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Abstract

This paper is a case study in proof mining applied to non-effective proofs
in nonlinear functional anlysis. More specifically, we are concerned with the
fixed point theory of nonexpansive selfmappings f of convex sets C in normed
spaces. We study the Krasnoselski iteration as well as more general so-called
Krasnoselski-Mann iterations. These iterations converge to fixed points of
f only under special compactness conditions and even for uniformly convex
spaces the rate of convergence is in general not computable in f (which is
related to the non-uniqueness of fixed points). However, the iterations yield
approximate fixed points of arbitrary quality for general normed spaces and
bounded C (asymptotic regularity).
In this paper we apply general proof theoretic results obtained in previous
papers to non-effective proofs of this regularity and extract uniform explicit
bounds on the rate of the asymptotic regularity. We start off with the classi-
cal case of uniformly convex spaces treated already by Krasnoselski and show
how a logically motivated modification allows to obtain an improved bound.

∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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Already the analysis of the original proof (from 1955) yields an elementary
proof for a result which was obtained only in 1990 with the use of the deep
Browder-Göhde-Kirk fixed point theorem. The improved bound from the mod-
ified proof gives applied to various special spaces results which previously had
been obtained only by ad hoc calculations and which in some case are known
to be optimal.
The main section of the paper deals with the general case of arbitrary normed
spaces and yields new results including a quantitative analysis of a theorem
due to Borwein, Reich and Shafrir (1992) on the asymptotic behaviour of
the general Krasnoselski-Mann iteration in arbitrary normed spaces even for
unbounded sets C. Besides providing explicit bounds we also get new qual-
itative results concerning the independence of the rate of convergence of the
norm of that iteration from various input data. In the special case of bounded
convex sets, where by well-known results of Ishikawa, Edelstein/O’Brian and
Goebel/Kirk the norm of the iteration converges to zero, we obtain uniform
bounds which do not depend on the starting point of the iteration and the
nonexpansive function and the normed space X and, in fact, only depend
on the error ε, an upper bound on the diameter of C and some very gen-
eral information on the sequence of scalars λk used in the iteration. Even
non-effectively only the existence of bounds satisfying weaker uniformity con-
ditions was known before except for the special situation, where λk := λ is
constant. For the unbounded case, no quantitative information was known so
far.

1 General introduction

This paper is another case study in the project of ‘proof mining’ 1 in analysis by which
we mean the logical analysis of mathematical proofs (typically using non-effective an-

alytical tools) with the aim of extracting new numerically relevant information (e.g.

effective uniform bounds or algorithms etc.) hidden in the proofs.2

Let us discuss in more detail what kind of numerical information we are aiming at.
Many problems in numerical (functional) analysis are concerned with the construc-

tion of solutions x of certain equations A(x), where x is element of some Polish space

(typically with additional structure) and A(x) can be written as F (x) = 0 for some

1The term ‘proof mining’ (instead of G. Kreisel’s ‘unwinding of proofs’) for the activity of
extracting additional information hidden in given proofs using proof theoretic tools was suggested
to the author by Professor Dana Scott.

2For a different case study in analysis in the context of best approximation theory see [21],[22].
For other kinds of logical analyses of specific proofs see [32] and [35].
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continuous function F : X → IR (usually A, and hence F , will depend on certain

parameters a which again belong to Polish spaces). The construction of a solution
for A quite often involves two distinct steps:

1) Approximate solutions (also called ‘ε-solutions’) xn ∈ X satisfying A 1
n
(xn) with

Aε(x) :≡ (|F (x)| < ε)

are constructed (uniformly in the parameters of A).

2) One shows, using e.g. compactness arguments, that either (xn)n∈IN itself or

some subsequence converges to a solution of A(x).

It is the non-effectivity of the second step which in many cases prevents one from

being able to compute a solution x̂ of A effectively within a prescribed error 1
k
, i.e. to

compute a function n(k) such that dX(xn(k), x̂) < 1
k
. Even when X := K is compact

and x̂ is uniquely determined, so that (xn) itself converges to x̂, explicit a-priori

bounds (in particular not depending on x̂ itself) on the rate of convergence of that

sequence are often not provided in numerical analysis (due to the ineffectivity of the

proof of the uniqueness of x̂).3

In several papers we have shown how proof theoretic techniques can be applied to ex-
tract certain quantitative information (so-called uniform moduli of uniqueness which
generalize the concept of strong unicity as used e.g. in Chebycheff approximation
theory) even from highly non-constructive uniqueness proofs and how effective rates

of convergence can be obtained using this information (see [25] for an introduction

to this and [21],[22],[23] for concrete applications to approximation theory).

In this paper we are concerned with applications to the first of the two steps men-
tioned above in situations where an effective solution of 2) is not possible (mainly

due to the lack of uniqueness).

These applications to 1) fall under (an extension of) the general logical scheme

as our previous applications to 2) where an instance of. In a series of papers

([23],[24],[25],[27] among others) we have developed general meta-theorems which
guarantee the extractability of uniform bounds from proofs which are allowed to
make use of substantial parts of analysis. In particular, we specified situations where
(due to the fact that only weak forms of induction are used) exponential and even
polynomial bounds are guaranteed. Furthermore, these results show that many lem-
mas used in such proofs do not need to be analysed (since they do not contribute to

3See also [31] for an interesting discussion of this and related points.
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the bound) because of their logical form. The proofs of these meta-theorems actually

provide an extraction algorithm (based on certain proof-theoretic transformations of

the specific proof to be analyzed). So applied to a given proof p in analysis we get
another proof p∗ which provides more numerical information. When this transfor-
mation is carried out explicitly we obtain a new ordinary mathematical proof of a
stronger statement which no longer relies on any logical tools at all. Of course, the
general proof-theoretic algorithm will usually be used only as a guideline but not
followed step by step in the actual construction of p∗ (unless this is necessary).

The special case of our general meta-theorems which is relevant for the present paper
has the following form:
Let X be a Polish space, K a compact metric space and A1 a purely existential
property. If a theorem of the form

(∗) ∀n ∈ IN∀x ∈ X∀y ∈ K∃m ∈ INA1(n, x, y, m)

has been proved in certain formal systems T for (fragments of) analysis, then one

can extract a computable uniform bound Φ(n, x)4 for ∃m, i.e.

∀n ∈ IN∀x ∈ X∀y ∈ K∃m ≤ Φ(n, x)A1(n, x, y, m).

An important feature of the bound Φ(n, x) is that it does not depend on y ∈ K.

Typically, ∃mA1 is monotone in m so that the bound Φ(n, x) actually realizes the

quantifier. In [25] we have specified a system PBA of polynomially bounded anal-

ysis which guarantees that Φ(n, x) will be a polynomial. If we add the exponential
function to PBA we obtain a system EBA which guarantees that Φ uses at most a
finite iteration of exp (so if exp is not iterated at all the bound will be exponential

in n relative to x). Whereas for our first application in the present paper (theo-

rem 3.9 below) this result for PBA is already sufficient for providing the general

logical framework, our analysis of a proof from [4] carried out in theorem 4.5 needs
an extended version due to the use of a principle used in that proof which is not
available in PBA or EBA. Whereas these systems contain quite some parts of non-
constructive analysis, principles based on sequential compactness are not included.
The significant and highly non-trivial impact of such principles for the extraction of
bounds has been determined completely in [27] and [28]. We only discuss the results
for the particular simple case of the principle

PCM(ak) :≡ [∀n(0 ≤ an+1 ≤ an) → ∃a ∈ IR+( lim
n→∞an = a)]

4This bound (as well as the logical form of A1) will in general depend on the specific represen-
tation of x ∈ X used in T .
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of convergence for bounded monotone sequences (an)n∈IN of reals, as it is this principle

which is used in the proof from [4] we are going to analyse. In systems like PBA,
real numbers are represented as Cauchy sequences of rational numbers with fixed rate
of convergence. Because of this representation PCM(an) is a fairly strong principle
equivalent to

(+) ∀n(0 ≤ an+1 ≤ an) → ∃f : IN → IN∀k, m(m ≥ f(k) → af(k) − am ≤ 1

k + 1
).

Because of the existence of the ‘Cauchy modulus f ’, ‘∀(a)n PCM(an)’ is equivalent
to the principle of so-called arithmetical comprehension which potentially creates
bounds of huge complexity when added to systems like PBA, EBA (see [28]). What

we showed in [27] is, that things are quite different when PCM(an) is only applied

to sequences (an) in a given proof of a theorem (∗) which can be explicitly defined

in terms of the parameters n, x, y of (∗). Then, relative to PBA and EBA, the use

of PCM(an) can be reduced to its arithmetical version5

PCMar(an) :≡
[
∀n(0 ≤ an+1 ≤ an) → ∀k∃n∀m(m ≥ n → an − am ≤ 1

k + 1
)
]
.

By further proof theoretic considerations, the use of PCMar can even be reduced to
that of its so-called ‘no-counterexample interpretation’ (or ‘Herbrand normal form’)

PCMH
ar(an) :≡

[
∀n(0 ≤ an+1 ≤ an) → ∀k, g∃n(g(n) ≥ n → an − ag(n) ≤

1

k + 1
)
]
.

The computational significance of this reduction is, that in contrast to the quantifier
dependency ‘∀k∃n’ in PCMar, which in general has no computable bound, the quan-

tifier ‘∃n’ in PCMH
ar can be bounded (uniformly in k, g and an upper bound N ∈ IN

of a0) by Ψ̂(k, g, N) := max
i≤(k+1)N

Ψ(i, g), where Ψ(k, g) is the k-times iteration of g

applied to 0, i.e.
Ψ(0, g) := 0, Ψ(k + 1, g) := g(Ψ(k, g))

(see [27] for details on all this). We like to stress, that this quantitative bound for

PCMH
ar(an) only depends on (an) via an upper bound N ≥ a0 whereas a bound for

5Because of (+), PCM(an) essentially is the so-called Skolem normal form of PCMar(an). In
general it is NOT possible (in a context like PBA or EBA) to reduce the use of the Skolem normal
form of an arithmetical principle A to A itself. The fact that this IS possible for PCMar makes
profound use of the fact that this principle satisfies a strong monotonicity property, see [26].

5



∃n in PCMar(an) of course has to depend on (an). So the reduction from PCMar(an)

to PCMH
ar(an) also provides an important independence from (an) which will play a

crucial role in our proof of corollaries 4.6 and 4.8 below.
We have seen that the use of PCM(an) for definable (an) contributes to the bound

Φ by Ψ̂. By finite iteration, Ψ (and hence Ψ̂) is able to produce arbitrary primitive
recursive growth rates. However, in practice it will usually only be applied to some
fixed functions g which can explicitly defined in terms of the parameters of the
problem. It is the construction of these functions which plays a crucial role in the
process of proof mining. This fact is clearly reflected in the bounds we obtain in

theorem 4.5 and corollary 4.6 below (see the definition of α̂ in these results).6

We have discussed the logical background of the results in the present paper in some
detail in order to convince the reader, that these results are just special instances of
a general scheme for proof mining. Once one is familiar with this scheme, one can
almost mechanically produce improvements of existence theorems in analysis of the
kind we illustrate here using examples from fixed point theory.

2 Applications to the fixed point theory of non-

expansive mappings

The examples which we will treat in this paper are taken from the fixed point theory
of nonexpansive mappings f : C → C, for certain sets C in normed spaces X. The
well-known Banach fixed point theorem tells us that contractive mappings f always
have a unique fixed point if X is complete and C is closed and that the sequence
xk+1 := f(xk) starting from any x0 ∈ C effectively converges to that fixed point.

For nonexpansive functions f (i.e. functions which are Lipschitz continuous with

Lipschitz constant λ = 1), in general fixed points only exist if C is closed convex and

bounded (by the Browder-Göhde-Kirk fixed point theorem, see theorem 3.3 below).
If X is a uniformly convex Banach space, C ⊂ X is closed convex and bounded and
f(C) is a compact subset of C, then a fixed point of f can be approximated by the

6In the concrete application in this paper it is mainly the reduction from PCMar to PCMH
ar which

plays a significant role in the proof mining. The (in general much more complicated) reduction from
PCM to PCMar is almost straightforward. However, we expect that this will be different for other
examples. In any case, we believe that the fact that our applications to concrete proofs reflect
crucial steps of the general proof-theoretic reduction and are instances of a general meta-theorem
(which at least under an additional compactness assumption predicts the type of results we obtain),
makes it justified to call them genuine applications of logic in the sense discussed in [10].
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following Krasnoselski iteration (see theorem 3.4 below)7

xk+1 :=
1

2
(xk + f(xk)), x0 ∈ C arbitrary.

However, the situation still is quite different from the Banach fixed point theorem
since

1) f may have several fixed points,

2) a fact closely related to the non-uniquenes of the fixed point is, that the rate
of convergence of the Krasnoselski iteration to its limit is not computable uni-
formly in f and x0 (see [29]).

So the Krasnoselski iteration does not provide an algorithm for the computation of
a fixed point of f (with prescribed precision) but it can be used to find effectively

approximate fixed points. Since (xk) converges to some fixed point of f and f is

continuous it is clear that for a sufficiently large n on, xm (m ≥ n) will be an
approximate fixed point:

(∗)∀ε > 0∃n ∈ IN∀m ≥ n(‖xm − f(xm)‖ < ε).

Because of the simple monotonicity property (see lemma 3.8 below)

‖xm+1 − f(xm+1)‖ ≤ ‖xm − f(xm)‖

the formula
∀m ≥ n(‖xm − f(xm)‖ < ε)

is equivalent to
‖xn − f(xn)‖ < ε,

which (given a representation of real numbers as Cauchy sequences of rational num-

bers with fixed rate of convergence) is ∈ Σ0
1. That is why we are able to extract an

algorithm for n in (∗) uniformly in x0 and f (if X, C have a computable representa-

tion).
Let us assume for the moment that C := K itself is compact. Then the standard
proof (as given in e.g. [3]) of the Krasnoselski fixed point theorem (more precisely of

its consequence (∗) above) directly fits into the general extraction scheme discussed

7Due to a much more general result from [16], which we will discuss below, the assumption of
X being uniformly convex actually is superfluous.
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above. Besides basic arithmetical reasoning only the existence of a fixed point y ∈ K
of f (which follows from the Schauder fixed point theorem) is used to show (∗). Since
the statement

(a) ∃y ∈ K(‖f(y) − y‖ = 0)

has the logical form of those assumptions which do not contribute to the growth of
extractable bounds and which furthermore can be reduced to their ε-weakening

(b) ∀ε > 0∃y ∈ K(‖f(y) − y‖ < ε)

and since furthermore the starting point x0 ∈ K belongs to a compact set and the
set of all nonexpansive mapping f : K → K is also compact, we know a-priori that
the extractability of a uniform bound (of low complexity) for n in (∗) which does

not depend on x0 or f (but only on ε and a modulus of uniform convexity) is guar-

anteed whose verification only uses (b). The actual extraction shows that instead
of the compactness only the boundedness of K is needed. This is even true for the
reduction of (a) to (b) which allows furthermore to remove the assumption on K

being closed (and X being complete), since the existence of approximate fixed points

(but not of fixed points) can be shown without these assumptions. This, of course,
is an a-posteriori information which was not guaranteed by a general logical result.
Nevertheless, the a-priori information provided for the special case with K being
compact prompted the search for such uniform bounds. As a result we get for an
arbitrary convex bounded subset C ⊂ X a uniform bound for (∗) depending only
on ε, a modulus of uniform convexity η of X and an upper bound for the diameter
of C. The bound itself is not new: for the special compact case it is essentially
already contained in Krasnoselski’s original paper ([30]) and was proved for the case

of closed bounded convex sets in [18] using the deep Browder-Göhde-Kirk fixed point
theorem. We nevertheless carry out the analysis because it shows two phenomena:
1) the possibility of replacing the existence of fixed points by the existence of ε-fixed

points which allows to give a complete elementary verification of the bound (without

assuming X complete or C being closed). 2) There is a logical modification of the

proof from [3] which makes use of the above mentioned no-counterexample interpre-

tation PCMH
ar of PCMar and allows to make use of a certain multiplicative property

many moduli η satisfy, by which we obtain (for such moduli) a numerically better
result. As a special instance of this we get a bound which is polynomially in ε of
degree p for the spaces Lp with p ≥ 2 (a result which (for this special case only) first

was obtained in 1990 in [18] by an ad hoc calculation). For X := IR, C := [0, 1] we

even get a linear bound (see also [18], p.192).

What is more interesting is that the authors conjecture in that very paper that ‘it
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seems unlikely’ ([18]), p. 191) that such bounds could easily be obtained in more
general situations where X is not required to be uniformly convex. More specifically,
in [12](p. 101) it is considered to be ‘unlikely’ that bounds which only depend on
C via an upper bound for the diameter of C exist at all in this general case. It is
exactly this general situation which we study in the final and main section of the
paper. As a special corollary of a more general result we obtain that in contrast to
this conjecture in [12] such uniform bounds not only exist (even for more general so-

called Mann iterations, see corollary 4.8) but can be easily described (see corollaries

4.10 and 4.6 below).8

Let us discuss this in more detail. We consider strong generalizations of Krasnosel-
ski’s result due to [16],[8],[11] and [4]. In [16] it is shown that Krasnoselski’s fixed
point theorem even holds without the assumption of X being uniformly convex. Even
much more general so-called Krasnoselski-Mann iterations

xk+1 := (1 − λk)xk + λkf(xk)

are allowed, where λk is a sequence in [0, 1] which is divergent in sum and satisfies
lim sup

k→∞
λk < 1.

In particular, it is proved in [16] that for such iterations

(I) lim
k→∞

‖xk − f(xk)‖ = 0,

where X is an arbitrary normed linear space, C a bounded convex subset of X and
f : C → C is nonexpansive.
This result is further generalized in [4] to the case where C no longer is required to
be bounded. Then one has

(II) lim
k→∞

‖xk − f(xk)‖ = rC(f),

where
rC(f) := inf

x∈C
‖x − f(x)‖

will in general be strictly positive.

We give a complete quantitative analysis of (II) (see theorem 4.5) as an instance of

our general result on the extractability of bounds from proofs using PCM(ak) for a

sequence (ak)k∈IN which is definable in the parameters of the problem. In the case at

hand (ak)k∈IN is just (‖xk−f(xk)‖)k∈IN. We then specialize the resulting bound to the

8See also the discussion at the end of this paper.
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case where C is bounded and derive a uniform bound for (I) which only depends on

ε, an upper bound dC for the diameter d(C) of C and some quite weak information

on (λk) (see corollary 4.6).

None of the papers [16],[8],[11],[4] contains any bounds and in fact [8] and [11] use

non-trivial functional theoretic embeddings to show (ineffectively) the existence of a

common number k ∈ IN which satisfies ‖xk − f(xk)‖ < ε uniformly for all starting

points x0 ([8])9 and all nonexpansive functions f ([11]). This uniformity comes for
free out of our proof analysis. Moreover, as already mentioned we also have a new
strong uniformity concerning C as the bounds only depend on dC and to some extent
also a uniformity w.r.t. (λk) (corollary 4.8). All this shows that the authors of the

papers listed were not aware of the uniform bounds hidden in their proofs (note that

the proof in [16] essentially is contained as a special case in the proof from [4] we are
analyzing, so that the logical analysis of the former is even simpler than our proof
analysis for the stronger result (II)). Only in the special case of λk = λ being constant

a uniform (and in fact optimal quadratic) bound was known before (in 1996) by [1],

however, with an extremely complicated proof involving computer assisted parts.10

This clearly indicates the usefulness of analysing noneffective proofs logically even if
one is not particularly interested in the numerical details of the bounds themselves
(or the bounds obtained happen to be too bad to be useful in practice). In many
cases such explicit bounds immediately show the independence of the quantity in

question from certain input data.11

3 Effective uniform bounds on the Krasnoselski

iteration in uniformly convex spaces

Definition 3.1 Let (X, ‖ · ‖) be a normed linear space and S ⊆ X be a subset of X.
A function f : S → S is called nonexpansive if

(∗) ∀x, y ∈ S(‖f(x) − f(y)‖ ≤ ‖x − y‖).
9This paper only considers the special case where λk := λ is constant.

10In this paper, again the noneffectivity of all the proofs mentioned above is stressed.
11Another example for this: the explicit uniform constants of strong unicity for Chebycheff

approximation which we extracted in [21],[22] by analysing classical uniqueness proofs for the
best Chebycheff approximation (known already since about 1905-1917) immediately implied the
existence of a common constant of unicity for compact sets K of functions f ∈ C[a, b], if
inff∈K dist(f, H) > 0 (H a Haar space), a fact that was proved in approximation theory only
in 1976 without providing any bounds (see [15]).
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Definition 3.2 ([6]) A normed linear space (X, ‖ · ‖) is called uniformly convex if

∀ε > 0∃δ > 0∀x, y ∈ X(‖x‖, ‖y‖ ≤ 1 ∧ ‖x − y‖ ≥ ε → ‖1

2
(x + y)‖ ≤ 1 − δ).

A function η : (0, 2] → (0, 1] providing such a δ := η(ε) > 0 for given ε > 0 is called
a modulus of uniform convexity.

The following fundamental existence theorem for fixed points of nonexpansive map-
pings and uniformly convex Banach spaces was proved independently by Browder,
Göhde and Kirk (note that no compactness assumption is made in this result):

Theorem 3.3 ([5],[13],[17]) Let (X, ‖ · ‖) be a uniformly convex Banach space,
C ⊆ X a non-empty convex closed and bounded subset of X and f : C → C a

nonexpansive mapping. Then f has a fixed point.12

Another fundamental theorem in the fixed point theory for nonexpansive mappings
is the following result due to Krasnoselski, which shows that (under an additional
compactness condition, which by the Schauder fixed point theorem guarantees the
existence of a fixed point) a fixed point of f can be approximated by a special
iteration sequence:

Theorem 3.4 (Krasnoselski [30]) Let K be a non-empty convex closed and bounded

set in a uniformly convex Banach space (X, ‖ · ‖) and f a nonexpansive mapping of
K into a compact subset of K. Then for every x0 ∈ K, the sequence

xk+1 :=
xk + f(xk)

2

converges to a fixed point z ∈ K of f .

Remark 3.5 Note that the iteration xk+1 := f(xk) from the Banach fixed point
theorem in general fails to converge in the setting of theorem 3.4: Take X := IR
(with the absolute value as norm), K := [0, 1] and f(x) := 1 − x. X is uniformly
convex, K is compact and convex, and f : K → K is nonexpansive, but the sequence
defined by x0 := 0, xk+1 := f(xk) alternates between 0 and 1.

12For a nice counterexample showing that the assumption of X being uniformly convex is neces-
sary, see [7](p.37).
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One can show that there cannot be an effective procedure to compute a rate of
convergence of the iteration in the Krasnoselski fixed point theorem uniformly in
f and the starting point x ∈ K of the iteration (see [29]). This already holds for

the special case of X := IR and K := [0, 1] and the fixed starting point x0 := 0 as
there exists no computable function F from the set of all nonexpansive functions
f : [0, 1] → [0, 1] into [0, 1] which computes uniformly in f a fixed point of f (this is
closely related to the fact that such a function F cannot be continuous with respect
to the maximum norm ‖f‖∞). Logically, this ineffectivity in Krasnoselski’s theorem

corresponds to the fact the statement that (xk)k∈IN converges is Π0
3.

On the other hand if we consider the weaker question of how far we have to go in
the iteration to obtain an ε-fixed point, then we notice that the logical form of the
statement

(∗) ∀k ∈ IN∃n ∈ IN(‖xn − f(xn)‖ <
1

k + 1
)

is Π0
2 (assuming that real numbers are represented as Cauchy sequences with fixed

rate of convergence so that <IR∈ Σ0
1) and hence we can find a witness n by unbounded

search (effectively in k, f, ‖·‖ and the starting point of the iteration). In the following

we extract a bound (and hence in view of lemma 3.8 below a realization) for n from

the standard proof of theorem 3.4 (and hence of its corollary (∗)) as it is given in [3].

Definition 3.6 Let (X, ‖ · ‖) be a normed linear space, S a subset of X, f : S → S

and ε > 0. A point x ∈ S is called ε-fixed point of f if ‖x − f(x)‖ ≤ ε.

Lemma 3.7 Let (X, ‖·‖) be a normed linear space, ∅ 6= C ⊆ X convex with bounded

diameter d(C) < ∞ and f : C → C nonexpansive. Then f has ε-fixed points in C
for every ε > 0.

Proof: To reduce the situation to the Banach fixed point theorem we use the fol-
lowing well-known construction (see e.g. [4] but also [13]): ft(x) := (1 − t)f(x) + tc

for some c ∈ C and t ∈ (0, 1]. ft : C → C is a contraction and therefore Banach’s
fixed point theorem applies. Note furthermore that the completeness assumption in
Banach’s theorem is needed only to guarantee the existence of a limit of the Cauchy
sequence (fn

t (c))n∈IN, where fn
t denotes the n-times iteration of ft, which is not nec-

essary to ensure that fn
t (c) is an ε-fixed point of ft for sufficiently large n and hence

(for t := ε/d(C)) a 2ε-fixed point of f . That is why we don’t have to assume that
X is complete or that C is closed. 2

The following lemma belongs to the ‘folklore’ of the subject. We include its simple
proof for the sake of completeness.

12



Lemma 3.8 Let (X, ‖ · ‖) be a normed linear space, C ⊆ X be a convex subset of
X and f : C → C a nonexpansive function. Let x0 ∈ C be arbitrary and define

xk+1 := xk+f(xk)
2

. Then

∀k(‖xk+1 − f(xk+1)‖ ≤ ‖xk − f(xk)‖).

Proof:

‖xk+1 − f(xk+1)‖ = ‖1
2
xk + 1

2
f(xk) − f(1

2
xk + 1

2
f(xk))‖ =

‖(1
2
xk − 1

2
f(xk)) + (f(xk) − f(1

2
xk + 1

2
f(xk)))‖ ≤

‖1
2
xk − 1

2
f(xk)‖ + ‖f(xk) − f(1

2
xk + 1

2
f(xk))‖ ≤

‖1
2
xk − 1

2
f(xk)‖ + ‖xk − (1

2
xk + 1

2
f(xk))‖ =

1
2
‖xk − f(xk)‖ + 1

2
‖xk − f(xk)‖ = ‖xk − f(xk)‖. 2

Quantitative analysis of the proof of theorem 3.4 in [3]:

We now give two quantitative versions of the consequence (∗) of theorem 3.4. The

first one follows directly the proof of the theorem as given in [3]. The second one uses
a logical modification of that proof which is motivated by our general elimination
procedure for PCMar . This second analysis allows to take into account in a very easy
way a property which is satisfied by many moduli of uniform convexity, e.g. for all
spaces Lp with p ≥ 2, which makes it possible to improve the results obtained from

the first, direct analysis for such spaces.

General logical preliminaries:

Let us for the moment assume that K itself is compact. In Bonsall’s [3] proof of

theorem 3.4 the following is established (where x0 := x, xk+1 := (xk + f(xk))/2 is

the Krasnoselski iteration starting from x):

∀x ∈ K∀ε > 0(∃y ∈ K(f(y) = y) ∧ ∀k(‖f(xk) − xk‖ ≥ ε) → lim
n→∞ ‖xn − y‖ = 0)

and hence

∀x ∈ K∀ε > 0(∃y ∈ K(f(y) = y) ∧ ∀k(‖f(xk) − xk‖ ≥ ε) → ∃n(‖xn − y‖ < ε)),

13



where the existence of a fixed point y ∈ K is derived from the Schauder fixed point
theorem. This can be rephrased in the following form

∀x, y ∈ K∀ε > 0∃k, n, l ∈ IN(
‖f(y)− y‖ ≤ 1

l + 1
∧ ‖f(xk) − xk‖ ≥ ε → ∃ñ ≤ n(‖xñ − y‖ < ε)

)
︸ ︷︷ ︸

∈Σ0
1

.

By our general results on the extractability of uniform bounds we know a priori
(using the compactness of K as well as of the space of all nonexpansive mappings

f : K → K) that we can extract bounds K(ε), N(ε), L(ε) (and hence because of
the monotonicity in k, n, l of the formula above, which follows from lemma 3.8, also
realizations) for k, n, l which are independent of x, y ∈ K and f and only depend

on ε > 0 (and a modulus of uniform convexity η of X). Since we may assume that

L(ε) > 1
ε

and since by the nonexpansivity of f

‖f(y)− y‖ ≤ ε ∧ ‖xñ − y‖ ≤ ε → ‖f(xñ) − xñ‖ ≤ 3ε,

this yields
∃n ≤ max (K(ε), N(ε))(‖f(xn) − xn‖ ≤ 3ε)

and so again by lemma 3.8

∀n ≥ max (K(ε), N(ε))(‖f(xn) − xn‖ ≤ 3ε).

Thus we have obtained a uniform bound and at the same time reduced the assump-
tion ‘∃y ∈ K(f(y) = y)’ to ‘∀ε > 0∃y ∈ K(‖f(y) − y‖ < ε)’. In particular, as the
bound does not depend on y, the computation of such an approximate fixed point
and hence an analysis of the proof of its existence is not needed.
The actual extraction of the bound carried out below reveals that such uniform
bounds K, N, L even exist when the compactness assumption on K is replaced by
the boundedness of K. Since by lemma 3.7 the existence of approximate fixed points
(but not of fixed points) in this much more general setting is even guaranteed for
spaces X which are not complete, we can remove this assumption as well and the
result is proved without appeal to any fixed point theorem other than Banach’s
(actually only its ε-version):

Theorem 3.9 (Direct analysis of Bonsall’s [3] proof of theorem 3.4)

Let (X, ‖ · ‖) be a uniformly convex normed space with modulus of convexity

η : (0, 2] → (0, 1] and C ⊆ X be a non-empty convex set with

d(C) := sup
x1,x2∈C

‖x1 − x2‖ ≤ dC ∈ Q∗
+.

14



Let f : C → C be a nonexpansive function.
Define for arbitrary x ∈ C

x0 := x, xk+1 :=
xk + f(xk)

2
.

Then
∀x ∈ C∀ε > 0∀k ≥ h(ε, dC)(‖xk − f(xk)‖ ≤ ε),

where h(ε, dC) :=
⌈

ln(4dC)−ln(ε)
η(ε/(dC+1))

⌉
for ε < dC and h(ε, dC) := 0 otherwise.

Proof: The theorem is trivial for ε ≥ dC . So we can assume that ε < dC. By lemma
3.7, f has ε-fixed points xε ∈ C, ‖f(xε)−xε‖ < ε for every ε > 0. Let δ > 0 be such

that δ < min(1, ε
12h(ε,dC)

) and let y ∈ C be a δ-fixed point of f , i.e.

(1) ‖y − f(y)‖ < δ.

Assume that
(2) ‖xk − f(xk)‖ = ‖(xk − y) − (f(xk) − y)‖ > ε.

Then

(3)

∥∥∥∥∥ xk − y

‖xk − y‖ + δ
− f(xk) − y

‖xk − y‖ + δ

∥∥∥∥∥ >
ε

‖xk − y‖ + δ
≥ ε

dC + 1
.

Because of

(4) ‖f(xk) − y‖
(1)

≤ ‖f(xk) − f(y)‖ + δ ≤ ‖xk − y‖ + δ,

we have

(5)

∥∥∥∥∥ xk − y

‖xk − y‖ + δ

∥∥∥∥∥ ,

∥∥∥∥∥ f(xk) − y

‖xk − y‖ + δ

∥∥∥∥∥ ≤ 1

and therefore

(6)

∥∥∥∥∥12
(

xk − y

‖xk − y‖ + δ
+

f(xk) − y

‖xk − y‖ + δ

)∥∥∥∥∥ ≤ 1 − η(ε/(dC + 1)).

Hence

(7)

 ‖xk+1 − y‖ = ‖1
2
(xk + f(xk)) − y‖ = ‖1

2
(xk − y + f(xk) − y)‖ ≤

(1 − η(ε/(dC + 1)))(‖xk − y‖ + δ).
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Therefore, if (2) holds for all k ≤ k0 := h(ε, dC) − 1 then

(8)


‖xk0+1 − y‖ ≤ (1 − η(ε/(dC + 1)))k0+1‖x0 − y‖ +

k0+1∑
i=1

(1 − η(ε/(dC + 1)))i · δ

≤ (1 − η(ε/(dC + 1)))k0+1 · dM + (k0 + 1)δ ≤ (1 − η(ε/(dC + 1)))k0+1 · dC + ε
12

.

We now show that

(9) (1 − η(ε/(dC + 1)))k0+1 · dC ≤ ε

4
.

Proof of (9): If η(ε/(dC + 1)) = 1, then the claim holds trivially. Otherwise, (9) is
equivalent to

k0 + 1 ≥ ln(ε/4dC)

ln(1 − η(ε/(dC + 1)))
.

Since ln(1) = 0 and d
dx

ln(x) = 1
x
≥ 1 for all x ∈ (0, 1], we get

− ln(1 − η(ε/(dC + 1))) ≥ η(ε/(dC + 1)).

Together with − ln(ε/4dC) = log(4dC) − ln(ε) this yields (9).

(8) and (9) together imply

(10) ∀k ≤ h(ε, dC) − 1(‖xk − f(xk)‖ > ε) → ‖xh(ε,dC) − y‖ ≤ ε

3
.

Since f is nonexpansive and y is an ε
3
-fixed point of f the right-hand side of the

implication yields ‖xh(ε,dC) − f(xh(ε,dC))‖ ≤ ε. So

(11) ∃k ≤ h(ε, dC)(‖xk − f(xk)‖ ≤ ε)

and hence by lemma 3.8 above

(12) ∀k ≥ h(ε, dC)(‖xk − f(xk)‖ ≤ ε),

which concludes the proof of the theorem. 2

Theorem 3.10 (Analysis of a modification of Bonsall’s [3] proof of thm.3.4)

Under the same hypotheses as in theorem 3.9 we obtain

∀x ∈ C∀ε > 0∀k ≥ h(ε, dC)(‖xk − f(xk)‖ ≤ ε),
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where h(ε, dC) :=
⌈

4·dC

ε·η( ε
dC+1

)

⌉
for ε < dC and h(ε, dC) := 0 otherwise.

Moreover, if η(ε) can be written as η(ε) = ε · η̃(ε) with

(∗) ∀ε1, ε2 > 0(ε1 ≥ ε2 → η̃(ε1) ≥ η̃(ε2)),

then the bound h(ε, dC) can be replaced (for ε < dC) by

h̃(ε, dC) :=

 2 · dC

ε · η̃( ε
dC+1

)

 .

Proof: By lemma 3.7, f has ε-fixed points xε ∈ C, ‖f(xε)−xε‖ < ε for every ε > 0.

Let δ > 0 be such that δ < min(1, ε
3
, ε

12
· η(ε/(dC + 1))) and let y ∈ C be a δ-fixed

point of f , i.e.
(1) ‖y − f(y)‖ < δ.

Assume that

(2) ‖xk − y‖ ≥ ε

3
and

(3) ‖xk − f(xk)‖ = ‖(xk − y) − (f(xk) − y)‖ > ε.

As in the proof of theorem 3.9 one shows that

(4)

∥∥∥∥∥12
(

xk − y

‖xk − y‖ + δ
+

f(xk) − y

‖xk − y‖ + δ

)∥∥∥∥∥ ≤ 1 − η(ε/(dC + 1)).

Hence

(5)


‖xk+1 − y‖ = ‖1

2
(xk + f(xk)) − y‖ = ‖1

2
(xk − y + f(xk) − y)‖ ≤

‖xk − y‖ + δ − (‖xk − y‖ + δ) · η(ε/(dC + 1))
(2)

≤

‖xk − y‖ + δ − ε
3
· η(ε/(dC + 1)) ≤ ‖xk − y‖ − ε

4
· η(ε/(dC + 1)).

Define

nε :=

⌈
dC

ε
4
· η(ε/(dC + 1))

⌉
=

⌈
4 · dC

ε · η(ε/(dC + 1))

⌉
.

If (2), (3) both hold for all k ≤ nε, then (5) yields

(6) ‖xnε+1 − y‖ < ‖x0 − y‖ − dC ,

17



which contradicts the choice of dC by which ‖xk − y‖ ∈ [0, dC] for all k ∈ IN.
Hence

(7) ∃k ≤ nε(‖xk − y‖ ≤ ε

3
∨ ‖xk − f(xk)‖ ≤ ε).

By the choice of δ,(1) and the nonexpansivity of f , the first disjunct also implies

that ‖f(xk) − xk‖ ≤ ε and so by the preceding lemma

(8) ∀k ≥ nε(‖xk − f(xk)‖ ≤ ε).

The last claim in the theorem follows by choosing y ∈ C as a δ-fixed point of f with
δ < min(1, ε

3
, ε

2
· η̃(ε/(dC + 1))) and the following modifications of (4), (5) to

(4)∗
∥∥∥∥∥12
(

xk − y

‖xk − y‖ + δ
+

f(xk) − y

‖xk − y‖ + δ

)∥∥∥∥∥ ≤ 1 − η(ε/(‖xk − y‖ + δ)).

(5)∗



‖xk+1 − y‖ = ‖1
2
(xk + f(xk)) − y‖ = ‖1

2
(xk − y + f(xk) − y)‖ ≤

‖xk − y‖ + δ − (‖xk − y‖ + δ) · η(ε/(‖xk − y‖ + δ)) =

‖xk − y‖ + δ − ε · η̃(ε/(‖xk − y‖ + δ))
(∗)
≤ ‖xk − y‖ + δ − ε · η̃(ε/(dC + 1))

≤ ‖xk − y‖ − ε
2
· η̃(ε/(dC + 1))

(note that we can apply η to ε/(‖xk − y‖ + δ) since (3) and

‖f(xk) − y‖
(1)

≤ ‖f(xk) − f(y)‖ + δ ≤ ‖xk − y‖ + δ

imply
ε ≤ ‖xk − y‖ + ‖f(xk) − y‖ ≤ 2(‖xk − y‖ + δ)

and therefore
ε/(‖xk − y‖ + δ) ∈ (0, 2]).

2

If we disregard for a moment the diameter estimate dC in the bounds in theorems 3.9

and 3.10 and put ε := 2−n, then we see that the bound from theorem 3.9 essentially

is n/η(2−n), whereas the first bound in theorem 3.10 is only about 2n/η(2−n). If,

however, η(ε) can be written as ε · η̃(ε) with η̃ satisfying (∗), then theorem 3.10

roughly gives 1/η(2−n) which is better than the bound from theorem 3.9. It is this
fact that we will use in the example below to obtain a polynomial bound for Lp
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(p ≥ 2) which is of degree p.

Examples: It is well-known that the Banach spaces Lp with 1 < p < ∞ are

uniformly convex (this was first proved in [6], see also [20]). For p ≥ 2, the following

explicit modulus ηp of uniform convexity was obtained in [14]

ηp(ε) := 1 − (1 − (ε/2)p)1/p.

One easily shows (using the derivative of x1/p) that (for (0, 2])

ηp(ε) ≥
εp

p2p
.

Hence εp

p2p is a modulus of convexity as well. Since

εp

p2p
= ε · η̃p(ε)

with

η̃p(ε) =
εp−1

p2p

satisfying (∗) in the theorem above, we obtain the following

Corollary 3.11 Let p ≥ 2, C ⊆ Lp a non-empty convex subset with d(C) ≤ dC ∈
Q∗

+, f : C → C nonexpansive and (xk)k∈IN defined as in the theorem. Then

∀x ∈ C∀ε > 0∀k ≥
⌈
dCp(dC + 1)p−12p+1

εp

⌉
(‖xk − f(xk)‖ ≤ ε).

Note the bound in corollary 3.11 only depends on p, ε and an upper bound dC of
d(C) but not on x ∈ C or f .

For the case X := IR, C := [0, 1], theorem 3.10 even gives a linear bound, since ε/2

is a modulus of uniform convexity in this case and η̃(ε) := 1
2

satisfies (∗).

Remark 3.12 Our result in corollary 3.11 can easily be improved by replacing (dC +

1) by (dC + δ) for any δ > 0 and so in the limit by dC . In [18], using a direct
calculation based on the modulus of uniform convexity for Lp, essentially the same

result is obtained (only with a better constant as the factor ‘p2p+1’ is missing). For

a linear bound in the case [0, 1], [18] refer to an unpublished result of J. Alexander.
Note, however, that our bounds in these examples, where derived just as a special
case from the general bound in theorem 3.10.
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4 Effective uniform bounds on the Krasnoselski-

Mann iteration in arbitrary normed spaces

Throughout this section, (X, ‖ · ‖) will be an arbitrary normed linear space, C ⊆ X
a non-empty convex subset of X and f : C → C a nonexpansive mapping.
We consider the so-called Krasnoselski-Mann iteration (which is more general than

the Krasnoselski iteration and due to Mann [33]) generated starting from an arbitrary
x ∈ C by

x0 := x, xk+1 := (1 − λk)xk + λkf(xk),

where (λk)k∈IN is a sequence of real numbers in [0, 1]. For background information

on this iteration and plenty of references see [4].

Lemma 4.1 ([4]) For all k ∈ IN and x, x∗ ∈ C :

1) ‖xk+1 − f(xk+1)‖ ≤ ‖xk − f(xk)‖,

2) ‖xk+1 − x∗
k+1‖ ≤ ‖xk − x∗

k‖.

Proof: 1) Similarly to lemma 3.8 above.

2) ‖xk+1 − x∗
k+1‖ = ‖(1 − λk)(xk − x∗

k) + λk(f(xk) − f(x∗
k)‖ ≤

(1−λk)‖xk −x∗
k‖+λk‖f(xk)−f(x∗

k)‖ ≤ ‖x−x∗‖, because of the non-expansivity
of f . 2

For the results in this section we assume (following [4]) that (λk)k∈IN is divergent in

sum, which can be expressed (since λk ≥ 0) as

(A) ∀n, i ∈ IN∃k ∈ IN

i+k∑
j=i

λj ≥ n

 .

We also assume (again as in [4]) that

(B) lim sup
k→∞

λk < 1.

Define
rC(f) := inf

x∈C
‖x − f(x)‖.
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Theorem 4.2 ([4]) 13 Suppose that (λk)k∈IN satisfies the conditions (A) and (B).

Then for any starting point x ∈ C and the Krasnoselski-Mann iteration (xn) starting
from x we have

‖xn − f(xn)‖ n→∞→ rC(f).

Corollary 4.3 ([16],[11],[4]) Under the assumptions of theorem 4.2 plus the addi-

tional assumption that C has bounded diameter d(C) < ∞ the following holds:

∀x ∈ C∀ε > 0∃nIN∀m ≥ n(‖xm − f(xm)‖ ≤ ε).

Proof: Follows from theorem 4.2 and lemma 3.7. 2

Remark 4.4 In [11] it is actually shown that one can choose n in the corollary

independently of x ∈ C and f . Whereas in [11] a complicated functional theo-
retic embedding into the space of all nonexpansive mappings is used to derive this
uniformity statement, it trivially follows from our quantitative analysis in corollary
4.6 below which even provides an explicit effective description of such a uniform n.
For a more restricted iteration the existence of a bound n independent of x was
also obtained by [8] using, however, also a universal embedding theorem (due to

Banach and Mazur). The use of non-trivial functional theoretic arguments in [11]

and [8] to obtain the (ineffective) existence of a uniform n clearly indicates that the
authors were not aware of explicit effective uniform bounds hidden in the proof of
lim
k→∞

‖f(xk)− xk‖ = 0 as given e.g. in [11] and its generalization in [4] which we will

analyze now.14

Quantitative analysis of the proof of theorem 4.2 in [4]:

General logical preliminaries:

As we have discussed above, we only can expect to be able to extract a bound
∀x∃y ≤ Φ(x)A(x, y) from a non-constructive proof if A is a purely existential formula.

Since the statement in theorem 4.2 involves two implicative assumptions on (λk)k∈IN

as well as the existence of rC(f), it prima facie does not have the required form.
However, it can be reformulated such as to have the right logical form by enriching
the input (λk)k∈IN, f, x, ε by additional data K ∈ IN, α : IN × IN → IN and x∗ ∈ C.

Let us first examine conditions (A) and (B) on (λk)k∈IN :

13With the additional assumption that λk is bounded away from zero, this result is also proved
in [34].

14For a more detailed discussion, see the final section of this paper.
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An explicit version of (A) asks for a function α : IN×IN → IN realizing the existential
quantifier, i.e.

(Aα) ∀n, i ∈ IN

i+α(i,n)∑
j=i

λj ≥ n

 .

(B) states the existence of a K ∈ IN such that

λk ≤ 1 − 1

K

from some index k0 on. Since k0 only contributes an additive constant to our bound
we may assume for simplicity that k0 = 0. So let

(BK) ∀k ∈ IN(λk ≤ 1 − 1

K
).

We now formulate the theorem more explicitly as follows:

(∗)

∀(λk) ∈ [0, 1]IN∀f : C → C∀x, x∗ ∈ C∀K, α∀ε > 0∃n ∈ IN

(f nonexpans. ∧ (Aα) ∧ (BK) → ‖xn − f(xn)‖ < ‖x∗ − f(x∗)‖ + ε).

Note that by lemma 4.1.1), (∗) immediately implies theorem 4.2.

By our representation of real numbers by which ≤IR∈ Π0
1 and <IR∈ Σ0

1, the implica-
tion

(f nonexpansive ∧ (Aα) ∧ (BK) → ‖xn − f(xn)‖ < ‖x∗ − f(x∗)‖ + ε)

is equivalent to a purely existential formula. The proof of (∗) only uses tools formal-

izable in EBA plus the principle PCM(‖xk −f(xk)‖) (discussed in the introduction)

applied to (‖xk −f(xk)‖)k∈IN and a complicated inequality due to [11]. This inequal-
ity can be treated just as another purely universal implicative premise and does
therefore not increase the logical complexity of the theorem (nor is its proof needed

to be analysed). Since, furthermore, the Hilbert cube [0, 1]IN is a compact space, our

general results discussed discussed in the introduction guarantee (at least for com-

plete separable X and definable C)15 the existence of an effective bound for n which

does not depend on (λk) directly but which may possibly depend on K, α, x, x∗, f, ε

15The actually extracted bound will in fact turn out to be valid for arbitrary normed linear spaces
X and convex subsets C ⊂ X . Note that the convexity assumption on C is purely universal.
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and γ. This information on what type of result we should look for is a significant
application of our logical approach to the specific proof of theorem 4.2 which would
not have been visible without the reformulation of the theorem focusing on its logical
form.
We also know a-priori from our general logical meta-theorem, that a uniform bound
on n which does not depend on x, x∗ ∈ C, γ > 0 and f is extractable if C is compact
(and hence has bounded diameter). For the bound we actually extract, the depen-
dence on x, x∗, f, γ can already be eliminated as soon as we have an upper bound on
the diameter d(C) of C. This stronger uniformity result is an a-postiori information

we get for free just by examining the extracted bound (compare this with remark

4.4 and the discussion in the final section of this paper).

Extraction of the bound:

We now proceed to the actual extraction of the bound from the proof of theorem 4.2
which we present here in a usual mathematical style without following step by step
a fixed proof theoretic procedure.

Let x∗ ∈ C and define
(1) γ := ‖x∗ − f(x∗)‖.

Let furthermore ε > 0 and x ∈ C be arbitrary and let M ∈ IN be such that

(2) M ≥ 1 + 2‖x − x∗‖
ε

.

Let δ > 0 be so small that

(3) δ exp(K(M + 1)) < 1,

where K ∈ IN satisfies

(4) ∀k ∈ IN(λk ≤ 1 − 1

K
).

Let α : IN × IN → IN be such that16

(5) ∀i, n ∈ IN(n ≤ Si,α(i,n) ≤ n + 1),

where

(6) Si,n :=
i+n−1∑

s=i

λs.

16Since λk ∈ [0, 1) this can always be achieved.
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Consider the Krasnoselski-Mann iteration (xn)n∈IN starting from x. By lemma 4.1.1),

the sequence (‖xn − f(xn)‖)n∈IN ⊂ [0, ‖x− f(x)‖] is monotone decreasing and hence
convergent. Thus there exists an i such that

(7) ‖xi − f(xi)‖ − ‖xi+α(i,M) − f(xi+α(i,M))‖ ≤ δ.

Suppose that
(8) ‖xi − f(xi)‖ ≥ γ + ε.

The proof in [4] uses the following inequality which is derived from a fundamental

inequality due to [11] and which holds for all i, n ∈ IN

(9) Si,n · ‖xi − f(xi)‖ ≤ ‖xi − xi+n‖ + Pi,n · (‖xi − f(xi)‖ − ‖xi+n − f(xi+n)‖),
where

(10) Pi,n :=
i+n−1∏

s=i

1

1 − λs

.

As in [16] one shows that

(11) ∀i, n ∈ IN(Pi,n ≤ exp(K · Si,n)).

In [4](p.23), the following inequality is established ((x∗
k) is the Krasnoselski-Mann

iteration starting from x∗)

(12) ‖x∗
i − x∗

i+n‖ ≤ Si,n · ‖x∗
i − f(x∗

i )‖
l.4.1.1)

≤ Si,n · ‖x∗ − f(x∗)‖.

Together with lemma 4.1.2) we obtain

(13)



Si,α(i,M) · (γ + ε)
(8)

≤ Si,α(i,M) · ‖xi − f(xi)‖
(9,7)

≤ ‖xi − xi+α(i,M)‖ + δPi,α(i,M)

≤ ‖xi − x∗
i ‖ + ‖x∗

i − x∗
i+α(i,M)‖ + ‖x∗

i+α(i,M) − xi+α(i,M)‖ + δPi,α(i,M)

4.1.2)

≤ 2‖x − x∗‖ + ‖x∗
i − x∗

i+α(i,M)‖ + δPi,α(i,M)

(12)

≤ 2‖x − x∗‖ + Si,α(i,M) · ‖x∗ − f(x∗)‖ + δPi,α(i,M).

Hence

(14)



1 + 2‖x − x∗‖
(2)

≤ M · ε
(5)

≤ εSi,α(i,M)

(1)

≤ Si,α(i,M)(γ + ε − ‖x∗ − f(x∗)‖)
(13)

≤ 2‖x − x∗‖ + δPi,α(i,M)

(11)

≤ 2‖x − x∗‖ + δ exp(K · Si,α(i,M))
(5)

≤ 2‖x − x∗‖ + δ exp(K(M + 1))
(3)
< 2‖x − x∗‖ + 1,
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which is a contradiction. Therefore ‖xi − f(xi)‖ < γ + ε.

It remains to construct a function h(x, f, K, α, M) which is a bound

i ≤ h(x, f, K, α, M) for i in (7):
Define

α̃(i, M) := i + α(i, M)

and the m-times iteration α̂ of λi.α̃(i, M)

α̂(0, M) := α̃(0, M) and α̂(m + 1, M) := α̃(α̂(m, M), M).

It is clear that
(15) ∀i(α̂(i, M) ≤ α̂(i + 1, M)).

Claim:17

∃i ≤
⌈
‖x − f(x)‖

δ

⌉
−· 1(‖xα̂(i,M) − f(xα̂(i,M))‖ − ‖xα̂(i+1,M) − f(xα̂(i+1,M)‖ ≤ δ).

Proof of Claim: Let j :=
⌈‖x−f(x)‖

δ

⌉
−· 1 and suppose the claim is false. Then

∀i ≤ j(‖xα̂(i,M) − f(xα̂(i,M))‖ − ‖xα̂(i+1,M) − f(xα̂(i+1,M)‖ > δ).

Since by lemma 4.1.1) the sequence (‖xi − f(xi)‖)i∈IN is decreasing and – by (15) –

λi.α̂(i, M) is monotone, we obtain

‖xα̂(0,M) − f(xα̂(0,M))‖ − ‖xα̂(j+1,M) − f(xα̂(j+1,M))‖

> δ · (j + 1) ≥ ‖x − f(x)‖,

which is a contradiction to the fact that ∀n ∈ IN(‖xn − f(xn)‖ ∈ [0, ‖x− f(x)‖]) and
finishes the proof of the claim.
Using that

(16) ∀i(α̂(i + 1, M) = α̂(i, M) + α(α̂(i, M), M),

the claim yields

(17)

 ∃i ≤
⌈‖x−f(x)‖

δ

⌉
−· 1

(‖xα̂(i,M) − f(xα̂(i,M))‖ − ‖xα̂(i,M)+α(α̂(i,M),M) − f(xα̂(i,M)+α(α̂(i,M),M)‖ ≤ δ).

17n −· 1 := max(0, n − 1).
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Hence – using again the monotonicity of λi.α̂(i, M) – a bound for i in (∗) is given

by α̂(d(‖x − f(x)‖/δ)e−· 1, M). Since we can put δ := 1
2 exp(K(M+1))

we obtain

h(x, f, K, α, M) := α̂(d2‖x − f(x)‖ exp(K(M + 1))e−· 1, M)

with M ∈ IN such that

M ≥ 1 + 2‖x − x∗‖
ε

as bound for an i such that

‖xi − f(xi)‖ < γ + ε

and therefore (using again lemma 4.1.1)

∀i ≥ h(x, f, K, α, M)(‖xi − f(xi)‖ < γ + ε).

We now show that we can replace (5) by the more flexible requirement18

(5)′ ∀i, n ∈ IN(α(i, n) ≤ α(i + 1, n) ∧ n ≤ Si,α(i,n)).

Assume that α satisfies (5)′. Define

α∗(i, n) := min m ∈ IN[n ≤
i+m−1∑

s=i

λs].

Then
∀i, n ∈ IN(n ≤ Si,α∗(i,n) ≤ n + 1),

since λs ≤ 1. Hence by the logical analysis carried out so far we obtain the bound
h(ε, x, x∗, f, K, α∗). In this bound, α∗ can be replaced by α since

h(ε, x, x∗, f, K, α∗) ≤ h(ε, x, x∗, f, K, α),

which is a consequence of

∀i, n ∈ IN(α̂∗(i, n) ≤ α̂(i, n)),

which can be proved by an easy induction on i.

Put together we have established the following

18Note that the first conjunct can always be achieved without violating the second one by using
α+(i, n) := max

j≤i
(α(j, n)).
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Theorem 4.5 Let (X, ‖ · ‖) be a normed linear space, C ⊆ X a non-empty convex

subset and f : C → C a nonexpansive mapping. Let (λk)k∈IN be a sequence in [0, 1]
which is divergent in sum and satisfies

∀k ∈ IN(λk ≤ 1 − 1

K
)

for some K ∈ IN.
Let α : IN × IN → IN be such that

∀i, n ∈ IN(α(i, n) ≤ α(i + 1, n)) and

∀i, n ∈ IN(n ≤
i+α(i,n)−1∑

s=i

λs).

Let (xn)n∈IN be the Krasnoselski-Mann iteration

xn+1 := (1 − λn)xn + λnf(xn), x0 := x

starting from x ∈ C. Then the following holds

∀x, x∗ ∈ C∀ε > 0∀n ≥ h(ε, x, x∗, f, K, α)(‖xn − f(xn)‖ < ‖x∗ − f(x∗)‖ + ε),

where

h(ε, x, x∗, f, K, α) := α̂(d2‖x − f(x)‖ · exp(K(M + 1))e−· 1, M),

with M :=
⌈

1+2‖x−x∗‖
ε

⌉
and

α̂(0, M) := α̃(0, M), α̂(m + 1, M) := α̃(α̂(m, M), M) with

α̃(m, M) := m + α(m, M) (m ∈ IN)

(Instead of M we may use any upper bound IN 3 M̃ ≥ 1+2‖x−x∗‖
ε

). Likewise, we may

resplace ‖x − f(x)‖ by any upper bound).

Corollary 4.6
Let (X, ‖ · ‖) be a normed linear space, C ⊆ X a non-empty convex subset with

bounded diameter d(C) < ∞ and f : C → C a nonexpansive mapping. Let (λk)k∈IN

be a sequence in [0, 1] which is divergent in sum and satisfies

∀k ∈ IN(λk ≤ 1 − 1

K
)
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for some K ∈ IN.
Let α : IN × IN → IN be such that

∀i, n ∈ IN(α(i, n) ≤ α(i + 1, n)) and

∀i, n ∈ IN(n ≤
i+α(i,n)−1∑

s=i

λs).

Let (xn)n∈IN be the Krasnoselski-Mann iteration

xn+1 := (1 − λn)xn + λnf(xn), x0 := x

starting from x ∈ C. Then the following holds

∀x ∈ C∀ε > 0∀n ≥ h(ε, d(C), K, α)(‖xn − f(xn)‖ ≤ ε),

where

h(ε, d(C), K, α) := α̂(d2d(C) · exp(K(M + 1))e − 1, M), with M :=
⌈

1+2d(C)
ε

⌉
and

α̂(0, M) := α̃(0, M), α̂(m + 1, M) := α̃(α̂(m, M), M) with

α̃(m, M) := m + α(m, M) (m ∈ IN)

(Instead of M, d(C) we may use any upper bounds Q∗
+ 3 dC ≥ d(C) and

IN 3 M̃ ≥ 1+2dC

ε
).

Proof: The corollary follows from theorem 4.5 and lemma 3.7 by noticing that
‖x − f(x)‖, ‖x − x∗‖ ≤ d(C). 2

Remark 4.7 The behaviour of the bound in corollary 4.6 w.r.t. d(C) can be im-

proved as follows: if d(C) is different from 1 we renorm the space by the multiplicative

factor 1
d(C)

. Then h(ε, 1, K, α) gives the rate of the asymptotic regularity w.r.t. this

new norm and hence h( ε
d(C)

, 1, K, α) for the original norm.

This result could have been obtained also directly from the proof of theorem 4.5 above
by noticing that instead of ‘1 + 2‖x− x∗‖’ in (2) we could have used ‘l + 2‖x− x∗‖’
for any positive l (so in particular l := d(C)) and then taking δ := l

2 exp(K(M+1))
to

satisfy (3) with l instead of 1 at the right-hand side.
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Corollary 4.8 Let d, ε > 0, K ∈ IN and β : IN → IN an arbitrary function. Then
there exists an n ∈ IN such that for any normed space X, any convex set C ⊆ X
such that d(C) ≤ d, any nonexpansive function f : C → C, any sequence λk ∈

[0, 1− 1
K

] satisfying n ≤
β(n)∑
s=0

λs (for all n ∈ IN) and any starting point x0 ∈ C of the

corresponding Krasnoselski-Mann iteration the following holds

∀m ≥ n(‖xm − f(xm)‖ < ε).

Proof: Follows immediately from corollary 4.6 noticing that if n ≤
β(n)∑
s=0

λs, then also

n ≤
i+α(i,n)−1∑

s=i
λs, where α(i, n) := β(n + i)− i + 1. But this implies n ≤

i+α+(i,n)−1∑
s=i

λs,

where α+(i, n) := max
j≤i

(α(j, n)) satisfies α+(i, n) ≤ α+(i + 1, n). 2

Remark 4.9 Using the reasoning from the proof of corollary 4.8 one can rewrite the
bounds in theorem 4.5 and corollary 4.6 to depend on β : IN → IN satisfying

n ≤
β(n)∑
s=0

λs

instead of α. We only have to replace α by β̆(i, n) := max
j≤i

(β(n + j) − j + 1).

Corollary 4.10 Let (X, ‖ · ‖), C, f be as in corollary 4.6, k ∈ IN, k ≥ 2 and λn ∈
[ 1
k
, 1 − 1

k
] for all n ∈ IN. Consider the Krasnoselski-Mann iteration

xn+1 := (1 − λn)xn + λnf(xn) starting from x0 := x ∈ C. Then the following holds:

∀x ∈ C∀ε > 0∀n ≥ g(ε, d(C))(‖xn − f(xn)‖ ≤ ε),

where

g(ε, d(C)) := kM · d2d(C) exp(k(M + 1))e with M :=

⌈
1 + 2d(C)

ε

⌉
.

Proof: We can put in corollary 4.6 α(i, M) := kM . One easily proves that α̂(i, M) :=

k(i + 1)M. The corollary now follows from corollary 4.6. 2
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5 Evaluation of the results of the case study

We have seen that there are interesting proofs in non-linear functional analysis (and

specifically in fixed point theory) which fall under general proof theoretic results on
the extractability of uniform bounds we had obtained in previous papers.
We applied these results to essentially two proofs

1) A standard proof from [3] (from the year 1962)19 of the well-known Krasnoselski
fixed point theorem.

2) A proof from [4] (which contains as a special case a proof from [11] from 1982)
for a general result on the asymptotic behaviour of the Krasnoselski-Mann
iteration in arbitrary normed spaces (generalizing a result from Ishikawa [16]).

Results on 1): Logical analysis of a proof from 1955/62 yielded uniform bounds
together with an elementary verification for arbitrary bounded convex sets C. Under
slightly less general conditions and with the use of the deep Browder-Göhde-Kirk
fixed point theorem our bound in theorem 3.9 was obtained only in 1990 ([18]) (The

compact case is due already to Krasnoselski). Moreover, a logical modification of the

proof using PCMH
ar (with g(n) = n + 1 as index function in PCMH

ar(an)) allowed to
improve this bound under a further condition usually satisfied by moduli of uniform
convexity (theorem 3.10). Applying this general bound to Lp (p ≥ 2) resulted in a

polynomial bound of degree p (a result which for this special case was obtained in

[18] by an ad hoc calculation). For X := IR and C := [0, 1] we even get a linear

bound out of our general result (see also [18], p.192).

Results on 2): Logical analysis of the proof in [4] (resp. [11]) yielded the following
results:

For the first time we obtain explicit bounds for Ishikawa’s result on the asymptotic
behaviour of the general Krasnoselski-Mann iteration in arbitrary normed spaces X
and for bounded sets C (corollary 4.6). Moreover, our bounds are uniform in the
sense that they only depend on the error ε and an upper bound dC of the diameter
of C (and some data from the sequence of scalars λk used in defining the iteration)
but not on the nonexpansive function f , the starting point x0 ∈ C of the iteration
or other C-data. Only the non-effective existence of a bound independent of f and
x0 was known before (see [11] where a non-trivial functional theoretic embedding is

used to obtain this uniformity after ‖xk − f(xk)‖ → 0 has been established by the

19Krasnoselski’s original proof from 1955 is very similar to that as far as we can judge from the
russian text.
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proof we are analysing).20 In fact, [18] explicitly mentions the non-effectivity of all
these results and states that ‘it seems unlikely that such estimates would be easy to
obtain in general setting’ (p.191) and therefore only studies the special ‘tractable’

(p.191) case of uniformly convex spaces due to Krasnoselski. For bounds which,

moreover, only depend on C via dC (corollary 4.8) not even the ineffective existence

was known so far and in fact still in [12] (p.101) conjectured as ‘unlikely’ to be true

(incidentally by the same authors whose proof of ‖xk − f(xk)‖ → 0 in [11] does yield

such a bound by logical analysis!). Only in the special case of λk := λ ∈ (0, 1) being

constant, a uniform (and in fact optimal quadratic) bound was recently discovered

using computer aided proofs involving hypergeometric functions (see [1], where again

the non-effectivity of all known proofs of the full Ishikawa result is stressed) and only

for λk := 1
2

a classically proved result of that type has been obtained subsequently

(see [2]). This result, of course, is numerically better than our exponential bound

in corollary 4.10 when specialised to λ = 1
2
. However, as the authors concede, their

extremely complicated method does not extend to the case of non-constant sequences

(λk).
21 Our bound for the general case of unbounded C treated in [4] (theorem 4.5)

is apparently all new.
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