
B
R

IC
S

R
S

-01-55
D

am
ian

&
D

anvy:
A

S
im

ple
C

P
S

Transform
ation

ofC
ontrol-F

low
Inform

ation

BRICS
Basic Research in Computer Science

A Simple CPS Transformation of
Control-Flow Information

Daniel Damian
Olivier Danvy

BRICS Report Series RS-01-55

ISSN 0909-0878 December 2001



Copyright c© 2001, Daniel Damian & Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/55/



A Simple CPS Transformation

of Control-Flow Information

Daniel Damian∗ and Olivier Danvy

BRICS †

Department of Computer Science
University of Aarhus ‡

December 2001

Abstract

We build on Danvy and Nielsen’s first-order program transformation into
continuation-passing style (CPS) to design a new CPS transformation of flow
information that is simpler and more efficient than what has been presented in
previous work. The key to simplicity and efficiency is that our CPS transfor-
mation constructs the flow information in one go, instead of first computing an
intermediate result and then exploiting it to construct the flow information.

More precisely, we show how to compute control-flow information for CPS-
transformed programs from control-flow information for direct-style programs
and vice-versa. As a corollary, we confirm that CPS transformation has no
effect on the control-flow information obtained by constraint-based control-flow
analysis. The transformation has immediate applications in assessing the effect
of the CPS transformation over other analyses such as, for instance, binding-time
analysis.
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1 Introduction

The continuation-passing-style (CPS) transformation is a source-to-source program
transformation of λ-terms that makes explicit the continuation of each λ-expression [36,
44]. Continuations have been discovered in many contexts [37] and form an active area
of research [10, 39] with many applications, e.g., in compiler construction [1, 24, 43],
program transformation [46], partial evaluation [19, 25], multi-processing [2, 15, 49],
and, recently, goal-directed evaluation [12] and program security [50].

The call-by-value and call-by-name CPS transformations are due to Plotkin [36]
and yield λ-terms that are independent on the order of evaluation. The CPS trans-
formation has been extended to types [26, 47], which has led to the discovery of its
logical content [17, 28]. Over the last two years, both Palsberg and Wand [35] and
Damian and Danvy [6, 7, 9] have developed a CPS transformation of control-flow
information. They have used it to show that a CPS transformation does not affect
the control-flow information collected by a monovariant constraint-based control-flow
analysis.

Graphically:

control-flow
information

CPS transformation
of flow information

// control-flow
information

direct-style
program

CPS transformation
of terms

//

control-flow
analysis

OO

CPS
program

control-flow
analysis

OO

The canonical motivation for transferring the result of a program analysis across a
program transformation is that the transfer is likely to be cheaper than analyzing the
transformed program. In the present case, (1) the time complexity of control-flow
analysis is cubic in the size of the analyzed program and (2) the time complexity
of CPS-transforming control-flow information is linear in the size of the control-flow
information, which is again linear in the size of the analyzed program.

CPS transformations of flow information are based on CPS transformations of
terms.

1.1 CPS transformation of terms

The CPS transformation has motivated a long line of research. Plotkin [36] and
Steele [43] observed that it gives rise to large residual terms, due to so-called ad-
ministrative redexes. Both theoretically and practically, these administrative redexes
are in the way. For example, in his proof, Plotkin needs to interleave administrative
and essential reductions. Yet a practically useful CPS-transformed program need not
contain these redexes, and indeed, in his compiler, Steele performs all administrative
reductions immediately after the CPS transformation. As an alternative to adminis-
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trative post-reduction, compact CPS programs can also be obtained by first bringing
the source program into monadic normal form and then introducing continuations [18].

Administrative redexes may be avoided altogether by using a one-pass CPS trans-
formation. Existing one-pass CPS transformations use a higher-order accumula-
tor [1, 11, 48] or are based on evaluation contexts [40, 42].

Graphically:

CPS with
administrative redexes

administrative
reductions

))RRRRRRRRRRRRR

direct style
one-pass

CPS transformation
//

CPS
transformation

77nnnnnnnnnnnnn

naming and
sequentialization ''PPPPPPPPPPPPP

CPS without
administrative redexes

monadic
normal form

introduction
of continuations

55llllllllllllll

A one-pass CPS transformation makes it possible to reason directly over CPS-
transformed terms. Unfortunately, existing one-pass CPS transformations are not
immediate to use, either because they are higher-order or because they are not
compositional. A higher-order accumulator requires a logical relation [13]. A non-
compositional transformation requires well-founded induction rather than ordinary
structural induction [40]. Fortunately, Danvy and Nielsen have recently discovered a
one-pass CPS transformation that is both first-order and compositional [14, 30].

1.2 CPS transformation of flow information

In our initial work [7], we considered only one step of the CPS transformation, namely
the introduction of continuations on terms in monadic normal form. We then turned
to transforming source terms into monadic normal form [6, 9].

In a related work [35], Palsberg and Wand considered the first phase of the CPS
transformation. In a followup work [6, 8], we addressed administrative reductions.

Therefore, the existing CPS transformations of flow information operate in two
passes. The first pass computes an intermediate result and the second pass exploits
it to construct the flow information.

In this article, we build on Danvy and Nielsen’s new one-pass CPS transforma-
tion [14, 30] and we present a new and simpler CPS transformation of control-flow
information that does not construct any intermediate result and thus is more efficient
to use. It is also simpler to prove correct. Indeed, proving predicates defined by struc-
tural induction on a CPS-transformed program is simplest done with a first-order and
compositionally-defined one-pass CPS transformation.

1.3 This work

We show how to directly construct control-flow information for a CPS program after
administrative reductions, without the need for an intermediate form. Our construc-
tion confirms that the CPS transformation does not affect the result of a monovariant
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e ∈ Expr (terms) e ::= s | t

s ∈ Comp (serious terms, i.e., computations) s ::= e`0
0 e`1

1

t, K ∈ Triv (trivial terms, i.e., values) t ::= x | λπx.e`

x ∈ Ide (identifiers)
` ∈ Lab (term labels)
π ∈ Lam (λ-abstraction labels)

Figure 1: The language of labeled λ-terms

constraint-based control-flow analysis [6, 7, 9, 35]. It also opens the way to directly
investigating the effect of the CPS transformation on other analyses, as for instance,
binding-time analysis.

Graphically:

CPS with
administrative redexes Damian & Danvy

[6, 8]
))RRRRRRRRRRRRR

direct style this work //

Palsberg & Wand
[35]

77nnnnnnnnnnnnn

Damian & Danvy
[6, 9] ''PPPPPPPPPPPPP

CPS without
administrative redexes

monadic
normal form

Damian & Danvy
[6, 7]

55llllllllllllll

Our CPS transformation of control flow is simpler than previous versions and
addresses the λ-calculus without the need for an intermediate form or administrative
reductions. The proofs of correctness are similar to the ones in our earlier work, but
here source terms need not be in monadic normal form. They are also slightly simpler
than Palsberg and Wand’s since programs contain no administrative redexes.

2 Control-flow analysis for λ-terms

2.1 The language of λ-terms

We consider the language of labeled λ-terms defined in Figure 1. Following Reynolds [38]
and Moggi [27], we distinguish among trivial terms t that denote values and serious
terms s that may denote computations. Expressions are annotated with distinct la-
bels ` from a countable set Lab. Each λ-abstraction has a unique associated label π.
A program p is a closed labeled expression e` .

2.2 Control-flow analysis

We consider a standard constraint-based control-flow analysis (CFA) on λ-terms [5,
16, 20, 21, 22, 32, 33, 34].
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Lamp The set of λ-abstraction labels in p
Varp The set of identifiers in p
Labp The set of term labels in p

Trivp = P(Lamp) Abstract values
Ĉ ∈ Cachep = Labp → Trivp Abstract cache
ρ̂ ∈ Envp = Varp → Trivp Abstract environment

�p ⊆ (Cachep × Envp) × Labp

Figure 2: Control-flow analysis relation for a program p

(Ĉ, ρ̂) �p x` ⇐⇒ ρ̂(x) ⊆ Ĉ(`)
(Ĉ, ρ̂) �p (λπx.e`)`1 ⇐⇒ (Ĉ, ρ̂) �p e` ∧ π ∈ Ĉ(`1)
(Ĉ, ρ̂) �p (e`0

0 e`1
1 )`2 ⇐⇒ (Ĉ, ρ̂) �p e`0

0 ∧ (Ĉ, ρ̂) �p e`1
1 ∧

∀λπx.e` ∈ Ĉ(`0).Ĉ(`1) ⊆ ρ̂(x) ∧
Ĉ(`) ⊆ Ĉ(`2)

Figure 3: Control-flow analysis

Specifically, we consider the CFA specified in Nielson, Nielson, and Hankin’s text-
book [33]. Given an input program p, the functionality of the syntax-directed control-
flow analysis relation �p is defined in Figure 2. The analysis relation is defined in-
ductively in Figure 3.

The relation is defined on a pair of a tuple (Ĉ, ρ̂) and a labeled expression e` . In
the relation, Ĉ is a cache mapping each expression label to a set of λ-abstractions that
the expression might evaluate to, while ρ̂ is an environment mapping each program
variable to a set of λ-abstractions that the variable might denote. It is known [33,
Chapter 3] that a pair (Ĉ, ρ̂) satisfying the relation (Ĉ, ρ̂) �p p is a safe analysis of
the program p.

Given a source program p, solutions of the analysis of p always exist. The set of
solutions of the analysis of p is closed under intersection: the pointwise intersection of
two solutions always exists. Therefore, there exists a least solution of the analysis of
p. The least solution can be computed with a standard work-list based algorithm [33,
Chapter 3]. Through the rest of this article we use “the result of the analysis of p”
to refer to the least result of the analysis.

2.3 Control-flow analysis: an example

An example of CFA analysis is presented in Figure 4. The (labeled) λ-term T applies
the identity function to itself. The control-flow analysis from Figure 3 on the term T
results in the cache/environment pair also presented in Figure 4.

We can see that the λ-abstraction π2 is detected to flow into the variable y and from
there into the variable x and as a result of the application. In the following section
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T = ((λπ1y.(y`1 y`2)`3)`4 (λπ2x.x`5)`6)`7

Ĉ
`1 → {π2} `5 → {π2}
`2 → {π2} `6 → {π2}
`3 → {π2} `7 → {π2}
`4 → {π1}

ρ̂
y → {π2}
x → {π2}

Figure 4: CFA example

we illustrate the CPS transformation of the term T and how the flow information for
the resulting CPS term can be computed from the flow information for T displayed
in Figure 4.

3 CPS transformation and control-flow analysis

We show that the CPS transformation preserves the result of the control-flow analy-
sis defined in Section 2.2. To this end, we define a transformation from control-flow
information for a direct-style program into control-flow information for the CPS coun-
terpart of this program. We also define a transformation of control-flow information
for a CPS-transformed program into control-flow information for the direct-style coun-
terpart of the program. Using the monotonicity of the two transformations, we show
that the least analysis of a direct-style program is equivalent to the least analysis of
its CPS counterpart and vice-versa.

Graphically:

(Ĉ, ρ̂)
CPS transformation of flow //

(Ĉ′, ρ̂′)
direct-style transformation of flow

oo

p CPS transformation of terms //

CFA

OO

p′

CFA

OO

3.1 CPS transformation of terms

In this article, CPS programs are obtained using Danvy and Nielsen’s first-order CPS
transformation [14, 30]. The CPS transformation for (unlabeled) λ-terms is defined in
Figure 5. As in our earlier work [7, 9], we consider a transformation with η-expanded
tail calls: the continuation passed at a function call is always a syntactic λ-abstraction.

The CPS transformation of a program preserves all the original variables of the
program. In turn, as in our earlier work [7, 9], we design the CPS transformation of
labeled terms to preserve the labels of all trivial terms.
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E : Expr × Ide → Comp
E [[t]]k = k T [[t]]
E [[s]]k = S[[s]](λx.k x)

S : Comp × Triv → Comp
S[[t0 t1]]K = T [[t0]] T [[t1]] K
S[[t0 s1]]K = S[[s1]](λx1.T [[t0]] x1 K)
S[[s0 t1]]K = S[[s0]](λx0.x0 T [[t1]] K)
S[[s0 s1]]K = S[[s0]](λx0.S[[s1]](λx1.x0 x1 K))

T : Triv → Triv
T [[x]] = x

T [[λx.e]] = λx.λk.E [[e]]k

Figure 5: First-order one-pass CPS transformation (labels omitted)

Danvy and Nielsen’s one-pass CPS transformation yields CPS terms without ad-
ministrative redexes. In Section 3.2, using this CPS transformation as a syntactic sup-
port, we define the CPS transformation of control-flow information for CPS programs
without administrative redexes. In Section 3.3, we define the direct-style transforma-
tion of control-flow information from CPS programs without administrative redexes.
In Section 3.4, with the same technique described in the first author’s PhD thesis [6,
Section 2.3], the variables and labels common to the original program and to its CPS
counterpart are used to establish the preservation of flow information across CPS
transformation.

3.2 CPS transformation of control flow

We define a CPS transformation of control-flow information following the CPS trans-
formation of Figure 5. Let us show how control-flow information for a direct-style term
can be used to compute control-flow information for the CPS transformed program.

To transformation relies on two auxiliary functions:

• γ extracts the labels of partially applied CPS λ-abstractions. Formally, consid-
ering A to be a set of CPS λ-abstractions {λπixi.λ

π′
iki.ei|1 ≤ i ≤ n}, for some

n, then γ(A) = {π′
i|1 ≤ i ≤ n}.

• ξ assigns flow information to each continuation identifier k introduced by the
CPS transformation of a λ-abstraction from p. This information can be obtained
from the direct-style flow information, since we can syntactically identify the
continuation of the CPS counterpart of any direct-style application.

Given p, Ĉ, ρ̂, and a continuation identifier k introduced by the transformation
of a λ-abstraction from p:

T [[λπx.e` ]] = λπx.λk.E [[e]]k

we define ξ(k) as the union of all sets Ĉ ′(`) such that in the CPS transformation

8



E : Expr × Lab × Ide → Comp × Lab
E [[t` ]]k = (k`0 (T [[t]])`)`1 Ĉ′(`0) = ρ̂′(k)

Ĉ′(`) = Ĉ′(`) Ĉ′(`1) = ∅
E [[s` ]]k = (S[[s]](λπx.(k`0 x`)`1)`2)`3

Ĉ′(`0) = ρ̂′(k) Ĉ′(`) = ρ̂′(x) = Ĉ(`)
Ĉ ′(`2) = {π} Ĉ′(`3) = Ĉ′(`1) = ∅

S : Comp × Triv × Lab → Comp
S[[t`00 t`11 ]]K` = ((T [[t0]])`0 (T [[t1]])`1)`2 K`

Ĉ′(`0) = Ĉ(`0) Ĉ′(`1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

S[[t`00 s`1
1 ]]K` = S[[s1]](λπx1.(((T [[t0]])`0 x`1

1 )`2 K`)`3)`4

Ĉ′(`0) = Ĉ(`0) Ĉ′(`1) = ρ̂′(x1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π}
S[[s`0

0 t`11 ]]K` = S[[s0]](λπx0.((x`0
0 (T [[t1]])`1)`2 K`)`3)`4

Ĉ′(`0) = ρ̂′(x0) = Ĉ(`0) Ĉ′(`1) = Ĉ(`1)
Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π}
S[[s`0

0 s`1
1 ]]K` = S[[s0]](λπx0.(S[[s1]](λπ1x1.((x`0

0 x`1
1 )`2 K`)`3)`4)`5)`6

Ĉ′(`0) = ρ̂′(x0) = Ĉ(`0)
Ĉ ′(`1) = ρ̂′(x1) = Ĉ(`1) Ĉ′(`2) = γ(Ĉ(`0))

Ĉ′(`3) = ∅ Ĉ′(`4) = {π1}
Ĉ′(`5) = ∅ Ĉ′(`6) = {π}

T : Triv → Triv
T [[x]] = x

T [[λπx.e` ]] = λπx.(λπ1k.E [[e` ]]k)`0 Ĉ′(`0) = {π1} ρ̂′(k) = ξ(k)

Figure 6: Transformation of control flow from direct style to CPS

of p into p′ there exists a transformation step

S[[e`0
0 e`1

1 ]]K` = . . .

such that π ∈ Ĉ(`0).

We construct the CPS control-flow information in two steps. First, in a recursive
descent on the tree of the transformation, we compute Ĉ′(`) for each label ` attached
on the newly introduced λ-abstractions (continuations) and we construct the function
ξ.

The second step consists of another recursive descent on the tree of the trans-
formation. We assign control-flow information recursively, as defined for each step
in Figure 6. At each transformation step, on the right-hand side, we construct the
labeled CPS term corresponding to the left-hand side. We then assign flow informa-
tion for each fresh label or variable. Trivial terms preserve their label and their flow
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information. Flow information for serious terms is transferred through calls to con-
tinuations. Fresh continuation identifiers are assigned flow information as computed
by the ξ function.

Note that in contrast to the CPS transformation of unlabeled terms of Figure 5,
the transformation of labeled serious terms takes an extra argument, namely the label
of the syntactic continuation being passed as an argument. At each case in Figure 6,
we do not make the label explicit: we rather place it directly over the constructed
continuation. Similarly, the CPS transformation of a labeled expression returns a
serious term and its enclosing label.

The CPS transformation of control flow is therefore defined as a monotone func-
tion:

ΦCPS
cf : (Cachep × Envp) → (Cachep′

× Envp′
).

Theorem 3.1. Let p = e` be a uniquely labeled program. If (Ĉ, ρ̂) �p e` then
(ΦCPS

cf (Ĉ, ρ̂)) �p′
λπk.E [[e` ]]k.

Proof. By structural induction on the resulting CPS program. The proof is similar
with the proof of Theorem 6.1 of our previous work [9] which addressed terms in
monadic normal form. In this proof, however, the main induction predicate states
that a CPS-transformed serious term satisfies the relation when the term passed as a
continuation is also satisfying the relation. The main induction predicate relies on:

a) an auxiliary predicate stating that the translation of a trivial term together with
its associated label satisfies the flow constraints in CPS if the associated label
is preserved;

b) an auxiliary predicate stating that the translation of an expression with its
syntactic continuation satisfies the flow constraints in CPS.

At each iteration step we make use of an auxiliary Lemma (similar to Lemma 6.4
of the same previous work [9]) stating that the flow information extracted at an
application point is passed into each possible continuation for the CPS equivalent of
the application.

The proof is also slightly simpler than Palsberg and Wand’s proof [35] since programs
contain no administrative redexes.

3.3 Direct-style transformation of control flow

The CPS transformation of flow from Figure 6 shows that the analysis of a CPS-
transformed term can be at least as good as the analysis of the direct-style original
term. The resulting CPS solution is the equivalent of the direct-style one, but may
not be the best. We show that the direct-style and CPS analysis results are equivalent
by exhibiting a direct-style transformation of flow.

We thus define a direct-style transformation of control-flow information. In other
words, we transform control-flow information for the CPS-transformed term into
control-flow information for the original direct-style term. The transformation is
defined recursively in Figure 7. At each transformation step, on the right-hand side
we construct flow information (Ĉ, ρ̂) for the direct-style program from the flow infor-
mation (Ĉ′, ρ̂′) for the CPS program.

10



E : Expr × Ide → Comp × Lab
E [[t` ]]k = (k`0 (T [[t]])`)`1 Ĉ(`) = Ĉ′(`) Ĉ(`1) = ∅
E [[s` ]]k = (S[[s]](λπx.(k`0 x`)`1)`2)`3 Ĉ(`) = Ĉ′(`)

S : Comp × Triv × Lab → Comp
S[[t`00 t`11 ]]K` = ((T [[t0]])`0 (T [[t1]])`1)`2 K`

Ĉ(`0) = Ĉ′(`0) Ĉ(`1) = Ĉ′(`1)
S[[t`00 s`1

1 ]]K` = S[[s1]](λπx1.(((T [[t0]])`0 x`1
1 )`2 K`)`3)`4

Ĉ(`0) = Ĉ′(`0) Ĉ(`1) = ρ̂′(x1)
S[[s`0

0 t`11 ]]K` = S[[s0]](λπx0.((x`0
0 (T [[t1]])`1)`2 K`)`3)`4

Ĉ(`0) = ρ̂′(x0) Ĉ(`1) = Ĉ′(`1)
S[[s`0

0 s`1
1 ]]K` = S[[s0]](λπx0.(S[[s1]](λπ1x1.((x`0

0 x`1
1 )`2 K`)`3)`4)`5)`6

Ĉ(`0) = ρ̂′(x0) Ĉ(`1) = ρ̂′(x1)

T : Triv → Triv
T [[x]] = x

T [[λπx.e` ]] = λπx.(λπ1k.E [[e` ]]k)`0

Figure 7: Transformation of control flow from CPS into direct style

Since at each function call the continuation is an explicit syntactic continuation,
we are able to determine the control-flow information returned by each expression.
In particular, at a transformation step

E [[s` ]]k = (S[[s]](λπx.(k`0 x`)`1)`2)`3

we are able to assign control-flow information for the return label ` from the control-
flow information collected by the continuation λπx.(k`0 x`)`1 .

Control-flow information can therefore be constructed bottom-up. The direct-style
transformation of control flow is thus defined as a monotone function:

ΨCPS
cf : (Cachep′

× Envp′
) → (Cachep × Envp)

Theorem 3.2. Let p = e` be a uniquely labeled program.

If (Ĉ′, ρ̂′) �p λπk.E [[e` ]]k and ρ̂′(k) = ∅, then ΨCPS
cf (Ĉ′, ρ̂′) �p′

e` .

Proof. By structural induction on the direct-style source program. Again, the proof
is similar to the proof of Theorem 6.5 of our earlier work [9]. In this proof the main
induction predicate states that the constructed solution satisfies the flow constraints
for any serious sub-term considered together with its enclosing label. The proof relies
on:

a) an auxiliary predicate stating that a trivial term together with its associated
label satisfies the flow constraints if it satisfies the constraints in CPS, considered
together with its associated label;

b) an auxiliary predicate stating that an expression satisfies the flow constraints if
the translation satisfies the flow constraints in CPS (considered together with
its syntactic continuation).

11



At each iteration step we make use of an auxiliary Lemma (similar to Lemma 6.8 of the
same previous work [9]) stating that the flow information extracted at an application
point includes the flow information collected by each possible continuation for the
CPS equivalent of the application.

3.4 Preservation of flow

Following the construction of the CPS control-flow information in Figure 6, it is im-
mediate to see that the flow information assigned to the program’s original variables
in CPS is identical to the one extracted from the direct-style original program. The
same is valid for the reverse transformation of Figure 7: the control-flow informa-
tion assigned to direct-style variables is identical to the one extracted from the CPS
program.

Theorem 3.3 follows from the monotonicity of the two transformations of control
flow.

Theorem 3.3. Let p be a direct-style program and p′ its CPS counterpart.

i) Let (Ĉ, ρ̂) be the solution of the control-flow analysis of p. Then
ΨCPS

cf (ΦCPS
cf (Ĉ, ρ̂)) = (Ĉ, ρ̂).

ii) Let (Ĉ′, ρ̂′) be the solution of the control-flow analysis of p′. Then
ΦCPS

cf (ΨCPS
cf (Ĉ′, ρ̂′)) = (Ĉ′, ρ̂′).

3.5 CPS transformation of flow: an example

Let us now consider the CPS transformation of the term T in the example of Sec-
tion 2.3. The CPS equivalent T ′ of the term T is illustrated in Figure 8. Even if the
term T ′ is administratively reduced, the number of labels becomes difficult to manage
without an automated calculation. The generated example illustrates the equivalence
of flow information obtained by the CFA analysis of the original term T and of the
CPS term T ′.

As specified in Section 1.1, the CPS term T ′ maintains all the λ-abstraction labels
and trivial-term labels of the original term T ′. As specified by Theorem 3.3, the
flow information associated to the labels of the trivial terms (i.e., `1, `2, `4, `5 and `6)
are identical. Similarly, the variables of the original term (x and y) are preserved
and their associated flow information is identical. We can observe that the labels `3

and `7 have disappeared, their associated flow information being transferred into the
variables abstracted by continuations v2 and v1 respectively. The remainder of the
labels are either final answer labels, and their associated flow information is empty,
either labels surrounding a continuation in which case the associated flow information
is a singleton containing the label of the continuation.

Therefore, given the flow information from Figure 4 we can avoid re-analyzing
the CPS term T ′ by computing the flow information of Figure 8 according to the
transformation function ΦCPS

cf , with a provably lower complexity. Similarly, given the
flow information of Figure 8, we can avoid re-analyzing the CPS term T ′ by computing
the flow information of Figure 4 according to the transformation function ΦCPS

cf , again
with a provably lower complexity.
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T ′ = (((λπ1y.(λπ4k2.((y`1 y`2)`16 (λπ5v2.(k`12
2 v`13

2 )`14)`15)`17)`18)`4

(λπ2x.(λπ6k3.(k`19
3 x`5)`20)`21)`6)`22

(λπ3v1.(k`8
1 v`9

1 )`10)`11)`23

ξ
k2 → {π3}
k3 → {π5}

Ĉ
`1 → {π2} `10 → {} `17 → {}
`2 → {π2} `11 → {π3} `18 → {π4}
`4 → {π1} `12 → {π3} `19 → {π5}
`5 → {π2} `13 → {π2} `20 → {}
`6 → {π2} `14 → {} `21 → {π6}
`8 → {} `15 → {π5} `22 → {π4}
`9 → {π2} `16 → {π6} `23 → {}

ρ̂
k1 → {}
k2 → {π3}
k3 → {π5}
x → {π2}
y → {π2}
v1 → {π2}
v2 → {π2}

Figure 8: CPS transformation and analysis result

4 Conclusions and future work

We have presented a one-pass CPS transformation of control-flow information. Our
transformation improves both on our earlier CPS transformation and on Palsberg
and Wand’s which operate in two passes. This line of work aims at transferring
the results of program analyses across program transformations as an alternative to
analyzing transformed programs from scratch. The interaction between CPS and
program analysis has been explored by a number of authors [3, 4, 19, 23, 25, 29, 31],
sometimes leading to mixed results [41].

The complete CPS transformation of control flow can be used to assess the impact
of the CPS transformation on the result of other program analyses, e.g., binding-times
analysis. In a previous work [7, 9], we have shown that introducing continuations
(1) does not worsen and (2) can improve the results of the standard binding-time
analysis for traditional partial evaluation [23]. Transforming programs into monadic
normal form can also lead to further binding-time improvements [6, 19]. Our initial
investigations show that the current transformation of control flow can be used to
characterize in one single theorem the binding-time improvements obtained by the
CPS transformation [6].

Let us finish on the relation between tail-call optimization and control-flow anal-
ysis. In the CPS transformation of Figure 5, the η-expanded tail calls provide an
explicit continuation for each function call for which we can extract control-flow in-
formation. More precisely, the CPS transformation of an expression introduces an
explicit continuation:

E [[s]]k = S[[s]](λx.k x)

The presence of such an explicit continuation facilitates the definition of the CPS
transformation of control flow. We are currently investigating whether η-reducing
these tail-calls (i.e., defining E [[s]]k as S[[s]]k) also preserves control-flow information.

13



References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
New York, 1992.

[2] Edoardo Biagioni, Ken Cline, Peter Lee, Chris Okasaki, and Chris Stone. Safe-
for-space threads in Standard ML. Higher-Order and Symbolic Computation,
11(2):209–225, 1998.

[3] Anders Bondorf. Improving binding times without explicit cps-conversion. In
William Clinger, editor, Proceedings of the 1992 ACM Conference on Lisp and
Functional Programming, LISP Pointers, Vol. V, No. 1, pages 1–10, San Fran-
cisco, California, June 1992. ACM Press.

[4] Charles Consel and Olivier Danvy. For a better support of static data flow.
In John Hughes, editor, Proceedings of the Fifth ACM Conference on Func-
tional Programming and Computer Architecture, number 523 in Lecture Notes
in Computer Science, pages 496–519, Cambridge, Massachusetts, August 1991.
Springer-Verlag.

[5] Patrick Cousot and Radhia Cousot. Formal language, grammar and set-
constraint-based program analysis by abstract interpretation. In Simon Peyton
Jones, editor, Proceedings of the Seventh ACM Conference on Functional Pro-
gramming and Computer Architecture, pages 170–181, La Jolla, California, June
1995. ACM Press.

[6] Daniel Damian. On Static and Dynamic Control-Flow Information in Program
Analysis and Transformation. PhD thesis, BRICS PhD School, University of
Aarhus, Aarhus, Denmark, July 2001. BRICS DS-01-5.

[7] Daniel Damian and Olivier Danvy. Syntactic accidents in program analysis: On
the impact of the CPS transformation. In Philip Wadler, editor, Proceedings of
the 2000 ACM SIGPLAN International Conference on Functional Programming,
SIGPLAN Notices, Vol. 35, No. 9, pages 209–220, Montréal, Canada, September
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