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Reasoning about Code Generation

in Two-Level Languages

Zhe Yang∗†

Department of Computer Science, New York University
251 Mercer Street, New York, NY 10012, USA

E-mail: zheyang@cs.nyu.edu

Abstract

We show that two-level languages are not only a good tool for describ-
ing code-generation algorithms, but a good tool for reasoning about them
as well. Indeed, some general properties of two-level languages capture
common proof obligations of code-generation algorithms in the form of
two-level programs.

• To prove that the generated code behaves as desired, we use an
erasure property, which equationally relates the generated code to
an erasure of the original two-level program in the object language,
thereby reducing the two-level proof obligation to a simpler one-level
obligation.

• To prove that the generated code satisfies certain syntactic con-
straints, e.g., that it is in some normal form, we use a type-preservation
property for a refined type system that enforces these constraints.

In addition, to justify concrete implementations of code-generation algo-
rithms in one-level languages, we use a native embedding of a two-level
language into a one-level language.

We present two-level languages with these properties both for a call-by-
name object language and for a call-by-value object language with com-
putational effects. Indeed, it is these properties that guide our language
design in the call-by-value case. We consider two classes of non-trivial ap-
plications: one-pass transformations into continuation-passing style and
type-directed partial evaluation for call-by-name and for call-by-value.

Keywords. Two-level languages, erasure, type preservation, native im-
plementation, partial evaluation.

∗This work was carried out at BRICS (Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation).

†Contact address: BRICS, Dept. of Computer Science, University of Aarhus, Ny
Munkegade, Building 540, DK-8000 Aarhus C, Denmark. Phone: +45 8942 3109. Fax:
+45 8942 3255. Email: zheyang@brics.dk

1



Contents

1 Introduction 4
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 This work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The call-by-name two-level language nPCF2 7
2.1 Syntax and semantics . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Example: the CPS transformation . . . . . . . . . . . . . . . . . 10
2.3 Semantic correctness of the generated code: erasure . . . . . . . 10
2.4 Embedding nPCF2 into a one-level language with a term type . . 12
2.5 Example: call-by-name type-directed partial evaluation . . . . . 15
2.6 Syntactic correctness of the generated code: type preservation . . 17

3 The general framework 19

4 The call-by-value two-level language vPCF2 20
4.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Syntax, semantics, and properties . . . . . . . . . . . . . . . . . . 21
4.3 Example: call-by-value type-directed partial evaluation . . . . . . 24

5 Related work 26
5.1 Two-level formalisms for compiler construction . . . . . . . . . . 27
5.2 Correctness of partial evaluators . . . . . . . . . . . . . . . . . . 28
5.3 Macros and syntactic abstractions . . . . . . . . . . . . . . . . . 29
5.4 Multi-level languages . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusions 31
6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Direction for future work . . . . . . . . . . . . . . . . . . . . . . 33

A Call-by-name CPS translation 34

B Expanded proofs for nPCF2 35
B.1 Type preservation and annotation erasure . . . . . . . . . . . . . 35
B.2 Native embedding . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.3 Call-by-name type-directed partial evaluation . . . . . . . . . . . 43

C Call-by-value two-level language vPCF2: detailed development 45
C.1 Type preservation . . . . . . . . . . . . . . . . . . . . . . . . . . 46
C.2 Determinacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
C.3 Annotation erasure . . . . . . . . . . . . . . . . . . . . . . . . . . 54
C.4 Native implementation . . . . . . . . . . . . . . . . . . . . . . . . 55

C.4.1 A more “realistic” language: 〈v〉PCF2 . . . . . . . . . . . 55
C.4.2 The implementation language: vPCFΛ,st . . . . . . . . . . 57
C.4.3 Native embedding . . . . . . . . . . . . . . . . . . . . . . 58

2



C.5 Call-by-value type-directed partial evaluation . . . . . . . . . . . 66
C.5.1 Semantic correctness . . . . . . . . . . . . . . . . . . . . . 66
C.5.2 Syntactic correctness . . . . . . . . . . . . . . . . . . . . . 67

D Notation and symbols 69

List of Figures

1 Base syntactic constituents . . . . . . . . . . . . . . . . . . . . . 7
2 The two-level call-by-name language nPCF2 . . . . . . . . . . . . 8
3 The one-level call-by-name language nPCF . . . . . . . . . . . . . 9
4 Call-by-value CPS transformation . . . . . . . . . . . . . . . . . . 11
5 Call-by-name type-directed partial evaluation . . . . . . . . . . . 16
6 Inference rules for terms in long βη-normal form . . . . . . . . . 18
7 nPCF2-terms that generate code in long βη-normal form . . . . . 18
8 The type system of vPCF2 . . . . . . . . . . . . . . . . . . . . . . 22
9 The evaluation semantics of vPCF2 . . . . . . . . . . . . . . . . . 23
10 Call-by-value type-directed partial evaluation . . . . . . . . . . . 25
11 vPCF2-terms that generate code in λc-normal form . . . . . . . . 27
12 Inference rules for terms in λc-normal form . . . . . . . . . . . . 27
13 Call-by-name CPS transformation . . . . . . . . . . . . . . . . . 34
14 One-level call-by-value language vPCF . . . . . . . . . . . . . . . 53
15 Changes of 〈v〉PCF2 over vPCF2 . . . . . . . . . . . . . . . . . . . 56
16 ML implementation of vPCFΛ,st-primitives . . . . . . . . . . . . . 58
17 The evaluation semantics of vPCFΛ,st . . . . . . . . . . . . . . . . 59

3



1 Introduction

1.1 Background

Programs that generate code, such as compilers and program transformers, ap-
pear everywhere, but it is often a demanding task to write them, and an even
more demanding task to reason about them. The programmer needs to main-
tain a clear distinction between two languages of different binding times: the
static (compile-time, meta) one in which the code-generation program is writ-
ten, and the dynamic (run-time, object) one in which the generated code is
written. To reason about code-generation programs, one always considers, at
least informally, invariants about the code generated, e.g., that it type checks.

Two-level languages provide intuitive notations for writing code-generation
programs succinctly. They incorporate both static constructs and dynamic con-
structs for modeling the binding-time separation. Their design usually considers
certain semantic aspects of the object languages. For example, the typing safety
of a two-level language states not only that (static) evaluation of well-typed pro-
grams does not go wrong, but also that the generated code is well-typed in the
object language. The semantic benefit, however, often comes at the price of
implementation efficiency and its related correctness proof.
Semantics vs. implementation: Consider, for example, the pure simply
typed λ-calculus as the object language. A possible corresponding two-level
language could have the following syntax.

E ::= x | λx.E | E1 E2 | λx.E | E1@E2

Apart from the standard (static) constructs, there are two dynamic constructs
for building object-level expressions: λx.E for λ-abstractions, and E1@E2 for
applications. As a first approximation, one can think of the type of object
expressions as an algebraic data type

E = VAR of string | LAM of string * E | APP of E * E

where λx.E is shorthand for LAM("x", E), E1@E2 is shorthand for APP(E1,E2),
and an occurrence of λ-bound variable x is shorthand for VAR("x"). For instance,
the term λx.x is represented by LAM("x", VAR "x").

This representation, by itself, does not treat variable binding in the ob-
ject language. For instance, we can write a code transformer that performs
η-expansion as eta , λf.λx.f@x, in the two-level language. Applying this code
transformer to object terms with free occurrences of x exposes the problem that
evaluation could capture names: For instance, evaluating λx.eta x yields the ob-
ject term λx.λx.x@x, which is wrong and not even typable in the simply typed
lambda calculus.

If we are working in a standard, high-level operational semantics that de-
scribes evaluation as symbolic computations on the two-level terms, then the
solution to the name-capturing problem is simple: Dynamic λ-bound vari-
ables, like usual bound variables, should be subject to renaming during a non-
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capturing substitution E{E′/x} (which is used in the evaluation of static appli-
cations). Therefore, in the earlier example, the two-level term λx.(λf.λx.f@x)x
does not evaluate to λx.λx.x@x, but to λx.λy.x@y. This precise issue is referred
to as “hygienic macro expansion” in Kohlbecker’s work [27, 28].

Indeed, the analogy between the dynamic λ-bound variables and the static
λ-bound variables has long been adopted in the traditional, staging view of two-
level languages, which is shaped by the pioneering work of Jones et al. [23,
24, 25]: Serving as an intermediate language of offline partial evaluators, a two-
level language is the staged version of a corresponding one-level language. In this
context, in addition to typing safety, another property, which we call annotation
erasure, is important for showing the correctness of partial evaluators: The
result of two-level evaluation has the same semantics as the unstaged version
of the program. Taking up the earlier example again, we can see that the
unstaged version of λx.(λf.λx.f@x)x, i.e., λx.(λf.λx.f x)x, is β-equivalent to
the generated term λx.λy.x y. In the symbolic framework, it is relatively easy
to establish annotation erasure, at least in a call-by-name, effect-free setting.

For realistic implementations of two-level languages, capture-avoiding sub-
stitution is expensive and undesirable. Indeed, most implementations use some
strategy to generate variables such that they do not conflict with each other.
Unsurprisingly, it is more difficult to reason about these implementations. In
fact, existing work that proved annotation erasure while taking the name gen-
eration into account used denotational-semantics formulations and stayed clear
of operational semantics [12, 16, 36] (see Section 5.2 for detail).
Hand-written two-level programs: In the 1990s, two-level languages started
to be used in expressing code-generation algorithms independently of dedicated
partial evaluators. Such studies propel a second view of two-level languages:
They are simply one-level languages equipped with a code type that represents
object-level terms. This code-type view of two-level languages leads to two
separate tracks of formal studies, again reflecting the tension between semantics
and implementation.

The first track explores the design space of more expressive such languages,
while retaining typing safety. Davies and Pfenning characterized multi-level
languages in terms of temporal logic [10] and of modal logic [11]. Their work
fostered the further development of multi-level languages such as MetaML [37].
In general, this line of work employs high-level operational semantics, in partic-
ular capture-free substitution, to facilitate a more conceptual analysis of design
choices.

The second track uses the staging intuitions of two-level languages as a
guide for finding new, higher-order code-generation algorithms; for the sake of
efficiency, the algorithms are then implemented in existing (one-level) functional
languages, using algebraic data types to encode the code types and generating
names explicitly. As an example, Danvy and Filinski have used an informal
two-level language to specify a one-pass CPS transformation that generates
no administrative redexes [7], which is an optimization of Plotkin’s original
CPS transformation [45]. Similarly, a study of binding-time coercions by two-
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level eta-expansion has led Danvy to discover type-directed partial evaluation
(TDPE), an efficient way to embed a partial evaluator into a pre-existing eval-
uator [5]. The proofs of correctness in both applications, as in the case of
annotation erasure, stayed clear of two-level languages.

The case of TDPE deserves some interest of its own: Filinski formalized
TDPE as a normalization process for terms in an unconventional two-level
language, where the binding-time separation does not apply to all program
constructs, but to only constants.1 Using denotational semantics, he charac-
terized the native implementability of TDPE in a conventional functional lan-
guage [12, 13]. On the other hand, the intuitive connection between TDPE and
conventional two-level languages has not been formalized.

1.2 This work

Our thesis is that (1) we can formally connect the high-level operational seman-
tics and the efficient, substitution-free implementation, and by doing so (2) we
can both reason about code-generation algorithms directly in two-level languages
and have their efficient and provably correct implementations.

First, to support high-level reasoning, we equip the two-level language, say
L2, with a high-level operational semantics, which, in particular, embodies
capture-avoiding substitution that takes dynamic λ-bound variables into ac-
count. We use the semantics to give simple, syntactic proofs of general prop-
erties such as annotation erasure, which reflects the staging view, and type
preservation, which reflects the code-type view. In turn, we use these proper-
ties to prove semantic correctness of the generated code (i.e., it satisfies certain
extensional properties) and syntactic correctness of the generated code (i.e., it
satisfies certain intensional, syntactic constraints).

Next, to implement L2-programs efficiently in a conventional one-level lan-
guage (e.g., ML), we show a native embedding of L2 into the implementation
language. This native embedding provides efficient substitution-free implemen-
tation for the high-level semantics.

Overview of the paper The remainder of this paper fleshes out the pre-
ceding ideas with two instances of the framework. The first is a canonical two-
level language nPCF2 for a call-by-name object language (call-by-name “PCF of
two-level languages”, following Moggi [36]). The second, designed from scratch
while taking the aforementioned properties (in particular, annotation erasure
and native implementability) into account, is a more practically relevant two-
level language vPCF2: one with an instance of Moggi’s call-by-value computa-
tional λ-calculus as its object language.

In Section 2 we present nPCF2 together with its related one-level language
nPCF, prove its properties, and apply them to the example of CPS transforma-
tions and call-by-name TDPE. From this study we abstract out, in Section 3,

1Without constants, the call-by-name version of TDPE coincides with Berger and Schwicht-
enberg’s notion of normalization by evaluation [2].
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our general framework, in particular the desired properties and the correspond-
ing proof obligations they support. With this framework in mind, in Section 4
we design vPCF2, prove its properties, and apply them to the example of call-by-
value TDPE. We present the related work in Section 5 and conclude this partn
Section 6. The detailed proofs and development are given in the appendices.

Notational conventions: Because we consider several different languages,
we write L ` J to assert a judgment J in the language L, or we write simply
J when L is clear from the context. We write ≡ for strict syntactic equality,
and ∼α for equality up to α-conversion. Operations (syntactic translations)
defined on types τ , say {|τ |}, are homomorphically extended to apply to contexts:
{|x1 : τ1, . . . , xn : τn|} ≡ x1 : {|τ1|}, . . . , xn : {|τn|}. A type-preserving translation
{|−|} of terms-in-contexts in language L1 into ones in language L2 is declared
in the form L1 ` ∆ � E : σ =⇒ L2 ` {|∆|} � {|E|} : {|σ|} . Meta-variables τ ,
σ, Γ, and ∆ respectively range over two-level types, one-level types, two-level
contexts, and one-level contexts.

2 The call-by-name two-level language nPCF2

We present a canonical call-by-name (CBN) two-level language nPCF2 (Sec-
tion 2.1), cast the example of a one-pass CPS transformation as an nPCF2

program (Section 2.2), and use an erasure argument to prove its correctness
(Section 2.3). Building on a native embedding of nPCF2 into a conventional
language (Section 2.4), we formulate CBN TDPE in nPCF2 and show its se-
mantic correctness as well as its syntactic correctness (Sections 2.5 and 2.6).

2.1 Syntax and semantics

Base types b ∈ B: bool (boolean type), int (integer type)
Literals `: L(bool) = {tt, ff}, L(int) = {. . . ,−1, 0, 1, . . .}
Binary operators ⊗: +,− : int × int → int,

=, <: int × int → bool

Figure 1: Base syntactic constituents

For the various languages in this article, we fix a set of base syntactic con-
stituents (Figure 1). Figure 2 shows the type system (Γ � E : τ) and the
evaluation semantics (E ⇓ V ) of nPCF2 over a signature of typed constants
d : σ in the object language. For example, for the conditional construct, we can
have a family of object-level constants ifσ : bool → σ → σ in Sg.

In addition to the conventional CBN static part,2 the language nPCF2 has
2We omit product types but it is straightforward to add them and will not affect the results

below.
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a. The object-level signature Sg is a set of (uninterpreted) typed constants
d : σ in the object language.

b. Syntax
Types τ ::= b | ©σ | τ1 → τ2 (two-level types)

σ ::= b | σ1 → σ2 (object-code types)
Contexts Γ ::= · | Γ, x : τ

Raw terms E ::= ` | x | λx.E | E1 E2 | fixE | if E1 E2 E3

| E1 ⊗ E2 | $bE | d | λx.E | E1@E2

Typing Judgment nPCF2 ` Γ � E : τ

(Static)
[lit]

` ∈ L(b)
Γ � ` : b

[var ]
x: τ ∈ Γ
Γ � x : τ

[lam]
Γ, x: τ1 � E : τ2

Γ � λx.E : τ1 → τ2
[app]

Γ � E1 : τ2 → τ Γ � E2 : τ2

Γ � E1 E2 : τ

[fix]
Γ � E : τ → τ

Γ � fixE : τ
[if ]

Γ � E1 : bool Γ � E2 : τ Γ � E3 : τ

Γ � if E1 E2 E3 : τ

[bop]
Γ � E1 : b1 Γ � E2 : b2

Γ � E1 ⊗ E2 : b
(⊗ : b1 × b2 → b)

(Dynamic)
[lift]

Γ � E : b

Γ � $bE : ©b
[cst]

Sg(d) = σ

Γ � d : ©σ

[lam]
Γ, x:©σ1 � E : ©σ2

Γ � λx.E : ©(σ1 → σ2)
[app]

Γ � E1 : ©(σ2 → σ) Γ � E2 : ©σ2

Γ � E1@E2 : ©σ

c. Evaluation Semantics nPCF2 ` E ⇓ V

Values V ::= ` | λx.E | O
O ::= $b` | x | λx.O | O1@O2 | d

(Static)
[lit]

` ⇓ `
[lam]

λx.E ⇓ λx.E
[app]

E1 ⇓ λx.E′ E′{E2/x} ⇓ V

E1 E2 ⇓ V

[fix ]
E(fixE) ⇓ V

fixE ⇓ V
[if-tt]

E1 ⇓ tt E2 ⇓ V

if E1 E2 E3 ⇓ V
[if-ff]

E1 ⇓ ff E3 ⇓ V

if E1 E2 E3 ⇓ V

[⊗]
E1 ⇓ V1 E2 ⇓ V2

E1 ⊗ E2 ⇓ V
(V1 ⊗ V2 = V )

(Dynamic)
[lift]

E ⇓ `

$bE ⇓ $b`
[var]

x ⇓ x
[cst]

d ⇓ d

[lam]
E ⇓ O

λx.E ⇓ λx.O [app]
E1 ⇓ O1 E2 ⇓ O2

E1@E2 ⇓ O1@O2

Figure 2: The two-level call-by-name language nPCF2
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Types σ ::= b | σ1 → σ2

Raw terms E ::= ` | x | λx.E | E1 E2 | d
| fixE | if E1 E2 E3 | E1 ⊗ E2

Contexts ∆ ::= · | ∆, x : σ

Typing Judgment nPCF ` ∆ � E : σ

The static part of nPCF2 plus: [cst]
Sg(d) = σ

∆ � d : σ

Equational Rules nPCF ` ∆ � E1 = E2 : σ

The congruence rules, [β], [η], and equations for fix, if , and binary operators
⊗. (omitted)

Figure 3: The one-level call-by-name language nPCF

a family of code types ©σ, indexed by the types σ of the represented object
terms, and their associated constructors, which we call the dynamic constructs.
For example, in the base case, dynamic constants d : ©σ represent the cor-
responding constants d : σ in the object language; static values of base types
b, called the literals, can be “lifted” into the code types ©b with $b, so that
the result of static evaluation can appear in the generated code. The dynamic
constructs are akin to data constructors of the familiar algebraic types, but with
the notable exception that the dynamic λ-abstraction is a binding operator: As
mentioned in the introduction, the variables introduced are, like usual bound
variables, subject to renaming during a non-capturing substitution E{E′/x}
(which is used in the evaluation of static applications).

The evaluation judgment of the form E ⇓ V reads that evaluation of the
term E leads to a value V . Evaluation is deterministic modulo α-conversion:
If E ⇓ V1 and E ⇓ V2 then V1 ∼α V2. A value can be a usual static value
(literal or λ-abstraction) or a code-typed value O. Code-typed values are in
1-1 correspondence with raw λ-terms in the object language by erasing their
annotations (erasure will be made precise in Section 2.3).

Because evaluation proceeds under dynamic λ-abstractions, intermediate re-
sults produced during the evaluation can contain free dynamic variables [37].
Properties about the evaluation, therefore, are usually stated on terms which are
closed on static variables, but not necessarily dynamic variables. For example,
a standard property of evaluation in two-level languages is type preservation for
statically closed terms.

Theorem 2.1 (Type preservation). If ©∆�E : τ and E ⇓ V , then ©∆�V :
τ . (©∆ is the element-wise application of the ©(−) constructor to the context
∆.)

The proof, as most proofs for this part, can be found in the appendices.
As a consequence of this theorem, if ©∆�E : ©σ holds, then E ⇓ V implies

9



that V is of the form O.
Figure 3 shows the corresponding one-level language nPCF. The language

includes not only the constructs of the object language, but also the static
constructs of nPCF2. Though the static constructs will not appear in the gen-
erated code, they are needed to specify and prove the semantic correctness of
the generated code.

The equational theory of nPCF is standard for CBN languages. We only
note that there are no equational rules for the constants d in the object lan-
guage, thereby leaving them uninterpreted. That is, any interpretation of these
constants is a a model of nPCF.

2.2 Example: the CPS transformation

Our first example is the typed versions of two transformations of the pure, sim-
ply typed, call-by-value λ-calculus (Figure 4a) into continuation-passing style
(CPS).3 The typed formulation [32] of Plotkin’s original transformation [45]
maps a term E directly into a one-level term {|E|}pκ (Figure 4b), but it gener-
ates a lot of administrative redexes—roughly all the bindings named k introduce
an extra redex—and to remove these redexes requires a separate pass. Danvy
and Filinski’s one-pass CPS transformation instead maps the term into a two-
level program {|E|}dfκ (Figure 4c); evaluating {|E|}dfκ produces the resulting CPS
term. The potential administrative redexes are annotated as static, and thus
are reduced during the evaluation of {|E|}dfκ. Intuitively, the one-pass transfor-
mation is derived by staging the program {|E|}pκ [7].

By the definition of the translation, the two-level program {|E|}dfκ does not
use the fixed-point operator. We can prove that the evaluation of such a term
always terminates using a standard logical-relation argument (note that, with
respect to the termination property, the code type behaves the same as a usual
base type like int).4 The question is how to ensure that the resulting term has
the same behavior as the output of Plotkin’s original transformation, {|E|}pκ. An
intuitive argument is that erasing the annotations in {|E|}dfκ produces a term
which is βη-equivalent to {|E|}pκ.

2.3 Semantic correctness of the generated code: erasure

The notion of annotation erasure formalizes the intuitive idea of erasing all the
binding-time annotations, relates nPCF2 to nPCF, and supports the general view
of two-level programs as staged version of one-level programs.

Definition 2.2 (Erasure). The (annotation) erasure of a nPCF2-phrase is the
nPCF-phrase given as follows.
Types: | © σ| = σ, |b| = b, |τ1 → τ2| = |τ1| → |τ2|.

3The call-by-name CPS transformation is studied in Appendix A.
4Less directly, we can also use the embedding translation introduced in Section 2.4 and its

associated correctness theorem: The embedding of a term without fixed-point operators does
not use the fixed-point operator either, and thus its evaluation terminates in the standard
operational semantics.
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a. Source syntax: the pure simply typed λ-calculus vΛ
Types σ ::= b | σ1 → σ2

Raw terms E ::= x | λx.E | E1 E2

Typing judgment vΛ ` ∆ � E : σ (omitted)

b. Plotkin’s original transformation:

vΛ ` ∆ � E : σ ⇒ nPCF ` {|∆|}pκ � {|E|}pκ : K{|σ|}pκ .

Here, Kσ = (σ → Ans) → Ans for an answer type Ans.
Types: {|b|}pκ = b,

{|σ1 → σ2|}pκ = {|σ1|}pκ → K{|σ2|}pκ,
Terms: {|x|}pκ = λk.k x,

{|λx.E|}pκ = λk.k λx.{|E|}pκ,
{|E1 E2|}pκ = λk.{|E1|}pκλr1.{|E2|}pκλr2.r1 r2 k.

c. Danvy and Filinski’s one-pass transformation:

vΛ ` ∆ � E : σ =⇒ nPCF2 ` ©{|∆|}pκ � {|E|}df2κ : K©(©{|σ|}pκ) .

Here, K©τ = (τ →©Ans) →©Ans.
Terms:

{|x|}df2κ = λk.k x,
{|λx.E|}df2κ = λk.k λx.λk′.{|E|}df2κλm.k′@m,
{|E1 E2|}df2κ = λk.{|E1|}df2κλr1.{|E2|}df2κλr2.r1@r2@λa.k a.

The complete translation

=⇒ nPCF2 ` ©{|∆|}pκ � {|E|}dfκ : ©(K{|σ|}pκ) .

{|E|}dfκ = λk.{|E|}df2κλm.k@m

Figure 4: Call-by-value CPS transformation
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Terms: |x| = x, |$bE| = E, |d| = d, |λx.E| = λx.|E|,
|E1@E2| = |E1| |E2|.

Erasure of the static term constructs is homomorphic (e.g., |fixE| = fix |E|,
|λx.E| = λx.|E|). If nPCF2 ` Γ � E : τ , then nPCF ` |Γ| � |E| : |τ |. Finally,
the object-level term represented by a code-typed value O is its erasure |O|.

The following theorem states that evaluation of two-level terms in nPCF2

respects the nPCF-equality under erasure.

Theorem 2.3 (Annotation erasure). If nPCF2 ` ©∆ � E : τ and nPCF2 `
E ⇓ V , then nPCF ` ∆ � |E| = |V | : |τ |.
Proof. By induction on E ⇓ V .

With Theorem 2.3, in order to show certain extensional properties of gener-
ated programs, it suffices to show them for the erasure of the original two-level
program. As an example, we check the semantic correctness of the one-pass
CPS transformation with respect to Plotkin’s transformation.

Proposition 2.4 (Correctness of one-pass CPS). If vΛ ` ∆ � E : σ and
nPCF2 ` {|E|}dfκ ⇓ O then nPCF ` {|∆|}pκ � |O| = {|E|}pκ : K{|σ|}pκ.

Proof. A simple induction on E establishes that nPCF ` {|∆|}pκ � |{|E|}df2κ| =
{|E|}pκ : K{|σ|}pκ, which has the immediate corollary that nPCF ` {|∆|}pκ �

|{|E|}dfκ| = {|E|}pκ : K{|σ|}pκ. We then apply Theorem 2.3.

The proof of Proposition 2.4 embodies the basic pattern to establish seman-
tic correctness based on annotation erasure. Although we are only interested
in the extensional property of the generated code (which, we shall recall, is the
erasure of the code-typed value O resulted from the evaluation), we need to re-
cursively establish extensional properties (e.g., equal to specific one-level terms)
for the erasures of all the sub-terms. Most of these sub-terms have higher types
and do not generate code by themselves; for these subterms, Theorem 2.3 does
not give any readily usable result about the semantics of code generation, since
the theorem applies only to terms of code types. But since erasure is composi-
tional, the extension of the sub-terms’ erasures builds up to that of the complete
program’s erasure, for which Theorem 2.3 could deliver the result. It is worth
noting the similarity between this process and the process of a proof based on
a logical-relation argument.

2.4 Embedding nPCF2 into a one-level language with a
term type

Our goal is also to justify native implementations of code-generation algorithms.
To this end, we want to embed the two-level language nPCF2 in the one-level lan-
guage nPCFΛ, which is nPCF with object-level constants removed, and enriched

12



with an inductive type Λ (the equational theory, correspondingly, is enriched
with the congruence rules for the data constructors):

Λ = VAR of int | LITb of b | CST of const
| LAM of int × Λ | APP of Λ × Λ

The type const provides a representation HdI for constants d—usually the string
type suffices. Type Λ provides a representation for raw λ-terms whose variable
names are of the form vi for all natural numbers i: A value V of type Λ encodes
the raw term D(V ):

D(VAR(i)) = vi, D(LITb(`)) = `, D(CST(HdI)) = d
D(LAM(i, e)) = λvi.D(e), D(APP(e1, e2)) = D(e1)D(e2)

The language nPCFΛ has a standard, domain-theoretical CBN denotational
semantics [34],5 which interprets the types as follows:

[[int]] = Z⊥, [[bool]] = B⊥, [[Λ]] = E⊥, [[σ1 → σ2]] = [[σ1]] → [[σ2]]

where Z, B and E are respectively the set of integers, the set of booleans, and
the set of raw terms (i.e., the inductive set given as the smallest solution to
the equation X = Z + Z + B + Cst + Z × X + X × X). Without giving the
detailed semantics (which can be found in Appendix B), we remark that (1)
the equational theory is sound with respect to the denotational semantics: If
nPCFΛ ` ∆ � E1 = E2 : σ, then [[E1]] = [[E2]], and (2) the evaluation func-
tion for closed terms of base types induced from the denotational semantics has
(by its computational adequacy with respect to a environment-based (i.e., not
substitution-based) call-by-name evaluation semantics where evaluation of the
data constructors are strict; the proof of adequacy adapts the standard proof
[46]) efficient implementations that do not perform capture-avoiding substitu-
tions.

Definition 2.5 (Embedding of nPCF2 into nPCFΛ: {|−|}nε).
Types : {|©σ|}nε = int → Λ, {|b|}nε = b,

{|τ1 → τ2|}nε = {|τ1|}nε → {|τ2|}nε

Terms : {|$bE|}nε = $nε
b {|E|}nε, {|d|}nε = λi.CST(HdI),

{|λx.E|}nε = λnελx.{|E|}nε,
{|E1@E2|}nε = @nε{|E1|}nε{|E2|}nε

where we use the following terms:
$nε

b ≡ λl.λi.LITb(l),
λnε ≡ λf.λi.LAM(i, f(λi′.VAR(i))(i + 1)),
@nε ≡ λm.λn.λi.APP(mi, ni).

Static constructs are translated homomorphically.
5This is different from a lazy CBN semantics [54], which models Haskell-like languages

where higher-order types are observable; there, function spaces are lifted, and the η-rule does
not hold.
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The three terms used in the embedding translation are nPCFΛ-terms them-
selves, and are kept as-is in the result of the translation. For instance, {|f@x|}nε is
the term @nεfx ≡ (λm.λn.λi.APP(mi, ni))fx, not the simplified term λi.fi, xi.
This is crucial for the validity of the following substitution lemma (Lemma 2.6);
moreover, this also models the actual implementation, where the dynamic con-
structs are provided as combinators in the implementation language nPCFΛ.

The translation uses a de Bruijn-level encoding for generating variable bind-
ings. Furthermore, a dynamic λ-abstraction is translated using a static λ-
abstraction6 and thus the two terms have the same binding behavior—a fact
reflected in the following substitution lemma.

Lemma 2.6 (Substitution lemma for {|−|}nε). If nPCF2 ` Γ, x : τ ′ � E : τ
and nPCF2 ` Γ � E′ : τ ′, then {|E{E′/x}|}nε ∼α {|E|}nε{{|E′|}nε/x}.

We shall establish that the embedding translation preserves the behavior of
closed terms of the code type, ©σ in nPCF2 and Λ in nPCFΛ.

Lemma 2.7 (Evaluation preserves translation). If nPCF2 ` ©∆ � E : τ
and nPCF2 ` E ⇓ V , then nPCFΛ ` {|©∆|}nε � {|E|}nε = {|V |}nε : {|τ |}nε.

Proof. By induction on nPCF2 ` E ⇓ V . For E ≡ E1 E2, we use Lemma 2.6.

Lemma 2.8 (Translation of code-typed value). If nPCF2 ` v1:©σ1, . . . , vn:
©σn � O : ©σ, then there is a value t : Λ such that

• nPCFΛ ` � ({|O|}nε(n + 1)){λi.VAR(1)/v1, . . . , λi.VAR(n)/vn} = t : Λ,

• nPCF ` v1 : σ1, . . . , vn : σn � D(t) : σ, and

• |O| ∼α D(t).

Proof. By induction on the size of term O. For the case O ≡ λx.O1, we use
induction hypothesis on the term O1{vn+1/x}.
Lemma 2.9 (Computational adequacy). If nPCF2 ` �E : ©σ, and there
is a nPCFΛ-value t : Λ such that [[{|E|}nε(1)]] = [[t]], then ∃O.E ⇓ O.

Proof. (Sketch) We use a Kripke logical relation between nPCF2-terms and the
standard denotational semantics of nPCFΛ, which relates a term E and the
denotation of {|E|}nε. The definition of the logical relation at the type ©σ
implies the conclusion.

Theorem 2.10 (Correctness of embedding). If nPCF2 ` �E : ©σ, then
the following statements are equivalent.
(a) There is a value O : ©σ such that nPCF2 ` E ⇓ O.

6This is an instance of higher-order abstract syntax [44]. It might come as a surprise
that we use both higher-order abstract syntax and de Bruijn levels. In fact, they serve two
different but related functions: higher-order abstract syntax makes the object-level capturing-
behavior consistent with the meta-level capturing-behavior, and the de Bruijn levels are used
to generate the concrete names of the object terms.
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(b) There is a value t : Λ such that [[{|E|}nε(1)]] = [[t]].
When these statements hold, we further have that
(c) nPCF ` �D(t) : σ and |O| ∼α D(t).

Proof. (a) ⇒ (b),(c): We combine Lemmas 2.7 and 2.8 to show the existence of
value t : Λ such that (c) holds and nPCFΛ ` � {|E|}nε(1) = t : Λ, which implies
(b) by the soundness of the type theory.

(b) ⇒ (a),(c): By Lemma 2.9, we have (a); by (a) ⇒ (c), we have a value
t′ : Λ that satisfies (c). It is easy to show that t ≡ t′.

The embedding provides a native implementation of nPCF2 in nPCFΛ: Static
constructs are translated to themselves and dynamic constructs can be defined
as functions. Explicit substitution in the operational semantics has been simu-
lated using de Bruijn-style name generation through the translation. The code
generation in the implementation is one-pass, in that code is only generated
once, without further traversal over it, as in a substitution-based implementa-
tion. Furthermore, native embeddings exploit the potentially efficient imple-
mentation of the one-level language, and they also offer users the flexibility
to use extra syntactic constructs in the one-level language—as long as these
constructs are semantically equivalent to terms in the proved part.

2.5 Example: call-by-name type-directed partial evalua-
tion

We now turn to a bigger example: Type-Directed Partial Evaluation (TDPE)
[6]. Following Filinski’s formalization [12], we describe TDPE as a native nor-
malization process for fully dynamic terms (i.e., terms whose types are built
solely from dynamic base types) in the somewhat different two-level language
nPCFtdpe. Here, by a native normalization process, we mean an normalization
algorithm that is implemented through a native embedding from nPCFtdpe into
the implementation language.

The syntax of nPCFtdpe is displayed in Figure 5a. The language nPCFtdpe dif-
fers from nPCF2 in that only base types are binding-time annotated as static (b)
or dynamic (bd, instead of ©b, for clarity), and the language does not have any
dynamic type constructors (like the dynamic function type in nPCF2). Apart
from lifted literals, dynamic constants dd are the only form of term construc-
tion that introduces dynamic types. Their types, written in the form σd, are the
fully dynamic counterpart of the constants’ type σ in the object language: For
example, for the object-level constant eq : int → int → bool, the corresponding
dynamic constant is eqd : intd → intd → boold; consequently, for what we write
eq@($int(1 + 2)) : ©(int→bool) in nPCF2, we write eqd ($int(1 + 2)) : intd→boold

in nPCFtdpe. Let us stress that there is no binding-time annotation for applica-
tions here.

The semantics is described through a standard instantiation7 into the one-
7An instantiation is a homomorphic syntactic translation. It is specified by a substitution

from the base types to types and from constants to terms.
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a. The language of CBN TDPE: nPCFtdpe

Type ϕ ::= b | bd | ϕ1 → ϕ2

Raw terms E ::= x | ` | λx.E | E1 E2 | fixE1

| if E1 E2 E3 | E1 ⊗ E2 | $bE | dd

Typing judgment: nPCFtdpe ` Γ � E : ϕ

Typing rules: same as those of nPCF2, with the dynamic ones replaced by

[cstd]
Sg(d) = σ

Γ � dd : σd
[liftd]

Γ � E : b

Γ � $bE : bd
,

where σd , σ{bd/b : b ∈ B}, i.e., fully dynamic counterpart of the type σ.

b. Standard instantiation (TDPE-erasure)

nPCFtdpe ` Γ � E : ϕ =⇒ nPCF ` |Γ| � |E| : |ϕ|

|bd| = b; |$bE| = |E|, |dd| = d

c. Extraction functions ↓σ and ↑σ:
We write σ© for σ{©b/b : b ∈ B}.




nPCF2 ` �↓σ : σ© →©σ

↓b = λx.x
↓σ1→σ2 = λf.λx.↓σ2(f (↑σ1

x))


nPCF2 ` �↑σ : ©σ → σ©

↑b = λx.x
↑σ1→σ2

= λe.λx.↑σ2
(e@(↓σ1x))

d. Residualizing instantiation

nPCFtdpe ` Γ � E : ϕ ⇒ nPCF2 ` {|Γ|}ri � {|E|}ri : {|ϕ|}ri

{|bd|}ri = ©b; {|$bE|}ri = $b{|E|}ri, {|dd : σd|}ri = ↑σd

e. The static normalization function NF is defined on closed terms E of fully
dynamic types σd:

NF (E : σd) = ↓σ{|E|}ri : ©σ

Figure 5: Call-by-name type-directed partial evaluation

level language nPCF (Figure 5b), which amounts to erasing all the annotations;
thus we overload the notation of erasure here.

Normalizing a closed nPCFtdpe-term E of fully dynamic type σd amounts to
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finding a nPCF-term E′ : σ in long βη-normal form (fully η-expanded terms
with no β-redexes; see Section 2.6 for detail) such that nPCF ` � |E| = E′ : σ.
For example, normalizing the term eqd ($int(1 + 2)) should produce the object
term λx.eq 3x. As in Filinski’s treatment, this notion of normalization leaves
the dynamic constants uninterpreted—E and E′ need to be the same under all
interpretations of constants, since there are no equations for dynamic constants.

The TDPE algorithm, formulated in nPCF2, is shown in Figure 5c-e. It finds
the normal form of a nPCFtdpe-term E : σd by applying a type-indexed extraction
function ↓σ (“reification”) on a particular instantiation, called the residualizing
instantiation {|E|}ri, of term E in the language nPCF2. Being an instantiation,
which maps static constructs to themselves, {|·|}ri makes the TDPE algorithm
natively implementable in nPCFΛ through the embedding {|−|}nε of Section 2.4.
Indeed, the composition of {|−|}ri and the embedding {|−|}nε is essentially the
same as Filinski’s direct formulation in the one-level language.

We first use the erasure argument to show that the result term of TDPE is
semantically correct, i.e., that the term generated by running NF (E) has the
same semantics as the standard instantiation |E| of E.

Lemma 2.11. For all types σ, nPCF ` � |↓σ| = λx.x : σ → σ and nPCF `
� |↑σ| = λx.x : σ → σ.

The lemma captures the intuition of TDPE as two-level η-expansion, as
Danvy stated in his initial presentation of TDPE [5].

Theorem 2.12 (Semantic correctness of TDPE). If nPCFtdpe ` �E : σd

and nPCF2 ` NF (E) ⇓ O, then nPCF ` � |O| = |E| : σ.

Proof. A simple induction on E establishes that nPCF ` � |{|E|}ri| = |E| : σ,
which has the immediate corollary that nPCF ` � |NF (E)| = |E| : σ. We then
apply Theorem 2.3.

2.6 Syntactic correctness of the generated code:
type preservation

Semantic correctness of the generated terms does not give much syntactic guar-
antee of the generated terms, but using the standard type preservation (Theo-
rem 2.1), we can already infer some intensional properties about the output of
TDPE: It does not contain static constructs, and it is typable in nPCF. Fur-
thermore, a quick inspection of the TDPE algorithm reveals that it will never
construct a β-redex in the output—since there is no way to pass a dynamic
λ-abstraction to the ↑ function. Indeed, an ad-hoc native implementation can
be easily refined to express this constraint by changing the term type Λ. To cap-
ture that the output is fully η-expanded by typing, however, appears to require
dependent types for the term representation.8

8On the other hand, through some extra reasoning on the way the two-level program is
written, it is possible to prove that the output is fully η-expanded in such a setting, as done
by Danvy and Rhiger recently [9].
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To show that the output of TDPE is always in long βη-normal form, i.e.,
typable according to the rules in Figure 6 (directly taken from Filinski [12]),
we can take inspiration from the evaluation of nPCF2-terms of type ©σ. Type
preservation shows that evaluating these terms always yields a value of type ©σ,
which corresponds to a well-typed nPCF-term. Similarly, to show that evaluating
NF (E) always yields long βη-terms, we can refine the dynamic typing rules of
nPCF2, so that values of code type correspond to terms in long βη-normal form,
and then we show that (1) evaluation preserves typing in the new type system;
and (2) the term NF (E) is always typable in this new type system.

The two-level language with dynamic typing rules refined according to the
rules for long βη-normal forms is shown in Figure 7. Briefly, we attach the sort
of the judgment, atomic at or normal form nf, with the code type, and add
another code type ©var (−) for variables in the context. This way, evaluation
of static β-redexes will not substitute the wrong sort of syntactic phrase and
introduce ill-formed code. The type system is a refinement of the original type
system in the sense that all the new dynamic typing rules are derivable in the
original system, if we ignore the new “refinement” tags (at, nf, var), and hence
any term typable in the new type system is trivially typable in the original one.

∆ �at E : b

∆ �nf E : b

∆, x : σ1 �nf E : σ2

∆ �nf λx.E : σ1 → σ2

` ∈ L(b)
∆ �at ` : b

Sg(d) = σ

∆ �at d : σ

x: σ ∈ ∆
∆ �at x : σ

∆ �at E1 : σ2 → σ ∆ �nf E2 : σ2

∆ �at E1 E2 : σ

Figure 6: Inference rules for terms in long βη-normal form
Types τ ::= b | ©var (σ) | ©nf (σ) | ©at (σ)
Typing Judgment nPCF2 ` Γ I E : τ

(Static) same as the static rules for nPCF2 ` Γ � E : τ

(Dynamic)
Γ I E : ©at (b)
Γ I E : ©nf (b)

Γ, x : ©var (σ1) I E : ©nf (σ2)
Γ I λx.E : ©nf (σ1 → σ2)

Γ I E : b

Γ I $bE : ©at (b)

Sg(d) = σ

Γ I d : ©at (σ)
Γ I E : ©var (σ)
Γ I E : ©at (σ)

Γ I E1 : ©at (σ2 → σ) Γ I E2 : ©nf (σ2)
Γ I E1@E2 : ©at (σ)

Figure 7: nPCF2-terms that generate code in long βη-normal form

Theorem 2.13 (Refined type preservation). If nPCF2 ` ©var (∆) I E : τ
and nPCF2 ` E ⇓ V , then nPCF2 ` ©var (∆) I V : τ .
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Theorem 2.14 (Normal-form code types). If V is an nPCF2-value (Fig-
ure 2), then
(1) if nPCF2 ` ©var (∆) I V : ©at (σ), then V ≡ O for some O and ∆�at |O| :
σ;
(2) if nPCF2 ` ©var (∆) I V : ©nf (σ), then V ≡ O for some O and ∆�nf |O| :
σ.

For our example, we are left to check that the TDPE algorithm can be typed
with normal-form types in this calculus.

Lemma 2.15. (1) The extraction functions (Figure 5c) have the following
normal-form types (writing σ©nf for σ{©nf (b)/b : b ∈ B}).

I ↓σ : σ©nf →©nf (σ), I ↑σ : ©at (σ) → σ©nf .

(2) If nPCFtdpe ` Γ � E : ϕ, then nPCF2 ` {|Γ|}nf
ri I {|E|}ri : {|ϕ|}nf

ri , where
{|ϕ|}nf

ri = ϕ{©nf (b)/bd : b ∈ B}
Theorem 2.16. If nPCFtdpe ` �E : σd, then nPCF2 `I NF (E) : ©nf (σ).

Corollary 2.17 (Syntactic correctness of TDPE). For nPCFtdpe ` �E :
σd, if nPCF2 ` NF (E) ⇓ V , then V ≡ O for some O and nPCF ` ∆�nf |O| : σ.

It appears possible to give a general treatment for refining the dynamic
part of the typing judgment, and establish once and for all that such typing
judgments come equipped with the refined type preservation, using Plotkin’s
notion of binding signature to specify the syntax of the object language [14, 47].
However, since the object language is typed, we need to use a binding signature
with dependent types, which could be complicated. We therefore leave this
general treatment to a future work.

3 The general framework

In Section 2, we have seen how several properties of the language nPCF2 aid in
reasoning about code-generation programs and their native implementation in
one-level languages. Before moving on, let us identify the general conceptual
structure underlying the development.

The aim is to facilitate writing and reasoning about code-generation algo-
rithms through the support of a two-level language over a specific object lan-
guage. Following the code-type view, we do not insist, from the outset, that
the static language and the dynamic language should be the same. But to ac-
commodate the staging view, we collapse the two-level language, say L2 (e.g.,
nPCF2), into a corresponding one-level language, say L (e.g., nPCF), for which
a more conventional axiomatic semantics (an equational theory in this article)
can be used for reasoning.

Using a high-level operational semantics of L2, we identify and prove prop-
erties of L2 that support the following two proof obligations:
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Syntactic correctness of the generated code, i.e., it satisfies certain in-
tensional, syntactic constraints, specified as typing rules I. We show that the
code-type view is fruitful here: to start with, the values of a code type already
represent well-typed terms in the object language (which can be modeled as
a free binding algebra [14]). By establishing the type preservation theorem
for the type system, we further have that code-typed programs generate only
well-typed terms.

Similarly, for specific applications that require generated code to be I-
typable, we can refine the code type, much like we do with an algebraic data
type, by changing the dynamic typing rules according to I, so that code-typed
values correspond only to I-typable terms. Subsequently, a refined type
preservation theorem further ensures that the code-typed programs typable in
the refined type system generate only I-typable terms. The original proof obli-
gation is thus reduced to showing that the original two-level term type-checks
in the refined type system.
Semantic correctness of the generated code, i.e., it satisfies a certain
extensional property P . We use the annotation-erasure property from the
staging view. Formulated using the equational theory of the object language L,
this property states that if a two-level program E generates a term g, then g
and the erasure |E| of E must be equivalent: L ` g = |E|. The original proof
obligation is reduced to showing that P holds for |E|.
Implementation efficiency of the code-generation program, i.e., it can
be efficiently implemented in a conventional one-level language, without actually
carrying out symbolic reduction. By establishing a native embedding of L2

into a conventional one-level language, we equip the two-level language with an
efficient implementation that exploits the potentially optimized implementation
of the one-level language.

In Section 2, the call-by-name, effect-free setting of nPCF2 has made the
proofs of the aforementioned properties relatively easy. It is reasonable to ask
how applicable this technique is in other, probably more “realistic” settings. In
the next section, we offer some initial positive answer: These properties should
be taken into account in the design of new two-level languages to facilitate
simple reasoning.

4 The call-by-value two-level language vPCF2

In this section we design a two-level language vPCF2 with Moggi’s computational
λ-calculus λc [35] as its object language in such a way that the language has the
desired properties that we identified in Section 3 (Section 4.1). These properties
are used to give a clean account of call-by-value TDPE (Section 4.3).

4.1 Design considerations

Since we aim at some form of erasure argument, the static part of the language
should have a semantics compatible with the object language. We can consider
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a call-by-value (CBV) language for the static part and term construction for the
dynamic part. Can we use the standard evaluation semantics of CBV languages
for the static part as well?

The problematic rule is that of static function applications:

E1 ⇓ λx.E′ E2 ⇓ V ′ E′{V ′/x} ⇓ V

E1 E2 ⇓ V
.

Even though the argument is evaluated to a value V ′, its erasure might still
be an effectful computation (I/O, side effect, etc.): This happens when the
argument E2 is of some code type, so that V ′ is of the form O. The evaluation
rule then becomes unsound with respect to its erasure in the λc-theory. For
example, let E2 , print@($int(2 + 2)), where print : ©(int → bool) is a dynamic
constant. Then the code generated by the program (λx.let y ⇐ x in x)E2 after
erasure would be let y ⇐ (print 4) in (print 4), which incorrectly duplicates the
computation print 4.

This problem can be solved by using the canonical technique of let-insertion
in partial evaluation [3]: When V ′ is of the form O that represents an effect-
ful computation, a let-binding x = O will be inserted at the enclosing residual
binding (λ-abstraction or let-binding) and the variable x will be used in place
of O. But since we want vPCF2 to be natively implementable in a conventional
language, we should not change the evaluation rule for static applications. Our
solution is to introduce a new code type v©σ whose values correspond to syntac-
tical values, i.e., literals, variables, λ-abstractions, and constants. Only terms
of such code type can appear at the argument position of an application. The
usual code type, now denoted by e©σ to indicate possible computational effects,
can be coerced into type v©σ with a “trivialization” operator #, which performs
let-insertion.

4.2 Syntax, semantics, and properties

The syntax and evaluation semantics of vPCF2 are shown in Figure 8 and 9.
Again, the languages are parameterized over a signature of typed constants. Due
to the differences between call-by-name and call-by-value languages, the type
of many important constants might differ: For example, for the conditional
construct, we should have object-level constants ifσ : bool → (unit → σ) →
(unit→σ) (where unit is the standard unit type, which we omit from our language
specification for the sake of brevity).

Note that the type θ of a function argument must be “substitution-safe”,
i.e., it cannot take the form e©σ. The corresponding one-level language vPCF
is an instance of the λc-calculus: Its syntax is the same as nPCF of Figure 3,
except for an extra let-construct of the form let x⇐E1 in E2 with the standard
typing rule; its equational theory, an instance of Moggi’s λc, includes βv and
ηv (the value-restricted version of the usual β and η rule), and conversion rules
that commute let and other constructs.

In the evaluation semantics of vPCF2, the accumulated bindings B are ex-
plicit; furthermore, the dynamic environment ∆ is necessary, because the gen-
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Types τ ::= θ | e©σ
θ ::= b | v©σ | θ → τ (substitution-safe types)
σ ::= b | σ1 → σ2 (object-code types)

Contexts Γ ::= · | Γ, x : θ

Raw terms E ::= ` | x | λx.E | E1 E2 | fixE | if E1 E2 E3

| E1 ⊗ E2 | $bE | λx.E | E1@E2 | d
| let x ⇐ E1 in E2 | #E

Typing Judgment vPCF2 ` Γ � E : τ

(Static)
[lit]

` ∈ L(b)
Γ � ` : b

[var ]
x: θ ∈ Γ
Γ � x : θ

[lam]
Γ, x: θ1 � E : τ2

Γ � λx.E : θ1 → τ2

[app]
Γ � E1 : θ2 → τ Γ � E2 : θ2

Γ � E1 E2 : τ
[fix ]

Γ � E : (θ1 → τ2) → (θ1 → τ2)
Γ � fixE : θ1 → τ2

[if ]
Γ � E1 : bool Γ � E2 : τ Γ � E3 : τ

Γ � if E1 E2 E3 : τ

[bop]
Γ � E1 : b1 Γ � E2 : b2

Γ � E1 ⊗ E2 : b
(⊗ : b1 × b2 → b)

(Dynamic)

[lift]
Γ � E : b

Γ � $bE : v©b
[cst]

Sg(d) = σ

Γ � d : v©σ
[lam]

Γ, x: v©σ1 � E : e©σ2

Γ � λx.E : v©(σ1 → σ2)

[app]
Γ � E1 : e©(σ2 → σ) Γ � E2 : e©σ2

Γ � E1@E2 : e©σ
[val]

Γ � E : v©σ

Γ � E : e©σ

[let]
Γ, x: v©σ1 � E2 : e©σ2 Γ � E1 : e©σ1

Γ � let x ⇐ E1 in E2 : e©σ2
[triv]

Γ � E : e©σ

Γ � #E : v©σ

Figure 8: The type system of vPCF2

eration of new names is explicit in the semantics. The only rules that involve
explicit manipulation of the bindings are those for the evaluation of dynamic
lambda abstraction and dynamic let-expression (both of which initialize a local
accumulator in the beginning, and insert the accumulated bindings at the end),
and for the trivialization operator # (which inserts a binding to the accumula-
tor).

In the following, by an abuse of notation, B also also stands for its own
context part.

Let us examine the desired properties.
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Values V ::= ` | λx.E | O
O ::= $b` | x | λx.O | O1@O2 | d | let x ⇐O1 in O2

Bindings B ::= · | B, x : σ = O
Judgment form vPCF2 ` ∆ � [B]E ⇓ [B′]V

We use the following abbreviations.

E1 ⇓ V1 · · · En ⇓ Vn

E ⇓ V

≡ ∆ � [B1]E1 ⇓ [B2]V1 · · · ∆ � [Bn]En ⇓ [Bn+1]Vn

∆ � [B1]E ⇓ [Bn+1]V

let∗ x1:σ1=O1, · · · , xn:σn=On in O
≡ let x1 ⇐O1 in (· · · (let xn ⇐On in O) · · ·)

(Static)

[lit]
` ⇓ `

[lam]
λx.E ⇓ λx.E

[app]
E1 ⇓ λx.E′ E2 ⇓ V ′ E′{V ′/x} ⇓ V

E1 E2 ⇓ V

[fix]
E ⇓ λx.E′ E′{fix (λx.E′)/x} ⇓ V

fixE ⇓ V
[if-tt]

E1 ⇓ tt E2 ⇓ V

if E1 E2 E3 ⇓ V

[if-ff]
E1 ⇓ ff E3 ⇓ V

if E1 E2 E3 ⇓ V
[⊗]

E1 ⇓ V1 E2 ⇓ V2

E1 ⊗ E2 ⇓ V
(V1 ⊗ V2 = V )

(Dynamic)

[lift]
E ⇓ `

$bE ⇓ $b`
[var]

x ⇓ x
[cst]

d ⇓ d
[app]

E1 ⇓ O1 E2 ⇓ O2

E1@E2 ⇓ O1@O2

[lam]
∆, y : σ, B � [·]E{y/x} ⇓ [B′]O y /∈ dom B ∪ dom ∆

∆ � [B]λx.E ⇓ [B]λy.let∗ B′ in O

[let]

∆ � [B]E1 ⇓ [B′]O1 ∆, y : σ, B � [·]E2{y/x} ⇓ [B′′]O2

y /∈ dom B′ ∪ dom ∆
∆ � [B]let y ⇐ E1 in E2 ⇓ [B′]let x ⇐O1 in (let∗ B′′ in O2)

[#]
∆ � [B]E ⇓ [B′]O x /∈ dom B′ ∪ dom ∆

∆ � [B]#E ⇓ [B′, x : σ = O]x

Figure 9: The evaluation semantics of vPCF2

Type Preservation: During the evaluation, the generated bindings B hold
context information of the term E. The type preservation, therefore, uses a
notion of typable binder-term-in-context, which extends the notion of typable
term-in-context. A similar notion to binder-term-in-context has been used by
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Hatcliff and Danvy to formalize continuation-based partial evaluation [20].

Definition 4.1 (Binder-term-in-context). For a binder B ≡ (x1 : σ1 =
O1, . . . , xn : σn = On), we write Γ � [B]E : τ if Γ, x1 : v©σ1, . . . , xi−1 : v©σi−1 �

Oi : e©σi for all 1 ≤ i ≤ n, and Γ, x1 : v©σ1, . . . , xn : v©σn � E : τ .

Theorem 4.2 (Type preservation). If v©∆� [B]E : τ and ∆� [B]E ⇓ [B′]V ,
then v©∆ � [B′]V : τ .

The evaluation of a complete program inserts the bindings accumulated at
the top level.

Definition 4.3 (Observation of complete program). For a complete pro-
gram �E : e©σ, we write E ↘ let∗ B in O if �[·]E ⇓ [B]O.

Corollary 4.4 (Type preservation for complete programs). If �E : e©σ
and E ↘ O, then �O : e©σ.

Semantic Correctness: The definition of erasure is straightforward and sim-
ilar to the CBN case, and is thus omitted; the only important extra case is the
erasure of trivialization: |#E| = |E|.
Lemma 4.5 (Annotation erasure). If vPCF2 ` v©∆� [B]E : τ and vPCF2 `
∆ � [B]E ⇓ [B′]V , then vPCF ` ∆ � let∗ |B| in |E| = let∗ |B′| in |V | : |τ |.
Theorem 4.6 (Annotation erasure for complete programs). If vPCF2 `
�E : e©σ and vPCF2 ` E ↘ O, then vPCF ` � |E| = |O| : σ.

Native embedding: Without going into detail, we remark that vPCF2 has
a simple native embedding {|−|}vε into vPCFΛ,st, a CBV language with a term
type and a state that consists of two references cells: We use one to hold the
bindings and the other to hold a counter for generating fresh variables. As
such, the language vPCFΛ,st is a subset of ML; the language vPCF2 can thus
be embedded into ML, with dynamic constructs defined as functions.9 The
correctness proof for the embedding is by directly relating the derivation of the
evaluation from a term E, in vPCF2, and the derivation of the evaluation from
its translation {|E|}vε, in vPCFΛ,st. The details of the native embedding and the
accompanying correctness proof, again, are available in Appendix C.

4.3 Example: call-by-value type-directed partial evalua-
tion

The problem specification of CBV TDPE is similar to the CBN TDPE, where
the semantics is given by a translation into vPCF instead of nPCF. We only
need to slightly modify the original formulation by inserting the trivialization
operators # at appropriate places, so that the two-level program NF (E) type

9The ML source code, with the following example of CBV TDPE, is available at the URL
www.brics.dk/~zheyang/programs/vPCF2.
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checks in vPCF2. The call-by-value TDPE algorithm thus formulated is shown in
Figure 10. We establish its semantic correctness, with respect to vPCF-equality
this time, using a simple annotation erasure argument again; the proof is very
similar to that of Theorem 2.12. Composing with the native embedding {|−|}vε,
we have an efficient implementation of this formulation—which is essentially the
call-by-value TDPE algorithm that uses state-based let-insertion [49]; see also
Filinski’s formal treatment [13].

a. The language of CBV TDPE: vPCFtdpe

The syntax is the same as that of CBN TDPE, with the addition of a
let-construct.

[let]
∆, x: σ1 � E2 : σ2 ∆ � E1 : σ1

∆ � let x ⇐ E1 in E2 : σ2

b. Standard instantiation (TDPE-erasure)

vPCFtdpe ` Γ � E : ϕ =⇒ vPCF ` |Γ| � |E| : |ϕ|

|bd| = b; |$bE| = |E|, |dd| = d

c. Extraction functions ↓σ and ↑σ:
We write σ v© for the type σ{v©b/b : b ∈ B}.




vPCF2 ` �↓σ : σ v© → v©σ

↓b = λx.x
↓σ1→σ2 = λf.λx.↓σ2(f (↑σ1

x))


vPCF2 ` �↑σ : v©σ → σ v©

↑b = λx.x
↑σ1→σ2

= λe.λx.↑σ2
#(e@(↓σ1x))

d. Residualizing instantiation

vPCFtdpe ` Γ � E : ϕ ⇒ vPCF2 ` {|Γ|}ri � {|E|}ri : {|ϕ|}ri

{|bd|}ri = v©b; {|$bE|}ri = $b{|E|}ri, {|dd : σd|}ri = ↑σdd

e. The static normalization function

NF (�E : σd) = ↓σ{|E|}ri : e©σ

Figure 10: Call-by-value type-directed partial evaluation
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Syntactic correctness: The let-insertions slightly complicate the reasoning
about which terms can be generated, since the point where the operator # is
used does not lexically relate to the insertion point, where a residual binder is
introduced. The refinement of the type system thus should also cover the types
of the binders.

Figure 11 shows the refined type system; it is easy to prove that the code-
typed values correspond to the object-level terms typable with the rules in
Figure 12, which specify the λc-normal forms [13]. A term in λc-normal form
can be either a normal value (nv) or a normal computation (nc). The other two
syntactic categories that we use are atomic values (av; i.e., variables, literals,
constants) and binders (bd, which must be an application of an atomic value to
a normal value). Intuitively, evaluating terms in the refined type system can
only introduce binding expressions whose types are of the form e©bd(σ).

Definition 4.7 (Refined binder-term-in-context). For a binder B ≡ (x1 :
σ1 = O1, · · · , xn : σn = On), we write Γ I [B]E : τ if Γ, x1 : v©var (σ1), . . . , xi−1 :
v©var (σi−1) I Oi : e©bd(σi) for all 1 ≤ i ≤ n, and Γ, x1 : v©var (σ1), . . . , xn :
v©var (σn) I E : τ .

Theorem 4.8 (Refined type preservation). If vPCF2 ` v©var (∆) I [B]E : τ
and vPCF2 ` ∆ � [B]E ⇓ [B′]V , then vPCF2 ` v©var (∆) I [B′]V : τ .

Corollary 4.9 (Refined type preservation for complete programs). If
I E : e©nc(σ) and E ↘ O, then I O : e©nc(σ).

Theorem 4.10 (Normal-form code types). If V is an vPCF2-value (Fig-
ure 8), and vPCF2 ` v©var (∆) I V : v©X(σ) where X is av , nv, bd, or nc, then
V ≡ O for some O and ∆ �X |O| : σ.

To show that the CBV TDPE algorithm only generates term in λc-normal
form, it suffices to show its typability with respect to the refined type system.

Lemma 4.11. (1) The extraction functions (Figure 10c) have the following
normal-form types (writing σ©nv for σ{v©nv (b)/b : b ∈ B}.)

I ↓σ : σ©nv → v©nv (σ), I ↑σ : v©av (σ) → σ©nv.

(2) If vPCFtdpe ` Γ � E : ϕ, then vPCF2 ` {|Γ|}nv
ri I {|E|}ri : {|ϕ|}nv

ri , where
{|ϕ|}nv

ri = ϕ{v©nv (b)/bd : b ∈ B}.
Theorem 4.12. If vPCFtdpe ` �E : σd, then vPCF2 `I NF (E) : v©nv (σ).

5 Related work

The introduction (Section 1) of this article has already touched upon some
related work, which forms the general background of this work. Here we examine
other related work in the rich literature of two-level languages, and put the
current work in perspective.
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Types τ ::= θ | e©bd(σ) | e©nc(σ)
θ ::= b | v©var (σ) | v©nv (σ) | v©av (σ) | θ → τ
σ ::= b | σ1 → σ2

Typing Judgment vPCF2 ` Γ I E : τ

(Static) same as the static rules for vPCF2 ` Γ � E : τ

(Dynamic)

Γ I E : v©var (σ)
Γ I E : v©av (σ)

Sg(d) = σ

Γ I d : v©av (σ)
Γ I E : b

Γ I $bE : v©av (b)

Γ I E : v©av (b)
Γ I E : v©nv (b)

Γ, x : v©var (σ1) I E : e©nc(σ2)
Γ I λx.E : v©nv (σ1 → σ2)

Γ I E1 : v©av (σ2 → σ) Γ I E2 : v©nv (σ2)
Γ I E1@E2 : e©bd(σ)

Γ I E : v©nv (σ)
Γ I E : e©nc(σ)

Γ, x: v©var (σ1) I E2 : e©nc(σ2) Γ I E1 : e©bd(σ1)
Γ I let x ⇐ E1 in E2 : e©nc(σ2)

Γ I E : e©bd(σ)
Γ I #E : v©var (σ)

Figure 11: vPCF2-terms that generate code in λc-normal form
x: σ ∈ ∆

∆ �av x : σ

Sg(d) = σ

∆ �av d : σ

` ∈ L(b)
∆ �av ` : b

∆ �av E : b

∆ �nv E : b

∆, x : σ1 �nc E : σ2

∆ �nv λx.E : σ1 → σ2

∆ �av E1 : σ2 → σ ∆ �nv E2 : σ2

∆ �bd E1 E2 : σ

∆ �nv E : σ

∆ �nc E : σ

∆, x : σ1 �nc E2 : σ2 ∆ �bd E1 : σ1

∆ �nc let x ⇐ E1 in E2 : σ2

Figure 12: Inference rules for terms in λc-normal form

5.1 Two-level formalisms for compiler construction

While Jones et al. [23, 24, 25] studied two-level languages mainly as meta-
languages for expressing partial evaluators and proving them correct, Nielson
and Nielson’s work explored various other aspects and applications of two-level
languages, such as the following ones.

• A formalism for components of compiler backend, in particular code gener-
ation and abstract interpretation, and associated analysis algorithms [40].
These two-level languages embrace a traditional view of code objects—as
closed program fragments of function type; name capturing is therefore
not an issue in such a setting. By design, these two-level languages are
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intended as meta-languages for combinator-based code generators, as have
been used, e.g., by Wand [51]. In contrast, in meta-languages for partial
evaluators and higher-order code generators (such as the examples studied
in the present article), it is essential to be able to manipulate open code,
i.e., code with free variables: Without this ability, basic transformations
such as unfolding (a.k.a. inlining) would rarely be applicable.

• A general framework for the type systems of two-level and multi-level lan-
guages, which, on the descriptive side [41], provides a setting for compar-
ing and relating such languages, and, on the prescriptive side [42], offers
guidelines for designing new such languages. Their investigation, however,
stopped short at the type systems, which are not related to any semantics.
Equipping their framework of two-level types systems with some general
form of semantics in the spirit of this article, if possible, seems a promising
step towards practicality.

To accommodate such a wide range of applications, Nielson and Nielson de-
veloped two-level languages syntactically and used parameterized semantics. In
contrast, the framework in the present article generalizes the two-level languages
of Jones et al., where specific semantic properties such as annotation erasure
are essential to the applications. These two lines of studies complement each
other.

Beyond the study of two-level languages, two-level formalisms abound in the
literature of semantics-based compiler construction. Morris showed how to refine
Landin’s semantics [29], viewed as an interpreter, into a compiler [38]. Mosses
developed action semantics [39] as an alternative to denotational semantics. An
action semantics defines a compositional translation of programs into actions,
which are primitives whose semantics can be concisely defined. The translation
can be roughly viewed as a two-level program, the dynamic part of which is
composed of actions. Lee successfully demonstrated how this idea can be used
to construct realistic compilers [31].

5.2 Correctness of partial evaluators

As mentioned in the introduction, annotation erasure has long been used to
formalize the correctness of partial evaluation, but existing work on proving
annotation erasure while modeling the actual, name-generation-based imple-
mentation, used denotational semantics and stayed clear of operational se-
mantics. Along this line, Gomard used a domain-theoretical logical relation
to prove annotation erasure [16], but he treated fresh name generation infor-
mally. Moggi gave a formal proof, using a functor category semantics to model
name generation [36]. Filinski established a similar result as a corollary of
the correctness of type-directed partial evaluation, the proof of which, in turn,
used an ω-admissible Kripke logical relation in a domain-theoretical semantics
[12, Section 5.1]. The present work, in contrast, factors the realistic name-
generation-based implementations through native embeddings from high-level,
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substitution-based operational semantics. In the high-level operational seman-
tics, simple elementary reasoning often suffices for establishing semantics prop-
erties such as annotation erasure, as demonstrated in this article.

Wand proved the correctness of Mogensen’s compact partial evaluator for
pure λ-calculus using a logical relation that, at the base type, amounts to an
equational formulation of annotation erasure [52, Theorem 2]. Mogensen’s par-
tial evaluator encodes two-level terms as λ-terms, employing higher-order ab-
stract syntax for representing bindings. In this λ-calculus-based formulation,
the generation of residual code is modeled using symbolic normalization in the
λ-calculus.

Palsberg [43] presented another correctness result for partial evaluation, us-
ing a reduction semantics for the two-level λ-calculus. Briefly, his result states
that static reduction does not go wrong and generates a static normal form.
In the pure λ-calculus, where reductions are confluent, this correctness result
implies annotation erasure.

5.3 Macros and syntactic abstractions

The code-type view of two-level languages, in its most rudimentary form, can
be traced back to the S-expressions of Lisp [21]. Since S-expressions serve as a
representation for both programs and data, they popularized Lisp as an ideal
test bed for experimenting program analysis and synthesis. One step further,
the quasiquote/unquote mechanism [1] offers a succinct and intuitive notation
for code synthesis, one that makes the staging information explicit.

The ability of expressing program manipulation concisely then led to intro-
ducing the mechanism of macros in Lisp, which can be informally understood
as the compile-time execution of two-level programs. Practice, soon, revealed
the problem of name-capturing in the generated code. A proper solution of this
problem, namely hygienic macro expansion [27, 28], gained popularity in vari-
ous Scheme dialects. Having been widely used to build language extensions of
Scheme, and even domain-specific languages on top of Scheme, hygienic macros
have evolved into syntactic abstractions, now part of the Scheme standard [26].

The studies of two-level languages could pave the way to a future generation
of macro languages. The most prominent issue of using macros in Scheme is
the problem of debugging. It divides into debugging the syntax of the macro-
expanded program (to make it well-formed) and debugging the semantics of
macro-expanded programs (to ensure that it runs correctly). These two tasks
are complicated by the non-intuitive control flow introduced by the staging. In
the light of two-level languages, these two tasks correspond to the syntactic and
semantic correctness of generated code. Therefore, if we use two-level languages
equipped with the properties studied in this article, then we can address these
two tasks:

• for the syntax of macro-expanded programs, type checking in the two-level
language provides static debugging; and
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• for the semantics of macro-expanded programs, we can reduce debugging
the macro (a two-level function) to debugging a normal function—its era-
sure.

To make two-level languages useful as syntactic-abstraction languages in the
style of Scheme, the key extensions seem to be multiple syntactic categories and
suitable concrete syntax.

5.4 Multi-level languages

Many possible extensions and variations of two-level languages exist. Going
beyond the two-level stratification, we have the natural generalization of multi-
level languages. While this generalization, by itself, accommodates few extra
practical applications,10 its combination with a run construct holds a greater
potential. The run construct allows immediate execution of the generated code;
therefore, code generation and code execution could happen during a single eval-
uation phase—this ability, often called run-time code generation, has a growing
number of applications in system areas [53].

Davies and Pfenning investigated multi-level languages through the Curry-
Howard correspondence with modal logics: λ2, which corresponds to intuition-
istic modal logic S4, has the run construct, but it can only manipulates closed
code fragment [11]; λ©, which corresponds to linear temporal logic, can manip-
ulate open code fragment, but does not have the run construct [10]. Naively
combining the two languages would result in an unsound type system, due to
the execution of program fragments with unbound variables. Moggi et al.’s Ide-
alized MetaML [37] combines λ2 and λ©, by ensuring that the argument to
the run-construct be properly closed. Calcagno et al. further studied how side
effects can be added to Idealized MetaML while retaining type soundness [4].

While the development of various multi-level languages has been centered
on the conflicts of expressiveness and type soundness, other important aspects
of multi-level languages, such as efficient code generation and formal reasoning,
have not been much explored. Wickline et al. formalized an efficient implemen-
tation of λ2 in terms of an abstract machine [53]. Taha axiomatized a fragment
of Idealized MetaML, which can be used for equational reasoning [50].

For a practical multi-level language, both efficient code generation and for-
mal support of reasoning and debugging would be crucial. It is interesting to
see whether the work in this article can be extended to multi-level languages
similar to Idealized MetaML in expressiveness, yet equipped with an efficient
implementation for code generation, and the erasure property (probably for
restricted fragments of the languages).

10It would be, however, interesting to see whether real-life applications like the automake
suite in Unix can be described as three-level programs.
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5.5 Applications

Two-level languages originate as a formalism of partial evaluation, while era-
sure property captures the correctness of partial evaluation. Consequently,
many standard applications of partial evaluation can be modeled as two-level
programs: For example, automatic compilation by specializing an interpreter
(which is known as the first Futamura projection [15]) can be achieved with a
two-level program—the staged interpreter. The erasure property reduces the
correctness of automatic compilation to that of the interpreter.

Some applications are explained and analyzed using the technique of partial
evaluation, but not realized through a dedicated partial evaluator. The one-
pass CPS transformer of Danvy and Filinski is one such example. In this case,
it is not a whole program, but the output of a transformation (Plotkin’s CPS
translformation), to be binding-time analyzed. The explicit staging of two-
level languages makes them the ideal candidate for describing such algorithms.
The technique of Section 2.2, for example, can be used for constructing other
one-pass CPS transformations and proving them correct: e.g., call-by-name
CPS transformation (see Appendix A) and CPS transformation of programs
after strictness analysis [8]. We have also applied this technique to stage other
monadic transformations (such as a state-passing-style transformation) into one-
pass versions that avoid the generation of administrative redexes.

The two-level language vPCF2 (and similarly, nPCF2) can also be used to
account for the self application of partial evaluators. Under the embedding
translation, a vPCF2-program becomes a one-level program in vPCFΛ,st, which
is a language with computational effects, and an instance of the object language
vPCF of vPCF2. With some care, it is not difficult to derive a self application
based on this idea and prove it correct. In fact, such a process has been devel-
oped in detail (though without using the two-level language formalism of this
article) for self-applying TDPE to produce efficient generating extensions [17],
which is known as the second Futamura projection.

In recent years, type systems have been used to capture, in a syntactic fash-
ion, a wide range of language notions, such as security and mobility. It seems
possible to apply the code-type-refinement technique (Sections 2.6 and 4.3) to
guarantee that code generated by a certain (possibly third-party) program is ty-
pable in such a type system; this could lead to the addition of a code-generating
dimension to the area of trusted computing.

6 Conclusions

6.1 Summary of contributions

We have pinpointed several properties of two-level languages that are useful for
reasoning about semantic and syntactic properties of code generated by two-
level programs, and for providing them with efficient implementations. More
specifically, we have made the following technical contributions.
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• We have proved annotation erasure for both languages, using elementary
equational reasoning, and the proofs are simpler than those in previous
works, which use denotational formulations and logical relations directly
(i.e., which do not factor out a native embedding from a two-level lan-
guage). On the technical side, our proofs take advantage of the fact that
the substitution operations used in the operational semantics of the two-
level languages do not capture dynamic bound variables.

• We have constructed native embeddings of both languages into conven-
tional languages and proved them correct, thereby equipping the two-
level semantics with efficient, substitution-free implementations. To our
knowledge, such a formal connection between the symbolic semantics
and its implementation has not been established for other two-level lan-
guages [10, 37, 40].

• We have formulated the one-pass call-by-value CPS transformation, call-
by-name TDPE, and call-by-value TDPE in these two-level languages.
Through the native embeddings, they match Danvy and Filinski’s original
work. We also have formulated other one-pass CPS transformations and
one-pass transformations into monadic style, for given monads. We use
annotation erasure to prove the semantic correctness of these algorithms.

To our knowledge, the present paper is the first to formally use annota-
tion erasure to prove properties of hand-written programs—as opposed to
two-level programs used internally by partial evaluation. Previously, an-
notation erasure has been informally used to motivate and reason about
such programs.

The formulation of TDPE as translations from the special two-level lan-
guages for TDPE to conventional two-level languages also clarifies the
relationship between TDPE and traditional two-level formulations of par-
tial evaluation, which was an open problem. In practice, this formal con-
nection implies that it is sound to use TDPE in a conventional two-level
framework for partial evaluation, e.g., to perform higher-order lifting—one
of the original motivations of TDPE [5].

• We have proved the syntactic correctness of both call-by-name TDPE
and call-by-value TDPE—i.e., that they generate terms in long βη-normal
form and terms in λc-normal form, respectively—by showing type preser-
vation for refined type systems where code-typed values are such terms,
and that the corresponding TDPE algorithms are typable in the refined
type systems.

The semantic and syntactic correctness results about TDPE match Filin-
ski’s results [12, 13], which have been proved from scratch using denota-
tional methods.
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6.2 Direction for future work

It would be interesting to see whether and how far our general framework (Sec-
tion 3) can apply to other scenarios, e.g., where the object language is a con-
current calculus, equationally specified. As we have seen in Section 5, it seems
promising to combine our framework with the related work, and to find appli-
cations in it.

For the specific two-level languages developed in this article, immediate fu-
ture work could include:

• to establish a general theorem for refined type preservation;

• to find and prove other general properties: For example, an adequacy
theorem for two-level evaluation with respect to the one-level equational
theory could complete our account of TDPE with a completeness result,
which says that if there is a normal form, TDPE will terminate and find
it; and,

• to further explore the design space of two-level languages by adding an
online dimension to them (in the sense of “online partial evaluation”):
For example, we could consider adding interpreted object-level constants
to the two-level language, which are expressed through equations in the
type theory of the one-level language. The extra information makes it
possible to generate code of a higher quality.
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A Call-by-name CPS translation

Danvy and Filinski [7] also presented a one-pass version for Plotkin’s call-by-
name CPS transformation. Figure 13 shows both transformations. The erasure
argument applies here, too.

Other one-pass CPS transformations [19] can be similarly described and
proven correct.

a. Source syntax: the pure simply typed λ-calculus nΛ
Types σ ::= b | σ1 → σ2

Raw terms E ::= x | λx.E | E1 E2

Typing judgment nΛ ` ∆ � E : σ (omitted)

b. Plotkin’s original transformation:

nΛ ` ∆ � E : σ =⇒ nPCF ` K{|∆|}pκ � {|E|}pκ : K{|σ|}pκ .

Here, Kσ = (σ → Ans) → Ans for an answer type Ans.
Types: {|b|}pκ = b,

{|σ1 → σ2|}pκ = K{|σ1|}pκ → K{|σ2|}pκ

Terms: {|x|}pκ = λk.x k,
{|λx.E|}pκ = λk.k λx.{|E|}pκ

{|E1 E2|}pκ = λk.{|E1|}pκλr1.r1 {|E2|}pκ k.

c. Danvy and Filinski’s one-pass transformation:
The transformation is specified as a pair of mutually recursive translations.

1. The (higher-order) auxiliary translation

nΛ ` ∆ � E : σ =⇒ nPCF2 ` ©(K{|∆|}pκ) � {|E|}df2κ : K©(©{|σ|}pκ)

Here, K©σ = (σ →©Ans) →©Ans.



{|x|}df2κ = λk.x@ λy.k y
{|λx.E|}df2κ = λk.k λx.{|E|}dfκ

{|E1 E2|}df2κ = λk.{|E1|}df2κ λr1.r1@{|E2|}dfκ@λx.k x

2. The complete translation
=⇒ nPCF2 ` ©(K{|∆|}pκ) � {|E|}dfκ : ©(K{|σ|}pκ)




{|x|}dfκ = x
{|λx.E|}dfκ = λk.k@λx.{|E|}dfκ

{|E1 E2|}dfκ = λk.{|E1|}df2κ λr1.r1@{|E2|}dfκ@k

Figure 13: Call-by-name CPS transformation
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B Expanded proofs for nPCF2

B.1 Type preservation and annotation erasure

Theorem 2.1 (Type preservation). If ©∆�E : τ and E ⇓ V , then ©∆�V :
τ .

Proof. Induction on E ⇓ V . For the only non-straightforward case, where E ≡
E1 E2, we use a Substitution Lemma of the typing rules: if Γ, x : τ1 � E : τ2

and Γ � E′ : τ1, then Γ � E{E′/x} : τ2.

Theorem 2.3 (Annotation erasure). If nPCF2 ` ©∆ � E : τ and nPCF2 `
E ⇓ V , then nPCF ` ∆ � |E| = |V | : |τ |.

Its proof uses the following Substitution Lemma for erasure.

Lemma B.1 (Substitution lemma for | − |). If nPCF2 ` Γ, x : τ ′ � E : τ
and nPCF2 ` Γ � E′ : τ ′, then |E{E′/x}| ∼α |E|{|E′|/x}.
Proof. By a simple induction on the size of term E.

Proof of Theorem 2.3. By rule induction on E ⇓ V . We show a few cases.

Case [app]: |E1 E2| ≡ |E1| |E2|
i.h.= (λx.|E′|) |E2| = |E′|{|E2|/x}
∼α |E′{E2/x}| (Lemma B.1)
i.h.= |V |.

Case [fix ]: |fixE| ≡ fix |E| = |E|(fix |E|) ≡ |E(fixE)| i.h.= |V |.

Case [lam]: |λx.E| ≡ λx.|E| i.h.= λx.|O| ≡ |λx.O|.

B.2 Native embedding

We first present the standard denotational semantics of the language nPCFΛ.

Definition B.2. (Denotational semantics of nPCFΛ) Let Z and B denote the
sets (discrete cpos) of integers and of booleans, respectively. Let Cst denote
the set used to represent constants. Let E be the inductive set given as the
smallest solution to the equation X = Z + Z+ B + Cst+ Z×X + X ×X, with
injection functions inVar, inLitint, inLitbool, inCst, inLam, and inApp into the
components of the sum.

The standard domain-theoretical semantics maps nPCFΛ-types to domains as
follows.

[[int]] = Z⊥, [[bool]] = B⊥, [[Λ]] = E⊥, [[σ1 → σ2]] = [[σ1]] → [[σ2]]
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This mapping extends to provide the meaning of contexts ∆ by taking the prod-
uct: [[∆]] =

∏
x∈dom∆ [[∆(x)]]. The meaning of a term-in-context ∆ � E : σ is a

continuous function [[E]] : [[∆]] → [[σ]]:

[[`]]ρ = val⊥ `
[[x]]ρ = ρx

[[λx.E]]ρ = λy.[[E]]ρ[x 7→ y]
[[E1 E2]]ρ = [[E1]]ρ ([[E2]]ρ)
[[fixE]]ρ =

⊔
i≥0 ([[E]]ρ)i(⊥)

[[if E1 E2 E3]]ρ = let⊥ b ⇐ [[E1]]ρ in if b ([[E2]]ρ) ([[E3]]ρ)
[[E1 ⊗ E2]]ρ = let⊥ m ⇐ [[E1]]ρ in let⊥ n ⇐ [[E2]]ρ in val⊥ (m ⊗ n)
[[VAR(E)]]ρ = let⊥ i ⇐ [[E]]ρ in val⊥ (inVar(i))
[[LITb(E)]]ρ = let⊥ l ⇐ [[E]]ρ in val⊥ (inLitb(l))
[[CST(E)]]ρ = let⊥ c ⇐ [[E]]ρ in val⊥ (inCst(c))

[[LAM(E1, E2)]]ρ = let⊥ x ⇐ [[E1]]ρ in let⊥ e ⇐ [[E2]]ρ in val⊥ (inLam(x, e))
[[VAR(E1, E2)]]ρ = let⊥ e1 ⇐ [[E1]]ρ in let⊥ e2 ⇐ [[E2]]ρ in val⊥ (inApp(e1, e2))

It is straightforward to show that the equational theory is sound with respect
to this denotational semantics.

Theorem B.3 (Soundness of the equational theory). If nPCFΛ ` ∆�E1 =
E2 : σ, then [[E1]] = [[E2]].

We now prove the correctness of the embedding translation, i.e., that evalu-
ating complete programs of code type in nPCF2 is precisely simulated by eval-
uating their embedding translations in nPCFΛ. We proceed in two steps. First,
we show that if nPCF2-evaluation of a term E generates certain object term as
the result, then [[{|E|}nε(1)]] should give the encoding of this term, modulo α-
conversion. Second, we show that conversely, if [[{|E|}nε(1)]] 6= ⊥, then evaluation
of term E terminates.

Lemma 2.6 (Substitution lemma for {|−|}nε). If nPCF2 ` Γ, x : τ ′ � E : τ
and nPCF2 ` Γ � E′ : τ ′, then {|E{E′/x}|}nε ∼α {|E|}nε{{|E′|}nε/x}.
Proof. By induction on the size of term E. The most non-trivial case is the
following one.

Case E ≡ λy.E1: There are two sub-cases: Either x ≡ y or x 6≡ y. If x ≡ y,
then

{|(λy.E1){E′/y}|}nε ≡ {|(λy.E1)|}nε ≡ λnε(λy.{|E1|}nε)
≡ (λnε(λy.{|E1|}nε)){{|E′|}nε/y} ≡ {|(λy.E1)|}nε{{|E′|}nε/y}

If x 6≡ y, then let z be a variable such that z /∈ fv(E′) ∪ {x}
{|(λy.E1){E′/x}|}nε

∼α {|λz.E1{z/y}{E′/x}|}nε

≡ λnε(λz.{|E1{z/y}{E′/x}|}nε)
∼α λnε(λz.({|E1{z/y}|}nε{E′/x})) (ind. hyp. on E1{z/y})
≡ (λnε(λz.{|E1{z/y}|}nε)){{|E′|}nε/x} (z /∈ fv (E′) = fv ({|E′|}nε))
∼α {|(λy.E1)|}nε{{|E′|}nε/x}
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Lemma 2.7 (Evaluation preserves translation). If nPCF2 ` ©∆ � E : τ
and nPCF2 ` E ⇓ V , then nPCFΛ ` {|©∆|}nε � {|E|}nε = {|V |}nε : {|τ |}nε.

Proof. By rule induction on nPCF2 ` E ⇓ V . We show a few cases.

Case [app]: {|E1 E2|}nε ≡ {|E1|}nε {|E2|}nε
i.h.= {|λx.E′|}nε{|E2|}nε ≡(λx.{|E′|}nε) {|E2|}nε

= {|E′|}nε{{|E2|}nε/x} (β)
∼α {|E′{E2/x}|}nε (Lemma 2.6)
i.h.= {|V |}nε.

Case [fix ]: {|fixE|}nε ≡ fix {|E|}nε

= {|E|}nε (fix {|E|}nε) (equational rule for fix )
≡ {|E (fixE)|}nε

i.h.= {|V |}nε.

The term-building evaluation of the dynamic parts preserves translation, be-
cause the translation of the dynamic constructs is compositional.

Case [lam]: {|λx.E|}nε ≡ λnε(λx.{|E|}nε)
i.h.= λnε(λx.{|O|}nε) ≡ {|λx.O|}nε.

Lemma 2.8 (Translation of code-typed value). If nPCF2 ` v1:©σ1, . . . , vn:
©σn � O : ©σ, then there is a value t : Λ such that

• nPCFΛ ` � ({|O|}nε(n + 1)){λi.VAR(1)/v1, . . . , λi.VAR(n)/vn} = t : Λ,

• nPCF ` v1 : σ1, . . . , vn : σn � D(t) : σ, and

• |O| ∼α D(t).

Proof. By induction on the size of term O. We write θn for the substitution
{λi.VAR(1)/v1, . . . , λi.VAR(n)/vn}.

Case O ≡ $b`: lhs ≡ (($nε
b `)(n+1)){θn} = LITb(`). We have that D(LITb(`)) ≡

` ≡ |O|.

Case O ≡ vi: lhs ≡ (vi(n + 1)){θn} = VAR(i). We have that D(VAR(i)) ≡
vi ≡ |O|.

37



Case O ≡ λx.O1:

lhs ≡ (λnε(λx.{|O1|}nε)(n + 1)){θn}
= LAM(n + 1, ({|O1|}nε{λi′.VAR(n + 1)/x}((n + 1) + 1))){θn}
= LAM(n + 1, ({|O1{vn+1/x}|}nε((n + 1) + 1)){θ; λi′.VAR(n + 1)/vn+1})

i.h.= LAM(n + 1, t1)

where D(t1) ∼α |O1|{vn+1/x}. Here we use the induction hypothesis on term
O{vn+1/x}, which is typed as v1 : ©σ1, · · · , vn+1 : ©σn+1�O{vn+1/x} : ©σn+2,
where σ = σn+1 → σn+2. We have that D(LAM(n + 1, t1)) ≡ λvn+1.D(t1) ∼α

λx.|O1| ≡ |O|.

Case O ≡ O1@O2:

lhs ≡ (@nε{|O1|}nε{|O2|}nε(n + 1)){θn}
= APP({|O1|}nεn + 1{θn}){|O2|}nεn + 1{θn}

i.h.= APP(t1, t2)

where D(t1) ∼α |O1| and D(t2) ∼α |O2|. We have that D(APP(t1, t2)) =
D(t1)D(t2) ∼α |O1| |O2| ∼α |O|

Case O ≡ d: lhs ≡ ((λi.CST(HdI))(n + 1)){θn} = HdI.

Lemma 2.9 (Computational adequacy). If nPCF2 ` �E : ©σ, and there
is a nPCFΛ-value t : Λ such that [[{|E|}nε(1)]] = [[t]], then ∃O.E ⇓ O.

In the following, we write E ⇓ for ∃V.E ⇓ V ; that is, evaluation of E
terminates.

We prove Lemma 2.9 using a Kripke logical relation between the denotation
of translated terms and the original two-level terms.

Definition B.4 (Logical relation, ≺∆
τ ). For an object-type typing context

∆, we define, by induction on an nPCF2-type τ , a family of relations v ≺∆
τ E,

where v ∈ [[{|τ |}nε]], and E ∈ Expr∆
τ = {E | nPCF2 ` ©∆ � E : τ}, by

v ≺∆
b E ⇐⇒ v = ⊥ ∨ ∃`.(v = val⊥ ` ∧ E ⇓ `)

f ≺∆
©σ E ⇐⇒ ∀n.(f(val⊥ n) = ⊥ ∨ E ⇓)

f ≺∆
τ1→τ2

E ⇐⇒ ∀a ∈ [[{|τ1|}nε]], ∆′ ≥ ∆, E′ ∈ Expr∆′
τ1

.

(a ≺∆′
τ1

E′ ⇒ f(a) ≺∆′
τ2

EE′)

Note that the logical relation at the code types ©σ only requires the ter-
mination of the evaluation of E. This requirement is enough for the proof,
because programs cannot perform intensional analysis on values of types ©σ.
In fact, it is essential for the correctness of the simple native embedding here
that intensional analysis on code is absent from the language.

Before proceeding to prove a “Basic Lemma” for the logical relation, we first
establish some of its properties.
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“Weakening” holds for ≺−
τ (Lemma B.5) Note that the object-type context

∆ is used in the definition of the logical relation only to ensure that the
term E is well-typed. Naturally we expect a weakening property; and
indeed this property is used in several cases of the proof. It is this property
that “forces” us to use a Kripke-style logical relation.

≺∆
τ is ω-admissible (Lemma B.6) This lemma is necessary for the proof in

the case of a fixed-point operator.

Kleene equivalence respects ≺∆
τ (Lemma B.7) At a few places, the opera-

tional semantics and the denotational semantics clash in a technical sense.
The call-by-name denotational semantics, for example, does not use a
lifted function space; the bottom element at type σ1 → σ2 is not dis-
tinguished from a function value whose image (of type σ2) is constantly
bottom. In the operational semantics, the function needs to be evalu-
ated to a value before the substitution. At base types, however, the two
semantics agree.

The denotational semantics forces us to take a standard call-by-name form
of logical relation at the function type in the definition. Another prob-
lem then appears: since we do not evaluate the expression form in the
operational semantics, what we can infer from the induction hypothesis
does not directly give the conclusion. In particular, for the case λx.E,
using the induction hypothesis, we can relate the denotation to the ex-
pression E{θ; E′/x}, but instead we need to relate it to the expression
((λx.E){θ})E′. The two expressions evaluate to the same value in the op-
erational semantics, i.e., they are Kleene-equivalent. Therefore, we need to
show that the logical relation can be transferred between Kleene-equivalent
terms.11

Lemma B.5 (Weakening of ≺−
τ ). If ∆ ≤ ∆′ and v ≺∆

τ E, then v ≺∆′
τ E.

Proof. By a case analysis on type τ .

Case τ = b or τ = ©σ: Use the weakening property of the nPCF2 typing
rules: Expr∆

τ ⊆ Expr∆′
τ .

Case τ = τ1→τ2: Let f ≺∆
τ1→τ2

E. First, we have that E ∈ Expr∆
τ ⊆ Expr∆′

τ .
Second, let a, ∆′′ ≥ ∆′ (which implies ∆′′ ≥ ∆), and E′ ∈ Expr∆′′

τ1
be such

that a ≺∆′′
τ1

E′. Then, by the definition of ≺∆
τ1→τ2

, we have that f(a) ≺∆′′
τ2

EE′.
This shows that f ≺∆′

τ1→τ2
E by definition.

11In the literature, this mismatch problem is resolved by using a different formulation of the
logical relation, usually called computability : the relation at higher types is defined by means
of full applications (e.g., Plotkin’s proof of adequacy [46] and Gunter’s proof [18, Section 4.3]),
which reduces the definition at higher-type directly to ground type. The Kleene-equivalence
formulation used in the present article has the same effect, but it seems to scale better with
respect to other types such as product and sum; the definition of full applications becomes
hairy in the presence of these types.
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Lemma B.6 (≺∆
τ is ω-admissible). For all E ∈ Expr∆

τ , the predicate − ≺∆
τ E

is admissible, i.e., (1) it is chain-complete: If a0 v . . . v ai v . . . is a countable
chain in [[{|τ |}nε]], such that ∀i.ai ≺∆

τ E, then
⊔

i≥0 ai ≺∆
τ E; (2) it is pointed:

⊥ ≺∆
τ E.

Proof. By induction on type τ .

Case τ = b: Since {|b|}nε = b, and base types are interpreted by flat domains,
the chain must be constant after a certain position, and the upper bound equals
this constant. Pointedness follows from the definition of the logical relation.

Case τ = ©σ: Let f0 v . . . v fi v . . . be a chain in [[{|τ |}nε]] = Z⊥→E⊥. For a
number n, if (

⊔
i≥0 fi)(val⊥ n) =

⊔
i≥0(fi(val⊥ n)) 6= ⊥, then ∃m.fm(val⊥ n) 6=

⊥. This implies E ⇓, by the definition of fm ≺∆
©σ E.

If f = ⊥, the implication in the definition of the logical relation holds vacu-
ously.

Case τ = τ1 → τ2: The predicate is given by

P (f) =
∧

(∆′,a,E′)|∆≤∆′,a≺∆′
τ1

E′

(λφ.φa)f ≺∆′
τ2

EE′.

It is admissible since all the − ≺∆
τ2

EE′ are admissible by induction hypothe-
sis, and admissibility is closed under taking pre-image under strict continuous
function and arbitrary intersection [54].

Lemma B.7 (Kleene equivalence respects ≺∆
τ ). If v ≺∆

τ E, and E =kl E′,
i.e., ∀V.(E ⇓ V ⇔ E′ ⇓ V ), then v ≺∆

τ E′.

Proof. By induction on type τ .

Case τ = b or τ = ©σ: Immediate.

Case τ = τ1 → τ2: Let a, ∆′ ≥ ∆, and E′′ ∈ Expr∆′
τ1

be such that a ≺∆′
τ1

E′′.
Then we have

(1) v(a) ≺∆′
τ2

EE′′ (by the definition of v ≺∆
τ E);

(2) EE′′ =kl E′E′′ (following from E =kl E′).

Applying the induction hypothesis for τ2 to (1) and (2), we have that v(a) ≺∆′
τ2

E′E′′. This shows that v ≺∆′
τ1→τ2

E′.

The logical relation extends naturally from types to typing contexts. Let Γ be
a nPCF2-typing context (x1 : τ1, . . . , xn : τn), ∆ an object-type typing context,
and θ a substitution (from ©∆ to Γ) {E1/x1, . . . , En/xn}, where nPCF2 ` ©∆�
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Ei : τi. We define the relation ≺∆
Γ between environments and substitutions as

follows:
ρ ≺∆

Γ θ ⇐⇒ ∀x ∈ dom Γ.ρx ≺∆
Γ(x) x{θ}

Now we are ready to prove our version of the “Basic Lemma”.

Lemma B.8. Let nPCF2 ` Γ � E : τ , then for all ∆, ρ, and θ, ρ ≺∆
Γ θ implies

that [[{|E|}nε]]ρ ≺∆
τ E{θ} (it should be clear that ©∆ � E{θ} : τ).

Proof. By induction on the size of the derivation for Γ � E : τ .

The static term formations have fairly standard sub-proofs.

Case `: Trivial.

Case x: We need to show: ρx ≺∆
τ E{θ}. It follows from the definition of

ρ ≺∆
Γ θ.

Case λx.E: We need to show: [[λx.{|E|}nε]]ρ ≺∆
τ1→τ2

(λx.E){θ}. For all ∆′ ≥ ∆
and a ≺∆′

τ1
E′, we have ρ ≺∆′

Γ θ by Lemma B.5, and therefore ρ[x 7→ a] ≺∆′
Γ,x:τ1

(θ; E′/x). By induction hypothesis, we have

([[λx.{|E|}nε]]ρ)a = [[{|E|}nε]](ρ[x 7→ a]) ≺∆′
τ2

E{θ; E′/x}

Since ((λx.E){θ})E′ =kl E{θ; E′/x}, we can apply Lemma B.7 to conclude that

([[λx.{|E|}nε]]ρ)a ≺∆
τ2

((λx.E){θ})E′.

Case E1 E2: We need to show: [[{|E1|}nε {|E2|}nε]]ρ ≺∆
τ (E1 E2){θ}. The induc-

tion hypotheses imply that [[{|E1|}nε ]]ρ ≺∆
τ2→τ E1{θ} and that [[{|E2|}nε ]]ρ ≺∆

τ2

E2{θ}. By definition of ≺∆
τ2→τ (taking ∆′ = ∆), we have

[[{|E1|}nε {|E2|}nε]]ρ = [[{|E1|}nερ]][[{|E2|}nερ]] ≺∆
τ (E1{θ})(E2{θ}) ≡ (E1 E2){θ}

Case fixE: We need to show:
⊔

i≥0 ([[{|E|}nε]]ρ)i(⊥) ≺∆
τ (fixE){θ}. We have

⊥ ≺∆
τ (fixE){θ} (pointedness)

([[{|E|}nε]]ρ)(⊥) ≺∆
τ E{θ}((fixE){θ}) =kl (fixE){θ} (ind. hyp.)
...

By induction, for all i ≥ 0, ([[{|E|}nε]]ρ)i(⊥) ≺∆
τ (fixE){θ}. Finally, chain-

completeness (Lemma B.6) implies the conclusion.
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Case if E1 E2 E3: We need to show:

[[if {|E1|}nε {|E2|}nε {|E3|}nε]]ρ ≺∆
τ if E1 E2 E3.

There are three sub-cases:

• [[{|E1|}nε]]ρ = ⊥: trivial.

• [[{|E1|}nε]]ρ = val⊥ tt: the induction hypotheses imply that
(1) [[if {|E1|}nε {|E2|}nε {|E3|}nε]]ρ = [[{|E2|}nε]]ρ ≺∆

τ E2{θ}, and
(2) E1{θ} ⇓ tt, and henceforth E2{θ} =kl (if E1 E2 E3){θ}.
Applying Lemma B.7 to (1) and (2), we have the conclusion.

• [[{|E1|}nε]]ρ = val⊥ ff: similar to the previous case.

Case E1 ⊗ E2: Simple.

The sub-proofs for dynamic term formations are intuitively very simple: the
denotational semantics of various constructs are strict in the sub-terms, which,
by induction hypotheses, implies that the evaluation of the subterms terminates.
However, in the case of a dynamic λ-abstraction λx.E, the change of typing
context requires special attention to ensure that the term we use is well-typed.
For other cases, we only show the proof for $bE.

Case $bE: We need to show: [[$nε
b {|E|}nε]]ρ ≺∆

©b ($bE){θ}. For n ∈ Z, if ⊥ 6=
[[$nε

b {|E|}nε]]ρ(val⊥ n) = [[LITb({|E|}nε)]]ρ = let⊥ l ⇐ [[{|E|}nε]]ρ in val⊥ (inLitb(l)),
then [[{|E|}nε]]ρ 6= ⊥. By induction hypothesis, we have [[{|E|}nε]]ρ ≺∆

b E{θ},
which implies that E{θ} ⇓, and consequently ($bE){θ} ⇓.

Case λx.E: Recall that the typing rule is

Γ, x:©σ1 � E : ©σ2

Γ � λx.E : ©(σ1 → σ2)

We need to show: [[λnε(λx.{|E|}nε)]]ρ ≺∆
©(σ1→σ2) (λx.E){θ}. Without loss of

generality, we assume x /∈ dom ∆; otherwise we can rename the bound variable
using α-conversion. Now for any n ∈ Z, if [[λnε(λx.{|E|}nε)]]ρ(val⊥ n) 6= ⊥, then
it is easy to show that [[{|E|}nε]]ρ[x 7→ λw.val⊥ (inVar(n))] 6= ⊥.

Since x /∈ dom ∆, the context ∆, x : σ1 is well-formed. It is easy to check
that λw.val⊥ (inVar(n)) ≺∆,x:σ1

©σ1
x; furthermore, since ≺ is Kripke, we also have

that ρ ≺∆,x:σ1
Γ θ. Putting them together, we have that

ρ[x 7→ λw.val⊥ (inVar(n))] ≺∆,x:σ1
Γ,x:©σ1

{θ; x/x}.
Then, by the induction hypothesis, we get

[[{|E|}nε]](ρ[x 7→ λw.val⊥ (inVar(n))]) ≺∆,x:σ1
©σ2

E{θ; x/x} ≡ E{θ}
Since lhs 6= ⊥, we have, by the definition of the logical relation, that E{θ} ⇓.
Consequently λx.(E{θ}) ⇓.
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Finally, Lemma 2.9 is an easy corollary.

Proof of Lemma 2.9. Let ρ be the empty environment, and θ the empty substi-
tution. We have that [[{|E|}nε(1)]]ρ = [[t]]ρ. Since t is a value, [[t]]ρ 6= ⊥. Thus
[[{|E|}nε]]ρ(val⊥ 1) = [[{|E|}nε(1)]]ρ 6= ⊥. By Lemma B.8, [[{|E|}nε]]ρ ≺·

©σ E{θ} ≡
E. The definition of the logical relation at the type ©σ implies that E ⇓.

Theorem 2.10 (Correctness of embedding). If nPCF2 ` �E : ©σ, then
the following statements are equivalent.
(a) There is a value O : ©σ such that nPCF2 ` E ⇓ O.
(b) There is a value t : Λ such that [[{|E|}nε(1)]] = [[t]].
When these statements hold, we further have that
(c) nPCF ` �D(t) : σ and |O| ∼α D(t).

Proof. (a) ⇒ (b),(c) Assume (a). By Lemma 2.7, nPCFΛ ` {|E|}nε = {|O|}nε.
By Lemma 2.8, there is a value t such that nPCFΛ ` {|O|}nε1 = t, with
which (c) also holds. By the transitivity rule, we have that nPCFΛ `
{|E|}nε1 = t. The conclusion now follows by an application of Theorem B.3.

(b) ⇒ (a),(c) Assume (a). By Lemma 2.9, E ⇓. Since �E : ©σ, we have
E ⇓ O for some value O : ©σ. By the first part of this proof, we further
have an nPCFΛ-value t′ : Λ that satisfies (c) (with t replaced by t′) and
validates [[{|E|}nε(1)]] = [[t′]]. It remains to show that t ≡ t′.

Because [[t]] = [[{|E|}nε(1)]] = [[t′]], and the semantic function of Λ-typed
values is injective (easy structural induction), we have that t ≡ t′.

B.3 Call-by-name type-directed partial evaluation

Lemma 2.11. For all types σ, nPCF ` � |↓σ| = λx.x : σ → σ and nPCF `
� |↑σ| = λx.x : σ → σ.

Proof. By a straightforward induction on type τ .

Theorem 2.12 (Semantic correctness of TDPE). If nPCFtdpe ` �E : σd

and nPCF2 ` NF (E) ⇓ O, then nPCF ` � |O| = |E| : σ.

(Note that the two erasures are different: one operates on nPCF2-terms, the
other on nPCFtdpe-terms.)

Proof. First, we prove by induction on nPCFtdpe ` �E : ϕ that nPCF ` �

|{|E|}ri| = |E| : |ϕ|. The proofs for the static part, for which both translations
are homomorphic, are straightforward and omitted. The only remaining cases
are the following ones.

Case $bE: We have |{|$bE|}ri| ≡ |$b{|E|}ri| ≡ |{|E|}ri| i.h.= |E| ≡ |$bE|.
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Case dd : σd: We have |{|dd|}ri| ≡ |↑σ||d| ∗= d ≡ |dd|, where ∗= uses Lemma 2.11
and the definition of erasure for nPCF2-terms.

From this, we can infer that |NF (E)| ≡ |↓σ| |{|E|}ri| = |E|, again using
Lemma 2.11. Now, applying Theorem 2.3 to nPCF2 ` NF (E) ⇓ O, we can
conclude that |O| = |NF (E)| = |E|.
Theorem 2.13 (Refined type preservation). If nPCF2 ` ©var (∆) I E : τ
and nPCF2 ` E ⇓ V , then nPCF2 ` ©var (∆) I V : τ .

Like in the proof of Theorem 2.1, the most interesting case is when E ≡
E1 E2, for which we need a Substitution Lemma.

Lemma B.9 (I-substitutivity). If nPCF2 ` Γ, y : τ1 I E : τ2 and nPCF2 `
Γ I E′ : τ1, then nPCF2 ` Γ I E{E′/y} : τ2.

Proof. By a straightforward induction on the derivation of the typing judgment
nPCF2 ` Γ, x : τ1 I E : τ2.

Proof of Theorem 2.13. By induction on E ⇓ V . The only non-straightforward
case in the static part is the rule ([app]), i.e., the evaluation of an application; for
this rule we use Lemma B.9. For the dynamic part, all the rules simply evaluate
the subterms while keeping the top-level constructs; combining the induction
hypotheses suffices to give the same typing for the result values V as for the
original terms E.

Theorem 2.14 (Normal-form code types). If V is an nPCF2-value (Fig-
ure 2), then
(1) if nPCF2 ` ©var (∆) I V : ©at (σ), then V ≡ O for some O and ∆�at |O| :
σ;
(2) if nPCF2 ` ©var (∆) I V : ©nf (σ), then V ≡ O for some O and ∆�nf |O| :
σ.

Proof. First of all, if a value V is of any code type ©var (σ), ©at (σ), or ©nf (σ),
then a simple examination of the rules shows that V can be neither of the form
` nor of the form λx.E, and thus it must be of the form O. Furthermore, if
nPCF2 ` ©var (∆) I O : ©var (σ), then O must be a variable x such that
x : σ ∈ ∆, since in all other cases of O, the type could not be ©var (σ).

According to the BNF for a code-typed value O, the only rules that can be
used in the derivation of O’s typing are the rules in the (new) dynamic part
plus the rules for literals and variables. Now, a simple rule induction proves (1)
and (2).

Lemma 2.15. (1) The extraction functions (Figure 5c) have the following
normal-form types (writing σ©nf for σ{©nf (b)/b : b ∈ B}).

I ↓σ : σ©nf →©nf (σ), I ↑σ : ©at (σ) → σ©nf .

(2) If nPCFtdpe ` Γ � E : ϕ, then nPCF2 ` {|Γ|}nf
ri I {|E|}ri : {|ϕ|}nf

ri , where
{|ϕ|}nf

ri = ϕ{©nf (b)/bd : b ∈ B}
Proof.
(1) By induction on type σ.
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Case σ = b: Because at the base type, b©nf = ©nf (b), we just need to show:
I λx.x : ©nf (b) →©nf (b). This is simple.

Case σ = σ1 → σ2: Noting that (σ1 → σ2)©nf = σ©nf
1 → σ©nf

2 , we give the
following typing derivation for ↓σ1→σ2 based on the induction hypotheses (we
use weakening freely and implicitly, write Γ1 for the context f : σ©nf

1 →σ©nf
2 , x :

©var (σ1), and omit the typing of ↑σ1
and ↓σ2 from the induction hypotheses):

Γ1 I f : σ©nf
1 → σ©nf

2

Γ1 I x : ©var (σ1)
Γ1 I x : ©at(σ1)
Γ1 I ↑σ1

x : σ©nf
1

Γ1 I f (↑σ1
x) : σ©nf

2

Γ1 I ↓σ2(f (↑σ1
x)) : ©nf (σ2)

f : σ©nf
1 → σ©nf

2 I λx.↓σ2(f (↑σ1
x)) : ©nf (σ1 → σ2)

I λf.λx.↓σ2(f (↑σ1
x)) : (σ©nf

1 → σ©nf
2 ) →©nf (σ1 → σ2)

A similar derivation works for ↑σ1→σ2
, which is compactly described as the

following:

e : ©at (σ1 → σ2), x : σ©nf
1 I ↑σ2

(

©at(σ2)︷ ︸︸ ︷
e@( ↓σ1x︸︷︷︸

©nf (σ1)

)) : σ©nf
2

(2) By a simple induction on nPCFtdpe ` Γ � E : ϕ. For the case when E ≡
dd with Sg(d) = σ, we use the typing of ↑σ from part (1) and the fact that
{|σd|}nf

ri ≡ {|σ{bd/b : b ∈ B}|}nf
ri ≡ σ{©nf (b)/b : b ∈ B} ≡ σ©nf .

Theorem 2.16. If nPCFtdpe ` �E : σd, then nPCF2 `I NF (E) : ©nf (σ).

Proof. By Lemma 2.15(2), we have nPCF2 `I {|E|}ri : {|σd|}nf
ri . Since {|σd|}nf

ri ≡
σ©nf , applying ↓σ : σ©nf → ©nf (σ) (Lemma 2.15(1)) to {|E|}ri yields the con-
clusion.

Corollary 2.17 (Syntactic correctness of TDPE). For nPCFtdpe ` �E :
σd, if nPCF2 ` NF (E) ⇓ V , then V ≡ O for some O and nPCF ` ∆�nf |O| : σ.

Proof. We use Theorem 2.16, Theorem 2.13, and Theorem 2.14.

C Call-by-value two-level language vPCF2: de-
tailed development

Since we are working with vPCF2 in this section, we leave vPCF2 ` implicit.
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C.1 Type preservation

Lemma C.1 (Substitution Lemma for vPCF2-typing). If Γ, y : τ1 �E : τ2

and Γ � E′ : τ1, then Γ � E{E′/y} : τ2.

For a concise presentation, we introduce the following notations.

Definition C.2 (Binder-in-context). For a binder B ≡ (x1 :σ1 = O1, . . . , xn :
σn = On), we write Γ � [B] if Γ, x1 : v©σ1, . . . , xi−1 : v©σi−1 � Oi : e©σi for all
1 ≤ i ≤ n. In this case, we also write Γ, v©B for the context Γ, v©σ1, . . . , v©σn.

Definition C.3 (Binder extension and difference). We write Γ � [B] ≥
[B′], if binder B′ is a prefix of binder B, and Γ � [B]. In this case, it makes
sense to write B − B′ to denote the difference of the two binders, and we have
that Γ, v©B � [B − B′].

We can restate Definition 4.1 using the preceding notions.

Definition 4.1 (Binder-term-in-context). We write Γ� [B]E : τ if Γ � [B]
and Γ, v©B � E : τ .

To ease analyses of binder-terms-in-context, we prove an “inversion” lemma.
Informally, it states that one can apply inversion to a binder-term-in-context as
if to a term-in-context,

Lemma C.4 (“Inversion” holds for binder-terms-in-context). Let Γ �

[B]E : τ .

• If E = λx.E′, then τ = τ1→τ2 and Γ, x : τ1 � [B]E′ : τ2. This corresponds
to the typing rule [lam].

• If E = E1 E2, then ∃τ2 such that Γ � [B]E1 : τ2 → τ and Γ � [B]E2 : τ2.
This corresponds to the typing rule [app].

• ... (similar inversion principles for all the other typing rules, except the rule
[var ], which uses the context explicitly.)

Corollary C.5. (Substitution for binder-term-in-context) If Γ, y : τ1�[B]E : τ2

and Γ � [B]E′ : τ1, then Γ � [B]E{E′/x} : τ2.

Proof. The provability of binder-term-in-context Γ � [B]E′ : τ1, by definition,
implies the following.

(1.a) Γ � [B].

(1.b) Γ, v©B � E′ : τ1.

From (1.a) and Γ, y : τ1 � [B]E : τ2 we have

(2) (Γ, v©B), y : τ1 � E : τ2.

Applying Lemma C.1 to (1.b) and (2) yields the conclusion.
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Lemma C.6. If Γ � [B]E : τ and Γ � [B′] ≥ [B], then Γ � [B′]E : τ .

Proof. The definition of Γ � [B]E : τ implies

(1) Γ, v©B � E : τ .

The definition of Γ � [B′] ≥ [B] implies

(2.a) Γ � [B′].

(2.b) Γ, v©B ⊆ Γ, v©B′.

Weakening (1) with respect to (2.b) yields Γ, v©B′ � E : τ , which, along with
(2.a), is exactly the definition of Γ � [B′]E : τ .

If a binder-term-in-context has a code type e©τ , then we can convert it into
a term-in-context using the let-construct. This observation is manifested in the
following lemma.

Lemma C.7. If Γ � [B]O : e©τ , then Γ � let∗ B in O : e©τ .

We slightly strengthen the type preservation theorem 4.2, so as to make the
induction go through.

Theorem 4.2 (Type preservation). If v©∆� [B]E : τ and ∆� [B]E ⇓ [B′]V ,
then (1) v©∆ � [B′]V : τ , and (2) v©∆ � [B′] ≥ [B].

Proof. By induction on ∆� [B]E ⇓ [B′]V . For (2), note that, for all the implicit
rules, ∆ � [Bn+1] ≥ . . . ≥ [B1] follows immediately from transitivity of “≥”
and the induction hypotheses; for the three rules where binders are explicitly
mentioned, it is also clear that (2) holds.

For (1), we show a few cases.

Case [lit], [lam]: There is nothing to prove.

Case [app]: The rule in its full from is

∆ � [B1]E1 ⇓ [B2]λx.E′ ∆ � [B2]E2 ⇓ [B3]V ′ ∆ � [B3]E′{V ′/x} ⇓ [B4]V
∆ � [B1]E1 E2 ⇓ [B4]V

for which we reason as follows:

(1) By assumption, v©∆ � [B1]E1 E2 : τ .

(2) Inverting (Lemma C.4) (1) gives

a. v©∆ � [B1]E1 : θ2 → τ , and

b. v©∆ � [B1]E2 : θ2.

(3) From (2.a), by induction hypothesis 1 (counting from left to right),
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a. v©∆ � [B2]λx.E′ : θ2 → τ , and
b. v©∆ � [B2] ≥ [B1].

(4) Applying Lemma C.6 to (2.b) and (3.b) yields

v©∆ � [B2]E2 : θ2

By induction hypothesis 2,

a. v©∆ � [B3]V ′ : θ2

b. v©∆ � [B3] ≥ [B2].

(5) Applying Lemma C.6 to (4.b) and (3.a), and then inversion yields

v©∆, x : θ2 � [B3]E′ : τ

(6) Applying Substitution (Corollary C.5) to (5) and (4.a) yields

v©∆ � [B3]E′{V ′/x} : τ .

By induction hypothesis 3,

v©∆ � [B4]V : τ .

Case [fix ]: The rule in its full form is

∆ � [B1]E ⇓ [B2]λx.E′ ∆ � [B2]E′{fix (λx.E′)/x} ⇓ [B3]V
∆ � [B1]fixE ⇓ [B3]V

for which we reason as follows:

(1) By assumption, v©∆ � [B1]fixE : τ (where τ = θ1 → τ2 for some θ1 and
τ2).

(2) Inverting (1) gives

v©∆ � [B1]E : τ → τ .

(3) Applying induction hypothesis 1 to (2) yields

v©∆ � [B2]λx.E′ : τ → τ .

(4) Inverting (3) gives

a. v©∆, x : τ � [B2]E′ : τ

An application of the typing rule ([fix ]) to (3) gives

b. v©∆ � [B2]fixλx.E′ : τ

(5) Applying Substitution to (4.a) and (4.b) yields

v©∆ � [B2]E′{fix (λx.E′)/x} : τ .

(6) Applying induction hypothesis 2 to (5) yields

v©∆ � [B3]V : τ .
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Case [lam]: The rule is

∆, y : σ, B � [·]E{y/x} ⇓ [B′]O y /∈ dom B ∪ dom ∆
∆ � [B]λx.E ⇓ [B]λy.let∗ B′ in O

for which we reason as follows:

(1) By assumption, v©∆ � [B]λx.E : e©(σ1 → σ2)

(2) Inverting (1) gives

v©∆, x : v©σ1 � [B]E : e©σ2

from which it follows that v©∆, y : v©σ1�[B]E{y/x} : e©σ2. That is (noting
that v©∆, y : v©σ1 ≡ v©(∆, y : σ1))

a. v©(∆, y : σ1) � [B], and

b. v©(∆, y : σ1, B) � E{y/x} : e©σ2.

(3) Use the induction hypothesis on (2.b) (noting that Γ�E : τ ⇔ Γ�[·]E : τ),
we have

v©(∆, y : σ1, B) � [B′]O : e©σ2

(4) Apply Lemma C.7 to (3) yields

v©(∆, y : σ1, B) � let∗ B′ in O : e©σ2

Finally, applying the typing rule for dynamic lambda λy.E, [lam], yields
v©∆, v©B � λy.let∗ B′ in O : e©(σ1 → σ2).

Case [let]: Similar to the case of rule [lam].

Case [#]: The rule is

∆ � [B]E ⇓ [B′]O x /∈ dom B′ ∪ dom ∆
∆ � [B]#E ⇓ [B′, x : σ = O]x

for which we reason as follows:

(1) By assumption, v©∆ � [B]#E : τ . Without loss of generality, we can
assume that τ = v©σ; the other case, where τ = e©σ, can be reduced to
this case using one inversion. Therefore, we have,

v©∆ � [B]#E : v©σ.

(2) Inverting (1) gives

v©∆ � [B]E : e©σ

(3) Use induction hypothesis on (2) gives
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v©∆ � [B′]O : e©σ.

Because x /∈ dom B′ ∪dom ∆, we have v©∆� [B′, x : σ = O] by definition.
We also have v©(∆, B), x : v©σ � x : v©σ. Therefore, by definition, we have

v©∆ � [B′, x : σ = O]x : v©σ.

Recall that the observation of a complete program is defined to be that of
code type.

Definition 4.3 (Observation of complete program). For a complete pro-
gram �E : e©σ, we write E ↘ let∗ B in O if �[·]E ⇓ [B]O.

In accordance with this understanding of complete-program semantics, the
following corollary of the Type Preservation theorem (Theorem 4.2) provides
type preservation for a complete program.

Corollary 4.4 (Type preservation for complete programs). If �E : e©σ
and E ↘ O, then �O : e©σ.

Proof. Assume �[·]E ⇓ [B]O′ where O ≡ let∗ B in O′. We have

�E : e©σ
=⇒ �[·]E : e©σ
(∗)
=⇒ �[B]O′ : e©σ
(∗∗)
=⇒ �let∗ B in O′ : e©σ

where (∗) follows from Theorem 4.2 and (∗∗) follows from Lemma C.7.

C.2 Determinacy

Next, we would like to show that the operational semantics of vPCF2 is deter-
ministic. At the top level, determinacy can be easily phrased as “evaluating a
whole program gives a unique result, modulo α-equivalence”. Going into the
inductive steps for the proof, however, requires an extension of the notion of α-
equivalence to take into account of binders, and in turn, of contexts. This extra
conceptual complexity is induced, in particular, by the explicit name generations
and context manipulation in rules such as [lam].

Definition C.8 (Name substitution). A name substitution is a substitution
that maps variable names to variable names. Applying a name substitution θ to
a context Γ substitutes the variable names in Γ:

Γ{θ} , {(x{θ} : τ)|(x : τ) ∈ Γ}
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Definition C.9 (α-equivalence for terms-in-context). Let Γ � E : τ and
Γ′ � E′ : τ be two valid terms-in-context. We say that they are α-equivalent,
noted as (Γ � E) ∼α (Γ′ � E′), if there exists a name substitution θ such that

Γ′ ≡ Γ{θ}
E′ ∼α E{θ}

We then define the corresponding notion of α-equivalence for binders-in-
context (omitted, cf. Definition C.2), and the subsequent notion of α-equivalence
for binder-terms-in-context.

Definition C.10 (α-equivalence for binder-terms-in-context). Let Γ �

[B]E : τ and Γ′ � [B′]E′ : τ . We say that they are α-equivalent if (Γ � [B]) ∼α

(Γ′ � [B′]) and (Γ, v©B � E) ∼α (Γ′, v©B′ � E′).

All the above notions of α-equivalences define equivalence relations. This
follows immediately from the fact that the usual α-equivalence defines a equiv-
alence relation.

Lemma C.11 (Collecting binders preserves α-equivalence). Let Γ �

[B]E : ©σ and Γ′�[B′]E′ : ©σ be two valid terms-in-contexts. If (Γ � [B]E) ∼α

(Γ′ � [B′]E′), then (Γ � let∗ B in E) ∼α (Γ′ � let∗ B′ in E′).

Proof. Immediate.

Lemma C.12. Let (Γ � [B]λx.E) ∼α (Γ′ � [B′]λx′.E′) and (Γ � [B]E1) ∼α

(Γ′ � [B′]E′
1). Then, (Γ � [B]E{E1/x}) ∼α (Γ′ � [B′]E′{E′

1/x}).
Theorem C.13 (Determinacy modulo α-conversion). Let v©∆�[B1]E1 : τ
and v©∆′ � [B′

1]E
′
1 : τ be valid terms-in-contexts such that (v©∆ � [B1]E1) ∼α

(v©∆′ � [B′
1]E′

1). If ∆ � [B1]E1 ⇓ [B2]E2, then (1) for all B′
2 and E′

2 such that
∆′ � [B′

1]E
′
1 ⇓ [B′

2]E
′
2, we have (v©∆ � [B2]E2) ∼α (v©∆′ � [B′

2]E
′
2); and (2)

such B′
2 and E′

2 exist.
Furthermore, the derivation trees for ∆ � [B1]E1 ⇓ [B2]E2 and for ∆′ �

[B′
1]E

′
1 ⇓ [B′

2]E
′
2 have exactly the same shape.

Proof. By induction on ∆� [B1]E1 ⇓ [B2]E2, we prove that for all such ∆′, B′
1,

E′
1, B′

2, E′
2 that satisfy the rest of the premises, it holds that (v©∆1 � [B′

1]E
′
1) ∼α

(v©∆2 � [B′
2]E

′
2). The proof for (2) is easy, so we concentrate on (1).

We demonstrate two cases. For the expression forms E′ that have a unique
inversions (i.e., those that are not if-expressions), we omit the inversion of E′.

Case [app]: The derivations end with

∆ � [B1]E1 ⇓ [B2]λx.E3 ∆ � [B2]E2 ⇓ [B3]V1 ∆ � [B3]E3{V1/x} ⇓ [B4]V
∆ � [B1]E1 E2 ⇓ [B4]V

for which we have the following reasoning:

(1) The assumption (v©∆ � [B1]E1 E2) ∼α (v©∆′ � [B′
1]E

′
1 E′

2) implies
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a. (v©∆ � [B1]E1) ∼α (v©∆′ � [B′
1]E

′
1), and

b. (v©∆ � [B1]E2) ∼α (v©∆′ � [B′
1]E′

2).

(2) From (1.a), by induction hypothesis 1:

(v©∆ � [B2]λx.E3) ∼α (v©∆′ � [B′
2]λx.E′

3).

(3) From (1.b) and that binders B2 and B′
2 extend B1 and B′

1, by induction
hypothesis 2:

(v©∆ � [B3]V1) ∼α (v©∆′ � [B′
3]V ′

1)

(4) An application of Lemma C.12 to (2) and (3) (with binders properly ex-
tended), followed by an application of hypothesis 3, gives the conclusion.

Case [lam]: The derivations end with

∆, y : σ; B1 � [·]E{y/x} ⇓ [B2]O y /∈ dom B1 ∪ dom ∆
∆ � [B1]λx.E ⇓ [B1]λy.let∗ B2 in O

for which we have the following reasoning:

(1) The assumption (v©∆ � [B1]λx.E) ∼α (v©∆′ � [B′
1]λx′.E′) implies that

(v©∆, v©B1 � λx.E) ∼α (v©∆′, v©B′
1 � λx′.E′)

which, by definition, implies that

(v©(∆, y : σ1), v©B1 � E{y/x}) ∼α (v©(∆′, y′ : σ1), v©B′
1 � E′{y′/x′}).

(2) An application of the induction hypothesis to (1) yields

(v©(∆, y : σ1), v©B1 � [B2]O) ∼α (v©(∆′, y′ : σ1), v©B′
1 � [B′

2]O′)

By Lemma C.11, we have

(v©(∆, y : σ1), v©B1 � let∗ B2 in O)

∼α

(v©(∆′, y′ : σ′
1), v©B′

1 � let∗ B′
2 in O′)

This implies the conclusion.
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Types σ ::= b | σ1 → σ2

Raw terms E ::= ` | x | d | λx.E | E1 E2 | fixE
| if E1 E2 E3 | E1 ⊗ E2 | let x ⇐ E1 in E2

Typing Judgment vPCF ` ∆ � E : σ

The typing rules are very close to that of nPCF. For the convenience of the
reader, we display the complete rules here.

[lit]
` ∈ L(b)
∆ � ` : b

[var ]
x: σ ∈ ∆
∆ � x : σ

[cst]
Sg(d) = σ

∆ � d : σ
[lam]

∆, x: σ1 � E : σ2

∆ � λx.E : σ1 → σ2

[app]
∆ � E1 : σ2 → σ ∆ � E2 : σ2

∆ � E1 E2 : σ
[fix]

∆ � E : (σ1 → σ2) → (σ1 → σ2)
∆ � fixE : σ1 → σ2

[if ]
∆ � E1 : bool ∆ � E2 : σ ∆ � E3 : σ

∆ � if E1 E2 E3 : σ

[bop]
∆ � E1 : b1 ∆ � E2 : b2

∆ � E1 ⊗ E2 : b
(⊗ : b1 × b2 → b)

[let]
∆, x: σ1 � E2 : σ2 ∆ � E1 : σ1

∆ � let x ⇐ E1 in E2 : σ2

Equational Rules vPCF ` ∆ � E1 = E2 : σ

The equational rules distinguish a subset of (possibly non-closed)
terms, called values, ranged over by meta-variable V .
Values V ::= ` | x | λx.E | d

Let x, f , and g range over variables in the rules.

Congruence rules: = is a congruence. (Detailed rules omitted)
Equations for let-expressions

[unit] ∆ � let x ⇐ E in x = E : σ
[assoc] ∆� let x2 ⇐ (let x1 ⇐ E1 in E2) in E

= let x1 ⇐ E1 in let x2 ⇐ E2 in E : σ
[let.β] ∆ � let x ⇐ V in E = E{V/x} : σ
[let.app] ∆ � E1 E2 = let x1 ⇐ E1 in let x2 ⇐ E2 in x1 x2 : σ
[let.fix] ∆ � fixE = let x ⇐ E in fixx : σ1 → σ2

[let.if ] ∆ � if E1 E2 E3 = let x1 ⇐ E1 in if xE2 E3 : σ
[let.⊗] ∆ � E1 ⊗ E2 = let x1 ⇐ E1 in let x2 ⇐ E2 in x1 ⊗ x2 : b

Other rules
[βv] ∆ � (λx.E)V = E{V/x} : σ
[ηv] ∆ � (λx.f x) = f : σ1 → σ2

[fix-dinat] ∆ � fix (f ◦ g) = f(fix (g ◦ f)) : σ1 → σ2

[if-tt] ∆ � if tt E2 E3 = E2 : σ
[if-ff] ∆ � if ff E2 E3 = E3 : σ
[if-η] ∆ � if xE E = E : σ
[⊗] ∆ � `1 ⊗ `2 = ` : b (`1 ⊗ `2 = `)

Figure 14: One-level call-by-value language vPCF
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C.3 Annotation erasure

First, we display the equational rules of vPCF in Figure 14. As mentioned in
Section 4, vPCF is an instance of Moggi’s computational λ-calculus [35].

Lemma C.14 (Erasure of θ-typed values). Let V be a vPCF2-value (see
Figure 9). If Γ � V : θ (i.e., V is of a substitution-safe type), then |V | is a
vPCF-value.

Lemma 4.5 (Annotation erasure). If vPCF2 ` v©∆� [B]E : τ and vPCF2 `
∆ � [B]E ⇓ [B′]V , then vPCF ` ∆ � let∗ |B| in |E| = let∗ |B′| in |V | : |τ |.
Proof. We prove by induction on ∆ � [B]E ⇓ [B′]V that

∆; B � |E| = let∗ |B′ − B| in V : |τ |,

from which the conclusion follows using the congruence rule for let. We write
δi,jB (j ≥ i) for Bj − Bi.

Case [lit], [lam]: There is nothing to prove.

Case [app]: Applying Theorem 4.2 to E2 ⇓ V ′, and then using Lemma C.14,
we have that |V ′| is a vPCF-value. Now we have

|E1 E2| ≡ |E1| |E2|
i.h.= (let∗ |δ1,2B| in |λx.E′|) (let∗ |δ2,3B| in |V ′|)
= let∗ |δ1,2B| in let∗ |δ2,3B| in (λx.|E′|) |V ′|

[βv ]
= let∗ |δ1,3B| in |E′|{V ′/x}
i.h.= let∗ |δ1,3B| in let∗ |δ3,4B| in V ≡ let∗ |δ1,4B| in V.

Case [if-tt]: |if E1 E2 E3| ≡ if |E1| |E2| |E3|
i.h.= if (let∗ |δ1,2B| in tt) |E2| |E3|
= let∗ |δ1,2B| in (if tt |E2| |E3|) = let∗ |δ1,2B| in |E2|
i.h.= let∗ |δ1,2B| in let∗ |δ2,3B| in |V | ≡ let∗ |δ1,3B| in |V |.

Case [fix ]: |fixE| ≡ fix |E| i.h.= fix (let∗ |δ1,2B| in |λx.E′|)
= let∗ |δ1,2B| in fix (λx.|E′|)
= let∗ |δ1,2B| in |E′|{fix (λx.|E′|)/x}
i.h.= let∗ |δ1,2B| in let∗ |δ2,3B| in |V | ≡ let∗ |δ1,3B| in |V |.

Case [if-ff],[⊗]: Simple; similar to the case of Rule ([if-tt]).

Case [lift],[var],[cst]: Trivial.
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Case [lam]: ∆; B � |λx.E| ≡ λx.|E| ∼α λy.|E{y/x}|
i.h.= λy.(let∗ |B′| in |O|)
≡ let∗ |[B − B]| in |λy.(let∗ B′ in O)|.

For this step we use the induction hypothesis; we also apply the congruence for
λ-abstractions.

Case [app]: |E1@E2| ≡ |E1| |E2|
i.h.= (let∗ |δ1,2B| in |O1|) (let∗ |δ2,3B| in |O2|)
= let∗ |δ1,2B| in let∗ |δ2,3B| in |O1| |O2|
≡ let∗ |δ1,3B| in |O1@O2|.

Case [let]: |let x ⇐ E1 in E2| ≡ let x ⇐ |E1| in |E2|
∼α let y ⇐ |E1| in |E2{y/x}|
i.h.= let y ⇐ (let∗ |B′ − B| in |O1|) in (let∗ |B′′| in |O2|)
= let∗ |B′ − B| in let y ⇐ |O1| in (let∗ |B′′| in |O2|).

Case [#]: |#E| = |E| i.h.= let∗ |B′ − B| in |O|
= let∗ |B′ − B| in let x ⇐ |O| in x
= let∗ |[B′, x : σ = O] − B| in |x|.

Lemma 4.5 has the following immediate corollary for complete programs.

Theorem 4.6 (Annotation erasure for complete programs). If vPCF2 `
�E : e©σ and vPCF2 ` E ↘ O, then vPCF ` � |E| = |O| : σ.

Proof. Assume that �E : e©σ and E ↘ O. That is, �[·]E ⇓ [B]O′ where O ≡
let∗ B in O′). By Lemma 4.5, we have � |E| = let∗ |B| in |O′| ≡ |O| : σ.

C.4 Native implementation

C.4.1 A more “realistic” language: 〈v〉PCF2

The semantics of vPCF2 could re-evaluate values of code types—though such re-
evaluation does not change the result. Consider, for example, the evaluation of
the term (λx.x) (print@($int1 + 2)). The semantics first evaluates the argument
to the code value print@($int3), then proceeds to evaluate x{print@($int3)/x} ≡
print@($int3), which needs a complete recursive descent though it is already a
value. Such re-evaluation does not change the semantics, but it nevertheless is
less efficient, and does not model the actual implementation.

To establish a native implementation, we thus consider a variant of vPCF2,
〈v〉PCF2, which marks evaluated terms with angle brackets and prevents them
from re-evaluation.12 The detailed changes of 〈v〉PCF2 over vPCF2 are given in

12The reader might notice that angle brackets here have a similar functionality to quote
in Lisp and Scheme. But they serve two different purposes: angle brackets here prevent
re-evaluation at the semantics level, thereby removing an artifact of the substitution-based
semantics and bringing the semantics closer to the actual implementation; quote in Lisp
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Syntax
Raw terms E ::= ... | 〈O〉
Values V ::= ` | λx.E | 〈O〉
Typing Judgment Add the following rule

(Dynamic)
[eval’d ]

Γ � O : τ

Γ � 〈O〉 : τ
Evaluation Semantics The dynamic part is replaced by the following rules.

[eval’d ] 〈O〉 ⇓ 〈O〉 [lift]
E ⇓ `

$bE ⇓ 〈$b`〉 [var]
x ⇓ 〈x〉 [cst]

d ⇓ 〈d〉

[lam]
∆, y : σ; B � [·]E{y/x} ⇓ [B′]〈O〉 y /∈ dom B ∪ dom ∆

∆ � [B]λx.E ⇓ [B]〈λy.let∗ B′ in O〉

[app]
E1 ⇓ 〈O1〉 E2 ⇓ 〈O2〉

E1@E2 ⇓ 〈O1@O2〉

[let]

∆ � [B]E1 ⇓ [B′]〈O1〉 ∆, y : σ; B � [·]E2{y/x} ⇓ [B′′]〈O2〉
y /∈ dom B′ ∪ dom ∆

∆ � [B]let y ⇐ E1 in E2 ⇓ [B′]〈let x ⇐O1 in (let∗ B′′ in O2)〉

[#]
∆ � [B]E ⇓ [B′]〈O〉 x /∈ dom B′ ∪ dom ∆

∆ � [B]#E ⇓ [B′, x : σ = O]〈x〉

Figure 15: Changes of 〈v〉PCF2 over vPCF2

Figure 15. Note that binders consist of only already evaluated terms, so there
is no need to mark them with angle brackets.

The two languages vPCF2 and 〈v〉PCF2 are effectively equivalent, through
the following operation to remove the angle brackets in 〈v〉PCF2-terms:

Definition C.15 (Unbracketing). The unbracketing of an 〈v〉PCF2-term E,
noted as unbr(E), is the vPCF2-term resulted from E by removing all the angle
brackets in it, i.e., unbr(〈E〉) ≡ E and all other constructs are translated ho-
momorphically.
We have that 〈v〉PCF2 ` Γ � E : τ implies 〈v〉PCF2 ` Γ � unbr(E) : τ .

Theorem C.16 (Equivalence of vPCF2 and 〈v〉PCF2).

1. If vPCF2 ` ∆ � [B]unbr(E) ⇓ [B′]V ′, then there exists a 〈v〉PCF2-value V
such that 〈v〉PCF2 ` ∆ � [B]E ⇓ [B′]V and unbr(V ) ≡ V ′.

allows programmers to distinguish data from the surrounding programs. A similar concern
arises when implementing, e.g., syntactic theories.
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2. If 〈v〉PCF2 ` ∆ � [B]E ⇓ [B′]V , then it also holds that vPCF2 ` ∆ �

[B]unbr(E) ⇓ [B′]unbr(V ).

Proof. Simple induction.

Corollary C.17. If 〈v〉PCF2 ` ∆ � E : e©σ, and 〈v〉PCF2 ` ∆ � [B]E ⇓ [B′]V ,
then V is of the form 〈O〉.
Proof. By Theorem C.16, we have vPCF2 ` ∆ � [B]unbr(E) ⇓ [B′]unbr(V ).
Using the type preservation of vPCF2, we have unbr(V ) is of the form O. Since
V is a 〈v〉PCF2-value, it must be 〈O〉.

Note that every vPCF2-term E is also a 〈v〉PCF2-term, and unbr(E) ≡ E.
Thus, to evaluate a closed vPCF2-term E of type e©σ (i.e., vPCF2 ` �E : e©σ),
we can evaluate E using 〈v〉PCF2 semantics. Either the evaluation does not
terminate, which implies, by Theorem C.16(1), that the evaluation E in vPCF2

semantics does not terminate. Or 〈v〉PCF2 ` E ↘ 〈O〉 (defined appropriately
using Corollary C.17), which, by Theorem C.16(2), implies that vPCF2 ` E ↘
O.

Now that we have established the equivalence of vPCF2 and 〈v〉PCF2, it
suffices to give a native implementation of 〈v〉PCF2. In the rest of the section,
we will only work with 〈v〉PCF2 and leave it (instead of vPCF2) implicit whenever
possible.

C.4.2 The implementation language: vPCFΛ,st

Here we present the implementation language vPCFΛ,st, which can be viewed
as a subset of Standard ML [33]. In detail, vPCFΛ,st is vPCF with dynamic
constants removed, and enriched with a global state and an inductive type Λ
for representing 〈v〉PCF2 code types.

Λ = VAR of int | LITb of b | CST of const | LAM of int × Λ
| APP of Λ × Λ | LET of int × Λ × Λ

For the state, we only model the part in which we are interested. A state
S thus consists of a cell n for keeping the counter of name generation, and a
cell B for keeping the accumulated bindings: S = 〈n, B〉. We also use three
specialized primitives (they can be implemented using SML operations := (set)
and ! (get), as shown in Figure 16): genvar() generates a new variable name
using the counter; addBind(E : Λ) : Λ adds a binding x = E to the accumulated
bindings such that x is a newly generated name, and returns the variable x;
finally letBind(E : Λ) creates a dynamic local scope for accumulating bindings
during the evaluation of term E, and inserts the accumulated bindings after
the evaluation of E. The three primitives are governed by the following typing
rules. The evaluation semantics of vPCFΛ,st is given in Figure 17.

Γ � genvar() : int

Γ � E : Λ
Γ � addBind(E) : Λ

Γ � E : Λ
Γ � letBind(E) : Λ
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val n : int ref = ref 0 (∗ name generation counter ∗)
val B : (int * exp) list ref = ref [] (∗ accumulated bindings ∗)

fun init () = n := 0 (∗ reset the counter ∗)
fun genvar () = (∗ genvar() ∗)

!n before n := ! n + 1

fun letBind e_thunk = (∗ letBind(E) ≡letBind (fn () => E) ∗)
let val b = ! B before B := []

val r = e_thunk ()

fun genLet [] body =

body

| genLet ((x, e) :: rest) body =

genLet rest (LET(x, e, body))

in

genLet (! B) r before B := b

end

fun addBind e = (∗ addBind(E) ≡addBind(E) ∗)
let val name = genvar () in

(B := (name, e) :: ! B); (VAR name)

end

Figure 16: ML implementation of vPCFΛ,st-primitives

C.4.3 Native embedding

Definition C.18 (Embedding translation {|−|}vε of 〈v〉PCF2 into vPCFΛ,st).

〈v〉PCF2 ` Γ � E : τ =⇒ vPCFΛ,st ` {|Γ|}vε � {|E|}vε : {|τ |}vε

Types : {|e©σ|}vε = {|v©σ|}vε = Λ, {|b|}vε = b, {|τ1 → τ2|}vε = {|τ1|}vε →{|τ2|}vε

Terms : {|$bE|}vε = LITb({|E|}vε), {|d|}vε = CST(HdI), {|λx.E|}vε = λvελx.{|E|}vε,
{|E1@E2|}vε = APP({|E1|}vε, {|E2|}vε), {|#E|}vε = #vε({|E|}vε),
{|let x ⇐ E1 in E2|}vε = letvε{|E1|}vελx.{|E2|}vε, {|〈O〉|}vε = {|O|}〈〉ε

“Evaluated” terms:
{|$b`|}〈〉ε = LITb(`), {|vi|}〈〉ε = VAR(i), {|λvi.O|}〈〉ε = LAM(i, {|O|}〈〉ε),
{|O1@O2|}〈〉ε = APP({|O1|}〈〉ε, {|O2|}〈〉ε), {|d|}〈〉ε = CST(HdI),
{|let vi ⇐O1 in O2|}〈〉ε = LET(i, {|O1|}〈〉ε, {|O2|}〈〉ε)

Bindings:
{|·|}vε = nil
{|B, vi : σ = O|}vε = (i, {|O|}〈〉ε) :: {|B|}vε

where we use the following terms:

λvε ≡ λf.let i ⇐ genvar() in LAM(i, letBind(f (VAR(i))))
letvε ≡ λe.λf.let i ⇐ genvar() in LET(i, e, letBind(f (VAR(i))))
#vε ≡ λe.addBind(e)

Note that the embedding translation is partial: among “evaluated” terms
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State S ::= 〈n, B〉 (n ∈ N)
Bindings B ::= nil | (n, V ) :: B (n ∈ N)

Judgment Form vPCFΛ,st ` E, S ⇓ V, S′

We use the following abbreviations.

E1 ⇓ V1 . . . En ⇓ Vn

E ⇓ V

≡ E1, S1 ⇓ V1, S2 . . . En, Sn ⇓ Vn, Sn+1

E, S1 ⇓ V, Sn+1

LET∗ (n1, V1) :: . . . :: (nm, Vm) :: nil in V

≡ LET(nm, Vm, . . .LET(n1, V1, V ) . . .)

(Core)

[app]
E1 ⇓ λx.E′ E2 ⇓ V ′ E′{V ′/x} ⇓ V

E1 E2 ⇓ V
[if-tt]

E1 ⇓ tt E2 ⇓ V

if E1 E2 E3 ⇓ V

[if-ff]
E1 ⇓ ff E3 ⇓ V

if E1 E2 E3 ⇓ V
[fix]

E ⇓ λx.E′ E′{fix (λx.E′)/x} ⇓ V

fixE ⇓ V

[⊗]
E1 ⇓ V1 E2 ⇓ V2

E1 ⊗ E2 ⇓ V
(V1 ⊗ V2 = V )

(Term and State)

[cons]
E1 ⇓ V1 . . . En ⇓ Vn

c(E1, . . . , En) ⇓ c(V1, . . . , Vn)
(c ∈ {VAR, LITb, CST, LAM, APP, LET})

[genvar ]
genvar(), 〈n, B〉 ⇓ n, 〈n + 1, B〉

[addBind ]
E, S ⇓ V, 〈n, B〉

addBind(E), S ⇓ VAR(n), 〈n + 1, (n, V ) :: B〉

[letbind ]
E, 〈n, nil〉 ⇓ V, 〈n′, B′〉

letBind(E), 〈n, B〉 ⇓ LET∗ B′ in V, 〈n′, B〉

Figure 17: The evaluation semantics of vPCFΛ,st
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(i.e., those enclosed in angle brackets), only those whose variables (both free
and bound) range in the set {vi : i ∈ Z} have a translation. A 〈v〉PCF2-term is
vε-embeddable if all its “evaluated” subterms satisfy this condition. Clearly, all
vPCF2-terms, viewed as 〈v〉PCF2-terms, are without “evaluated” subterms and
thus vε-embeddable. In the following, when we write {|E|}vε, we implicitly state
that E is vε-embeddable.

Note also that α-conversion is not preserved by the embedding translation:
bound variables vi are translated to integer i under the translation for the
“evaluated” terms. As a consequence, a general substitution lemma of the
following form fails for this translation.

{|E{E′/x}|}vε ∼α {|E|}vε{{|E′|}vε/x}

The problem occurs when the capture-free substitution goes under a dynamic λ-
abstraction inside an “evaluated” term, which possibly requires the renaming of
the bound variable. For example, the substitution 〈λv1.x@v1〉{〈v1〉/x} should re-
name the bound variable v1 and yield 〈λv2.v1@v2〉: the substitution of the trans-
lated terms, {|〈λv1.x@v1〉|}vε{{|〈v1〉|}vε/x} ≡ LAM(1, APP(VAR(1), VAR(1))), is
different from the translation of the substitution LAM(2, APP(VAR(1), VAR(2))).

Fortunately, such problematic substitutions do not actually occur in an eval-
uation. Intuitively, all variables occurring inside an evaluated term are already
generated, and thus not amenable to substitution. This intuition is captured by
the following well-formedness condition.

Definition C.19 (Well-formed 〈v〉PCF2-terms). A 〈v〉PCF2-term E is well-
formed, if for all its “evaluated” subterms 〈O〉, no free variable in O is bound
by a static or dynamic λ-abstraction.

The class of well-formed terms is closed under evaluation. It includes all the
vPCF2-terms.

Lemma C.20. If λx.E and E′ are both well-formed, then so is E{E′/x}.
Lemma C.21. If E is well formed and [B]E ⇓ [B′]E′, then all terms occurring
in its derivation, which include E′, are well formed.

Proof. By induction on the derivation. We use the previous lemma for function
application.

For well-formed terms, capture-free substitution used in the β-reduction has
a substitution lemma.

Lemma C.22 (Substitution lemma for well-formed terms). If λx.E is
well-formed, then {|E{E′/x}|}vε ≡ {|E|}vε{{|E′|}vε/x}.13

13Here, strict syntactic equality is possible, because we are free to pick a representative from
the α-equivalent class formed by the possible results of the substitution.
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Proof. By the definition of a well-form term, x does not appear inside any
“evaluated” subterms of E. Now we proceed by induction. In particular, for
the case of 〈O〉, we have 〈O〉{E′/x} ≡ 〈O〉; and for the case of λy.E′, renaming
y does not affect variable names that appear inside the evaluated terms, again
by the definition of a well-formed term.

The correctness proof of the native embedding also uses a few other nota-
tions.

• We write VI for the set of variable names indexed by set I, where I is a
subset of the integer set Z, i.e., VI = {vi : i ∈ I}.

• We write [n] for the set {0, 1, . . . , n − 1}.
• For 〈v〉PCF2 ` v©∆ � E : τ where dom ∆ ⊆ VZ, we write {|E|}C

vε (“closed
embedding translation”) for the term {|E|}vε{ΦC} where the substitution
ΦC = {VAR(i)/vi : i ∈ Z}. It is clear that the resulting term must be
closed.

We are ready to prove the correctness of the native embedding. We first prove
the soundness of the implementation (that its evaluation gives a correct result
whenever it terminates), and then prove the completeness of the implemen-
tation (that its evaluation must terminate if the source program terminates
according to the 〈v〉PCF2-semantics). As for the notation, we write iV for the
iimplementation of a value V .

Lemma C.23 (Soundness of the Implementation). If

(a) v©∆ � [B]E : τ where dom ∆ ∪ dom B ⊆ V[n],

(b) E is well-formed, and

(c) vPCFΛ,st ` {|E|}C
vε, S ⇓ iV , S′ where S = 〈n, {|B|}C

vε〉,
then there exist a 〈v〉PCF2-value V , a 〈v〉PCF2-binding B′, and an integer n′ ≥ n
such that

• 〈v〉PCF2 ` ∆ � [B]E ⇓ [B′]V ,

• S′ = 〈n′, {|B′|}C
vε〉, iV = {|V |}C

vε, and

• dom ∆ ∪ dom B′ ⊆ V[n′].

Proof. By induction on the derivation of vPCFΛ,st ` {|E|}C
vε, S ⇓ iV , S′ (Condi-

tion (c)). It is a routine task to ensure Condition (a) during the induction. To
ensure Condition (b) during the induction, we use Lemma C.21.

We perform a case analysis on E.

Case E ≡ `: Simple.

61



Case E ≡ 〈O〉: Since {|〈O〉|}C
vε must be a value already (a simple inductive

proof), we have, by inversion, that iV ≡ {|〈O〉|}C
vε and S′ = S. Therefore, we

put B′ = B, V = 〈O〉 and n′ = n: 〈O〉 ⇓ 〈O〉.

Case E ≡ vi: Since {|vi|}C
vε ≡ VAR(i) is a value, we have that iV ≡ VAR(i)

and S′ = S. We can put B′ = B, V = 〈vi〉, and n′ = n: vi ⇓ 〈vi〉.

Case E ≡ λx.E′: Since {|λx.E′|}C
vε ≡ λx.{|E′|}C

vε is a value, we have that iV ≡
λx.{|E′|}C

vε and S′ = S. We can put B′ = B, V = λx.E′, and n′ = n: λx.E′ ⇓
λx.E′.

Case E ≡ E1 E2: We have that {|E1 E2|}C
vε ≡ {|E1|}C

vε {|E2|}C
vε. By inversion,

the last step in the derivation of vPCFΛ,st ` {|E1|}C
vε {|E2|}C

vε, S ⇓ iV , S′ must be
of the following form (let S1 = S and S4 = S′).

{|E1|}C
vε, S1 ⇓ λx.iE ′, S2 {|E2|}C

vε, S2 ⇓ iV ′, S3 iE ′{iV ′/x}, S3 ⇓ iV , S4

{|E1|}C
vε {|E2|}C

vε, S1 ⇓ iV , S4

where S1 = 〈n, {|B|}C
vε〉. We have the following reasoning:

(1) By induction hypothesis 1 (and by the fact that only λ-abstractions trans-
lates to λ-abstractions under the vε-translation), there exist B2, E′, and
n2 such that

a. ∆ � [B]E1 ⇓ [B2]λx.E′, {|E′|}C
vε = iE ′; and

b. n2 ≥ n, S2 = 〈n2, {|B2|}C
vε〉, dom ∆ ∪ dom B2 ⊆ V[n2].

(2) By induction hypothesis 2 and (1.b), there exist B3, V ′, and n3 such that

a. ∆ � [B2]E2 ⇓ [B3]V ′, {|V ′|}C
vε = iV ′; and

b. n3 ≥ n2, S3 = 〈n3, {|B3|}C
vε〉, dom ∆ ∪ dom B3 ⊆ V[n3].

(3) By Lemma C.21, λx.E′ is well-formed, thus by Lemma C.22, we have

iE ′{iV ′/x} ≡ {|E′|}C
vε{{|V ′|}C

vε/x}
≡ {|E′{V ′/x}|}C

vε

(4) By (2), (3), and induction hypothesis 3, there exist B4, V , and n4 such
that

a. ∆ � [B3]E′{V ′/x} ⇓ [B4]V , {|V |}C
vε = iV ; and

b. n4 ≥ n3, S4 = 〈n4, {|B4|}C
vε〉, dom ∆ ∪ dom B4 ⊆ V[n4].

Finally, one application of the 〈v〉PCF2 evaluation rule ([app]) to (1.a), (2.a),
and (4.a) yields: ∆ � [B1]E1 E2 ⇓ [B4]V .
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Case E ≡ fixE1: We have that {|fixE1|}C
vε ≡ fix {|E1|}C

vε. By inversion, the
derivation ends with

{|E1|}C
vε, S1 ⇓ λx.iE ′, S2 iE ′{fixλx.iE′/x}, S2 ⇓ iV , S3

fix {|E1|}C
vε, S1 ⇓ iV , S3

where S1 = 〈n, {|B|}C
vε〉. Then we reason as follows:

(1) By induction hypothesis 1 (and by the fact that only λ-abstractions trans-
late to λ-abstractions under the vε-translation), there exist B2, E′, and
n2 such that

a. ∆ � [B]E1 ⇓ [B2]λx.E′, {|E′|}C
vε = iE ′; and

b. n2 ≥ n, S2 = 〈n2, {|B2|}C
vε〉, dom ∆ ∪ dom B2 ⊆ V[n2].

(2) Applying Lemma C.21 to (1.a) gives that λx.E′ is well-formed, and thus
by Lemma C.22, we have

iE ′{fixλx.iE′/x} ≡ {|E′|}C
vε{{|fixλx.E′|}C

vε/x}
≡ {|E′{fixλx.E′/x}|}C

vε

(3) By (2) and induction hypothesis 2, there exist B3, V , and n3 such that

a. ∆ � [B2]E′{fixλx.E′/x} ⇓ [B3]V , {|V |}C
vε = iV ; and

b. n3 ≥ n2, S3 = 〈n3, {|B3|}C
vε〉, dom ∆ ∪ dom B3 ⊆ V[n3].

Finally, one application of the evaluation rule ([fix ]) to (1.a) and (3.a)
yields: ∆ � [B1]fixE1 ⇓ [B3]V .

Case E ≡ if E1 E2 E3 or E ≡ E1 ⊗ E2: Similar to the proofs for E1 E2

and for fixE1, and only simpler, since these cases are free of the complication
introduced by capture-free substitution.

Case E ≡ $bE1, E ≡ E1@E2, or E ≡ d: Simple.

Case E ≡ λx.E1: We have {|λx.E1|}C
vε ≡ λvε ((λx.{|E1|}vε){ΦC}). By a few

inversions from vPCFΛ,st ` {|λx.E1|}C
vε, 〈n, {|B|}C

vε〉 ⇓ iV , S′, we have the following
two immediate subderivations (omitting some trivial branches)

genvar(), 〈n, {|B|}C
vε〉 ⇓ n, 〈n + 1, {|B|}C

vε〉
{|E1|}vε{VAR(n)/x}{ΦC}, 〈n + 1, nil〉 ⇓ iV ′, 〈n′, iB ′〉

((λx.{|E1|}vε){ΦC}) (VAR(n)), 〈n + 1, nil〉 ⇓ iV ′, 〈n′, iB ′〉
L, 〈n + 1, {|B|}C

vε〉 ⇓ LET∗ iB ′ in iV ′, 〈n′, {|B|}C
vε〉

LAM(n, L), 〈n + 1, {|B|}C
vε〉 ⇓ LAM(n, LET∗ iB ′ in iV ′), 〈n′, {|B|}C

vε〉
where L ≡ letBind(((λx.{|E1|}vε){ΦC}) (VAR(n))).
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Note that

{|E1|}vε{VAR(n)/x}{ΦC} ≡ {|E1{vn/x}|}vε{VAR(n)/vn}{ΦC} ≡ {|E1{vn/x}|}vε{ΦC}

(the second equality follows from the definition of ΦC). From v©∆ � [B]λx.E1 :
e©(σ1 → σ2) and dom ∆ ∪ dom B ⊆ V[n], it follows that v©{∆, vn : σ1; B} �

E1{vn/x} : v©σ2 and dom(∆, vn : σ1)∪ dom B ⊆ V[n+1]. Furthermore, E1{vn/x}
is clearly well-formed. Thus, by induction hypothesis, there exist B′′ and V ′′

such that

a. ∆, vn : σ1; B�[·]E1{vn/x} ⇓ [B′]V ′′ and {|V ′′|}C
vε = iV ′. Type Preservation

shows that V ′′ ≡ 〈O〉 for some O; and

b. iB′ = {|B′|}C
vε, dom ∆ ∪ dom B′ ⊆ V[n′], and n′ ≥ n + 1.

Finally, put V = 〈λvn.let∗ B′′ in O〉 and B′ = B, and apply the evaluation
rule ([lam]) to (a). Noting that vn /∈ V[n] ⊇ dom ∆ ∪ dom B, we have that
∆ � [B]E1 : [B]V . It is easy to check that {|V |}vε ≡ LAM(n, LET∗ iB ′ in iV ′).

Case E ≡ let x ⇐ E1 in E2: Similar to the case of λx.E1.

Case E ≡ #E1: By inversion on the assumption, the derivation ends with

{|E1|}C
vε, S1 ⇓ iV ′, S2 addBind(iV ′), S2 ⇓ iV , S′

#vε {|E1|}C
vε, S1 ⇓ iV , S′

where S1 = 〈n, {|B|}C
vε〉. Then we reason as follows.

(1) By induction hypothesis 1, there exist B2, V ′, and n2 such that

a. ∆ � [B]E1 ⇓ [B2]V ′ and {|V ′|}C
vε = iV ′. By type preservation, V ′ ≡

〈O〉 for some O; and

b. n2 ≥ n, S2 = 〈n2, {|B2|}C
vε〉, and dom ∆ ∪ dom B2 ⊆ V[n2].

(2) Inverting the second premise, we have that iV = VAR(n2), and S′ = 〈n2+
1, (n2, iV

′) :: {|B2|}C
vε〉. We can put V ≡ 〈vn2 〉, B′ ≡ (B2, vn2+1 : σ = O),

and n′ ≡ n2+1; it is easy to check that {|V |}C
vε = iV and 〈n′, {|B′|}C

vε〉 = S′.
Note also that vn2 /∈ V[n2] ⊇ dom ∆ ∪ dom B2. Now we can apply the
rule ([#]) to get the result.

Lemma C.24 (Completeness of the Implementation). If

(a) v©∆ � [B]E : τ where dom ∆ ∪ dom B ⊆ V[n],

(b) E is well-formed, and

(c) 〈v〉PCF2 ` ∆ � [B]E ⇓ [B2]V ,
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then there exist B′
2, V ′, and n′ ≥ n such that

• 〈v〉PCF2 ` ∆ � [B]E ⇓ [B′
2]V

′,

• vPCFΛ,st ` {|E|}C
vε, 〈n, {|B|}C

vε〉 ⇓ V ′, 〈n′, {|B′
2|}C

vε〉, and

• dom ∆ ∪ dom B′ ⊆ V[n′].

Proof. By induction on the height of the derivation of 〈v〉PCF2 ` ∆ � [B]E ⇓
[B2]V (Condition (c)). It is a routine task to ensure Condition (a) during the
induction. To ensure Condition (b) during the induction, we use Lemma C.21.

We perform case analysis on the last rule used in the derivation.

Case [lit], [lam]: Simple.

Case [app]: We combine the induction hypotheses and Lemma C.22.

Case [fix ]: We combine the induction hypotheses and Lemma C.22.

Case [if-tt], [if-ff], [⊗]: We combine the induction hypotheses, and use the fact
that constants of base types translate to themselves.

Case [eval’d ], [lift], [var], [cst], [app]: Simple. See also the corresponding cases
in the soundness proof (Lemma C.23).

Case [lam]: The derivation tree takes the following form

D
∆, y : σ; B � [·]E{y/x} ⇓ [B′]〈O〉 y /∈ dom B ∪ dom ∆

∆ � [B]λx.E ⇓ [B]〈λy.let∗ B′ in O〉
Since vn /∈ dom ∆ ∪ dom B, we have

(∆, y : σ; B � E{y/x}) ∼α (∆, vn : σ; B � E{vn/x}) .

By Theorem C.13, there exist B′′ and O′ such that (∆, vn : σ; B � [B′]O) ∼α

(∆′, vn : σ; B � [B′′]O′) and there is a a derivation for

∆, vn : σ; B � [·]E{vn/x} ⇓ [B′′]〈O′〉

that has the same size as derivation D. Noting further that E{vn/x} is well-
formed, we can apply the induction hypothesis to conclude that ∃B′′′,O′′, n′ ≥
n + 1 such that the following hold.

(1) ∆, vn : σ; B � [·]E{vn/x} ⇓ [B′′′]〈O′′〉. Again, by Theorem C.13, we have
that (∆, vn : σ; B � [B′′]O′) ∼α (∆, vn : σ; B � [B′′′]O′′).

(2) vPCFΛ,st ` {|E{vn/x}|}C
vε, 〈n + 1, nil〉 ⇓ {|〈O′′〉|}C

vε, 〈n′, {|B′′′|}C
vε〉.

65



(3) dom ∆ ∪ {vn} ∪ dom B′ ⊆ V[n′].

We can then construct derivations for

• 〈v〉PCF2 ` ∆ � [B]E[B]〈let∗ B′′′ in O′′〉 ⇓ , by applying rule ([lam]) to
(1), and

• vPCFΛ,st ` {|λx.E|}C
vε, 〈n, {|B|}C

vε〉 ⇓ {|〈λvn.let∗ B′′′ in O′′〉|}C
vε, 〈n, {|B|}C

vε〉,
using a derivation in the form appeared in the case E ≡ λx.E1 of the
soundness proof (Lemma C.23)

The conclusion follows immediately.

Case [let]: Similar to the case of rule ([lam]).

Case [#]: We build the derivation from the induction hypothesis. See also
the corresponding cases in the soundness proof (Lemma C.23).

Definition C.25 (Simulating the evaluation in vPCFΛ,st). Let vPCF2 `
�E : ©σ. We write simEval(E, t) for a vPCFΛ,st-term t : Λ, if ∃S′.vPCFΛ,st `
letBind({|E|}vε), 〈0, nil〉 ⇓ t, S′.

Theorem C.26 (Total correctness). Let vPCF2 ` �E : ©σ.

1. If vPCF2 ` E ↘ O for some O, then there is a term O′ such that O′ ∼α O
and simEval (E, {|O′|}vε).

2. If simEval (E, t) for some t : Λ, then there is a term O such that t ≡ {|O|}vε

and vPCF2 ` E ↘ O.

Proof. We combine Theorem C.16, Lemma C.23, and Lemma C.24.

C.5 Call-by-value type-directed partial evaluation

C.5.1 Semantic correctness

Lemma C.27. For all types σ, nPCF ` � |↓σ| = λx.x : σ → σ and nPCF `
� |↑σ| = λx.x : σ → σ.

Proof. By a straightforward induction on type τ .

Theorem C.28 (Semantic correctness of TDPE). If vPCFtdpe ` �E : σd

and vPCF2 ` NF (E) ⇓ O, then vPCF ` � |O| = |E| : σ.

(Note that the two erasures are different: One operates on vPCF2-terms, the
other on vPCFtdpe-terms.)

Proof. Similar to the proof of the corresponding theorem in the call-by-name
case, Theorem 2.12, but using Lemma C.27 and Theorem 4.6 instead.
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C.5.2 Syntactic correctness

Theorem 4.8 (Refined type preservation). If vPCF2 ` v©var (∆) I [B]E : τ
and vPCF2 ` ∆ � [B]E ⇓ [B′]V , then vPCF2 ` v©var (∆) I [B′]V : τ .

Proof. (Sketch) Similar to the proof of Theorem 4.2. As always, the most non-
trivial case is the rule ([app]), for which we prove a substitution lemma for the
refined type system (similar to Lemma B.9.)

Corollary 4.9 (Refined type preservation for complete programs). If
I E : e©nc(σ) and E ↘ O, then I O : e©nc(σ).

Theorem 4.10 (Normal-form code types). If V is an vPCF2-value (Fig-
ure 8), and vPCF2 ` v©var (∆) I V : v©X(σ) where X is av , nv, bd, or nc, then
V ≡ O for some O and ∆ �X |O| : σ.

Proof. Similar to the proof of Theorem 2.14.

Lemma 4.11. (1) The extraction functions (Figure 10c) have the following
normal-form types (writing σ©nv for σ{v©nv (b)/b : b ∈ B}.)

I ↓σ : σ©nv → v©nv (σ), I ↑σ : v©av (σ) → σ©nv.

(2) If vPCFtdpe ` Γ � E : ϕ, then vPCF2 ` {|Γ|}nv
ri I {|E|}ri : {|ϕ|}nv

ri , where
{|ϕ|}nv

ri = ϕ{v©nv (b)/bd : b ∈ B}.
Proof.
(1) By induction on type σ.

Case σ = b: Because at the base type, b©nv = v©nv (b), we just need to show:
I λx.x : v©nv (b) → v©nv (b) for ↓b, and I λx.x : v©av (b) → v©nv (b) for ↑b. This
is simple.

Case σ = σ1→σ2: Noting that (σ1 →σ2)©nv = σ©nv
1 →σ©nv

2 , we give the fol-
lowing typing derivations, in the compact style used in the proof of Lemma 2.15.

• For I ↓σ1→σ2 : (σ©nv
1 → σ©nv

2 ) → v©nv (σ1 → σ2):

f : σ©nv
1 → σ©nv

2 , x : v©var (σ1) I ↓σ2(

σ©nv
2︷ ︸︸ ︷

f (↑σ1
x︸︷︷︸

σ©nv
1

))

︸ ︷︷ ︸
v©nv

(σ2)

: e©nc(σ2)

Note the use of implicit coercions for term x and for ↓σ2(f (↑σ1
x)).
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• For I ↑σ1→σ2
: v©av (σ1 → σ2) → (σ©nv

1 → σ©nv
2 ):

e : v©av (σ1 → σ2), x : σ©nv
1 I ↑σ2

(#(

e©bd
(σ2)︷ ︸︸ ︷

e@( ↓σ1x︸︷︷︸
v©nv

(σ1)

))

︸ ︷︷ ︸
v©var

(σ2)

) : σ©nv
2

(2) By a simple induction on vPCFtdpe ` Γ � E : ϕ. For the case where E ≡
dd with Sg(d) = σ, we use the typing of ↑σ from part (1) and the fact that
{|σd|}nv

ri ≡ {|σ{bd/b : b ∈ B}|}nv
ri ≡ σ{v©nv (b)/b : b ∈ B} ≡ σ©nv.

Theorem 4.12. If vPCFtdpe ` �E : σd, then vPCF2 `I NF (E) : v©nv (σ).

Proof. By Lemma 4.11(2), we have vPCF2 `I {|E|}ri : {|σd|}nv
ri . Since {|σd|}nv

ri ≡
σ©nv, applying ↓σ : σ©nv → v©nv (σ) (Lemma 4.11(1)) to {|E|}ri yields the con-
clusion.

Corollary C.29 (Syntactic correctness of TDPE). For vPCFtdpe ` �E :
σd, if vPCF2 ` NF (E) ↘ V , then V ≡ O for some O and vPCF ` ∆�nc |O| : σ.

Proof. We use Theorem 4.12, Corollary 4.9, and Theorem 4.10.
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D Notation and symbols

Meta-variables and fonts

E (one-level or two-level) terms
x, y, z variables
τ (resp. σ) two-level (resp. one-level) types 8,9,

22,53
ϕ two-level types in TDPE languages 16,25
θ substitution-safe types (vPCF2) 22
Γ (resp. ∆) two-level/one-level typing contexts 8,9
B accumulated bindings 23
b base types 7
` literals (constants of base types) 7
d dynamic constants in signature Sg 8
V values (canonical terms) 8,23
O code-typed values 8,23
S state 59
Sans serif (bool, CST) syntax
Underlined (λx., @) dynamic constructs 8,22
dd, bd dynamic constants and base types in

TDPE languages
16,25

Language and Judgments

L ` J judgment J holds in language L.

General judgments

Γ � E : τ term-in-context: “term E is of type τ
under context Γ”

Γ � E1 = E2 : τ equation-in-context: “E1 and E2 are equal
terms of type τ under context Γ”

nPCF2: call-by-name two-level language 8

E ⇓ V evaluation of a statically closed term 8
Γ I E : τ term-in-context with refined typing for

βη-normal object terms
18

nPCF: call-by-name one-level language 9

∆ �X E : σ
(X ∈ {at ,nf })

typing judgments for βη-normal forms 18

nPCFΛ: CBN language with a term type 12

nPCFtdpe and vPCFtdpe: two-level languages for TDPE 16,25
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vΛ and nΛ: pure simply typed λ-calculus 11,34

vPCF2 and 〈v〉PCF2: call-by-value two-level languages 23,56

Γ � [B]E : τ binder-term-in-context 24,46
Γ � [B] binder-in-context 46
Γ � [B] ≥ [B′] binder extension 46
B − B′ difference of binder B and its prefix B′ 46
(Γ � E) ∼α

(Γ′ � E′)
α-equivalence for terms-in-context 51

(Γ � [B]E) ∼α

(Γ′ � [B′]E′)
α-equivalence for binder-terms-in-context 51

Γ � [B]E ⇓ [B′]V evaluation of a binder-term-in-context 23
E ↘ O evaluation of a complete program 24
Γ I E : τ term-in-context with refined typing for

λc-normal object terms
27

vPCF: call-by-value one-language with effects 53

∆ �X E : σ
X = av ,nv , bd ,nc

typing judgments for λc-normal forms 27

vPCFΛ,st: CBV language with a term type and state 59

E, S ⇓ V, S′ evaluation 59

General notations

[[−]] (denotational) meaning function 13,35
{|−|} syntactic translation
{|−|}nε native embedding of nPCF2 into nPCFΛ 13
{|−|}vε, {|−|}〈〉ε native embedding of 〈v〉PCF2 into vPCFΛ,st 58
{|−|}pκ Plotkin’s CPS transformations 11,34
{|−|}df2κ, {|−|}dfκ Danvy and Filinski’s one-pass CPS

transformation
11,34

| − | annotation erasure of two-level terms 10,16,24
≡ strict syntactic equality 7
∼α α-equivalence 7
©σ, v©σ,©at (σ), . . . code types 8,18,

23,27
D(−) decoding of a term representation 13
unbr(−) unbracketing of 〈v〉PCF2-terms 56
E{θ} application of the substitution θ to E

TDPE-specific notations

↓σ reification function at type σ 16,25
↑σ reflection function at type σ 16,25
{|−|}ri residualizing instantiation 16,25
NF (−) static normalization function 16,25
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