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based on a General Complexity Assumption

Ivan B. Damg̊ard Jesper Buus Nielsen

March, 2000

Abstract

Non-committing encryption enables the construction of multiparty com-
putation protocols secure against an adaptive adversary in the computational
setting where private channels between players are not assumed. While any
non-committing encryption scheme must be secure in the ordinary seman-
tic sense, the converse is not necessarily true. We propose a construction
of non-committing encryption that can be based on any public key system
which is secure in the ordinary sense and which has an extra property we
call simulatability. The construction contains an earlier proposed scheme by
Beaver based on the Diffie-Hellman problem as a special case, and we propose
another implementation based on RSA. In a more general setting, our con-
struction can be based on any collection of trapdoor one-way permutations
with a certain simulatability property. This offers a considerable efficiency
improvement over the first non-committing encryption scheme proposed by
Canetti et al. Finally, at some loss of efficiency, our scheme can be based on
general collections of trapdoor one-way permutations without the simulata-
bility assumption, and without the common domain assumption of Canetti et
al.

1 Introduction

The problem of multiparty computation dates back to the papers by Yao [13] and
Goldreich et al. [8]. What was proved there was basically that a collection of n
players can efficiently compute the value of an n-input function, such that everyone
learns the correct result, but no other new information. More precisely, these pro-
tocols can be proved secure against a polynomial time bounded adversary who can
corrupt a set of less than n/2 players initially, and then make them behave as he
likes. Even so, the adversary should not be able to prevent the correct result from
being computed and should learn nothing more than the result and the inputs of
corrupted players. Because the set of corrupted players is fixed from the start, such
an adversary is called static or non-adaptive.
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There are several different proposals on how to define formally the security of such
protocols [12, 2, 5], but common to them all is the idea that security means that
the adversary’s view can be simulated efficiently by a machine that has access to
only those data that the adversary is entitled to know. Proving correctness of a
simulation in the case of [8] requires a complexity assumption, such as existence
of trapdoor one-way permutations. This because the protocol takes place on an
open network where the adversary may potentially see every (encrypted) message
exchanged between players.

Later, unconditionally secure MPC protocols were proposed by Ben-Or et al. and
Chaum et al.[3, 6], in the model where private channels are assumed between every
pair of players. These protocols are in fact secure, even if the adversary is adaptive,
i.e. can choose dynamically throughout the protocol who to corrupt, as long as the
total number of corruptions is not too large. It is widely accepted that adaptive
adversaries model realistic attacks much better than static ones. Thus it is natural
to ask whether adaptive security can also be obtained in the computational setting?

The protocol from [8] is not known to be adaptively secure. The original simulation
based security proof for [8] fails completely against an adaptive adversary. However,
in [4], Canetti et al. introduce a new concept called non-committing encryption
and observe that if one replaces messages on the secure channels used in [3, 6]
by non-committing encryptions sent on an open network, one obtains adaptively
secure MPC in the computational setting. They also showed how to implement
non-committing encryption based on so called common-domain trapdoor one-way
permutations. The special property of non-committing encryption (which ordinary
public-key encryption lacks) is the following: although a normal ciphertext deter-
mines a clear-text uniquely, encrypted communication can nevertheless be simulated
with an indistinguishable distribution such that the simulator can later ”open” a ci-
phertext to reveal any clear-text it desires. In an MPC setting, this is what allows
to simulate the adversary’s view before and after a player is corrupted.

Subsequently, Beaver [2] has proposed a scheme based on the Decisional Diffie-
Hellman assumption (DDH) that is much simpler than the scheme from [4].

2 Our Results

In this paper, we propose a general way to build non-committing encryption from
ordinary semantically secure public-key encryptions schemes. Our method offers a
major efficiency improvement over [4] if the scheme we start from has an extra prop-
erty we call simulatability. Roughly speaking, a public-key scheme is simulatable if,
in addition to the normal key generation procedure, there is an algorithm to gener-
ate a public key, without getting to know the corresponding secret key. Moreover, it
must be possible to sample efficiently a random ciphertext without getting to know
the corresponding clear-text (we give precise definitions later in the paper).
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The idea that it could be useful to generate a public key without knowing the secret
key is not new. It seems to date back to De Santis et al.[7] where it was used in
another context. The idea also appears in [4], but was only used there to improve
the key generation procedure is some special cases. Here, we show the following

• From any semantically secure and simulatable public-key system, one can con-
struct a non-committing encryption scheme.

• The scheme requires 3 messages to communicate k encrypted bits, where k is
the security parameter. The total amount of communication is O(k) public
keys, O(k) encryptions of a k bit clear-text (in the original scheme), and k
bits.

• Only the final k bits of communication depend on the actual message to be
sent, and hence nearly all the work needed can be done in a preprocessing
phase.

Our scheme is inspired by the one of Beaver[2], and indeed if we use as basis of
our construction the encryption scheme that follows naturally from the Decisional
Diffie-Hellman (DDH) assumption, we get something that is essentially equivalent
to [2]. We propose an alternative implementation based on the RSA assumption.
This scheme is almost as efficient as the DDH scheme (it is slower by at most a
log2 k factor, all other things being equal).

We then look at general families of trapdoor one-way permutations. Call such a
family simulatable if one can efficiently generate a permutation in the family with-
out getting to know the trapdoor and the domain can be sampled in an invertible
manner1 We show that such a simulatable family implies immediately a simulatable
public-key system with no further assumptions. The non-committing encryption
scheme we obtain from this requires per encrypted bit communicated that we send
O(1) descriptions of a permutation in the family and O(k) bits (where the hidden
constant only has to be larger than 2, and where all bits except one can be sent in a
preprocessing phase). With the same assumption, the scheme from [4] requires Ω(1)
permutation descriptions and Ω(k2) bits. Moreover, the Ω(k2) bits depend on the
message communicated and so cannot be pushed into a preprocessing phase.

Finally, we observe that, at a loss of efficiency, we can implement non-committing
encryption from any family of trapdoor one-way permutations, assuming only in-
vertible sampling, i.e., without assuming full simulatability or the common domain
assumption of [4]. For this, we use as subrutine a key generation protocol shown in
[4]. We identify a bug in that protocol which caused it to be insecure as stated orig-
inally, and we suggest a modification under which it is secure. The protocol is based
on oblivious transfer and establishes a situation where a player knows the trapdoor
for one out of two public trapdoor permutations. Our scheme can then start from

1This is a technical condition which we discuss in more detail later. All known examples of
trapdoor permutations have invertible sampling.
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this situation and work with no extra assumptions. In this case the efficiency im-
provement over [4] is not so significant because the cost of the key generation will
dominate the rest. The scheme retains the preprocessing capability, however.

We note that the key generation of [4] in fact needs invertible sampling in any
case, and thus our assumption of existence of one-way trapdoor permutations with
invertible sampling is the weakest known assumption sufficient for non-committing
encryption.

3 Simulatable Public-Key Systems

Throughout the paper we will use the following notation. For a probabilistic algo-
rithm A we will by RA denote a sufficiently large set Bl = {0, 1}l from which the
random bits for A are drawn. We let r ← RA denote a r drawn uniformly random
from RA, let a ← A(x, r) denote the result a of evaluating A on input x using
random bits r, and denote by a← A(x) a value a drawn from the random variable
A(x) describing A(x, r) when r is uniform over RA.

We now want to define a public key encryption scheme where one can generate a
public key without getting to know the matching secret key. So in addition to the
normal key generation algorithm K that outputs a public and secret key (P, S), we
assume that there is another algorithm which we call the oblivious key generator
K̃ which outputs only a public key P with a distribution similar to public keys
produced by K. However, this condition is not sufficient to capture what we want.
K̃ could satisfy it by just running the same algorithm as K but output only P .
We therefore also ask that based only on a properly generated key P , there is an
efficient algorithm K̃−1 that comes up with a set of random choices r′ for K̃ such that
P = K̃(r′) and P, r′ cannot be distinguished from a normal set of random choices
and resulting output from K̃. This ensures that whatever side information you get
from producing P using K̃, you could also compute efficiently from only P itself. In
a similar way we can define what it means to produce a random ciphertext with no
knowledge of the plaintext. Formalising this we get:

Definition 1 (Simulatable public-key system) Let (K, E ,D,M) be a public-
key system with key-generation algorithm K, encryption algorithm E , decryption
algorithm D, message-space generator M, and security parameter k (1k is implic-
itly given as input to all algorithms in the following). We say that (K, E ,D,M)
is a simulatable public-key system if the following probabilistic polynomial time al-
gorithms exist: the oblivious public-key generator K̃; the key faking algorithm K̃−1;
the oblivious cipher-text generator C; and the cipher-text faking algorithm C−1. And if
furthermore the following holds:

Oblivious public-key generation For r ← RK, (P, S) ← K(r), r′ ← K̃−1(P ),
and r̃ ← RK̃, P̃ ← K̃(r̃) the distributions (r′, P ) and (r̃, P̃ ) are computation-
ally indistinguishable.
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Oblivious cipher-text generation For (P, S) ← K, r1 ← RC, C1 ← C(P, r1),
and M ← MP , r2 ← RE , C2 ← EP (M, r2), r′2 ← C−1(C2, P ) the random
variables (P, r1, C1) and (P, r′2, C2) are computationally indistinguishable.

Semantic security For r ← RK, (P, S) ← K(r), and for i = 0, 1: Mi ← MP ,
ri ← RE , Ci ← EP (Mi, ri), the random variables (P, M0, M1, C0) and (P, M0, M1, C1)
are computationally indistinguishable.

4 Non-Committing Encryption

Many proposals for the definition of secure multiparty computation has appeared
in the literature presently culminating in the proposal of [5] which as the first def-
inition allows for general security preserving modular composition of protocols in
the computational setting. We will use this model of secure multiparty computation
and sketch it here. A complete definition appears in [5].

The goal is for n parties to securely evaluate a function f taking an input from each
party and outputting a private output to each party. In formulating security first
an ideal evaluation is defined which captures the most we can expect of security. A
real life execution of the protocol is then required to resemble this ideal evaluation.

Besides the n parties of the protocol three other entities participate in the ideal evaluation.
Two probabilistic polynomial time algorithms, the adversary S and the environment
Z, and an oracle, called the trusted party T , for computing f . Each party share
a secure channel with T . The evaluation proceeds as follows. First the adversary
adaptively corrupts a number of parties and possible alters their inputs 2. The par-
ties then send their (possibly altered) inputs to the trusted party, which returns to
each party its share of the output of f . This is done over secure channels and the
adversary learns nothing. Then again the adversary adaptively corrupts a number
of parties and learns their inputs and outputs. A corrupted party stays corrupted
and the adversary therefore receives also the outputs of the parties corrupted in the
first round of corruption. The uncorrupted parties then output the value received
from the trusted party, the corrupted parties output ⊥, and the adversary outputs
some arbitrary value computed on the values learned through corruption. Before
this process the environment hands some arbitrary value to S. During the process
the environment learns the identity of corrupted parties and after each corruption
the environment passes a message to the adversary. After termination of the evalu-
ation the environment receives the output values of the parties and the adversary.
Then a post-execution corruption phase starts, were the environment might corrupt

2The definition also covers the cases where the adversary is passive (i.e., he just monitors the
parties without changing anything), or is static, (i.e., the set of corrupted parties is chosen once
and for all.) We concentrate here on the adaptive, active case
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more parties - through interaction with S. Finally the environment outputs some
arbitrary value computed on the obtained information. 3

In the real life execution the parties follows the protocol π. Prior to each round of
communication the adversary A adaptively corrupts a number of parties and learns
all their internal data and random values. The adversary then decides for each
corrupted party, which values it should communicate in this round. Furthermore,
we look here at the scenario without private channels, so the adversary sees all
communication. After protocol termination the uncorrupted parties then output
according to the protocol and corrupted parties output ⊥. Again the adversary
outputs some arbitrary value. The interaction with the environment Z is the same
as in the ideal evaluation.

We say that a protocol π t-adaptively securely computes f if for any environment
Z and any real life t-adaptive adversary A there exists an ideal model t-adaptive
adversary S such that for any input value to the protocol the output of Z after a real
life execution of π with adversary A in environment Z is distributed computationally
indistinguishably from the output of Z after an ideal evaluation with the same input
value and adversary S in the same environment.

The only known proof technique for proving existence of the ideal model adversary S
is a constructive one known as a simulation argument. Given any real life adversary
A, which expects to attack a real life execution, S translates the corruption requests
of A into corruption requests on an ideal evaluation. The ideal model adversary S
then receives the input and possibly the output of the corrupted party. However,
after the corruption A expects to see all internal data (according to the real life
protocol) of the corrupted party. To meet this requirement S will internally run a
simulated copy of the real life protocol.

Since the real life protocol takes place in an open network where the adversary may
potentially see all messages sent, and since the adversary is adaptive, the follow-
ing problem occurs when trying to simulate such a protocol: the simulator has to
construct something that looks like the communication taking place between uncor-
rupted parties, since in real life, the adversary would be able to see this information.
This communication will typically be encrypted, so the simulator may try to put
encryptions of random values in stead of real messages (at this point, neither the
adversary nor the simulator knows what an honest party would actually send). How-
ever, the sender or receiver may later be corrupted, and then the adversary gets to
know all inputs of the corrupted party. This data was unknown when the simulator

3A protocol might be carried out as a sub-protocol of some enclosing protocol. The messages
passed from the environment to the adversary, when a party is corrupted, models the data of
the corrupted party in the enclosing protocol - data flow from the enclosing protocol to the sub-
protocol. The post-corruption phase models the fact, that a party might get corrupted in the
enclosing protocol after the sub-protocol has terminated, in which case an adversary will also
learn the data of the terminated sub-protocol - data flow from the sub-protocol to the enclosing
protocol. Introducing the environment as a generalisation of the auxiliary input to the adversary
in prior models is one of the important contributions of [4]. This is exactly what allows for security
preserving modular composition.
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had to produce the simulated ciphertexts, so most likely those ciphertexts will not
match the inputs, at least not if a ciphertext always determines a cleartext uniquely,
as is the case for ordinary encryption schemes.

This problem may seem unsolvable: a ciphertext must determine the cleartext
uniquely in order for decryption to be possible. Nevertheless, the notion of non-
committing encryption [4] offers a solution to this problem. The idea is that one
might be able to let the simulator generate fake ciphertexts with a distribution indis-
tinguishable, but different from that of real ciphertexts. And that fake ciphertexts
may be constructed to be non-committing, i.e., the simulator can later make them
seem consistent with cleartexts of its choice.

To define non-committing encryption more precisely, we follow [4] and define what
our goal is, rather than fixing an implementation strategy:

Definition 2 (Non-committing encryption[4]) Let n > 2 and let f(b, Λ, Λ, . . . , Λ) =
(Λ, b, Λ, . . . , Λ) be the n-party function for communicating a bit from party 1 to party
2 (Λ denotes the empty string.) Let π be an n-party protocol. We say that π is
a non-committing encryption scheme if it securely computes f in the presence of
(n− 1)-adaptive adversaries.

We introduce and provide examples of protocols adhering to a stronger notion of
non-committing encryption which is resilient against a full attack.

Definition 3 (Strong Non-committing encryption) Let f(b, Λ) = (Λ, b) be the
two-party function for communicating a bit b ∈ B. Let π be a two-party protocol.
We say that π is a strong non-committing encryption scheme if it securely computes
f in the presence of 2-adaptive adversaries.

The definition of strong non-committing encryption can be extended to n parties in
the line of definition 2. Note that strong non-committing encryption trivially implies
strong n-party non-committing encryption. Whether the other implication holds is
an open problem. It is certainly not trivial as more parties than the communicating
ones might take active part in the protocol.

4.1 The Main Idea

The basic idea in the protocol is - like in all previous proposals - that we have our
parties learn less information than is actually possible. This opens the possibility
that a simulator can choose to learn full information and exploit this to its advantage.
A simulatable encryption scheme (K, E ,D,M) has two properties which allow parties
to learn less than maximal information. First, we can pick a public key P ← K̃
without learning anything about a corresponding private key. Second, we can pick
an encryption C ← CP without learning anything about the corresponding plain-
text. Using these properties the parties S and R can - in an adaptively secure way

7



S R
c← B d← B
rc ←RK ed ←RE
r1−c ←RK̃ e1−d ← RC
(Pc, Sc)← K(rc)
P1−c ← K̃(r1−c)

P0,P1−−−−−−−−→
Md ←MPd

M1−d ←MP1−d

Cd ←
EPd

(Md, ed)
C1−d ←
CPd

(e1−d)
M0,M1←−−−−−−−−−
C0,C1

s ←{
0 if DSc(Cc) = Mc

1 otherwise
s−−−−−→

(s = c⊕ d) (s = c⊕ d)

Figure 1: One attempt to establish a shared random bit.

- agree on a random, secret bit and then use this bit as a one-time pad. The main
building block of the protocol, which we call an attempt, is sketched in Fig. 1.

First S chooses a bit c and generates a pair of public keys (P0, P1) such that he
only knows the secret key corresponding to Pc. Then R chooses a bit d at random
and produces two pairs of ciphertext/plaintext (C0, M0), (C1, M1), such that only
one pair is valid, i.e., Cd is an encryption of Md under Pd, whereas the other pair
is randomly chosen. It is now clear that S can determine, using the secret key he
knows, whether c = d. The only possibility of error is that the pair (C1−d, M1−d)
may be valid by coincidence. But if the messagespace has size superpolynomial in
k (which we may assume without loss of generality), this happens with negligible
probability. Finally, S sets s = 0 if and only if he found that c = d, and sends s
to R. If c = d, the parties will use this secret bit to communicate message bit m
securely as m⊕ d. If c 6= d, we say that the attempt has failed, and none of the bits
c, d are used later 4. We now do an initial analysis of the attempt protocol.

Let rS and rR be the random inputs of S resp. R. We write the values obtained by
an attempt as

ATTEMPT(rS, rR) = (rc, Pc, Mc, ec, Cc), Sc, (rc−1, Pc−1, Mc−1, ec−1, Cc−1), (c, d, s).

4This may seem strange, since even in this case one party knows the choice of the other.
However, for technical reasons that we return to later, the protocol would not be adaptively secure
if all attempts were used for communication
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proc SIMATTEMPT0 ≡
s← 0
ri ← RK, i = 0, 1
(Pi, Si)← K(ri), i = 0, 1
Mi ←M, i = 0, 1
ei ←RE , i = 0, 1
Ci ← EPi(Mi, ei)

proc SIMATTEMPT1 ≡
s← 1
c← B
rc ←RK
r1−c ←RK̃
(Pc, Sc)← K(rc)
P1−c ← K̃(r1−c)
d← c− 1
Mi ←M, i = 0, 1
ed ←RE
e1−d ←RC
Cd ← EPd

(Md, ed)
C1−d ← CPd

(e1−d)

Figure 2: Preprocess-
ing values for the sim-
ulator, leaving the val-
ues of c and d open in
the case c = d, i.e when
s = 0.

Let ATTEMPT denote the random variable describing
ATTEMPT(rS, rR) when rS and rR are chosen uniformly
random. Let ATTEMPTi for i = 0, 1 denote the distri-
bution of ATTEMPT under the condition that s = i. An
attempt where s = 0 is called a successful attempt and an
attempt where s = 1 is called a failed attempt.

For later use in the simulator and for illustration of
the main idea we now show how we can produce a
distribution computationally indistinguishable from that
of ATTEMPT, but where (in case c = d) the value
of the shared secret bit can later be changed. Let
SIMATTEMPTi for i = 0, 1 be the distributions describ-
ing the values produced by the algorithms in Fig. 2. Let
SIMATTEMPT be the distribution where an element is
drawn from either SIMATTEMPT0 or SIMATTEMPT1

with probability 1
2
. The only difference compared to

ATTEMPT is that in case of SIMATTEMPT0, we choose
to learn the corresponding private key of P1−c and choose
C1−d as an encryption of M1−d. However, to an outsider,
who does not see S1−c and e1−d, this is not visible. We can
therefore use the distribution SIMATTEMPT in a simula-
tion in place of ATTEMPT to generate values of Pi, Mi,
Ci and s for the communication. Furthermore, we can
later “open” attempts where c = d by fixing c = d to
any desired value - this is possible since S1−c will never be
given to the adversary, so he cannot see that the simula-
tor chose both (Md, Cd) and (M1−d, C1−d) as correct mes-
sage/encryption pairs. He can only see that DSc(Cd) = Md

as it should be. 5 For the purpose of patching successful attempts we define the func-
tion PATCH(S0, b), which for an element S0 drawn from SIMATTEMPT0 and a bit
b ∈ B produces values similar to those in ATTEMPT by computing c and d by c← b,
d← b, and patching r1−c and e1−c by r′1−c ← K̃−1(P1−c), e′1−c ← C−1(C1−c, P1−c).

Some notation: let PATCH = (rc, Pc, Mc, ec, Cc), Sc, (r
′
1−c, P1−c, M1−c, e

′
1−c, C1−c),

(c, d, s) denote the random variable describing PATCH(S0, b) when S0 is drawn
randomly from SIMATTEMPT0 and b is drawn uniformly random from B. Let
PATCH0 and PATCH1 denote the distributions obtained by fixing b = 0, resp.
b = 1. Finally, let ATTEMPTb

0 denote the distribution of ATTEMPT0 conditioned

5Consider instead the situation where c 6= d. The secret key Sc is always known by S. If this
key becomes know to the adversary by corrupting S, he can check whether DSc(C1−d) 6= M1−d,
as it should be with high probability. The simulator can therefore not choose both (Md, Cd) and
(M1−d, C1−d) as correct message/encryption pairs when c 6= d - (M1−d, C1−d) should be chosen
randomly as in SIMATTEMPT1. This implies that when simulating s = 1 the value of d is fixed
from the round where (M1−d, C1−d) is communicated. This is why the d (or equivalently c) bit from
failed attempts cannot be used for communicating a message bit - they cannot later be patched to
new values consistent with the bit communicated in the ideal evaluation.
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on c = d = b. We then have:

Lemma 1 The distribution of SIMATTEMPT1 is equal to the distribution of ATTEMPT1.
The distribution of PATCHb is computationally indistinguishable from the distribu-
tion of ATTEMPTb

0 for b = 0, 1 in particular PATCH is computationally indistin-
guishable from ATTEMPT0

Proof: Obviously SIMATTEMPT1 = ATTEMPT1 by inspection of Figs. 1 and 2.
For s = 0 let b denote the common value of c and d and observe that Pr[b = 0] =
Pr[b = 1] = 1

2
in both PATCH and ATTEMPT0. It is therefore enough to show that

the distributions of PATCHb and ATTEMPTb
0 are computationally indistinguishable

for b = 0, 1. For fixed b the variables c, d, and s are constants and has the same
values in the two distributions, so we can exclude them from the analysis. Further
more (rc, Pc, Mc, ec, Cc), Sc can be seen to have the same distribution in the two
distributions and is independent of (r1−c, P1−c, M1−c, e1−c, C1−c), so all that remains
is to show that these (1−c)-values are distributed computationally indistinguishable
in ATTEMPTb

0 and PATCHb. In ATTEMPTb
0 these values are distributed as

(r̃ ← RK̃, P̃ ← K̃(r̃), M ←MP̃ , e←RC, C ← CP̃ (e)) (1)

and in PATCHb they are distributed as

(r′, P, M ←MP , e′, C ← EP (M, e)) (2)

where r ← RK, (P, S) ← K(r), r′ ← K̃−1(P ) and e ← RE , e′ ← C−1(C.P ).
That these distributions are computationally indistinguishable follows by a hybrids
argument, going from (1) to (2) using (in this order) the oblivious key property, the
oblivious cipher-text property, and finally the semantic security property. For more
details see lemma 3 in appendix C �

4.2 The full protocol

The ability to patch a successful attempt to any value b of c and d provides enough
that we can build a simulator for protocols that use the attempt building block
1 and which only uses bits obtained from successful attempts. To be sure of ob-
taining enough successful attempts one can either run attempts in sequence until
enough successful attempt have occurred or run a number of independent attempts
in parallel.

We will here analyse a protocol where a number of independent attempts are run in
parallel to obtain l(k) successful attempts for some polynomial l(k) ∈ Ω(k). Each
attempt has probability 1

2
of being successful, so it follows directly from the Markov

inequality that a(k) = 4l(k) attempts will give l(k) successful ones except with

probability exp(− l(k)
2

), which is certainly negligible in k. The goal of the protocol

will be to evaluate the 2-party function f(m, Λ) = (Λ, m), where m ∈ Bl(k) We do
this by making 4l(k) attempts in parallel, letting b be the string of c-values from

10



the first l(k) successful attempts, and finally communicate m by sending f = m⊕ b.
In the negligible few cases, where we do not get l(k) successful attempt we can do
whatever, say we fill b with zeros. For a detailed description of the full parallel
protocol see appendix B.

We proceed to generalise lemma 1 to the full setting. Let ATTEMPTl(m) be the ran-
dom variable describing the distribution of values produced by a real-life execution
of the full parallel protocol on input m ∈ Bl(k), i.e. a(k) independent elements from
ATTEMPT, the b and the f values. Let SIMATTEMPTl be the values produced
by drawing a(k) independent elements from SIMATTEMPT and drawing f ← Bl(k)

uniformly at random. Recall that the value of b is not specified yet since the values
of c and d in SIMATTEMPT0 are not fixed until patching. Let for m ∈ Bl and
an element S ∈ SIMATTEMPTl the random variable PATCHl(S, m) be S extended
with b← m⊗ f , where further more the l first successful attempts in S are patched
using b6. The remaining successful attempts are patched with uniformly random
bits. Since f is uniformly random so are b = f ⊕ m. Therefore all successful at-
tempts are patched using uniformly random bits. This will allow us to use Lemma 1.
Let PATCHl(m) be a random variable describing PATCHl(S, m) when S is drawn
randomly from SIMATTEMPTl.

Lemma 2 The distributions PATCHl(m) and ATTEMPTl(m) are computationally
indistinguishable.

Proof: Let A be the event that at least one attempt has s = 0 and c 6= d. The
probability that A occurs in PATCHl is 0 and for A to occur in ATTEMPTl(m) it
must be the case, that D(C) = M in one of the successful attempts, where C and
M are chosen independently and M chosen uniformly. The probability is therefore
certainly less than a

2|M| . Let PATCHl
i(m) and ATTEMPTl

i(m) for i = 0, 1, . . . , a
be the distributions of PATCHl(m) resp. ATTEMPTl(m) under the condition that
exactly i successful attempts occurred. By the computational distance between two
distributions, we mean the maximal advantage with which they can be distinguished
in polynomial time. Let δi be the computational distance between ATTEMPTl

i(m)
and PATCHl

i(m). In both distributions f and b are uniformly random and f =
m ⊕ b. The remaining values occurring in the distributions are those chosen from
ATTEMPT and PATCH. Therefore, by lemma 1 and independence of the attempts
we have that δ0 = 0 and δ1 is negligible. By independence of the attempts we
further more have that δi+1 = δ1 + δi, so δi = iδ1. Assuming that A does not
occur, the probability pi that exactly i successful attempts occur is the same in both
distributions, namely

(
a
i

)
(1

2
)i(1

2
)a−i. The total computationally distance given that A

does not occur is therefore bounded by
∑a

i=1 piδi ≤ 2−aδ1

∑a
i=1 i

(
a
i

)
= 2−aδ1a2a−1 =

a
2
δ1. It then follows by applying the triangle inequality, that the total computational

distance is bounded by a
2
(δ1 + |M|−1), which is certainly negligible in k. �

6We can safely ignore the negligible few case where less than l successful attempts occur.
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4.3 The simulator

The overall strategy of the simulator will consist of three phases. First a pre-processing
phase, where the simulator prepares a set of data to simulate the communication in
an execution of the real life protocol by drawing an element S from SIMATTEMPTl.
This provides values for all communication, but especially leaves the values of c
and d open in the successful attempts. The pre-processing phase is followed by
the oblivious simulation phase, where the simulator simulates a real-life execution by
handing out the appropriate pre-processed communication values to the adversary.
The oblivious simulation phase continues until the first corruption request from the
adversary occurs. After a party Pi (S or R) has been corrupted by the adversary
the patched-simulation phase starts. On corruption the adversary should receive the
random bits used by Pi. To do this we obtain the communicated message m ∈ Bl of
the ideal evaluation, by corrupting Pi in the ideal evaluation and patch S using m
(PATCHl(S, m)). After patching the simulator hands out the appropriate values to
the adversary. Corrupting any party Pi provides the simulator with the message m
of the ideal evaluation and thus with all information of the ideal evaluation. As the
patched values handed to the adversary is computationally indistinguishable from
those of a real life execution by lemma 2 and because they are consistent with the
value m returned by the ideal-evaluation, the simulator can now exactly (or at least
computationally indistinguishably) simulate the remaining uncorrupted party by us-
ing the appropriate pre-processed values as a starting value of variables that are in
play at the time of corruption and simply run the uncorrupted party according to the
full parallel protocol. As the starting values are computationally indistinguishable
from those of a real life execution and all parties including the adversary are polyno-
mially time bounded, so will the result of the simulation be, and the adversary will
eventually return a value computationally indistinguishable from the value it would
have returned after engaging in a real-life execution. Considering an environment
the same reasoning holds. This implies, that the protocol is 2-adaptively secure.

Theorem 1 If simulatable public-key systems exists, then strong non-committing
encryption schemes exists.

5 Implementations

The following theorem provides the first example of a simulatable public-key system.

Theorem 2 The ElGamal public-key system is simulatable under the Decisional
Diffie-Hellman(DDH) assumption.

Proof: See appendix C. �
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5.1 Trapdoor One-Way Permutations

Before presenting the next example of a simulatable public-key system, we define
the concept of a simulatable collection of one-way trapdoor permutations and prove
that the existence of such a collection implies the existence of simulatable public-key
systems.

We first recall the standard definition of collections of trapdoor permutations:

Definition 4 (Collection of one-way trapdoor permutations) The 4-tuple (I, F,G,X )
is a collection of one-way trapdoor permutations with security parameter k, if I is
an infinite index set, F = {fi : Di → Di}i∈I is a set of permutations, the in-
dex/trapdoor generator G and the domain generator X are probabilistic polynomial
time algorithms, and the following hold:

Easy to generate and compute G generates pairs of indices and trapdoors, i.e.
(i, ti) ← G(1k), where i ∈ I ∩Bp(k), for some fixed polynomial p(k). Further-
more, there is a polynomial time algorithm which on input i, x ∈ Di computes
fi(x).

Easy to sample domain X samples elements in the domains of the permutations,
i.e. x← X (i), where x is uniformly random in Di.

Hard to invert For (i, ti)← G(1k), x← X (i) and for any probabilistic polynomial
time algorithm A the probability that A(i, fi(x)) = x is negligible in k.

But easy with trapdoor There is a polynomial time algorithm which on input
i, ti, fi(x) computes x, for all x ∈ Di.

The next definition, of simulatable collections, is built along the lines of the defini-
tion of simulatable public-key systems. It basically defines a collection of one-way
trapdoor permutations where in addition it is easy to generate a permutation f in
the collection without getting to know the trapdoor. For technical reasons, we also
need the property that if an element y was generated by choosing x randomly and
setting y = f(x), one can always claim that y was chosen by sampling the domain of
f directly. This amounts to being able to compute from y and backwards through
the sampling algorithm to find random bits leading to y being sampled. Therefore
we call this invertible sampling.

Invertible sampling is trivial if the domain of f is, for instance, the set of k-bit
strings and sampling is done in the natural way. But it may in general be an extra
requirement which, however, seems to be necessary for any application of the kind
we consider here. It is easy to construct artificial examples without the invertible
sampling property, but all reasonable examples we know of have this property.

Definition 5 (Simulatable collection of one-way trapdoor permutations) Let
(I, F,G,X ) be a collection of one-way trapdoor permutations with security parameter
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k. We say that (I, F,G,X ) is a simulatable collection of one-way trapdoor permutations
with oblivious index generator G̃, index faking algorithm G̃−1, and domain faking algorithm
X−1, if G̃, G̃−1, and X−1 are probabilistic polynomial time algorithms and the fol-
lowing holds:

Oblivious index generation Let r ← RG, (i, ti) ← G(r), r′ ← G̃−1(i) and r̃ ←
RG̃, ĩ ← G̃(r̃). Then the distributions (r′, i) and (r̃, ĩ) are computationally
indistinguishable.

Invertible sampling Let r0 ← RX , x ← X (i, r0), and r1 ← X−1(i, x). Then the
distributions (r0, x) and (r1, x) are computationally indistinguishable.

Given F a simulatable collection of one-way trapdoor permutations one can con-
struct a semantically secure public-key system using the construction in [11] for
building a semanticly secure encryption scheme from a collection of one-way trap-
door permutations. We review the construction here. Let B be a hard-core predicate
of the collection of one-way trapdoor permutations. If no such B is known one can
construct a new simulatable collection of one-way trapdoor permutations following
the construction in [11]. The key generator is set to be K = G, i.e. for (i, ti)← G we
set (P, S) = (i, ti). The message space can be set toM = Bp(k) for any polynomial
p(k) and the cipher-text space for P = i is M×Di, where Di is the domain of fi.
Encryption and decryption is given by Fig. 3. Finally set K̃ = G̃ and K̃−1 = G̃−1.

proc EP (m ∈M) ≡
x← X (P );
c0 ← x;
for i = 1 to |m| do

ci ← fP (ci−1);
bi ← B(ci−1);

od;
p← b1b2 . . . b|m|;
c← m⊕ p;
exit (c, c|m|)

proc DS(c, c|c|) ≡
for i = |c| − 1 to 0 do

ci ← f−1
S (ci+1);

bi+1 ← B(ci);
od;
p← b1b2 . . . b|c|;
m← c⊕ p;
exit m

Figure 3: Encryption and decryption

Theorem 3 Let F = (I, F,G,X ) be a simulatable collection of one-way trapdoor
permutations and let EF = (K, E ,D,M) be the public-key system described above.
Then EF is simulatable.

Proof: Oblivious key generation follows directly. To pick a cipher-text obliviously
for a given key P generate x ← X (P ) and m ← M and let C = (m, x). This will
be distributed exactly as C ← EP (m′) for m′ ← M. To fake a real encryption to
look oblivious we can use X−1. In [11] is is proven that the scheme is semantically
secure. �
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We proceed to construct a simulatable collection of one-way trapdoor permutations
based on RSA. The security will be based on the following assumption 1.

Assumption 1 Let I = {(n, e)|n = pqr, p, q are primes and |p|, |q| ≥ k, |n| = k log k,
and n < e < 2n is a prime}. Here, k is as usual the security parameter. For (n, e) ∈
I let t(n,e) = d where ed = 1 mod φ(n). Let f(n,e) : Z∗

n → Z∗
n, x 7→ xe mod n. Then

F = {fi}i∈I is a collection of one-way trapdoor permutations.

Note that e′ = (e mod φ(n)) ∈ Z∗
φ(n) as e is prime and that F is therefore certainly

a collection of permutations. Secondly the Chinese Remainder theorem implies that
inverting f(n,e) is no easier than inverting the RSA functions over Z∗

pq, where both
factors have Ω(k) bits. Further more for fixed n and random e the value e mod φ(pq)
is random over a large subset of Z∗

φ(pq). The above assumption therefore reduces to
more traditional forms of the RSA assumption.

We now proceed to describe the index and trapdoor generation algorithms G and G̃ of
a simulatable collection by the programs in Fig. 4. The idea is that we set l = log k,
and generate l moduli n1, ..., nl and a public exponent e. The domain for this index
i = (e, n1, . . . , nl) will be Di =

∏l
j=1 Z∗

nj
and the corresponding permutation will

be f(e,n1,... ,nl)(x1, . . . , xl) = (xe
1 mod n1, . . . , xe

l mod nl).

proc G(1k) ≡
e← primes[2k log k, 2k log k+1];
for j = 1 to l do

nj ← [2k log k−1; 2k log k]
with known factorisation;

dj ← e−1 mod φ(nj) od;
i← (e, n1, . . . , nl);
ti ← (d1, . . . , dl);
exit (i, ti)

proc G̃(1k) ≡
e← primes[2k log k, 2k log k+1];
for j = 1 to l do

nj ← [2k log k−1; 2k log k]
with unknown factorisation od;

i← (e, n1, . . . , nl);
exit i

Figure 4: Index and trapdoor generation

A note on the algorithms is necessary. By “nj ← [2k log k−1; 2k log k]; known factori-
sation” we mean, that nj should be picked uniformly random from [2k log k−1; 2k log k]
and that we should obtain its prime factorisation at the same time. In [1] it is shown
how to do this in probabilistic polynomial time - the algorithm obtains a distribu-
tion negligible close to the uniform distribution which suffice for our application.
By “e ← primes[2k log k, 2k log k+1]” we mean that e should be picked uniformly ran-
dom as a prime between 2k log k and 2k log k+1. To fake an index i = (e, n1, . . . , nl)
generated by G let G̃−1(i) return (n1, . . . , nl) and random bits computationally indis-
tinguishable from those used to construct e. This will be distributed computationally
indistinguishable from the random bits used by G̃ to generate the same index. How
to produce random bits computationally indistinguishable from those used to pick
e of course depends on how e is picked. Say we pick e by drawing random numbers
in [2k−1; 2k] until we get a number that test to primality by some probabilistic test.
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We will then have to reconstruct, from e, a distribution similar to the prefix of num-
bers that were not primes. This can trivially be done be drawing random numbers
until a prime is found and use the prefix of non-primes. That the oblivious index
generation property is fulfilled is then obvious.

Since e is relatively prime to all nj our functions are indeed permutations and
are invertible in probabilistic polynomial time using the trapdoor information ti =
(d1, . . . , dl). We pick a uniformly random element x from Di by picking a uniformly
random element xj from each Z∗

nj
. These elements should be chosen in a way that

allows us to construct a domain faking algorithm X−1. One way is to pick uniformly
random elements from Znj

until an element from Z∗
nj

is found. We can then fake

given just the last element - cf. the above discussion of G̃−1. This gives us X−1,
which obviously fulfils the invertible sampling property.

Theorem 4 Under assumption 1, the set SRSA = {fi : Di → Di} is a simulatable
collection of one-way trapdoor functions.

Proof: As described the oblivious index generation property and the invertible
sampling property are evident. Proving one-wayness remains. In [10] the probability
that the i’th largest primefactor of a random number n is larger than nc for a given
constant c is investigated. It is shown to approach a constant as n approaches
infinity. In particular, the probability that the second largest primefactor is smaller
than nc is approximately linear for small c, in fact it is about 2c for c ≤ 0.4. It follows
that the probability that a number of length k log k bits has its second largest prime
factor shorter than k bits is O(1/ log k). Hence the probability that there does not
exist j ∈ {1, . . . , l} such that (nj , e) ∈ I, where I is the index set of assumption 1, is
O(( 1

log k
)log k) and so is negligible. This implies that SRSA is a collection of one-way

trapdoor functions. �

5.2 Doing without Oblivious Index Generation

5.2.1 A problem with a subprotocol from [4] and its solution

In [4] a non-committing encryption scheme was built consisting of two stages. The
first phase is a key generation protocol which is intended to create a situation, were
players S and R share two trapdoor permutations from what is called a common-
domain trapdoor system. Moreover, S knows exactly one of the corresponding
trapdoors, and if S remaines honest in this phase, a simulator is able to make a
simulated computation, where both trapdoors are learned and which can later (in
case S is corrupted) be convincingly patched to look as if either of the trapdoors
were known to S. One immediate consequence is that the adversary must not know
which of the two trapdoors is known to S, before corrupting S.

The key generation requires participation of all n parties of the protocol and proceeds
as follows: Each player Pi chooses at random two permutations (gi

0, g
i
1) and send

these to S. Next S chooses c = 0 or 1 at random, and we execute the oblivious
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transfer (OT) protocol of [9] with Pi as sender using the trapdoors of (gi
0, g

i
1) as

input and S as receiver using c as input, and such that S receives the trapdoor of gi
c.

The OT protocol of [9] has a non-binding property that allows a simulator to learn
both trapdoors when it is playing S’s part and later to claim that either trapdoor
was received.

In the above, there is no guarantee that Pi really uses the trapdoors of (gi
0, g

i
1), as

input to the OT, but, as pointed out in [4] one may assume that the trapdoor of a
permutation consists of all inputs required to generate it so that S can verify what
he receives. Finally, S publishes the subset A of players from whom he got correct
trapdoors, and we define f0 to be the composition of the permutations {gi

0}i∈A in
some canonical order, and similarly for f1. The permutations can be composed
because it is assumed in [4] that they can be constructed to all have the same
domain.

There is, however, a problem in this protocol: if S is still honest, but Pi is corrupt,
the adversary may choose to let Pi use as inputs to the OT a correct trapdoor for
f i

a but garbage for f i
b . Then, when the adversary sees the set A, he can conclude

that c = a if i ∈ A, and c = b otherwise. As we found above, this is a piece of
information that the adversary should not be able to get.

Fortunately, this problem is simple to solve: we require players to also provide a
zero-knowledge proof that they input correct information to the OT. Since this is an
NP statement, this is always possible [9]. This will imply that except with negligible
probability, Pi will have to supply correct trapdoors to both permutations or be
disqualified. Normally, the use of such ZK proofs lead to problems against adaptive
adversaries because of the rewinding needed to simulate the proofs. However, in
this protocol, it happens to be the case that the simulator never needs to ”prove”
a statement for which it doesn’t know a witness, and so rewinding is not needed.
More details on this can be found in Appendix A.

5.2.2 Using the Key Generation in Our Protocol

After fixing the bug above, we do a slight modification of the key generation such
that it can work for any collection of one-way trapdoor permutations with invertible
sampling and we can then use this key-generation phase instead of the first round
of our protocol. We therefore do not need the oblivious index generation property
from definition 5. The modification is as follows:

Having executed all the OT’s, S defines a permutation fc for which he knows the
trapdoor by setting fc(x1, . . . , xl) = (g1

c (x1), . . . , gl
c(xl)), where g1

c , . . . , gl
j are the

permutations received for which he learned the trapdoor in the OT. A permutation
f1−c for which he does not know the trapdoor is constructed similarly from those
permutations received for which he did not learn the trapdoor. He then sends f0, f1

to R. When doing encryption in the standard way based on f0, we will let the
hard-core bit function for f0 be the xor of the hard-core function for the collection
from which the g1

0, ...g
l
0 permutations were chosen. Similarly for f1.
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Note that an adversary will not know the entire trapdoors of f0, f1 (unless all parties
are corrupted), so using the non-committing property of the OT scheme a simulator
can learn all trapdoors and claim that either f0 or f1 is the permutation for which
all trapdoor information is known to S.

This is exactly the scenario that the first round of our protocol described earlier
creates. Thus, from here our communication phase can then be used to complete
the non-committing encryption protocol.

The sketched key-generation phase is secure as long as at least one party is not
corrupted, but in contrary to the approach were simulatable public-key systems are
used all trapdoor information is explicitly present somewhere in the network, so the
protocol is not resilient against an adversary that corrupts all parties.

Theorem 5 If there exists collections of one-way trapdoor functions with invertible
sampling, then non-committing encryption schemes exists.

We note that the OT protocol which we use as an essential tool is itself based on one-
way trapdoor permutations. Moreover, in order for the OT to be non-committing,
the permutations must have invertible sampling. This property is also necessary in
the original key generation protocol from [4], where also a common domain property
was needed, so assuming only invertible sampling is a weaker assumption.
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A A Simulator for Non-committing Encryption

with Corrected Key Generation

We assume in this section that the key generation protocol from [4] is corrected to
include zero-knowledge proofs that correct input is supplied to the OT protocols as
described above. We then use the key generation in stead of the first round in our
attempt protocol. Let g1

c , . . . , gl
c be the permutations that was correctly received

and for which the corresponding trapdoor was received. From these permutations
S defines a new permutation fc, where fc(x

1, . . . , xl) = (g1(x1), . . . , gl(xl)). Let B
be a hard-core predicate for the collection of trapdoor permutations used. Then
B(x1, . . . , xl) =

⊕l
i=1 B(xi) is a hard-core predicate for fc. Let x1, . . . , xl be uni-

formly random and let X(gi, xi, n) = B(xi)B(gi(xi))B((gi)2(xi)) . . .B((gi)n−1(xi))
be the usual pseudo-random string generated from xi. Then the encryption of
m ∈ B∗ under fc using the above hard-core predicate is seen to be ((g1)|m|(x1),
. . . , (gl)|m|(xl)), m ⊕ X(g1, x1, |m|) ⊕ . . . ⊕ X(gl, xl, |m|). Similar for f1−c. After
defining these two permutations we use the original protocol to complete the non-
committing encryption.

For sake of simplicity we will analyse the sequential protocol, where independent
attempts are carried out until a successful attempt occurs. The arguments extends
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directly to the parallel protocol. We sketch how simulation of the sequential pro-
tocol can be done against an adaptive adversary. As before all failed attempts are
simulated completely honestly by following the real-life protocol. To recapture, this
is possible as the result of these attempts are never used later and is therefore inde-
pendent of the input of all parties. In the simulation before each attempt, we draw
a uniformly random bit s to determine whether the attempt should be successful or
not. Obviously, if any of S or R is corrupted during a failed attempt, we can obtain
the message bit m ∈ B of the ideal evaluation and then follow the real-life protocol
from that point. The distribution of the simulation will then be exactly equal to
the real-life execution.

If we reach the successful attempt without S or R being corrupted, we will have to
simulate that attempt too. Recall that the player acting as the receiver in the OT’s
is called S, whereas R is the player that wants to eventually receive a message from
S in a non-committing fashion. Each player Pi acts as sender in an OT protocol.

Now, as long as R, S are still honest, we do as follows

• If Pi is honest at the start of the OT, we choose permutations ”on behalf of Pi”
with known trapdoors and simulate in the obvious way. If some Pi becomes
corrupt, we just give to the adversary the trapdoors we chose (which will be
fine because they do not depend on Pi’s input)

• If Pi is corrupt, we play S’s part, and choose to learn both trapdoors. Since
Pi must prove he’s providing good data, this is guaranteed to either gives us
both trapdoors, or disqualify Pi (except with negligible probability).

If R or S is corrupted, we learn as above the message to be sent by corrupting in
the ideal process, then we patch the simulation created so far to be consistent with
this, using our knowledge of all trapdoors and the non-binding property of the OT
protocol - details can be extracted from the description of patching in the simulation
of the original attempt protocol.

We now simulate the last part of the non-committing encryption in the same way
as described earlier, exploiting that we know all trapdoors.

Note that in simulating the key-generation phase of the successful attempt the only
deviation from the real-life protocol is that both trapdoors are learned by S in the
OTs. If S is later corrupted, the patching of his view to make it look as either trap-
door was learned only requires an application of the invertible sampling algorithm,
so using that all failed attempts are simulated equal to the real-life execution it is
immediate, that until, but not including, the round, where R sends the (M, C) pairs
in the successful attempt, the distribution of the simulation and the distribution
of the real-life protocol is indistinguishable even after a corruption of either party.
I.e. if the simulator learns m before that round it can certainly carry through the
simulation successfully.
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This is an important point to note, so lets restate it differently. An adversary can
only distinguish a simulation from a real-life execution if it does not corrupt S and
R until after the round, where R sends the (M, C) pairs to S.

There might however be a possibility for an adversary to distinguish if R or S
is corrupted in the successful attempt after the (M, C) pairs are send (or post-
corrupted). In the simulation the adversary will see a pair (M, C) as the (1 − c)
pair, where M is random and C is an encryption of M under the permutation f1−c

(we write C = Ef1−c(M), suppressing the random coins)7, but in a real execution
(M1−c, C1−c) are independently chosen cipher- and plaintexts. Intuitively, since in
this the adversary does not know the complete trapdoor of f1−c, he cannot tell the
difference.

To prove this, suppose that there exists a real-life adversary A, an environment Z,
and an input value m, such that simulation and real execution is distinguishable. We
prove that this contradicts the one-wayness of the one-way trapdoor permutations
used in the implementation. Specifically we use the real-life adversary A, the envi-
ronment Z, and the input value m to build a distinguisher D, that will distinguish
the random variables (g, z, y ← Eg(z)) and (g, z, y ← Cg), where g is a random one-
way trapdoor permutation from the collection used in the protocol, z is a random
message, Eg(z) denotes the usual encryption of x under g, and y ← Cg denotes an
obliviously chosen cipher-text (using the invertible sampling property of g.)

As noted above we can without lose of generality assume that the adversary A does
not corrupt S or R until after the (M, C) pairs have been send. We construct D as
follows. Given input g, z, y we run the simulator algorithm, except that we place
the permutation g at random as one of those permutation, for which S will not
learn the corresponding trapdoor - we know the input m to the protocol, so we are
able to do this. I.e., we pretend it was chosen by one of the players Pi as gi

1−c. We
hope, that that party is not corrupted at all. This happens with probability at least
1
n

as g is distributed exactly as the permutations in the real-life execution and the
adversary can corrupt at most n − 1 parties. Now observe that the proof that the
trapdoor of g is input to the OT is executed at a point where S is still honest (i.e.
before the round where R sends the two (M, C) pairs.) Therefore we can simulate
it by honest verifier simulation (which does not require rewinding, nor knowledge of
the trapdoor of g).

If the party, that was given g was not corrupted, then there is some j, such that
g = gj

1−c. Now construct a pair (M1−c, C1−c) by setting M1−c = z and letting C1−c

be the result of encrypting z as described above with the exception, that we use y
as the contribution from g = gj

1−c to the encryption.8 From the description of the

7The following analysis can be extended to consider the random bits using the invertible sam-
pling property.

8We have that y = g|z|(x), z ⊕X(g, x, |z|), where x is some random value from the domain of
g. We can therefore construct a full encryption by xoring the X(gi, xi, |z|) value of the remaining
permutations into z ⊕X(g, x, |z| and including the remaining (gi)|z|(xi) values in the encryption
of z under g.
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encryption algorithm, it follows that C1−c = Ef1−c(M1−c) precisely if y = Eg(z) and
otherwise (M1−c, C1−c) is distributed exactly as (M, C ← Cf1−c) because a uniformly
random string is xored into the encryption. We now place (M1−c, C1−c) in the
simulation as the (1− c) pair send by R. Again this is possible because we know m.

By the assumptions, S and R will remain uncorrupted until we have send (M1−c, C1−c)
and the party holding g will remain totally uncorrupted with non-negligible prob-
ability. If both assumptions hold, we show the view we generated to the adver-
sary and the environment and output whatever it outputs. Now, if the pair is
(M1−c, C1−c) = (M1−c, Ef1−c(M1−c)), then this view is indistinguishable from that
of the simulator (it is only indistinguishable from rather than equal to, because of
the honest verifier simulation of the zero-knowledge proof in the OT). On the other
hand, if (M1−c, C1−c) are independent we get something indistinguishable from the
real view (now only indistinguishable because of the use of invertible sampling for
the OT and the patching of views and for the reason mentioned above). The ad-
versary/environment will therefore distinguish the two views with non-negligible
probability. Thus we have built an efficient algorithm that distinguishes the two
kinds of pairs, contradicting the assumption that f comes from a one-way trapdoor
collection.

B The full Parallel Protocol

The full parallel protocol is described in Fig. 5. The one-time pad is computed from
(c, s) and (d, s) in the following manner. Except for negligible many cases s = c⊕d,
so R can compute c = d ⊗ s. The one-time pad b is then set to be the bitstring
consisting of the l(k) first bits bits ci of c, where si = 0.

C Results

Proof: (of theorem 2) Recall that a public key is a triple (p, g, h), where p is a prime
such that the discrete log problem in Zp is intractable, 〈g〉 = Z∗

p, and h = gx for
some random x which is the private key. Now simply let the oblivious key generator
pick h directly in Z∗

p without learning its discrete log base g and let K̃−1(p, g, h, x) =
(p, g, h). Then the oblivious public-key generation property is trivially fulfilled. A
message x ∈ Z∗

p is encrypted as (gk, xhk), where k is chosen uniformly random in
Zp−1. It is obvious, that a cipher-text can be generated obliviously as (y1, y2), where
y1 and y2 are picked uniformly random and independent from Z∗

p. A “real” message
is thereby trivially fakable. �

In [2] Beaver proposed an encryption protocol based on the property used in the
above proof that one can indistinguishably pick an element with or without learning
its corresponding discrete log. The protocol in [2] is based on the Diffie-Hellman
key-exchange protocol. Two exchanges are carried out in parallel and each party
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S R
m ∈ Bl(k) Λ
a← 4l(k) a← 4l(k)
c← Ba d← Ba

for j = 1 to a do
rj
cj ←RK

rj
1−cj

←RK̃
(P j

cj , S
j
cj)← K(rc)

P j
1−cj

← K̃(r1−c)
od

for j = 1 to a do
ej
dj
←RE

ej
1−dj

←RC
od

P−−−−−→
for j = 1 to a do

M j
dj
←M

P j
dj

M j
1−dj

←M
P j

1−dj

Cj
dj
← E

P j
dj

(M j
dj

, ej
dj

)

Cj
1−dj

← C
P j

1−dj

(ej
1−dj

)

od
M←−−−−−−
C

for j = 1 to a do

sj ←
{

0 if D
Sj

cj
(Cj

cj ) = M j
cj

1 otherwise
od
compute b ∈ Bl(k) from (c, s)
f ← b⊗m

s,f−−−−−−→
compute b ∈ Bl(k) from (d, s)

Λ f ⊗ b

Figure 5: The full parallel protocol.

randomly chooses one of the exchanges to gable. This garbling is detectable by the
parties and in the lines of our proposal they can securely use this bit as a one-time
pad when they make the same choice of exchange to gable. The protocol is proven
to be adaptively secure in the computational setting relative to DDH, though the
model used in [2] is different from the one in [5] in that it e.g. does not consider
an environment. The proof can however easily be extended to fit the definition of
security in [5] following the lines of the proof in Chap. 4.2.

Lemma 3 Let (K, E ,D,M) be a simulatable public-key system. Then the distribu-
tion

(r̃ ← RK̃, P̃ ← K̃(r̃), M ←MP̃ , e←RC, C ← CP̃ (e)) (3)

and the distribution

(r′, P, M ←MP , e′, C ← EP (M, e)) (4)
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where r ← RK, (P, S) ← K(r), r′ ← K̃−1(P ) and e ← RE , e′ ← C−1(C, P ) are
computationally indistinguishable.

Proof: By the oblivious public-key generation property the distributions (r̃ ←
RK̃, P̃ ← K̃(r̃)) and (r′, P ), where r ← KK, (P, S) ← K(r), and r′ ← K̃−1(P )
are computationally indistinguishable. Since the function λ(r, P ) = (r, P, M ←
MP , e ← RC , C ← CP (e)) can be computed in probabilistic polynomial time, by
applying that to the computationally indistinguishable distributions, we get that

(r̃ ← RK̃, P̃ ← K̃(r̃), M ←MP̃ , e←RC, C ← CP̃ (e)) (5)

and

(r′, P, M ←MP , e←RC, C ← CP (e)) (6)

are computationally indistinguishable. Now using the oblivious cipher-text gen-
eration property we have that the distributions (P, e ← RC , C ← CP (e)) and
(P, e′, C ← EP (M1, e), where e← RE , e′ ← C−1(C, P ), and M1 ← M are computa-
tionally indistinguishable. Applying λ(P, e, C) = (r′ ← K̃−1(P ), P, M ←MP , e, C)
we then get that the distributions

(r′, P, M ←MP , e←RC, C ← CP (e)) (7)

and

(r′, P, M ←MP , e′, C ← EP (M1, e)) (8)

are computationally indistinguishable.

Using similar argument and semantic security (8) is computationally indistinguish-
able from (4) which completes the proof. �
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