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Abstract

The tcc model is a formalism for reactive concurrent constraint

programming. In this paper we propose a model of temporal con-

current constraint programming which adds to tcc the capability of

modeling asynchronous and non-deterministic timed behavior. We

call this tcc extension the ntcc calculus. The expressiveness of ntcc

is illustrated by modeling cells and asynchronous bounded broad-

casting, by specifying temporal requirements such as response and

invariance, and by modeling timed systems such as RCX con-

trollers. We present a denotational semantics for modeling the

strongest-postcondition behavior of ntcc processes, and, based on

this semantics, we develop a proof system for proving linear tem-

poral properties of these processes.

1 Introduction

Research on concurrent constraint programming (ccp) for timed systems

has attracted growing interest in the last years. Timed systems often

involve speci�c domains (e.g., controllers, databases, reservation systems)

and have time-constraints specifying their behavior (e.g., the lights must

be switched on within the next three seconds). The ccp model enjoys a

dual operational and declarative logical view allowing, on the one hand,

programs to be expressed using a vocabulary and concepts appropriate

to the speci�c domain, and on the other hand, to be read and understood

as (logical) speci�cations. An obvious bene�t of this view is to provide

the developer with one domain speci�c ccp language suitable for both

the speci�cation and implementation of programs. Indeed, several timed
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extensions of ccp have been developed in order to provide settings for

the programming and speci�cation of timed systems with the declarative

�avor of concurrent constraint programming ([31], [30], [8], [12], [13]).

1.1 Concurrent Constraint Programming: the ccp

model

Concurrent constraint programming [32] has emerged as a simple but

powerful paradigm for concurrency tied to logics. Ccp subsumes and

generalizes both concurrent logic programming ([34]) and constraint logic

programming ([19]). A fundamental issue in ccp is the speci�cation of

concurrent systems by means of constraints. A constraint (e.g. x + y >
10) represents partial information about certain variables. During the

computation, the current state of the system is speci�ed by a set of con-

straints (store). Processes synchronize by asking and telling information.

Whenever a process asks some information not yet entailed by the cur-

rent store, it blocks, and remains blocked until some other process adds

(tells) the requested information to the store.

In the ccp model processes are built by using the basic actions ask

and tell, and the operators of parallel composition, hiding, recursion and

guarded-choice. Unlike other models of concurrency, without guarded-

choice the model is deterministic, namely the result of a �nite computa-

tion is always the same, independently from the execution order (schedul-

ing) of the parallel components ([33]).

1.2 Reactive Concurrent Constraint Programming:

the tcc model

The tcc model ([31]) is a formalism for reactive ccp which combines de-

terministic ccp with ideas from the Synchronous Languages ([4], [15]).

Whenever a tcc process receives a stimulus (partial information) c from

the environment, it executes a deterministic ccp process P with c as ini-
tial store. In a bounded period of time, P reaches a resting point, and

returns the information contained in the �nal store as a response to the

environment. The residual ccp process at the resting point, P ′, deter-
mines the ccp process P ′′ to be executed in the next time interval. Each

stimulus-response interaction between a process and its environment de-

�nes a time unit (or time interval). Since the computation in each time

interval is deterministic, tcc is deterministic.
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Many interesting temporal constructs can be expressed in tcc. In

particular, the doP watching c construct of ESTEREL [4], which exe-

cutes P continuously until the signal c is present. In general, tcc allows

processes to be �clocked� by other processes, thus allowing meaningful

pre-emption constructs.

1.3 AModel of Temporal Concurrent Constraint Pro-

gramming

Being a model of reactive ccp based on the Synchronous Languages ([4],

[15]) (i.e. programs must be determinate and respond immediately to

input signals), the tcc model is not meant for the speci�cation of non-

deterministic or asynchronous temporal behavior. Indeed, patterns of

temporal behavior such as �the system must output c within the next t
time units� or �the message must be delivered but there is no bound in

the delivery time� cannot be expressed within the model. It also rules out

the possibility of choosing one among several alternatives as an output

to the environment. The task of zigzagging (see Section 5), in which

a robot can unpredictably choose its next move, is an example where

non-determinism is useful.

In general, a bene�t of allowing the speci�cation of non-deterministic

behavior is to free programmers from the necessity of coping with issues

that are irrelevant to the problem speci�cation. Dijkstra's language of

guarded commands, for example, uses a nondeterministic construction

to help free the programmer from over-specifying a method of solution.

As pointed out in [38], a disciplined use of nondeterminism can lead to

a more straightforward presentation of programs.

This view is consistent with the declarative �avor of ccp: The pro-

grammer speci�es by means of constraints the possible values that the

program variables can take, without being required to provide a compu-

tational procedure to enforce the corresponding assignments. Constraints

state what is to be satis�ed but not how. Following this line of reasoning,

we argue for a formalism for temporal programming where programs and

speci�cations can be given in the same language. For example, we may

think of the ccp program tell(x > 5) as a speci�cation satis�ed by the

ccp programs (or re�nements) tell(x = 7) and tell(x > 11).
Moreover, a very important bene�t of allowing the speci�cation of

non-deterministic (and asynchronous) behavior arises when modeling the

interaction among several components running in parallel, in which one
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component is part of the environment of the others. These systems often

need non-determinism to be modeled faithfully.

In this paper we propose an extension of tcc, which we call the

ntcc calculus, for temporal concurrent constraint programming. The

ntcc calculus is obtained by adding guarded-choice for modeling non-

deterministic behavior and an unbounded �nite-delay operator for asyn-

chronous behavior. Computation in ntcc progresses as in tcc, except for

the non-determinism induced by the new constructs. The calculus allows

for the speci�cation of temporal properties, and for modeling (and ex-

pressing constraints upon) the environment, both of which are useful in

proving properties of timed systems.

We will illustrate the expressiveness of ntcc by modeling several con-

structs such as cells, asynchronous bounded broadcasting, response and

invariance, that in turn are useful for specifying timed systems. We also

illustrate some applications involving RCXTM controllers.

The declarative nature of ntcc comes to the surface when we consider

the denotational characterization of the strongest postcondition observ-

ables, as de�ned in [7] for ccp, and extended to a timed setting. We

show that the elegant model based on closure operators, developed in

[33] for deterministic ccp, can be extended to a sound model for ntcc

without losing its essential simplicity. Under certain conditions on the

kind of guarded-choice allowed within the scope of local variables, which

we shall call local-independent choice (i.e, either guards without free oc-

currences of local variables, internal or mutually exclusive choice), we

also obtain completeness.

The logical nature of ntcc comes to the surface when we consider its

relation with linear temporal logic: We show that all the operators of

ntcc correspond to temporal logic constructs like the operators of ccp

correspond to (classical) logic constructs ([7]). Following the lines of the

proof system proposed in [7] for ccp, we develop a sound system for prov-

ing linear temporal properties of ntcc, and we show that the system is

also (relatively) complete wrt local-independent choice processes. Our

system is then complete for tcc as well, since every tcc process falls into

the category of local-independent choice ntcc processes. The proof sys-

tem for tcc in [31], whose underlying logic is intuitionistic rather than

classical, is complete for hiding (and recursion) free tcc processes only.

We also report on current research on our notion of equality for ntcc:

two processes are equivalent i� no context can distinguish them wrt to

the input-output behavior. We show the existence of an universal (dis-
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tinguishing) context and that such an equality is decidable for hiding-free

and bounded non-deterministic processes.

The main contributions of this paper can be summarized as follows:

(1) a model of temporal concurrent constraint programming that extends

the speci�cation power of the tcc model, (2) a denotational semantics

capturing the strongest postcondition behavior of a ntcc process, (3) a

proof system for proving whether a given ntcc process satis�es a property

speci�ed in linear temporal logic, and (4) an study of a natural behavioral

equivalence for our calculus.

2 The Calculus

In this section we present the syntax and an operational semantics of the

ntcc calculus. First we recall the notion of constraint system.

2.1 Constraint Systems

Concurrent constraint languages are parametrized by a constraint sys-

tem. Basically, a constraint system de�nes the underlying universe of

the particular language. It provides a signature from which syntactically

denotable objects in language called constraints can be constructed, and

an entailment relation specifying interdependencies between such con-

straints. For our purposes it will su�ce to consider the notion of con-

straint system based on First-Order Predicate Logic, as it was done in

[35]1.

De�nition 2.1 A constraint system is a pair (Σ, ∆) where Σ is a sig-

nature specifying functions and predicate symbols, and ∆ is a consistent

�rst order theory.

Given a constraint system (Σ, ∆), let L be the underlying �rst-order

language (Σ,V,S), where V = {x, y, z, . . .} is the set of variables and S
is the set containing the symbols ¬̇, ∧̇, ⇒̇, ∃̇, ˙true , and ˙false which denote

logical negation, conjunction, implication, existential quanti�cation, and

the always true and always false predicates, respectively. Constraints,

denoted by c, d, . . . are �rst-order formulae over L. We say that c entails
d in ∆, written c `∆ d (or just c ` d when no confusion arises), if c ⇒̇ d

1See [33] for a more general notion of constraints based on Scott's information
systems.
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is true in all models of ∆. We write c ≈ d i� c ` d and d ` c. We will

consider constraints modulo ≈ and use C for the set of representants

of equivalence classes of constraints. For operational reasons we shall

require ` to be decidable.

2.2 Syntax

Processes P , Q, . . .∈ Proc are built from constraints c ∈ C and variables

x ∈ V in the underlying constraint system by the following syntax.

P, Q, . . . ::= tell(c) | ∑
i∈I

when ci doPi | P ‖ Q | local x inP

| nextP | unless c nextP | ! P | ? P

Informally, the intended behavior is the following: The process tell(c)
adds the constraint c to the current store, thus making c available to other
processes in the current time interval. The guarded choice∑

i∈I when ci do Pi, where I is a �nite set of indexes, represents a pro-

cess that, in the current time interval, must select non-deterministically

one of the Pj (j ∈ I) whose corresponding constraint cj is entailed by

the store. Once an alternative is selected the others are precluded, and

if none of them can be selected then all of them will be precluded in

the next time interval. We omit �∈ I�, if I is unimportant or obvious

and we omit �
∑

i∈I� when I is a singleton set. In case I = ∅, we write

skip. We use the symbol �+� to indicate binary summations. Finally, we

use
∑

i∈I Pi as an abbreviation for
∑

i∈I when ( ˙true) do Pi (i.e., blind

choice).

The process P ‖ Q represents the parallel activation of P and Q. We

use
∏

i∈I Pi, where I is �nite, to denote the parallel composition of all

Pj, for j ∈ I.
The process local x in P behaves like P , except that all the informa-

tion on x produced by P can only be seen by P , and the information on

x produced by other processes cannot be seen by P . We use local x̄ in P
as a shorthand for local x1 in (local x2 in (. . . (local xn in P ) . . . )),
where x̄ represents the sequence x1x2 . . . xn.

The process next P represents the activation of P in the next time

interval. The process unless c next P is similar, but P will be acti-

vated only if c cannot be inferred from the current store. The �unless�

processes add (weak) time-outs to the calculus, i.e., they wait one time

unit for a piece of information c to be present and if it is not, they trigger
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activity in the next time interval. We use nextn(P ) as an abbreviation

for next(next(. . . (nextP ) . . . )), where next is repeated n times.

The operator �!� is a delayed version of the replication operator for

the π−calculus ([26]): ! P represents P ‖ nextP ‖ next2P ‖ . . ., i.e.
unboundely many copies of P but one at a time, so there is no risk of

in�nite activity within a time interval. The replication operator is the

only way of de�ning in�nite behavior through the time intervals. The

operator �?� is reminiscent of the �nite delay operator for synchronous

CCS ([25]) and it allows us to express asynchronous behavior through

the time intervals. The process ? P represents a �nite but unbounded

delay for the activation of P . For example, ? tell(c) can be viewed as a

message c that is eventually delivered but there is no upper bound on

the delivery time.

Note that the bounded versions of ! P and ? P can be derived from

the previous constructs. We use !IP and ?IP , where I is �nite, as an ab-

breviation for
∏

i∈I nextiP and
∑

i∈I nextiP , respectively. For instance,

?[m,n]P means that P is eventually active between the next m and m+n
time units, while ![m,n]P means that P is always active between the next

m and m + n time units.

2.3 Some examples

We now show some examples illustrating speci�cation of temporal behav-

ior in ntcc such as response requirements. Assume that the underlying

constraint system includes the predicate symbols in

{O�,TurnOn,OutofOrder,OverHeated}. Consider the �power saving� pro-

cess

! (unless (Off (lights))next ? tell (Off (lights))).

Call it ! P . This process triggers a copy of P each time unit. Thus,

the lights are eventually turned o�, unless the environment (or another

process) tells P that the lights are already turned o�. Process P is always

active. We may want, however, to specify that the light must be turned

o� not only eventually but within the next 60 time units. A process

specifying this and thus �re�ning� the previous one would be

! (unless (Off (lights))next ?[0,60] tell (Off (lights))).

Finally, we may also want to write an �implementation� of these speci�-

cations. For instance, the process

! (unless (Off (lights))next tell (Off (lights)))
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is one of the possible deterministic processes implementing the above

two.

Another example is the speci�cation of (bounded) invariance require-

ments. Consider the following two processes:

! (when OutofOrder(M )do ! tell(¬̇TurnOn(M)))
! (when OverHeated(M )do ![0,t]tell(¬̇TurnOn(M)))

The �rst process repeatedly checks the state of a machine M and,

whenever it detects that M is out of order, it tells the other processes

that M should not be used anymore. The second process, whenever it

detects that M is overheated, tells other processes that M should not be

turned on during the next t time units.

2.4 An operational semantics for ntcc

We de�ne now an operational semantics for ntcc which formalizes the

intended meaning explained above.

2.4.1 The store and the con�gurations

Operationally, the current information is represented as a constraint c ∈
C, so-called store. Our operational semantics is given by considering

transitions between con�gurations γ of the form 〈P, c〉. We de�ne Γ as

the set of all con�gurations. Following standard lines, we extend the

syntax with a construct local (x, d) inP , which represents the evolution

of a process of the form localx inQ, where d is the local information

(or store) produced during this evolution. Initially d is �empty�, so we

regard localx inP as local (x, ˙true) in P .

2.4.2 A structural congruence

We need to introduce a notion of free variables that is invariant wrt

the equivalence on constraints. We can do so by de�ning the �relevant�

free variables of c as fv(c) = {x ∈ V | ∃xc 6≈ c}. For instance, we have

fv(x = x∧̇y > 1) = {y}. For the bound variables, de�ne bv(c) =
{x ∈ V | x occurs in c}− fv(c). Regarding processes, de�ne fv(tell(c)) =
fv(c), fv(

∑
i when ci do Pi) =

⋃
i fv(ci) ∪ fv(Pi), and similarly for the

bound variables. Further, de�ne fv(localx inP ) = fv(P ) − {x} and

bv(localx inP ) = bv(P ) ∪ {x}. The other cases are de�ned inductively

in the obvious way.
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De�nition 2.2 (Structural congruence) Let ≡ be the smallest con-

gruence relation over processes satisfying the following laws:

1. (Proc/≡, ‖, skip) is a symmetric monoid.

2. P ≡ Q if they only di�er by a renaming of bound variables.

3. next skip ≡ skip next(P ‖ Q) ≡ nextP ‖ nextQ

4. localx in skip ≡ skip local x y inP ≡ local y x inP

5. localx in nextP ≡ next(localx inP )

6. localx in (P ‖ Q) ≡ P ‖ localx inQ if x 6∈ fv(P )

We extend ≡ to con�gurations by de�ning 〈P, c〉 ≡ 〈Q, c〉 if P ≡ Q.

One interesting property of our calculus is that it admits a notion of

standard form:

De�nition 2.3 A process P of the form

local x̄ in
∏

i∈[0,n]

nexti


∏

ji

Pji ‖
∏
ki

unless cki
nextQki

‖
∏
li

!Qli ‖
∏
mi

?Qmi




is said to be in standard form if each Pji
is a non-empty summation or

a tell process, and each Qki
, Qli and Qmi

is itself a standard form.

Proposition 2.4 Every process P in the original syntax (i.e. with no

occurrences of constructs of the form local (x, c) inP ) is structurally con-

gruent to a process Q in standard form, and such Q is unique modulo

congruence.

2.4.3 Reduction Relations

The reduction relations −→⊆ Γ × Γ and =⇒ ⊆ Proc × C × C × Proc
are the least relations satisfying the rules appearing in Table 1. The

internal transition 〈P, c〉 −→ 〈Q, d〉 should be read as �P with store c
reduces, in one internal step, to Q with store d�. The observable transition

P
(c,d)

====⇒ Q should be read as �P on input c reduces, in one time unit,

to Q with store d�. As in tcc, the store does not transfer automatically

from one interval to another.
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We now give a description of the operational rules. Rules TELL,

CHOICE, and PAR are standard. The intuition behind LOC is the

following: From the internal point of view of P , the global informa-

tion about the variable x cannot be observed. Thus, in order to reduce

〈local (x, c) in P, d〉, we should �rst hide the information about x that

d may have. We do this by existentially quantifying x in d. From the

external point of view, the internal information produced in c′ about x
cannot be observed, thus we quantify x in c′ in the global store. Addi-

tionally, c′ becomes the new private store of the process for its future

evolutions.

Rule UNLESS says that if c is entailed by the current store, then the

execution of the process P (in the next time interval) is precluded. Rule

REPL speci�es that the process ! P produces a copy P at the current

time unit, and then persists in the next time unit. Since this is the

only way of specifying in�nite behavior, it follows that there can be only

�nitely many internal transitions in one time unit. STAR says that ? P
triggers P in some time interval (either in the current one or in a future

one). Rule STRUCT simply says that structurally congruent processes

have the same reductions.

Rule OBS says that an observable transition from P labeled by (c, d)
is obtained by performing a �nite sequence of internal transitions from

〈P, c〉 to 〈Q, d〉, for some Q. The process to be executed in the next

time interval, F (Q) (�future� of Q), is obtained by removing from Q
what was meant to be executed only in the current time interval and

any local information which has been stored in Q, and by �unfolding� the

sub-terms within nextR expressions. More precisely:

De�nition 2.5 F : Proc → Proc is de�ned as follows:

F (P ) =




Q if P = next Q or P = unless c next Q
F (P1) ‖ F (P2) if P = P1 ‖ P2

local x in F (Q) if P = local (x, c) in Q
skip otherwise

Note that both F (! P ) and F (? P ) are de�ned to be skip because

neither ! P nor ? P occurs at the top level in a �nal con�guration.

We conclude this section illustrating how processes evolve through

the time intervals. An (in�nite) sequence of observable transitions

P1

(c1,c′1)====⇒ P2

(c2,c′2)====⇒ P3

(c3,c′3)====⇒ . . .
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can be interpreted as a stimulus-response interaction between the process

P1 and an environment. At the time unit i, the environment provides a

stimulus ci and the system Pi produces c′i as response. If α = c1.c2.c3. . . .
and α′ = c′1.c

′
2.c

′
3 . . ., we represent the above interaction by the notation

P1
(α,α′)

====⇒∞

A run can alternatively be interpreted as an interaction among the par-

allel components in the initial system (each component being part of the

environment of the others): if α = ˙true. ˙true. ˙true . . ., i.e., the input se-

quence is empty, then α′ can be regarded as a timed observation of such

an interaction.

3 Strongest postconditions: denotation and

logic for ntcc

In this section we introduce a notion of observables suitable to be repre-

sented logically, and we investigate its denotational counterpart.

In the following we use α, α′ to represent elements of C∞ and β to

represent an element of C ∗. Given c ∈ C , c.α represents the concate-

nation of c and α. Furthermore, β.α represents the concatenation of β
and α. We use ∃̇xα to represent the sequence obtained by applying ∃̇x

to each constraint in α. Notation α(i) denotes the i-th element in α.

De�nition 3.1 (Observables) 1. The input-output (or stimulus-response)

relation of a process P is de�ned as

io(P ) = {(α, α′) | P
(α,α′)

====⇒∞}

2. The quiescent sequences of a process P are de�ned as

sp(P ) = {α | P
(α,α)

====⇒∞}

Following [7] we shall refer to sp(P) as the strongest postcondition of

P (wrt C∞) as it satis�es the following:

Proposition 3.2 α ∈ sp(P ) i� there exists α′ such that P
(α′,α)

====⇒∞.
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3.1 Denotational semantics

We give now a denotational characterization of the strongest postcondi-

tion observables of ntcc, following ideas developed in [7] and [31] for the

ccp and tcc case, respectively. The presence of non-determinism, how-

ever, presents a technical problem to deal with: The observables for the

hiding operator cannot be speci�ed compositionally (see [7]). Therefore,

we will have to identify a practical fragment for which the semantics is

complete wrt our observables.

The denotational semantics is de�ned as a function [[·]] which as-

sociates to each process a set of in�nite constraint sequences, namely

[[·]] : Proc → P(C∞). The de�nition of this function is given in Table 2.

Intuitively, [[P ]] is meant to capture the quiescent sequences of a pro-

cess P . For instance, the sequences to which tell(c) cannot add infor-

mation are those whose �rst element is stronger than c (D1). Process

nextP has not in�uence in the �rst element of a sequence, thus d.α is

quiescent for it if α is quiescent for P (D5). A sequence is quiescent for

! P if every su�x of it is quiescent for P (D7). A sequence is quiescent

for ? P if there is a su�x of it which is quiescent for P (D8). The other

rules can be explained analogously.

Remark 3.3 The ! and the ? operators are dual. In fact, we could have

de�ned
[[! P ]] = νX ([[P ]] ∩ {d.α | d ∈ C , α ∈ X })
[[? P ]] = µX ([[P ]] ∪ {d.α | d ∈ C , α ∈ X })

where ν and µ represent respectively the greatest and the least �x-point

operators in the complete lattice (P(C∞),⊆).

Next theorem states the relation between the denotational semantics

of a ntcc process and its strongest postconditions.

Theorem 3.4 (Soundness) For every ntcc process P , sp(P) ⊆ [[P ]].

For the reasons mentioned at the beginning of this section, the con-

verse of this theorem does not hold in general. As in ccp, in ntcc the

converse holds for restricted choice processes, namely those ntcc pro-

cesses in which, for every construct of the form
∑

i∈I when ci do Pi, the

ci's are pairwise either mutually exclusive or equivalent. Formally, this

means that for all i, j ∈ I, if there exists d 6= ˙false such that d ` ci

and d ` cj, then ci = cj. Blind-choice processes are a typical case of
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restricted-choice. The condition required for restricted-choice processes

implies structural con�uence in the sense of [10], namely the outcome of

a process does not depend upon the scheduling strategy on its parallel

components.

Nevertheless, for ntcc we can show that the converse holds for a larger

set of processes which we call local-independent choice processes. These

are processes in which, for every construct
∑

i∈I when ci do Pi occurring

within a process local x in Q, either (a) x 6∈ ⋃
i∈I fv(ci), or (b) the ci's

are pairwise mutually exclusive or equivalent. This fragment is practical

since every restricted-choice process is also local-independent choice and,

unlike the restricted-choice fragment, its condition does not imply struc-

tural congruence. In fact, all the process examples in this paper belong

to the local-independent choice fragment but not all of them belong to

the restricted choice one (Zigzagging in Section 5).

Theorem 3.5 (Completeness) If P is a local-independent choice ntcc

process, then sp(P) = [[P ]].

For deterministic processes such as tcc processes, namely those which

contain neither the choice (except when the index set is a singleton)

nor the ? operator, we have an even stronger result: the semantics al-

lows to retrieve the input-output relation (which for deterministic pro-

cesses is a function). Let us use ≤ to denote the (partial) order relation

{(α, α′) | ∀i ≥ 1 α′(i) ` α(i)} and min(S) to denote the minimal element

of S ⊆ C∞ in the complete lattice (C∞,≤).

Theorem 3.6 If P is a deterministic process, then (α, α′) ∈ io(P ) i�

α′ = min([[P ]]∩ ↑ α), where ↑ α = {α′′|α ≤ α′′}.

4 A logic for ntcc

In this section we de�ne a linear temporal logic for expressing properties

of ntcc processes.

4.1 Syntax

The temporal logic formulae A, B, ... ∈ A are de�ned by the following

grammar.

A ::= c | A ∨ A | A ∧ A | A ⇒ A | ¬A | ∃xA | ◦A | �A | ♦A
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In the above grammar, c denotes an arbitrary constraint. The in-

tended meaning of the other symbols is the following: ∨, ∧, ⇒, ¬ and ∃x

represent temporal logic disjunction, conjunction, implication, negation

and existential quanti�cation. These symbols are not to be confused with

the logic symbols ∧̇, ⇒̇, ¬̇ and ∃̇x of the constraint system. The symbols◦, �, and ♦ denote the temporal operators next, always and sometime.

4.2 Semantics

The standard interpretation structures of linear temporal logic are in�-

nite sequences of states [23]. In the case of ntcc, it is natural to replace

states by constraints, and consider therefore as interpretations the ele-

ments of C∞. We say that α ∈ C∞ is a model of A, notation α |= A, if
〈α, 1〉 |= A, where:

〈α, i〉 |= c i� α(i) ` c
〈α, i〉 |= ¬A i� 〈α, i〉 6|= A
〈α, i〉 |= A1 ∨ A2 i� 〈α, i〉 |= A1 or 〈α, i〉 |= A2

〈α, i〉 |= A1 ∧ A2 i� 〈α, i〉 |= A1 and 〈α, i〉 |= A2

〈α, i〉 |= A1 ⇒ A2 i� 〈α, i〉 |= A1 implies 〈α, i〉 |= A2

〈α, i〉 |= ◦A i� 〈α, i + 1〉 |= A
〈α, i〉 |= �A i� for all j ≥ i 〈α, j〉 |= A
〈α, i〉 |= ♦A i� there exists j ≥ i s.t. 〈α, j〉 |= A

〈α, i〉 |= ∃xA i� there exists α′ ∈ C∞ s.t. ∃̇xα = ∃̇xα
′ and 〈α′, i〉 |= A.

We de�ne [[A]] to be the collection of all models of A. Formally:

[[A]] = {α | α |= A}

4.3 Proving properties of ntcc processes

We are interested in assertions of the form P ` A, whose intuitive mean-

ing is that the strongest postcondition of P satis�es the property ex-

pressed by A.
An inference system for such assertions is presented in Table 3. We

will say that P ` A holds if the assertion P ` A has a proof in this

system.

The following theorem states the soundness and the relative com-

pleteness of the proof system.

Theorem 4.1 For every ntcc process P and every formula A, P ` A
holds i� [[P ]] ⊆ [[A]] holds.
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Note: the reason why this theorem is called �relative completeness� is

because of the side condition in Rule P9 (consequence rule): the proof

system is complete modulo the capability of proving the formulae of the

form A ⇒ B which we need to use in a proof. Proving A ⇒ B is known

to be decidable for the quanti�er-free fragment of linear time temporal

formulae ([23]) as well as for some other interesting �rst-order fragments

(see [17]).

From Theorems 4.1, 3.4 and 3.5 we immediately derive the following:

Corollary 4.2 1. For every ntcc process P and every formula A, if
P ` A holds then sp(P) ⊆ [[A]] holds.

2. For every local-independent choice ntcc process P and every formula

A, P ` A holds i� sp(P) ⊆ [[A]] holds.

We shall see that the kind of recursion considered in [31] can be

encoded in ntcc. Hence, tcc processes can be considered as a particular

case of local-independent choice ntcc processes, and therefore the proof

system is complete for tcc.

The following notion will be useful in the Section 5, for discussing

properties of our examples.

De�nition 4.3 A formula A is the strongest temporal formula derivable

for P if P ` A and for all A′ such that P ` A′, we have A ⇒ A′.

Note that the strongest temporal formula of a process P is unique

modulo logical equivalence. We give now a constructive de�nition of

such formula.

De�nition 4.4 The function stf : Proc → A is de�ned as follows:

stf (tell(c)) = c
stf (

∑
i∈I when (ci)doPi) =

(∨
i∈I ci ∧ stf (Pi)

) ∨ ∧
i∈I ¬ci

stf (P ‖ Q) = stf (P) ∧ stf (Q)
stf (local x P) = ∃xstf (P)
stf (next P) = ◦ stf (P)
stf (unless c next P ) = c ∨ ◦stf (P)
stf (!P ) = � stf (P)
stf (? P ) = ♦ stf (P)

We can easily prove that [[stf (P)]] = [[P ]] and that P ` stf (P). From
these we have:
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Proposition 4.5 For every process P , stf (P) is the strongest temporal

formula derivable for P .

Note that to prove that P ` A is su�cient to prove that stf (P) ⇒ A.
However, to prove such implicationmay not be always feasible or possible.

The proof system provides the additional �exibility of proving P ` A by

using the consequence rule (P9) on subprocesses of P and on formulae

di�erent from A.

5 Applications

In this section we illustrate some ntcc examples. We �rst need to de�ne

an underlying constraint system.

De�nition 5.1 Let max be a positive integer number. De�ne FD [max ]
as the constraint system whose signature Σ includes symbols in

{0, succ, +,×, =} and the �rst-order theory ∆ is the set of sentences valid

in arithmetic modulo max.

The intended meaning of FD [max] is the natural numbers interpreted
as in arithmetic modulo max. Henceforth, we assume that the signature

is extended with two new unary predicate symbols call and change. We

will designate Dom as the set {0, 1, ...., max − 1} and use v and w to

range over its elements.

5.1 Recursion

Often it is convenient to specify behavior by using recursive de�nitions.

In our language we do not have them, but we can show that we can

encode a (restricted) form of recursion. Namely, we consider recursive

de�nitions of the form q(x)
def
= Pq, where q is the process name and Pq

contains at most one occurrence of q which must be within the scope of a

�next� and out of the scope of any �!�. The reason for such a restriction

is that we want to keep bounded the response time of the system: we do

not want Pq to make in�nitely or unboundely many recursive calls of q
within the same time interval.

We also want to consider the call-by-value. This may look unnatural

since in constraint programming the natural parameter passing mecha-

nism is through �logical variables�, like in logic programming. Indeed,
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it is more di�cult to encode in ntcc call-by-value than �call-by-logical-

variable�. However, for the kind of applications we have in mind (some

of which are illustrated in the rest of this section), call-by-value is the

mechanism we need. Note also that we mean call-by-value in the sense

of value �persisting through the time intervals�, and this would not be

possible to achieve directly with the �call-by-logical-variable�, because

the values of variables are not maintained from one interval to the next.

More precisely: The intended behavior of a call q(t), where t is a term

�xed to a value v (i.e. t = v in the current store), is that of Pq[v/x], where
[v/x] is the operation of (syntactical) replacement of every occurrence of

x by v.
We now show how to encode such a kind of recursion by using repli-

cation. Given q(x)
def
= Pq, we will use q , qarg to denote any two variables

not in fv(Pq). Let px := tq be de�ned as the process
∑

v when t =
v do ! tell(x = v), i.e., the persistent assignment of t's �xed value to x.
Then the ntcc process corresponding to de�nition of q(x), denoted as

pq(x)
def
= Pqq, is :

! (when call(q) do local x in (px := qargq ‖ pPqq)) ,

where pPqq denotes the process that results from replacing in Pq each

q(t) with tell(call(q)) ‖ tell(qarg = t) (thus telling that there is a call

of q with argument t). Intuitively, whenever the process q is called with

argument qarg, the local x is assigned the argument's value so it can be

used by q's body pPqq.
We then consider the calls q(t) in other processes. Each such a call

is replaced by local q qarg in (pq(x)
def
= Pqq ‖ tell(call(q)) ‖ tell(qarg =

t)), which we shall denote by pq(t)q. The local declarations are needed

to avoid interference with other recursive calls.

The above encoding generalizes easily to strati�ed recursion and to

the case of arbitrary number of parameters including the parameterless

recursion of tcc considered in [31]. We now show some temporal prop-

erties satis�ed by the encoding. Next theorem describes the strongest

temporal formulae satis�ed by pq(t)q.

Proposition 5.2 Given pq(x)
def
= Pqq, let B the strongest temporal for-

mula derivable for pPqq. Then the temporal formula

∃q,qarg(call(q)∧qarg = t∧�(call(q) ⇒ ∃x(B∧
∧
w

(qarg = w ⇒ �x = w)))

is the strongest temporal formula derivable for pq(t)q
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This theorem expresses the essence of our encoding of recursion in

terms of linear temporal logic. It gives us a proof principle for recursive

de�nitions, i.e., in order to prove that pq(t)q ` A it is su�cient to prove

that a strongest temporal formula of pq(t)q implies A. The next corollary
states a property that one would expect of recursive calls, i.e., if B is

satis�ed by q′s body then B[v/x] should be satis�ed by q(t) provided

that t = v.

Corollary 5.3 Given pq(x)
def
= Pqq, suppose that q, qarg do not occur

free in B and pPqq ` B. Then for all v ∈ Dom, pq(t)q ` t = v ⇒
B[v/x].

5.2 Cells

Cells provide a basis for the speci�cation and analysis of mutable and

persistent data structures as shown for the π calculus [26]. A cell can be

thought of as a structure that contains a value, and if tested, it yields

this value. A mutable cell is a cell that can be assigned a new value2. We

model mutable cells of the form x: (v), which we interpret as a variable

x currently �xed to some v.

x: (z)
def
= tell(x = z) ‖ unless change(x )next x: (z)

fexch(x, y)
def
=

∑
v when (x = v) do ( tell(change(x )) ‖ tell(change(y))

next( px: (f(v))q ‖ py: (v)q ) )

De�nition x : (z) represents a cell x whose current content is z. The

current content of x will be the same in the next time interval unless it

is to be changed next (i.e change(x)). De�nition fexch(x, y) represents an
exchange operation between the contents of x and y. If v is x's current
value then f(v) and v will be the next x and y′s values, respectively. In

the case of functions that always return the same value (i.e. constants),

we will take the liberty of using that value as its symbol. For example,

px: (3)q ‖ py: (5)q ‖ p7exch(x, y)q gives us the cells x: (7) and y: (3) in the

next time interval.

The following temporal property states the invariant behavior of a

cell, i.e., if it satis�es A now, it will satisfy A next unless it is changed.

Proposition 5.4 For all v ∈ Dom, px: (v)q ` (A∧¬change(x)) ⇒ ◦A

2A richer notion of cell can be found in ccp based models, either as a primitive
construct (the Oz calculus [36]) or as a derived construct (π+ calculus [9], and PiCO
[1]).
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5.3 Zigzagging

An RCX is a programmable, microcontroller-based LEGO r© brick used

to create autonomous robotic devices (see [22], [18]). Zigzagging [11] is a

task in which an (RCX-based) robot can go either forward, left, or right

but (1) it cannot go forward if its preceding action was to go forward,

(2) it cannot turn right if its second-to-last action was to go right, and

(3) it cannot turn left if its second-to-last action was to go left.

In order to model this problem, without over-specifying it, we use

guarded choice and cells. We use cells act1 and act2 to be able to �look

back� one and two time units, respectively. We use three distinct f , r , l ∈
Dom − {0} (standing for forward, right and left respectively) and three

distinct forward , right , left ∈ C.

GoForward
def
= pfexch(act1 , act2 )q ‖ tell(forward)

GoRight
def
= prexch(act1 , act2 )q ‖ tell(right)

GoLeft
def
= plexch(act1 , act2 )q ‖ tell(left)

Zigzag
def
= ( when (act1 6= f )do pGoForwardq

+ when (act2 6= r)do pGoRightq
+ when (act2 6= l)do pGoLeftq )
‖ nextZigzag

StartZigzag
def
= pact1: (0)q ‖ pact2: (0)q ‖ pZigzagq

Initially cells act1 and act2 contain neither f , r nor l . Just before a

choice is made act1 and act2 contain the previous and the second-to-last

taken actions (if any). After a choice is made according to (1), (2) and

(3), the choice is recorded in act1 and the previous choice moved to act2 .
The de�nitions of the various processes are self-explanatory.

The next temporal property states that the robot chooses to go right

and left in�nitely often.

Proposition 5.5 pStartZigzagq ` �(♦right ∧ ♦left)

Other RCX examples modeled by ntcc includes a crane [37] and a

wall-avoiding robot [37].

5.4 Value-passing Communication

Value passing plays an important role in process calculus. Suppose that

x ↑ (v) denotes the action of writing a value (or message) v in chan-
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nel x which is then kept in the channel for one time unit. We as-

sume that in the same time unit, two di�erent values cannot be writ-

ten in the same channel. The notation x ↓P [y] represents the action

of reading, without consuming, the value (if any) in channel x which

is then used in P . The variable y, which may occur free in P , is

the placeholder for the read value. Several read actions can get the

same value if they read the same channel in the same time interval.

These basic actions can be de�ned as x ↑ (y)
def
= tell(x = y) and

x ↓P [y]
def
=

∑
v when (x = v) do local y in (! tell(y = v) ‖ P ).

Having de�ned the two basic actions, we can specify di�erent be-

haviors, e.g., process ! ( ?[0,1](x ↓P [y])) checks �very often� for messages

in channel x. Here we illustrate a form of asynchronous broadcasting

communication.

SendAsynx(y)
def
= ?(px ↑ (y)q)

WaitingQ,x
def
= local stop in ( px ↓(Q‖tell(stop=1))[y]q

‖ unless stop = 1nextWaitingQ,x).

Process SendAsynx(v) asynchronously sends value v in channel x. Pro-

cess WaitingQ,x waits for a value in channel x. Note that, if a process

is waiting at the time SendAsynx(v) is executed, then it is guaranteed

to get the value, while other processes may not get it. This property is

expressed by the following result.

Proposition 5.6 Suppose that Q ` B and stop 6∈ fv(Q). Then for all

v ∈ Dom,

pSendAsynx(v)q ‖ pWaitingQ,xq ` ♦B[v/y]

6 Behavioral Equivalence

We wish to distinguish between the observable behavior of processes P
and Q if the distinction can somehow be detected by a process interacting

with them. A natural observation is the input-output behavior of P
(De�nition 3.1). Let ∼io be de�ned by P ∼io Q i� io(P ) = io(Q). Let

us consider

P = when ˙true do tell(a) + when (b) do tell(c)
Q = when ˙true do tell(a) + when (b) do tell(c)

+
when ˙true do (tell(a) ‖ when (b) do tell(c))
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Assuming that a, b, c are non equivalent constraints such that c `
b ` a, we can verify that P ∼io Q, but P ‖ R 6∼io Q ‖ R where

R = when ado tell(b). This tells us that ∼io is not a congruence and

that we can distinguish P from Q if we make R to interact with them.

Therefore, let ≈io be the corresponding congruence equating processes

i� they are (input-output) indistinguishable, i.e., P ≈io Q i� for every

process context C[.], C[P ] ∼io C[Q]. The relation ≈io is our �rst proper

notion of equality for the calculus.

Moreover, let us consider the language of a process P ,

l(P ) = {α | (true.true . . . , α) ∈ io(P )}, i.e., the set of outputs on the

�empty� input sequence. As in the input-output case, we de�ne ∼l and

≈l as the corresponding language equivalence and language congruence.

Obviously, relation ∼l is weaker than ∼io, however, the corresponding

congruences coincide, i.e:

Proposition 6.1 ∼io ⊆ ∼l and ≈io = ≈l

We next investigate the type of contexts needed to verify P ≈io Q
and focus on relation ≈l as it is equivalent to ≈io. We �rst observe that

it is enough to consider parallel contexts, i.e.,

Proposition 6.2 P ≈l Q i� for all R, R ‖ P ∼l R ‖ Q.

Furthermore, we show that in ntcc we have the notion of universal con-

text, i.e., a context that can distinguish two processes i� they are not

language (or input-output) congruent. Recall C is the set of representa-

tives of equivalent classes of constraints in the constraint system (Σ, ∆).
In what follows β ranges over elements of C∗. Let us assume that the

signature Σ is extended to a signature Σ′ with unary predicates tβ and

wβ for each β. These predicates are allowed to occur only in the process

contexts US [.] de�ned below. We assume that C is still de�ned wrt the

original signature so it does not involve any tβ or wβ predicates.

De�nition 6.3 Let S ⊆fin C. De�ne ≺S = {(c, c′) ∈ S × S | c′ ` c and c 6` c′}
and ic(S) = {c1 . . . cn ∈ S∗ | c1 ≺S c2 ≺S . . . ≺S cn}. For each β let

Wc.β = when c do Tβ and Tc.β = tell(c) ‖ Wβ where Tε = Wε = skip
. The distinguishing context wrt S, US [.] is de�ned as

!((
∑

β∈ic(S)

tell(wβ) ‖ Wβ) + (
∑

β∈ic(S)

tell(tβ) ‖ Tβ)) ‖ [.]

Proposition 6.4 Suppose that C is �nite. Then P ≈l Q i� UC[P ] ∼l

UC[Q].
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Thus context UC [.] is the universal context, provided that C is �-

nite. Roughly speaking, in UC[P ], the distinguishing process in parallel

with P , say D, can provide all in�nite interactions P can have with

other processes. Its selected interaction will be identi�ed with an out-

put (c1∧̇d1).(c2∧̇d2). . . . (with ci ∈ {wβi
, tβi

}) of UC [P ]. When interacting

with Q, D will be forced to select the same interaction in UC[Q] to match

the output of UC [P ].
Nevertheless, if C is not �nite, we can construct specialized distin-

guishing contexts for arbitrary processes.

De�nition 6.5 Let Λ ⊂fin Proc. De�ne const(Λ) as the set whose el-

ements are ˙true, ˙false and all constraints (module logical equivalence)

from the closure under conjunction and existential quanti�cation of the

constraints occurring in Λ's processes.

Proposition 6.6 Let Λ ⊂fin Proc. For all P, Q ∈ Λ, P ≈l Q i�

Uconst(Λ)[P ] ∼l Uconst(Λ)[Q].

Therefore Uconst(Λ) is an universal context for Λ's processes. Apart

from its theoretical value, the ability of constructing distinguishing con-

texts for arbitrary processes is important as it can be used for proving

decidability results for ≈io. Note that in order to verify P ≈l Q it is suf-

�cient to verify U const({P,Q})[P ] ∼l U const({P,Q})[Q]. It turns out that ∼l is

decidable for hiding and unbounded-delay free processes. The languages

of these processes can be recognized by automata over in�nite objects,

more precisely Büchi Automata ([6]).

Proposition 6.7 ∼l is decidable for hiding and unbounded-delay free

processes.

Corollary 6.8 ≈l and ≈io are decidable for hiding and unbounded-delay

free processes.

7 Related Work and Concluding Remarks

7.1 Related Work

The issue of developing a formalism for timed systems with both a logic

and an operational �avor has been considered in several works, particu-

larly in the area of temporal logic programming languages (tpl) ([5], [27],
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[3], [24]). These proposals provide the machinery for the direct execution

of temporal formulas. Another example is the modal process logic (mpl)

of [21], where process constructs are included as connectives and formu-

lae are given operational interpretations. In contrast to tpl, our approach

is not based on logic programming but on ccp. Consequently, some of

the main advantages of ccp over logic programming can also be claimed

for ntcc over tpl, in particular it provides us with a more algebraic view

of process combinators. Ntcc and mpl are of a di�erent nature: the

former provides linear-time temporal speci�cations, whereas the latter

provides branching-time ones. Being based on tcc, ntcc also provides a

programming language while mpl is only a speci�cation language.

The ntcc model was inspired in part by the recent work on real-time

modeling of RCX micro-controllers programs ([18]). This work presents

a method to synthesize control RCX programs by merging them with

control automata. Constraints on the behavior of the control program

are given in a temporal logic and then translated into control automata

by using the Mona tool ([20]).

The works which are most closely related to our paper are those on tcc

(timed ccp, [31]). Our proposal is a strict extension of tcc, in the sense

that tcc can be encoded in (the restricted-choice subset of) ntcc, while the

vice-versa is not possible because tcc does not have constructs to express

non-determinism or unbounded �nite-delay. In [31] the authors proposed

also a proof system for tcc, based on an intuitionistic logic enriched with

a next operator. The system however is partially complete; namely, it is

complete only for hiding-free (and recursion-free) processes. In contrast

our system is based on the standard classical temporal logic of ([23]) and

is complete for local-indepent choice ntcc processes, hence also for tcc

processes.

Other extensions of tcc have been proposed in [13, 14, 30]. None of

these, however, consider non-determinism or unbounded �nite-delay. In

[13] default-tcc processes can evolve continuously as well as discretely.

The language in [14] adds to default-tcc random assignments with some

given distribution. Finally, the language proposed in [30] adds to tcc

the possibility of expressing strong pre-emption: the �unless� can trigger

activity in the current time interval. In contrast, ntcc can only express

weak pre-emption. As argued in ([8]), in the speci�cation of (large)

timed systems weak pre-emption often su�ces (and non-determinism is

crucial). Nevertheless, strong pre-emption is important for modeling re-

active systems. In principle, strong pre-emption could be incorporated
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in ntcc too: Semantically one would have to consider assumptions about

the future evolutions of the system. As for the logic, one would have to

consider a temporal extension of Default Logic [29])

The tccp calculus ([8]) is the only other proposal for a non-deterministic

timed extension of ccp that we know of. As such, tccp provides a declar-

ative language for the speci�cation of (large) timed systems. In fact,

interesting examples of specifying such systems are given in ([8]). An el-

egant denotational account for tccp is presented in [8], although no proof

system or direct relation with temporal speci�cations is given. One ma-

jor di�erence with our approach is that the information about the store is

carried through the time units, so the semantic setting is rather di�erent.

Also, there is no operator for specifying (unbounded) �nite-delay. Like

ntcc, the deterministic fragment of tccp can be used to program reactive

systems. A store that grows monotonically, however, may be inadequate

for the kind of application we have in mind, like RCX micro-controllers.

7.2 Concluding remarks and future work

We introduced ntcc, a model of temporal concurrent constraint program-

ming, and showed examples of its applicability to timed systems (e.g.,

RCX programs). We illustrated how ntcc can express various temporal

requirements (e.g., bounded invariance and eventuality) and other con-

structs (e.g., cells and value passing processes). We provided a denota-

tional semantics that approximates the notion of strongest postcondition

of processes (in the sense of [7]) and identi�ed an important fragment

for which such a denotation is complete. We de�ned a linear temporal

(classic) logic following the standard de�nition of [23], and related it with

the denotational semantics. This allowed us to de�ne what it means for

a process to satisfy a linear temporal speci�cation. Finally, we de�ned a

(relatively) complete proof system for proving that a process satis�es a

linear temporal speci�cation, and we applied it to prove temporal prop-

erties of our examples.

Our current research in ntcc includes the study of the decidability

of ≈io for arbitrary ntcc processes. In the search of a fully-abstract �x-

point model with respect to this input-output behavior, we found that

although ntcc allows countable non-determinism and in�nite computa-

tions to happen (see [2] and [28] for impossibility results under these

conditions), a relatively simple model seems to exist as a result of the

particular nature of ntcc.

The plan for future research includes the extension of ntcc to a prob-
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abilistic model following ideas in [16]. This is justi�ed by the existence of

RCX program examples involving stochastic behavior which cannot be

faithfully modeled with non-deterministic behavior. In a more practical

setting we plan to de�ne a programming language for RCX controllers

based on ntcc.
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TELL 〈tell(c), d〉 −→ 〈skip, d∧̇c〉

CHOICE
〈∑

i∈I when ci do Pi, d
〉 −→ 〈Pj , d〉 if d ` cj , for j ∈ I

PAR
〈P, c〉 −→ 〈P ′, d〉

〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q, d〉

LOC

〈
P, c∧̇∃̇xd

〉
−→ 〈Q, c′〉

〈local (x, c) in P, d〉 −→
〈
local (x, c′) in Q, d∧̇∃̇xc

′
〉

UNLESS 〈unless c next P, d〉 −→ 〈skip, d〉 if d ` c

REPL 〈! P, c〉 −→ 〈P ‖ next ! P, c〉

STAR 〈? P, c〉 −→ 〈nextnP, c〉 for some n ≥ 0.

STRUCT
γ1 ≡ γ′

1 γ′
1 −→ γ′

2 γ′
2 ≡ γ2

γ1 −→ γ2

OBS
〈P, c〉 −→∗ 〈Q, d〉 6−→

P
(c,d)

====⇒ F (Q)

Table 1: An operational semantics for ntcc. The function F , used in

OBS, is given in De�nition 2.5
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D1 [[tell(c)]] = {d.α | d ` c, α ∈ C∞}

D2 [[
∑

i∈I when ci do Pi]] =
⋃

i∈I{d.α | d ` ci, d.α ∈ [[Pi]]}
∪⋂

i∈I{d.α | d 6` ci, d.α ∈ C∞}

D3 [[P ‖ Q]] = [[P ]] ∩ [[Q]]

D4 [[local x in P ]] = {α | there exists α′ ∈ [[P ]] s.t. ∃̇xα = ∃̇xα
′}

D5 [[next P ]] = {d.α | d ∈ C , α ∈ [[P ]]}

D6 [[unless c next P ]] = {d.α | d ` c, α ∈ C∞}
∪
{d.α | d 6` c, α ∈ [[P ]]}

D7 [[! P ]] = {α | ∀β ∈ C ∗, α′ ∈ C∞ s.t. α = β.α′, we have α′ ∈ [[P ]]}

D8 [[? P ]] = {β.α | β ∈ C ∗, α ∈ [[P ]]}

Table 2: Denotational semantics of ntcc
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P1 tell(c) ` c

P2
∀i ∈ I Pi ` Ai∑

i∈I

when ci do Pi `
∨
i∈I

(ci ∧ Ai) ∨
∧
i∈I

¬ci

P3
P ` A Q ` B

P ‖ Q ` A ∧ B

P4
P ` A

local x in P ` ∃xA

P5
P ` A

next P ` ◦A

P6
P ` A

unless c next P ` c ∨ ◦A

P7
P ` A

! P ` �A

P8
P ` A

? P ` ♦A

P9
P ` A

P ` B
if A ⇒ B

Table 3: A proof system for proving linear temporal properties of ntcc

processes
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