRRRRR

direct style this work //

Palsberg & Wand
[35]

77nnnnnnnnnnnnn

Damian & Danvy
[6, 9] ''PPPPPPPPPPPPP

CPS without
administrative redexes

monadic
normal form

Damian & Danvy
[6, 7]

55llllllllllllll

Our CPS transformation of control flow is simpler than previous versions and
addresses the λ-calculus without the need for an intermediate form or administrative
reductions. The proofs of correctness are similar to the ones in our earlier work, but
here source terms need not be in monadic normal form. They are also slightly simpler
than Palsberg and Wand’s since programs contain no administrative redexes.

2 Control-flow analysis for λ-terms

2.1 The language of λ-terms

We consider the language of labeled λ-terms defined in Figure 1. Following Reynolds [38]
and Moggi [27], we distinguish among trivial terms t that denote values and serious
terms s that may denote computations. Expressions are annotated with distinct la-
bels ` from a countable set Lab. Each λ-abstraction has a unique associated label π.
A program p is a closed labeled expression e` .

2.2 Control-flow analysis

We consider a standard constraint-based control-flow analysis (CFA) on λ-terms [5,
16, 20, 21, 22, 32, 33, 34].

5

Lamp The set of λ-abstraction labels in p
Varp The set of identifiers in p
Labp The set of term labels in p

Trivp = P(Lamp) Abstract values
Ĉ ∈ Cachep = Labp → Trivp Abstract cache
ρ̂ ∈ Envp = Varp → Trivp Abstract environment

�p ⊆ (Cachep × Envp) × Labp

Figure 2: Control-flow analysis relation for a program p

(Ĉ, ρ̂) �p x` ⇐⇒ ρ̂(x) ⊆ Ĉ(`)
(Ĉ, ρ̂) �p (λπx.e`)`1 ⇐⇒ (Ĉ, ρ̂) �p e` ∧ π ∈ Ĉ(`1)
(Ĉ, ρ̂) �p (e`0

0 e`1
1)`2 ⇐⇒ (Ĉ, ρ̂) �p e`0

0 ∧ (Ĉ, ρ̂) �p e`1
1 ∧

∀λπx.e` ∈ Ĉ(`0).Ĉ(`1) ⊆ ρ̂(x) ∧
Ĉ(`) ⊆ Ĉ(`2)

Figure 3: Control-flow analysis

Specifically, we consider the CFA specified in Nielson, Nielson, and Hankin’s text-
book [33]. Given an input program p, the functionality of the syntax-directed control-
flow analysis relation �p is defined in Figure 2. The analysis relation is defined in-
ductively in Figure 3.

The relation is defined on a pair of a tuple (Ĉ, ρ̂) and a labeled expression e` . In
the relation, Ĉ is a cache mapping each expression label to a set of λ-abstractions that
the expression might evaluate to, while ρ̂ is an environment mapping each program
variable to a set of λ-abstractions that the variable might denote. It is known [33,
Chapter 3] that a pair (Ĉ, ρ̂) satisfying the relation (Ĉ, ρ̂) �p p is a safe analysis of
the program p.

Given a source program p, solutions of the analysis of p always exist. The set of
solutions of the analysis of p is closed under intersection: the pointwise intersection of
two solutions always exists. Therefore, there exists a least solution of the analysis of
p. The least solution can be computed with a standard work-list based algorithm [33,
Chapter 3]. Through the rest of this article we use “the result of the analysis of p”
to refer to the least result of the analysis.

2.3 Control-flow analysis: an example

An example of CFA analysis is presented in Figure 4. The (labeled) λ-term T applies
the identity function to itself. The control-flow analysis from Figure 3 on the term T
results in the cache/environment pair also presented in Figure 4.

We can see that the λ-abstraction π2 is detected to flow into the variable y and from
there into the variable x and as a result of the application. In the following section

6

T = ((λπ1y.(y`1 y`2)`3)`4 (λπ2x.x`5)`6)`7

Ĉ
`1 → {π2} `5 → {π2}
`2 → {π2} `6 → {π2}
`3 → {π2} `7 → {π2}
`4 → {π1}

ρ̂
y → {π2}
x → {π2}

Figure 4: CFA example

we illustrate the CPS transformation of the term T and how the flow information for
the resulting CPS term can be computed from the flow information for T displayed
in Figure 4.

3 CPS transformation and control-flow analysis

We show that the CPS transformation preserves the result of the control-flow analy-
sis defined in Section 2.2. To this end, we define a transformation from control-flow
information for a direct-style program into control-flow information for the CPS coun-
terpart of this program. We also define a transformation of control-flow information
for a CPS-transformed program into control-flow information for the direct-style coun-
terpart of the program. Using the monotonicity of the two transformations, we show
that the least analysis of a direct-style program is equivalent to the least analysis of
its CPS counterpart and vice-versa.

Graphically:

(Ĉ, ρ̂)
CPS transformation of flow //

(Ĉ′, ρ̂′)
direct-style transformation of flow

oo

p CPS transformation of terms //

CFA

OO

p′

CFA

OO

3.1 CPS transformation of terms

In this article, CPS programs are obtained using Danvy and Nielsen’s first-order CPS
transformation [14, 30]. The CPS transformation for (unlabeled) λ-terms is defined in
Figure 5. As in our earlier work [7, 9], we consider a transformation with η-expanded
tail calls: the continuation passed at a function call is always a syntactic λ-abstraction.

The CPS transformation of a program preserves all the original variables of the
program. In turn, as in our earlier work [7, 9], we design the CPS transformation of
labeled terms to preserve the labels of all trivial terms.

7

E : Expr × Ide → Comp
E [[t]]k = k T [[t]]
E [[s]]k = S[[s]](λx.k x)

S : Comp × Triv → Comp
S[[t0 t1]]K = T [[t0]] T [[t1]] K
S[[t0 s1]]K = S[[s1]](λx1.T [[t0]] x1 K)
S[[s0 t1]]K = S[[s0]](λx0.x0 T [[t1]] K)
S[[s0 s1]]K = S[[s0]](λx0.S[[s1]](λx1.x0 x1 K))

T : Triv → Triv
T [[x]] = x

T [[λx.e]] = λx.λk.E [[e]]k

Figure 5: First-order one-pass CPS transformation (labels omitted)

Danvy and Nielsen’s one-pass CPS transformation yields CPS terms without ad-
ministrative redexes. In Section 3.2, using this CPS transformation as a syntactic sup-
port, we define the CPS transformation of control-flow information for CPS programs
without administrative redexes. In Section 3.3, we define the direct-style transforma-
tion of control-flow information from CPS programs without administrative redexes.
In Section 3.4, with the same technique described in the first author’s PhD thesis [6,
Section 2.3], the variables and labels common to the original program and to its CPS
counterpart are used to establish the preservation of flow information across CPS
transformation.

3.2 CPS transformation of control flow

We define a CPS transformation of control-flow information following the CPS trans-
formation of Figure 5. Let us show how control-flow information for a direct-style term
can be used to compute control-flow information for the CPS transformed program.

To transformation relies on two auxiliary functions:

• γ extracts the labels of partially applied CPS λ-abstractions. Formally, consid-
ering A to be a set of CPS λ-abstractions {λπixi.λ

π′
iki.ei|1 ≤ i ≤ n}, for some

n, then γ(A) = {π′
i|1 ≤ i ≤ n}.

• ξ assigns flow information to each continuation identifier k introduced by the
CPS transformation of a λ-abstraction from p. This information can be obtained
from the direct-style flow information, since we can syntactically identify the
continuation of the CPS counterpart of any direct-style application.

Given p, Ĉ, ρ̂, and a continuation identifier k introduced by the transformation
of a λ-abstraction from p:

T [[λπx.e`]] = λπx.λk.E [[e]]k

we define ξ(k) as the union of all sets Ĉ ′(`) such that in the CPS transformation

8

E : Expr × Lab × Ide → Comp × Lab
E [[t`]]k = (k`0 (T [[t]])`)`1 Ĉ′(`0) = ρ̂′(k)

Ĉ′(`) = Ĉ′(`) Ĉ′(`1) = ∅
E [[s`]]k = (S[[s]](λπx.(k`0 x`)`1)`2)`3

Ĉ′(`0) = ρ̂′(k) Ĉ′(`) = ρ̂′(x) = Ĉ(`)
Ĉ ′(`2) = {π} Ĉ′(`3) = Ĉ′(`1) = ∅

S : Comp × Triv × Lab → Comp
S[[t`00 t`11]]K` = ((T [[t0]])`0 (T [[t1]])`1)`2 K`

Ĉ′(`0) = Ĉ(`0) Ĉ′(`1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

S[[t`00 s`1
1]]K` = S[[s1]](λπx1.(((T [[t0]])`0 x`1

1)`2 K`)`3)`4

Ĉ′(`0) = Ĉ(`0) Ĉ′(`1) = ρ̂′(x1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π}
S[[s`0

0 t`11]]K` = S[[s0]](λπx0.((x`0
0 (T [[t1]])`1)`2 K`)`3)`4

Ĉ′(`0) = ρ̂′(x0) = Ĉ(`0) Ĉ′(`1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π}
S[[s`0

0 s`1
1]]K` = S[[s0]](λπx0.(S[[s1]](λπ1x1.((x`0

0 x`1
1)`2 K`)`3)`4)`5)`6

Ĉ′(`0) = ρ̂′(x0) = Ĉ(`0)
Ĉ ′(`1) = ρ̂′(x1) = Ĉ(`1) Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π1}
Ĉ′(`5) = ∅ Ĉ′(`6) = {π}

T : Triv → Triv
T [[x]] = x

T [[λπx.e`]] = λπx.(λπ1k.E [[e`]]k)`0 Ĉ′(`0) = {π1} ρ̂′(k) = ξ(k)

Figure 6: Transformation of control flow from direct style to CPS

of p into p′ there exists a transformation step

S[[e`0
0 e`1

1]]K` = . . .

such that π ∈ Ĉ(`0).

We construct the CPS control-flow information in two steps. First, in a recursive
descent on the tree of the transformation, we compute Ĉ′(`) for each label ` attached
on the newly introduced λ-abstractions (continuations) and we construct the function
ξ.

The second step consists of another recursive descent on the tree of the trans-
formation. We assign control-flow information recursively, as defined for each step
in Figure 6. At each transformation step, on the right-hand side, we construct the
labeled CPS term corresponding to the left-hand side. We then assign flow informa-
tion for each fresh label or variable. Trivial terms preserve their label and their flow

9

information. Flow information for serious terms is transferred through calls to con-
tinuations. Fresh continuation identifiers are assigned flow information as computed
by the ξ function.

Note that in contrast to the CPS transformation of unlabeled terms of Figure 5,
the transformation of labeled serious terms takes an extra argument, namely the label
of the syntactic continuation being passed as an argument. At each case in Figure 6,
we do not make the label explicit: we rather place it directly over the constructed
continuation. Similarly, the CPS transformation of a labeled expression returns a
serious term and its enclosing label.

The CPS transformation of control flow is therefore defined as a monotone func-
tion:

ΦCPS
cf : (Cachep × Envp) → (Cachep′

× Envp′
).

Theorem 3.1. Let p = e` be a uniquely labeled program. If (Ĉ, ρ̂) �p e` then
(ΦCPS

cf (Ĉ, ρ̂)) �p′
λπk.E [[e`]]k.

Proof. By structural induction on the resulting CPS program. The proof is similar
with the proof of Theorem 6.1 of our previous work [9] which addressed terms in
monadic normal form. In this proof, however, the main induction predicate states
that a CPS-transformed serious term satisfies the relation when the term passed as a
continuation is also satisfying the relation. The main induction predicate relies on:

a) an auxiliary predicate stating that the translation of a trivial term together with
its associated label satisfies the flow constraints in CPS if the associated label
is preserved;

b) an auxiliary predicate stating that the translation of an expression with its
syntactic continuation satisfies the flow constraints in CPS.

At each iteration step we make use of an auxiliary Lemma (similar to Lemma 6.4
of the same previous work [9]) stating that the flow information extracted at an
application point is passed into each possible continuation for the CPS equivalent of
the application.

The proof is also slightly simpler than Palsberg and Wand’s proof [35] since programs
contain no administrative redexes.

3.3 Direct-style transformation of control flow

The CPS transformation of flow from Figure 6 shows that the analysis of a CPS-
transformed term can be at least as good as the analysis of the direct-style original
term. The resulting CPS solution is the equivalent of the direct-style one, but may
not be the best. We show that the direct-style and CPS analysis results are equivalent
by exhibiting a direct-style transformation of flow.

We thus define a direct-style transformation of control-flow information. In other
words, we transform control-flow information for the CPS-transformed term into
control-flow information for the original direct-style term. The transformation is
defined recursively in Figure 7. At each transformation step, on the right-hand side
we construct flow information (Ĉ, ρ̂) for the direct-style program from the flow infor-
mation (Ĉ′, ρ̂′) for the CPS program.

10

E : Expr × Ide → Comp × Lab
E [[t`]]k = (k`0 (T [[t]])`)`1 Ĉ(`) = Ĉ′(`) Ĉ(`1) = ∅
E [[s`]]k = (S[[s]](λπx.(k`0 x`)`1)`2)`3 Ĉ(`) = Ĉ′(`)

S : Comp × Triv × Lab → Comp
S[[t`00 t`11]]K` = ((T [[t0]])`0 (T [[t1]])`1)`2 K`

Ĉ(`0) = Ĉ′(`0) Ĉ(`1) = Ĉ′(`1)
S[[t`00 s`1

1]]K` = S[[s1]](λπx1.(((T [[t0]])`0 x`1
1)`2 K`)`3)`4

Ĉ(`0) = Ĉ′(`0) Ĉ(`1) = ρ̂′(x1)
S[[s`0

0 t`11]]K` = S[[s0]](λπx0.((x`0
0 (T [[t1]])`1)`2 K`)`3)`4

Ĉ(`0) = ρ̂′(x0) Ĉ(`1) = Ĉ′(`1)
S[[s`0

0 s`1
1]]K` = S[[s0]](λπx0.(S[[s1]](λπ1x1.((x`0

0 x`1
1)`2 K`)`3)`4)`5)`6

Ĉ(`0) = ρ̂′(x0) Ĉ(`1) = ρ̂′(x1)

T : Triv → Triv
T [[x]] = x

T [[λπx.e`]] = λπx.(λπ1k.E [[e`]]k)`0

Figure 7: Transformation of control flow from CPS into direct style

Since at each function call the continuation is an explicit syntactic continuation,
we are able to determine the control-flow information returned by each expression.
In particular, at a transformation step

E [[s`]]k = (S[[s]](λπx.(k`0 x`)`1)`2)`3

we are able to assign control-flow information for the return label ` from the control-
flow information collected by the continuation λπx.(k`0 x`)`1 .

Control-flow information can therefore be constructed bottom-up. The direct-style
transformation of control flow is thus defined as a monotone function:

ΨCPS
cf : (Cachep′

× Envp′
) → (Cachep × Envp)

Theorem 3.2. Let p = e` be a uniquely labeled program.

If (Ĉ′, ρ̂′) �p λπk.E [[e`]]k and ρ̂′(k) = ∅, then ΨCPS
cf (Ĉ′, ρ̂′) �p′

e` .

Proof. By structural induction on the direct-style source program. Again, the proof
is similar to the proof of Theorem 6.5 of our earlier work [9]. In this proof the main
induction predicate states that the constructed solution satisfies the flow constraints
for any serious sub-term considered together with its enclosing label. The proof relies
on:

a) an auxiliary predicate stating that a trivial term together with its associated
label satisfies the flow constraints if it satisfies the constraints in CPS, considered
together with its associated label;

b) an auxiliary predicate stating that an expression satisfies the flow constraints if
the translation satisfies the flow constraints in CPS (considered together with
its syntactic continuation).

11

At each iteration step we make use of an auxiliary Lemma (similar to Lemma 6.8 of the
same previous work [9]) stating that the flow information extracted at an application
point includes the flow information collected by each possible continuation for the
CPS equivalent of the application.

3.4 Preservation of flow

Following the construction of the CPS control-flow information in Figure 6, it is im-
mediate to see that the flow information assigned to the program’s original variables
in CPS is identical to the one extracted from the direct-style original program. The
same is valid for the reverse transformation of Figure 7: the control-flow informa-
tion assigned to direct-style variables is identical to the one extracted from the CPS
program.

Theorem 3.3 follows from the monotonicity of the two transformations of control
flow.

Theorem 3.3. Let p be a direct-style program and p′ its CPS counterpart.

i) Let (Ĉ, ρ̂) be the solution of the control-flow analysis of p. Then
ΨCPS

cf (ΦCPS
cf (Ĉ, ρ̂)) = (Ĉ, ρ̂).

ii) Let (Ĉ′, ρ̂′) be the solution of the control-flow analysis of p′. Then
ΦCPS

cf (ΨCPS
cf (Ĉ′, ρ̂′)) = (Ĉ′, ρ̂′).

3.5 CPS transformation of flow: an example

Let us now consider the CPS transformation of the term T in the example of Sec-
tion 2.3. The CPS equivalent T ′ of the term T is illustrated in Figure 8. Even if the
term T ′ is administratively reduced, the number of labels becomes difficult to manage
without an automated calculation. The generated example illustrates the equivalence
of flow information obtained by the CFA analysis of the original term T and of the
CPS term T ′.

As specified in Section 1.1, the CPS term T ′ maintains all the λ-abstraction labels
and trivial-term labels of the original term T ′. As specified by Theorem 3.3, the
flow information associated to the labels of the trivial terms (i.e., `1, `2, `4, `5 and `6)
are identical. Similarly, the variables of the original term (x and y) are preserved
and their associated flow information is identical. We can observe that the labels `3

and `7 have disappeared, their associated flow information being transferred into the
variables abstracted by continuations v2 and v1 respectively. The remainder of the
labels are either final answer labels, and their associated flow information is empty,
either labels surrounding a continuation in which case the associated flow information
is a singleton containing the label of the continuation.

Therefore, given the flow information from Figure 4 we can avoid re-analyzing
the CPS term T ′ by computing the flow information of Figure 8 according to the
transformation function ΦCPS

cf , with a provably lower complexity. Similarly, given the
flow information of Figure 8, we can avoid re-analyzing the CPS term T ′ by computing
the flow information of Figure 4 according to the transformation function ΦCPS

cf , again
with a provably lower complexity.

12

T ′ = (((λπ1y.(λπ4k2.((y`1 y`2)`16 (λπ5v2.(k`12
2 v`13

2)`14)`15)`17)`18)`4

(λπ2x.(λπ6k3.(k`19
3 x`5)`20)`21)`6)`22

(λπ3v1.(k`8
1 v`9

1)`10)`11)`23

ξ
k2 → {π3}
k3 → {π5}

Ĉ
`1 → {π2} `10 → {} `17 → {}
`2 → {π2} `11 → {π3} `18 → {π4}
`4 → {π1} `12 → {π3} `19 → {π5}
`5 → {π2} `13 → {π2} `20 → {}
`6 → {π2} `14 → {} `21 → {π6}
`8 → {} `15 → {π5} `22 → {π4}
`9 → {π2} `16 → {π6} `23 → {}

ρ̂
k1 → {}
k2 → {π3}
k3 → {π5}
x → {π2}
y → {π2}
v1 → {π2}
v2 → {π2}

Figure 8: CPS transformation and analysis result

4 Conclusions and future work

We have presented a one-pass CPS transformation of control-flow information. Our
transformation improves both on our earlier CPS transformation and on Palsberg
and Wand’s which operate in two passes. This line of work aims at transferring
the results of program analyses across program transformations as an alternative to
analyzing transformed programs from scratch. The interaction between CPS and
program analysis has been explored by a number of authors [3, 4, 19, 23, 25, 29, 31],
sometimes leading to mixed results [41].

The complete CPS transformation of control flow can be used to assess the impact
of the CPS transformation on the result of other program analyses, e.g., binding-times
analysis. In a previous work [7, 9], we have shown that introducing continuations
(1) does not worsen and (2) can improve the results of the standard binding-time
analysis for traditional partial evaluation [23]. Transforming programs into monadic
normal form can also lead to further binding-time improvements [6, 19]. Our initial
investigations show that the current transformation of control flow can be used to
characterize in one single theorem the binding-time improvements obtained by the
CPS transformation [6].

Let us finish on the relation between tail-call optimization and control-flow anal-
ysis. In the CPS transformation of Figure 5, the η-expanded tail calls provide an
explicit continuation for each function call for which we can extract control-flow in-
formation. More precisely, the CPS transformation of an expression introduces an
explicit continuation:

E [[s]]k = S[[s]](λx.k x)

The presence of such an explicit continuation facilitates the definition of the CPS
transformation of control flow. We are currently investigating whether η-reducing
these tail-calls (i.e., defining E [[s]]k as S[[s]]k) also preserves control-flow information.

13

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
New York, 1992.

[2] Edoardo Biagioni, Ken Cline, Peter Lee, Chris Okasaki, and Chris Stone. Safe-
for-space threads in Standard ML. Higher-Order and Symbolic Computation,
11(2):209–225, 1998.

[3] Anders Bondorf. Improving binding times without explicit cps-conversion. In
William Clinger, editor, Proceedings of the 1992 ACM Conference on Lisp and
Functional Programming, LISP Pointers, Vol. V, No. 1, pages 1–10, San Fran-
cisco, California, June 1992. ACM Press.

[4] Charles Consel and Olivier Danvy. For a better support of static data flow.
In John Hughes, editor, Proceedings of the Fifth ACM Conference on Func-
tional Programming and Computer Architecture, number 523 in Lecture Notes
in Computer Science, pages 496–519, Cambridge, Massachusetts, August 1991.
Springer-Verlag.

[5] Patrick Cousot and Radhia Cousot. Formal language, grammar and set-
constraint-based program analysis by abstract interpretation. In Simon Peyton
Jones, editor, Proceedings of the Seventh ACM Conference on Functional Pro-
gramming and Computer Architecture, pages 170–181, La Jolla, California, June
1995. ACM Press.

[6] Daniel Damian. On Static and Dynamic Control-Flow Information in Program
Analysis and Transformation. PhD thesis, BRICS PhD School, University of
Aarhus, Aarhus, Denmark, July 2001. BRICS DS-01-5.

[7] Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis: On
the impact of the CPS transformation. In Philip Wadler, editor, Proceedings of
the 2000 ACM SIGPLAN International Conference on Functional Programming,
SIGPLAN Notices, Vol. 35, No. 9, pages 209–220, Montréal, Canada, September
2000. ACM Press. Extended version to appear in the Journal of Functional
Programming.

[8] Daniel Damian and Olivier Danvy. CPS transformation of flow information, part
II: Administrative reductions. Technical Report BRICS RS-01-40, DAIMI, De-
partment of Computer Science, University of Aarhus, Aarhus, Denmark, October
2001.

[9] Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis: On
the impact of the CPS transformation. Journal of Functional Programming, 2002.
To appear. Extended version available as the technical report BRICS-RS-01-54.

[10] Olivier Danvy, editor. Proceedings of the Second ACM SIGPLAN Workshop on
Continuations, Technical report BRICS-NS-96-13, University of Aarhus, Paris,
France, January 1997.

14

[11] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361–391,
1992.

[12] Olivier Danvy, Bernd Grobauer, and Morten Rhiger. A unifying approach to goal-
directed evaluation. New Generation Computing, 20(1):53–73, 2002. Preliminary
version available in the proceedings of SAIG 2001 (LNCS 2196). Extended version
available as the technical report BRICS RS-01-29.

[13] Olivier Danvy and Lasse R. Nielsen. A higher-order colon translation. In Herbert
Kuchen and Kazunori Ueda, editors, Fifth International Symposium on Func-
tional and Logic Programming, number 2024 in Lecture Notes in Computer Sci-
ence, pages 78–91, Tokyo, Japan, March 2001. Springer-Verlag. Extended version
available as the technical report BRICS RS-00-33.

[14] Olivier Danvy and Lasse R. Nielsen. A first-order one-pass CPS transformation.
In Mogens Nielsen, editor, Foundations of Software Science and Computation
Structures, 5th International Conference, FOSSACS 2002, number 2303 in Lec-
ture Notes in Computer Science, Grenoble, France, April 2002. Springer-Verlag.
Extended version available as the technical report BRICS RS-01-49.

[15] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean.
Using continuations to implement thread management and communication in
operating systems. Technical Report CMU-CS-91-115, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, Pennsylvania, October 1991. Also
appears in the proceedings of the Thirteenth Symposium on Operating Systems
Principles (SOSP), Asilomar, California, October 1991.

[16] Kirsten L. Solberg Gasser, Flemming Nielson, and Hanne Riis Nielson. System-
atic realisation of control flow analyses for CML. In Mads Tofte, editor, Proceed-
ings of the 1997 ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 38–51, Amsterdam, The Netherlands, June 1997. ACM Press.

[17] Timothy G. Griffin. A formulae-as-types notion of control. In Paul Hudak,
editor, Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Programming Languages, pages 47–58, San Francisco, California, January 1990.
ACM Press.

[18] John Hatcliff and Olivier Danvy. A generic account of continuation-passing styles.
In Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual ACM Sympo-
sium on Principles of Programming Languages, pages 458–471, Portland, Oregon,
January 1994. ACM Press.

[19] John Hatcliff and Olivier Danvy. A computational formalization for partial eval-
uation. Mathematical Structures in Computer Science, pages 507–541, 1997.
Extended version available as the technical report BRICS RS-96-34.

[20] Nevin Heintze. Set-based program analysis of ML programs. In Talcott [45],
pages 306–317.

[21] Fritz Henglein. Simple closure analysis. Technical Report Semantics Report
D-193, DIKU, Computer Science Department, University of Copenhagen, 1992.

15

[22] Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in
higher-order languages. In Peter Lee, editor, Proceedings of the Twenty-Second
Annual ACM Symposium on Principles of Programming Languages, pages 393–
407, San Francisco, California, January 1995. ACM Press.

[23] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall International, 1993. Available
online at http://www.dina.kvl.dk/~sestoft/pebook/pebook.html.

[24] David Kranz, Richard Kesley, Jonathan Rees, Paul Hudak, Jonathan Philbin,
and Norman Adams. Orbit: An optimizing compiler for Scheme. In Stuart I.
Feldman, editor, Proceedings of the 1986 Symposium on Compiler Construction,
SIGPLAN Notices, Vol. 21, No 7, pages 219–233, Palo Alto, California, June
1986. ACM Press.

[25] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation. In
Talcott [45].

[26] Albert R. Meyer and Mitchell Wand. Continuation semantics in typed lambda-
calculi (summary). In Rohit Parikh, editor, Logics of Programs – Proceedings,
number 193 in Lecture Notes in Computer Science, pages 219–224, Brooklyn,
June 1985. Springer-Verlag.

[27] Eugenio Moggi. Notions of computation and monads. Information and Compu-
tation, 93:55–92, 1991.

[28] Chetan R. Murthy. Extracting Constructive Content from Classical Proofs. PhD
thesis, Department of Computer Science, Cornell University, Ithaca, New York,
1990.

[29] Juarez A. Muylaert-Filho and Geoffrey L. Burn. Continuation passing transfor-
mation and abstract interpretation. In G. L. Burn, S. J. Gay, and M. D. Ryan,
editors, Theory and Formal Methods 1993: Proceedings of the First Imperial
College Department of Computing Workshop on Theory and Formal Methods,
Workshops in Computing Series, pages 247–259, Isle of Thorns, Sussex, 1993.
Springer-Verlag.

[30] Lasse R. Nielsen. A study of defunctionalization and continuation-passing style.
PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark, July
2001. BRICS DS-01-7.

[31] Flemming Nielson. A denotational framework for data flow analysis. Acta Infor-
matica, 18:265–287, 1982.

[32] Flemming Nielson and Hanne Riis Nielson. Infinitary control flow analysis: a
collecting semantics for closure analysis. In Neil D. Jones, editor, Proceedings
of the Twenty-Fourth Annual ACM Symposium on Principles of Programming
Languages, pages 332–345, Paris, France, January 1997. ACM Press.

[33] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer Verlag, 1999.

16

[34] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. In
Proceedings of OOPSLA’91, the ACM SIGPLAN Sixth Annual Conference on
Object-Oriented Programming Systems, Languages and Applications, pages 146–
161, Phoenix, Arizona, October 1991.

[35] Jens Palsberg and Mitchell Wand. CPS transformation of flow information.
Unpublished manuscript, available at http://www.cs.purdue.edu/~palsberg/
publications.html, June 2000.

[36] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, 1:125–159, 1975.

[37] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Compu-
tation, 6(3/4):233–247, 1993.

[38] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference (1972).

[39] Amr Sabry, editor. Proceedings of the Third ACM SIGPLAN Workshop on Con-
tinuations, Technical report 545, Computer Science Department, Indiana Uni-
versity, London, England, January 2001.

[40] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-
passing style. Lisp and Symbolic Computation, 6(3/4):289–360, 1993.

[41] Amr Sabry and Matthias Felleisen. Is continuation-passing useful for data flow
analysis? In Vivek Sarkar, editor, Proceedings of the ACM SIGPLAN’94 Confer-
ence on Programming Languages Design and Implementation, SIGPLAN Notices,
Vol. 29, No 6, pages 1–12, Orlando, Florida, June 1994. ACM Press.

[42] Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Transactions
on Programming Languages and Systems, 19(6):916–941, 1997.

[43] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-
474, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts, May 1978.

[44] Christopher Strachey and Christopher P. Wadsworth. Continuations: A math-
ematical semantics for handling full jumps. Higher-Order and Symbolic Com-
putation, 13(1/2):135–152, 2000. Reprint of the technical monograph PRG-11,
Oxford University Computing Laboratory (1974).

[45] Carolyn L. Talcott, editor. Proceedings of the 1994 ACM Conference on Lisp
and Functional Programming, LISP Pointers, Vol. VII, No. 3, Orlando, Florida,
June 1994. ACM Press.

[46] Mitchell Wand. Continuation-based program transformation strategies. Journal
of the ACM, 27(1):164–180, January 1980.

[47] Mitchell Wand. Embedding type structure in semantics. In Mary S. Van Deusen
and Zvi Galil, editors, Proceedings of the Twelfth Annual ACM Symposium on
Principles of Programming Languages, pages 1–6, New Orleans, Louisiana, Jan-
uary 1985. ACM Press.

17

[48] Mitchell Wand. Correctness of procedure representations in higher-order as-
sembly language. In Stephen Brookes, Michael Main, Austin Melton, Michael
Mislove, and David Schmidt, editors, Proceedings of the 7th International Con-
ference on Mathematical Foundations of Programming Semantics, number 598 in
Lecture Notes in Computer Science, pages 294–311, Pittsburgh, Pennsylvania,
March 1991. Springer-Verlag.

[49] Mitchell Wand. Continuation-based multiprocessing. Higher-Order and Symbolic
Computation, 12(3):285–299, 1999. Reprinted from the proceedings of the 1980
Lisp Conference.

[50] Steve Zdancewic and Andrew Myers. Secure information flow and CPS. In David
Sands, editor, Proceedings of the Tenth European Symposium on Programming,
number 2028 in Lecture Notes in Computer Science, pages 46–61, Genova, Italy,
April 2001. Springer-Verlag.

18

Recent BRICS Report Series Publications

RS-01-55 Daniel Damian and Olivier Danvy.A Simple CPS Transforma-
tion of Control-Flow Information. December 2001. 18 pp.

RS-01-54 Daniel Damian and Olivier Danvy.Syntactic Accidents in Pro-
gram Analysis: On the Impact of the CPS Transformation. De-
cember 2001. 41 pp. To appear in theJournal of Functional
Programming. This report supersedes the earlier BRICS re-
port RS-00-15.

RS-01-53 Zolt́an Ésik and Masami Ito. Temporal Logic with Cyclic
Counting and the Degree of Aperiodicity of Finite Automata. De-
cember 2001. 31 pp.

RS-01-52 Jens Groth.Extracting Witnesses from Proofs of Knowledge in
the Random Oracle Model. December 2001. 23 pp.

RS-01-51 Ulrich Kohlenbach. On Weak Markov’s Principle. December
2001. 10 pp.

RS-01-50 Jǐr ı́ Srba. Note on the Tableau Technique for Commutative
Transition Systems. December 2001. 19 pp. To appear in
Nielsen and Engberg, editors,Foundations of Software Sci-
ence and Computation Structures, FoSSaCS ’02 Proceedings,
LNCS 2303, 2002.

RS-01-49 Olivier Danvy and Lasse R. Nielsen.A First-Order One-Pass
CPS Transformation. December 2001. 21 pp. Extended version
of a paper to appear in Nielsen and Engberg, editors,Foun-
dations of Software Science and Computation Structures, FoS-
SaCS ’02 Proceedings, LNCS 2303, 2002.

RS-01-48 Mogens Nielsen and Frank D. Valencia.Temporal Concurrent
Constraint Programming: Applications and Behavior. Decem-
ber 2001. 36 pp.

RS-01-47 Jesper Buus Nielsen.Non-Committing Encryption is Too Easy
in the Random Oracle Model. December 2001. 20 pp.

RS-01-46 Lars Kristiansen. The Implicit Computational Complexity of
Imperative Programming Languages. November 2001. 46 pp.

RS-01-45 Ivan B. Damg̊ard and Gudmund Skovbjerg Frandsen. An Ex-
tended Quadratic Frobenius Primality Test with Average Case
Error Estimates. November 2001. 43 pp.

