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Cost Recurrences for DML Programs

Bernd Grobauer ∗

BRICS†

Department of Computer Science
University of Aarhus

June, 2001

Abstract

A cost recurrence describes an upper bound for the running time of
a program in terms of the size of its input. Finding cost recurrences is a
frequent intermediate step in complexity analysis, and this step requires
an abstraction from data to data size. In this article, we use information
contained in dependent types to achieve such an abstraction: Dependent
ML (DML), a conservative extension of ML, provides dependent types
that can be used to associate data with size information, thus describing
a possible abstraction. We systematically extract cost recurrences from
first-order DML programs, guiding the abstraction from data to data size
with information contained in DML type derivations.

1 Introduction

Analyzing the time complexity of a program is usually carried out in two steps.
First, one establishes an upper bound of the program’s running time as a func-
tion of the size of its input. Second, one approximates the growth of this ex-
tracted bounding function, thus determining the complexity class of the pro-
gram. The first step requires an abstraction from data to data size. Informa-
tion contained in dependent types can be used to achieve such an abstraction. In
this article, we show how to automatically extract time bounds from first-order
programs written in Dependent ML (DML), an extension of ML that provides
a limited form of dependent types. If a bound is successfully extracted, we can
guarantee that it is a recurrence, i.e., an equation defining a function in terms
of its result on smaller inputs. A recurrence that describes an upper bound for
the running time of a program is called a cost recurrence.

∗Ny Munkegade, Building 540, 8000 Aarhus C, Denmark.
E-mail: grobauer@brics.dk

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
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Limits and achievements of automated cost analysis Automated cost
analyses have inherent limits. For example, finding a cost recurrence for a
program is at least as hard as proving termination of the program. Also, finding
good approximations for the growth of recurrences (or, in general, almost any
kind of function) is known to be a hard problem.

Nevertheless, automated methods for cost analysis have been proposed. One
choice is to restrict the class of programs such that termination is guaranteed,
and the extracted time bounds can easily be approximated. For example, Reis-
tad and Gifford [7] consider functional programs without general recursion, using
only combinators such as map and zip. Methods that treat more general pro-
grams, as for example proposed by Le Métayer [4] and Rosendahl [8], usually
focus on extracting a cost program pc; if pc terminates, it calculates an upper
bound for the running time of a program p. Transforming pc may yield a version
compact enough to read off the complexity class of p. If not, pc still may be
useful for more empirical attempts to determine the time complexity of p, such
as plotting input size against the running time calculated by pc.

Dependent ML DML, which was developed by Xi [12, 16] in his PhD thesis,
extends ML with a limited form of dependent types: A DML type can be en-
riched with indices taken from a constraint domain (e.g., integers equipped with
their usual operations, with linear (in)equalities as constraints). For example,
the data type of lists can be enriched with a notion of length or a data type of
trees with a notion of height. The type language is expressive enough to encode
well-formedness criteria, such as a tree being balanced. DML function types
can express non-trivial properties, for example that a list is always mapped to a
list of the same length, or that a function with a balanced tree as input always
returns a balanced tree.

The design philosophy of DML is to use type-checking for the verification of
non-trivial correctness properties of ML programs—every valid ML program is
a valid DML program, because DML extends ML conservatively. For example,
to verify that a program for inserting an element into a balanced tree indeed
returns a balanced tree, the user needs to (1) enrich a data type of trees such
that only balanced trees are accepted, and (2) declare in a type annotation that
the insert function maps balanced trees to balanced trees. A range of similar
examples convincingly demonstrates that DML is a useful tool for practical
programming [12, 13, 15, 16].

This work We use information contained in DML type derivations to extract
cost recurrences from DML programs. With DML types, data can be associated
with a measure of data size, which essentially describes an abstraction from data
to data size that is necessary for extracting a cost recurrence. For example,
enriching the data type of lists with a notion of length describes an abstraction
from lists to their length. More intricate measures—the high expressiveness
of DML types allows the user to tailor measures to each situation. In many
cases, measures with several components (e.g., for trees, the pair of height and
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number of leaves) prove to be useful. Size measures often coincide with shape
information for data that is useful for verifying program properties by DML
type-checking. Therefore, in many cases, DML types that express correctness
properties of a program can be reused for establishing the complexity of the
program.

We allow recurrences to contain logical formulas, which are used to restrict
arguments that cannot be completely determined. Thus, logical information
contained in DML type derivations about such arguments can be included in cost
recurrence rather than approximating them in an ad-hoc way. Compared with
other methods that extract executable cost bounds—and therefore are required
to carry out approximations—we leave the choice of how to approximate to the
user, thus separating concerns between extracting a cost recurrence and solving
it.

We combine the extraction of a cost bound with a check whether the result
is indeed a recurrence: The information contained in DML type derivations
facilitates a check of whether the size measure decreases for each recursive call
under a wellfounded ordering. In other words, the user has to choose a size
measure that constitutes a termination order for the program in question. This
is no limitation compared to other methods: Because finding a cost bound
entails a termination proof, in all methods for cost analysis a termination proof
needs to be found in some way. It is an asset of using DML that the termination
proof can be concisely encoded through the size measure.

An example Consider a zip function written in ML:

fun zip lp =

case lp of

(nil,nil) => nil

| (cons(x,xs),cons(y,ys)) => cons((x,y),zip(xs,ys))

DML offers the possibility to annotate zip with a type containing an enriched
version of lists. We enrich the data type of lists with a notion of length; the
type of α-typed lists consisting of n elements is written as α list(n). Obviously,
zip should take two lists of equal length and return a list of the same length.
DML type checking validates that zip has the type

Πn : N . α list(n) × β list(n) → (α × β)list(n).

Intuitively, Π can be read as “for all”.1 In ML, a pair of two lists with different
lengths could be passed to zip, which would result in a runtime error. In DML,
the given type of zip allows zip only to be called with two lists of equal length.
The type also shows that the resulting list is of the same length as the input
lists.

1Formally, Π introduces a dependent product, i.e., a product where the value of the first
component (here n) determines the type of the second component (here the function from a
pair of lists of length n to a list of length n). Dependent products are also called Π-types.
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Let us measure running time as the number of calls to user-defined functions,
giving each call a cost of one unit. The resulting recurrence describes the number
of calls to zip as a function of the length of the two input lists:

zipc(n) =

{
n = 0 → 0

n > 0 → 1 + zipc(n − 1)

This cost recurrence is extracted from a DML type derivation for zip. In the
type derivation, the arguments to zip—two lists—are associated with an index
n that represents their length. Using this information, the extraction algorithm
abstracts from the lists to their length n. For example, the case expression is
turned into a conditional by inferring for each branch a condition on n that has
to hold if the pattern is matched. Similarly, the algorithm derives from the type
derivation that the recursive call of zip has a list of length n − 1 as argument,
and thus generates a call zipc(n − 1). Obviously, n − 1 < n, so the extracted
bound is a recurrence.

The recurrence can easily be solved: zipc(n) = n.

The remainder of the article The article is structured as follows: Section 2
gives an introduction to DML, Section 3 presents an intuitive account of our
method for extracting cost recurrences and gives several examples, Section 4
contains a formal account, Section 5 treats related work, and Section 6 con-
cludes. Appendix A gives a short overview over the formal definition of DML,
and Appendix B contains details of the formal development of this work.

2 Background: Dependent ML

DML provides dependent types in which type index objects are limited to some
constraint domain C. Type checking for DML is decidable; it is based on solv-
ing constraints in C. For dependently typed languages with significantly more
expressive types (e.g., Cayenne [1]) type checking is undecidable.

We consider an effect-free fragment of DML. As constraint domain, we choose
integers, constrained by linear (in)equalities—we write Z both for the sort of
integers and the constraint domain. In the following, we present a short intro-
duction to programming in DML and sketch the formal specification of DML.
The latter forms the basis for the formal development presented in Section 4.

2.1 A programmer’s view of DML

The only new aspect for an ML programmer is the extended type system, which
contains type indices, in the present case integers.

2.1.1 Enriched recursive data types

As indicated in the example in Section 1, in DML a list type can be enriched
with a notion of length, enabling us to express the type of α-typed lists of n
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elements as α list(n). The DML data-type definition is

datatype α list with N =

nil(0)
| Π n : N . cons(n + 1) of α× α list(n)

It is obtained from an ordinary definition of lists in ML by making the following
additions:

1. The phrase “with N” has been added. This signifies that the data type
of lists is to be enriched with one index and that this index is restricted
to the sort of natural numbers. The constraint language of DML allows
the definition of subsorts of an already defined sort: N stands for {k : Z |
k ≥ 0}.

2. Constructors and occurrences of “list” are augmented with an index.
The constructor nil is indexed with 0, thus defining the empty list to be
of type α list(0). A list built with cons is of type α list(n + 1), provided
that cons was applied to an element of type α list(n). Hence, cons is
indexed with n + 1.

3. The definition of the cons case exhibits a quantification over an index vari-
able n. This index variable is necessary to express the dependence between
the index of cons and the index of the list appearing in its branch. The
quantification restricts the index variable to the sort of natural numbers.

Similarly, we can define the data type of a list of lists α llist(m,n) as

datatype α llist with (N,N) =

lnil(0,0)
| Π m, n1, n2 : N . lcons(m + 1,n1 + n2) of

α list(n1) × α llist(m,n2)

The first index stands for the number of inner lists and the second index for the
total number of elements the inner lists contain.

The example of lists provides some intuition of how to define enriched recur-
sive data types in two steps: First, decide on the number of indices to be used in
the data type, along with the sorts the indices are to be restricted to. Second,
annotate each constructor with the appropriate indices. When an index of a
constructor depends on indices of recursive data types that appear under that
constructor, introduce new index variables using quantification. An index can
be defined as a function of other indices using all operations of the constraint
domain.

In the introduction we mentioned that enriched data types can encode well-
formedness criteria. As an example, we define a data type of height-balanced
trees, i.e., the height difference between the two children of a node can be at
most one:
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datatype α HBtree with (N,N) =

Leaf(0,0)
| Π s1, s2, h1 : N . Πh2 : {k : N | h1 − 1 ≤ k ≤ h1 + 1} .

Node(1 + max(h1, h2), s1 + s2 + 1) of

α HBtree(h1,s1) × α × α HBtree(h2,s2)

We use two indices, where the first represents the height of the tree and the
second represents the number of elements stored in the tree. When defining a
node, we require for the heights h1 and h2 of the subtrees, that they differ by
at most one. This can be achieved by (1) defining a sort of natural numbers k
that differ by at most one from h1, and (2) restricting h2 to this new sort. As a
consequence, only two trees with a height difference of at most one can be the
children of a node, i.e., only height-balanced trees can have type α HBtree.

Note that for defining a new sort, all predicates and operations of the chosen
constraint domain can be used. In the case of height-balanced trees, we use −,
+, and ≤.

2.1.2 DML function types

As in ML, a data-type definition gives rise to type declarations for its construc-
tors. For example, the definition of enriched lists presented above yields a type
α list(0) for the constructor nil, and the type

Πn : N . α × α list(n) → α list(n + 1)

for the constructor cons.
Figure 1 shows three functions operating on the data types defined in Sec-

tion 2.1.1, together with their DML types:

• append takes two lists of n1 and n2 elements, respectively, and returns a
list of n1 + n2 elements.

• flatten takes a list of lists that contain a total number of n elements,
and returns a list of n elements

• occurs takes a string and a balanced tree, and returns a truth value,
according to whether the string is stored in the tree or not (assuming a
sorted balanced tree).

The DML types of append, flatten and occurs add shape information to
the respective ML type of each function: In the case of append and flatten,
we learn about the shape of the result, i.e., how long the output list is. For
occurs, the DML type restricts the input tree to trees of a special shape, namely
balanced trees.

So far, the output indices in the DML type of a function could always be
specified as a function of the input indices. For relational dependencies, DML
offers existential types. These allow one to restrict the index of an output
to a sort—because sorts can be defined in terms of already declared indices,
relational dependencies can be expressed.
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append : Π n1, n2 : N . α list(n1) × α list(n2) → α list(n1 + n2)
fun append lp =

case lp of

(nil,l2) => l2

| (cons(x,xs),l2) => cons(x,append(xs,l2))

flatten : Π m, n : N . α llist(m,n) → α list(n)
fun flatten ll =

case ll of

lnil => nil

| lcons(xs,rest) => append(xs,flatten rest)

occurs : Π h, s : N . string × string HBtree(h,s) → bool
fun occurs(e,t) =

case t of

Leaf => false

| Node(t1,e’,t2) => if e = e’

then true

else if e < e’

then occurs(s,t1)

else occurs(s,t2)

Figure 1: Some functions with their DML types

Consider, for example, a function that inserts a string into a balanced tree.
Depending on how the tree is rebalanced, the result can be a tree of equal
height or a tree higher by one. Similarly, the number of elements in the tree
stays equal if the element to be inserted already was in the tree, otherwise the
number is increased by one. A valid DML type for a correct insert function
on height-balanced trees is as follows:

Πh, s : N . string × HBtree(h,s) →
∃h′ : {k : N | h ≤ k ≤ h + 1} .
∃ s′ : {k : N | s ≤ k ≤ s + 1} .
HBtree(h′,s′)

The type of the output tree restricts height and size to be either equal or larger
by one than the height and size of the input tree, respectively.

2.2 A formal specification of DML

In the theoretical development of DML [12], three languages are defined, whose
interplay is displayed graphically in Figure 2.

• ML0 basically is an extension of Mini-ML with general pattern matching.
It formalizes a manageable subset of ML.
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e∗ : τ

eval
��

||·|| // e : σ

eval
��

e′ : τ
|·|oo

type elaboration

ww

v∗ : τ
||·|| // v : σ

︸ ︷︷ ︸
DMLΠ

0 (C)
︸ ︷︷ ︸
ML0

︸ ︷︷ ︸
DML0(C)

Figure 2: Interplay of languages

• DMLΠ
0 (C) is an explicitly typed language with dependent types, i.e., types

that are indexed with elements from a constraint domain C. Its syntax is
that of ML0, adding abstraction over index variables and application of
an expression to index expressions. A canonical erasure || · || that removes
index-related syntax both from the term and the type language, maps
DMLΠ

0 (C) into ML0. The erasure commutes with evaluation.

• DML0(C) enriches ML0 with dependent types; it has the same type lan-
guage as DMLΠ

0 (C). DML0(C) requires type-annotations only for recur-
sive definitions. An erasure on the type language extends to an erasure
| · | that maps DML0(C) into ML0. A type-elaboration algorithm maps
a DML0(C) program with correct type annotations into DMLΠ

0 (C) such
that (1) the type annotations are preserved and (2) the erasure of both
terms results in the same ML0 term.

DMLΠ
0 (C) allows easy type-checking, because it is explicitly typed and in-

dices are part of the term language. For the same reason, however, DMLΠ
0 (C)

is impractical for actual programming. Instead, the user works with DML0(C),
which corresponds to the language, the example programs of Section 2.1.2 are
given in: Their displayed DML-types are the type-annotations that are required
for the implicit recursive definitions. Type-checking is carried out by a type elab-
oration algorithm [12, Chapter 4], evaluation by applying the erasure and the
ML0 evaluation mechanism.

In the following, we first give some basic facts about constraint domains and
the constraint language used to express the index objects for DML types. We
then briefly describe DMLΠ

0 (C).2 The description glosses over many details—we
refer the reader to Xi’s PhD thesis [12] for the complete picture.

2For simplicity, we restrict the presentation to the monomorphic case without existential
types—polymorphism and existential types are treated in extensions of DMLΠ

0 (C).
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2.2.1 Constraints in DML

A constraint domain C is defined by (1) a signature Σ that declares a base sort
along with basic operations and predicates and (2) a Σ-structure. For example,
for the constraint domain Z, the signature declares the base sort Z and the
usual operations (+, −, mod , etc.) and predicates (<, ≥, etc.) over integers;
the Σ-structure is given by the standard model of integers.

sorts γ ::= b ||| 1 ||| γ1 × γ2 ||| {a : γ | P}
propositions P ::= > ||| ⊥ ||| i = j ||| p(i) ||| P1 ∧ P2 ||| P1 ∨ P2

objects i, j ::= a ||| f(i) ||| 〈〉 ||| 〈i, j〉 ||| fst(i) ||| snd(i)
contexts φ ::= · ||| φ, a : γ ||| φ, P

Figure 3: Constraint language

DML uses the constraint language defined in Figure 3 to express the index
objects for DML types. New sorts can be defined by pairing already defined sorts
or restricting an already defined sort with a sort proposition. Sort propositions
are built from the basic predicates p of the constraint domain. Index sorts serve
as types for index objects, in which basic operations f of the constraint domain
can appear. An index context is given as a collection of index propositions and
type declarations for index variables.

DML type-checking requires a constraint solver that is able to handle con-
straints of the form

Φ ::= > ||| ⊥ ||| i = j ||| p(i) ||| Φ1 ∧ Φ2 ||| Φ1 ∨ Φ2 ||| ∀a : γ.Φ ||| ∃a : γ.Φ

Constraint satisfaction under a given index context, which is written as φ |= Φ,
is defined in the canonical way.

2.2.2 The language DMLΠ
0 (C)

A grammar of the DMLΠ
0 (C) syntax is given in Figure 4.

τ ::= δ(i) ||| 1 ||| (τ1 × τ2) ||| (τ1 → τ2) ||| Π a : γ . τ
e ::= x ||| 〈〉 ||| 〈e1, e2〉 ||| c[i1] . . . [in] ||| c[i1] . . . [in](e)

||| (case e of ms) ||| (lam x : τ . e) ||| e1(e2)
||| let x = e1 in e2 end ||| (fix x : τ.e)
||| (λa : γ . e) ||| e[i]

p ::= x ||| c[a1] . . . [an] ||| c[a1] . . . [an](p) ||| 〈〉 ||| 〈p1, p2〉
ms ::= p ⇒ e ||| p ⇒ e | ms

Figure 4: Syntax of DMLΠ
0 (C)
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In the grammar of the type language, δ(i) stands for a data type δ that is in-
dexed with index object i. The DML data-type declaration of an enriched data
type δ(i) yields constructor types of form Πa1 : γ1. . .Π ak : γk . τ → δ(i) for con-
structors without argument such as nil , and Π a1 : γ1. . .Π ak : γk . τ → δ(i) for
constructors with argument such as cons . Several examples of types appeared
in Section 2.1.2.

In addition to the usual constructs, the term language provides abstraction
over index variables (λa : γ . e) and application of an expression to an index
object (e[i]). Furthermore, a constructor c of a recursive data type only appears
with a number of index arguments—index variables when appearing in a pattern
p and index objects otherwise. The number and sorts of index arguments is
determined by the constructor type, which is inferred from the corresponding
data type definition (see Section 2.1.2).

A typing judgment for DMLΠ
0 (C) has the form

φ; Γ ` e : τ,

where φ is an index context and Γ a normal context; an overview over the typing
rules for DMLΠ

0 (C) is presented in Appendix A.1.
Substitutions play a central role in the formalization of DML: They are used

both in the definition of the typing system and the semantics (Appendix A.2).
A substitution can both affect index variables and normal variables:

θ ::= [] ||| θ[a 7→ i] ||| θ[x 7→ e]

For a substitution θ, its restriction to index variables is referred to as θφ, its
restriction to normal variables as θΓ.

The application of a substitution θ to a term t is written t[θ]. With θ1 ◦ θ2

we denote the substitution mapping t to (t[θ1])[θ2]; with θ1θ2 we denote the
substitution that behaves like θ1 on all variables in dom(θ1)\dom(θ2), and like
θ2 on all other variables.

3 Extracting cost recurrences

We first give an intuitive account of our method for extracting cost recurrences
from DML programs, deferring a formal treatment to Section 4. We then present
examples illustrating some distinctive features of the method.

3.1 The intuition behind extracting cost recurrences

We extract cost recurrences from first-order DML programs of the form

F1:Π a0 : γ0. . . Π aj1 : γj1 . (ρ10 × ρ11 · · · × ρ1l1) → ρ1

fun F1(x0,x1,. . .,xl1) = e1
...

Fk:Π a0 : γ0. . . Π ajk : γjk . (ρk0 × ρk1 · · · × ρklk) → ρk

fun Fk(x0,x1,. . .,xlk) = ek

10



where we write ρ ::= δ(i) ||| 1 ||| (ρ1 × ρ2) for first-order types; also data-type
constructors are only allowed to take first-order arguments. Because indices are
used to abstract from data to data size, we require that (1) all sorts γ have
been constructed only with subsorts of N and (2) data types are enriched such
that for any i, all indices appearing in a branch of a data type δ(i) must be
bounded.3

We count cost in terms of the number of calls to user-defined functions F and
to constructors c, assigning a cost of cF and cc for each call, respectively. cF

and cc are constants of the domain in which cost is measured, e.g., the natural
numbers.

The first step of extracting a cost recurrence from a DML program is type
elaboration, which yields a DMLΠ

0 (Z) program.4

Example For the append function from Figure 1, type elaboration yields the
DMLΠ

0 (Z) program displayed in Figure 5. Type elaboration makes the indices
explicit in the term language: index variables n1 and n2 are abstracted over;
pattern matching against cons introduces a new index variable n′

1; cons and
the recursive call of append are passed index objects that describe the length of
the respective list arguments passed to cons and append. Because DMLΠ

0 (Z) is
monomorphic, assume that the data type list has been defined for a fixed type of
elements, say string. The constructors nil and cons then are typed as follows:

nil : list(0)
cons : Πn : N . string × list(n) → list(n + 1)

fix append : Πn1 : N . Πn2 : N . list(n1) × list(n2)
→ list(n1 + n2).

λn1 : N . λn2 : N . lam lp : list(n1) × list(n2) .
case lp of

〈nil , l2〉 ⇒ l2
| 〈cons [n′

1]〈x, xs〉, l2〉 ⇒
cons[n′

1 + n2]〈x, append [n′
1][n2]〈xs, l2〉〉

Figure 5: The append function in DMLΠ
0 (C)

We now describe intuitively how the extraction algorithm works. Note that
all steps can be carried out automatically; for manipulating constraints, the
algorithm uses a constraint solver for Z.

3More precisely speaking, every constructor type Π a1 : γ1. . .Π ak : γk . ρ → δ(i) must be
such that for a fixed δ(i), there are only finitely many z1, . . . zk such that c[z1] . . . [zk] is of
type ρ → δ(i). This condition is met for every data-type definition in which the indices convey
size information: structures of a given size cannot contain substructures of arbitrary size.

4Because type elaboration as defined by Xi [12, Chapter 4] works on DML0(C) programs,
the program has to be rewritten in DML0(Z). This is easily done by replacing the ML
function-definition syntax with a recursive definition (keyword fix), a lambda-abstraction
(keyword lam), and a case expression with a single pattern, and declaring F1 . . . Fk in a row
of nested let-statements.
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The type of each function determines the arguments of the corresponding
recurrence equation. A function

F : Π a0 : γ0. . . Π al : γl . ρ1 → ρ2

gives rise to a recurrence equation F c with a0 . . . al as formal parameters.

Example (cont.) For append, a recurrence equation append c with formal pa-
rameters n1 and n2 is extracted.

The extraction algorithm works on the body of the function definitions. The
issues that have to be dealt with are

1. How to treat case expressions?

2. How to treat index variables introduced by pattern matching?

3. How to assign and add up cost?

How to treat case expressions? To abstract from data to data size,
we need to turn case expressions, which examine data, into conditionals that
examine data size. Such a transformation can be achieved using information
contained in the DMLΠ

0 (Z) type derivation: During type checking, constraints
over the index objects in the program are collected in an index context. Consider
a branch of a case expression over some type ρ. The type derivation contains a
collection of constraints that have to be satisfied when entering the branch, i.e.,
when the pattern of the branch is matched. By projecting out these constraints
over the index variables contained in ρ, i.e., eliminating all other index variables,
a guard for the corresponding branch of a conditional can be derived.

Example (cont.) The case expression in append is type-checked under the in-
dex context

φ = n1 : N, n2 : N

For the two branches, additional constraints are generated:

• For the branch with pattern 〈nil , l2〉, the index context n1 = 0 is generated.

• For the branch with pattern 〈cons [n′
1]〈x, xs〉, l2〉, the index context n′

1 :
N, n1 = n′

1 + 1 is generated.

From the conjunction of φ and the newly generated index context of each branch,
we can derive a condition in terms of n1 and n2 by projecting out over n1 and
n2: The result is n1 = 0 for the first branch and n1 > 0 for the second branch.

In general, it is possible that the generated guards overlap, even though
the patterns of the case expression are mutually exclusive. When, during the
evaluation of a recurrence equation, more than one guard is satisfied, all possible
branches are evaluated and the maximum value is returned.
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How to treat index variables introduced by pattern matching? A
pattern can introduce new index variables; these index variables may appear
within the branch guarded by the pattern, and thus also may play a role in the
corresponding conditional branch of the extracted recurrence equation. Often,
we can eliminate such index variables by deriving equality constraints that de-
fine a new index variable in terms of other index variables. If not, then the
constraints can be used to derive a restriction for the values of the new index
variables. This restriction is inserted into the extracted conditional branch.

Example (cont.) The second branch of the case expression in append in-
troduces the new index variable n′

1. The constraints allow us to derive that
n′

1 = n1 − 1, so n′
1 can be eliminated.

How to count and add up cost? When extracting a cost recurrence, we
need to count every call to a user-defined function F with a cost of cF and every
use of a constructor c with a cost of cc. Consider first a constructor c without
arguments: In the cost recurrence, we simply replace c[i1] . . . [ik] with cc. For
constructors with arguments c[i1] . . . [ik](e) and function calls F [i1] . . . [ik](e),
the cost incurred by e also needs to be taken into account. Hence, we first
extract a recurrence-equation expression t that represents the cost of evaluating
the argument, and then add it to the cost incurred by the function call:

• The total cost of c[i1] . . . [ik](e) is t + cc

• The total cost of F [i1] . . . [ik](e) is t + cF + (F ci1 . . . ik), where F ci1 . . . ik
is a call to the cost recurrence extracted for F .

In our cost model, constants and variables can be accessed without cost, and
therefore are turned into the constant 0 when extracting a cost recurrence.

Example (ended) We now assemble all the pieces of a cost recurrence for
append. If we assign a cost of one unit to recursive calls of append and assume
the use of cons to be cost free, then the cost of append is described by

append c n1 n2 =

{
n1 = 0 → 0

n1 > 0 → 1 + append c(n1 − 1) n2

(In the second branch, we have removed additions of zero that resulted from the
variables x, xs and l2, and the application of constructor cons.)

3.2 Example: Flattening a list of lists

The flatten function (see Figure 1) is an interesting problem for extracting a
cost recurrence because of the choice of size measure for the input: The size of a
list of lists is measured both in terms of the number of inner lists and the total
number of elements contained in the inner lists.

13



We measure cost in terms of calls to user-defined functions. Our method
yields the following cost recurrence:5

flattenc m n =


m = 0 ∧ n = 0 → 0
m > 0 → 2 + append c n1 n2

+ flattenc (m − 1) n2

where n1 + n2 = n

Here, a restriction n1 + n2 = n for the new variables n1 and n2 introduced
by pattern matching has been inserted by the extraction algorithm—neither n1

nor n2 can be eliminated automatically.
Using the equation appendc n1 n2 = n1 derived in Section 3.1, we can rewrite

the cost recurrence for flatten as

flattenc m n =


m = 0 ∧ n = 0 → 0
m > 0 → 2 + n1

+ flattenc (m − 1) n2

where n1 + n2 = n

It is easy to see that the maximal cost incurred by n1 in the second branch,
added over all recursive calls, is n; all in all, we can approximate the cost of
flatten as flattenc(m, n) = 2m + n.

The size measure chosen here for a list of lists is intuitive and seems to be
crucial for deriving a useful bound. Yet it is unclear how this measure could be
be defined without the expressiveness offered by DML types, e.g., when using
abstract-interpretation techniques [8].

3.3 Example: Searching a balanced tree

The occurs function (see Figure 1) provides an example of how two cost bounds
in terms of different size measures can be obtained: one in terms of the height of
a tree, and one in terms of the number of elements stored in a tree. The latter
bound is obtained by reasoning with DML type guarantees—we profit from the
fact that DML can express properties of the input that are not inferable from
the code.

Our method yields the following cost recurrence for occurs:

occursc h s =


h = 0 ∧ s = 0 → 0

h > 0 ∧ s > 0 →


0{

1 + occursc h1 s1

1 + occursc h2 s2

where h1 − 1 ≤ h2 ≤ h1 + 1
∧ max (h1, h2) + 1 = h
∧ s1 + s2 + 1 = s

5Here and in all the following recurrences we have simplified additions of constants.
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(Each if expression gives rise to a guardless conditional, because no restrictions
on indices can be inferred from its test expression.)

The recurrence looks more daunting than it is: It keeps track both of the
height and the number of elements in the tree, but it is easy to see that the
number of elements is of no consequence to the result of the cost recurrence.
Approximating both h1 and h2 with h − 1 gives rise to a simple recurrence
equation whose solution is occursc(h, s) = h.

The complication of eliminating size information could have been avoided by
chosing a tree type which only keeps track of the height of a tree. Also keeping
track of the number of elements, however, allows us to derive a cost measure in
terms of the number of elements rather than the height of the tree. The crucial
observation to make is that DML data-type definitions give rise to induction
principles for proving relations among the indices of a data type. The definition
of HBtree, for example, yields the following induction schema:

For R ∈ N × N, if

1. R(0, 0)

2. if for all h1, h2, s1, s2 with h1 − 1 ≤ h2 ≤ h1 + 1, R(h1, s1) and
R(h2, s2) it follows that R(max (h1, h2) + 1, s1 + s2 + 1)

then whenever a value has type HBtree(h,s), the relation R(h, s)
holds.

Using this induction schema, one can show that s ≥ 2h − 1 for any height-
balanced tree with height h and size s. Taking the logarithm, we see that
h ≤ log(s + 1); combining this with the cost recurrence occursc(h, s) = h, we
derive that the cost of occurs is logarithmic in s. This derivation is fully formal,
i.e., based only on assumptions explicit in the types or the extracted recurrence.

3.4 Example: Merge sort

Merge sort provides an example of how the extraction algorithm preserves useful
information contained in a program’s DML type.

An implementation of merge sort in DML is given in Figure 6 (adapted from
the distribution of de Caml, a DML prototype [11]): Function initlist converts
the list to be sorted into a list of lists such that each of these lists is sorted and
has length two (apart from a possible last singleton list). Function merge2
goes through a list of lists, merging every two adjacent lists into one. Function
mergeall iterates the application of merge2 until a single list is obtained. The
types of initlist and merge2 capture the fact that the size measure that steers
the recursion is continually halved—the index expression dn/2e can be encoded
as div (n, 2) + mod(n, 2) in the integer constraint domain we are working with.

We extract cost recurrences (Figure 7a), this time counting the number of
comparisons (counting calls to primitive functions works the same as count-
ing calls to user-defined functions). The recurrences for mergec, initlistc and
merge2 c(m, n) are easy to approximate, yielding a simplified set of recurrences
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merge : Πn1, n2 : N . list(n1) × list(n2) → list(n1 + n2)
fun merge lp =

case lp of

(nil, l2) => l2

| (l1, nil) => l1

| (cons(h1,t1),cons(h2,t2)) =>

if h1 < h2 then cons(h1,merge(t1,l2))

else cons(h2,merge(l1,t2))

initlist : Π n : N . list(n) → llist(dn/2e,n)
fun initlist l =

case l of

nil => lnil

| cons(_,nil) => lcons(l, lnil)

| cons(e1,cons(e2, rest)) =>

lcons(if e1 < e2

then cons(e1,cons(e2,nil))

else cons(e2,cons(e1,nil)),

initlist rest)

merge2 : Πm, n : N . llist(m,n) → llist(dm/2e,n)
fun merge2 ll =

case ll of

lnil => ll

| lcons(_,lnil) => ll

| lcons(l1,lcons(l2,rest)) =>

lcons(merge(l1,l2),merge2 rest)

mergeall : Π m, n : N . llist(m,n) → list(n)
mergeall ll =

case ll of

lnil => nil

| lcons(l,lnil) => l

| lcons(_,lcons(_,_)) => mergeall(merge2 ll)

msort : Πn : N . list(n) → list(n)
msort l = mergeall(initlist l)

Figure 6: Merge sort in DML

displayed in Figure 7b. Notice how the information about halving the length of
the list of lists captured in the type of merge2 appears in mergeall c m n. The
solution of this recurrence equation is well-known to be O(n log m), which gives
an overall complexity for msort of O(n log n).

An extraction scheme without access to such high-level information as pro-
vided by DML types might still provide enough implicit information in the
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mergec n1 n2 =
n1 = 0 → 0

n2 = 0 → 0

n1 > 0 ∧ n2 > 0 → 1 +

{
mergec (n1 − 1) n2

mergec n1 (n2 − 1)

initlistc n =
n = 0 → 0

n = 1 → 0

n > 1 → 1 + initlistc (n − 2)

merge2 c m n =
m = 0 ∧ n = 0 → 0

m = 1 → 0

m > 1 → mergec n1 n2 + merge2 c (m − 2) n3

where n1 + n2 + n3 = n

mergeall c m n =
m = 0 ∧ n = 0 → 0

m = 1 → 0

m > 1 → merge2 c m n + mergeall c(dm/2e) n

msortc n = initlistc n + mergeall c (dn/2e) n

a: Extracted cost recurrences

mergec n1 n2 = n1 + n2

initlistc n = bn/2c

merge2 c m n = n

mergeall c m n =

{
m ≤ 1 → 0

m > 1 → n + mergeall c (dm/2e) n

msortc n = bn/2c + mergeall c (dn/2e) n

b: Approximated cost recurrences

Figure 7: Cost recurrences for merge sort

extracted cost bound to derive the same bound, but the reasoning over the cost
recurrence would be more involved. Basically, information about argument sizes
that is encoded in the DML type and carried over into the cost recurrence with
our method, would first have to be (re)proven for the cost bound.
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4 Formal development

We now formally define the method for extracting cost recurrences from DML
programs. The development is based on the theoretical view of DML presented
in Section 2.2 and therefore only treats a monomorphic version of DML without
existential types. Extending the development into a polymorphic setting is
straightforward and has been omitted for the sake of conciseness. For simplicity,
the formalization also does not treat mutual recursion. Extracting a cost bound
from mutually recursive programs works exactly the same, but checking whether
an extracted bound is indeed a recurrence becomes somewhat more tricky. For
the latter, techniques such as presented in Xi’s latest work [14] could be used
(see Section 5).

A first assessment shows that our method can also be extended to existential
types in a straightforward way. Essentially, the application of a function that
returns a value of existential type introduces a new index variable that can be
treated in the same way as new index variables introduced by pattern matching.

We start by defining the first-order fragment of DML treated by our method.
For this fragment, we introduce a cost measure using a monadic translation with
a cost monad. After defining a language of recurrence equations, we present the
extraction algorithm. We prove its correctness by showing that extraction, if
successful, indeed yields an upper bound with respect to the cost model defined
by the monadic translation.

4.1 A first-order fragment of DML

As pointed out in Section 3.1, the first step of extracting cost recurrences from a
first-order DML0(Z) program is type-elaboration, which results in a DMLΠ

0 (Z)
program of the form given in Figure 8 (we abbreviate a row of abstractions over
a0 : γ0, . . . al : γl with λ~a : ~γ, and 〈x0, 〈x1, . . . , 〈xi−1, xi〉〉〉 with 〈x0, . . . , xi〉).
The extraction algorithm to be presented in Section 4.4 therefore operates on
the language defined in Figure 8 (cf. the full language in Figure 4).

The original semantics of DML (see Appendix A.2) is defined as a natural
semantics: e −→ v means that e evaluates under environment Θ to value v.
The semantics has a rule ev-fix for unfolding fixed-point definitions to handle
recursion. For the first-order fragment of DML with its restricted form of func-
tion definition and function application used here, it is convenient to define a
semantics that handles recursion using an environment of function definitions.
We define a modified semantics: e −→Θ v means that e evaluates under envi-
ronment Θ to value v, where Θ is a substitution mapping function names to
their definitions. We show the following theorem:

Theorem 1
Let p be a program of the form given in Figure 8. Then p −→ v in the standard
semantics iff p −→[] v in the modified semantics.

The definition of the modified semantics and the proof of Theorem 1 are deferred
to Appendix B.1.
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let F1 = fix F1 : Π a0 : γ0. . . Π al1 : γl1 . ρ11 → ρ12.
λ~a : ~γ . lam x : ρ11 . body

...
Fk = fix Fk : Π a0 : γ0. . . Π alk : γlk . ρk1 → ρk2.

λ~a : ~γ . lam x : ρk1 . body
in e
end

a: Def. of functions F1 . . . Fk in DMLΠ
0 (Z)

body ::= case x of 〈x0, . . ., xik
〉 ⇒ e

e ::= x ||| 〈〉 ||| 〈e1, e2〉 ||| c[i1] . . . [in] ||| c[i1] . . . [in](e)
||| (case e of ms) ||| let x = e1 in e2 end
|||Fi[i1] . . . [in](e)

p ::= x ||| c[a1] . . . [an] ||| c[a1] . . . [an](p) ||| 〈〉 ||| 〈p1, p2〉
ms ::= p ⇒ e ||| p ⇒ e | ms

b: Grammar of function bodies

Figure 8: A first-order fragment of DMLΠ
0 (Z)

4.2 Measuring cost of computation

One way of introducing a cost measure into functional programs is the monadic
translation [6] with a cost monad. It is well-known that state can be added to a
program by (1) performing a monadic translation with the state monad [10] and
(2) taking the term model of the result, i.e., expanding the monadic constructs
inserted by the translation to code. Similarly, using the cost monad instead
of the state monad, we can transform a program such that a cost counter is
maintained.

The cost monad pairs computations that result in a value of type τ with a
second component of a type C that expresses the cost of the computation; all we
need to know is that C is an ordered Abelian monoid6 (C, +,0,≤). We write C α
as a type abbreviation for α×C. A call-by-value monadic translation with a cost
monad that is based on C turns a function of type Πa0 : γ0. . . Π ak : γk . ρ1 → ρ2

into a function of type Π a0 : γ0. . . Π ak : γk . ρ1 → C ρ2. The intended meaning
is that the transformed function not only returns the result value, but also the
cost of computing it.

The cost monad can be defined by specifying two language constructs, valC

and letC, which a monadic translation inserts into a program text. The typing
6In an ordered monoid, the ordering ≤ is compatible with the monoid’s operation, i.e.,

if a ≤ b then a + c ≤ b + c. Relevant examples of ordered monoids are (N, +, 0,≤) and
(R, +, 0,≤).
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rule for valC is
φ; Γ ` e : ρ

(ty-monadic-val)
φ; Γ ` valC e : C ρ

The construct valC is used to inject a value v : ρ into C ρ as 〈v,0〉—values do
not require any computation and thus incur no cost. The typing rule for letC is

φ; Γ ` e1 : C ρ1 φ; Γ, x : ρ1 ` e2 : C ρ2
(ty-monadic-let)

φ; Γ ` letC x = e1 in e2 end : C ρ2

In (letC x = e1 in e2 end), the expression e1 is evaluated to a result v1 wrapped
with a cost z1. To calculate e2, the unwrapped v1 is used, yielding 〈v2, z2〉. The
final result of the let expression is 〈v2, z1 + z2〉.

The monadic translation provides only the infrastructure for tracking cost,
but does not assign costs to any program constructs. This assignment of costs
is done by inserting a monadic construct costz with typing rule

φ; Γ ` e : C ρ z ∈ C
(ty-monadic-cost)

φ; Γ ` costz e : C ρ

into the transformed program. costz is particular to the cost monad: It adds z
to the cost component of the value it is applied to.

A cost-conscious version of a program, i.e., a program that keeps track of
the cost incurred by calls to user-defined functions and uses of constructors, is
generated as follows: We first perform a monadic translation of the program
and then enclose (1) each application of a user-defined function F with costcF ,
and (2) each application of a constructor c with costcc .

Figure 9 displays the combined translation (·)∗ for function bodies. A pro-
gram p of the form given in Figure 8 is translated into p∗ by applying the
monadic translation to all function bodies and the body of the program, and
changing every result type ρl2 in the type annotation of the fixed-point defini-
tion to C ρl2. The cost-conscious version can easily be expressed in DMLΠ

0 (C):
Figure 10 shows how to expand valC, letC and costz.

The following theorem shows that the cost translation is well-behaved:

Theorem 2
Let ·; · ` p : ρ be derivable. Then

1. judgment ·; · ` p∗ : C ρ is derivable.

2. p −→[] v iff p∗ −→[] 〈v, z〉 for some z ∈ C.

The proof is deferred to Appendix B.2.

4.3 A language of recurrence equations

The language of recurrence equations is based on the natural numbers part N of
the constraint domain Z and the cost domain C. Natural numbers and tuples
thereof serve as abstractions of input size, and therefore are used as arguments
of recurrence equations. The result of a recurrence equation represents cost of
computation and is expressed in C.
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x∗ = valC x

〈〉∗ = valC 〈〉
〈e1, e2〉∗ = letC x1 = e1

∗ in
letC x2 = e2

∗

in valC 〈x1, x2〉 end

(c[i1] . . . [ik])∗ = costcc (valC (c[i1] . . . [ik]))

(c[i1] . . . [ik](e))∗ = letC x = e∗

in costcc (valC (c[i1] . . . [ik](x))) end

(case e of ms)∗ = letC x = e∗

in case x of ms∗ end

(p ⇒ e | ms)∗ = p ⇒ e∗ | ms∗

(let x = e1 in e2 end)∗ = letC x = e1
∗

in e2
∗ end

(F [i1] . . . [ik](e))∗ = letC x = e∗

in costcc (F [i1] . . . [ik](x)) end

Figure 9: Monadic translation of function bodies

valC e ≡ 〈e,0〉
letC x = e1 ≡ case e1 of
in e2 〈x, z1〉 ⇒ case e2 of
end 〈v, z2〉 ⇒ 〈v, z1 + z2〉
costz e ≡ case e of

〈x, z′〉 ⇒ 〈x, z + z′〉

Figure 10: Monadic constructs as syntactic sugar

4.3.1 Syntax and types

We describe a system of recurrence equations with the language given in Fig-
ure 11. Because we extract recurrences from programs that are not mutual
recursive, neither is a system of recurrence equations, i.e., a body tl may only
contain recurrence-equation names F c

1 . . . F c
l . Conditionals, which so far have

been pretty printed, are introduced with the keyword cond followed by a num-
ber of branches. Within a branch, the first constraint Φ1 represents the guard
of the branch, whereas the second constraint Φ2 represents a where-clause. The
scope of the quantification (we write ~a : ~σ as shorthand for the quantification
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over variables a1 : σ1 . . . ak : σk) extends both over Φ2 and the branch body t.
For ∀~a : ~σ.Φ2 we require that for any interpretation of its free variables, there
are only finitely many instantiations of ~a such that Φ2 is satisfied; this require-
ment is met for recurrence equations extracted from DML programs in which
the data types are enriched in a sensible way as required in Section 3.1.

index types σ ::= N ||| 1 ||| σ1 × σ2

types ν ::= C ||| σ → ν
definitions E ::= F c

1 a0 a1 . . . al1 = t1
...

F c
k a0 a1 . . . alk = tk

body t ::= z ||| t1 + t2 ||| F c ~ı ||| (cond brs)
index objects i, j ::= a ||| f(i) ||| 〈〉 ||| 〈i, j〉 ||| fst(i) ||| snd(i)
branches brs ::= br ||| br | brs
branch br ::= (Φ1 → ∀~a : ~σ.Φ2 → t)

Figure 11: Syntax of recurrence equations

The rationale behind the shape of recurrence equation types is that for a
function Fl of type

Π a0 : γ0 . Π a1 : γ1. . . Π ak : γk . ρ1 → ρ2,

the associated cost recurrence F c
l should have type

γ̃0 → γ̃1 → . . . γ̃k → C,

where ·̃ maps an index sort to the associated index type. For example {a :
N × N | fst(a) ≤ snd(a)} is mapped to N × N.

The formal definition of ·̃ and its extension to contexts Γ is deferred to
Appendix B.3.1.

The body of a recurrence equation F c
k is typed using the judgment

ϕ; ∆ ` e : ν

in which ϕ maps index types σ to index variables, and ∆ assigns recurrence-
equation types to function names. Figure 12 gives typing rules, all of which
are straightforward. So are the rules for checking the type of an index object
(ϕ ` i : σ) and the wellformedness of a constraint (ϕ ` Φ), which have been
omitted.

Based on the typing rules for the body of a recurrence equation, we define
what it means for a system of recurrence equations to be well-typed with respect
to the program they have been extracted from.

Definition 3
Let p be a program and context Γ assign every Fl defined in p to its declared
type. A system of recurrence equations E is well-typed with respect to p if for
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every
F : Π a0 : γ0 . Π a1 : γ1. . .Π ak : γk . ρ1 → ρ2

defined in p , for the extracted recurrence equation

F c a0 . . . ak = t

we have
a0 : γ̃0, . . ., ak : γ̃k; Γ̃ ` t : C.

(ty-re-const)
ϕ; ∆ ` z : C

ϕ; ∆ ` e1 : C ϕ; ∆ ` e2 : C
(ty-re-plus)

ϕ; ∆ ` e1 + e2 : C

∆(F ) = σ0 → . . . → σk → C
ϕ ` i0 : σ0 . . . ϕ ` ik : σk

(ty-re-app)
ϕ; ∆ ` F c i0 . . . ik : C

ϕ ` Φ11 ϕ, ~a1 : ~σ1 ` Φ12 ϕ, ~a1 : ~σ1; ∆ ` e1 : C
...

ϕ ` Φk1 ϕ, ~ak : ~σk ` Φk2 ϕ, ~ak : ~σk; ∆ ` ek : C
(ty-re-cond)

ϕ; ∆ ` (cond Φ11 → ∀ ~a1 : ~σ1.Φ12 → e1

...
| Φk1 → ∀ ~ak : ~σk.Φk2 → ek) : C

Figure 12: Typing rules for recurrence equations

4.3.2 Semantics

We give a simple denotational semantics to the language of recurrence equations.
A recurrence equation defining a function of type

σ0 → σ1 → . . . σk → C

is interpreted in the function domain

[I[[σ0]] → I[[σ1]] → . . .I[[σk]] → C⊥].

(Because all I[[σl]] are discrete cpos, such functions are necessarily continuous).
Here I[[·]] is the canonical semantics given to ground index objects i and index

types σ by the constraint domain Z; for an index substitution θ that maps index
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T [[z]]Ψθ = xzy
T [[t1 + t2]]Ψθ = T [[t1]]Ψθ +⊥ T [[t2]]Ψθ

T [[F c
l i0 . . . ik]]Ψθ = Ψ(F c

l ) (I[[i0[θ]]]) . . . (I[[ik[θ]]])
T [[cond br0 | . . . | brk]]Ψθ = max⊥{B[[br0]]Ψθ, . . . ,B[[brk]]Ψθ}

B[[(Φ1 → ∀~a : ~σ.Φ2 → t)]]Ψθ =


x0y if 6|= Φ1[θ]
max⊥{T [[t]]Ψθ[~a 7→ ~z] |

~z ∈ I[[~σ]] ∧ Φ2[θ[~a 7→ ~z]]}
if |= Φ1[θ]

Figure 13: Semantics of recurrence equations

variables to ground index objects, we write I[[θ]] for the corresponding mapping
into Z. With C⊥ we denote the domain that results from interpreting C as a
discrete domain and lifting it in the canonical way—in the semantics definition
we also mark operations on C that have been lifted in the canonical way by
subscripting them with ⊥.

Figure 13 gives a semantics T [[·]]Ψθ for recurrence-equation expressions,
where Ψ is a mapping from recurrence-equation names to functions and θ an
index substitution that maps index variables to ground index objects. The
semantics treats a conditional by taking the maximum of the values returned
by the branches of the conditional. If the guard of a branch does not hold,
the branch returns 0. Otherwise, all possible values for the universally quanti-
fied index variables in the branch are tried out and the maximum is returned.
Because, as required in Section 4.3.1, there is at most a finite number of such
values, the semantics of a branch is well-defined (we assume that max⊥∅ = x0y).

Given the definition of a recurrence equation

F ca0 a1 . . . ak = t

and a mapping Ψ that ranges over all names of recurrence-equations declared
previously to F c (recall that we do not consider mutually recursive systems of
recurrence equations), then the semantics of the defined function is the fixed
point of the functional

λF .λn0 n1 . . . nk.T [[t]](Ψ[F c 7→ F ])[a0, . . . , ak 7→ n0, . . . nk].

This semantics of a single recurrence equation extends naturally to a system
E of recurrence equations and yields a mapping from recurrence-equation names
to functions; we write S[[E]].
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4.4 The extraction algorithm

We extract cost recurrences from DMLΠ
0 (Z) type derivations. A DMLΠ

0 (Z)
typing judgment is of the form

φ; Γ ` e : τ,

where φ is an index context and Γ is a variable context (see Appendix A.1
for details). The central part of the extraction algorithm operates on the type
derivations for the bodies of function definitions F1 . . . Fn: From an expression
e of first-order type that occurs within the body of a function definition, a
recurrence-equation expression t of type C is extracted. The algorithm is defined
in form of a judgment

φ; Γ ` e : ρ I t.

Consider the following definition of a function F (see Figure 8):

let F = fix F : Π a0 : γ0. . . Π al : γl . ρ1 → ρ2.
λ~a : ~γ . lam x : ρ1 . case x of 〈x0, . . ., xk〉 ⇒ e

Assuming that e is typed as φ; Γ ` e : ρ2, the extracted recurrence equation is
F c a0 . . . al = t, where t results from φ; Γ ` e : ρ2 I t.

Before we give a complete description of the extraction of cost recurrences,
we examine how an index context can be turned into a constraint over the
declared index variables.

4.4.1 Turning an index context into a constraint

DMLΠ
0 (Z) expressions are typed under a “normal” context and an index context

of form
φ ::= · ||| φ, a : γ ||| φ, P

(See Figure 3). Basically, the index context collects constraints over index vari-
ables. It is straightforward to define a function C that rewrites an index context
φ into a constraint Φ such that sort definitions are “flattened out”, i.e.,

C(a : {k : N | k > 0}, b : {k : {k′ : N | k′ > 1} | k ≥ a}) = a > 0 ∧ b > 1 ∧ b ≥ a

A precise definition of C is deferred to Appendix B.3.2.
A useful operation over constraints is to project out a certain set of variables,

i.e., “hide” all remaining variables by existential quantification. We write ∃~a.Φ
for the constraint that results from existentially quantifying over the variables ~a
in Φ. With a constraint solver such as used for DML type-checking, existentially
quantified variables usually are simplified away.

Often equalities can be derived from a constraint Φ. Let ~a be a subset of
the free variables in Φ; we define a substitution θ := mk subst~a(Φ) as follows:
For all a ∈ ~a such that i is an index expression without free variables in ~a, and
a = i can be derived from Φ, we have θ(a) = i.
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φ; Γ ` e : τ1 I t φ |= τ1 ≡ τ2
(extr-eq)

φ; Γ ` e : τ2 I t

(extr-var)
φ; Γ ` x : τ I 0

(extr-unit)
φ; Γ ` 〈〉 : 1 I 0

φ; Γ ` e1 : τ1 I t1 φ; Γ ` e2 : τ2 I t2
(extr-pair)

φ; Γ ` 〈e1, e2〉 : τ1 × τ2 I t1 + t2

φ; Γ ` e1 : ρ1 I t1 φ; Γ, x : ρ1 ` e2 : ρ2 I t2
(extr-let)

φ; Γ ` let x = e1 in e2 end : ρ2 I t1 + t2

φ; Γ ` e : ρ1 I t
(extr-app)

φ; Γ ` F [i1] . . . [ik](e) : ρ2 I t + cF + (F ci1 . . . ik)

(ty-cons-wo)
φ; Γ ` c[i1] . . . [in] : ρ I cc

φ; Γ ` e : τ I t
(ty-cons-w)

φ; Γ ` c[i1] . . . [in](e) : ρ I t + cc

φ; Γ ` e : ρ′ I t
φ; Γ ` (p0 ⇒ e0) : ρ′ ⇒ ρ I br1

...
φ; Γ ` (pk ⇒ ek) : ρ′ ⇒ ρ I brk

(ty-case)
φ; Γ ` (case e of p0 ⇒ e0 | . . . | pk ⇒ ek) : ρ

I t + (cond br1 | br2 | . . . | brk)

p ↓ ρ′ B (φ′; Γ′)
φ, φ′; Γ, Γ′ ` e : ρ I t
Φ1 = ∃(dom(φ, φ′)\var(ρ′)).C(φ, φ′)
θ = mk substdom(φ′)(C(φ′))
Φ2 = ∃(dom(θ)).C(φ′)

(ty-branch)
φ; Γ ` (p ⇒ e) : ρ′ ⇒ ρ

I Φ1 → ∀(dom(φ′)\dom(θ)).Φ2 → t[θ]

Figure 14: Extraction algorithm
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4.4.2 Definition of the extraction algorithm

The definition of the judgment φ; Γ ` e : ρ I t is given in Figure 14.
Most rules are fairly straightforward:

• Accessing a variable or the unit value has no cost.

• For pairs and let expressions, the total cost is the sum of the costs incurred
by their subexpressions.

• The cost of executing a user-defined function F has three components: the
cost of evaluating its argument, the cost cF of calling the function, and
the cost incurred by evaluating the function. For the latter component, a
recursive call with the appropriate arguments is generated.

• The use of a constructor c costs cc plus the cost of evaluating a possible
argument.

A case expression is handled by converting it into a conditional. The real
heart of the algorithm is the rule that handles branches of case expressions.
This rule extracts a conditional branch from a type derivation for

φ; Γ ` (p ⇒ e) : ρ′ ⇒ ρ.

This judgment types the branch of a case expression that matches a pattern p
against a value of type ρ′; the expression e in the branch has the same type ρ
as the total case expression. We go through the premises of the corresponding
extraction rule one by one:

1. The judgment p ↓ ρ′ B (φ′; Γ′) (see Figure 16 on page 34) is defined as
part of the DMLΠ

0 (C) type-checking rules. It generates an index context
φ′ and a variable context Γ′ that describe the index variables and normal
variables occurring in the pattern p.

For example, after translation into DMLΠ
0 (Z), the pattern of the sec-

ond branch in flatten (Section 3.2) is lcons [m′][n1][n2]〈xs, rest〉; type-
checking under index context φ = m : N, n : N generates the following
index context:

φ′ = m′ : N, n1 : N, n2 : N, m = m′ + 1, n = n1 + n2.

2. DMLΠ
0 (C) type-checking types the branch expression under the contexts

φ, φ′ and Γ, Γ′. From the resulting type derivation, a recurrence-equation
expression t is extracted.

For the second branch of flatten, this yields

t = 2 + (append c n1 n2) + (flattenc m′ n2)
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3. The guard of the branch Φ1 is derived by projecting out from C(φ, φ′) over
the index variables contained in ρ′.

In flatten, the only index variable in ρ′ = llist(m,n) are m and n; pro-
jecting them out yields m > 0. For n there is no information, because we
only know that n ∈ N, and (as pointed out in Section 3.1) we require all
indices to be of subsorts of N anyways.

4. All index variables declared in φ′ that can be expressed in terms of index
variables from φ should be are eliminated using substitution θ: In the
branch returned by the rule, the body is t[θ] rather than t.

For the second branch of flatten, we can infer that m′ = m − 1, so
θ = [m′ 7→ m − 1].

5. Index variables declared in φ′ for which no equality constraint can be
derived have to be restricted. This is done by (1) hiding the variables
dom(θ) via existential quantification in C(φ′), and (2) universally quan-
tifying over the remaining variables of dom(φ′), binding variables both
in Φ2 and in t[θ]. Conjuncts in Φ2 containing none of the universally
quantified variables can be dropped (such conjuncts are guaranteed to be
satisfied whenever Φ1 is satisfied).

For the second branch of flatten, existential quantification over m′ in φ′

yields, after normalization, m > 0∧n = n1 + n2. We universally quantify
over n1 and n2, and drop the conjunct m > 0.

To complete the running example: The second branch of flatten gives rise
to the following branch of the conditional in flattenc:

m > 0 → ∀n1, n2 : N.n1 + n2 = n →
2 + (append c n1 n2) + (flattenc (m − 1) n2)

4.4.3 Checking whether the bound is a recurrence

It remains to check whether we really extract a recurrence, i.e., a function
defined in terms of its value on smaller arguments. For the presented lan-
guage without mutual recursion (for handling mutual recursion, Xi’s most re-
cent work [14] could be adapted—see Section 5), this can be conveniently done
during extraction when generating a recursive call F c i1 . . . ik inside the body
that defines F c a1 . . . ak: The extraction yields a recurrence if for every such
call,

〈i1, . . . , in〉 < 〈a1, . . . , an〉
can be derived from the collected constraints for a well-founded order < on
tuples. In practice, one could for example fix the usual lexicographic ordering,
requiring the user to enrich data correspondingly, or leave the user a choice as
to which ordering should be used.
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4.4.4 Correctness
Theorem 4
Let functions F1, . . . , Fk be a well-typed block of function definitions. Let E
be the system of recurrence equations for F c

1 , . . . , F c
k extracted from these def-

initions. Let p be a well-typed program consisting of these function definitions
F1, . . . , Fk and a program body Fl[z1] . . . [zl′ ](u), where z1, . . . , zl′ are ground
index objects and u is a value. Then:

1. E is well-typed with respect to p.

2. If T [[F c
l z1 . . . zl′ ]](S[[E]])[] = xz′y for some z′ ∈ C, then there exists a value

v and a z ∈ C with z ≤ z′ such that p∗ evaluates to 〈v, z〉.

3. If the test described in Section 4.4.3 has been performed during the ex-
traction of E, then the denotation of F c

l z1 . . . zk under environment S[[E]]
is guaranteed to yield xz′y for some z′ ∈ C rather than ⊥.

Part 1 and 3 of the theorem capture that the extracted system of cost bounds
is well-formed: The system is well-typed, and the application of a bound F c

l ,
to some legal input z1, . . . zl (legal in the sense that Fl[z1] . . . [zl](u) type-checks
for some u) is well-defined. Because the translation (·)∗ (see Section 4.2) cap-
tures our cost model—in the translated program, a cost counter z is calculated
together with the actual result—part 2 states that this bound indeed is a cost
bound for the execution of Fl[z1] . . . [zl](u). The proof of Theorem 4 is deferred
to Appendix B.4.

5 Related work

We discuss related work regarding automated complexity analysis and type
systems.

Le Métayer’s ACE system [4] automatically extracts cost bounds for a subset
of FP, expressing the extracted bounds as FP programs. The system is based
on program transformation. The first step transforms the original program
into a step-counting version, i.e., a program that takes the same arguments,
but returns the cost of computation for these arguments rather than the re-
sult. Conceptually, this transformation corresponds to a monadic translation
with the cost monad as presented in Section 4.2, where the cost component
is projected out from the final result. Subsequent transformation steps try to
transform the step-counting version into a composition of a cost bound and a
measure function, where the measure function is composed from selector func-
tions and the length function for lists. The principal goal of the ACE system
is to eliminate recursion in the cost bound, which corresponds to solving recur-
rences; the system’s library holds more than 1000 transformation rules, many
of them tailored to recognize patterns of recursion. The process of finding a
measure function is interleaved with the process of eliminating recursion and
cannot easily be decoupled. Pointing the system to a given measure thus seems
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difficult. In contrast, our method separates concerns: The user can specify an
appropriate measure using dependent types, but no attempts are made to solve
the extracted cost recurrence.

Sands [9] treats cost analysis for higher-order call-by-name languages: Cost
bounds are extracted by program transformation and reasoning over programs;
his method can be seen as an extension of Le Métayer’s overall approach. Sands
focuses on the complications for cost analysis caused by higher-order functions
and call-by-name evaluation. No special concern is given to the abstraction of
data to data size, which is the main concern of our work.

Rosendahl [8] develops a system that uses abstract interpretation and pro-
gram transformation techniques to extract cost bounds from a first-order subset
of Scheme. An abstract interpretation is used to extend the set of S-expressions
with partially known structures—unknown parts of a structure are represented
by a special token that stand for all possible structures. Size measures are
expressed through “inverse size functions”: For a given size, an inverse size
function returns a partially known structure that approximates all data struc-
tures of that size. For example, for lists, the inverse size function generates for
size n a list containing n times the special token representing all possible struc-
tures. An initial cost bound for a program is achieved by (1) composing a suit-
able inverse size function with the abstract interpretation of the step-counting
version of the program and (2) taking the term model. Program transforma-
tion is then used to simplify this initial cost bound as much as possible. Liu
and Gómez [5] propose a method based on Rosendahl’s work in which they
use advanced program-transformation techniques to make the cost bound more
efficient and more accurate. Both methods requires the user to define the ab-
straction from data to data size. However, with dependent types, measures can
be expressed that are impossible to define with an inverse size function—the
measure used in Section 3.2 for analyzing flatten is one example.

Reistad and Gifford [7] use an effect type system for automatically inferring
cost estimates of functional programs written with combinators such as map
and fold. Two indexed data-types, lists and vectors, are built into the type
system. The effects associated with function types are cost expressions that may
depend on indices of list/vector arguments and on cost expressions associated
with function arguments. The main focus of Reistad and Gifford is to guide
parallelization of programs with the inferred cost estimates.

Crary and Weirich [3] present a decidable type system for the specifica-
tion and certification of resource consumption in the setting of Typed Assembly
Language. The type system simulates dependent types using sum and inductive
kinds. Essentially, it allows the user to annotate function arrows with resource
bounds (e.g., time bounds or space bounds) in terms of the shape of data ar-
guments and of cost bounds associated with function arguments. The focus lies
on the certification of resource bounds through type checking rather than the
derivation of resource bounds.

Chin and Khoo [2] propose sized types in which size information is expressed
with Presburger formulas. They use a a constraint solver to infer size informa-
tion. It is very likely that complexity analysis in the style of this paper could
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be integrated into their setting.
Recently, Xi [14] presented an extension of the DML type system that allows

program termination verification. The basic observation is the same as for our
work, namely that DML types can be used to encode a notion of input size. For
each function, the programmer supplies a metric in terms of the input indices;
if type checking succeeds, the metrics are guaranteed to specify a termination
order. Both higher-order functions and general recursion are handled. We
believe that our work would benefit substantially from reformulating it in this
extended type system: As an immediate benefit, extracted cost bounds could
be easily verified to be recurrences also for general recursion. Also an extension
of this work to higher-order functions, if possible, should be easier within Xi’s
new type system, though of course our work handles defunctionalized programs
(à la Reynolds) and thus, indirectly, higher-order functions.

6 Conclusion

We have presented a method for automatically extracting cost recurrences from
first-order DML programs. The distinct feature of our method is the use of
dependent types to describe a size measure that abstracts from data to data
size. The user has to choose an appropriate size measure for our method to
successfully extract a cost recurrence. Because of the high expressiveness of
its types, DML offers high flexibility for tailoring size measures. The required
DML type annotations usually are easy to find: Because size measures encode
shape information of data types, they closely correspond to the programmer’s
intuitive understanding of how his program works. Our method harnesses this
intuition for automatic cost analysis.
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A DML

In the following we give a short overview over the formalization of DMLΠ
0 (C)

that is used in this article. We gloss over details such as type-formation rules,
well-formedness of contexts, and type-equivalence. The complete formalization
can be found in Xi’s PhD thesis [12, Chapters 2–4].

A.1 DML typing rules

A typing judgment for DMLΠ
0 (C) has the form

φ; Γ ` e : τ,

where φ is an index context and Γ a (normal) context; typing is with respect to
a signature S that assigns types to constructors. In the following, we focus on
typing rules that treat indices—the remaining rules are fairly standard.

The treatment of indices is based on a judgment φ ` i : γ that expresses
that i : γ can be derived from the index context φ; to establish this judgment,
constraint solving is required. The judgment is used, for example, to express
type-soundness of an index substitution θ under a context φ as φ ` θ : φ′ (Fig-
ure 15a), which basically says that, assuming the context given by φ substitution
θ assigns to all index variables declared in φ′ an index object of the declared
sort. The following lemma [12, Chapter 3] shows a useful link between type-
soundness with respect to an index context φ and satisfyability with respect to
φ:

Lemma 5
Let φ and φ′ be index contexts and θ an index substitution such that φ ` θ : φ′

is derivable. Then, if φ, φ′ |= Φ is derivable, also φ |= Φ[θ] is derivable.

Figure 15b defines a corresponding judgment for general substitutions; it is
straightforward to show that if φ; Γ ` θ : (φ′; Γ′) holds for a substitution θ, then
φ ` θφ : φ′ holds for its restriction θφ to index variables.

Figure 16 and Figure 17 on page 36 display the typing rules for DMLΠ
0 (C).

The judgment p ↓ τ B (φ; Γ) defined in Figure 16 on the following page is used
for typing pattern matching over an expression of type τ : Type information
about variables and index variables occurring in pattern p is gathered. Figure 17
on page 36 defines the “top-level” typing judgment φ; Γ ` e : τ for DMLΠ

0 (C).
The rule for type equality ty-eq uses a judgment φ |= τ1 ≡ τ2 that is defined as
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(isubst-empty)
φ ` [] : ·

φ ` θ : φ′ φ ` i : γ[θ]
(isubst-ivar)

φ ` θ[a 7→ i] : φ′, a : γ

φ ` θ : φ′ φ |= P [θ]
(subst-iprop)

φ ` θ : φ′, P

a: Type-soundness of an index substitution

(subst-empty)
φ; Γ ` [] : (·; ·)

φ; Γ ` θ : (φ′; Γ′) φ; Γ ` e : τ [θ]
(subst-var)

φ; Γ ` θ[x 7→ e] : (φ′; Γ′, x : τ )

φ; Γ ` θ : (φ′; Γ′) φ ` i : γ[θ]
(subst-ivar)

φ; Γ ` θ[a 7→ i] : (φ′, a : γ; Γ′)

φ; Γ ` θ : (φ′; Γ′) φ |= P [θ]
(subst-iprop)

φ; Γ ` θ : (φ′, P ; Γ′)

b: Type-soundness of a substitution (general)

Figure 15: Type-soundness of a substitution

(pat-var)
x ↓ τ B (·; x : τ )

(pat-unit)
〈〉 ↓ 1 B (·; ·)

p1 ↓ τ1 B (φ1; Γ1) p2 ↓ τ2 B (φ2; Γ2)
(pat-prod)

〈p1, p2〉 ↓ τ1 × τ2 B (φ1, φ2; Γ1, Γ2)

S(c) = Π a1 : γ1. . .Π ak : γk . δ(i)
(pat-cons-wo)

c[a1] . . . [ak] ↓ δ(j) B (a1 : γ1, . . ., ak : γk, i = j; ·)

S(c) = Π a1 : γ1. . .Π ak : γk . τ → δ(i) p ↓ τ B (φ; Γ)
(pat-cons-w)

c[a1] . . . [ak](p) ↓ δ(j) B (a1 : γ1, . . ., ak : γk, i = j, φ; Γ)

Figure 16: Typing rules for patterns in DMLΠ
0 (C)
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the congruent extension of φ |= i = j from index objects to types. The rules
ty-cons-wo, ty-cons-w and ty-iapp, for constructors and application to an index
object, respectively, examine whether index objects are indeed of the required
sort; when typing a constructor, the judgment for establishing type soundness
of index substitutions is used to account for possible sequential dependencies
among the sorts pertaining to the arguments of the constructor.

The following theorem [12, Chapter 4] shows that types are preserved under
a type-sound substitution.

Theorem 6 (Substitution)
If φ, φ′; Γ, Γ′ ` e : τ and φ; Γ ` θ : (φ′; Γ′) are derivable, then φ; Γ ` e[θ] : τ [θ] is
derivable.

A.2 DML semantics

Figure 18 on page 37 describes a natural semantics for DMLΠ
0 (C): e −→ v

means that e reduces to a value v, where

v ::= c[i1] . . . [ik] ||| c[i1] . . . [ik](v) ||| 〈〉 ||| 〈v1, v2〉 ||| (lam x : τ . e) ||| (λa : γ . v).

Notice that type indices are never evaluated. The language design decision is
that there is no direct interaction between indices and code execution; type
indices are used only for type-checking.

The rule that describes the semantics of a case expression makes use of
a judgment match(v, p) =⇒ θ defined in Figure 19 on page 38: If a value
v matches a pattern p, a substitution for the free variables in p is returned.
Notice that the semantics of case expressions is nondeterministic: an arbitrary
matching arm is picked.

Xi [12, Chapter 4] proves the following theorem connecting the type system
and the semantics:

Theorem 7 (Relating types and semantics)
1. Assume that there is no a ∈ dom(φ) that occurs in pattern p. If φ; Γ` v:τ ,

p ↓ τ B (φ′; Γ′) and match(p, v) =⇒ θ, then φ; Γ ` θ : (φ′; Γ′) is derivable.

2. Given e,v in DMLΠ
0 (C) such that e −→ v is derivable. If φ; Γ ` e : τ is

derivable, then φ; Γ ` v : τ is derivable.
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φ; Γ ` e : τ1 φ |= τ1 ≡ τ2
(ty-eq)

φ; Γ ` e : τ2

Γ(x) = τ
(ty-var)

φ; Γ ` x : τ

S(c) = Π a1 : γ1. . . Π ak : γk . δ(i)
φ ` [a1, . . . , ak 7→ i1, . . . , ik] : (a1 : γ1, . . . , ak : γk)

(ty-cons-wo)
φ; Γ ` c[i1] . . . [ik] : δ(i[a1, . . . , ak 7→ i1, . . . , ik])

S(c) = Π a1 : γ1. . . Π ak : γk . τ → δ(i)
φ ` [a1, . . . , ak 7→ i1, . . . , ik] : (a1 : γ1, . . . , ak : γk)

φ; Γ ` e : τ [a1, . . . , ak 7→ i1, . . . , ik]
(ty-cons-w)

φ; Γ ` c[i1] . . . [ik](e) : δ(i[a1, . . . , ak 7→ i1, . . . , ik])

(ty-unit)
φ; Γ ` 〈〉 : 1

φ; Γ ` e1 : τ1 φ; Γ ` e2 : τ2
(ty-prod)

φ; Γ ` 〈e1, e2〉 : τ1 × τ2

φ; Γ ` e : τ ′

φ; Γ ` (p1 ⇒ e1) : τ ′ ⇒ τ
...

φ; Γ ` (pk ⇒ ek) : τ ′ ⇒ τ
(ty-case)

φ; Γ ` (case e of p1 ⇒ e1 | . . . | pk ⇒ ek) : τ

p ↓ τ ′ B (φ′; Γ′) φ, φ′; Γ, Γ′ ` e : τ
(ty-branch)

φ; Γ ` (p ⇒ e) : τ ′ ⇒ τ

φ, a : γ; Γ ` e : τ
(ty-ilam)

φ; Γ ` (λa : γ . e) : Π a : γ . τ

φ; Γ ` e : Π a : γ . τ φ ` i : γ
(ty-iapp)

φ; Γ ` e[i] : τ [a 7→ i]

φ; Γ, x : τ1 ` e : τ2
(ty-lam)

φ; Γ ` (lam x : τ1 . e) : τ1 → τ2

φ; Γ ` e1 : τ1 → τ2 φ; Γ ` e2 : τ1
(ty-app)

φ; Γ ` e1(e2) : τ2

φ; Γ ` e1 : τ1 φ; Γ, x : τ1 ` e2 : τ2
(ty-let)

φ; Γ ` let x = e1 in e2 end : τ2

φ; Γ, f : τ ` e : τ
(ty-fix)

φ; Γ ` (fix f : τ.e) : τ

Figure 17: Typing rules for DMLΠ
0 (C)
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(ev-cons-wo)
c[i1] . . . [ik] −→ c[i1] . . . [ik]

e −→ v
(ev-cons-w)

c[i1] . . . [ik](e) −→ c[i1] . . . [ik](v)

e1 −→ v1 e2 −→ v2
(ev-prod)

〈e1, e2〉 −→ 〈v1, v2〉

e0 −→ v0 match(v0, pl) =⇒ θ for some 1 ≤ l ≤ k el[θ] −→ v
(ev-case)

case e0 of (p1 ⇒ e1 | . . . | pk ⇒ ek) −→ v

e −→ v
(ev-ilam)

(λa : γ . e) −→ (λa : γ . v)

e −→ (λa : γ . v)
(ev-iapp)

e[i] −→ v[a 7→ i]

(ev-lam)
(lam x : τ . e) −→ (lam x : τ . e)

e1 −→ (λx : τ . e) e2 −→ v2 e[x 7→ v2] −→ v
(ev-app)

e1(e2) −→ v

e1 −→ v1 e2[x 7→ v1] −→ v
(ev-let)

let x = e1 in e2 end −→ v

(ev-fix)
(fix f : τ.e) −→ e[f 7→ (fix f : τ.e)]

Figure 18: Natural Semantics of DMLΠ
0 (C)
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(mat-var)
match(x, v) =⇒ [x 7→ v]

(mat-unit)
match(〈〉, 〈〉) =⇒ []

match(p1, v1) =⇒ θ1 match(p2, v2) =⇒ θ2

(mat-prod)
match(〈p1, p2〉, 〈v1, v2〉) =⇒ θ1θ2

(mat-cons-wo)
match(c[a1] . . . [ak], c[i1] . . . [ik]) =⇒ [a1 7→ i1, . . . , ak 7→ ik]

match(p, v) =⇒ θ
(mat-cons-w)

match(c[a1] . . . [ak](p), c[i1] . . . [ik](v)) =⇒ θ[a1 7→ i1, . . . , ak 7→ ik]

Figure 19: Semantics of pattern matching in DMLΠ
0 (C)
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B Formal development

B.1 A modified semantics a first-order fragment of DML

Figure 20 displays a modified semantics in which an environment of function
definitions is maintained. Rule ev-mod-fundef shows how the environment is
built up from function definitions, rule ev-mod-fapp shows how the environment
is used. The judgment match(v, p) =⇒ θ in rule ev-mod-case is defined as in
the standard semantics (see Figure 19 on the page before): If value v can be
matched against pattern p, the corresponding substitution θ of the free variables
in p is returned.

We present a proof of Theorem 1 on page 18, which states that the origi-

(ev-mod-cons-wo)
c[i1] . . . [ik] −→Θ c[i1] . . . [ik]

e −→Θ v
(ev-mod-cons-w)

c[i1] . . . [ik](e) −→Θ c[i1] . . . [ik](v)

e1 −→Θ v1 e2 −→Θ v2
(ev-mod-prod)

〈e1, e2〉 −→Θ 〈v1, v2〉

e0 −→Θ v0

match(v0, pl) =⇒ θ for some 1 ≤ l ≤ k
el[θ] −→Θ v

(ev-mod-case)
case e0 of (p1 ⇒ e1 | . . . | pk ⇒ ek) −→Θ v

e1 −→Θ v1 e2[x 7→ v1] −→Θ v
(ev-mod-let)

let x = e1 in e2 end −→Θ v

e −→Θ[F 7→eF ] v
(ev-mod-fundef)

let F = fix F : τ.eF in e end −→Θ v

e −→Θ v′

Θ(F ) = λ~a : ~γ . lam x : ρ . body
body [~a 7→~ı][x 7→ v′] −→Θ v

(ev-mod-fapp)
F [~ı](e) −→Θ v

Figure 20: Natural Semantics of first-order fragment of DML
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nal semantics of DMLΠ
0 (C) from Appendix A.2 and the modified semantics of

Figure 20 on the page before are equivalent.
Given a program p of the form described in Figure 8 on page 19, the modified

semantics builds up an environment from the function definitions in p (rule ev-
mod-fundef), while the original semantics accumulates a substitution (rule ev-
let). The judgment ` Θ : Γ (Figure 21) is used to establish the well-formedness
of an environment Θ and to type the functions contained in it.

(ty-env-nil)
` [] : ·

` Θ : Γ ·; Γ, F : τ ` λ~a : ~γ . lam x : ρF . bodyF : τ
(ty-env-cons)

` Θ[F 7→ λ~a : ~γ . lam x : ρF . bodyF ] : Γ, F : τ

Figure 21: Typing an environment

We further use a mapping (·)◦ to relate the environment of the modified
semantics with the substitution of the original semantics. Given an environment
` Θ : Γ, the substitution Θ◦ is defined as follows:

([])◦ = []
(Θ[F 7→ e])◦ = [F 7→ fix F : Γ(F ).e] ◦ Θ◦

The following lemma relates the modified semantics with the original seman-
tics.

Lemma 8
Let ` Θ : ΓF and let e be a body expression such that φ; ΓF , Γ` e :ρ is derivable.
Then e[Θ◦] −→ v iff e −→Θ v.

Proof: The proof of the lemma is conducted by structural induction over the
derivation e[Θ◦] −→ v (proving the implication from left to right) and e −→Θ v
(right to left).

We show the implication from left to right, examining the last rule in a
derivation of e[Θ◦] −→ v. For rules ev-cons-wo, ev-cons-w, ev-prod, ev-case and
ev-let, the lemma follows immediately by induction hypothesis. For rules ev-
ilam, ev-iapp, ev-app and ev-fix observe, that because of the restricted shape
of e (see Figure 8 on page 19), only rule ev-ilam can occur as the last rule
in a derivation e[Θ◦] −→ v, namely for e = F [~ı](e′). Assume therefore that
(F [~ı](e′))[Θ◦] −→ v is derivable; an analysis of the shape of the corresponding
derivation (see Figure 18 on page 37 for the rules) shows that for some value v1

there are derivations of e′[Θ◦] −→ v1 and body [~a 7→~ı][x 7→ v1][Θ◦] −→ v. Using
the induction hypothesis, we can derive that body [~a 7→~ı][x 7→ v1] −→Θ v, from
which it follows easily with rule ev-mod-fapp (Figure 20 on the preceding page)
that F [~ı](e′) −→Θ v.
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The other direction of the implication follows similarly. 2

We are now in a position to prove Theorem 1 on page 18.

Proof: Let program p be of the form given in Figure 8 on page 19 with function
definitions Fl = fix Fl : τl.el for 0 ≤ l ≤ k and program body e. With the typing
rules ty-let and ty-fix (Figure 17 on page 36) and the rules from Figure 21 on
the preceding page a straightforward induction over the number of function
definitions shows that

` (F1 : τ1, . . ., Fk : τk) :

=:Θ︷ ︸︸ ︷
[F1 7→ e1, . . . , Fk 7→ ek].

Further, examining the modified and original semantics, we see:

p −→ v iff e[Θ◦] −→ v

p −→[] v iff e −→Θ v

With Lemma 8 on the page before it follows that p −→ v iff p −→[] v. 2

B.2 The monadic translation

We present a proof of Theorem 2 on page 20, which states that the monadic
translation preserves types and semantics.

B.2.1 The monadic translation preserves types

The following Lemma expresses the validity of the typing rules given for valC,
letC and cost in Section 4.2 with respect to the expansion of these constructs
as given in Figure 10 on page 21.

Lemma 9
The typing rules for valC, letC and cost as given in Section 4.2 are admissible

(assuming that valC, letC and cost are expanded as described in Figure 10 on
page 21).

Proof: Straightforward by constructing the corresponding type derivations.
2

The first part of Theorem 2 on page 20 follows immediately from the follow-
ing lemma.

Lemma 10
For an expression e, if φ; Γ ` e : ρ is derivable, then φ; Γ∗ ` e∗ : C ρ is derivable,
where Γ∗ results from Γ by wrapping the result type of every function declared
in Γ with C .
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Proof: The proof is conducted by structural induction on the derivation of
φ; Γ ` e : ρ (typing rules in Figure 17 on page 36). If the last rule of the deriva-
tion is (ty-eq), then the lemma follows immediately by induction hypothesis.
Otherwise, because the remaining rules are syntax directed, we proceed by ex-
amining all possible expressions e.

We present one interesting case, namely a function call φ; Γ ` F [~ı](e) : ρ.
Examining the possible derivations, we see that there exists ρ1 such that φ; Γ `
F [~ı] : ρ1 → ρ and φ; Γ ` e : ρ1 are derivable. The monadic translation of F [~ı](e)
is

letC x = e∗

in costcc (F [~ı](x)) end

Because of Lemma 9 on the page before, rule ty-monadic-let (Section 4.2) is ad-
missible, hence we need to find derivations of φ; Γ ` e∗ : C ρ1 and φ; Γ∗, x : ρ1 `
costcF (F [~ı](x)) : C ρ. The former follows by induction hypothesis, the latter is
easily derived using rule ty-monadic-cost and the fact that φ; Γ ` F [~ı] : ρ1 → ρ
is derivable. 2

B.2.2 The monadic translation preserves semantics

In order to prove the second part of Theorem 2 on page 20, namely that the
monadic translation preserves semantics, we need the following lemma:

Lemma 11
Let ` Θ : ΓF and φ; ΓF , Γ ` e : ρ be derivable. Then e −→Θ v iff there exists
a z ∈ C such that e∗ −→Θ∗ 〈v, z〉 is derivable (where Θ∗(F ) = Θ(F )∗ for all
F ∈ dom(Θ)).

Proof: The proof is conducted by structural induction over e −→Θ v (proving
the implication from left to right) and over e∗ −→Θ∗ 〈v, z〉 (right to left).

We show the case of a function call F [~ı](e). Assume that there exists a deriva-
tion of F [~ı](e) −→Θ v. Rule inversion with ev-mod-fapp (Figure 20 on page 39)
shows that there exists a value v′ such that e −→Θ v′ and body [~a 7→~ı][x1 7→ v′] −→Θ

v are derivable, where Θ(F ) = λ~a : ~γ . lam x : ρ . body . Consider now the trans-
lated term (F [~ı](e))∗ where the monadic constructs have been expanded as
shown in Figure 10 on page 21:

case e∗ of
〈x1, z1〉 ⇒ case (case F [~ı](x1) of 〈x3, z3〉 ⇒ 〈x3, z3 + cF 〉) of

〈x2, z2〉 ⇒ 〈x2, z1 + z2〉

By induction hypothesis, we know that there is a z′1 such that e∗ −→Θ∗ 〈v′, z′1〉;
with ev-mod-case it follows that we need to show a derivation of F [~ı](v′) −→Θ∗

〈v, z′3〉 for some z′3 ∈ C. Such a derivation can be constructed using ev-mod-fapp
and a derivation body∗[~a 7→~ı][x1 7→ v′] −→Θ∗ 〈v, z′3〉, which exists by induction
hypothesis. 2

We are now in a position to prove the second part of Theorem 2 on page 20:
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Proof: Let program p be of the form given in Figure 8 on page 19 with function
definitions Fl = fix Fl : τl.el for 0 ≤ l ≤ k and program body e. Let

Γ := F1 : τ1, . . ., Fk : τk

Θ := [F1 7→ e1, . . . , Fk 7→ ek]

Inspecting the type derivation of p it is easy to see that ` Θ : Γ and ·; Γ` e :ρ
are derivable. From the semantics we know that p −→[] v and p∗ −→[] 〈v′, z〉 iff
e −→Θ v and e∗ −→Θ∗ 〈v′, z〉, respectively. With Lemma 11 on the page before
we have that e −→Θ v iff e∗ −→Θ∗ 〈v, z〉, which concludes the proof. 2

B.3 Extraction of recurrence equations—preliminaries

B.3.1 An erasure from index sorts to index types

The erasure ·̃ maps an index sort to its associated index type by removing all
constraint-related information. It is defined as follows:

Ñ = N

1̃ = 1
γ̃1 × γ2 = γ̃1 × γ̃2

˜{a : γ | P} = γ̃

For a context Γ that maps function names to types we define Γ̃ such that

Γ̃(F c) = γ̃0 → γ̃1 → . . . γ̃k → C

if
Γ(F ) = Π a0 : γ0 . Π a1 : γ1. . . Π ak : γk . ρ1 → ρ2.

For an index context φ we define φ̃ as follows:

·̃ = ·
φ̃, a : γ = φ̃, a : γ̃

φ̃, P = φ̃

The following lemma shows that the erasure preserves type soundness of index
substitutions.

Lemma 12
If φ ` θ : φ′ is derivable, then φ̃ ` θ : φ̃′ is derivable.

Proof: With a straightforward induction over the structure of sort γ, it is easy
to show that if φ ` i : γ is derivable, then φ̃ ` i : γ̃ is derivable. Using this fact,
one then can show the lemma with a straightforward induction over the length
of φ′. 2
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B.3.2 Flattening index contexts into constraints

The algorithm for extracting cost recurrences uses a function C to rewrite an
index context into a conjunctive constraint by flattening subsort definitions.
A declaration i : {k : γ | P} is rewritten with the conjunction of (1) the
constraints imposed by the declaration i : γ and (2) the index proposition
P [k 7→ i]. The resulting constraint Φ := C(φ) is a quantifier-free conjunction of
equality constraints and index propositions:7

C(·) = >
C(φ, i : 1) = C(φ)
C(φ, i : N) = C(φ)
C(φ, i : γ1 × γ2) = C(φ, fst(i) : γ1, snd(i) : γ2)
C(φ, i : {k : γ | P}) = C(φ, i : γ) ∧ P [k 7→ i]
C(φ, P ) = C(φ) ∧ P
C(φ, i = j) = C(φ) ∧ (i = j)

C is well-defined: Assuming a straightforward weight-function for sort defini-
tions, a termination order for C(φ) can be given as the lexicographic order of
the sum of the weights of all sort definitions in φ and the length of φ.

The following lemma expresses a useful correspondence between φ and C(φ):

Lemma 13
Let φ and φ′ be index contexts and θ an index substitution such that dom(θ) =
dom(φ′). Then

φ ` θ : φ′ iff φ |= C(φ′)[θ].

Proof: We conduct the proof by structural induction over φ. In the base case,
φ = ·, we have φ ` [] : · and φ |= >[θ] for all substitutions θ. Both directions
follow immediately (using dom(θ) = dom(φ′) from right to left).

A non-empty index context has form φ, a : γ or φ, P . We examine the first
of these cases, the second case follows by similar reasoning.

We have to show that

φ ` θ[a 7→ i] : φ′, a : γ iff φ |= C(φ′, a : γ)[θ[a 7→ i]],

which is equivalent to

(φ ` θ : φ′ and φ ` i : γ[θ]) iff (φ |= C(φ′)[θ] and φ |= C(a : γ)[θ[a 7→ i]]).

Assuming that for all i and γ

φ ` i : γ iff φ |= C(a : γ)[a 7→ i], (*)

we can conclude the proof using the induction hypothesis.
7Because of the way C handles product sorts, it actually is defined on contexts that assign

sorts to index objects rather than only index variables.
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It remains to show Equation (*). We use induction over the structure of γ
and demonstrate the case of a sort definition of form {k : γ | P}: We have to
show that

φ ` i : {k : γ | P} iff φ |= C(a : {k : γ | P})[a 7→ i]

Assuming the left-hand side, it follows with rule-inversion that φ ` i : γ and
φ |= P [k 7→ i]. Using the induction hypothesis, we further can derive that
φ |= C(a : γ)[a 7→ i], so obviously φ |= (C(a : γ ∧ P [k 7→ a]))[a 7→ i], which is
equivalent to φ |= (C(a : {k : γ | P}))[a 7→ i]. The direction from right to left
follows with similar reasoning steps. 2

B.4 Extraction of recurrence equations—correctness

In this section, we present a proof of the correctness of the extraction algorithm
for recurrence equations, as stated in Theorem 4 on page 29. As the theorem is
in three parts, we divide the proof into three parts.

B.4.1 The result of extraction is well-typed

The first part of Theorem 4 on page 29 follows directly from a lemma that relates
the type derivation of a function body to the type derivation of the extracted
recurrence-equation term.

Lemma 14
If φ; Γ ` e : ρ I t is derivable for an expression e, then φ̃; Γ̃ ` t : C is derivable.

Proof: The proof is conducted by structural induction over the type derivation
of e. In case the last rule of the type derivation is ty-eq, then the lemma follows
by induction hypothesis. Because the remaining typing rules for DMLΠ

0 (C) are
syntax directed, we proceed by examining the different syntactic forms of e as
given by the grammar in Figure 8 on page 19. We show the case of a function
call F [i0] . . . [ik] e; all other cases can be shown in a similar way.

For a function call F [i0] . . . [ik](e) , the extracted recurrence-equation term is
t := t′ + cF + (F c i0 . . . ik) where t′ has been extracted from e. The last rule of
the type derivation must be ty-app, i.e., for some ρ1, ρ2 there exist derivations

φ; Γ ` e : ρ1 (1)
φ; Γ ` F [i0] . . . [ik] : ρ1 → ρ2 (2)

Analyzing the shape of a type derivation for t, we see that we need to show

φ̃; Γ̃ ` t′ : C (1′)

φ̃ ` i0 : γ̃0 . . . φ̃ ` ik : γ̃k, (2′)
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assuming that Γ(F ) = Π a0 : γ0. . .Π ak : γk . ρ′1 → ρ′2. From (1), we can show
(1′) using the induction hypothesis. From (2), we can derive (2′): With a
straightforward induction on k one can show that (2) implies

φ ` [a0 7→ i0, . . . , ak 7→ ik] : (a0 : γ0, . . . , ak : γk).

With Lemma 12 on page 43, it follows that

φ̃ ` [a0 7→ i0, . . . , ak 7→ ik] : (a0 : γ̃0, . . . , ak : γ̃k),

which, because there are no dependencies between two index types γ̃l and γ̃l′ ,
implies (2′). 2

B.4.2 The result of extraction is a cost bound

We need to show that the cost of executing F [~ı] v for some user-defined function
F and some value v is bounded by F c ~ı, where F c is the cost recurrence extracted
for F . We start with Lemma 15, which says that when extracting a recurrence-
equation term t from a DML expression e, then t defines a bound for e under the
assumption that all calls to user-defined functions in e are bounded correctly by
the corresponding calls to F c in t.

Lemma 15
Let φ; ΓF , Γ ` e : ρ I t be derivable. Let θ be a substitution such that θφ

substitutes index variables for ground terms, θΓ substitutes (normal) variables
for values, and ·; ΓF ` θ : (φ; Γ) is derivable, i.e., θ is type-sound with respect
to φ and Γ. Let Θ be an environment such that ` Θ : ΓF is derivable. Let Ψ
be a mapping from dom(ΓF ) to functions such that

1. if ΓF (F ) = Π a0 : γ0. . . Π al : γl . ρ1 → ρ2 then

Ψ(F c) ∈ [I[[γ̃0]] → . . . → I[[γ̃l]] → C⊥]

2. if F [~ı](u) type-checks under ΓF and T [[F c ~ı]]Ψ[] = xzy then

F [~ı](u) −→Θ∗ 〈u′, z′〉 with z′ ≤ z.

Then if T [[t]]Ψ(I[[θφ]]) = xzy, then e∗[θ] −→Θ∗ 〈v′, z′〉 with z′ ≤ z.

Proof: We use structural induction over the type derivation of e. In case the
last rule of the type derivation is ty-eq, then the lemma follows by induction
hypothesis. Because the remaining typing rules for DMLΠ

0 (C) are syntax di-
rected, we proceed by examining the different syntactic forms of e as given by
the grammar in Figure 8 on page 19. We show two interesting cases: function
application and case expression.

For a function application F [~ı](e), the extracted recurrence-equation term
is t + cF + F c ~ı, where t has been extracted from e. We express (F [~ı](e))∗,
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(see Figure 9 on page 21 for the definition of the monadic translation (·)∗) as
a DML program by removing syntactic sugar introduced in the translation (see
Figure 10 on page 21) and examine the shape of a possible derivation for

(F [~ı](e))∗[θ] −→Θ∗ 〈v′, z′〉.

It is easy to see that such a derivation can exist only if there are z′F , z′e ∈ C
such that z′ = z′F + cF + z′e and the following two assumptions hold:

(1) For some value ve, there is a derivation e∗[θ] −→Θ∗ 〈ve, z
′
e〉.

(2) There is a derivation F [~ı[θ]] ve −→Θ∗ 〈v′, z′F 〉.

Assume now that T [[t + cF + F c ~ı]]Ψ(I[[θφ]]) = xzy; using the semantics defini-
tion from Figure 13 on page 24 the following three facts follow easily:

(1′) For some ze ∈ C we have T [[t]]Ψ(I[[θφ]]) = xzey.

(2′) For some zF ∈ C, we have T [[F c ~ı]]Ψ(I[[θφ]]) = xzF y.

(3′) We have z = zF + cF + ze.

Using the induction hypothesis and (1′), we can deduce (1) for some z′e ≤ ze.
From (2′), it follows by assumption that (2) holds for some z′F ≤ zF ; this is
because T [[F c ~ı]]Ψ(I[[θφ]]) is equivalent to T [[F c (~ı[θφ])]]Ψ[]. Finally, using (3′)
we can infer that z′ ≤ z, which concludes the proof for this case.

For a case expression of form (case e of p0 ⇒ e0 | . . . pk ⇒ ek), the extracted
recurrence-equation term is

t + (cond br0 | . . . | brk)

where t is extracted from e by

φ; ΓF , Γ ` e : ρ′ I t

and every br j from the type-derivation of a branch (pj ⇒ ej) as

Φj1 → ∀(dom(φ′
j)\dom(θj)).Φj2 → t[θj ]

where
p ↓ ρ′ B (φ′

j ; Γ
′
j)

φ, φ′
j ; Γ, Γ′

j ` ej : ρ I tj
Φj1 = ∃(dom(φ, φ′

j)\var(ρ′)).C(φ, φ′
j)

θj = mk substdom(φ′
j)

(C(φ′
j))

Φj2 = ∃(dom(θj)).C(φ′
j)

Like before, we examine the shape of a possible derivation for

(case e of p0 ⇒ e0 | . . . pk ⇒ ek)∗[θ] −→Θ∗ 〈v′, z′〉,

and see that such a derivation can exist only if there are z′e, z
′
b ∈ C such that

z′ = z′e + z′b and the following two assumptions hold:
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(1) For some value ve, there is a derivation e∗[θ] −→Θ∗ 〈ve, z
′
e〉.

(2) For some j with 0 ≤ j ≤ k for which match(pj , ve) =⇒ θ′ is derivable,
there is a derivation ej

∗[θ ◦ θ′] −→Θ∗ 〈v′, z′b〉.

Assume now that T [[t + (cond br0 | . . . | brk)]]Ψ(I[[θφ]]) = xzy; using the se-
mantics definition from Figure 13 on page 24 we can deduce the following facts:

(1′) For some ze ∈ C we have T [[t]]Ψ(I[[θφ]]) = xzey.

(2′) There is some zb ∈ C such that for every branch br j

Φj1 → ∀(dom(φ′
j)\dom(θj)).Φj2 → t[θj ]

we have that if |= Φj1[θφ] then for all ~z with |= Φj2[θφ[~a 7→ ~z]] there is
zB ≤ zb such that T [[tj [θj ]]]Ψ(I[[θφ[~a 7→ ~z]]]) = xzBy

(3′) We have z = ze + zb.

Using the induction hypothesis and (1′), we can deduce (1) for some z′e ≤ ze.
In the following, we prove (2), using the induction hypothesis and (2′):

• We first show that whenever match(pj , ve) =⇒ θ′ is derivable, then |=
Φj1[θφ], i.e., the precondition for (2’) holds.

We examine the form of Φj1 = ∃~b,~c.C(φ, φ′
j), where ~b are the variables in

dom(φ′
j) and ~c are the variables in dom(φ)\var(ρ′). We need to show

|= (∃~b,~c.C(φ, φ′
j))[θφ].

In fact, θφ and θ′φ hold witnesses for ~b and ~c, respectively: By assumption,
we have ·; ΓF ` θ : (φ; Γ), which implies ` θφ : φ. Further, with the first
part of Theorem 7 on page 35, it follows that φ ` θjφ : φ′. Using Lemma 13
on page 44, we derive |= C(φ)[θφ] and φ |= C(φ′

j)[θ
′
φ]. With Lemma 5 on

page 33, we then can derive |= (C(φ′
j)[θ

′
φ])[θφ], so all in all we have we

have |= C(φ, φ′
j)[θ

′
φ θφ], which implies |= (∃~b,~c.C(φ, φ′

j))[θφ].

• With similar reasoning, we show that whenever match(pj , ve) =⇒ θ′ is
derivable, then |= Φj2[θφ[~a 7→ θ′φ(~a)]] (where ~a := dom(φ′

j)\dom(θj))
holds, so with (2′) it follows that

T [[tj [θj ]]]Ψ(I[[θ[~a 7→ θ′φ(~a)]]]) = xzBy for some zB ≤ zb. (*)

• Knowing (*), we can show (2) by induction hypothesis if

T [[tj [θj ]]]Ψ(I[[θφ[~a 7→ θ′φ(~a)]]]) = T [[tj ]]Ψ(I[[θφ ◦ θ′φ]]).

With a straightforward structural induction over tj we can show that

T [[tj [θj ]]]Ψ(I[[θφ[~a 7→ θ′φ(~a)]]]) = T [[tj ]]Ψ(I[[θj ◦ θφ[~a 7→ θ′φ(~a)]]])
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It remains to show that b[θj ◦ θφ[~a 7→ θ′φ(~a)]] = b[θφ ◦ θ′φ] for all b ∈
dom(θ ◦ θ′). Some reasoning about the domains of the comprised substi-
tutions allows us to rearrange their composition and show instead that

b[(θj ◦ [~a 7→ θ′φ(~a)])θφ] = b[θ′φ θφ] (**)

For b ∈ ~a and b ∈ dom(θ) there is nothing to show. Consider now
b ∈ dom(θj). By definition of θj we know that φ′ |= b = b[θj ]. Using
Lemma 5 on page 33 on ` θφ : φ and φ ` θjφ : φ′

j (established above),
we can derive that b[θj ◦ θ′φ ◦ θφ] = b[θ′φ ◦ θφ]. Equation (**) follows with
some basic reasoning about substitutions.

Now, with (3′) and the fact that zB ≤ zb, it follows that z′ ≤ z, which concludes
the proof for this case. 2

We have shown that extracting a recurrence-equation term t from a DML ex-
pression e yields a valid bound under the assumption that we have a valid bound
F c for every user-defined function F called in e. We now show that the seman-
tics of a recurrence equation Gc, which is based on the recurrence-equation term
extracted from the body of a user-defined function G (see Section 4.3.2), indeed
defines a bound for G.

Lemma 16

Let (fix G : Π~a : ~γ . ρ1 → ρ2.lam x : ρ1 . case x of 〈x0, . . ., xk〉 ⇒ e) be typable
under ΓF and let

·; ΓF , G : Π~a : ~γ . ρ1 → ρ2, x : ρ1, x0 : ρ0
1, . . . , xk : ρk

1 ` e : ρ2 I t

be derivable. Let Θ be an environment such that ` Θ : ΓF is derivable. Let Ψ
be a mapping from dom(ΓF ) to functions such that

1. if ΓF (F ) = Π a0 : γ0. . . Π al : γl . ρ1 → ρ2 then

Ψ(F c) ∈ [I[[γ̃0]] → . . . → I[[γ̃l]] → C⊥]

2. if F [~ı](u) type-checks under ΓF and T [[F c ~ı]]Ψ[] = xzy then

F [~ı](u) −→Θ∗ 〈u′, z′〉 with z′ ≤ z.

Let further

ϕ := fix(λF .λ~n.T [[t]](Ψ[Gc 7→ F ])[~a 7→ ~n])
Θ1 := Θ[G 7→ lam x : ρ1 . case x of 〈x0, . . ., xk〉 ⇒ e]

Then, if G[~ı](u) type-checks under ΓF , G : Π~a : ~γ . ρ1 → ρ2 and

T [[Gc [~ı]]](Ψ[Gc 7→ ϕ])[] = xzy,

we have G[~ı](u) −→Θ1
∗ 〈v′, z′〉 with z′ ≤ z.
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Proof: We use fixed-point induction over the definition of ϕ. For the base
case, we have

T [[G [~ı]]](Ψ[Gc 7→ ϕ])[] = ⊥,

so the lemma is vacuously true. For the induction step, assume that for ϕ′, if
G[~ı](u) type-checks under ΓF , G : Π~a : ~γ . ρ1 → ρ2 and

T [[Gc [~ı]]](Ψ[Gc 7→ ϕ′])[] = xzy,

we have G[~ı](u) −→Θ1
∗ 〈v′, z′〉 with z′ ≤ z. We have to show that if

T [[G [~ı]]](Ψ[Gc 7→ λ~n.T [[t]](Ψ[Gc 7→ ϕ′])[~a 7→ ~n]])[] = xzy (1)

then
G[~ı] u −→Θ1

∗ 〈v′, z′〉 (2)

with z′ ≤ z.
Using the definitions of the denotational semantics (Figure 13 on page 24) of

recurrence equations and operational semantics of DML (Figure 20 on page 39),
we see that Equations (1) and (2) are equivalent to

T [[t]](Ψ[Gc 7→ ϕ′])[~a 7→ I[[~ı]]] = xzy (1’)

e∗[~a 7→~ı][x 7→ u][x0 7→ fst(u)] . . . [xk 7→ sndk(u)] −→Θ1
∗ 〈v′, z′〉 (2’)

We can use Lemma 15 on page 46; its preconditions are satisfied:

• From the fact that G[~ı](u) type-checks under ΓF , G : Π~a : ~γ . ρ1 → ρ2, we
can deduce that the substitution

[~a 7→~ı][x 7→ u][x0 7→ fst(u)] . . . [xk 7→ sndk(u)]

is type-sound with respect to ~a : ~γ and x : ρ1, x0 : ρ0
1, . . . , xk : ρk

1 .

• The environment (Ψ[Gc 7→ ϕ′]) has the required properties, for F c ∈
dom(Θ) by assumption, and for Gc by induction hypothesis.

2

Part 2 of Theorem 4 on page 29 follows from Lemma 16 on the preceding
page with a straightforward induction proof over the number of user-defined
functions in program p.

B.4.3 Result of extraction is a recurrence

The intuition behind the test described in Section 4.4.3 of whether the extracted
cost bound is a recurrence is to use the constraint information contained in
DMLΠ

0 (C) type derivations for showing that the argument on each recursive
call decreases. Without further proof, however, such an argument only shows
the termination of the examined DML program. We further need to argue that
conclusions drawn from constraint information about index arguments to recur-
sive function calls also holds for arguments to the corresponding calls occurring
within an occurrence equation:
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Theorem 17
Assume that the extraction algorithm annotates every call F c ~ı with the index

context it was extracted under, i.e., φ′; Γ′ ` F [~ı](e′) : ρ′ gives rise to F c,φ′
~ı, and

that the semantics T [[·]] ignores such annotations. If φ; Γ` e :ρ I t and ` θ : φ,
then, in the unfolded definition of T [[t]]Ψθ, for all applications Ψ(F c,φ′

) I[[~ı[θ′]]]
we have ` θ′ : φ′.

Proof: As in the proof of Lemma 15 on page 46, we use structural induction
over the type derivation of e. The only interesting case is that of a case expres-
sion case e of p0 ⇒ e0 | . . . pk ⇒ ek. The extracted recurrence-equation term
is

t + (cond br0 | . . . | brk)

where t is extracted from e by

φ; ΓF , Γ ` e : ρ′ I t

and every br j from the type-derivation of a branch (pj ⇒ ej) as

Φj1 → ∀(dom(φ′
j)\dom(θj)).Φj2 → t[θj ]

where
p ↓ ρ′ B (φ′

j ; Γ
′
j)

φ, φ′
j ; Γ, Γ′

j ` ej : ρ I tj
Φj1 = ∃(dom(φ, φ′

j)\var(ρ′)).C(φ, φ′
j)

θj = mk substdom(φ′
j)

(C(φ′
j))

Φj2 = ∃(dom(θj)).C(φ′
j)

For T [[t]]Ψθ we can simply use the induction hypothesis. For the conditional,
however, we have to examine all possible calculations T [[tj [θj ]]]Ψ(θ[~a 7→ ~z]) (with
~a := dom(φ′

j)\dom(θj)). With a straightforward structural induction on tj one
can show that

T [[tj [θj ]]]Ψ(θ[~a 7→ ~z]) = T [[tj ]]Ψ(θj ◦ (θ[~a 7→ ~z])).

To use the induction hypothesis, it remains to show that ` (θj ◦ θ[~a 7→ ~z]) :
(φ, φ′

j), which follows with a short derivation using Lemma 13 on page 44 and
the assumptions about φ, φ′

j , θ, θj, and ~z. 2

Theorem 17 shows that index-based reasoning about the index arguments
to functions in a DML program carry over to the corresponding recurrence
equation, hence the third part of Theorem 4 on page 29 holds.
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