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Abstract

We present a new approach to lossy storage of the coe�cients of wavelet
transformed data. While it is common to store the coe�cients of largest
magnitude (and let all other coe�cients be zero), we allow a slightly dif-
ferent set of coe�cients to be stored. This brings into play a recently
proposed hashing technique that allows space e�cient storage and very
e�cient retrieval of coe�cients. Our approach is applied to compression
of volumetric data sets. For the �Visible Man� volume we obtain up to
80% improvement in compression ratio over previously suggested schemes.
Further, the time for accessing a random voxel is quite competitive.

1 Introduction

This paper considers the storage of volumetric or volume data, i.e., discrete col-
lections of scalar or vector values sampled over a uniform grid in n-dimensional
space. The dimension n is typically three or greater. Such data sets occur
naturally in areas such as medical imaging and scienti�c visualization. Vol-
umes produced by medical scanners such as CT, MR or PET are examples
of three-dimensional data. Other examples are the output of physical simu-
lations, and concentric mosaics used in image based rendering [38]. Sampled
light �elds [23] (or lumigraphs [12]) are examples of 4D volumes also used in
image based rendering. Four-dimensional volumes also appear as time varying
three-dimensional volumes in, for example, computational �uid dynamics [28,
pp. 84-87, pp. 125-143].

The management and processing of such massive data sets present many
challenges to developers and researchers. One problem is that these data sets
are often too large to keep in internal memory in uncompressed form. For ex-
ample, the �Visible Man� [39] CT scanned data set takes roughly 1 Gbyte of

∗Basic Research in Computer Science (www.brics.dk), funded by the Danish National Re-
search Foundation.
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storage, and the most detailed anatomical photo data sets are orders of mag-
nitude larger. Thus, we are faced with memory requirements far exceeding the
typical memory available on ordinary PCs and workstations. Even taking the
rapid development of larger memory and storage capabilities into account. On
the other hand it is desirable and becoming increasingly important, for exam-
ple in interactive visualization, that any part of the data set can be rapidly
retrieved. This implicitly assumes that the data can be loaded into memory
for e�cient processing. A solution to these apparently con�icting goals is to
consider compressed representations. Needed are methods allowing the user to
load a compressed version of the volume into a small amount of memory and
enable him to access and visualize it as if the whole uncompressed volume was
present. Such a compression scheme must necessarily allow fast random access
to individual voxels, decoded from the compressed volume. Lossless compres-
sion schemes only provide very low compression ratios. To do better, lossy
techniques have to be considered. Since lossy compression removes information
from the data, lossless compression has often been preferred in medical imaging.
However, in [33] Perlmutter et al. demonstrated that lossy compression algo-
rithms can be designed such that diagnostic accuracy is preserved. They used
an embedded wavelet coding scheme with compression ratios of up to 80:1 for
digital mammograms.

When designing lossy volume compression methods, certain properties are
desirable and should be considered during design:

1. Fast decoding for random access. As described above fast decoding is a
necessity for use in real-time or interactive applications. Also, applications
often access data in unpredictable ways.

2. Good visual �delity at high compression ratios. This seems obvious but it
requires techniques for exploiting data redundancies in all n dimensions.

3. Scalable or multiresolution decoding is a desirable property which allows
applications to process data at di�erent levels of detail. For example, it
could allow a rendering algorithm to render the data in low resolution
at interactive frame-rates. When the user is satis�ed with the setup, the
renderer switches to full resolution.

4. Selective block-wise decoding. Even though our motivation is fast ran-
dom access to individual voxels, some applications access data locally. In
such cases it is useful if the compressed data can be decoded block-wise
e�ciently.

In this paper we present a new coding scheme for wavelet based compression
of very large volume data with fast random access. It is based on a new approach
to lossy storage of the coe�cients of wavelet transformed data. While it is
common to store the coe�cients of the largest magnitude (and let all other
coe�cients be zero), we allow a slightly di�erent set of coe�cients to be stored.
This brings into play a hashing technique recently proposed by the authors [32]
in a di�erent context. Our approach is applied to compression of volumetric
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data sets. For the �Visible Man� volume we obtain up to an 80% improvement
in compression ratio over previously suggested schemes. Further, the time for
accessing a random voxel is competitive with existing schemes.

The rest of this paper is organized as follows. In Section 3 we present
the underlying wavelet theory used throughout the paper. Section 4 gives an
overview of methods for storing sparse tables using hashing. Our coding scheme
is described in detail in Section 5, and the results of our experiments appear in
Section 6.

2 Related Work

Research in lossy compression has mainly focussed on lossy compression of still
images or time sequences of images such as movies. The aim of these methods
is to obtain the best compression ratio while minimizing the distortion in the
reconstructed images. Often this limits the random accessibility, the reason be-
ing that most compression schemes employ variable-bitrate techniques such as
Hu�man (used in JPEG [17] and MPEG [18]) and Arithmetic coders [36], or
di�erential encoders such as the Adaptive Di�erential Pulse Code coder [36].
However, such methods provide fast sequential decoding which is important in,
for example, compression of images and video sequences.

However, techniques dealing with the issue of random access in volumet-
ric data have been emerging. In [26, 27] Muraki introduced the idea of using
wavelets to e�ciently approximate three-dimensional data. The two-dimensional
wavelet transform was extended to three-dimensions and it was shown how to
compute the wavelet coe�cients. By setting small coe�cients to zero, Muraki
showed that the shape of volumetric objects could be described in a relatively
small number of three-dimensional functions. The motivation for the work was
to obtain shape descriptions to be used in, for example, object recognition. No
results on storage savings were reported. The potential of wavelets to reduce
storage is evident, though.

Motivated by the need for faster visualization, a method for both compress-
ing and visualizing three-dimensional data based on vector quantization was
given by Ning and Hesselink [29]. The volume is divided into blocks of small
size and the voxels in each block are collected into vectors. The vectors are then
quantized into a codebook. Rendering by parallel projection is accelerated by
preshading the vectors in the codebook and reusing precomputed block projec-
tions. Since the accessing of a single voxel is reduced to a simple table lookup in
the codebook, fast random access is supported. Compressing two volumes both
of size 128 × 128 × 128, a compression factor of 5 was obtained with blocking
and contouring artifacts being reported.

Burt and Adelson proposed the Laplacian Pyramid [7] as a compact hi-
erarchical image code. This technique was extended to three dimensions by
Ghavamnia and Yang [11] and applied to volumetric data. Voxel values can be
accessed randomly by traversing the pyramid structure on the �y. Since there is
a high computational overhead connected with the reconstruction, the authors
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suggest a cache structure to speed up reconstructions during ray casting. They
achieve a compression factor of about 10 with the rendered images from the
compressed volume being virtually indistinguishable from images rendered from
the original data.

Several compression methods, both lossless and lossy, for compressing and
transmitting Visible Human images were presented and compared by Thoma
and Long [40]. Among the lossy schemes, which as expected outperformed
the lossless ones in terms of compression ratio, the scheme based on wavelets
performed best. The wavelet method that the authors suggest compresses the
images individually and consists of three steps comprised of a wavelet transform
followed by vector quantization with Hu�man coding of the quantization indices.
This makes it a traditional two-dimensional subband coder, and compression
factors of 20, 40 and 60 were reported with almost no visible artifacts for a
factor of 20. The coder does not allow for fast random access to individual
voxels as it was mainly designed for storage and transmission purposes. Also,
there is no exploitation of inter-pixel redundancies between adjacent slices.

Motivated by the need for e�cient compression of medical data, several
methods that exploit correlation in all three dimensions have been proposed
in recent years [1, 2, 4, 5, 22, 24, 34, 41]. Three of these methods are lossless
methods based on predictive coding [1, 2, 22] and provide compression ratios
of about 2:1. A compression ratio of 2:1 does not allow large volumes to be
loaded into main memory. The other methods are lossy and utilize a three-
dimensional wavelet transform. The most recent of these are due to Bilgin et
al. [5]. The method is a straightforward extension of zerotree coding proposed
by Shapiro [37] and produces an embedded bit-stream which allows progressive
reconstruction of data, i.e., it is possible to decode a lossy version of the data
by using any pre�x of the bit-stream. If the complete bit-stream is available,
lossless reconstruction is possible. In order to improve performance, the zerotree
symbols are further compressed using a context-based adaptive arithmetic coder.
Compression ratios of up to 80 were reported, still with good �delity. However,
none of the methods support fast random access.

The methods mentioned above all have in common that they support either
high compression ratios or fast random access, but not both. Recently, methods
dealing with issues of both fast random access and high compression ratios have
emerged. In [15, 16] Ihm and Park present an algorithm achieving compression
ratios of up to 28 for CT slices of the Visible Human, still with good �delity
of the reconstructed slices for a ratio of about 15:1. The algorithm divides
the volume into blocks and decomposes each block using a three-dimensional
wavelet decomposition. The wavelet coe�cients in each block are then adap-
tively thresholded, which produces a sparse representation. Each block is coded
separately using a data structure that takes the spatial coherency of the wavelet
coe�cients into consideration. The method also supports selective block-wise
decoding.

Recently, Bajaj et al. [3] described an extension of [16] to RGB color vol-
umes. Again the volume is divided into blocks, and the wavelet transform is
performed three times on each block, once for each color component. The three

4



corresponding wavelet coe�cients are then vector quantized. To speed up voxel
reconstruction, they introduce what they call zerobit encoding, which essentially
corresponds to using a signi�cance map signaling if certain wavelet coe�cients
are zero, or if they have to be retrieved. This is similar to the signi�cance map
we describe in Chapter 5. Compared to an extension of [16] to color volumes
(without zerobit encoding), Bajaj et al. reported a 10% to 15% increase in com-
pression ratio and a speedup in voxel access of a factor of about 2.5. Selective
block-wise decoding time is improved by a factor of 4 to 5.5 depending on the
compression ratio.

A di�erent approach was taken by Rodler in [35]. Instead of using a 3D
wavelet transform, the method borrows good ideas from video coding. The vol-
ume is viewed as a �time sequence� of slices that is motion compensated using
a simple prediction strategy. Finally, each motion compensated slice is trans-
formed using a 2D wavelet transform. The transform coe�cients are thresholded
and then coded using a nested data structure. While the method o�ers signi�-
cant coding gains over the results in [16], it is slightly slower. This method also
supports selective block-wise decoding.

Not focusing directly on fast random access, Grosso et al. describe in [13] a
wavelet based compression method for volumetric data suited for volume ren-
dering. Each subband of wavelet transformed data is independently runlength
encoded. The problem with runlength encoding is that it does not allow for
e�cient retrieval of a single coe�cients. In order to accelerate rendering speed,
a method that avoids starting from the beginning of the runlength sequence is
suggested. For a triple (i, j, k) a lookup table indexed by (i, j) is generated.
Each entry in the table points to a runlength encoding of the coe�cients cor-
responding to k. If the renderer accesses the data in the k-direction, e�cient
rendering can be achieved. However, it is obvious that fast random access is not
supported.

In [19] Kim and Shin present a similar approach for fast volume render-
ing. The main di�erence is the way coe�cients are arranged into runs. They
divide the volume into blocks that are coded separately. Each block is decom-
posed in a three-dimensional wavelet basis. The thresholded coe�cients are then
ordered according to the reconstruction order and run-length encoded. Com-
pression ratios of up to 40:1 were reported with good visual �delity at ratios
up to about 30:1. Using the Shear Warp rendering algorithm of Lacroute and
Levoy [21], they demonstrate that their algorithm using the compressed volume
is only roughly two times slower, than using uncompressed data. Because of the
run-length encoding, the algorithm does also not support fast random access to
individual voxels. Selective block-wise decoding is supported, though no results
were reported.

The four methods [3, 16, 19, 35] described above all make use of the Haar
wavelet, which is convenient because of its simplicity. Since the mentioned
methods all divide the data into blocks it is not clear, because of boundary
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conditions, how they generalize to wavelets with more vanishing moments, i.e.,
using wavelets with longer �lters.

We conclude this section by noting that many of the results on volumetric
compression in the literature are di�cult to compare to one another since there
is little consensus as to which data sets to use in presenting results. However,
in volumetric compression with fast random access it seems that the CT images
of the Visible Man is becoming a standard benchmark.

3 Wavelets

Wavelets have been applied successfully in many areas of computer graphics,
such as pattern recognition, segmentation, compression, illumination models,
visualization of volumes, and most state-of-the-art compression schemes. The
ability of wavelets to e�ciently approximate non-linear and non-stationary sig-
nals with only a few nonzero coe�cients, leading to a compact representation,
makes them very useful for compression purposes.

In this section we introduce the Haar wavelet. For a general description of
wavelet theory we refer to [25]. The Haar wavelet decomposition of a discrete sig-
nal A0 = a0[0]a0[1] . . . a0[N−1] of length N is computed as follows. By taking av-
erages of the a0[i] we obtain a new average signal A1 = a1[0]a1[1] . . . a1[N/2−1],
with a1[i] = a0[2i]+a0[2i+1]√

2
. A1 is half the length of A0. Since A1 is computed as

an averaging and down-sampling over A0, we can consider A1 a representation
of A0 at a coarser resolution. By going from A0 to A1, �ne details are lost. In or-
der to recover A0 from A1 we must keep information about the lost details. The

di�erence sequence D1 = d1[0]d1[1] . . . d1[N/2 − 1], with d1[i] = a0[2i]−a0[2i+1]√
2

represents exactly this information. From A1 and D1 it is easy to see how A0 can
be recovered. The process of averaging can be applied recursively on the average
signal Ai to obtain Ai+1 and Di+1. Since the length of Ai+1 is half the length of
Ai, there are at most log2 N recursion steps (we assume N to be a power of 2 for
convenience), and we end up with sequences An,Dn,Dn−1, . . . ,D1. An = an[0]
is called the average coe�cient, and the Di are called the detail or wavelet coef-
�cients. For compression purposes it is often not necessary to perform all log2 N
recursion levels; 3 to 5 levels are usually su�cient.

For many functions the wavelet transform is able to concentrate most of the
energy in a small number of wavelet coe�cients, with the rest of the coe�cients
being zero or close to zero. In the case of the Haar wavelet this can be seen
from the fact that the wavelet coe�cients correspond to sample-to-sample dif-
ferences. In smooth regions these di�erences will be of small magnitude. This,
together with the recursive averaging (smoothing), often leads to many small
wavelet (detail) coe�cients. By thresholding, i.e., setting all the small valued
coe�cients to zero, a very sparse representation can be obtained and exploited
for compression purposes. For an orthonormal wavelet transform, thresholding
of the coe�cients corresponds to a globally optimal approximation in terms of
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the introduced mean square error (MSE) given by:

MSE =
1
N

∑

k

(xk − x̂k)2 =
1
N

∑

k

(yk − ŷk)2, (1)

where the xk and x̂k are the original and reconstructed signals, and the yk and ŷk

are the transform coe�cients before and after thresholding. As a consequence,
the exact error that occurs due to thresholding can be explicitly given.

The wavelet decomposition can be extended to 3D by performing the aver-
aging and di�ering �rst along the x-axis, then along the y-axis, and �nally along
the z-axis. Figure 1 shows a three-level 3D wavelet decomposition. Each block
is called a subband. The block marked a corresponds to the average (low pass)
coe�cients, while the other blocks correspond to the detail (high pass) coe�-
cients at the seven di�erent subbands. In order to reconstruct a voxel we need
one coe�cient from each subband. To compute one level of the Haar wavelet
transform we use the following formulae

a = (c1 + c2 + c3 + c4 + c5 + c6 + c7 + c8)/2
√

2 (2)

d1 = (c1 + c2 + c3 + c4 − c5 − c6 − c7 − c8)/2
√

2

d2 = (c1 + c2 − c3 − c4 + c5 + c6 − c7 − c8)/2
√

2

d3 = (c1 + c2 − c3 − c4 − c5 − c6 + c7 + c8)/2
√

2

d4 = (c1 − c2 + c3 − c4 + c5 − c6 + c7 − c8)/2
√

2

d5 = (c1 − c2 + c3 − c4 − c5 + c6 − c7 + c8)/2
√

2

d6 = (c1 − c2 − c3 + c4 + c5 − c6 − c7 + c8)/2
√

2

d7 = (c1 − c2 − c3 + c4 − c5 + c6 + c7 − c8)/2
√

2 ,

where c1, . . . , c8 are the eight coe�cients in a 2× 2× 2 subregion of the volume.

d1
2

d2
2 d3

2

d4
2 d5

2

a

d1
1

d3
1d2

1

d7
1

d5
1d4

1

d3
3

d5
3

d4
3

d1
3

d2
3

Figure 1: Subbands of a three-level three-dimensional wavelet transform. The subbands are
numbered di

j , where j denotes the resolution level while i denotes the subband
number within the level.
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4 Storing Sparse Tables Using Hashing

In computer science one often needs to store a table that is only partially uti-
lized, i.e., where most table cells are �empty�. For sparsely used tables it is
often not acceptable to allocate an array of full size, and compressed represen-
tations have to be considered. Hashing was �rst described by Dumey [9] as a
method for space-e�cient storage of sparse tables, allowing fast random access
to original table elements. Since its conception as a heuristic, a good theoretical
understanding of hashing techniques has been obtained, with breakthroughs in
[8, 10], and sparse tables implemented in this way form an important part of
many data structures.

The basic idea of hashing is to apply a function h, the hash function, to
table indices. More speci�cally, one searches for the content of cell i in cell
h(i) of a �hash table� much smaller than the original sparse table. Hash table
cells that store a non-empty cell from the sparse table also contain information
indicating the index of the cell, typically the index itself. A good hash function
will scatter the indices of non-empty cells such that few pairs of indices hash to
the same value. Many techniques for dealing with collisions have been examined,
as surveyed in [20, Section 6.4]. Some of the most space e�cient of these are
the so-called open addressing schemes, where a sequence of hash table cells
h1(i), h2(i), . . . , hk(i) are probed until the content of cell i or an empty cell is
found. Tables are �lled in a greedy manner, by putting non-empty cells one
by one into the �rst available hash table cell in the probe sequence. Though
open addressing schemes are time e�cient on average and widely used, the space
overhead is too large for our applications. For example, an open addressing hash
table for a sparse table with n non-empty cells uses at least n log n bits more
than an optimal encoding. Also, O(log n) levels of hash functions are needed,
i.e., it is expected that some indices take logarithmic time to retrieve.

Recently, very compact representations of static sparse tables have been
proposed [6, 14, 30]. For a uniform distribution of non-empty table cells, these
data structures use almost information theoretical minimal space. However,
they are not practical for high-performance applications, due to a rather large,
though constant, overhead in retrieving table elements. They are also somewhat
intricate and di�cult to implement. However, we will make use of the central
technique described by Pagh in [30], called quotienting. Suppose that the sparse
table has length p and the hash table length r. The basic idea is to start with
a hash function φ : {0, . . . , p − 1} → {0, . . . , p − 1} that is a permutation, and
use h(x) = φ(x) mod r to map to the hash table indices. Assume that no pair
of non-empty indices of the sparse table collide under h, so that the content of
non-empty sparse table cell i can be stored in hash table cell h(i). Then we
need not store the index i, but only the integer quotient φ(i) div r to uniquely
identify i, since i can be reconstructed from the quotient and h(i), which is given
by the position in the table. This uses dlog(p/r)e bits, thereby saving about
log(r) bits over the dlog(p)e bits needed to store the key itself.

Pagh [31] recently introduced a variant of open addressing in which two hash
tables T1 and T2 are used with two hash functions h1 and h2. If cell i in the
sparse table is non-empty, it can be found in either hash table cell h1(i) of T1 or
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cell h2(i) of T2. Thus, only two table accesses are needed to look up an entry in
the sparse table. A family of hash functions was given, from which suitable h1

and h2 can always be chosen. However, for a vast majority of problem instances
it su�ces to use somewhat simpler hash functions, for example of the form:

i 7→ ((a i + b) mod p) mod r, (3)

where p is a prime larger than any index, 0 < a < p, 0 ≤ b < p, and r is the
desired range, i.e., the size of a hash table.

A drawback of the two table hashing scheme is that, in order to work, it needs
hash tables of total size twice the number of non-empty sparse table cells, and
is therefore quite redundant. This problem was addressed by Pagh and Rodler
in [32], introducing a variant of the above scheme in which the hash tables are
practically fully utilized. In fact, using quotienting the resulting space usage is
below the information theoretical minimum for storing a (uniformly distributed)
set of 2r elements. The price paid to achieve this is some loss of control concern-
ing which sparse table indices are included. Roughly speaking, the scheme tries
to store the most �important� indices, but will sometimes include less important
indices to �ll the table. Suppose we want to store 2r wavelet coe�cients. The
results of [32] show that, typically, all r coe�cients of largest magnitude are
stored, while about 85% of the 2r coe�cients of largest magnitude are stored.

5 Coding Method

In designing our coding method we have to consider the trade-o� between com-
pression ratio, distortion, and speed of retrieval. As a consequence of its simple
basis function, the Haar wavelet decomposition is simple to compute. In order
to reconstruct a single data value, only one coe�cient from each subband must
be retrieved. Higher order wavelets, while promising better compression ratios,
require the retrieval of signi�cantly more coe�cients. Since we focus on fast
retrieval of voxels, we choose to use the Haar wavelet. We note, however, that
our method easily generalizes to other wavelets. As we shall see in Section 6,
the Haar wavelet provides good compression results.

We have chosen to use 3 decomposition levels. This provides a good trade-o�
between how sparse a representation the wavelet transform produces, and the
number of coe�cients needed to reconstruct a single voxel. We thus have one
level of average coe�cients and three levels of wavelet coe�cients, each level
consisting of seven subbands, as depicted in Figure 1. In order to reconstruct
a voxel, we need 22 coe�cients: 1 average coe�cient, and 7 wavelet coe�cients
from each of the three detail levels. Most wavelet based compression schemes
exploit the fact, mentioned in Section 3, that a very sparse representation can
be obtained by thresholding the wavelet representation. After thresholding, the
challenge is to e�ciently store positions and values of the non-zero coe�cients.
This corresponds to storing the set W containing the n most important wavelet
coe�cients. Using the hashing scheme described at the end of Section 4, we
will take a slightly di�erent approach. We noted in Section 4 that the most
space e�cient methods for storing sparse tables have a rather high overhead for
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lookups, but that an index set W ′ �slightly di�erent� from a given set W can
be stored in a way allowing much more e�cient lookups. By not storing exactly
the n coe�cients of largest magnitude, we get a larger MSE, but we will see
that the increase is quite acceptable compared to the gain in compression ratio.

Since the sparseness of the wavelet coe�cients change between subband
levels, we will use a di�erent set of hash tables for each level. For the moment,
we will in fact pretend that each subband is stored as a separate sparse table.
We later �merge� the hash tables of subbands at the same level. The main reason
for choosing a three-level (instead of a two-level) wavelet transform is that the
average coe�cients take up a fraction of just 2−9 of the wavelet transformed
volume, and can therefore with negligible overhead be stored in uncompressed
form.

To use the sparse table data structure, we map (x, y, z) positions of a sub-
band B to indices in the range 0, . . . , |B| − 1 in a straightforward way. Denote
by ix,y,z the sparse table index corresponding to (x, y, z). We use pairwise in-
dependent pseudo-random permutations of the following form:

φ(x, y, z) = (a ix,y,z + b) mod p , (4)

where p is the smallest prime greater than |B|, and a, b are chosen at random
such that 0 < a < p, and 0 ≤ b < p. For each sparse table, we have two
such permutations φ1 and φ2, and take as our hash functions h1(x, y, z) =
φ1(x, y, z) mod r and h2(x, y, z) = φ2(x, y, z) mod r. To store the coe�cient
with index (x, y, z) in entry h1(x, y, z) of table one, we need only specify the
quotient φ1(x, y, z) div r and the uniformly quantized value of the coe�cient
(the same holds for hash table two). We choose the number of quantization levels
to be a value such that the distortion introduced by quantization constitutes a
minor part of the total distortion. This desired value is then adjusted slightly,
such that the quantization index and the quotient �t into an integer number of
bits. This de�nes the size of each entry in the hash tables. In case of an empty
cell, we store the quotient ((a (p − 1) + b) mod p) div r, which does not match
the quotient of any index (x, y, z).

For performance reasons we do not store the sparse tables exactly as de-
scribed above. In particular, we store all subbands at each level in a single
sparse table (using two hash tables), of correspondingly larger size, in such a
way that wavelet coe�cients that are needed for the same voxel reconstruction
are more or less adjacent in the hash tables. This signi�cantly improves the
time for retrieving the coe�cients, because of better cache usage. The merging
of the tables is illustrated in Figure 2. At each subband level, we number the
seven subbands 0, . . . , 6. The way in which wavelet coe�cients are accessed at
each subband level during a voxel reconstruction is very simple: The same index
within each subband is needed. When hashing index (x, y, z) of the subband
with number s we use the functions:

h′
i(x, y, z, s) = (φi(x, y, z) + s) mod r, (5)

for i = 1, 2. This gives corresponding indices in di�erent subbands, at the same
subband level, consecutive hash function values (modulo r). There was no signif-
icant degradation in MSE as a result of making hash function values correlated
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in this way. To be able to distinguish coe�cients in di�erent subbands, we pack
the subband number together with the quotient.

a

a c

b

b

1 2

3

3

c

2 ba c

1

1 2

(a) (b)

Figure 2: How tables are merged. (a) No merging � a separate sparse table is used for each
subband. (b) All coe�cient of a level is stored in one sparse table. Note that
coe�cients at the same spatial position get consecutive hash values.

The above describes how we store the wavelet coe�cients, but not how to
determine the size of the hash tables at di�erent subband levels. This is non-
trivial, as the best ratio between tables at di�erent levels depends on the volume
and the desired distortion. We use a simple heuristic, namely to perform global
thresholding and use the number of non-zero coe�cients at each level as the
total size of the hash tables at that level. As we �nearly� store the coe�cients
remaining after thresholding, the MSE will be similar to the MSE introduced
by the thresholding.

(a) (b)

Figure 3: Wavelet coe�cients corresponding to the same spatial location. (a) Illustrated in
two dimensions. (b) In three dimensions we obtain an octree like structure. Note
that, except for the top voxel, all voxels point to eight children. For clarity this is
not shown.

While the scheme described this far is reasonably fast, a signi�cant speedup
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can be obtained by exploiting the fundamental property of the stored wavelet
coe�cients: A very large fraction of coe�cients is zero. Thus, in many cases
only zero coe�cients are found in the detail levels. To avoid such expensive
lookups we store, together with each average coe�cient, a �signi�cance map�
that can be consulted to avoid some lookups of detail coe�cients that are zero.
In particular, we divide subband levels 1 and 2 into 2×2×2 blocks. If all seven
blocks at the same spatial location in the di�erent subbands of a level only
have zero coe�cients, we set a bit in the signi�cance map of the corresponding
average coe�cient. This uses 8 bits for level 1 (at level 1 there are 8 blocks
of size 2 × 2 × 2 that correspond to the same spatial location as the average
coe�cient), and a single bit for level 2. Figure 3(a) shows, in two dimensions,
the spatial relationship between the blocks at di�erent subband levels. Finally,
we set a bit to indicate whether all seven corresponding wavelet coe�cients at
level 3 are zero. In total, we use 10 bits for the signi�cance map per average
coe�cient. Since the average coe�cients only constitute a fraction of 2−9 of
all wavelet coe�cients this is negligible. The complete data structure used is
illustrated in Figure 4. The illustration is in two dimensions for simplicity.

T1

T2

T1

T2

T1

T2

Signi�cance map

Coe�cient

Figure 4: How the coe�cients at di�erent levels are stored in the data structure.

When reconstructing a voxel we �rst look up the average coe�cient and
the signi�cance map. For each subband level, where the signi�cance map does
not declare all coe�cients to be zero, we must then look up the seven coe�-
cients in the sparse table of that level. Let r denote the size of the hash tables
used for the sparse table, and let φ1 and φ2 denote the pseudo-random per-
mutations used. If the position within the subbands, at a given subband level,
is (x, y, z), we evaluate φ1(x, y, z) and φ2(x, y, z). Then, starting at position
φ1(x, y, z) mod r of hash table one and position φ2(x, y, z) mod r of hash table
two, we extract two sequences of seven consecutive quotients and subband num-
bers. If a quotient in the sequence from table i equals φi(x, y, z) div r, for some
i, and the subband number equals the position in the sequence, the coe�cient
in that subband is nonzero, and its value is calculated from the quantized value
in the table. Otherwise the coe�cient is zero. When all the necessary wavelet
coe�cients have been extracted, the inverse Haar wavelet transform is applied.
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The reconstruction formulas for one level are

c1 = (a + d1 + d2 + d3 + d4 + d5 + d6 + d7)/2
√

2 (6)

c2 = (a + d1 + d2 + d3 − d4 − d5 − d6 − d7)/2
√

2

c3 = (a + d1 − d2 − d3 + d4 + d5 − d6 − d7)/2
√

2

c4 = (a + d1 − d2 − d3 − d4 − d5 + d6 + d7)/2
√

2

c5 = (a − d1 + d2 − d3 + d4 − d5 + d6 − d7)/2
√

2

c6 = (a − d1 + d2 − d3 − d4 + d5 − d6 + d7)/2
√

2

c7 = (a − d1 − d2 + d3 + d4 − d5 − d6 + d7)/2
√

2

c8 = (a − d1 − d2 + d3 − d4 + d5 + d6 − d7)/2
√

2 .

Depending on the voxel that is to be reconstructed we must traverse an
octree like structure from top to bottom, as illustrated in Figure 3(b), using one
of the eight formulas at each node in the octree.

As discussed in Section 1, applications do not always access data totally
at random. To enhance decoding e�ciency when some locality in the access
patterns exists, our decoding algorithm also supports selective block-wise de-
coding. When reconstructing a single voxel, seven wavelet coe�cients must be
retrieved for each subband level. These wavelet coe�cients can be reused to
compute neighboring voxels. In our selective block-wise decoding, we retrieve
all 512 wavelet coe�cients necessary to compute all voxels in a 8 × 8 block.
To do this we must decode one average coe�cient and all its associated detail
coe�cients as illustrated in Figure 3(b). From (6) it appears that 56 addi-
tions/subtractions must be performed to reconstruct eight voxels. However, by
reusing computations this can be reduced to 24 operations.

6 Experiments

In this section we present results based on two data sets. The �rst data set is a
512× 512× 512 CT data set of the upper body of the Visible Man. Each voxel
is stored in 2 bytes, in which 12 bits are used, and the whole volume takes up
256 Mbytes. This data set is the same as in [15, 35] and was kindly provided
to us by Ihm and Park. The second data set is a CT scan of an engine block,
resampled to size 256× 256× 112 to make all dimensions a multiple of 8. Each
voxel is stored in 1 byte and the volume uses about 7 Mbytes of space. The
original Engine Block data set was obtained from [43].

The exact set of wavelet coe�cients that is stored during compression de-
pends somewhat on the particular parameters of the pseudo-random permu-
tations in Equation (4). For each compression ratio, we have compressed the
volume three times, and for each subband level selected the permutation yield-
ing the best results. Table 1 shows the results of compressing the Visible Man
data set three times at a compression ratio of 44 : 1. The highlighted values in
the table show the best MSE for each subband. Similar results were obtained
for other compression ratios and also for the Engine Block data set. As men-
tioned in the previous section we uniformly quantize the wavelet coe�cients.
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Experiment
Subband level 1 2 3 Best

3 166.59 162.49 163.02 162.49

2 54.10 53.23 53.98 53.23

1 24.29 15.23 13.57 13.57

Total MSE 244.98 230.95 230.57 229.29

Total PSNR 48.84 48.61 48.62 48.64

Table 1: MSE for the three subband levels when using three di�erent pseudo-random per-
mutations.

The number of quantization levels is chosen such that the quantization induced
distortion is a minor part of the total distortion. The number of bits used for
coe�cients at subband level 1 varied between 4.0 and 7.5 bits depending on the
compression ratio. The exact number was chosen such that the hash quotient
and the quantization level would �t into an integer number of bits. For the
other subband levels we increase the disired number of bits used by 1.5 bits per
level. This is necessary because of the 2/

√
2 scaling of the wavelet coe�cients

in the wavelet transform (2).

6.1 Compression Ratio and Distortion
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Figure 5: Rate-distortion curve for the Visible Man data set.

It is important that our compression scheme provides high compression ra-
tios at low distortion, while maintaining fast random access. In our �rst ex-
periment we compressed the two test volumes at various ratios. The results
are summarized in Tables 2 and 3. Figures 5 and 6 show the peak signal to
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Figure 6: Rate-distortion curve for the Engine Block data set.

noise ratio (PSNR1) as a function of the compression ratio. The PSNR was
calculated from the voxel di�erences between the original voxel values and the
voxel values reconstructed from the compressed data. In Figure 5 we also show
the rate-distortion performance of the methods in [15, 35]. As can be seen from
the �gure, our method gives strictly better performance in the distortion range
investigated, and it signi�cantly outperforms the previous best methods, nearly
doubling the compression ratio compared to the method in [35] at high ratios.
For low compression ratios it seems that the three methods converge. As men-
tioned in Section 2 an improvement to [15] has recently been proposed in [3].
The reported improvement was a 10%-15% increase in compression ratio for the
RGB color volume of the Visible Human. Even if a similar increase holds for
the Visible Man data set used in our experiments, our method still performs
best, rate-distortion wise.

Figure 6 shows that the achieved compression ratios for the Engine Block
data set are not as large as for the Visible Man data set. This can be explained
by observing the percent of non-zero wavelet coe�cients in Tables 2 and 3. We
observe that the wavelet decomposition performs better on the Visible Man data
set, in terms of obtaining a sparse representation for a given distortion, than on
the Engine Block data set. This can partially be explained by noting that large
areas of the Visible Man data set contains only zero valued voxels.

Even though the PSNR measure is an accepted measure in lossy compression
visual inspection of the quality is very important. To that end Figures 9 and 10
shows sample slices for the various compression ratios. We observe that for
the best PSNRs the reconstructed slices are virtually indistinguishable from the
original. However, for a PSNR of 43 blocking artifacts and loss of small level

1PSNR = 10 log10

(
maxi x[i]2

MSE

)
, x[i] being the original data.
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detail occur.
We also generated rendered images of the original and compressed volumes.

The rendered images are depicted in Figures 11 to 14. For the Visible Man
data set, the images at compression ratios of up to 43:1 are essentially indistin-
guishable from the original. However, the close ups in Figure 12 reveal beginning
blocking artifacts. For the images at ratio 80:1 and 109:1 reconstruction artifacts
become noticeable, however most of the features and details are still preserved.
For the Engine Block data set, artifacts begin to appear at compression ratio
11:1 but not until a ratio of 21:1 do they become signi�cantly noticeable. Again,
when zooming the blocking artifacts appear sooner.

Compression
Ratio 109:1 80:1 44:1 27:1 15:1

Size (Mb) 2.36 3.68 5.83 9.48 17.57

Errors
PSNR 43.28 45.76 48.64 51.19 56.07
SNR 25.25 27.74 30.62 33.17 38.05
MSE 788.7 445.4 229.3 127.5 41.4

Fraction of non-zero wavelet coe�cients 0.96% 1.56% 2.60% 4.68% 8.24%

Table 2: Results on compression ratio and quality for for the Visible Man data set.

Compression
Ratio 20.6:1 14.1:1 11.3:1 8.0:1 5.9:1

Size (Mb) 0.34 0.50 0.62 0.87 1.19

Errors
PSNR 37.91 41.77 42.19 45.36 47.64
SNR 22.29 26.15 26.54 29.74 32.02
MSE 10.53 4.32 3.95 1.89 1.12

Fraction of non-zero wavelet coe�cients 3.60% 4.89% 6.79% 8.78% 11.06%

Table 3: Results on compression ratio and quality for the Engine Block data set.

6.2 Timing Results

To evaluate the time for accessing voxels from the compressed data, we measured
the time it took to access 1,000,000 randomly selected voxels in the compressed
volumes, using C's rand() function. These experiments were conducted on two
di�erent computers. The �rst computer used was a SGI Octane workstation
with a 175 MHz R10000 CPU with a 32 Kbyte level 1 data cache and a 1 Mbyte
level 2 cache. This machine is very similar (except maybe di�erences in the
amount of installed memory and cache) to the one used in [15, 35], so direct
comparison is possible. Programs were compiled with the cc compiler version
7.3.1.1m, using optimization �ags -Ofast=IP30. The second computer used
was a PC with an 800 MHz Intel Pentium III processor with 16 Kbyte level 1
data cache and 256 Kb level 2 cache. On this machine programs were compiled
with gcc version 2.95.2, using optimization �ags -O9 -fomit-frame-pointer

-fno-rtti. Both machines were equipped with 256 Mbytes of main memory.
Results are listed in Tables 4 and 5 with and without the signi�cance map
optimization discussed in the previous section.
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CPU Signi�cance map Uncompressed
Compression Ratio

109:1 80:1 44:1 27:1 15:1

PC
Yes

0.50
1.61 1.82 2.09 2.44 2.86

No 4.73 4.84 4.94 4.82 4.95

SGI
Yes

1.65 � 3.03
3.79 4.63 5.68 7.13 8.67

No 14.88 15.78 16.30 16.70 17.00

Table 4: Voxel reconstruction times in seconds for the Visible Man data set.

CPU Signi�cance map Uncompressed
Compression Ratio

20.6:1 14.1:1 11.3:1 8.0:1 5.9:1

PC
Yes

0.49
2.10 2.47 2.70 3.14 3.45

No 4.51 4.64 4.73 4.76 4.97

SGI
Yes

1.17
5.28 6.25 7.09 8.26 8.86

No 12.93 12.97 13.06 13.12 13.27

Table 5: Voxel reconstruction times in seconds for the Engine Block data set.

As a reference, we also list in the tables the time it takes to access 1,000,000
randomly selected voxels from the uncompressed data. For the Engine Block
data set, we used the original volume. However, because the Visible Man data
set could not �t into main memory on the two computers used we simulated
accessing voxels in uncompressed data by allocating a piece of memory accessing
entries of this piece at random. For the PC we noted that the time it took
to randomly access 1,000,000 elements varied very little with the size of the
allocated piece of memory, as long as it was signi�cantly larger than the cache.
However, for the SGI we found that there is a linear dependence between the
size of the allocated memory and the time it takes to access the random voxels.
For a piece of memory varying between 20%�80% of the size of the Visible Man
volume, the time it took to randomly access 1,000,000 voxels varied between
1.65 and 3.03 seconds.

From tables 4 and 5, we observe that accessing random voxels from the
Visible Man data set on a PC using the signi�cance map is about 3 to 6 times
slower than accessing uncompressed data. Running on the SGI, it is more
di�cult to evaluate how much slower it is to access compressed data because
of the mentioned variation when accessing uncompressed data. For the Engine
Block data set, accessing compressed data on both computers is about 4.5 to
7.5 times slower. Figure 7 shows the time for accessing 1,000,000 random voxels
in compressed data on the SGI as a function of the PSNR level. From the
�gure, we observe that our method outperforms the schemes in [15, 35]. For
high distortion (small PSNR), our method is about twice as fast as [15]. It
should be noted that a speedup of about a factor of 2.5 compared to Ihm and
Parks method [15] has recently been obtained in [3] for color volumes. This
speedup, if it holds for the Visible Man data set, results in a method faster than
ours, especially at high PSNR levels. However, our method achieves signi�cantly
higher compression ratios for the same PSNR level.

Observe that accessing voxels from highly compressed data is faster than
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accessing voxels from less compressed data. The main reason for this is that at
high compression ratios fewer wavelet coe�cients are kept, resulting in a more
e�cient signi�cance map because of more zero coe�cients. Furthermore, as
the compression ratio increases, more of the compressed data might �t into the
data cache of the computer, which again results in a speedup. This last type of
speedup can be noticed in the timings where the signi�cance map was disabled.
From Tables 4 and 5 we see that enabling the use of the signi�cance map gives
a speedup of about 2-4 times for the Visible Man data set compared to having
it disabled. The improvement is largest at high compression ratios where the
signi�cance map is more e�ective because of more zeros. For the Engine Block
data set, the speedup is slightly smaller. The reason for this, as discussed above,
is that the Visible Man data set contains more voxels with value zero.
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Figure 7: Time for accessing 1,000,000 voxels in compressed data for the Visible Man data
set on the SGI.

6.3 Selective Block-wise Decoding

As mentioned in Section 1, not all applications access data completely at ran-
dom. To improve decoding e�ciency when data is accessed locally, our method
supports selective block-wise decoding. As mention in Section 5, the voxels in an
8×8×8 block can be decoded e�ciently by reusing both wavelet coe�cients and
computions in the reconstruction formulas. The e�ectiveness of selective block-
wise decoding was evaluated by decoding the entire volume block by block. The
timings are shown for the two data sets in Tables 6 and 7. We also experimented
with how long it takes to access the uncompressed volumes block by block. This
was done by using 6 nested loops. The �rst three loops indexed the blocks, while
the last three loops accessed voxels within each block. As the Visible Man data
set could not �t into the memory of the computers used, we simulated block-
wise access by accessing a 256 × 512 × 512 array (half the size of the data set),
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multiplying the time it took by two. On the PC we obtained di�erent times for
the Visible Man data set depending on whether the loops were arranged in a
cache friendly way or not. This e�ect was not observed for the SGI. We believe
that the SGI compiler optimizes for such e�ects, as using lesser optimization
options resulted in signi�cantly longer timings. From tables 6 and 7, we observe
that decoding the whole volume block-wise is signi�cantly slower than accessing
uncompressed data. However, considering the memory requirements needed for
large uncompressed volumes we think this overhead is quite acceptable. Also,
applications such as some volume renderers require orders of magnitudes longer
processing time. From the tables we also note that as the compression ratio
decreases, the decoding time increases. This can be explained by the fact that
the signi�cance map is less e�ective at low ratios. Finally, in Figure 8, we com-
pare our method to the methods in [15, 35] for the Visible Man data set. For
a PSNR level below 50 our method performs best. However, if the signi�cance
map improvement in [3] is able to improve the results of [15] by a factor of 4-5.5
this becomes by far the fastest method at high PSNR levels.
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Figure 8: Selective block-wise decoding for the Visible Man data set on the SGI.

CPU Uncompressed
Compression Ratio

109:1 80:1 44:1 27:1 15:1

PC 1.48�2.20 6.24 7.75 10.06 13.12 17.17

SGI 3.04 14.22 19.22 26.42 38.27 51.28

Table 6: Selective block-wise reconstruction times in seconds for the Visible Man data set.
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CPU Uncompressed
Compression Ratio

20.6:1 14.1:1 11.3:1 8.0:1 5.9:1

PC 0.08 0.59 0.71 0.85 1.08 1.33

SGI 0.15 1.46 1.67 2.08 2.65 3.28

Table 7: Selective block-wise reconstruction times in seconds for the Engine Block data set.

7 Multiresolutional Decoding

While relatively fast, the decoding process might still be too slow for interactive
applications. In some applications it is possible to work with a low resolution
representation of the volume. Volume rendering is such an example. When the
user is satis�ed with the setup at the low resolution, the application switches
to full resolution producing the �nal result. Since our method uses a three-
dimensional wavelet transform, it supports multiresolutional decoding in a nat-
ural way. For example, by assuming that the wavelet coe�cients at subband
level 3 are all zero we can omit the last reconstruction step. This results in
a volume half the size of the original volume in each dimension. By omitting
coe�cients at subband levels 2 and 1, our algorithm can return voxels from a
volume that is downsampled by a factor of 2, 4, or 8 in each direction. Since the
algorithm does not need to decode coe�cients assumed to be zero, this results
in a speedup. In Table 8 and Table 9 we present results on decoding randomly
selected voxels from the two compressed volumes at di�erent resolutions. As
expected, the reconstruction time of a voxel decreases as the downsampling
factor increases. When downsampling 8 times we notice that the access time
does not depend on the compression ratio. This is because we access only the
uncompressed average coe�cients, and these do not change with the compres-
sion ratio. Accessing and decoding the average coe�cients take slightly longer
than accessing uncompressed data since we still need to apply the scaling in the
reconstruction formulas (6).

CPU Downsampling factor Uncompressed
Compression Ratio

109:1 80:1 44:1 27:1 15:1

PC

1

0.50

1.61 1.82 2.09 2.44 2.86
2 1.49 1.63 1.82 2.07 2.34
4 1.18 1.26 1.37 1.50 1.59
8 0.81 0.81 0.81 0.81 0.81

SGI

1

1.65 � 3.03

3.79 4.63 5.68 7.13 8.67
2 3.32 3.93 4.68 5.55 6.50
4 1.18 1.26 1.37 1.50 1.59
8 1.20 1.20 1.20 1.20 1.20

Table 8: Voxel reconstruction times in seconds for the Visible Man data set when accessing
voxels at lower resolutions.
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CPU Downsampling factor Uncompressed
Compression Ratio

20.6:1 14.1:1 11.3:1 8.0:1 5.9:1

PC

1

0.50

2.10 2.47 2.70 3.14 3.45
2 1.80 2.08 2.20 2.47 2.61
4 1.30 1.42 1.44 1.42 1.44
8 0.73 0.73 0.73 0.73 0.73

SGI

2

1.65 � 3.03

5.28 6.25 7.09 8.26 8.86
2 4.48 5.28 5.83 6.54 6.55
4 2.82 3.23 3.20 3.20 3.22
8 1.15 1.15 1.15 1.15 1.15

Table 9: Voxel reconstruction times in seconds for the Engine Block data set when accessing
voxels at lower resolutions.

8 Conclusion and Final Remarks

We have presented a new method for compression of volumetric data that sup-
ports fast random access to individual voxels within the compressed data. The
method is based on a wavelet decomposition of the data, and a new technique
for storing sparse tables using hashing. The new hashing technique may be of
independent use in other compression applications. Results comparing our new
compression method to other techniques show an improvement over the entire
distortion range investigated. For high ratios, the improvement in ratio is 50%
to 80%. We also reported competitive access times for our method.

One interesting idea for future research in lossy compression is the concept
of not storing the most signi�cant wavelet coe�cients, but a slightly di�erent set
of coe�cients. This might yield a combined rate-distortion improvement when
used in combination with existing techniques. The idea has been mentioned
before by Xiong et al. [42] but it has still not attracted the attention we think
it deserves.

References

[1] B. Aiazzi, P. Alba, S. Baronti, and L. Alparone. Threedimensional lossless
compression based on a separable generalized recursive interpolation. Pro-
ceedings of the 1996 IEEE International Conference on Image Processing,
pages 85�88, 1996.

[2] Bruno Aiazzi, Pasquale Alba, Luciano Alparone, and Stefano Baronti.
Lossless compression of multi/hyper-spectral imagery based on a 3-D
fuzzy prediction. IEEE Transactions on Geoscience and Remote Sensing,
37(5):2287�2294, 1999.

[3] Chandrajit Bajaj, Insung Ihm, and Sanghun Park. 3D RGB image com-
pression for interactive applications. ACM Transactions on Graphics, 20,
March 2001. To appear.

[4] Atilla M. Baskurt, Hugues Benoit-Cattin, and Christophe Odet. "a 3-d
medical image coding method using a separable 3-d wavelet transform. In

21



Yongmin Kim, editor, Medical Imaging 1995: Image Display, 2431, pages
184�194. SPIE, 1995.

[5] A. Bilgin, G. Zweig, and M. W. Marcellin. Three-dimensional image com-
pression using integer wavelet transforms. Applied Optics: Information

Processing, Special Issue on Information Theory in Optoelectronic Systems,
39:1799�1814, April 2000.

[6] Andrej Brodnik and J. Ian Munro. Membership in constant time and
almost-minimum space. SIAM J. Comput., 28(5):1627�1640 (electronic),
1999.

[7] Peter J. Burt and Edward H. Adelson. The laplacian pyramid as a compact
image code. IEEE Trans. on Communications, 31(4):532�540, April 1983.

[8] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash func-
tions. J. Comput. System Sci., 18(2):143�154, 1979.

[9] Arnold I. Dumey. Indexing for rapid random access memory systems. Com-

puters and Automation, 5(12):6�9, 1956.

[10] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a
sparse table with O(1) worst case access time. J. Assoc. Comput. Mach.,
31(3):538�544, 1984.

[11] Mohammad H. Ghavamnia and Xue D. Yang. Direct rendering of laplacian
pyramid compressed volume data. Proceedings of Visualization '95, pages
192�199, October 1995.

[12] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F.
Cohen. The lumigraph. Computer Graphics, Proceedings of SIGGRAPH

'96, pages 43�54, 1996.

[13] Roberto Grosso, Thomas Ertl, and Joachim Ascho�. E�cient data struc-
tures for volume rendering of wavelet-compressed data. WSCG '96 - The

Fourth International Conference in Central Europe on Computer Graphics

and Visualization, February 1996.

[14] Torben Hagerup and Torsten Tholey. E�cient minimal perfect hashing in
nearly minimal space. In Proceedings of the 18th Symposium on Theoretical

Aspects of Computer Science (STACS '01), pages 317�326. Springer-Verlag,
Berlin, 2001.

[15] Insung Ihm and Sanghun Park. Wavelet-based 3D compression scheme for
very large volume data. In Graphics Interface, pages 107�116, June 1998.

[16] Insung Ihm and Sanghun Park. Wavelet-based 3D compression scheme for
interactive visualization of very large volume data. Computer Graphics

Forum, 18(1):3�15, March 1999.

22



[17] ISO/IEC JTC1 and ITU-T. Digital compression and coding of continuous-
tone still images. ITU-T Recommendation T.81 � ISO/IEC 10918-1

(JPEG), 1992.

[18] ISO/IEC JTC1 and ITU-T. Information technology - generic coding of
moving pictures and associated audio information - part 2: Video. ITU-T
Recommendation H.262 � ISO/IEC 13818-2 (MPEG-2), 1994.

[19] Tae-Young Kim and Yeong Gil Shin. An e�cient wavelet-based compression
method for volume rendering. In Seventh Paci�c Conference on Computer

Graphics and Applications, pages 147�156, October 1999.

[20] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer

Programming. Addison-Wesley Publishing Co., Reading, Mass., second
edition, 1998.

[21] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-
warp factorization of the viewing transformation. In Proceedings of SIG-

GRAPH 94, pages 451�458, 1994.

[22] K. Lau, W. Vong, and W. Ng. Lossles compression of 3-d images by variable
predictive coding. Proceedings of 2nd Singapore International Conference

on Image Processing, 1992, pp. 161�165., 1992.

[23] Marc Levoy and Pat Hanrahan. Light �eld rendering. Computer Graph-

ics Proceedings, Annual Conference Series (SIGGRAPH '96), pages 31�42,
1996.

[24] Jiebo Luo, Xiaohui Wang, Chang W. Chen, and Kevin J. Parker. Volumet-
ric medical image compression with three-dimensional wavelet transform
and octave zerotree coding. In Rashid Ansari and Mark J. Smith, editors,
Visual Communications and Image Processing '96, 2727, pages 579�590.
SPIE, 1996.

[25] Stéphane Mallat. A Wavelet Tour of Signal Processing, 2nd Edition. Aca-
demic Press, 1999.

[26] Shigeru Muraki. Approximation and rendering of volume data using wavelet
transforms. Proceedings of Visualization '92, pages 21�28, October 1992.

[27] Shigeru Muraki. Volume data and wavelet transforms. IEEE Computer

Graphics & Applications, 13(4):50�56, July 1993.

[28] Gregory M. Nielson, Hans Hagen, and Heinrich Müller, editors. Scienti�c
Visualization: Overviews, Methodologies, and techniques. IEEE Computer
Society, 1997.

[29] Paul Ning and Lambertus Hesselink. Fast volume rendering of compressed
data. Proceedings of Visualization '93, pages 11�18, October 1993.

23



[30] Rasmus Pagh. Low redundancy in static dictionaries with O(1) lookup
time. In Proceedings of the 26th International Colloquium on Automata,

Languages and Programming (ICALP '99), volume 1644 of Lecture Notes

in Computer Science, pages 595�604. Springer-Verlag, Berlin, 1999.

[31] Rasmus Pagh. On the cell probe complexity of membership and perfect
hashing. In Proceedings of the 33rd Annual ACM Symposium on Theory of

Computing (STOC '01). ACM Press, New York, 2001. To appear.

[32] Rasmus Pagh and Flemming Friche Rodler. Lossy dictionaries. Manuscript,
2001.

[33] S.M. Perlmutter, P.C. Cosman, R.M. Gray, R.A. Olshen, D. Ikeda, C.N.
Adams, B.J. Betts, M. Williams, K.O. Perlmutter, J. Li, A. Aiyer, L. Fa-
jardo, R. Birdwell, and B.L. Daniel. Image quality in lossy compressed
digital mammograms. Signal Processing, 52(2):189�210, 1997.

[34] Michael A. Pratt, Chee-Hung H. Chu, and Stephen T. Wong. Volume com-
pression of MRI data using zerotrees of wavelet coe�cients. In Michael A.
Unser, Akram Aldroubi, and Andrew F. Laine, editors, Wavelet Applica-

tions in Signal and Image Processing IV, 2431, pages 752�763. SPIE, 1996.

[35] Flemming Friche Rodler. Wavelet based 3D compression with fast random
access for very large volume data. In Seventh Paci�c Conference on Com-

puter Graphics and Applications, pages 108�117, Seoul, Korea, October
1999.

[36] Khalid Sayood. Introduction to Data Compression. Morgan Kaufmann
Publishers, Inc., USA, 1996.

[37] Jerome M. Shapiro. Embedded image coding using zerotress of wavelet co-
e�cients. IEEE Trans. on Signal Processing, 41(12):3445�3462, December
1993.

[38] Heung-Yeung Shum and Li-Wei He. Rendering with concentric mosaics.
Computer Graphics Proceedings, Annual Conference Series (SIGGRAPH

'99), pages 299�306, 1999.

[39] The visible human project. NLM homepage -
http://www.nlm.nih.gov/research/visible/visible_human. html.

[40] Geoge R. Thoma and L. Rodney Long. Compressing and transmitting
visible human images. IEEE Multimedia, 4(2):36�45, 1997.

[41] J. Wang and H. Huang. Medical image compression by using threedimen-
sional wavelet transformation. IEEE Transactions on Medical Imaging,
15:547�554, August 1996.

[42] Xixiang Xiong, Kannan Ramchandran, and Michael T. Orchard. Space-
frequency quantization for wavelet image coding. IEEE Transactions on

Image Processing, 6(5):677�693, May 1997.

24



[43] The Engine Block dataset. http://www9.informatik.uni-
erlangen.de/∼cfrezksa/volren/.

25



(a) Original (b) Ratio: 15:1, PSNR: 56.1

(c) Ratio: 27:1, PSNR: 51.2 (d) Ratio: 44:1, PSNR: 48.6

(e) Ratio: 80:1, PSNR: 45.8 (f) Ratio: 109:1, PSNR: 43.3

Figure 9: Sample slice (no. 345) of the Visible Man data set for various compression ratios.
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(a) Original (b) Ratio: 15:1, PSNR: 56.1

(c) Ratio: 27:1, PSNR: 51.2 (d) Ratio: 44:1, PSNR: 48.6

(e) Ratio: 80:1, PSNR: 45.8 (f) Ratio: 109:1, PSNR: 43.3

Figure 10: Zoom of sample slice (no. 345) of the Visible Man data set for various compression
ratios.
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(a) Original (b) Ratio: 15:1, PSNR: 56.1

(c) Ratio: 27:1, PSNR: 51.2 (d) Ratio: 44:1, PSNR: 48.6

(e) Ratio: 80:1, PSNR: 45.8 (f) Ratio: 109:1, PSNR: 43.3

Figure 11: Rendered images of the Visible Man data set for various compression ratios.
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(a) Original (b) Ratio: 15:1, PSNR: 56.1

(c) Ratio: 27:1, PSNR: 51.2 (d) Ratio: 44:1, PSNR: 48.6

(e) Ratio: 80:1, PSNR: 45.8 (f) Ratio: 109:1, PSNR: 43.3

Figure 12: Zoom of rendered images of the Visible Man data set for various compression
ratios.
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(a) Original (b) Ratio: 5.9:1, PSNR: 47.6

(c) Ratio: 8.0:1, PSNR: 45.4 (d) Ratio: 11.3:1, PSNR: 42.2

(e) Ratio: 14.1:1, PSNR: 41.8 (f) Ratio: 20.6:1, PSNR: 37.9

Figure 13: Rendered images of the Engine Block data set for various compression ratios.
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(a) Original (b) Ratio: 5.9:1, PSNR: 47.6

(c) Ratio: 8.0:1, PSNR: 45.4 (d) Ratio: 11.3:1, PSNR: 42.2

(e) Ratio: 14.1:1, PSNR: 41.8 (f) Ratio: 20.6:1, PSNR: 37.9

Figure 14: Zoom of rendered images of the Engine Block data set for various compression
ratios.
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