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CAsL for CafeOBJ Users*

Peter D. Mosses

BRICS & Dept. of Computer Science, Univ. of Aarhus, Denmark

Abstract. CASL is an expressive language for the algebraic specification
of software requirements, design, and architecture. It has been developed
by an open collaborative effort called COFI (Common Framework Ini-
tiative for algebraic specification and development). CASL combines the
best features of many previous main-stream algebraic specification lan-
guages, and it should provide a focus for future research and development
in the use of algebraic techniques, as well facilitating interoperability of
existing and future tools.

This paper presents CASL for users of the CafeOBJ framework, focussing
on the relationship between the two languages. It first considers those
constructs of CafeOBJ that have direct counterparts in CASL, and then
(briefly) those that do not. It also motivates various CASL constructs
that are not provided by CafeOBJ. Finally, it gives a concise overview of
CASL, and illustrates how some CafeOBJ specifications may be expressed
in CASL.

1 Introduction

CASL is an expressive language for the algebraic specification of software require-
ments, design, and architecture. It has been developed by an open collaborative
effort called CoFI (Common Framework Initiative for algebraic specification and
development).

This paper presents CASL for users of the CafeOBJ framework.

> CaAsL is intended as the main language of a coherent family of languages.

Vital for the support for COFI in the algebraic specification community is the
coverage of concepts of many previous specification languages. How could this
be achieved, without creating a complicated monster of a language? And how to
avoid interminable conflicts with those needing a simpler language for use with
prototyping and verification tools?

By providing not merely a single CASL language but a coherent language
family, COFT allows the conflicting demands to be resolved, accommodating
advanced as well as simpler languages. At the same time, this family is given
structure by being organized largely as restrictions and extensions of CASL.

* To appear as Chapter 6 of CAFE: An Industrial-Strength Algebraic Formal Method,
ed. K. Futatsugi, A. T. Nakagawa, and T. Tamai, Elsevier, 2000. All citations should
refer to the published version.



Restrictions of CASL [13,14] correspond closely to languages used with ex-
isting tools for rapid prototyping, verification, term rewriting, etc. Extensions
to CASL are to support various programming paradigms, e.g. object-oriented,
higher-order [11], reactive.

> A specification framework is more than just a language.

Apart from the CASL family of languages, the common framework is also to
provide tool support, development methodologies, training materials, libraries,
reference manuals, formal semantics and proof systems, and conversion to and
from other specification languages.

> CASL is competitive in expressiveness with many previous algebraic specifi-
cation languages.

The choice of concepts and constructs for CASL was a matter of finding a suit-
able balance between advanced and simpler languages, taking into account its
intended applicability: for specifying the functional requirements and design of
conventional software packages as abstract data types.

The design of CASL is based on a critical selection of the concepts and con-
structs found in previous algebraic specification frameworks. The main novelty
of CASL lies in its particular combination of concepts and constructs, rather
than in the latter per se.

> The CASL design has been tentatively approved by IFIP WG 1.3.

The design proposal for CASL [7] was submitted to IFIP Working Group 1.3
(Foundations of System Specification) in May 1997, and tentatively approved at
the IFIP WG 1.3 meeting in Tarquinia, June 1997 (subject to reconsideration of
some particular points [6] and the development of a satisfactory concrete syntax,
both of which have now been completed [8]). The formal semantic description
of CASL has been completed [9]. Tools and methodology for CASL are being
developed.

> COFT is open to contributions and influence from all those working with
algebraic specifications.

The design of CASL has been the main responsibility of the COFI Language
Design task group, coordinated by Bernd Krieg-Briickner. At any time during
the three years it took to design CASL, there were 10-20 active participants in
this task group—most of them with previous experience of designing algebraic
specification frameworks. The work of the COFI task groups on Methodology,
Semantics, and Tools influenced and provided essential feedback to the language
design. Numerous study notes were written on various aspects of language design,
and discussed at working and plenary meetings. The study notes and various



drafts of the design summary were made available electronically, and discussed
on the language design mailing list (cofi-language@brics.dk).

The openness of the CASL design effort should have removed the risk of
bias towards constructs favoured only by some particular ‘school’ of algebraic
specification. It is hoped that CASL incorporates just those features for which
there will be a wide consensus regarding their appropriateness, and that the
common framework will indeed be able to subsume many previous frameworks
and be seen as an attractive basis for future development and research—with
high potential for strong collaboration.

So much for the background of CASL.

> Readers of this paper are assumed to be familiar with the CafeOBJ language
and system.

For an introduction to CafeOBJ, see the CafeOBJ Report [10].

> The aims of CASL are somewhat different from those of CafeOBJ.

From The CafeOBJ Official Home Page! (February 2000):

CafeOBJ is a mnew generation algebraic specification and programming
language. As a direct successor of OBJ, it inherits all its features (flex-
ible mix-fix syntax, powerful typing system with sub-types, and sophis-
ticated module composition system featuring various kinds of imports,
parameterized modules, views for instantiating the parameters, module
expressions, etc.) but it also implements new paradigms such as rewrit-
ing logic and hidden algebra, as well as their combination.

In fact CASL too enjoys flexible mix-fix syntax, a powerful typing system with
sub-types, and a module composition system featuring imports, parameterized
modules, views for instantiating the parameters, module expressions, etc. Many
of these features of CASL were directly inspired by OBJ3, and their inclusion
reflects that they are indeed seen as part of the well-established, main-stream,
traditional algebraic specification practice.

> CASL does not provide direct support for the new paradigms of rewriting
logic and hidden algebra.

The omission of these new paradigms is partly because when CASL was being de-
signed, they were indeed rather new—and are still perhaps not generally regarded
as belonging to the main-stream of algebraic specification—partly because they
were felt to be somewhat too advanced for inclusion in a general-purpose spec-
ification language. The design of CASL reflects the state-of-the-art of the early
1990’s [2], and leaves more recent advances to be incorporated in extensions of

! http://www.caraway.jaist.ac.jp/cafeobj/



CAsL (which are also to provide features oriented towards particular program-
ming paradigms, such as object orientation and concurrency).

As a consequence, CASL is directly comparable only to the equational spec-
ification fragment of CafeOBJ. The design of such a specification language is,
however, still a non-trivial task, and it is quite interesting to compare the design
of CASL with that of equational CafeOBJ.

> CASL specifications need not be executable.

From the CafeOBJ Report [10]:

[Equational specification and programming] is inherited from OBJ [...]
and constitutes the basis of the language, the other features being built
on top of it. As with OBJ, CafeOBJ is executable, which gives an el-
egant declarative way of functional programming, often referred [to] as
algebraic programming.

Executability is an important concern also in the rewriting logic and hidden
algebra paradigms, both for testing specifications and for reasoning about them.

CAsL is intended primarily for expressing requirements and design decisions
during software development. The constructs of CASL have been selected on the
grounds of their expressiveness and semantic simplicity—but without any re-
gard to their executability. Of course, it is important for the authors and readers
of specifications to be able to investigate the consequences of axioms; for CASL
specifications, this may require the use of interactive theorem-provers, in general
(CAsL interfaces to the Isabelle and INKA systems are already available). Nev-
ertheless, automated rapid prototyping of some CASL specifications should still
be possible. Various executable sub-languages of CASL are in any case provided
[12,14].

When requirements are expressed independently of executability concerns,
specifications may gain clarity and keep closer to informal statements of require-
ments. As Amir Pnueli put it in his invited talk at ETAPS’98: “requirement
specifications and programs are two different views that should be checked (and
debugged) against each other”.

With the stated differences of aims, it is only to be expected that there are
some differences between the design of CafeOBJ and that of CASL. The purpose
of this paper is to explain both similarities and differences—addressing primarily
readers who are already familiar with CafeOBJ. Please note that both languages
seem to reflect coherent designs, and that individual design choices cannot be
changed without reconsideration of many other interacting issues, in general.
Thus no critique of the overall CafeOBJ design is implied when some advantages
of particular CASL features are pointed out (or wice versa).

> A proper comparison of the traditional algebraic approach with the new
paradigms incorporated in CafeOBJ is out of the scope of this paper.



Such a comparison would have to take into account many methodological aspects
of software specification and development, including case studies. The focus of
this paper is on presenting CASL and explaining how its language constructs
relate to those of CafeOBJ. The many novel features of CafeOBJ that have no
direct counterpart in CASL are mentioned only very briefly.

Plan

First we consider the intersection of CafeOBJ and CASL: those concepts and
constructs that are common to both languages. For each such CafeOBJ con-
struct, we see how it might be expressed concretely in CASL, and consider any
significant differences in the details. Then we mention the remaining constructs
of CafeOBJ: those that cannot (straightforwardly) be expressed in CASL. Af-
ter that, we list those constructs of CASL that cannot (straightforwardly) be
expressed in CafeOBJ, and motivate their inclusion in CASL. We finish the pre-
sentation of CASL by summarizing its constructs, and by giving a few simple
examples of CASL specifications.

> All the main points in this paper are displayed like this.

The paragraphs following each point provide details and supplementary explana-
tion. To get a quick overview, simply read the main points and skip the interven-
ing text. It is hoped that the display of the main points does not unduly hinder
a continuous reading of the full text. (This style of presentation was inspired by
a book of Alexander [1].)

2 The Common Features: CafeOBJ N CASL

> CafeOBJ and CASL have a large number of features in common.

In this section we consider the intersection of CafeOBJ and CASL: those con-
cepts and constructs that are common to both languages. For each such CafeOBJ
construct, we see how it may be expressed in CASL. Translation between spec-
ifications involving just these constructs could probably be automated without
much difficulty (although to prove that the translation is somehow semantics-
preserving might not be so easy).

The high degree of overlap between the equational fragment of CafeOBJ and
CASL reflects the extent to which their designs have been influenced by previous
main-stream algebraic specification frameworks, of which OBJ3 is a good ex-
ample. Note however that CafeOBJ was designed deliberately as a successor to
OBJ3, whereas the CASL design was intended to be unbiased towards any partic-
ular previous framework (and it is as close to LSL, the Larch Shared Language,
as it is to OBJ3).



Both CafeOBJ and CAsL distinguish between basic and structured specifica-
tions. Let us focus first on their main constructs, deferring the various abbrevi-
atory ‘convenience features’ to the end of the section.

It may be helpful to see some comparable examples straight away. The fol-
lowing simple examples of equational specifications in CafeOBJ are taken from
the CafeOBJ Report [10, pages 18-19] (where they are used to illustrate the
CafeOBJ treatment of partial functions by sort membership predicates):

mod* GRAPH {
[ Node Edge ]

ops (s_) (t_) : Edge -> Node

}

mod! PATH (G :: GRAPH) {
[ Edge < Path ]

op _;_ : 7Path 7Path -> 7Path (assoc)
ops (s_) (t_) : Path -> Node

var E : Edge
var EP : 7Path

ceq (E ; EP) : Path = true

if (EP : Path) and (s EP) == (¢t E) .
ceq s(E ; EP) = s(E) if (E ; EP) : Path .
ceq t(E ; EP) = t(EP) if (E ; EP) : Path .

}

Here is how the same examples could be expressed in CAsL (illustrating its
straightforward treatment of partiality without involving error sorts):

spec GRAPH =
sorts Node, Edge
ops s__,t__: Fdge — Node

spec PATH[GRAPH] = free {
sorts FEdge < Path
op __::__: Path x Path —? Path, assoc;
S_—yt_—: Path — Node
vars F : Edge; EP : Path
. def B :: EPif s EP=1t F
. s(E :: EP) = s(E) if def E :: EP
. t(E :: EP) = t(EP) if def E :: EP }



In fact the semantics is not quite the same: CASL does not allow models
with empty carriers, so neither the empty graph, nor discrete (edge-less) graphs
are models of the specification GRAPH. This discrepancy could be remedied in
various ways, not relevant to the illustrative purpose of these examples.

2.1 Basic Specifications

> Both languages allow declarations and axioms to be interleaved.

Basic specifications consist of declarations and axioms, written in any order such
that symbols are declared before they are used.

> A basic specification determines a signature and a class of models.

Both CafeOBJ and CASL define the semantics of a specification in terms of model
classes (rather than theories). Moreover, both provide so-called institutions for
basic specifications, connecting the notions of declarations, axioms, models, and
satisfaction. Both also provide the means to restrict the models of a specification
to initial models.

Declarations
> Declarations of sorts and subsorts are similar in CafeOBJ and CASL.

The general form of a declaration of one or more sorts, together with subsort
inclusions, is in CafeOBJ:

[ 511 Sln1 < ... < S .- Smnm ]
and in CASL:
sorts S]],...,S]nj <S£7 R sz,---,Smn,,,,<an

Thus a little extra conciseness is obtainable in CafeOBJ (when the same sort is
declared to be a subsort of more than one supersort).

> The interpretation of subsort declarations is slightly different.

CafeOBJ interprets subsort declarations as set inclusions between the corre-
sponding carrier sets. The CASL interpretation is a bit more general, allowing
(1-1) embeddings as well as inclusions. Such embeddings are especially rele-
vant in the context of software design and implementation, where the models
considered are not necessarily term models, since they permit more efficient rep-
resentations to be used for the restricted sets of values in subsorts. For instance,
in models of a CASL specification of numbers with subsorts, the representation
of values in the sort of integers may be different from their embeddings into a



sort of reals or rationals. (Overloaded operations are required to commute with
subsort embeddings, so the satisfaction of formulae such as 2 + 2 = 4 is inde-
pendent of the subsort embeddings involved.) Moreover, the subsort relation in
CASL is in general only a pre-order, rather than a partial order, and it is possible
to declare that different sorts are to be isomorphic.

> Declarations of total operations are similar.

A declaration of an ordinary, total operation (or constant) is in CafeOBJ:
Op 0 : 81 ... 8y => 8

In CasL it is:
OPp 0:8; X...X 8, —§

or just op o : s when the operation is just a constant.

By the way, the non-ASCII mathematical symbols shown in CASL specifica-
tions are a feature of the CASL display format, and CASL specifications have to
be input in ASCII (or ISO Latin-1). For instance, ‘X’ may be input as ‘*’, or
directly in ISO-Latin-1, and ‘—’ is always input as ‘=>’.

> Declarations of partial operations look quite similar, but have different se-
mantics.

CafeOBJ does not directly support partial operations, but rather handles them
indirectly via error sorts and a sort membership predicate. A declaration of a
partial operation is thus written:

op 0 : 81 ... 8, —> 7s

where ‘?s’ is an error sort (implicitly declared as a supersort of s when s is
maximal in a connected component of sorts). An application of the operation
is well-formed provided that the sort of each argument term is in the same
connected component as the declared sort of that argument (as in Membership
Equational Logic). The definedness of the value of a term corresponds to whether
it belongs to a non-error sort, and can be tested (or asserted) using the sort
membership predicate, written ‘T : s’. Equations may (but need not) hold
when the values of the two terms are both error values.

CASL supports partial operations directly, without implicit error sorts (cf. the
example given at the beginning of Sect. 2). A declaration of a partial operation
is written:

Opo:8§ X---X8, —>7s



Note that in CASL, the ‘?’ is part of the notation for declaring the profile (ar-
gument and result sorts) of operations, and ‘?s’ is not even a valid sort name.
Moreover, the result sort is not required to be maximal among the declared sorts.
The definedness of the value of a term is expressed by a special atomic formula,
written ‘def T’. Ordinary equations hold when both terms have equal defined
values, and (always) when both values are undefined.

One noticeable difference between the two treatments of partiality is in the
well-formedness of terms: in CafeOBJ, the check for well-formedness is as if each
sort, were to be replaced by the error supersort of its connected component of
the sort hierarchy; in CASL, the check for well-formedness insists that the sorts
of argument terms are subsorts of the corresponding argument sorts declared for
the operation (the difference disappears when operations in CASL are declared
as taking arguments in maximal supersorts).

Another difference is that in CASL, the undefinedness of any argument in an
application of an operation implies that the result of the application is unde-
fined too; moreover, a predicate never holds when any argument is undefined. In
CafeOBJ, applying an operation to error values may result in a non-error value.
To get the same effect in CASL one would have to declare supersorts and error
values explicitly.

> Also declarations of predicates in CASL and CafeOBJ look similar, but here
too there are some significant differences.

A declaration of a predicate is in CafeOBJ:
pred p : S; ... 8,

and in CASL:
pred p:s; X .- X 8,

Predicates in CafeOBJ are, however, merely syntactic sugar for operations to the
built-in sort Bool. To express that a predicate holds in an axiom (or not) the
value of the application has to be compared to the constant true (or false).
Predicates may also be used in Bool-sorted arguments to ordinary operations.
Note that there is a distinction between the ordinary equality ‘=" and the corre-
sponding predicate ‘==, in that the former is an atomic formula and cannot be
used at all inside terms.

In CasL, predicates are kept separate from operations. An application of
a predicate to argument terms is itself an atomic formula, and does not need
comparing with true or false—in fact in CASL there is no built-in sort of Boolean
values at all (a standard Boolean specification is however available for use if
needed, for instance in sub-languages that do not allow user-declared predicates).

Regarding semantics, the CASL treatment entails that in initial models, pred-
icates fail to hold by default (just like equations), so it is sufficient to specify
only the cases where they are supposed to hold. In CafeOBJ, however, to get
the expected operational semantics and initial model class, it is necessary to



specify also the cases where the result is intended to be false. In fact in the PATH
example given in CafeOBJ at the beginning of Sect. 2, the implicit constraint
that the sort Bool (declared by a built-in specification that is inherited by every
CafeOBJ specification, and used in the representation of sort membership pred-
icates) has only two elements prevents the existence of initial models, making
(most instantiations of) the given specification inconsistent.?

The fundamental reason for this semantic difference is that the values true
and false are treated uniformly by model homomorphisms in CafeOBJ models,
whereas in CASL, homomorphisms preserve only the holding of predicates, not
their non-holding. (The CASL semantics of predicates is equivalent to represent-
ing them as partial operations to a sort constrained to have just a single element,
the definedness of the operation corresponding to the holding of the predicate.)

> Both languages allow overloading.

In CafeOBJ, overloading is allowed provided that signatures are ‘sensible’:

If the same operation name is declared with argument sorts sy, ..., Sp
and result sort s and also with argument sorts sy, ..., sl and result sort
s', then s and s’ are in the same connected component iff for each i, s;

and s, are in the same connected component.

Although this condition appears to be an improvement on several previous con-
ditions proposed for order-sorted signatures, it prohibits declaring the same pred-
icate symbol for unconnected argument sorts (in the same module), e.g. ‘.<=_
for both numbers and strings, since predicates are simply operations of sort
Bool. Moreover, it appears that the implicitly-declared equality predicate ‘_==_
always leads to non-sensible signatures (even when there is only one declared
sort—recalling that error sorts are implicitly declared). A relatively minor fur-
ther point is that constants cannot be overloaded between different connected
components, whereas it could be convenient to use the same symbol for the nil
list in different sorts of lists, for instance. Finally, in connection with structured
specifications, there is the problem that the restriction to sensible signatures
might not be preserved by the structuring operations.

CASL, in contrast, does not impose any restrictions on overloading at all. The
combination of overloading of operations with subsort inclusions between their
argument and result sorts simply entails some implicit axioms, which ensure that
terms have the same value whenever they are identical up to the commuting of
overloaded operations with subsort inclusions. When axioms are well-formed,
their satisfaction is insensitive to overloading resolution. (One might fear that
such a lack of discipline would unduly complicate overloading resolution, but it
can be implemented so that in the case the signature happens to be regular, the

2 Also [10, Example 20] implicitly imports BOOL and exhibits the same problem. A ref-
eree pointed out that one may override the implicit importation of Bool in protecting
mode in such examples by importing it explicitly in extending mode; however, the
consequences of thus allowing ‘junk’ values in Bool in CafeOBJ are unclear.

10



complexity is that same as that in OBJ3, and moreover the slow-down appears
to be insignificant for the non-regular signatures that occur in practice. In any
case, the authors of specifications have the possibility of indicating the intended
sorts when using heavily-overloaded operations.)

Axioms
> Both languages allow equations.

In CafeOBJ equations are written ‘T, = Ty’, except in conditions, where they
are written as applications of the equality predicate: ‘T; == Ty’.

Also CASL has two kinds of equations, but here the difference is with respect
to undefined values. An ordinary equation ‘T; = T%’ is interpreted as asserting
that either both values are both defined and equal, or they are both undefined.
An existential equation ‘T £ Ty asserts that the values are both defined and
equal. The two kinds of equations are actually inter-definable in CASL, but they
are both provided as language constructs, since existential equations are more
appropriate in conditions (one does not usually want coincidental undefinedness
of two terms to have further consequences) and ordinary equations are particu-
larly useful in inductive definitions of partial functions.

> Both languages allow sort membership assertions.

In CafeOBJ sort membership is a predicate, and the assertion that a term T has
sort s is written ‘T : s = true’.
In CASL, a sort membership assertion is an atomic formula, written ‘T € S°.

> Both languages allow conditional formulae.

In CafeOBJ a conditional equation is written ‘ceq T; = To if T’, where T
is a term of sort Bool, and may thus involve not only the equality and subsort
membership predicates but also all the logical connectives that are defined on
Bool.

In CAsL, a conditional equation is a special case of a conditional formula,
which may be written in two ways: ‘F; = Fs’ (not to be confused with the
CafeOBJ notation for rewriting transitions) or ‘Fg if F;’, where the F; are
arbitrary formulae.

2.2 Structured Specifications

Specifications may be structured both by module expressions and by the naming
of (possibly parameterized) specification modules.

o> There are some syntactic differences between CafeOBJ and CASL concerning
module expressions and module bodies.

11



In CafeOBJ, module expressions are used mainly for specifying parameters of
generic specifications and views, whereas in CASL they are also used as the bodies
of named specifications. Moreover, although both languages allow references to
named specifications in module expressions, CafeOBJ does not (according to [10,
Appendix]) allow a reference to a named specification to be replaced by its body,
nor the direct use of a basic specification in a module expression, in contrast to
CASL.

Extensions
> Both languages allow extensions of named specifications.

In CafeOBJ, an extension is always specified by a named module, which refers
to the named modules being extended as imports, along with declarations and
axioms in its body:

The mode m of each import is specified as protecting, extending, or using.
In CAsSL, an extension is itself a module expression ‘SP; then SPs’. The
combination of extension with naming is written:

spec SN ...= SN; and ...and SN,, then ...

No explicit mode for the extension is specified (although one may use annota-
tions, not affecting the algebraic semantics of specifications, to indicate proper-
ties such as the conservativeness of an extension).

> Both languages allow protecting extension of imports.

The strongest importation mode of CafeOBJ, ‘protecting’, allows the expan-
sion to add new sorts, operations, and predicates, but not to add new values to
previous sorts, nor to equate old values. If the semantics of the imported specifi-
cation is loose, however, a ‘protecting’ extension that requires new values, or the
identification of old values, can still have models: namely, those models of the
imported specification that already had such ‘junk’ or ‘confusion’. This mode of
importation corresponds to ordinary extension in CASL: ‘SP; then SP,’ .

> Both languages allow loose and initial semantics.

In CafeOBJ the semantics of a module is specified by the keyword used when
naming it: ‘mod*’ gives loose semantics, ‘mod!’ gives initial semantics.

In CAsL, the initial semantics of a specification is obtained from the default
loose semantics using the specification expression ‘free SP’. When used together
with naming it is written:

spec SN ...= free ...

12



In both CafeOBJ and CASL, it may happen that the loose semantics of a
specification is a non-empty class of models that has no initial model, in which
case its initial semantics is the empty model class.

> Both languages allow free extension.

Free extension in CafeOBJ generalizes initial semantics to the case when the
specification has imports, still being specified by use of the keyword ‘mod!’ when
naming the specification. CafeOBJ takes all models of the extension that are free
extensions of any models of the imports (according to the somewhat informal
semantics given in the CafeOBJ Report [10]).

Also in CasL, free extension is specified by a combination of the constructs
used for expressing initial semantics and extension, being written ‘SP; then free
SPy’. It denotes the class of models of the extension that are free extensions of
their own reducts to SP;.

In both languages, the possibility of combining loose semantics and free ex-
tensions allows specifications whose semantics is partly loose and partly initial
(as with the use of so-called data constraints in Clear).

> Both languages allow union of specifications.

The CafeOBJ construct ‘SP; + SP5’ is called a shared sum, and it is somewhat
different from the union construct ‘SP; and SPj,’ in CASL. In CafeOBJ, a sym-
bol declared by both SP; and SP; is regarded as the same symbol only when it
has a unique origin in some imported module, in general; thus some kind of qual-
ification of symbols by module names may be needed to disambiguate identical
symbols of different origins.

In CAsL, however, all common symbols of SP; and SP, are regarded as iden-
tifying the same entities (cf. union of traits in LSL). In fact the ‘same name, same
thing’ philosophy is quite pervasive in CASL. (This does not prevent overload-
ing, since operation symbols with different profiles are considered to be different
names.)

Clearly, when specifications written by different people are united, there is a
danger of unintentional clashes of names. But in CASL it is straightforward to
hide auxiliary symbols that are introduced purely for internal use, leaving visible
only the symbols that were originally intended to be specified. (N.B. The notion
of hiding here is completely different from that found in the ‘hidden algebra’
approach.) Unintentional clashes of names in the interface of a module need to
be resolved in any case, by renaming. Tools should be able to warn about clashes
that might be unintentional (ignoring symbols that get indirectly imported from
the same origin).

> Both languages allow translation of symbols declared by specifications.

A translation in CafeOBJ is written:

13



SP * { ..., sort s; => S, ..., Op 05 => 02, ... }
and in CASL:
SP with ..., s; — S3,..., 07 — 02, ...

(Keywords such as ‘sort’ and ‘op’ may be inserted here also in CASL, when de-
sired.) Symbols that are to be left unchanged may be omitted in both languages.

Parameters
> Both languages allow parameterized modules.
A module with a parameter in CafeOBJ is written:
mod SN (X; :: my SP;) { ... }
and in CASL:
spec SN [SP;] = ...

In CAsL, the parameter is simply a specification expression (often just a name,
in practice) without any label or mode, simply indicating which part of the
extension of the parameter SP; by the body SP is intended to vary.

> Both languages allow instantiation of parameters with module expressions.

In CafeOBJ an instantiation of parameter X; with a module expression SP» in
a module named SN can be written ‘SN (X; <= view to SP2{SM;})’, where
SM; is a symbol mapping (as in a translation). In simple cases the label X; can
be omitted and the explicit view can be replaced by SPg itself, giving simply
‘SN (SP3)’

In CASL a similar instantiation can be written ‘SN[SPy fit SM;]’, or just
‘SN[SPz] in simple cases.

The semantics of instantiation corresponds to a pushout construction in both
languages.

> Both languages allow views to be named and used in instantiations.

The fitting between a particular parameter specification and argument specifi-
cation may itself be named in CafeOBJ: ‘view VN from SP; to SPz; { SM;
} and VN may then be used instead of the explicit view in instantiations.
Named views are defined similarly in CAsL: ‘view VN from SP; to SP, =
SM;’, whereafter ‘view VN’ may then be used instead of ‘SP» fit SM,’.

> Although both languages allow multiple parameters, their treatment of shared
symbols is different.

14



The basic treatment of multiple parameters in CafeOBJ is non-sharing, where the
same symbol occurring in different parameters is distinguished by the different
labels of the parameters. However, there is also a construct ‘share(SN)’ that
allows unwanted duplication of the module SN (due to importation in different
instantiated parameters) to be avoided.

In contrast, multiple parameters in CASL are regarded as parts of a single
united parameter, thus symbols common to different parameters always share,
and have to be instantiated uniformly. Multiple parameters that are intended to
be independent should therefore always have distinct symbols. Thus to specify
generic pairs with different sorts of components, one should declare the param-
eters as PAIR[sort ElemI|[sort Elem2], rather than as PAIR[sort Elem][sort
Elem).

The CASL ‘same name, same thing’ philosophy eliminates any need for ‘dot
notation’, which is used in CafeOBJ to determine the parameter to which a
symbol is supposed to refer.

2.3 Convenience Features

> Both languages allow attributes in operation declarations.

Both CafeOBJ and CASL provide the attributes of associativity, commutativity,
idempotency, and unit/identity for binary operations.

> Both languages allow simultaneous declarations.

Several operations with the same profiles (and attributes) may be declared to-
gether, abbreviating a sequence of declarations.

> Both languages allow both global and local variable declarations.

Explicit variable declarations are global in CafeOBJ, whereas implicit declara-
tions in terms are presumably local to the rest of the enclosing equation.

Variable declarations in CASL are global, abbreviating universal quantifica-
tion over the declared variables in all the subsequent axioms of the enclosing
basic specification—unless they are followed by a ‘s’; in which case their scope
is restricted to the following e-separated list of axioms.

> Both languages allow mixfix notation.

The usefulness of mixfix notation, generalizing infix, prefix, and postfix notation
to allow arbitrary sequences of fixed tokens and arguments, is so obvious that
the CafeOBJ Report [10] hardly bothers to mention it. The main difference in
CaAsL is that place-holders are written with double underscores (leaving single
underscores available for separating words in identifiers).
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3 The Differences: CafeOBJ \ CasL

The main features of CafeOBJ that are missing from CASL include built-in sup-
port for hidden algebra, behavioural equivalence, and rewriting logic, as well as
indications of import and parameter modes.

3.1 Basic Specifications

> CASL does not allow ‘hidden’ sorts or behavioural operations.

Sort symbols can be hidden in CASL, but the meaning is completely different
from hidden sorts in CafeOBJ: in CASL, the sorts are simply removed from the
declared signature (together with all operations whose profiles involve them).

Similarly, there is no way of distinguishing behavioural operations from other
ones in CASL.

> CASL does not allow hidden and behavioural equivalence.

The CASL methodology is to provide a notion of behavioural refinement between
CaAsL specifications, based on behavioural equivalence [3].

> CASL does not provide built-in transitions.

The carriers in CASL are just sets, rather than (thin) categories, and operations
are not regarded as functors.

3.2 Structured Specifications

> CASL does not allow translation to derived operations.

In CASL one may concisely define the desired operations in terms of the original
ones, and subsequently hide the latter.

> CAsSL does not allow different modes of imports and parameters.

The only mode provided by CASL corresponds to ‘protecting’ in CafeOBJ. For
loose specifications there is not so much difference between the ‘protecting’, ‘ex-
tending’, and ‘using’ modes of CafeOBJ. The effect of the latter two modes for
extending specifications with initial semantics can generally be obtained delaying
the initial semantics until after the extension (although this may require nam-
ing extra loose specifications). The methodological implications of adding new
values, or identifying old ones, in a specification with initial semantics appear to
be not so clear.
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> CASL does not allow parameters to be implicit.

The rule in CASL is that whenever reference is made to a named specification,
fitting arguments have to be provided for all parameters. This should help both
readers and writers of parameterized specifications to keep track of just which
parameters have to be instantiated. Note that in practice, parameter specifica-
tions are often themselves named (or simply the basic specification ‘sort Elem’)
so partial instantiation can still be expressed quite concisely.

> CASL does not allow parameters to be labelled.

The symbols declared by the parameters of a generic specification are used di-
rectly in the body of the specification, without any distinguishing dot-notation.
This is consistent with the CASL treatment of instantiation, where a symbol
declared by more than one parameter has to be instantiated uniformly by each
argument.

3.3 Convenience Features

> CASL does not allow long forms of keywords.

The keywords used in the CASL concrete syntax are mostly quite short, many
of them being abbreviations of English words. Keywords at the beginning of
lists of declarations, etc., can generally be used in either singular or plural form
(without regard to the number of items in the list) but otherwise, each keyword
has a unique spelling.

4 The Differences: CasL \ CafeOBJ

The features of CASL that are missing from CafeOBJ include explicit treatment of
partiality, general first-order axioms, some convenient abbreviations, and several
constructs for structuring specifications and implementations.

Adding some of these features to CafeOBJ (e.g., first-order axioms) would
probably hinder execution of specifications using term rewriting; other constructs
could probably be added without any significant problems.

4.1 Basic Specifications

> CAsL allows sort generation constraints.

A sort generation constraint in CASL is essentially a sentence, but it is specified
by prefixing a group of signature declarations with the keyword ‘generated’.
The effect is not only to eliminate the possibility of ‘junk’ in the carrier of each
declared sort, but also to identify which operations are sufficient basis to generate
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all the values of the sort. This ensures the soundness of structural induction
proofs with cases for the generating operations. In contrast to initiality and
free extension, the values of the generated sorts may later be identified without
violating the constraint.

> (CAsSL allows unrestricted first-order formulae.

CASL provides standard notation for first-order quantifiers and logical connec-
tives, including negation and disjunction. In practice, the majority of specifica-
tions will probably use only positive Horn-clauses, universally quantified over
all variables; such axioms are also known to be theoretically sufficient for spec-
ifying all computable functions. Sometimes, however, the extra expressiveness
of the quantifiers and connectives can be used to achieve significantly greater
conciseness and comprehensibility.

Some readers might here be wondering whether CASL should be called an al-
gebraic specification language at all, since the majority of algebraic specification
languages hitherto have been limited, like CafeOBJ, to equational or positive
conditional axioms, ensuring close connections with fundamental concepts of
universal algebra, and keeping contact with the notion of ‘high-school algebra’.
The traditional focus on initial-algebra semantics of specifications reinforced the
impression that these limitations were somehow essential.

But the term ‘algebraic specification’ has another widely-held interpretation:
simply the specification of (classes of) algebras, regardless of the logic employed
and the properties of the specified classes. This is the main sense in which it is
meant in ‘CASL’.3

Universal quantification in CASL is written VV : S o F. Existential quantifi-
cation is written using 3. The standard logical connectives are written F; A Fa,
F; VvV Fg, F; = Fy (alternatively Fg if F;), F; < Fa, and — F; the atomic
formulae true and false are provided too.

4.2 Structured Specifications

> CAsL allows declared symbols to be hidden.

The hiding of some of the declared symbols in CASL is written:

SP hide SYi, ..., SY,

3 The design and institution-independent semantics of structured specifications in
CASL have a ‘strongly-algebraic flavour’ also in the sense of universal algebra.
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When a sort is hidden in CASL, all the operations whose profiles involve that
sort get hidden too (ensuring that the resulting signature is well-formed).

One may also specify just those symbols that are not to be hidden, i.e., the
symbols to be revealed, using a similar construct.

> CAsL allows specification of architectural structure.

The essential difference between the structure of a specification and a specifica-
tion of model structure is reflected in CASL by providing two kinds of specifica-
tions, called respectively structured and architectural.

Structured specifications allow a large specification to be presented in small,
logically-organized parts, with the pragmatic benefits of comprehensibility and
reusability. In CASL, the use of these constructs has absolutely no consequences
for the structure of models, i.e., of the code that implements the specification.
For instance, one may specify integers as an extension of natural numbers, or
specify both together in a single basic specification; the models of the complete
specification are the same.

It is especially important to bear this in mind in connection with parame-
terized specifications. The definition of a parameterized specification of lists of
arbitrary items, and its instantiation on integers, does not imply that the imple-
mentation has to provide a parameterized program module for generic lists: all
that is required is to provide lists of integers (although the implementor is free
to choose to use a parameterized module, of course). Sannella, Sokotowski, and
Tarlecki [15] provide extensive further discussion of these issues.

In contrast, an architectural specification requires that any model should
consist of a collection of separate component units that can be composed in a
particular way to give a resulting unit. Each component unit is to be implemented
separately, providing a decomposition of the implementation task into separate
subtasks with clear interfaces.

In CAsL, an architectural specification consists of a collection of component
unit specifications, together with a description of how the implemented units
are to be composed. A model of such a specification consists of a model for each
component unit specification, and the described composition. See [4] for further
details, motivation, and examples.

CafeOBJ provides structured specifications, but since it does not support
architectural specifications, there is no way of expressing whether the various
modules are intended to be implemented separately (which might be overly gen-
eral) or together (where the knowledge of the way that they are combined might
be exploited, possibly hindering later reuse of the software in other contexts).

4.3 Convenience Features

In CAsL, the main purpose of providing abbreviations is conciseness and per-
spicuity, which are perhaps even more important qualities for the readers of a
specification than for its writer(s). A secondary purpose is to provide syntactic
support for particular methodologies.
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> CAsL allows definitions of subsorts, operations, and predicates.

A subsort definition is written:
sort S={V:5 « F}

and declares S to be the subsort of S’ consisting of just those values of the
variable V for which the formula F' holds.
A total function definition is written:

op f(Vy:8;..5Ve:8,):8 =T
and a constant definition as:
opc:S =T

CASL also provides similar constructs for defining partial functions and predi-
cates.

> CAsL allows declarations of datatypes with constructors and selectors.

In a practical specification language, it is important to be able to avoid tedious,
repetitive patterns of specification, as these are likely to be carelessly written,
and never read closely. The CASL construct of a datatype declaration collects
together several such cases into a single abbreviatory construct, which in some
respects corresponds to a type definition in STANDARD ML, or to a context-free
grammar production in BNF.

A datatype declaration is written

type S == A;| ... | 4,

It declares the sort S, and lists the alternatives A; for that sort. An alternative
may be a constant ¢, whose declaration is implicit; or it may be a list of sorts,
written sorts Sy, ..., Sy, to be embedded as subsorts; or it may be a ‘construct’
(essentially an indexed product) written f(...; f;:5; ... ), given by a constructor
function f together with its argument sorts .5;, each optionally accompanied by a
selector f;. The declarations of the constructors and selectors, and the assertion
of the expected axioms that relate them to each other, are implicit.

Datatype declarations may be prefixed by ‘generated’ or ‘free’. Both of
these provide the appropriate sort generation constraint, and the latter construct
ensures moreover that the ranges of the constructors are disjoint. In particular,
the free datatype declaration of constants:

free type S = ¢; | ... | ¢y
corresponds to an ordinary enumerated type as found in programming languages
(although no implicit successor function is provided here).

> CASL allows conditional terms.

A conditional term is written ‘T; when F else Ts’, where the condition is a
formula F'. Its use in a term abbreviates a formula of the form:

(F=...T1..)NF=...Ts...)
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It appears that use of such a construct would provide a significant abbre-
viation in specifications following the style of some of those illustrated in the
CafeOBJ Report [10, pp. 153-155].

> CASL allows omission of repeated keywords.

An item of a specification is assumed to be of the same kind as the previous item,
unless an explicit keyword indicates otherwise. For instance, it is sufficient to
write the keyword ‘ops’ just once at the beginning of a list of separate operation
declarations.

> CasL allows display annotations.

CAsL provides a uniform way of influencing the way that (user-declared) symbols
are to be displayed. CASL input syntax for symbols is restricted to ISO Latin-1
characters, but display annotations allow mathematical and other symbols to
appear in the output, potentially enhancing readability.

> CAsL allows local specifications.

A local specification allows declared symbols to be automatically hidden after
use. It is written:

local SP; within SP,

> CASL allows compound identifiers.

CasL allows the use of compound sort identifiers of the form ‘I[...,I;,...] in
generic specifications. For instance, instead of using just List for the sort of
lists, it may be a symbol formed with the sort of items FElem as a component:
List[Elem]. The fitting of the parameter sort Elem to an argument sort affects
this compound sort symbol for lists too, giving distinct symbols such as List[Int],
List[Char] when instantiating lists with integers Int and characters Char, and
thereby avoiding the danger of unintended identifications (and the need for ex-
plicit renaming) when combining such instantiations.

Note that CafeOBJ allows instead the disambiguation of sort names by qual-
ifying them with module expressions that identify their origins.

> CASsL allows libraries of specifications to be named and referenced.

In CasL, libraries of definitions may be named and installed on the Internet. A
library may specify the downloading of named definitions from named libraries,
possibly providing a new local name. Downloading from previous versions of
libraries can be indicated. Local libraries, which have not yet been installed for
global access, are referred to temporarily by their URLs.

The CafeOBJ system also supports libraries, but this feature is external to
the CafeOBJ language (and thus not described in the CafeOBJ report).
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5 Conclusion

Taking into account the different aims and methodologies espoused by the de-
signers of CafeOBJ and CASL, the correspondence between the equational frag-
ments of the two languages is perhaps as close as could reasonably be expected—
especially in view of the intended close relationship between CafeOBJ and OBJ3,
and the COFT requirement for CASL to be unbiased towards any particular previ-
ous framework. Some of the differences could easily be eliminated, e.g., datatype
declarations might be added to CafeOBJ, derived operations might be added
to CASL. Others would require more work, e.g., adding syntactic and semantic
support for rewriting logic to CASL. It appears that some problems with the
representation of predicates in CafeOBJ might be removed by adopting an ap-
proach closer to that adopted for CASL; similarly for overloading, although the
mixing of grouping analysis and overloading resolution in CafeOBJ may make
the implementation of CAsL-style overloading less tractable.
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Appendix: CAsL Overview and Examples

This section gives a concise overview of all the main CASL features, covering
both that are in common with CafeOBJ as well as those that are not.

> Basic specifications in CASL list declarations, definitions, and axioms.

Functions are partial or total, and predicates are allowed. Subsorts are inter-
preted as embeddings. Axioms are first-order formulae built from definedness as-
sertions and both ordinary and existential equations. Sort generation constraints
can be applied to groups of declarations. Datatype declarations are provided for
concise specification of enumerations, unions, and products.

> Structured specifications in CASL allow translation, reduction, union, and
extension of specifications.

Extensions may be required to be conservative and/or free; initiality constraints
are a special case. A simple form of generic specification is provided, together
with instantiation involving parameter-fitting translations that affect compound
identifiers.

D> Architectural specifications in CASL express implementation structure.

The specified software is to be composed from separately-developed, reusable
units with clear interfaces.

> Libraries in CASL provide collections of named specifications.

Downloading involves retrieval of specifications from distributed libraries.
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CafeOBJ Examples in CASL

The following specifications illustrate how one might translate some of the exam-
ples given in the CafeOBJ Report [10] into CASL. See also the examples given at
the beginning of Sect. 2 (Example 12 in [10]) for an illustration of the declaration
of partial operations.

Example 1

mod! BARE-NAT {
[ NzNat Zero < Nat ]

op 0 : -> Zero
op s_ : Nat -> NzNat

}

CASL:

spec BARENAT =
free types
Nat ::= 0 | sort NzNat;
NzNat = s_.(Nat)

Example 23

mod! SIMPLE-NAT {
protecting (BARE-NAT)

op _+_ : Nat Nat -> Nat {comm}

eq s(N:Nat) + M:Nat = s(N+M)
eq N:Nat + 0 = N .

CASL:

spec SIMPLENAT =
BARENAT then
op __+ __: Nat x Nat — Nat, comm
vars M, N : Nat
. S(N)+ M =s(N+ M)
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Example 26
mod* MON* (X :: TRIV) {

op nil : -> Elt

op _;_ : Elt Elt -> Elt {assoc idr: nil}
}
mod* CMON* (Y :: MON) {
op _;_ : Elt Elt -> Elt {comm}
}
CAsL:

spec MON [ sort Elt | =
ops nil : Elt;
__x __: Elt x Elt — Elt, assoc, unit nil

spec CMoON [ MoN [ sort Elt | | =
op __*__: Elt x Elt — FElt, comm

Example 27
mod* MON-POW (POWER :: MON, M :: MON)
{
op _"_ : E1t.M E1t.POWER -> Elt.M

vars m m’ : El1t.M

vars p p’ : E1t.POWER
eqm;m)"p =@ ~p); m ~ p)
eqm ~ (p ; p») m~p); (m "~ p”)

eqm " nil = nil .

CASL:

spec MoNPow [ MoON [ sort Elt ] ] [ MoN [ sort Pow | | =
op 1 _:FEltx Pow— Elt
vars e, e : Elt; p,p’ : Pow
o (exé)Tp=(eTp)*(c1p)
. el (pxp’)=(elTp)x(eTp)
. e T nil = nil
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