
B
R

IC
S

R
S

-01-44
M̈

oller
etal.:

P
redicate

A
bstraction

for
D

ense
R

eal-T
im

e
S

ystem
s

BRICS
Basic Research in Computer Science

Predicate Abstraction for
Dense Real-Time Systems

M. Oliver M öller
Harald Rueß
Maria Sorea

BRICS Report Series RS-01-44

ISSN 0909-0878 November 2001

Copyright c© 2001, M. Oliver Möller & Harald Rueß & Maria
Sorea.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/44/

Predicate Abstraction for Dense Real-Time Systems∗

M. Oliver Möller‡ Harald Rueß§

Maria Sorea§

‡ BRICS § SRI International
Department of Computer Science Computer Science Laboratory
University of Aarhus 333 Ravenswood Avenue
Ny Munkegade, building 540 Menlo Park, CA 94025
8000 Århus C, Denmark USA
omoeller@brics.dk {ruess,sorea}@csl.sri.com

Abstract

We propose predicate abstraction as a means for verifying a rich class
of safety and liveness properties for dense real-time systems. First, we
define a restricted semantics of timed systems which is observationally
equivalent to the standard semantics in that it validates the same set
of µ-calculus formulas without a next-step operator. Then, we recast
the model checking problem S |= ϕ for a timed automaton S and a µ-
calculus formula ϕ in terms of predicate abstraction. Whenever a set of
abstraction predicates forms a so-called basis, the resulting abstraction is
strongly preserving in the sense that S validates ϕ iff the corresponding
finite abstraction validates this formula ϕ. Now, the abstracted system
can be checked using familiar µ-calculus model checking.

Like the region graph construction for timed automata, the predicate
abstraction algorithm for timed automata usually is prohibitively expen-
sive. In many cases it suffices to compute an approximation of a finite
bisimulation by using only a subset of the basis of abstraction predicates.
Starting with some coarse abstraction, we define a finite sequence of re-
fined abstractions that converges to a strongly preserving abstraction.
In each step, new abstraction predicates are selected nondeterministi-
cally from a finite basis. Counterexamples from failed µ-calculus model
checking attempts can be used to heuristically choose a small set of new
abstraction predicates for refining the abstraction.

∗This research was supported by the National Science Foundation under grants CCR-00-
82560 and CCR-00-86096. Most of this research has been conducted while the first author
was visiting SRI International, July/August 2001.

1

1 Introduction

Timed Automata [AD94] are state-transition graphs augmented with a finite
set of real-valued clocks. The clocks proceed at a uniform rate and constraint
the times at which transitions may occur. Given a timed automaton and a
property expressed in a timed logic such as TCTL [ACD90] or Tµ [HNSY94],
model checking answers the question whether or not the timed automaton
satisfies the given formula. The fundamental graph-theoretic model checking
algorithm by Alur, Courcoubetis and Dill [ACD90] constructs a finite quotient,
the so-called region graph, of the infinite state graph. Algorithms directly
based on the explicit construction of such a partition are however unlikely
to perform efficiently in practice, since the number of equivalence classes of
states of the region graph grows exponentially with the largest time constant
and the number of clocks that are used to specify timing constraints. A recent
overview of data structures for representing regions in a symbolic way together
with algorithms and tools for verifying real-time systems is given, for example,
by Yovine [Yov98].

We propose a novel algorithm for verifying a rich class of safety and liveness
properties of timed automata based on computing finite abstractions of timed
automata, model checking, and successive refinement of abstractions. Without
sacrificing completeness, this algorithm does usually not require to compute
the complete region graph in order to decide model checking problems. In the
worst case, it terminates with a strongly preserving abstraction of the given
model checking problem.

The computation of finite approximations of timed systems is based on
the concepts of abstract interpretation [CC77], and, in particular, of predicate
abstraction [GS97]. Given a transition system and a finite set of predicates, this
method determines a finite abstraction, where each state of the abstract state
space is a truth assignment to the abstraction predicates. The abstraction is
conservative in the sense that a propositional µ-calculus formula holds for the
concrete system if it holds for the predicate-abstracted system [SS99]. Since
the reverse statement does not hold in general, predicate abstraction has so
far mainly been used to only prove safety but not liveness properties.

The main problem with applying predicate abstraction in general is to come
up with an appropriate set of abstraction predicates. In the case of timed au-
tomata, we show that a set of abstraction predicates expressive enough to
distinguish between any two clock regions determines a strongly preserving
abstraction, in the sense that the timed system satisfies the property under
consideration if and only if the predicate-abstracted system satisfies this prop-
erty. The main technical problem in the definition of the abstraction is to
guarantee fairness in the abstract model; that is, to prevent delay steps to be
abstracted into self-loops on the abstract system. Uribe [Uri98] distinguishes

2

between three different approaches in the literature for building fairness into
the abstraction: first, by adding new fairness constraints to the abstract sys-
tem, second, by incorporating fairness into the logic, and third, by modifying
the finite-state model checker. We present a fourth approach that addresses
this problem by introducing a certain restriction on delay steps, and we show
that the corresponding restricted semantics of timed automata is equivalent to
a time-progressing semantics in the sense that these different interpretations
validate the same set of propositional µ-calculus formulas (without next-step
operator). Altogether, our predicate abstraction algorithm determines a de-
cision procedure for checking whether or not a timed automata satisfies some
given µ-calculus formula.

The set of abstraction predicates required to compute a strongly pre-
serving abstraction, a so-called basis, can still be excessively large. Starting
with a trivial over-approximation, we successively select abstraction predi-
cates from the finite basis. Counterexamples from failed model checking at-
tempts are used in guiding the selection. The idea of counterexample-guided
refinement has been used before by many researchers, and recent work in-
cludes [CGJ+00, DD01, LBBO01]). In contrast to these approaches, we use
the counterexample only as a heuristic for selecting good pivot predicates
from a fixed, predetermined pool of abstraction predicates in order to speed-
up convergence of the approximation processes.

Dill and Wong-Toi [DWT95] also use an iteration of both over- and under-
approximations of the reachable state set of timed automata, but their tech-
niques are limited to proving invariants. Based on techniques of predicate ab-
straction, Namjoshi and Kurshan’s algorithm [NK00] computes a finite bisim-
ulation whenever it exists. Thus, in principle, their algorithm could be applied
to compute finite bisimulations of timed automata. Currently it is unclear,
however, if their approach is applicable in practice, since there is no explic-
itly stated upper bound on the number of abstraction rounds and abstraction
predicates needed for convergence. In contrast, for the special case of timed
automata, we are able to predetermine a finite set of abstraction predicates.
Tripakis and Yovine [TY01] show how to abstract dense real-time in order
to obtain time-abstracting, finite bisimulations. Whenever it suffices to com-
pute rather coarse abstractions, we expect to obtain much smaller transition
systems by means of predicate abstraction and refinement of predicate ab-
stractions.

The paper is structured as follows. In Section 2 we review the basic notions
of timed automata including a natural semantics based on a nonconvergence
assumption of time. We also define the notion of restricted delay steps and
show that this restricted semantics of a timed automata is observationally
equivalent to the natural semantics. The restricted semantics is used to define
finite over- and under-approximations of timed systems in Section 3. In Sec-

3

tion 4, we introduce the concept of a basis as a set of abstraction predicates
expressive enough to distinguish between any two different clock regions, and
we show that for predicate abstraction with a basis as abstraction predicates,
the approximation is exact with respect to the next-free µ-calculus. Then, in
Section 5, we define a terminating algorithm for iteratively refining abstrac-
tions until the given property is either proved or refuted. Finally, Section 6
contains some concluding remarks.

2 Timed Systems

We review some basic notions of transition systems and timed systems. Fur-
thermore, we introduce the notion of time-progressing systems by syntactically
restricting the delay steps. These restrictions, however, are not observable in a
version of the propositional µ-calculus without a next-step operator. This sets
the stage for proving completeness of our abstraction techniques in Section 5.

The model of timed system as defined below is motivated by the timed au-
tomata model as introduced by Alur, Courcoubetis, and Dill [ACD90].1 Clocks
for measuring time are encoded as variables, which are interpreted over the
nonnegative reals IR+

0 . Transitions of timed systems are usually constrained
by timing constraints.

Definition 1 (Timing Constraints) Given a set of clocks C, the set of
timing (or clock) constraints Constr comprises true, x ./ d, and x − y ./ d,
where x, y ∈ C, d ∈ IN , ./∈ {≤, <,=, >,≥}. The set Inv is the subset of
Constr , where ./ is chosen from {≤, <}. For a positive integer c, Constr (c) is
the finite subset of all timing constraints x ./ d, x − y ./ d, where x, y ∈ C,
./ ∈ {<,≤,=,≥, >} and d ∈ {0, . . . , c}.

Definition 2 (Timed Systems) Given a finite set of propositional symbols
A, a timed system S is a tuple 〈L,P,C, T, l0, I〉, where

• L is a nonempty finite set of locations,
• P : L→ ℘ (A) maps each location to a set of propositional symbols,
• C is a finite set of clocks,
• T ⊆ L× ℘ (Constr) × ℘ (C) × L is a transition relation,
• l0 ⊆ L is the initial location,
• and I : L → ℘ (Inv) assigns a set of downward closed clock constraints

to each location l; the elements of I(l) are the invariants for location l.
1For simplicity, we do not consider (synchronized) networks of timed automata. The

results of this paper, however, can be extended for such networks.

4

l0
y ≤ 1

l1 l2

x := 0

x := 0 y > xy := 0

x > y

Figure 1: Example of a Timed System.

We write l
g,r−→ l′ for 〈l, g, r, l′〉 ∈ T . Firing a transition does not only change

the current location but also resets the clocks in r to 0. A transition may only
be fired if the timing constraint (guard of the transition) g holds with respect
to the current value of the clocks, and if the invariant of the target location is
satisfied with respect to the modified value of the clocks.

Example 3 A timed system with three locations l0, l1, l2 and two clocks x,
y is displayed in Figure 1. The initial location is l0, transitions are decorated
with both timing constraints and clock resets such as x := 0. The invariant
for location l0 is y ≤ 1. Timing constraints that are true are omitted.

A function ν : C → IR+
0 is a clock evaluation, and the set of clock evalu-

ations is collected in VC . The clock evaluation (ν + δ) is obtained by adding
δ to the value of each clock in ν. For X ⊆ C, ν[X:=0] denotes the clock
evaluation that updates every clock x ∈ X to zero, and leaves all the other
clock values unchanged. The value gν of a clock constraint g with respect to
the clock evaluation ν is obtained by substituting the clocks x in g with the
corresponding value ν(x). If gν simplifies to the true value, ν satisfies g and
we write ν |≈ g. A set X ⊆ VC of clock evaluations satisfies g ∈ Constr , written
as X |≈ g, if and only if ν |≈ g for all ν ∈ X . A pair (l, ν) ∈ L× VC is called a
timed configuration, if it satisfies the invariants I(l); formally, ν |≈ I(l) if ν |≈ g
for every invariant g ∈ I(l). Alur, Courcoubetis, and Dill [ACD90] introduce
the fundamental notion of clock regions, which partition the space of possible
clock evaluation for a timed automaton into finitely many regions.

Definition 4 (Clock Regions) Let S be a timed system with clocks C
and largest constant c, occurring in any timing constraint of S. A clock region
is a set X ⊆ VC of clock evaluations, such that for all timing constraints
g ∈ Constr (c) and for any two ν1, ν2 ∈ X it is the case that ν1 |≈ g if and only
if ν2 |≈ g. In this case we write ν1 ≡S ν2.

5

A timed step is either a delay step, where time advances by some positive
real-valued δ, or an instantaneous state transition step.

Definition 5 (Timed Steps) Let S be a timed system with clock set C
and transition relation T . For δ > 0, we say that the timed configuration
(l, ν + δ) is obtained from (l, ν) by a delay step (l, ν) δ−→(l, ν + δ), if the in-
variant constraint ν + δ |≈ I(l) holds. A state transition step (l, ν)

g,r−→(l′, ν ′)
occurs if there exists a l

g,r−→l′ ∈ T , and ν |≈ g, ν ′ = ν[r:=0], and ν ′ |≈ I(l′).
The union of delay and state transition steps defines the timed transition rela-
tion ⇒ of a timed system S. Now, a path is an infinite or maximally extended
finite sequence of configurations s0⇒s1⇒

Timed systems, as defined above, allow for infinite sequences of delay steps
without ever exceeding some given bound. The sequence

(l, x = 0)
1/2
=⇒ (l, x = 1/2)

1/4
=⇒ (l, x = 3/4)

1/8
=⇒ (l, x = 7/8) · · · (∗)

for example, never reaches time point 1. Systems with paths such that an infi-
nite number of steps may happen in a bounded time frame are said to be zeno.
This kind of behavior is usually ruled out by restricting possible behaviors to
nonzeno only. In order to preserve faulty behavior that is caused by an infinite
sequence of state transition steps, we use a slightly weaker assumption than
nonzenoness. We only consider paths which satisfy the following assumption.

Assumption 6 (Nonconvergence of Time) In every infinite sequence of
delay steps, the evaluation of every clock eventually exceeds every bound.

In the sequel we build time-abstractions which do not distinguish between
state transition steps and delay steps. The main difficulty in defining such
abstractions is to prevent delay steps to be abstracted into self-loops on the
abstract system.

l0
x ≤ 1 l1

x = 1

Figure 2: Timed System for Example 7.

Example 7 Consider the timed system in Figure 2. Under the nonconver-
gence assumption this system satisfies the property that location l1 is always
reached. For example, the following sequence is the prefix of a possible path
of this system.

(l0, x = 0)
1/2
=⇒ (l0, x = 1/2)

1/4
=⇒ (l0, x = 3/4)

1/4
=⇒ (l0, x = 1)

true,∅
=⇒ (l1, x = 1)

6

We abstract the timed system from Figure 2 using the three abstraction pred-
icates ψ0 ≡ x = 0, ψ1 ≡ x < 1, and ψ2 ≡ x = 1. On the abstract system the
single state transition step of the timed system is split according to whether
or not these predicates hold. For example, in the initial abstract configuration
only ψ0 and ψ1 hold, since the value of the clock in the initial concrete state is
zero. Now, corresponding to delay steps with delay less than one, there is an
abstract transition to a state where only ψ1 holds. Using small enough delay
steps one remains in this state or one reaches a state in which only ψ2 holds,
that is, the clock value is exactly one. A fragment of the resulting abstract
transition system is given below.

l0, ψ0ψ1¬ψ2 l0,¬ψ0ψ1¬ψ2 l0,¬ψ0¬ψ1ψ2 l1,¬ψ0¬ψ1ψ2

Notice the self-loop at configuration (l0,¬ψ0ψ1¬ψ2), which has not been present
in the concrete system. For the presence of this loop, it no longer holds for the
abstracted system that on every possible path a configuration with location l1
is reached eventually.

In order to avoid such extraneous self-loops, the nonconvergence assump-
tion must somehow be incorporated into the abstract system. Such a restric-
tion, however, can not be defined by means of time delays in the abstract
system for the simple reason that there is no notion of time or time delay on
this level. In our approach, we enforce the nonconvergence assumption explic-
itly by restricting the model of timed system to delay steps that force a clock
to step beyond integer bounds when all fractional clock values are not zero. In
this way, the second and third delay step of the path (∗) above, for example,
are explicitly ruled out.

Definition 8 (Restricted Delay Step) For a timed system S with clock
set C and largest constant c, a restricted delay step is a delay step (l, ν) δ−→
(l, ν + δ) for all positive, real-valued δ, such that

∃x ∈ C.∃k ∈ {0, . . . , c}. ν(x) = k ∨ (ν(x) < k ∧ ν(x) + δ ≥ k) (1)

The union of state transition steps and restricted delay steps gives rise to a
relation ⇒R ⊆ (L,VC)× (L,VC). Now, a restricted path is an infinite sequence
of configurations s0⇒Rs1⇒R

Obviously, it is the case that ⇒R is a sub-relation of ⇒. The restriction of delay
steps above does not necessarily enforce time to progress, as is demonstrated
by the following restricted path for the system in Example 3.

(l0, x = y = 0)
true,∅
=⇒ (l1, x = y = 0)

true,∅
=⇒ (l0, x = y = 0)

true,∅
=⇒ (l1, x = y = 0) · · ·

7

Note that a loop of state transition steps is required in order to prevent the
clocks x and y from exceeding the clock value 0.

Corresponding to the nonconvergence assumption on timed paths and the
restricted delay steps we associate two semantics for timed systems in terms
of transition systems. The natural semantics M includes arbitrary delay steps
under the nonconvergence of time assumption, while the restricted semantics
MR includes only restricted delay steps as in Definition 8.

Definition 9 (Semantics of Timed Systems) Let S = 〈L,P,C, T, l0, I〉
be a timed system. We associate two transition systems M and MR with S
as follows.

M := 〈L× VC , P, (⇒), (l0, ν0)〉
MR := 〈L× VC , P, (⇒R), (l0, ν0)〉

The symbol ν0 denotes the special clock evaluation, that maps every clock
to 0. M is called the natural semantics of S, and MR is referred to as the
restricted semantics of S.

We demonstrate that the restriction of delay steps does not change the possible
observations of the model with respect to µ-calculus formulas without next-
step operators.

2.1 Definition of Next-Free µ-Calculus

The µ-calculus [Koz83] is a branching-time temporal logic, where formulas are
built from atomic propositions, boolean connectives, the least-fixpoint opera-
tor, and the next-step operator ©ϕ, which expresses the fact that there is a
successor satisfying ϕ. Our main interest in removing the next-step operator
stems from the fact that we do not want to distinguish between one delay
step of duration, say, 1 and two subsequent delay steps of durations 2/5 and
3/5, since these paths are considered to be observationally equivalent. Logics
without explicit next-step operator have also been considered, for example, by
Dams [Dam96] and Tripakis and Yovine [TY01].

Definition 10 (Next-Free µ-Calculus) Let A be a set of atomic predi-
cates, and Var be a set of variables; then, for p ∈ A and Z ∈ Var, the set Lµ
of next-free µ-calculus formulas is described by the grammar

ϕ ::= p | ∀ (ϕUϕ) | ∃ (ϕUϕ) | Z | µZ.ϕ | ¬ϕ | ϕ ∧ ϕ | tt.

In addition, every variable is assumed to appear under an even number of
negations. A sentence is a formula without free variables.

8

Intuitively, an existential until formula ∃ (ϕ1 Uϕ2) holds in some configuration
s iff ϕ1 holds until ϕ2 holds on some path starting from s. Similarly, a universal
until formula ∀ (ϕ1 Uϕ2) holds in s if this conditions holds for all paths from
s. We use the abbreviations:

ff := ¬tt
νZ.ϕ(Z) := ¬µZ.¬ϕ(Z) greatest fixpoint
♦∗ ϕ := ∃ (tt Uϕ) on some path, ϕ holds eventually
�∗ ϕ := ∀ (tt Uϕ) for all paths, ϕ holds eventually

Given a transition system M = 〈S,P,⇒R, s0〉, the semantics of a next-free
µ-calculus sentence is given by the set of timed configurations s = (l, ν) for
which the formula holds. Sub-formulas containing free variables Z ∈ Var are
dealt with using valuation functions ϑ : Var → ℘ (S). The updating notation
ϑ[Z:=s] denotes the valuation ϑ′ that agrees with ϑ on all variables except Z,
where ϑ′(Z) = s ⊆ S.

Definition 11 (Semantics of the Next-Free µ-Calculus) Given a tran-
sition system M = 〈S,P,⇒R, s0〉 over the set S = L × VC of timed config-
urations and an assignment ϑ : Var → ℘ (S), the set of configurations [[ϕ]]Mϑ
validating a formula ϕ ∈ Lµ with respect to ϑ is defined inductively on the
structure of ϕ.

[[tt]]Mϑ := S

[[p]]Mϑ := {(l, ν) ∈ S | p ∈ P (l)}
[[ϕ1 ∧ ϕ2]]Mϑ := [[ϕ1]]Mϑ ∩ [[ϕ2]]Mϑ

[[¬ϕ]]Mϑ := S \ [[ϕ]]Mϑ
[[∃ (ϕ1 Uϕ2)]]Mϑ := {s0 ∈ S | there exists a path τ = (s0⇒s1⇒ . . .), s.t.

si ∈ [[ϕ2]]Mϑ for some i ≥ 0,

and for all 0 ≤ j < i, sj ∈ [[ϕ1]]Mϑ }
[[∀ (ϕ1 Uϕ2)]]Mϑ := {s0 ∈ S | for every path τ = (s0⇒s1⇒ . . .),

there exists i ≥ 0, s.t. si ∈ [[ϕ2]]Mϑ ,

and for all 0 ≤ j < i, sj ∈ [[ϕ1]]Mϑ }
[[Z]]Mϑ := ϑ(Z)

[[µZ.ϕ]]Mϑ :=
⋂{

E ⊆ S | [[ϕ]]Mϑ[Z:=E] ⊆ E
}

We write M, s, ϑ |= ϕ to denote that s ∈ [[ϕ]]Mϑ . The subscript ϑ is omitted
whenever ϕ is a sentence.

Two configurations are said to be indistinguishable if they satisfy the same
set of Lµ sentences.

9

Definition 12 (µ-Equivalence) For a transition system M, two configura-
tions s, s′ are µ-equivalent, denoted by s≡M s′, if for every sentence ϕ ∈ Lµ:
s ∈ [[ϕ]]M if and only if s′ ∈ [[ϕ]]M.

The binary relation ≡M is indeed an equivalence relation on clock evaluations.
Moreover, µ-equivalence characterizes clock regions in the sense that two clock
valuations are in the same clock region if and only if they are µ-equivalent.
Consequently, µ-equivalence is of finite index.

Lemma 13 Let S be a timed system with clock set C and largest constant
c, and let M be the corresponding natural transition system. Then for all
l ∈ L and clock evaluations ν, ν ′ ∈ VC with ν≡S ν ′ the time configurations
(l, ν) and (l, ν ′) are µ-equivalent, that is (l, ν)≡M (l, ν ′).

Proof. Following Definition 12 two time configurations (l, ν) and (l, ν ′) are
µ-equivalent if and only if

∀ϕ ∈ Lµ. (l, ν) ∈ [[ϕ]]M ⇔ (l, ν ′) ∈ [[ϕ]]M

For arbitrary sentences ϕ ∈ Lµ we show (l, ν) ∈ [[ϕ]]M if and only if (l, ν ′) ∈
[[ϕ]]M. The proof works by a straightforward structural induction on ϕ.

ϕ = tt From Definition 11 we have [[tt]]M = S. Therefore (l, ν) ∈ [[tt]]M

and (l, ν ′) ∈ [[tt]]M.

ϕ = p Also following Definition 11 we obtain [[p]]M = {l̃, ν̃ | p ∈ P(l)}.
And since the configurations (l, ν) and (l, ν ′) have the same locations, both
are contained in [[p]]M.

ϕ = ϕ1 ∧ϕ2 By Definition 11 we have that [[ϕ1 ∧ϕ2]]M = [[ϕ1]]M∩ [[ϕ2]]M,
and by Induction Hypothesis it follows

(l, ν) ∈ [[ϕ1]]M ⇔ (l, ν ′) ∈ [[ϕ1]]M and

(l, ν) ∈ [[ϕ2]]M ⇔ (l, ν ′) ∈ [[ϕ2]]M

Thus, (l, ν) ∈ [[ϕ1]]M ∩ [[ϕ2]]M ⇔ (l, ν ′) ∈ [[ϕ1]]M ∩ [[ϕ2]]M.

ϕ = ¬ϕ1 By Definition 11 we have that [[¬ϕ1]]M = S \ [[ϕ1]]M. By Induc-

tion Hypothesis we obtain (l, ν) 6∈ [[ϕ1]]M ⇔ (l, ν ′) 6∈ [[ϕ1]]M, and therefore
(l, ν) ∈ [[¬ϕ1]]M ⇔ (l, ν ′) ∈ [[¬ϕ1]]M.

ϕ = ∃ (ϕ1 Uϕ2) By Definition 11

10

[[∃ (ϕ1 Uϕ2)]]M =
{(l0, ν0) ∈ S | there exists a path τ = ((l0, ν0)⇒(l1, ν1)⇒ . . .), s.t.
(li, νi) ∈ [[ϕ2]]M for some i ≥ 0, and for all 0 ≤ j < i, (lj , νj) ∈ [[ϕ1]]M}

By Induction Hypothesis we have that (l, ν ′i) ∈ [[ϕ2]]M and (l, ν ′j) ∈ [[ϕ1]]M,
for all 0 ≤ j < i.

From the assumption ν≡S ν ′ it follows by Definitions 4 and 5 that there exists
a path τ ′ = ((l0, ν ′0)⇒(l1, ν ′1)⇒ . . .) such that (li, ν ′i) ∈ [[ϕ2]]M for some i ≥ 0,
and (lj , ν ′j) ∈ [[ϕ2]]M for all 0 ≤ j < i. Thus, (l, ν ′) ∈ [[∃ (ϕ1 Uϕ2)]]M.

ϕ = ∀ (ϕ1 Uϕ2) By Definition 11

[[∀ (ϕ1 Uϕ2)]]M =
{(l, ν) ∈ S | for every path τ = ((l0, ν0)⇒(l1, ν1)⇒ . . .) with (l0, ν0) = (l, ν),
there exists i ≥ 0 s.t. (li, νi) ∈ [[ϕ2]]M, and for all 0 ≤ j < i, (lj , νj) ∈

[[ϕ1]]M}
By Induction Hypothesis we have that (l, ν ′i) ∈ [[ϕ2]]M and (l, ν ′j) ∈ [[ϕ1]]M,
for all 0 ≤ j < i.

From the assumption ν≡S ν ′ it follows by Definitions 4 and 5 that for all paths
τ ′ = ((l0, ν ′0)⇒(l1, ν ′1)⇒ . . .) there exists i ≥ 0 such that (li, ν ′i) ∈ [[ϕ2]]M, and
(lj , ν ′j) ∈ [[ϕ2]]M for all 0 ≤ j < i. Thus, (l, ν ′) ∈ [[∀ (ϕ1 Uϕ2)]]M.

ϕ = µZ.ϕ1 Assume (l, ν) ∈ [[µZ.ϕ1]]Mϑ , that is, by Definition 11

(l, ν) ∈
⋂{

E ⊆ S | [[ϕ1]]Mϑ[Z:=E] ⊆ E
}

By Induction Hypothesis it follows that (l, ν ′) ∈ [[µZ.ϕ1]]Mϑ . �

We now show that the natural semantics and the restricted semantics of a
timed system as introduced in Definition 9 are indistinguishable in the next-
free µ-calculus. Intuitively, sentences in Lµ can not distinguish quantitative
values of clocks, and therefore all configurations with identical control locations
and µ-equivalent clock evaluations satisfy the same set of Lµ sentences.

Theorem 14 Let S be a timed system with clocks C, largest constant c, nat-
ural semantics M, and restricted semantics MR. Under the nonconvergence
assumption for M, for every sentence ϕ ∈ Lµ:

[[ϕ]]M = [[ϕ]]MR

Proof. The proof works by structural induction on the formula ϕ, where we
strengthen the claim to [[ϕ]]Mϑ = [[ϕ]]MR

ϑ for arbitrary valuation functions ϑ.

11

ϕ= tt By Definition 11, [[tt]]Mϑ
def
= S

def
= [[tt]]MR

ϑ

ϕ= p By Definition 11, [[p]]Mϑ
def
= {(l, ν) | p ∈ P (l)} def

= [[p]]MR
ϑ

Induction Hypothesis: assume we already established [[ϕ′]]Mϑ = [[ϕ′]]MR
ϑ for all

sub-formulas ϕ′ of ϕ and all valuation functions ϑ.

ϕ= ϕ1 ∧ ϕ2 By Definition 11 and by Induction Hypothesis we have that

[[ϕ1 ∧ ϕ2]]Mϑ
def
= [[ϕ1]]Mϑ ∩ [[ϕ2]]Mϑ

I.H.= [[ϕ1]]MR
ϑ ∩ [[ϕ2]]MR

ϑ

def
= [[ϕ1 ∧ ϕ2]]MR

ϑ

ϕ= ¬ϕ1 By Definition 11 and by Induction Hypothesis we have that

[[¬ϕ1]]Mϑ
def
= S \ [[ϕ1]]Mϑ

I.H= S \ [[ϕ1]]MR
ϑ

def
= [[¬ϕ1]]MR

ϑ

ϕ= ∃ (ϕ1 Uϕ2) According to Definition 11, s ∈ [[∃ (ϕ1 Uϕ2)]]Mϑ iff there
exists an path starting at s such that

si ∈ [[ϕ2]]Mϑ for some i ≥ 0, and for all 0 ≤ j < i, sj ∈ [[ϕ1]]Mϑ (∗∗)

Since every path in the restricted semantics is also a path in the natural
semantics, it suffices to show that for every path in the natural semantics
which validates (∗∗), there exists a path in the restricted semantics which also
validates (∗∗). First, we show that a delay step in ⇒\⇒R does not step across
the border of any region. Let (l, ν) δ−→(l, ν + δ) be a delay step in M but not
in MR. Then by Definition 8:

¬ (∃x ∈ C. ∃k ∈ {0, . . . , c}. ν(x) = k ∨ (ν(x) < k ∧ ν(x) + δ ≥ k))
⇔ ∀x ∈ C. ∀k ∈ {0, . . . , c}. (ν(x) 6= k ∧ (ν(x) < k ⇒ ν(x) + δ < k))
⇔ ∀x ∈ C. bν(x)c < ν(x), ν(x) + δ < bν(x) + 1c

Consequently, it is the case that ν≡S (ν + δ). Using Lemma 13, for (s, s′) ∈
⇒ \⇒R it holds that s≡M s′. Now, consider a finite path τ = (s1⇒ . . .⇒si)
with si ∈ [[ϕ2]]Mϑ and ∀ 1 ≤ j < i. sj ∈ [[ϕ1]]Mϑ . We transform this path τ to a
restricted path τR by removing the steps not contained in ⇒R and by merging
adjacent delays. Using Lemma 13, all se+f = (le+f , νe+f) with le+f = le and
νe+f ≡S νe, are µ-equivalent, that is, (le+f , νe+f)≡M (le, νe). Removing all
se+f with f ≥ 1 from τ yields the sub-path

τR = (s1 = sk1⇒Rsk2 · · ·⇒Rskm = si), kh ∈ {1, . . . , i}, kh < kh+1

such that skm ∈ [[ϕ2]]Mϑ and for all h < m, skh ∈ [[ϕ1]]Mϑ . By induction hy-
pothesis, skm ∈ [[ϕ2]]MR

ϑ and for all h < m, skh ∈ [[ϕ1]]MR
ϑ . Since both guards

12

and invariants are timing constraints in Constr , they have identical truth val-
ues for the clock evaluations of se and se+f . Thus every step sk1⇒Rsk2 is
indeed possible according to the restricted semantics, and τR is a restricted
path. Thus [[∃ (ϕ1 Uϕ2)]]Mϑ = [[∃ (ϕ1 Uϕ2)]]MR

ϑ .

ϕ= ∀ (ϕ1 Uϕ2) According to Definition 11, s ∈ [[∀ (ϕ1 Uϕ2)]]Mϑ iff for all
paths starting at s the following holds:

si ∈ [[ϕ2]]Mϑ for some i ≥ 0, and for all 0 ≤ j < i, sj ∈ [[ϕ1]]Mϑ (∗∗∗)
Every path in the restricted semantics is also a path in the natural semantics.
We have to establish, that if a path in the natural semantics violates the
condition (∗∗∗), then also a path in the restricted semantics does.

Assume a path τ = s1⇒s2⇒· · · in the natural semantics, that violates the
condition

(?) := ∃i. si ∈ [[ϕ2]]Mϑ and for all 1 ≤ j < i, sj ∈ [[ϕ1]]Mϑ .

Now we show, that there exists also a path τR = (s= sk1⇒Rsk2⇒R · · ·) in the
restricted semantics, that violates (?).

If τ is either finite or contains infinitely many state transition steps, then—
by the same argument as in the previous case—there exists also a sub-path
τR of τ , where no two subsequent configurations have clock evaluations in the
same region and τR violates (?).

Suppose τ is infinite and contains only finitely many state transition steps.
By the non-convergence assumption it cannot contain an infinite suffix of delay
steps, without exceeding the largest constant c for every clock at some point
sk. By Lemma 13, sk ≡M sk′ for all k′ ≥ k. Therefore, if τ violates (?),
then already the finite prefix s1⇒· · ·⇒sk does. For this finite prefix we can
construct a sub-path τR according to the restricted semantics as before.

Thus [[∀ (ϕ1 Uϕ2)]]Mϑ = [[∀ (ϕ1 Uϕ2)]]MR
ϑ .

ϕ= Z By Definition 11 it follows [[Z]]Mϑ
def
= ϑ(Z)

def
= [[Z]]MR

ϑ .

ϕ= µZ.ϕ1 By Definition 11 and Induction Hypothesis it follows

[[µZ.ϕ1]]Mϑ
def
=

⋂{
E ⊆ S | [[ϕ1]]Mϑ[Z:=E] ⊆ E

}
I.H=

I.H=
⋂{

E ⊆ S | [[ϕ1]]MR

ϑ[Z:=E] ⊆ E
}

def
= [[µZ.ϕ1]]MR

ϑ .

�
This result allows us to focus on the restricted semantics of timed systems
only, since any result expressible in Lµ for the restricted semantics MR also
holds for the natural semantics M. In the sequel we omit the indices R; thus
the system M and the transition relation ⇒ denote a restricted system and a
restricted transition relation, respectively.

13

3 Predicate Abstraction of Timed Systems

Predicate abstraction [GS97,BLO98,SS99] is used to compute a finite approx-
imation of a given infinite state transition system. The method is based on
a set of abstraction predicates, which in our context are predicates over clock
evaluations.

Definition 15 (Abstraction Predicates) Given a set of clocks C, an ab-
straction predicate with respect to C is any formula with the set of free vari-
ables in C. Similarly to timing constraints, the value of an abstraction predi-
cate ψ with respect to a clock evaluation ν, where both free and bound vari-
ables are interpreted in the domain C, is denoted by the juxtaposition ψν.
Whenever ψν evaluates to tt, we write ν |≈ψ.

A set of abstraction predicates Ψ = {ψ0, · · · , ψn−1} determines an abstraction
function α, which maps clock valuations ν to a bit-vector b of length n, such
that the i-th component of b is set if and only if ψi holds for ν. Here, we assume
that bit-vectors of length n are elements of the set Bn, which are functions of
domain {0, · · · , n − 1} and codomain {0, 1}. The inverse image of α, that is,
the concretization function γ, maps a bit-vector to the set of clock valuations
which satisfy all ψi whenever the i-th component of the bit-vector is set. Thus,
a set of concrete states (l, ν) is transformed by the abstraction function α into
the abstract state (l, α(ν)), and an abstract state (l, b) is mapped by γ to a
set of concrete states (l, γ(b)).

Definition 16 (Abstraction/Concretization) Let C be a set of clocks
and VC the corresponding set of clock valuations. Given a finite set of pred-
icates Ψ = {ψ0, · · · , ψn−1}, the abstraction function α : VC → Bn is defined
by

α(ν)(i) := ψiν

and the concretization function γ : Bn → ℘ (VC) is defined by

γ(b) := {ν ∈ VC |
n−1∧
i=0

ψiν ≡ b(i)}.

By a slight abuse of notation, we also write α(l, ν) instead of (l, α(ν)) and
γ(l, b) instead of (l, γ(b)). Furthermore, we use the notations α(S) := {α(l, ν) |
(l, ν) ∈ S} and γ(SA):={γ(l, b) | (l, b) ∈ SA}. Now, the abstraction/con-
cretization pair (α, γ) forms a Galois connection.

Definition 17 (Over-/Under-approximation) Given a (concrete) tran-
sition system M = 〈SC , P,⇒, sC0 〉, where SC = L × VC and sC0 = (l0, ν0),
and a set Ψ of abstraction predicates, we construct two (abstract) transition
systems M+

Ψ = 〈SA, P,⇒+, sA0 〉, and M−
Ψ = 〈SA, P,⇒−, sA0 〉.

14

• SA := L×Bn

• (l, b)⇒+(l′, b′) iff ∃ν ∈ γ(b). ∃ν ′ ∈ γ(b′). (l, ν)⇒(l′, ν ′)

• (l, b)⇒−(l′, b′) iff ∀ν ∈ γ(b). ∃ν ′ ∈ γ(b′). (l, ν)⇒(l′, ν ′).

• sA0 := (l0, b0), where b0(i) = 1 iff ν0 |= ψi.

M+
Ψ is called an over-approximation of M, and M−

Ψ is an under-approximation
of M.

Since γ(b) 6= ∅, we have that ⇒−⊆⇒+.

Example 18 Figure 3 shows the over- and under-approximation of the (con-
crete) system from Figure 1 with respect to the predicate set Ψ = {x > y}.

l0, ψ

l1, ψ

l2, ψ

l0,¬ψ

l1,¬ψ

l2,¬ψ

a: Over-approximation

l0, ψ

l1, ψ

l2, ψ

l0,¬ψ

l1,¬ψ

l2,¬ψ

b: Under-approximation

Figure 3: Over-/Under-approximation of the timed system from Figure 1 with
ψ ≡ x > y.

For the transition relations ⇒− and ⇒+ we define γ(⇒−), respectively γ(⇒+)
as follows:

γ(⇒−) := {((l, ν), (l′, ν ′)) ∈ SC | ∃b, b′. (l, b)⇒−(l′, b′)∧ ν ∈ γ(b)∧ ν ′ ∈ γ(b′)}
γ(⇒+) := {((l, ν), (l′, ν ′)) ∈ SC | ∃b, b′. (l, b)⇒+(l′, b′)∧ ν ∈ γ(b)∧ ν ′ ∈ γ(b′)}

Lemma 19 For a (concrete) transition system M with the transition relation
⇒ and the corresponding over- and under-approximations M+

Ψ, M−
Ψ with

respective transition relations ⇒+, ⇒− it is the case that

15

1. γ(⇒−) ⊆ ⇒ ⊆ γ(⇒+), and

2. ⇒− ⊆ α(⇒) ⊆ ⇒+.

Proof. Follows from Definition 17. �

Definition 20 (Predicate Abstraction) Let M=〈SC , P,⇒, sC0 〉 be a tran-
sition system with corresponding over-approximation M+

Ψ = 〈SA, P,⇒+, sA0 〉,
and under-approximation M−

Ψ = 〈SA, P,⇒−, sA0 〉, as given in Definition 17.
Then, the predicate abstracted semantics [[ϕ]]M

σ
Ψ

ϑ , where σ is either + or −,
of a formula ϕ ∈ Lµ with respect to a valuation function ϑ and the finite
transition systems Mσ

Ψ is defined in a mutually inductive way. The notation
σ is used to toggle the sign σ.

[[tt]]M
σ
Ψ

ϑ := SA

[[p]]M
σ
Ψ

ϑ :=
{
(l, b) ∈ SA | p ∈ P (l)

}

[[ϕ1 ∧ ϕ2]]M
σ
Ψ

ϑ := [[ϕ1]]M
σ
Ψ

ϑ ∩ [[ϕ2]]M
σ
Ψ

ϑ

[[¬ϕ]]M
σ
Ψ

ϑ := SA \ [[ϕ]]M
σ
Ψ

ϑ

[[∃ (ϕ1 Uϕ2)]]M
σ
Ψ

ϑ := {s0 ∈ SA | there exists a path τ = (s0⇒σs1⇒σ . . .),

s.t. si ∈ [[ϕ2]]M
σ
Ψ

ϑ for some i ≥ 0, and

for all 0 ≤ j < i, sj ∈ [[ϕ1]]M
σ
Ψ

ϑ }
[[∀ (ϕ1 Uϕ2)]]M

σ
Ψ

ϑ := {s0 ∈ SA | for every path τ = (s0⇒σs1⇒σ . . .),

there exists i ≥ 0, s.t. si ∈ [[ϕ2]]M
σ
Ψ

ϑ ,

and for all 0 ≤ j < i, sj ∈ [[ϕ1]]M
σ
Ψ

ϑ }
[[Z]]M

σ
Ψ

ϑ := ϑ(Z)

[[µZ.ϕ]]M
σ
Ψ

ϑ :=
⋂

{E ⊆ SA | [[ϕ]]M
σ
Ψ

ϑ[Z:=E] ⊆ E}

We also write Mσ
Ψ, (l, b), ϑ |=A ϕ, to denote that (l, b) ∈ [[ϕ]]M

σ
Ψ

ϑ .

Theorem 21 (Soundness of Abstraction) Let M = 〈SC , P,⇒, sC0 〉 be a
transition system, Ψ a set of abstraction predicates, and M+

Ψ, M−
Ψ the over-

approximation and under-approximation of M with respect to Ψ. Then for
any sentence ϕ ∈ Lµ the following holds (γ denotes the concretization function
with respect to Ψ):

γ([[ϕ]]M
−
Ψ) ⊆ [[ϕ]]M ⊆ γ([[ϕ]]M

+
Ψ)

16

Proof. The proof is by induction on the structure of ϕ. We show here only
the case ϕ = ∃ (ϕ1 Uϕ2). By induction hypothesis we have that

γ([[ϕ1]]M
−
Ψ) ⊆ [[ϕ1]]M ⊆ γ([[ϕ1]]M

+
Ψ)

and
γ([[ϕ2]]M

−
Ψ) ⊆ [[ϕ2]]M ⊆ γ([[ϕ2]]M

+
Ψ).

Let σ
γ , α denote the transition relations γ(⇒σ), α(⇒) respectively.

γ([[∃ (ϕ1 Uϕ2)]]M
−
Ψ) =

= /? by Definition 20 ?/
γ({s0 ∈ SA | there exists a path τ = (s0⇒−s1⇒− . . .), s.t.

si ∈ [[ϕ2]]M
−
Ψ for some i ≥ 0, and for all 0 ≤ j < i, sj ∈ [[ϕ1]]M

−
Ψ})

= /? by Definition 20 ?/
{s ∈ γ(SA) | there exists a path τ = (γ(s0) −

γ γ(s1) −
γ . . .)

with s = γ(s0),

and −
γ = γ(⇒−), s.t. γ(si) ∈ γ([[ϕ2]]M

−
Ψ) for some i ≥ 0,

and for all 0 ≤ j < i, γ(sj) ∈ γ([[ϕ1]]M
−
Ψ)}

= /? by induction hypothesis ?/
{s ∈ γ(SA) | there exists a path τ = (γ(s0) −

γ γ(s1) −
γ . . .)

with s = γ(s0),
and −

γ = γ(⇒−), s.t. γ(si) ∈ [[ϕ2]]M for some i ≥ 0,

and for all 0 ≤ j < i, γ(sj) ∈ [[ϕ1]]M}
⊆ /? by Definition 17 and Lemma 19 ?/

{sc ∈ SC | there exists a path τ = (sc0⇒sc1⇒ . . .) with sc = sc0,

and sci ∈ γ(si), for all i ≥ 1, s.t. sci ∈ [[ϕ2]]M for some i ≥ 0,

and for all 0 ≤ j < i, scj ∈ [[ϕ1]]M}
⊆ /? by Definition 11 ?/

[[∃ (ϕ1 Uϕ2)]]M

[[∃ (ϕ1 Uϕ2)]]M =

= /? by Definition 11 ?/
{sc0 ∈ SC | there exists a path τ = (sc0⇒sc1⇒ . . .), s.t.

sci ∈ [[ϕ2]]M for some i ≥ 0, and

17

for all 0 ≤ j < i, scj ∈ [[ϕ1]]M

⊆ /? by Definitions 16 and 17 ?/
γ({sa ∈ α(SC) | there exists a path τ = (sa0 α s

a
1 α . . .)

with sa = sa0,

and α= α(⇒), and sai = α(si), for all i ≥ 1, s.t.

sai ∈ [[ϕ2]]M
+
Ψ for some i ≥ 0, and

for all 0 ≤ j < i, saj ∈ [[ϕ1]]M
+
Ψ})

⊆ /? by Lemma 19-2 and since γ is monotone ?/
γ({sa ∈ α(SC) | there exists a path τ = (sa0⇒+sa1⇒+ . . .)

with sa = sa0,

and sai = α(si), for all i ≥ 1, s.t. sai ∈ [[ϕ2]]M
+
Ψ for some i ≥ 0,

and for all 0 ≤ j < i, saj ∈ [[ϕ1]]M
+
Ψ})

= /? by Definition 20 ?/

γ([[∃ (ϕ1 Uϕ2)]]M
+
Ψ)

�

Example 22 Consider our running example in Figure 1, for which we want
to verify that location l2 is never reached. This property is expressed by the
µ-calculus formula

ϕ := ¬∃ (tt U at l2)

where at l2 ∈ A is a (boolean) proposition that is true if the system is in
location l2. The over-approximation of M with respect to the abstraction
predicate ψ ≡ (x > y) is shown in Figure 3. According to Definition 20, the
set of abstract states of M+

{ψ} which validate ϕ is given by

[[¬∃ (tt U at l2)]]M
+
{ψ} = SA\[[∃ (tt U at l2)]]M

−
{ψ} = {(l0, ψ), (l0,¬ψ), (l1,¬ψ)} .

Since the initial state (l0,¬ψ) of M+
{ψ} is contained in this set, the formula

ϕ holds on the abstract transition system. Thus, M+
{ψ}, (l0, b0) |=A ϕ holds.

By Theorem 21, property ϕ also holds on the concrete transition system,
M, (l0, ν0) |= ϕ.

An interesting aspect of this example is that the over- and under-approxi-
mations with respect to only a single abstraction predicate ψ already coincide.
We now give a criterion, based on the notion of regions, for a set of abstraction
predicates, which is sufficient for guaranteeing convergence in general.

18

4 Basis

A basis is a set of abstraction predicates that is expressive enough to distin-
guish between two clock regions. If a basis is used for predicate abstraction,
then the approximation is exact with respect to the next-free µ-calculus.

Definition 23 (Basis) Let S be a timed system with clock set C and let Ψ
be a set of abstraction predicates. Then Ψ is a basis with respect to S iff for
all clock evaluations ν1, ν2 ∈ VC

(∀ψ ∈ Ψ. ν1 |≈ψ ⇔ ν2 |≈ψ) implies ν1 ≡S ν2 .

For example, for a timed system S with clock set C and largest constant c,
the (infinite) set of clock constraints Constr , the (infinite) set of invariant con-
straints Inv , the (finite) set of clock constraints Constr (c) with largest constant
c as the largest constant of S, and the (finite) set of membership predicates
for the quotient VC modulo ≡S are all basis sets. Since the set of predicates
Constr(c) is finite, there is a finite basis for every timed automaton. Notice,
however, that this basis is not necessarily minimal.

Example 24 The set Ψ:={x = 0, y = 0, x ≤ 1, x ≥ 1, y ≤ 1, y ≥ 1, x >
y, x < y} is a basis for the timed system in Figure 1.

Theorem 25 Let S be a timed system with clock set C and largest constant
c, and M the corresponding transition system. Let Ψ be a basis with respect
to S, and M−

Ψ, M+
Ψ the under- and over-approximation of M with respect to

Ψ. Then, for any sentence ϕ ∈ Lµ,

[[ϕ]]M
−
Ψ = [[ϕ]]M

+
Ψ .

Proof. Since it suffices to show that ⇒− ⊇ ⇒+, we assume two configu-
rations (l, b) and (l′, b′) such that (l, b)⇒+(l′, b′). According to Definition 17,
there exist ν ∈ γ(b) and ν ′ ∈ γ(b′) such that (l, ν)⇒(l′, ν ′).

First, in case (l, ν)⇒(l′, ν ′) holds due to a state transition step, all the
guards g of some transition l

g,r−→ l′ evaluate to the true value for ν ∈ γ(b).
Since Ψ is a basis, the guards then evaluate to the true value for all clock
evaluations ν̃ ∈ γ(b) (Definition 23). The clock values at ν ′ are either identical
to ν, or are reset to 0 (for clocks x ∈ r). Thus for all clock evaluations ν̃ ∈ γ(b),
the state transition step l

g,r−→ l′ can be applied and leads to a clock evaluation
ν̃ ′, such that ν̃ ′≡S ν ′ ∧ (l, ν̃)⇒(l′, ν̃ ′). Then, by Definition 17, (l, b)⇒−(l′, b′).

Second, in case (l, ν)⇒(l′, ν ′) holds due to a delay step, then l = l′ and
the invariants I(l) evaluate to the true value for ν ′ ∈ γ(b′). Since invariant
expressions are taken from Inv , by Definition 23, the invariants evaluate to

19

the true value for all ν̃ ′ ∈ γ(b′). Moreover, Definition 8 requires that ν and ν ′

are not in the same region, and thus a delay step according to the restricted
semantics is possible. Consequently, at location l, for all ν̃ ∈ γ(b), a delay step
to some ν̃ ′ ∈ γ(b′) is possible. Again, by Definition 17, (l, b)⇒−(l′, b′). �

Corollary 26 (Basis Completeness) Let S = 〈L,P,C, T, l0, I〉 be a timed
system, M = 〈L× VC , P,⇒, (l0, ν0)〉 the corresponding transition system, let
Ψ be a basis for S, and let γ(b0) = ν0. Then for any sentence ϕ ∈ Lµ:

(l0, b0) ∈ [[ϕ]]M
−
Ψ ⇔ (l0, ν0) ∈ [[ϕ]]M ⇔ (l0, b0) ∈ [[ϕ]]M

+
Ψ

Proof. By Theorem 21, γ([[ϕ]]M
−
Ψ) ⊆ [[ϕ]]M ⊆ γ([[ϕ]]M

+
Ψ). By Theo-

rem 25, [[ϕ]]M
−
Ψ = [[ϕ]]M

+
Ψ , and thus γ([[ϕ]]M

−
Ψ) = γ([[ϕ]]M

+
Ψ). �

5 Refinement of the Abstraction

Given a concrete model M of a timed system, a finite basis Ψ of abstraction
predicates, and a formula ϕ, we present an algorithm for computing an over-
approximation of M that is sufficient to prove or refute the model checking
problem M |= ϕ. This over-approximation is based on a subset of the basis
predicates and is computed using stepwise refinement.

The abstraction-refinement algorithm is displayed in Figure 4. The vari-
ables Ψnew and Ψact store the currently unused and used abstraction predi-
cates, respectively. Initially Ψact contains a subset Ψ′ of predicates from the
basis, and Ψnew contains the remaining predicates (lines (2)-(4) in Figure 4).
First an over-approximation of M with respect to the set Ψact is computed.
Now it is checked if this over-approximation satisfies the given formula ϕ by
calling a finite-state µ-calculus model checker. If indeed the approximation
satisfies ϕ, then, by Corollary 26, M also satisfies ϕ and the algorithm re-
turns true (line (6)). Otherwise, M+

ψ 6|= ϕ and the µ-calculus model checker
returns a counterexample of the form s0⇒+s1⇒+ · · ·⇒+sn, where s0 is the
initial state of M+

ψ (see [Kic96]). If for the abstract path, there exists a cor-
responding path in the concrete transition system, then we get a counterex-
ample for the concrete model checking problem (lines (9)-(12)). In this case
the algorithm returns false. This check requires an off-the-shelf satisfiability-
checker for the boolean combination of linear arithmetic constraints such as
ICS [FORS01]. In case the abstract counterexample is spurious, there exists
a smallest index k and a concrete path y0⇒· · ·⇒yk, where y0 is the initial
location of M, and for all i ∈ {0, · · · , k}, yi ∈ γ(si), such that there is no
(concrete) transition from yk to yk+1, where yk+1 ∈ γ(sk+1) (lines (13)-(16)).
We choose a minimal set of new abstraction predicates from Ψnew such that

20

the transition from sk to sk+1 is eliminated (lines (17)-(20)). This new set of
abstraction predicates is chosen in such a way that the formula

∃ y1, y2 ∈ SC . y1 ∈ γ(sk) ∧ y2 ∈ γ(sk+1) ∧ y1;y2

holds. Notice that the concretization function γ actually depends on the cur-
rent set Ψact of abstraction predicates.

abstract and refine(M,Ψ, ϕ) (1)
choose Ψ′ = {ψ1, . . . , ψi} from Ψ; (2)
Ψnew := Ψ \ Ψ′; (3)
Ψact := Ψ′; (4)
loop (5)

if M+
Ψact

|= ϕ then return true (6)
else (7)

let (s0⇒+s1 · · ·⇒+sn) be a counterexample ; (8)
if there exists a path τ = (y0⇒y1 · · ·⇒yn) (9)

such that y0 = sC0 and yi ∈ γ(si) for all 0 ≤ i ≤ n (10)
then return false (11)
else (12)

let k be the index such that (13)
there exists a path τ = (y0⇒y1 · · ·⇒yk) where (14)
y0 = sC0 and yi ∈ γ(si) for all 0 ≤ i ≤ k and (15)
∀ yk+1 ∈ γ(sk+1). yk;yk+1; (16)

choose minimal Ψ′ = {ψ1, . . . , ψi} from Ψnew , such that (17)
Ψact := Ψact ∪ {Ψ′} and (18)
∀ y1 ∈ γ(sk), y2 ∈ γ(sk+1). y1;y2 and (19)
Ψnew := Ψnew \ Ψ′ (20)

endif (21)
endif (22)

endloop (23)
end abstract and refine. (24)

Figure 4: Iterative Abstraction-Refinement Algorithm.

21

Theorem 27 (Termination, Soundness, and Completeness) Let M be
a transition system with a corresponding finite basis Ψ, and ϕ a sentence in Lµ.
Then the algorithm in Figure 4 always terminates. Moreover, if it terminates
with true, then M |= ϕ, and if the result is false, then M 6|= ϕ.

Proof. The proof follows directly from Theorem 25 and Corollary 26. From
Theorem 25 we have that

[[ϕ]]M
−
Ψ = [[ϕ]]M

+
Ψ .

Then, by Theorem 21 it follows that

γ([[ϕ]]M
−
Ψ) = [[ϕ]]M = γ([[ϕ]]M

+
Ψ)

and, by Corollary 26, M+
Ψ satisfies the formula ϕ if and only if M satisfies ϕ.

Let n be the cardinality of the basis. Then the loop in the abstract and refine
algorithm terminates after at most n steps.

�

Example 28 Consider again the timed system from Figure 1, and the for-
mula ϕ := ¬∃ (tt U at l2) which describes the property that location l2 is never
reached. A given basis for this system is Ψ:={x = 0, y = 0, x ≤ 1, x ≥
1, y ≤ 1, y ≥ 1, x > y, x < y}. The transition system of the initial over-
approximation with the single abstraction predicate {x = 0} is shown in Fig-
ure 5, where ψ0 denotes the abstraction predicate.

l0, ψ0

l0,¬ψ0

l1, ψ0

l1,¬ψ0

l2, ψ0

l2,¬ψ0

Figure 5: Over-approximation of the timed system from Figure 1 with ψ0 ≡
x = 0.

Model checking the formula ϕ with transition system M+
{x=0} yields the

counterexample

(l0, ψ0)⇒+(l1, ψ0)⇒+(l0,¬ψ0)⇒+(l1,¬ψ0)⇒+(l2,¬ψ0)

22

which is emphasized in Figure 5 using lines in bold face. The concretizations
of the states on this abstract path are as follows. To simplify the notation we
denote sets of configurations such as {(l, ν) | l = l1 ∧ ν(x) = 0 ∧ ν(y) ≥ 0}
by (l1, x = 0 ∧ y ≥ 0).

γ(s0) = γ((l0, ψ0)) = (l0, γ(ψ0)) = (l0, x = 0 ∧ y ≥ 0)
γ(s1) = γ((l1, ψ0)) = (l1, γ(ψ0)) = (l1, x = 0 ∧ y ≥ 0)
γ(s2) = γ((l0,¬ψ0)) = (l0, γ(¬ψ0)) = (l0, x > 0 ∧ y ≥ 0)
γ(s3) = γ((l1,¬ψ0)) = (l1, γ(¬ψ0)) = (l1, x > 0 ∧ y ≥ 0)
γ(s4) = γ((l2,¬ψ0)) = (l2, γ(¬ψ0)) = (l2, x > 0 ∧ y ≥ 0)

Now we have to check if there is a corresponding counterexample on the con-
crete transition system, that is, if there exists a path y0⇒y1⇒y2⇒y3⇒y4,
where y0, y1, y2, y3, y4 ∈ SC , such that y0 ∈ γ(s0), y1 ∈ γ(s1), y2 ∈ γ(s2), y3 ∈
γ(s3), y4 ∈ γ(s4), and y0 = sC0 . This is the case if the formula

F1 := ∃ y0, y1, y2, y3, y4 ∈ SC .

y0 ∈ γ(s0) ∧ y1 ∈ γ(s1) ∧ y2 ∈ γ(s2) ∧ y3 ∈ γ(s3) ∧ y4 ∈ γ(s4) ∧
y1⇒y2 ∧ y2⇒y3 ∧ y3⇒y4 ∧
y0 = sC0

is valid. In our example, F1 is unsatisfiable, since on the concrete transition
system there is no transition between y3 and y4, as it is illustrated by the
following path.
(l0, x = y = 0)︸ ︷︷ ︸

3y0

⇒ (l1, x = 0∧ 0 ≤ y ≤ 1)︸ ︷︷ ︸
3y1

⇒

(l0, x > 0∧ y ≤ 1∧x ≥ y)︸ ︷︷ ︸
3y2

⇒ (l1, x > 0∧ y > x)︸ ︷︷ ︸
3y3

Thus, k = 3 in our algorithm, and we choose a new set of abstraction predi-
cates such that there exist concrete configurations y1, y2 ∈ SC with y1 ∈ γ(s3)
and y2 ∈ γ(s4) such that there is no transition from y1 to y2. For exam-
ple, by choosing the new abstraction predicate ψ1 ≡ x > y the formula
∃ y1, y2 ∈ SC . y1 ∈ γ(s3) ∧ y2 ∈ γ(s4) ∧ y1;y2 can be shown to hold using
a verification procedure for this decidable fragment of arithmetic. Figure 6
shows the reachable fragment of the resulting over-approximation M+

{ψ0,ψ1}.
Model checking the formula ϕ = ¬∃ (tt U at l2) on M+

{ψ0,ψ1} succeeds, since
no state (l2,) is reachable in M+

{ψ0,ψ1}.

6 Conclusion

We have developed a verification algorithm for timed automata based on pred-
icate abstraction, untimed model checking, and decision procedures for the

23

l0, ψ0 ∧¬ψ1

l0,¬ψ0 ∧ψ1

l1, ψ0 ∧¬ψ1

Figure 6: Over-approximation (reachable part) of the timed system from Fig-
ure 1 with Ψ = {x = 0, x > y}.

Boolean combination of linear arithmetic constraints. The main advantage
of this approach is that bisimilar time-abstractions are computed lazily. This
results in substantial savings in computation whenever coarse abstractions are
sufficient to prove the property at hand. Initial investigations are encouraging
in that standard benchmark examples for timed systems such as the train-gate
controller and a version of the Fischer mutual exclusion protocol can generally
be proved using only a few abstraction predicates. Such an observation has
already been made by Alur, Itai, Kurshan, and Yannakakis [AIKY95] in a
similar context. However, more experimentation is needed to corroborate the
thesis that many real-life timed systems can already be verified with rather
coarse-grain abstractions.

The algorithm as described in this paper is restricted to deal with real-
time systems with finite control only. The predicate abstraction of timed
systems, however, can readily be extended to also apply to richer models such
as parameterized timed automata and even to timed automata with other
infinite data types such as counters or stacks. The price to pay, of course, is
that such extensions are necessarily incomplete. In future work we would also
like to address time-abstracting formulas with arithmetic and other constraints
instead of only supporting propositional variables. In this way we could express
and verify further interesting properties, such as bounded and unbounded
response.

Acknowledgments. We would like to thank Hassen Säıdi, Natarajan Shankar,
and Tomás Uribe for their valuable comments on this paper.

24

References

[ACD90] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-
checking for real-time systems. 5th Symp. on Logic in Computer
Science (LICS 90), pages 414–425, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. The-
oretical Computer Science, 126(2):183–235, 25 April 1994.

[AIKY95] Rajeev Alur, Alon Itai, Robert P. Kurshan, and Mihalis Yan-
nakakis. Timing verification by successive approximation. Infor-
mation and Computation, 118(1):142–157, April 1995.

[BLO98] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing
abstractions of infinite state systems compositionally and automat-
ically. In Alan J. Hu and Moshe Y. Vardi, editors, Computer-Aided
Verification (CAV’98), number 1427 in Lecture Notes in Computer
Science, pages 319–331, Vancouver, Canada, June 1998. Springer–
Verlag.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a
unified lattice model for static analysis. In 4th ACM Symposium on
Principles of Programming Languages. Association for Computing
Machinery, January 1977.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. Counterexample-guided abstraction refinement. In
E.A. Emerson and A.P. Sistla, editors, Proc. of the 12th Confer-
ence on Computer-Aided Verification, CAV’2000, number 1855 in
Lecture Notes in Computer Science. Springer–Verlag, 2000.

[Dam96] Dennis René Dams. Abstract Interpretation and Partition Refine-
ment for Model Checking. PhD thesis, Eindhoven University of
Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,
July 1996.

[DD01] Satyaki Das and David L. Dill. Successive approximation of ab-
stract transition relations. In Proc. of Logic in Computer Science
(LICS2001), 2001.

[DWT95] David L. Dill and Howard Wong-Toi. Verification of real-time sys-
tems by successive over and under approximation. In P. Wolper,
editor, Proc. of the 7th Conference on Computer-Aided Verifica-
tion, CAV’95, number 939 in Lecture Notes in Computer Science,
pages 409–422. Springer–Verlag, 1995.

25

[FORS01] Jean-Christophe Filliâtre, Sam Owre, Harald Rueß, and Natara-
jan Shankar. ICS: Integrated canonizer and solver. In A. Finkel
G. Berry, H. Comon, editor, CAV 01: Computer-Aided Verifica-
tion, number 2101 in Lecture Notes in Computer Science. Springer–
Verlag, 2001.

[GS97] Susanne Graf and Hassen Säıdi. Construction of abstract state
graphs with PVS. In Orna Grumberg, editor, Computer Aided Ver-
ification. 9th International Conference (CAV97), number 1254 in
Lecture Notes in Computer Science, pages 72–83. Springer–Verlag,
1997.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine. Symbolic model checking for real-time systems. Informa-
tion and Computation, 111(2):193–244, June 1994.

[Kic96] Alexander Kick. Generation of counterexamples and witnesses for
the Mu-calculus. PhD thesis, University of Karlsruhe, Germany,
1996.

[Koz83] Dexter Kozen. Results on the propositional µ-calculus. Theoretical
Computer Science, 27:333–354, 1983.

[LBBO01] Yassine Lachnech, Saddek Bensalem, Sergey Berezin, and Sam
Owre. Incremental verification by abstraction. In T. Margaria
and W. Yi, editors, Tools and Algorithms for the Construction and
Analysis of Systems: 7th International Conference, TACAS 2001,
number 2031 in Lecture Notes in Computer Science, pages 98–112,
Genova, Italy, April 2001. Springer–Verlag.

[NK00] Kedar S. Namjoshi and Robert P. Kurshan. Syntactic program
transformations for automatic abstraction. In E.A. Emerson and
A.P. Sistla, editors, Proc. of the 12th Conference on Computer-
Aided Verification, CAV’2000, number 1855 in Lecture Notes in
Computer Science, pages 435–449, Chicago, IL, 2000. Springer–
Verlag.

[SS99] Hassen Säıdi and Natarajan Shankar. Abstract and model check
while you prove. In Nicolas Halbwachs and Doron Peled, editors,
Computer-Aided Verification (CAV’99), number 1633 in Lecture
Notes in Computer Science, pages 443–454, Trento, Italy, July
1999. Springer–Verlag.

[TY01] Stavors Tripakis and Sergio Yovine. Analysis of timed systems
using time-abstracting bisimulations. Formal Methods in System
Design, 18(1):25–68, January 2001.

26

[Uri98] Tomás E. Uribe. Abstraction-based Deductive-Algorithmic Verifi-
cation of Reactive Systems. PhD thesis, Computer Science De-
partment, Stanford University, December 1998. Technical report
STAN-CS-TR-99-1618.

[Yov98] Sergio Yovine. Model-checking timed automata. In G. Rozen-
berg and F. Vaandrager, editors, Embedded Systems, number 1494
in Lecture Notes in Computer Science, pages 114–152. Springer–
Verlag, 1998.

27

Recent BRICS Report Series Publications

RS-01-44 M. Oliver Möller, Harald Rueß, and Maria Sorea. Predi-
cate Abstraction for Dense Real-Time Systems. November 2001.
27 pp.

RS-01-43 Ivan B. Damg̊ard and Jesper Buus Nielsen. From Known-
Plaintext Security to Chosen-Plaintext Security. November
2001. 18 pp.

RS-01-42 Zolt́an Ésik and Werner Kuich. Rationally Additive Semirings.
November 2001. 11 pp.

RS-01-41 Ivan B. Damg̊ard and Jesper Buus Nielsen.Perfect Hiding and
Perfect Binding Universally Composable Commitment Schemes
with Constant Expansion Factor. October 2001. 43 pp.

RS-01-40 Daniel Damian and Olivier Danvy. CPS Transformation of
Flow Information, Part II: Administrative Reductions. October
2001. 9 pp.

RS-01-39 Olivier Danvy and Mayer Goldberg. There and Back Again.
October 2001. 14 pp.

RS-01-38 Zolt́an Ésik. Free De Morgan Bisemigroups and Bisemilattices.
October 2001. 13 pp.

RS-01-37 Ronald Cramer and Victor Shoup.Universal Hash Proofs and
a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key
Encryption. October 2001. 34 pp.

RS-01-36 Gerth Stølting Brodal, Rolf Fagerberg, and Riko Jacob.Cache
Oblivious Search Trees via Binary Trees of Small Height. Octo-
ber 2001.

RS-01-35 Mayer Goldberg. A General Schema for Constructing One-
Point Bases in the Lambda Calculus. September 2001. 6 pp.

RS-01-34 Flemming Friche Rodler and Rasmus Pagh.Fast Random Ac-
cess to Wavelet Compressed Volumetric Data Using Hashing.
August 2001. 31 pp.

RS-01-33 Rasmus Pagh and Flemming Friche Rodler.Lossy Dictionar-
ies. August 2001. 14 pp. Short version appears in Meyer auf
der Heide, editor, 9th Annual European Symposiumon on Al-
gorithms, ESA ’01 Proceedings, LNCS 2161, 2001, pages 300–
311.

