
B
R

IC
S

R
S

-01-3
B

ehrm
ann

etal.:
M

inim
um

-C
ostR

eachability
forP

riced
T

im
ed

A
utom

ata

BRICS
Basic Research in Computer Science

Minimum-Cost Reachability for
Priced Timed Automata

Gerd Behrmann
Ansgar Fehnker
Thomas S. Hune
Kim G. Larsen
Paul Pettersson
Judi Romijn
Frits W. Vaandrager

BRICS Report Series RS-01-3

ISSN 0909-0878 January 2001



Copyright c© 2001, Gerd Behrmann & Ansgar Fehnker &
Thomas S. Hune & Kim G. Larsen & Paul
Pettersson & Judi Romijn & Frits W.
Vaandrager.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/3/



Minimum-Cost Reachability for

Priced Timed Automata?

Gerd Behrmann1, Ansgar Fehnker3†, Thomas Hune2, Kim Larsen1

Paul Pettersson4‡, Judi Romijn3, and Frits Vaandrager3

1 Basic Research in Computer Science, Aalborg University,
E-mail: {behrmann,kgl}@cs.auc.dk.

2 Basic Research in Computer Science, Aarhus University,
E-mail: baris@brics.dk.

3 Computing Science Institute, University of Nijmegen,
E-mail: {ansgar,judi,fvaan}@cs.kun.nl.

4 Department of Computer Systems, Information Technology,
Uppsala University, E-mail: paupet@docs.uu.se.

Abstract. This paper introduces the model of linearly priced timed au-
tomata as an extension of timed automata, with prices on both transi-
tions and locations. For this model we consider the minimum-cost reach-
ability problem: i.e. given a linearly priced timed automaton and a target
state, determine the minimum cost of executions from the initial state
to the target state. This problem generalizes the minimum-time reach-
ability problem for ordinary timed automata. We prove decidability of
this problem by offering an algorithmic solution, which is based on a
combination of branch-and-bound techniques and a new notion of priced
regions. The latter allows symbolic representation and manipulation of
reachable states together with the cost of reaching them.
Keywords: Timed Automata, Verification, Data Structures, Algorithms,
Optimization.

1 Introduction

Recently, real-time verification tools such as Uppaal [13], Kronos [6] and
HyTech [10], have been applied to synthesize feasible solutions to static job-
shop scheduling problems [8, 12, 17]. The basic common idea of these works is to
reformulate the static scheduling problem as a reachability problem that can be
solved by the verification tools. In this approach, the timed automata [3] based
modeling languages of the verification tools serve as the basic input language
? This work is partially supported by the European Community Esprit-LTR Project

26270 VHS (Verification of Hybrid Systems).
† Research supported by Netherlands Organization for Scientific Research (NWO)

under contract SION 612-14-004.
‡ Research partly sponsored by the AIT-WOODDES Project No IST-1999-10069.



in which the scheduling problem is described. These modeling languages have
proven particularly well-suited in this respect, as they allow for easy and flexible
modeling of systems, consisting of several parallel components that interact in a
time-critical manner and constrain each other’s behavior in a multitude of ways.

In this paper we introduce the model of linearly priced timed automata and
offer an algorithmic solution to the problem of determining the minimum cost
of reaching a designated set of target states. This result generalizes previous
results on computation of minimum-time reachability and accumulated delays
in timed automata, and should be viewed as laying a theoretical foundation for
algorithmic treatments of more general optimization problems as encountered in
static scheduling problems.

As an example consider the very simple static scheduling problem repre-
sented by the timed automaton in Fig. 1 from [16], which contains 5 ’tasks’
{A, B, C, D, E}. All tasks are to be performed precisely once, except task C,
which should be performed at least once. The order of the tasks is given by the
timed automaton, e.g. task B must not commence before task A has finished. In
addition, the timed automaton specifies three timing requirements to be satis-
fied: the delay between the start of the first execution of task C and the start of
the execution of E should be at least 3 time units; the delay between the start of
the last execution of C and the start of D should be no more than 1 time unit;
and, the delay between the start of B and the start of D should be at least 2
time units, each of these requirements are represented by a clock in the model.
Using a standard timed model checker we are able to verify that location E of

A B C D Ex := 0
y := 0
z := 0

x ≥ 2
y ≤ 1 z ≥ 3

y := 0

Fig. 1. Timed automata model of scheduling example.

the timed automaton is reachable. This can be demonstrated by a trace leading
to the location1:

(A, 0, 0, 0)
τ−→ ε(1)−−→ (B, 1, 1, 1)

τ−→ ε(1)−−→ (C, 2, 1, 1)
τ−→ ε(2)−−→ (D, 4, 3, 3)

τ−→ (E, 4, 3, 3) (1)

The above trace may be viewed as a feasible solution to the original static
scheduling problem. However, given an optimization problem, one is often not
satisfied with an arbitrary feasible solution but insist on solutions which are opti-
mal in some sense. When modeling a problem like this one using timed automata
1 Here a quadruple (X, vx, vy , vz) denotes the state of the automaton in which the

control location is X and where vx, vy and vz give the values of the three clocks
x, y and z. The transitions labelled τ are actual transitions in the model, and the
transitions labelled ε(d) represents a delay of d time units.

2



1
A B C D

β 111
E

0 0 0 0

x := 0
y := 0
z := 0

x ≥ 2
y ≤ 1 z ≥ 3

y := 0

α

Fig. 2. A linearly priced timed automaton.

an obvious notion of optimality is that of minimum accumulated time. For the
timed automaton of Fig. 1 the trace of (1) has an accumulated time-duration of
4. This, however, is not optimal as witnessed by the following alternative trace,
which by exploiting the looping transition on C reaches E within a total of 3
time-units2:

(A, 0, 0, 0)
τ−→ τ−→ ε(2)−−→ (C, 2, 2, 2)

τ−→ (C, 2, 0, 2)
τ−→ ε(1)−−→ (D, 3, 1, 3)

τ−→ (E, 3, 1, 3) (2)

In [4] algorithmic solutions to the minimum-time reachability problem and the
more general problem of controller synthesis has been given using a backward
fix-point computation. In [16] an alternative solution based on forward reacha-
bility analysis is given, and in [5] an algorithmic solution is offered, which applies
branch-and-bound techniques to prune parts of the symbolic state-space which
are guaranteed not to contain optimal solutions. In particular, by introducing
an additional clock for accumulating time-elapses, the minimum-time reachabil-
ity problem may be dealt with using the existing efficient data structures (e.g.
DBMs [7], CDDs [14] and DDDs [15]) already used in the real-time verification
tools Uppaal and Kronos for reachability. The results of the present paper
also extends the work in [2] which provides an algorithm for computing the
accumulated delay in a timed automata.

In this paper, we provide the basis for dealing with more general optimiza-
tion problems. In particular, we introduce the model of linearly priced timed
automata, as an extension of timed automata with prices on both transitions
and locations: the price of a transition gives the cost for taking it and the price
on a location specifies the cost per time-unit for staying in that location. This
model can capture not only the passage of time, but also the way that e.g. tasks
with different prices for use per time unit, contributes to the total cost. Figure 2
gives a linearly priced extension of the timed automaton from Fig. 1. Here, the
price of location D is set to β and the price on all other locations is set to 1 (thus
simply accumulating time). The price of the looping transition on C is set to α,
whereas all other transitions are free of cost (price 0). Now for (α, β) = (1, 3)
the costs of the traces (1) and (2) are 8 and 6, respectively (thus it is cheaper
to actually exploit the looping transition). For (α, β) = (2, 2) the costs of the
two traces are both 6, thus in this case it is immaterial whether the looping

2 In fact, 3 is the minimum time for reaching E.

3



transition is taken or not. In fact, the optimal cost of reaching E will in general
be the minimum of 2 + 2 ∗ β and 3 + α, and the optimal trace will include the
looping transition on C depending on the particular values of α and β.

In this paper we deal with the problem of determining the minimum cost
of reaching a given location for linearly priced timed automata. In particular,
we offer an algorithmic solution to this problem3. In contrast to minimum-time
reachability for timed automata, the minimum-cost reachability problem for lin-
early priced timed automata requires the development of new data structures
for symbolic representation and the manipulation of reachable sets of states to-
gether with the cost of reaching them. In this paper we put forward one such
data structure, namely a priced extension of the fundamental notion of clock
regions for timed automata [3].

The remainder of the paper is structured as follows: Section 2 formally intro-
duces the model of linearly priced timed automata together with its semantics.
Section 3 develops the notion of priced clock regions, together with a number
of useful operations on these. The priced clock regions are then used in Sec-
tion 4 to give a symbolic semantics capturing (sufficiently) precisely the cost of
executions and used as a basis for an algorithm solution to the minimum-cost
problem. Finally, in Section 5 we give some concluding remarks.

2 Linearly Priced Timed Automata

In this section, we introduce the model of linearly priced timed automata, which
is an extension of timed automata [3] with prices on both locations and transi-
tions. Dually, linearly priced timed automata may be seen as a special type of
linear hybrid automata [9] or multirectangular automata [9] in which the accu-
mulation of prices (i.e. the cost) is represented by a single continuous variable.
However, in contrast to known undecidability results for these classes, minimum-
cost reachability is computable for linearly priced timed automata. An intuitive
explanation for this is that the additional (cost) variable does not influence the
behavior of the automata.

Let C be a finite set of clocks. Then B(C) is the set of formulas obtained
as conjunctions of atomic constraints of the form x ./ n where x ∈ C, n is
natural number, and ./ ∈ {<,≤, =,≥, >}. Elements of B(C) are called clock
constraints over C. Note that for each timed automaton that has constraints of
the form x− y ./ c, there exists a strongly bisimilar timed automaton with only
constraints of the form x ./ c. Therefore, the results in this paper are applicable
to automata having constraints of the type x − y ./ c as well.

Definition 1 (Linearly Priced Timed Automaton). A Linearly Priced
Timed Automaton (LPTA) over clocks C and actions Act is a tuple (L, l0, E, I, P )
where L is a finite set of locations, l0 is the initial location, E ⊆ L × B(C) ×
Act×P(C)×L is the set of edges, I : L → B(C) assigns invariants to locations,

3 Thus settling an open problem given in [4].

4



A B C
3 1 4

x <= 2 x := 0
x > 1

5 1

Fig. 3. An example LPTA.

and P : (L ∪ E) → N assigns prices to both locations and edges. In the case of

(l, g, a, r, l′) ∈ E, we write l
g,a,r−−−→ l′.

Formally, clock values are represented as functions called clock assignments
from C to the non-negative reals R≥0. We denote by R

C the set of clock assign-
ments for C ranged over by u, u′ etc. We define the operation u′ = [r 7→ 0]u
to be the assignment such that u′(x) = 0 if x ∈ r and u(x) otherwise, and the
operation u′ = u + d to be the assignment such that u′(x) = u(x) + d. Also, a
clock valuation u satisfies a clock constraint g, u ∈ g, if u(x) ./ n for any atomic
constraint x ./ n in g. Notice that the set of clock valuations satisfying a guard
is always a convex set.

The semantics of a LPTA A is defined as a transition system with the state-
space L × R

C , with initial state (l0, u0) (where u0 assigns zero to all clocks in
C), and with the following transition relation:

– (l, u)
ε(d),p−−−→ (l, u + d) if u + d ∈ I(l), and p = P (l) ∗ d.

– (l, u)
a,p−−→ (l′, u′) if there exists g, r such that l

g,a,r−−−→ l′, u ∈ g, u′ = [r 7→ 0]u,
u′ ∈ I(l′) and p = P ((l, g, a, r, l′)).

Note that the transitions are decorated with two labels: a delay-quantity or an
action, together with the cost of the particular transition. For determining the
cost, the price of a location gives the cost rate of staying in that location (per
time unit), and the price of a transition gives the cost of taking that transition.
In the remainder, states and executions of the transition system for LPTA A
will be referred to as states and executions of A.

Definition 2 (Cost). Let α = (l0, u0)
a1,p1−−−→ (l1, u1) . . .

an,pn−−−−→ (ln, un) be a
finite execution of LPTA A. The cost of α, cost(α), is the sum Σi∈{1,...,n}pi.

For a given state (l, u), the minimal cost of reaching (l, u), mincost((l, u)), is
the infimum of the costs of finite executions ending in (l, u). Similarly, the min-
imal cost of reaching a location l is the infimum of the costs of finite executions
ending in a state of the form (l, u).

mincost(l) = inf{cost(α)|α a run ending in location l}

Example 1. Consider the LPTA of Fig. 3. The LPTA has a single clock x, and
the locations and transitions are decorated with guards and prices. A sample
execution of this LPTA is for instance:

(A, 0)
ε(1.5),4.5−−−−−−→ (A, 1.5)

τ,5−−→ (B, 1.5)
τ,1−−→ (C, 1.5)

5



The cost of this execution is 10.5. In fact, there are executions with cost ar-
bitrarily close to the value 7, obtainable by avoiding delaying in location A,
and delaying just long enough in location B. Due to the infimum definition of
mincost, it follows that mincost(C) = 7. However, note that because of the strict
comparison in the guard of the second transition, no execution actually achieves
this cost. 2

3 Priced Clock Regions

For ordinary timed automata, the key to decidability results has been the valu-
able notion of region [3]. In particular, regions provide a finite partitioning of
the uncountable set of clock valuations, which is also stable with respect to the
various operations needed for exploration of the behavior of timed automata (in
particular the operations of delay and reset).

In the setting of linearly priced timed automata, we put forward a new ex-
tended notion of priced region. Besides providing a finite partitioning of the set
of clock-valuations (as in the case of ordinary regions), priced regions also asso-
ciate costs to each individual clock-valuation within the region. However, as we
shall see in the following, priced regions may be presented and manipulated in
a symbolic manner and are thus suitable as an algorithmic basis.

Definition 3 (Priced Regions). Given set S, let Seq(S) be the set of finite
sequences of elements of S. A priced clock region over a finite set of clocks C

R = (h, [r0, . . . , rk], [c0, . . . , cl])

is an element of (C → N) × Seq(2C) × Seq(N), with k = l, C = ∪i∈{0,...,k}ri,
ri ∩ rj = ∅ when i 6= j, and i > 0 implies that ri 6= ∅.

Given a clock valuation u ∈ R
C , and region R = (h, [r0, . . . , rk], [c0, . . . , ck]),

u ∈ R iff

1. h and u agree on the integer part of each clock in C,

2. x ∈ r0 iff frac(u(x)) = 0,

3. x, y ∈ ri ⇒ frac(u(x)) = frac(u(y)), and

4. x ∈ ri, y ∈ rj and i < j ⇒ frac(u(x)) < frac(u(y)).

For a priced region R = (h, [r0, . . . , rk], [c0, . . . , ck]) the first two components
of the triple constitute an ordinary (unpriced) region R̂ = (h, [r0, . . . , rk]). The
naturals c0, . . . , ck are the costs, which are associated with the vertices of the
closure of the (unpriced) region, as follows. We start in the left-most lower vertex
of the exterior of the region and associate cost c0 with it, then move one time
unit in the direction of set rk to the next vertex of the exterior, and associate
cost c1 with that vertex, then move one unit in the direction of rk−1, etc. In this
way, the costs c0, . . . , ck, span a linear cost plane on the k-dimensional unpriced
region.

6



The closure of the unpriced region R is the convex hull of the vertices. Each
clock valuation u ∈ R is a (unique) convex combination4 of the vertices. There-
fore the cost of u can be defined as the same convex combination of the cost in
the vertices. This gives the following definition:

Definition 4 (Cost inside Regions). Given priced region R = (h, [r0, . . . , rk],
[c0, . . . , ck]) and clock valuation u ∈ R, the cost of u in R is defined as:

cost(u, R) = c0 +
k−1∑

i=0

frac(u(xk−i)) ∗ (ci+1 − ci)

where xj is some clock in rj . The minimal cost associated with R is mincost(R) =
min({c0, . . . , ck}).

Fig. 4. A three dimensional priced region.

In the symbolic state-space, constructed with the priced regions, the costs
will be computed such that for each concrete state in a symbolic state, the cost
associated with it is the minimal cost for reaching that state by the symbolic path
that was followed. In this way, we always have the minimal cost of all concrete
paths represented by that symbolic path, but there may be more symbolic paths
leading to a symbolic state in which the costs are different. Note that the cost
of a clock valuation in the region is computed by adding fractions of costs for
equivalence sets of clocks, rather than for each clock.

To prepare for the symbolic semantics, we define in the following a number
of operations on priced regions. These operations are also the ones used in the
algorithm for finding the optimal cost of reaching a location.

The delay operation computes the time successor, which works exactly as in
the classical (unpriced) regions. The changing dimensions of the regions cause
the addition or deletion of vertices and thus of the associated cost. The price
4 A linear expression

∑
aivi where

∑
ai = 1, and ai ≥ 0.

7



Fig. 5. Delay and reset operations for two-dimensional priced regions.

argument will be instantiated to the price of the location in which time is passing;
this is needed only when a vertex is added. The two cases in the operation are
illustrated in Fig. 5 to the left (5.1) and (5.2).

Definition 5 (Delay). Given a priced region R = (h, [r0, . . . , rk], [c0, . . . , ck])
and a price p, the function delay is defined as follows:

1. If r0 is not empty, then

delay(R, p) = (h, [∅, r0, . . . , rk], [c0, . . . , ck, c0 + p])

2. If r0 is empty, then

delay(R, p) = (h′, [rk, r1, . . . , rk−1], [c1, . . . , ck])
where h′ = h incremented for all clocks in rk

When resetting a clock, a priced region may lose a dimension. If so, the two costs,
associated with the vertices that are collapsed, are compared and the minimum
is taken for the new vertex. Two of the three cases in the operation is illustrated
in Fig. 5 to the right (6.2) and (6.3).

Definition 6 (Reset). Given a priced region R = (h, [r0, . . . , rk], [c0, . . . , ck])
and a clock x ∈ ri, the function reset is defined as follows:

1. If i = 0 then reset(x, R) = (h′, [r0, . . . , rk], [c0, . . . , ck]), where h′ = h with x
set to zero

2. If i > 0 and ri 6= {x}, then

reset(x, R) = (h′, [r0 ∪ {x}, . . . , ri \ {x}, . . . , rk], [c0, . . . , ck])
where h′ = h with x set to zero

8



3. If i > 0 and ri = {x}, then

reset(x, R) = (h′, [r0 ∪ {x}, . . . , ri−1, ri+1, . . . , rk],
[c0, . . . , ck−i−1, c

′, ck−i+2, . . . , ck])
where c′ = min(ck−i, ck−i+1)

h′ = h with x set to zero

The reset operation on a set of clocks: reset(C ∪ {x}, R) = reset(C, reset(x, R)),
and reset(∅, R) = R.

The price argument in the increment operation will be instantiated to the price
of the particular transition taken; all costs are updated accordingly.

Definition 7 (Increment). Given a priced region R = (h, [r0, . . . , rk], [c0, . . . ,
ck]) and a price p, the increment of R with respect to p is the priced region
R ⊕ p = (h, [r0, . . . , rk], [c′0, . . . , c

′
k]) where c′i = ci + p.

If in region R, no clock has fractional part 0, then time may pass in R, that
is, each clock valuation in R has a time successor and predecessor in R. When
changing location with R, we must choose for each clock valuation u in R between
delaying in the previous location until u is reached, followed by the change of
location, or changing location immediately and delaying to u in the new location.
This depends on the price of either location. For this the following operation self
is useful.

Definition 8 (Self). Given a priced region R = (h, [r0, . . . , rk], [c0, . . . , ck]) and
a price p, the function self is defined as follows:

1. If r0 is not empty, then self(R, p) = R.
2. If r0 is empty, then

self(R, p) = (h, [r0, . . . , rk], [c0, . . . , ck−1, c
′])

where c′ = min(ck, c0 + p)

Definition 9 (Comparison). Two priced regions may be compared only if
their unpriced versions are equal: (h, [r0, . . . , rk], [c0, . . . , ck]) ≤ (h′, [r′0, . . . , r

′
k′ ],

[c′0, . . . , c′k′ ]) iff h = h′, k = k′, and for 0 ≤ i ≤ k: ri = r′i and ci ≤ c′i.

The operations delay and self satisfy the following useful properties:

Proposition 1 (Interaction Properties).

1. self(R, p) ≤ R,
2. self(self(R, p), p) = self(R, p),
3. delay(self(R, p), p) ≤ delay(R, p),
4. self(delay(R, p), p) = delay(R, p),
5. self(R ⊕ q, p) = self(R, p) ⊕ q,
6. delay(R ⊕ q, p) = delay(R, p) ⊕ q,
7. For g ∈ B(C), whenever R ∈ g then self(R, p) ∈ g.

9



Proof. Directly from the definitions of the operators and ≤. 2

Stated in terms of the cost, cost(u, R), of an individual clock valuation, u, of
a priced region, R, the symbolic operations behave as follows:

Proposition 2 (Cost Relations).

1. Let R = (h, [r0, . . . , rk], [c0, . . . , ck]). If u ∈ R and u + d ∈ R then cost(u +
d, R) = cost(u, R) + d ∗ (ck − c0).

2. If R = self(R, p), u ∈ R and u+d ∈ delay(R, p) then cost(u+d, delay(R, p)) =
cost(u, R) + d ∗ p.

3. cost(u, reset(x, R)) = inf{ cost(v, R) | [x 7→ 0]v = u }.
Proof. Directly from the definitions of the operators and cost. 2

4 Symbolic Semantics and Algorithm

In this section, we provide a symbolic semantics for linearly priced timed au-
tomata based on the notion of priced regions and the associated operations
presented in the previous section. As a main result we shown that the cost of
an execution of the underlying automaton is captured sufficiently accurately.
Finally, we present an algorithm based on priced regions.

Definition 10 (Symbolic Semantics). The symbolic semantics of an LPTA
A is defined as a transition system with the states L × ((C → N) × Seq(2C) ×
Seq(N)), with initial state (l0, (h0, [C], [0])) (where h0 assigns zero to the integer
part of all clocks in C), and with the following transition relation:

– (l, R) → (l, delay(R, P (l))) if delay(R, P (l)) ∈ I(l).
– (l, R) → (l′, R′) if there exists g, r such that l

g,a,r−−−→ l′, R ∈ g, R′ =
reset(R, r) ⊕ P ((l, g, a, r, l′)) and R′ ∈ I(l′).

– (l, R) → (l, self(R, P (l)))

In the remainder, states and executions of the symbolic transition system for
LPTA A will be referred to as the symbolic states and executions of A.

Lemma 1. Given LPTA A, for each execution α of A that ends in state (l, u),
there is a symbolic execution β of A, that ends in symbolic state (l, R), such
that u ∈ R, and cost(u, R) ≤ cost(α).

Proof. For this proof we first observe that, given g ∈ B(C), if u ∈ R and u ∈ g,
then R ∈ g.

We prove this by induction on the length of α. Suppose α ends in state (l, u).
The base step concerns α with length 0, consisting of only the initial state (l0, u0)
where u0 is the valuation assigning zero to all clocks. Clearly, cost(α) = 0. Since
the initial state of the symbolic semantics is the state (l0, (h0, [C], [0])), in which
h0 assigns zero to the integer part of all clocks, and the fractional part of all clocks
is zero, we can take β to be (l0, (h0, [C], [0])). Clearly, there is only one valuation

10



u ∈ (h0, [C], [0]), namely the valuation u that assigns zero to all clocks, which is
exactly u0, and by definition, cost(u0, (h0, [C], [0])) = 0 and trivially 0 ≤ 0.

For the induction step, assume the following. We have an execution α′ in
the concrete semantics, ending in (l′, u′), a corresponding execution β′ in the
symbolic semantics, ending in (l′, R′), such that u′ ∈ R′, and cost(u′, R′) ≤
cost(α′).

Suppose (l′, u′)
a,p−−→ (l, u). Then there is a transition l′

a,g,r−−−→ l in the au-
tomaton A such that u ∈ g, u = [r 7→ 0]u′, u ∈ I(l) and p = P ((l′, a, g, r, l)).
Now u′ ∈ g implies that R′ ∈ g. Let R = reset(R′, r)⊕ p. It is easy to show that
u = [r 7→ 0]u′ ∈ R and as u ∈ R we then have that R ∈ I(l). So (l′, R′) → (l, R)
and

cost(u, R) = inf{ cost(v, R′) | [r 7→ 0]v = u } + p

≤ cost(u′, R′) + p

≤IH cost(α′) + p

= cost(α)

Suppose (l′, u′)
ε(d),p∗d−−−−−→ (l, u), where p = P (l), i.e. l = l′, u = u′ + d,

and u ∈ I(l). Now there exist sequences Ro, R1, . . . , Rm and d1, . . . , dm of price
regions and delays such that d = d1 + · · ·+ dm, R0 = R′ and for i ∈ {1, . . . , m},
Ri = delay(Ri−1, p) with u′+

∑i
k=1 dk ∈ Ri. This defines the sequence of regions

wisited without considering cost. To obtain the priced regions with the optimal
cost we apply the self operation. Let R′

0 = self(R0, p) and for i ∈ {1, . . . , m}
let R′

i = delay(R′
i−1, p) (in fact, for i ∈ {1, . . . , m}, R′

i = self(R′
i, p) due to

Proposition 1.4 and R′
i ≤ Ri). Clearly we have the following symbolic extension

of β′:
β′ → (l′, R′

0) → · · · → (l′, R′
m)

Now by Proposition 2.2 (the condition of Proposition 2.2 is satisfied for all
R′

i(i ≥ 0) because of Proposition 1.4:

cost(u′ + d, R′
m) = cost(u′, R′

0) + d ∗ p

≤ cost(u′, R′) + d ∗ p

≤IH cost(α′) + d ∗ p

= cost(α)

2

Lemma 2. Whenever (l, R) is a reachable symbolic state and u ∈ R, then
mincost((l, u)) ≤ cost(u, R).

Proof. The proof is by induction on the length of the symbolic trace β reaching
(l, R). In the base case, the length of β is 0 and (l, R) = (l0, R0), where R0 is the
initial price region (h0, [C], [0]) in which h0 associates 0 with all clocks. Clearly,
there is only one valuation u ∈ R0, namely the valuation which assigns 0 to all
clocks. Obviously, mincost((l0, u0)) = 0 ≤ cost(u0, R0) = 0.

11



For the induction step, assume that (l, R) is reached by a trace β with length
greater than 0. In particular, let (l′, R′) be the immediate predecessor of (l, R)
in β. Let u ∈ R. We consider three cases depending on the type of symbolic
transition from (l′, R′) to (l, R).
Case 1: Suppose (l′, R′) → (l, R) is a symbolic delay transition. That is, l =
l′, R = delay(R′, p) with p = P (l) and R ∈ I(l). We consider two sub-cases
depending on whether R′ is self-delayable or not5.
Assume that R′ is not self-delayable, i.e. R′ = (h′, [r′0, . . . , r′k], [c′0, . . . , c′k]) with
r′0 6= ∅. Then R = (h′, [∅, r′0, . . . , r′k], [c′0, . . . , c

′
k, c′0 + p]). Let x ∈ r′0 and let

u′ = u − d where d = frac(u(x)). Then u′ ∈ R′ and (l′, u′)
ε(d),q−−−→ (l, u) where

q = d∗p. Thus mincost((l, u)) ≤ mincost((l′, u′))+d∗p. By induction hypothesis,
mincost((l′, u′)) ≤ cost(u′, R′), and as cost(u, R) = cost(u′, R)+ d ∗ p, we obtain,
as desired, mincost((l, u)) ≤ cost(u, R).
Assume that R′ is self-delayable. That is, R′ = (h′, [r′0, r′1, . . . , r′k], [c′0, . . . , c′k])
with r′0 = ∅ and R = (h′′, [r′k, r′1, . . . , r

′
k−1], [c

′
1, . . . , c

′
k]). Now, let x ∈ r′1. Then for

any d < frac(u(x)) we let ud = u− d. Clearly, ud ∈ R′ and (l, ud)
ε(d),p∗d−−−−−→ (l, u).

Now,

mincost((l, u)) ≤ mincost((l, ud)) + p ∗ d

≤IH cost(ud, R
′) + p ∗ d

Now cost(u, R) = cost(ud, R
′)+(c′k−c′0)∗d so it is clear that cost(ud, R

′)+k∗d →
cost(u, R) when d → 0 for any k. In particular, cost(ud, R

′) + p ∗ d → cost(u, R)
when d → 0. Thus mincost((l, u)) ≤ cost(u, R) as desired.
Case 2: Suppose (l′, R′) → (l, R) is a symbolic action transition. That is R =
reset(R′, r) ⊕ p for some transition l′

g,a,r−−−→ l of the automaton with R′ ∈ g
and p = P ((l′, g, a, r, l)). Now let v ∈ R′ such that [r 7→ 0]v = u. Then clearly
(l′, v)

a,p−−→ (l, u). Thus:

mincost((l, u)) ≤ inf{mincost((l, v)) | v ∈ R′, [r 7→ 0]v = u }
≤IH inf{ cost(v, R′) | [r 7→ 0]v = u }
= cost(u, R) by Proposition 2.3

Case 3: Suppose (l′, R′) → (l, R) is a symbolic self-delay transition. Thus, in par-
ticular l = l′. If R = R′ the lemma follows immediately by applying the induction
hypothesis to (l′, R′). Otherwise, R′ is self-delayable and R′ and R are identical
except for the cost of the ‘last’ vertex; i.e. R′ = (h, [r0, . . . , rk], [c0, . . . , ck−1, ck])
and R = (h, [r0, . . . , rk], [c0, . . . , ck−1, c0 + p]) with r0 = ∅, c0 + p < ck and
p = P (l). Now let x ∈ r1. Then for any d > u(x) we let ud = u − d. Clearly,

ud ∈ R (and ud ∈ R′) and (l, ud)
ε(d),p∗d−−−−−→ (l, u). Now:

mincost((l, u)) ≤ mincost((l, ud)) + p ∗ d

≤IH cost(ud, R
′) + p ∗ d

5 A priced region, R = (h, [r0, . . . , rk], [c0, . . . , ck]), is self-delayable whenever r0 = ∅.

12



i ii

Fig. 6. Two reachable sets of priced regions.

Now let R′′ = (h, [r1, . . . , rk], [c0, . . . , ck−1]). Then R = delay(R′′, p) and R′ =
delay(R′′, ck − c0). Now cost(ud, R

′) = cost(uu(x), R
′′) + (ck − c0) ∗ (d − u(x))

which converges to cost(uu(x), R
′′) when d → u(x). Thus cost(ud, R

′) + p ∗
d → cost(uu(x), R

′′) + p ∗ d = cost(u, R) for d → u(x). Hence, as desired,
mincost((l, u)) ≤ cost(u, R). 2

Combining the two lemmas we obtain as a main theorem that the symbolic
semantics captures (sufficiently) accurately the cost of reaching states and loca-
tions:

Theorem 1. Let l be a location of a LPTA A. Then

mincost(l) = min({mincost(R) | (l, R) is reachable})
Example 2. We now return to the linearly priced timed automaton in Fig. 2
where the value of both α and β is two, and look at its symbolic state-space.
The shaded area in Fig. 6(i) including the lines in and around the shaded area
represents some of the reachable priced regions in location B after time has
passed (a number of delay actions have been taken). Only priced regions with
integer values up to 3 are shown. The numbers are the cost of the vertices. The
shaded area in Fig. 6(ii) represents in a similar way some of the reachable priced
regions in location C after time has passed. For a more elaborate explanation of
the reachable state-space we refer to the appendix. 2

The introduction of priced regions provides a first step towards an algorithmic
solution for the minimum-cost reachability problem. However, in the present
form both the integral part as well as the cost of vertices of priced regions
may grow beyond any given bound during symbolic exploration. In the unpriced
case, the growth of integral parts is often dealt with by suitable abstractions of
(unpriced) regions, taking the maximal constant of the given timed automaton
into account. Here we have chosen a very similar approach exploiting the fact,
that any LPTA A may be transformed into an equivalent “bounded” LPTA Ã
in the sense that A and Ã reaches the same locations with the exact same cost.

13



Theorem 2. Let A = (L, l0, E, I, P ) be a LPTA with maximal constant max.
Then there exists a bounded time equivalent of A, Ã = (L, l0, E

′, I ′, P ′), satis-
fying the following:

1. Whenever (l, u) is reachable in Ã, then for all x ∈ C, u(x) ≤ max+2.
2. For any location l ∈ L, l is reachable with cost c in A if and only if l is

reachable with cost c in Ã

Proof. We construct Ã = (L, l0, E ∪ E′, I ′, P ′), as follows. E′ = {(l, x ==
maxA(x)+2, τ, x := maxA(x)+1, l)|x ∈ C, l ∈ L}. For l ∈ L, I ′(l) = I(l)

∧
x∈C x ≤

maxA(x) + 2, P ′(l) = P (l). For e ∈ (E ∪ E′), if e ∈ E then P ′(e) = P (e) else
P ′(e) = 0.

By definition, Ã satisfies the first requirement.
As to the second requirement. Let R be a relation between states from A

and Ã such that for ((l1, u1), (l2, u2)) ∈ R iff l2 = l1, and for each x ∈ C, if
u1(x) ≤ maxA(x) then u2(x) = u1(x), else u2(x) > maxA(x). We show that for
each state (l1, u1) of A which is reached with cost c, there is a state (l2, u2) of
Ã, such that ((l1, u1), (l2, u2)) ∈ R and (l2, u2) is reached with cost c, and vice
versa.

Let (l1, u1), (l2, u2) be states of A and Ã, respectively, We use induction on
the length of some execution leading to (l1, u1) or (l2, u2).

For the base step, the length of such an execution is 0. Trivially, the cost
of such an execution is 0, and if (l1, u1) and (l2, u2) are initial states, clearly
((l1, u1), (l2, u2)) ∈ R.

For the transition steps, we first observe that for each clock x ∈ C, u1(x) ∼ c
iff u2(x) ∼ c with ∼∈ {<,≤, >,≥} and c ≤ maxA(x) (∗). Assume ((l1, u1), (l2, u2))
∈ R, and (l1, u1) and (l2, u2) can both be reached with cost c. We make the fol-
lowing case distinction.

Case 1: Suppose (l1, u1)
ε(d),p−−−→A (l1, u1 + d). In order to let d time pass in

(l2, u2), we have to alternatingly perform the added τ transition to reset those
clocks that have reached the maxA(x) + 2 bound as many times as needed, and
then let a bit of the time pass. Let d1 . . . dm be a sequence of delays, such that
d = d1 + . . . + dm, and for x ∈ C and i ∈ {1, . . . , m}, if maxA(x) + 2 − (u1(x) +
d1 + . . . + di−1) ≥ 0 then di ≤ maxA(x) + 2 − (u1(x) + d1 + . . . + di−1), else
di ≤ 1 − frac(u1(x) + d1 + . . . + di−1). It is easy to see that for some u′

2,

(l2, u2)(
τ,0−−→)∗

ε(d1),p1−−−−−→ . . . (
τ,0−−→)∗

ε(dm),pm−−−−−−→ (l2, u′
2)

where pi = di ∗ P (l2). The cost for reaching (l1, u1 + d) is c + d ∗ PA(l1) =
c+d∗PÃ(l2) = c+(d1 + . . .+dm)∗PÃ(l2), which is the cost for reaching (l2, u′

2).
Now, ((l1, u1 + d), (l2, u′

2)) ∈ R, because of the following. For each x ∈ C, If
u1(x) > maxA(x), then u2(x) > maxA(x), and either x is not reset to maxA(x)+1
by any of the τ transitions, in which case still u′

2(x) > maxA(x), or x is reset
by some of the τ transitions, and then maxA(x) + 1 ≤ u′

2(x) ≤ maxA(x) + 2, so
u′

2(x) > maxA(x). If u1(x) ≤ maxA(x), then by u1(x) = u2(x), u2(x) ≤ maxA(x).
If (u1+d)(x) ≤ maxA(x), then x is not touched by any of the τ transitions leading

14



to (l2, u′
2), hence u′

2(x) = u2(x) + d1 + . . . + dm = u2(x) + d = (u1 + d)(x). If
(u1 +d)(x) > maxA(x), then x may be reset by some of the τ transitions leading
to (l2, u′

2). If so, then maxA(x) +1 ≤ u′
2(x) ≤ maxA(x) +2, so u′

2(x) > maxA(x).
If not, then u′

2(x) = u2(x)+ d1 + . . .+ dm = u2(x)+ d = (u1 + d)(x) > maxA(x).

Case 2: Suppose (l2, u2)
ε(d),p−−−→A (l2, u2+d). Then trivially ((l1, u1+d), (l2, u2+

d)) ∈ R. Now we show (l1, u1)
ε(d),p−−−→A (l1, u1 + d). Since (l2, u2 + d) ∈ IÃ, since

IÃ implies IA and since ((l1, u1 + d), (l2, u2 + d)) ∈ R, from observation (∗) it

follows that (l1, u1 + d) ∈ IA. So (l1, u1)
ε(d),p−−−→A (l1, u1 + d), and trivially, the

cost of reaching (l2, u2 + d) is c + d ∗ PÃ(l2) = c + d ∗ PA(l1), which is the cost
of reaching (l1, u1 + d).

Case 3: Suppose (l1, u1)
a,p−−→A (l′1, u

′
1). Let (l, g, a, r, l′) be a correspond-

ing edge. Then p = PA((l, g, a, r, l′)). By definition, (l, g, a, r, l′) ∈ EÃ and
PÃ((l, g, a, r, l′)) = PA((l, g, a, r, l′)). From observation (∗) it follows that u1 ∈ g
implies u2 ∈ g. It is easy to see that for x ∈ r, u′

1(x) = 0 = u2[r 7→ 0](x), and for
x 6∈ r, u′

1(x) = u1(x) and u2(x) = u2[r 7→ 0](x), so ((l′1, u′
1), (l′, u2[r 7→ 0])) ∈ R.

Combining this with observation (∗) it follows that u1[r 7→ 0] ∈ IA(l′) implies
u2[r 7→ 0] ∈ IÃ(l′), hence (l2, u2)

a,p−−→Ã (l′, u2[r 7→ 0]). Clearly, the cost of reach-
ing (l1, u′

1) is c+ d ∗PÃ((l, g, a, r, l′)) = c+ d ∗PA((l, g, a, r, l′)), which is the cost
of reaching (l2, u2[r 7→ 0]).

Case 4: Suppose (l2, u2)
a,p−−→Ã (l′2, u

′
2). Let (l, g, a, r, l′) be a corresponding

edge. If (l, g, a, r, l′) ∈ EA, then the argument goes exactly like in the previous
case. If (l, g, a, r, l′) 6∈ EA, then a = τ , p = 0, l′2 = l′ = l = l2, and x ∈ r implies
u′

2(x) = maxA(x) + 1 and u2(x) = maxA(x) + 2. Since the cost of reaching
(l′2, u

′
2) is c + 0 = c, it suffices to show ((l1, u1), (l2, u′

2)) ∈ R. For x 6∈ r, this
follows trivially. For x ∈ r, u2(x) = maxA(x) + 2, so u1(x) > maxA(x) and by
u′

2(x) = maxA(x) + 1 we have u′
2(x) > maxA(x). 2

Now, we suggest in Fig. 7 a branch-and-bound algorithm for determining the
minimum-cost of reaching a given target location lg from the initial state of a
LPTA. All encountered states are stored in the two data structures Passed and
Waiting, divided into explored and unexplored states, respectively. The global
variable Cost stores the lowest cost for reaching the target location found so
far. In each iteration, a state is taken from Waiting. If it matches the target
location lg and has a lower cost than the previously lowest cost Cost, then
Cost is updated. Then, only if the state has not been previously explored with
a lower cost do we add it to Passed and add the successors to Waiting. This
bounding of the search in line 8 of Fig. 7 may be optimized even further by adding
the constraint mincost(R) < Cost; i.e. we only need to continue exploration if
the minimum cost of the current region is below the optimal cost computed so
far. Due to Theorem 1, the algorithm of Fig. 7 does indeed yield the correct
minimum-cost value.

Theorem 3. When the algorithm in Fig. 7 terminates, the value of Cost equals
mincost(lg).

15



Cost := ∞
Passed := ∅
Waiting := {(l0, R0)}
while Waiting 6= ∅ do

select (l, R) from Waiting

if l = lg and mincost(R) < Cost then
Cost := mincost(R)

if for all (l, R′) in Passed: R′ 6≤ R then
add (l, R) to Passed

for all (l′, R′) such that (l, R) → (l′, R′): add (l′, R′) to Waiting

return Cost

Fig. 7. Branch-and-bound state-space exploration algorithm.

Proof. First, notice that if (l1, R1) can reach (l2, R2), then a state (l1, R′
1),

where R′
1 ≤ R1, can reach a state (l2, R′

2), such that R′
2 ≤ R2. We prove that

Cost equals min{mincost(R) | (lg, R) is reachable}. Assume that this does not
hold. Then there exists a reachable state (lg, R) where mincost(R) < Cost.
Thus the algorithm must at some point have discarded a state (l′, R′) on the
path to (lg, R). This can only happen in line 8, but then there must exist a
state (l′, R′′) ∈ Passed, where R′′ ≤ R′, encountered in a prior iteration of
the loop. Then, there must be a state (lg, R′′′) reachable from (l′, R′′), and
Cost ≤ mincost(R′′′) ≤ mincost(R), contradicting the assumption. The theo-
rem now follows from Theorem 1. ut

For bounded LPTA, application of Higman’s Lemma [11] ensures termination.
In short, Higman’s Lemma says that under certain conditions the embedding
order on strings is a well quasi-order.

Theorem 4. The algorithm in Fig. 7 terminates for any bounded LPTA.

Proof. Even if A is bounded (and hence yields only finitely many unpriced re-
gions), there are still infinitely many priced regions, due to the unbounded-
ness of cost of vertices. However, since all costs are positive application of Hig-
man’s lemma ensures that one cannot have an infinite sequence 〈(ci

1, . . . , c
i
m) :

0 ≤ i < ∞〉 of cost-vectors (for any fixed length m) without cj
l ≤ ck

l for all
l = 1, . . . , m for some j < k. Consequently, due to the finiteness of the sets of
locations and unpriced regions, it follows that one cannot have an infinite se-
quence 〈(li, Ri) : 0 ≤ i < ∞〉 of symbolic states without lj = lk and Rj ≤ Rk

for some j < k, thus ensuring termination of the algorithm. ut

Finally, combining Theorem 3 and 4, it follows, due to Theorem 2, that the
minimum-cost reachability problem is decidable.

Theorem 5. The minimum-cost problem for LPTA is decidable.

16



5 Conclusion

In this paper, we have successfully extended the work on regions and their op-
erations to a setting of timed automata with linear prices on both transitions
and locations. We have given the principle basis of a branch-and-bound algo-
rithm for the minimum-cost reachability problem, which is based on an accurate
symbolic semantics of timed automata with linear prices, and thus showing the
minimum-cost reachability problem to be decidable.

The algorithm is guaranteed to be rather inefficient and highly sensitive to
the size of constants used in the guards of the automata — a characteristic
inherited from the time regions used in the basic data-structure of the algorithm.
An obvious continuation of this work is therefore to investigate if other more (in
practice) efficient data structures can be found. Possible candidates include data
structures used in reachability algorithms of timed automata, such as DBMs,
extended with costs on the vertices of the represented zones (i.e. convex sets of
clock assignments). In contrast to the priced extension of regions, operations on
such a notion of priced zones6 can not be obtained as direct extensions of the
corresponding operations on zones with suitable manipulation of cost of vertices.

The need for infimum in the definition of minimum cost executions arises
from linearly priced timed automata with strict bounds in the guards, such as
the one shown in Fig. 3 and discussed in Example 1. Due to the use of infimum,
a linearly priced timed automaton is not always able to realize an execution
with the exact minimum cost of the automata, but will be able to realize one
with a cost (infinitesimally) close to the minimum value. If all guards include
only non-strict bounds, the minimum cost trace can always be realized by the
automaton. This fact can be shown by defining the minimum-cost problem for
executions covered by a given symbolic trace as a linear programming problem.

In this paper we have presented an algorithm for computing minimum-costs
for reachability of linearly priced timed automata, where prices are given as
constants (natural numbers). However, a slight modification of our algorithm
provides an extension to a parameterized setting, in which (some) prices may be
parameters. In this setting, costs within priced regions will be finite collections,
C, of linear expressions over the given parameters rather than simple natural
numbers. Intuitively, C denotes for any given instantiation of the parameters the
minimum of the concrete values denoted by the linear expressions within C. Now,
two cost-expressions may be compared simply by comparing the sizes of corre-
sponding parameters, and two collections C and D (both denoting minimums)
are related if for any element of D there is a smaller element in C. In the mod-
ified version of algorithm Fig. 7, Cost will similarly be a collection of (linear)
cost-expressions with which the goal-location has been reached (so far). From
recent results in [1] (generalizing Higman’s lemma) it follows that the ordering
on (parameterized) symbolic states is again a well-quasi ordering, hence guaran-
teeing termination of our algorithm. Also, we are currently working on extending
the algorithmic solution offered here to synthesis of minimum-cost controllers in
6 In particular, the reset-operation and the delay-operation.

17



the sense of [4]. In this extension, a priced region will be given by a conventional
unpriced region together with a min-max expression over cost vectors for the
vertices of the region. Also for this extension it follows from recent results in [1]
(generalizing Higman’s lemma) that the orderings on symbolic states are again
well-quasi orderings, hence guaranteeing termination of our algorithms.

Acknowledgements

The authors would like to thank Lone Juul Hansen for her great, creative effort
in making the figures of this paper. Also, the authors would like to thank Parosh
Abdulla for sharing with us some of his expertise and knowledge on the world
beyond well-quasi orderings.

References

1. Parosh Aziz Abdulla and Aletta Nylén. Better is better than well: On efficient
verification of infinite-state systems. In Proc. of the 14th IEEE Symp. on Logic in
Computer Science. IEEE, 2000.

2. R. Alur, C. Courcoubetis, and T. A. Henzinger. Computing accumulated delays in
real-time systems. In Proc. of the 5th Int. Conf. on Computer Aided Verification,
number 697 in Lecture Notes in Computer Science, pages 181–193, 1993.

3. R. Alur and D. Dill. Automata for Modelling Real-Time Systems. Theoretical
Computer Science, 126(2):183–236, April 1994.

4. E. Asarin and O. Maler. As soon as possible: Time optimal control for timed
automata. In Hybrid Systems: Computation and Control, number 1569 in Lecture
Notes in Computer Science, pages 19–30. Springer–Verlag, March 1999.

5. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Larsen, Paul Pettersson,
and Judi Romijn. Efficient guiding towards cost-optimality in uppaal. Accepted
for TACAS 2001.

6. Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and
Sergio Yovine. Kronos: A Model-Checking Tool for Real-Time Systems. In Proc.
of the 10th Int. Conf. on Computer Aided Verification, number 1427 in Lecture
Notes in Computer Science, pages 546–550. Springer–Verlag, 1998.

7. David Dill. Timing Assumptions and Verification of Finite-State Concurrent Sys-
tems. In J. Sifakis, editor, Proc. of Automatic Verification Methods for Finite
State Systems, number 407 in Lecture Notes in Computer Science, pages 197–212.
Springer–Verlag, 1989.

8. Ansgar Fehnker. Scheduling a steel plant with timed automata. In Proceedings of
the 6th International Conference on Real-Time Computing Systems and Applica-
tions (RTCSA99), pages 280–286. IEEE Computer Society, 1999.

9. T. A. Henzinger. The theory of hybrid automata. In Proc. of 11th Annual Symp.
on Logic in Computer Science (LICS 96), pages 278–292. IEEE Computer Society
Press, 1996.

10. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A Model
Checker for Hybird Systems. In Orna Grumberg, editor, Proc. of the 9th Int.
Conf. on Computer Aided Verification, number 1254 in Lecture Notes in Computer
Science, pages 460–463. Springer–Verlag, 1997.

18



11. G. Higman. Ordering by divisibility in abstract algebras. Proc. of the London
Math. Soc., 2:326–336, 1952.

12. Thomas Hune, Kim G. Larsen, and Paul Pettersson. Guided Synthesis of Con-
trol Programs Using Uppaal. In Ten H. Lai, editor, Proc. of the IEEE ICDCS
International Workshop on Distributed Systems Verification and Validation, pages
E15–E22. IEEE Computer Society Press, April 2000.

13. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal
on Software Tools for Technology Transfer, 1(1–2):134–152, October 1997.

14. Kim G. Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clock difference
diagrams. Nordic Journal of Computing, 6(3):271–298, 1999.

15. J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference decision dia-
grams. Technical Report IT-TR-1999-023, Department of Information Technology,
Technical University of Denmark, February 1999.

16. Peter Niebert, Stavros Tripakis, and Sergio Yovine. Minimum-time reachability
for timed automata. In IEEE Mediteranean Control Conference, 2000.

17. Peter Niebert and Sergio Yovine. Computing optimal operation schemes for multi
batch operation of chemical plants. VHS deliverable, May 1999. Draft.

19



A Example of Symbolic State-Space

In this appendix, we present part of the symbolic state-space of the linearly
priced timed automaton in Fig. 2 where the value of both α and β is two.
Figures 8(i)-(viii) show some of the priced regions reachable in a symbolic repre-
sentation of the states space. We only show the priced regions with integer value
less than or equal to three.

Initially all three clocks have value zero and when delaying the clocks keep
on all having the same value. Therefore the priced regions reachable from the
initial state are the ones on the line from (0, 0, 0) through (3, 3, 3) shown in
Fig. 8(i). The numbers on the line are the costs of the vertices of the priced
regions represented by the line. Since the cost of staying in location A is one,
the price of delay one time unit is one. Therefore the cost of reaching the point
(3, 3, 3) is three.

The priced regions presented in Fig. 8(ii) are the ones reachable after taking
the transition to location B, resetting the x clock. Performing the reset does not
change any of the costs, since the new priced regions are still one-dimensional and
no vertices are collapsed. In Fig. 8(iii) the reachable priced regions are marked
by a shaded area, including the lines inside the area and on the boundary. These
priced regions are reachable from the priced regions in Fig. 8(ii).

Taking the transition from location B to location C causes clocks y and z
to be reset. After resetting the priced regions in Fig. 8(iii), the priced regions in
Fig. 8(iv) are reachable. Finding the cost of a state s after the reset (projection)
is done by taking the minimum of the cost of the states projecting to s. When
delaying from these priced regions, the priced regions in Fig. 8(v) are reached
(again represented by the shaded area and the lines in and surrounding it).

Now we are left with a choice; Either we can take the transition to location D,
or take the loop transition back to location C. Taking the transition to location
D is only possible if the guard x ≥ 2∧ y ≤ 1 is satisfied. Some of the vertices in
Fig. 8(vi) are marked: only priced regions where all vertices are marked satisfy
the guard. Before reaching location E from D with these priced regions, we must
delay at least two time units to satisfy the guard z ≥ 3 on the transition from
location D to location E (this part of the symbolic state-space is not shown in
the figure). The minimum cost of reaching location E in this way is six.

The other possibility from location C is to take the loop transition which
resets the y clock. After resetting y in the priced regions in Fig. 8(v), the priced
regions in Fig. 8(vii) are reachable. From these priced regions we again can let
time pass. However, a two dimensional picture of the three dimensional priced
regions, reachable from the priced regions in Fig. 8(vii), is very hard to under-
stand. Therefore, we have chosen to focus on the priced regions which satisfy
the guard on the transition to location D. These priced regions are displayed
by stating the cost of their vertices in Fig. 8(viii). The reachable priced regions
satisfying the guard are the ones for which all vertices are marked with a cost
in Fig. 8(viii). Three of the priced regions satisfying the guard on the transition
from location C to location D, also satisfies the guard on the transition to loca-
tion E. This is the two vertices where z has the value three and the line between

20



i ii

iii iv

v vi

vii viii

Fig. 8. Sets of reachable priced regions.

21



these two points. The cost of reaching these points is five, so it is also possible
to reach location E with this cost.

After taking the loop transition in location C once we also had the choice
of taking it again. Doing this would yield the same priced regions as displayed
in Fig. 8(vii) but now with two added to the cost. Therefore the new priced
regions would be more costly than the priced regions already found and hence
not explored by our algorithm.

22



Recent BRICS Report Series Publications

RS-01-3 Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim G.
Larsen, Paul Pettersson, Judi Romijn, and Frits W. Vaan-
drager. Minimum-Cost Reachability for Priced Timed Automata.
January 2001. 22 pp. To appear inHybrid Systems: Computa-
tion and Control, 2001.

RS-01-2 Rasmus Pagh and Jakob Pagter.Optimal Time-Space Trade-
Offs for Non-Comparison-Based Sorting. January 2001.
ii+20 pp.

RS-01-1 Gerth Stølting Brodal, AnnaÖstlin, and Christian N. S. Peder-
sen. The Complexity of Constructing Evolutionary Trees Using
Experiments. 2001.

RS-00-52 Claude Cŕepeau, Fŕedéric Légaŕe, and Louis Salvail. How to
Convert a Flavor of Quantum Bit Commitment. December 2000.
24 pp. To appear inAdvances in Cryptology: International Con-
ference on the Theory and Application of Cryptographic Tech-
niques, EUROCRYPT ’01 Proceedings, LNCS, 2001.

RS-00-51 Peter D. Mosses.CASL for CafeOBJ Users. December 2000.
25 pp. Appears in Futatsugi, Nakagawa and Tamai, editors,
CAFE: An Industrial-Strength Algebraic Formal Method, 2000,
chapter 6, pages 121–144.

RS-00-50 Peter D. Mosses.Modularity in Meta-Languages. December
2000. 19 pp. Appears in2nd Workshop on Logical Frameworks
and Meta-Languages, LFM ’00 Proceedings, 2000.

RS-00-49 Ulrich Kohlenbach. Higher Order Reverse Mathematics. De-
cember 2000. 18 pp.

RS-00-48 Marcin Jurdziński and Jens V̈oge.A Discrete Stratety Improve-
ment Algorithm for Solving Parity Games. December 2000.

RS-00-47 Lasse R. Nielsen. A Denotational Investigation of Defunc-
tionalization. December 2000. Presented at16th Workshop
on the Mathematical Foundations of Programming Semantics,
MFPS ’00 (Hoboken, New Jersey, USA, April 13–16, 2000).

RS-00-46 Zhe Yang. Reasoning About Code-Generation in Two-Level
Languages. December 2000.


