
B
R

IC
S

R
S

-00-43
B

rabrand
etal.:

P
ow

erF
orm

s:
D

eclarative
C

lient-S
ide

F
orm

F
ield

V
alidation

BRICS
Basic Research in Computer Science

PowerForms: Declarative Client-Side
Form Field Validation

Claus Brabrand
Anders Møller
Mikkel Christensen, Ricky
Michael I. Schwartzbach

BRICS Report Series RS-00-43

ISSN 0909-0878 December 2000

Copyright c© 2000, Claus Brabrand & Anders Møller & Mikkel
Christensen, Ricky & Michael I. Schwartzbach.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/43/

PowerForms:

Declarative Client-Side Form Field Validation

Claus Brabrand Anders Møller Mikkel Ricky
Michael I. Schwartzbach

BRICS, Department of Computer Science
University of Aarhus, Denmark

{brabrand,amoeller,ricky,mis}@brics.dk

Abstract

All uses of HTML forms may benefit from validation of the specified
input field values. Simple validation matches individual values against
specified formats, while more advanced validation may involve interde-
pendencies of form fields.

There is currently no standard for specifying or implementing such
validation. Today, CGI programmers often use Perl libraries for sim-
ple server-side validation or program customized JavaScript solutions for
client-side validation.

We present PowerForms, which is an add-on to HTML forms that
allows a purely declarative specification of input formats and sophisti-
cated interdependencies of form fields. While our work may be seen as
inspiration for a future extension of HTML, it is also available for CGI
programmers today through a preprocessor that translates a PowerForms
document into a combination of standard HTML and JavaScript that
works on all combinations of platforms and browsers.

The definitions of PowerForms formats are syntactically disjoint from
the form itself, which allows a modular development where the form is
perhaps automatically generated by other tools and the formats and in-
terdependencies are added separately.

PowerForms has a clean semantics defined through a fixed-point pro-
cess that resolves the interdependencies between all field values. Text
fields are equipped with status icons (by default traffic lights) that con-
tinuously reflect the validity of the text that has been entered so far, thus
providing immediate feed-back for the user. For other GUI components
the available options are dynamically filtered to present only the allowed
values.

PowerForms are integrated into the <bigwig> system for generating
interactive Web services, but is also freely available in an Open Source
distribution as a stand-alone package.

1

1 Introduction

We briefly review some relevant aspects of HTML forms. The CGI protocol
enables Web services to receive input from clients through forms embedded in
HTML pages. An HTML form is comprised of a number of input fields each
prompting the client for information.

The visual rendering of an input field and how to enter the information it
requests is determined by its type. The most widely used fields range from
expecting lines of textual input to providing choices between a number of fixed
options that were determined at the time the page was constructed. Many of
the fields only differ in appearance and are indistinguishable to the server in
the sense that they return the same kind of information. Fields of type text
and password, although rendered differently, each expect one line of textual
input from the client. Multiple lines of textual input can be handled through
the textarea field. The fields of types radio and select both require exactly
one choice between a number of static options, whereas an arbitrary number of
choices are permitted by the checkbox and select (multiple) fields. Individual
radio and checkbox fields with common name may be distributed about the
form and constitute a group for which the selection requirements apply. The
options of a select field, on the other hand, are grouped together in one place in
the form. In addition, there are the more specialized fields, image, file, button,
and hidden, which we shall not treat in detail. Finally, two fields control the
behavior of the entire form, namely reset and submit, which respectively resets
the form to its initial state and submits its contents to the server.

Input validation

Textual input fields could possibly hold anything. Usually, the client is expected
to enter data of a particular form, for instance a number, a name, a ZIP-code,
or an e-mail address. The most frequent solution is to determine on the server
whether the submitted data has the required form, which is known as server-side
input validation. If some data are invalid, then those parts are presented once
again along with suitable error messages, allowing the client to make the nec-
essary corrections. This process is repeated until all fields contain appropriate
data. This solution is simple, but it has three well-known drawbacks:

• it takes time;

• it causes excess network traffic; and

• it requires explicit server-side programming.

Note that these drawbacks affect all parties involved. The client is clearly an-
noyed by the extra time incurred by the round-trip to the server for validation,
the server by the extra network traffic and “wasted” cycles, and the programmer
by the explicit programming necessary for implementing the actual validation
and re-showing of the pages. An obvious solution to the first two drawbacks is
to move the validation from the server to the client, yielding client-side input

2

Figure 1: Conference questionnaire.

validation. The third drawback, however, is only partially alleviated. All the
details of re-showing pages are no longer required, but the actual validation still
needs to be programmed.

The move from server-side to client-side also opens for another important
benefit, namely the possibility of performing the validation incrementally. The
client no longer needs to click the submit button before getting the validation
report. This allows errors to be be signalled as they occur, which clearly eases
the task of correctly filling out the form.

Field interdependencies

Another aspect of validation involves interdependent fields. Many forms contain
fields whose values may be constrained by values entered in other fields. Figure 1
exhibits a simple questionnaire from a conference, in which participants were
invited to state whether they have attended past conferences and if so, how this
one compared. The second question clearly depends on the first, since it may
only be answered if the first answer was positive. Conversely, an answer to the
second question may be required if the first answer was “Yes”.

Such interdependencies are almost always handled on the server, even if the
rest of the validation is addressed on the client-side. The reason is presumably
that interdependencies require some tedious and delicate JavaScript code. This
kind of validation is explicitly requested in the W3C working draft on extending
forms [13]. One could easily imagine more advanced dependencies. Also, it
would be useful if illegal selections could somehow automatically be deselected.

JavaScript programming

Traditionally, client-side input validation is implemented in JavaScript. We will
argue that this may not be the best choice for most Web authors.

First of all, using a general-purpose programming language for a relatively
specific purpose exposes the programmer to many unnecessary details and choices.
A small high-level domain-specific language dedicated to input validation would
involve only relevant concepts and thus be potentially easier to learn and use.
Many assisting libraries exist [9], but must still be used in the context of a full
programming language.

3

Secondly, JavaScript code has an operational form, forcing the programmer
to think about the order in which the fields and their contents are validated.
However, the simplicity of the input validation task permits the use of a purely
declarative approach. A declarative specification abstracts away operational
details, making programs easier to read, write, and maintain. Also, such an
approach is closer to composing HTML than writing JavaScript, making input
validation available to more people. As stated in the W3C working draft on
extending forms:

“It should be possible to define a rich form, including validations,
dependencies, and basic calculations without the use of a scripting
language.”

Our solution will precisely include such mechanisms for validations and depen-
dencies.

Finally, the traditional implementation task is further complicated by diverg-
ing JavaScript implementations in various browsers. This forces the program-
mer to stay within the subset of JavaScript that is supported by all browsers—a
subset that may be hard to identify. In fact, a number of sites and FAQs are
dedicated to identifying this subset [15, 8]. A domain-specific language could be
compiled into this common subset of JavaScript, implying that only the compiler
writer will be concerned with this issue.

Our solution: PowerForms

As argued above, our solution is to introduce a high-level declarative and domain-
specific language, called PowerForms, designed for incremental input validation.

Section 2 presents our solution for simple validation; Section 3 extends this
to handle field interdependencies; Section 4 exhibits how other common uses
of JavaScript also can be handled through declarative specification; Section 5
presents the overall strategy of the translation to JavaScript; and Section 6
describes the availability of the PowerForms packages.

Related work

Authoring systems like Cold Fusion [6] can automate server-side verification of
some simple formats, but even so the result is unsatisfactory. A typical response
to invalid data is shown in Figure 2. It refers to the internal names of input
fields which are unknown to the client, and the required corrections must be
remembered when the form is displayed again.

Active Forms [14] is based on a special browser supporting Form Applets
programmed as Tcl scripts. It does not offer high-level abstractions or integra-
tion with HTML.

Web Dynamic Forms [7] offer an ambitious and complex solution. They
propose a completely new form model that is technically unrelated to HTML and
exists entirely within a Java applet. Inside this applet, they allow complicated
interaction patterns controlled through an event-based programming model in

4

Figure 2: Typical server-side validation.

which common actions are provided directly and others may be programmed in
Java. When a form is submitted, the data are extracted from the applet and
treated as ordinary HTML form data. The intervening years have shown that
Web authors prefer to use standard HTML forms instead and then program
advanced behavior in JavaScript. Thus, our simpler approach of automatically
generating this JavaScript code remains relevant. An important reason to stay
exclusively with HTML input fields is that they can be integrated into HTML
tables to control their layout.

The XHTML-FML language [12] also provides a means for client-side input
validation by adding an attribute called ctype to textual input fields. However,
this attribute is restricted to a (large) set of predefined input validation types
and there is no support for field inderdependency.

Our PowerForms notation is totally declarative and requires no programming
skills. Furthermore, it is modular in the sense that validation can be added to an
input field in an existing HTML form without knowing anything but its name.
The validation markup being completely separate from the form markup allows
the layout of a form to be redesigned at any time in any HTML editor.

2 Validation of Input Formats

The language is based on regular expressions embedded in HTML that is subse-
quently translated into a combination of standard HTML and JavaScript. This
approach benefits from an efficient implementation through the use of finite-
state automata which are interpreted by JavaScript code.

Named formats may be associated to fields whose values are then required
to belong to the corresponding regular sets. The client is continuously receiving

5

feedback, and the form can only be submitted when all formats are satisfied.
The server should of course perform a double-check, since the JavaScript code
is open to tampering.

Regular expressions denoting sets of strings are a simple and familiar formal-
ism for specifying the allowed values of form fields. As we will demonstrate, all
reasonable input formats can be captured in this manner. Also, the underlying
technology of finite-state automata gives a simple and efficient implementation
strategy.

Syntax

We define a rich XML syntax [5] for regular expressions on strings:

regexp → <const value=stringconst /> |

<empty/> |

<anychar/> |

<anything/> |

<charset value=stringconst /> |

<fix low=intconst high=intconst /> |

<relax low=intconst high=intconst /> |

<range low=charconst high=charconst /> |

<intersection> regexp * </intersection> |

<concat> regexp * </concat> |

<union> regexp * </union> |

<star> regexp </star> |

<plus> regexp </plus> |

<optional> regexp </optional> |

<repeat count=intconst > regexp </repeat>

<repeat low=intconst high=intconst > regexp </repeat>

<complement> regexp </complement> |

<regexp exp=stringconst /> |

<regexp id=stringconst > regexp </regexp> |

<regexp idref=stringconst /> |

<regexp uri=stringconst /> |

<include uri=stringconst />

Here, regexp* denotes zero or more repetitions of regexp . The nonterminals
stringconst , intconst , and charconst have the usual meanings.

Note that the verbose XML syntax also allows standard Perl syntax for reg-
ular expressions through the construct <regexp exp=stringconst/>. Our full
syntax is however more general, since it includes intersection, general comple-
mentation, import mechanisms, and a richer set of primitive expressions.

A regular expression is associated with a form field through a declaration:

formatdecl → <format name=stringconst

help=stringconst

error=stringconst >

regexp

</format>

6

The value of the optional help attribute will appear in the status line of the
browser when the field has focus; similarly, the value of the optional error
attribute will appear if the field contains invalid data.

The format takes effect for a form field of type type text, password, select,
radio, or checkbox whose name is the value of the name attribute. The need
for input formats is perhaps only apparent for text and password fields, but
we need the full generality later in Section 3.

Semantics of regular expressions

Each regular expression denotes an inductively defined set of strings. The const
element denotes the singleton set containing its value. The empty element de-
notes the empty set. The anychar element denotes the set of all characters.
The anything element denotes the set of all strings. The charset denotes the
set of characters in its value. The fix element denotes the set of numerals from
low to high all padded with leading zeros to have the same length as high. The
relax element denotes the set of numerals from low to high. The range element
denotes the set of singleton strings obtained from the characters low to high.
The intersection element denotes the intersection of the sets denoted by its
children. The concat element denotes the concatenation of the sets denoted
by its children. The union element denotes the union of the sets denoted by
its children. The star element denotes zero or more concatenations of the set
denoted by its child. The plus element denotes one or more concatenations of
the set denoted by its child. The optional element denotes the union of the set
containing the empty string and the set denoted by its child. The repeat ele-
ment with attribute count denotes a fixed power of the set denoted by its child.
The repeat element with attributes low and high denotes the corresponding
interval of powers of the set denoted by its child, where low defaults to zero and
high to infinity. The complement element denotes the complement of the set
denoted by its child. The regexp element with attribute exp denotes the set
denotes by its attribute value interpreted as a standard Perl regular expression.
The regexp element with attribute id denotes the same set as its child, but
in addition names it by the value of id. The regexp element with attribute
idref denotes the same set as the regular expression whose name is the value
of idref. It is required that each id value is unique throughout the document
and that each idref value matches some id value. The regexp element with
attribute uri denotes the set recognized by a precompiled automaton. The
include element performs a textual insertion of the document denoted by its
url attribute.

Semantics of format declarations

The effect on a form field of a regular expression denoting the set S is defined
as follows. For a text or password field, the effect is to decorate the field with
one of four annotations:

• green light, if the current value is a member of S;

7

traffic star check ok blank

green light

yellow light

red light

n/a

Figure 3: Different styles of status icons.

• yellow light, if the current value is a proper prefix of a member of S;

• red light, if the current value is not a prefix of a member of a non-empty
S; or

• n/a, if S is the empty set.

The form cannot be submitted if it has a yellow or red light. The default
annotations, which are placed immediately to the right of the field, are tiny icons
inspired by traffic lights, but they can be customized with arbitrary images to
obtain a different look and feel as indicated in Figure 3. Other annotations, like
colorings of the input fields, would also seem reasonable, but current limitations
in technology make this impossible.

For a select field, the effect is to filter the option elements, allowing only
those whose values are members of S. There is a slight deficiency in the design
of a singular select, since it in some browser implementations will always show
one selected element. To account for the situation where no option is allowed,
we introduce an extension of standard HTML, namely <option value="foo"
error> which is legal irrespective of the format. The form cannot be submitted
if the error option is selected, unless S is the empty set.

For a radio field, the effect is that the button can only be depressed if its
value is a member of S; if S is not the empty set, then the form cannot be
submitted unless one button is depressed. Note that the analogue of the error
option is the case where no button is depressed.

For a checkbox field, the effect is that the button can only be depressed if
its value is a member of S.

Using our mechanism, it is possible to create a deadlocked form that cannot
be submitted. The simplest example is the following, assuming the input field
below is the only one in the radio button group named foo:

<input type="radio" name="foo" value="aaa">

8

<format name="foo"><const value="bbb"></format>

Regardless of whether the radio button foo is depressed or not, foo will never
satisfy its requirements. Thus, the form can never be submitted. This behavior
exposes a flaw in the design of the form, rather than an inherent problem with
our mechanisms.

Examples

All reasonable data formats can be expressed as regular expressions, some more
complicated than others. A simple example is the password format for user ID
registration, seen in Figure 4, which is five or more characters not all alphabetic:

<regexp id="pwd">

<intersection>

<repeat low="5"><anychar/></repeat>

<complement>

<star>

<union>

<range low="a" high="z"/>

<range low="A" high="Z"/>

</union>

</star>

</complement>

</intersection>

</regexp>

or alternatively using the Perl syntax where possible:

<regexp id="pwd">

<intersection>

<regexp exp=".{5,}"/>

<complement>

<regexp exp="[a-zA-Z]*"/>

</complement>

</intersection>

</regexp>

To enforce this format on the existing form, we just add the declarations:

<format name="Password1"><regexp idref="pwd"/></format>

<format name="Password2"><regexp idref="pwd"/></format>

At our Web site we show more advanced examples, such as legal dates including
leap days, URIs, and time of day. As a final example, consider a simple format
for ISBN numbers:

<regexp id="isbn">

<concat>

<repeat count="9">

<concat>

<range low="0" high="9"/>

9

Figure 4: User ID registration.

<optional><charset value=" -"/></optional>

</concat>

</repeat>

<charset value="0123456789X"/>

</concat>

</regexp>

or more succinctly:

<regexp id="isbn">

<regexp exp="([0-9]([-]?)){9}[0-9X]"/>

</regexp>

An input field that exploits this format is:

Enter ISBN number: <input type=text name="isbn" size=20>

<format name="isbn"

help="Enter an ISBN number"

error="Illegal ISBN format">

<regexp idref="isbn"/>

</format>

Initially, the field has a yellow light. This status persists, as seen in Figure 5,
while we enter the text "0-444-50264-" which is a legal prefix of an ISBN
number. Entering another "-" yields a red light. Deleting this character and
entering 5 will finally give a legal value and a green light.

While the input field has focus, the help string appears in the status line of
the browser. If the client attempts to submit the form with invalid data in this
field, then the error text appears in an alert box.

An ISBN format that includes checksums can be described as a complex
regular expression that yields a 201-state automaton. This full format would

10

Figure 5: Checking ISBN numbers.

only accept 5 as the last digit, since that is the correct checksum. Such a
regular expression could hardly be written by hand; in fact, we generated it
using a C program. But as precompiled automata may be saved and provided as
formats, this shows that our technology also allows us to construct and publish
a collection of advanced default formats, similarly to the datatypes employed in
XML Schema [2] and the predefined ctype formats suggested in [12].

3 Interdependencies of Form Fields

We present a simple, yet general mechanism for expressing interdependencies.
We have strived to develop a purely declarative notation that requires no pro-
gramming skills. Our proposal is based on dynamically evolving formats that
are settled through a fixed-point process.

Syntax

We extend the syntax for formats as follows:

formatdecl → <format name=stringconst > format </format>

format → regexp |

<if> boolexp

<then> format </then>

<else> format </else>

</if> |

<format id=stringconst > format </format> |

<format idref=stringconst />

boolexp → <match name=stringconst > regexp </match> |

<equal name=stringconst value=stringconst /> |

<and> boolexp * </and> |

<or> boolexp * </or> |

<not> boolexp * </not>

11

Now, the format that applies to a given field is dependent on the values of
other fields. The specification is a binary decision tree, whose leaves are regular
expressions and whose internal nodes are boolean expressions. Each boolean
expression is a propositional combination of the primitive match and equal
elements that each test the field indicated by name. Even this simple language
is more advanced than required for most uses.

Semantics of boolean expressions

A boolean expression evaluates to true or false. For a text or password field,
equal is true iff its current value equals value; match is true iff its current value
is a member of the set denoted by regexp. For a select field, equal is true iff
the value of a currently selected option equals value; match is true iff the value
of a currently selected option is a member of the set denoted by regexp. For
a collection of radio or checkbox fields, equal is true iff a button whose value
equals value is currently depressed; match is true iff a button whose value is a
member of the set denoted by regexp is currently depressed.

For the boolean operators, and is true iff all of its children are true, or is
true if one of its children is true, and not is true if all of its children are false.

Semantics of interdependencies

Given a collection of form fields F1,. . . ,Fn with associated formats and values,
we define an iteration which in order does the following for each Fi:

• evaluate the current format based on the current values of all form fields;

• update the field based on the new current format.

The updating varies with the type of the form field:

• for a text field, the status light is changed to reflect the relationship
between the current value and the current format;

• for a select field, the options are filtered by the new format, and the
selected options that are no longer allowed by the format are unselected;
if the current selection of a singular select is disallowed, the error option
is selected;

• for a radio or checkbox field, a depressed button is released if its value
is no longer allowed by the format.

An iteration is monotonic, which intuitively means that it can only delete user
data. Technically, an iteration is a monotonic function on a specific lattice of
form status descriptions. It follows that repeated iteration will eventually reach
a fixed-point. In fact, if b is the total number of radio and checkbox buttons, p
is the total number of select options, and s is the number of singular selects,
then at most b + p + s + 1 iterations are required. Usually, however, the fixed-
point will stabilize after very few iterations; also, a compile-time dependency

12

analysis can keep this number down. Only complex forms with a high degree of
interdependency will require many iterations.

The behavior of a PowerForm is to iterate to a new fixed-point whenever the
client changes an input field; furthermore, the form data can only be submitted
when all the form fields are in a status that allows this.

Note that the fixed-point we obtain is dependent on the order in which the
form fields are updated: permuting the fields may result in a different fixed-
point. We choose to update the fields in the textual order in which they appear
in the document. This is typically the order in which the client is supposed to
consider them, and the resulting fixed-point appears to coincide with the intu-
itively expected behavior. For simpler forms, the order is usually not significant.

With form interdependency it is not only possible to create a deadlocked
form that can never be submitted, but also to create buttons that can never
be depressed. Consider again the example from Section 2. Since the value
aaa is different from bbb, the foo button will instantly be released whenever
it is depressed. Such behavior can of course also stem from more complicated
interdependent behavior.

The possible behaviors of PowerForms can in principle be analyzed statically.
Define the size |R| of a regular expression to be the number of states in the
corresponding minimal, deterministic finite-state automaton, and the size |F |
of an input field to be the product of the sizes of all regular expressions that it
may be tested against. Then a collection of input fields F1, . . . , Fn determines
a finite transition system with |F1||F2| · · · |Fn| states for which the reachability
problem is decidable but hardly feasible in practice. We therefore leave it to the
Web author to avoid aberrant behavior.

Examples

As a first example, we will redo the questionnaire from Figure 1:

Have you attended past WWW conferences?

<input type="radio" name="past" value="yes">Yes

<input type="radio" name="past" value="no">No

 If Yes, how did WWW8 compare?

<input type="radio" name="compare" value="better">Better

<input type="radio" name="compare" value="same">Same

<input type="radio" name="compare" value="worse">Worse

To obtain the desired interdependence, we declare the following format:

<format name="compare">

<if><equal name="past" value="yes"/>

<then><complement><const value=""/></complement></then>

<else><empty/></else>

</if>

</format>

13

Figure 6: Only vowels are presented.

Only if the first question is answered in the positive, may the second group
of radio buttons may be depressed and an answer is also required. A second
example shows how radio buttons may filter the options in a selection:

Favorite letter group:

<input type="radio" name="group" value="vowel" checked>vowels

<input type="radio" name="group" value="consonant">consonants

Favorite letter:

<select name="letter">

<option value="a">a

<option value="b">b

<option value="c">c

...

<option value="x">x

<option value="y">y

<option value="z">z

</select>

The unadorned version of this form allows inconsistent choices such as group
having value vowel and letter having value z. However, we can add the
following format:

<format name="letter">

<if><equal name="group" value="vowel"/>

<then><charset value="aeiouy"/></then>

<else><charset value="bcdfghjklmnpqrstvwxz"/></else>

</if>

</format>

Apart from enforcing consistency, the induced behavior will make sure that the
client is only presented with consistent options, as shown in Figure 6. Next,
consider the form:

Personal info

14

Figure 7: Collecting personal information.

<p>

Name: <input type="text" name="name" size="30">

Birthday: <input type="text" name="birthday" size="20">

<table border="0" cellpadding="0" cellspacing="0">

<tr><td valign="top">Marital status:</td>

<td><input type=radio name="marital" value="single" checked>single

<input type="radio" name="marital" value="married">married

<input type="radio" name="marital" value="widow">widow[er]

</td>

</tr>

</table>

<p>

Spousal info

<p>

Name: <input type="text" name="spouse" size="30">

Deceased <input type="radio" name="deceased" value="deceased">

Several formats can be used here. For the birthday, we select from our standard
library a 35-state automaton recognizing legal dates including leap days:

<format name="birthday">

<regexp uri="http://www.brics.dk/bigwig/powerforms/date.dfa"/>

</format>

Among the other fields, there are some obvious interdependencies. Spousal info
is only relevant if the marital status is not single, and the spouse can only be

15

Figure 8: Collecting customer information.

deceased if the marital status is widow:

<format name="spouse">

<if><equal name="marital" value="married"/>

<then><regexp idref="handle"/></then>

<else>

<if><equal name="marital" value="single"/>

<then><empty/></then>

<else><regexp idref="handle"/></else>

</if>

</else>

</if>

</format>

<format name="deceased">

<if><equal name="marital" value="widow"/>

<then><const value="deceased"/></then>

<else><empty/></else>

</if>

</format>

Here, handle refers to some regular expression for the names of people. Note
that if the marital status changes from widow to single, then the deceased
button will automatically be released. Dually, it seems reasonable that after
a change from single to widow, the deceased button should automatically
be depressed. However, such action is generally not meaningful, since it may
cause the form to oscillate between two settings. In our formalism, this would
violate the monotonicity property that guarantees termination of the fixed-point
iteration. Still, the form cannot be submitted until the deceased button is
depressed for a widow. The initial form is shown in Figure 7.

An example of a more complex boolean expression involves the form in Fig-
ure 8. Here, simple formats determine that the correct style of phone numbers

16

is used for the chosen country. The option of requesting a visit from the NYC
office is only open to those customers who live in New York City. This constraint
is enforced by the following format:

<format name="nyc">

<if><and><equal name="country" value="US"/>

<match name="phone">

<concat>

<union>

<const value="212"/>

<const value="347"/>

<const value="646"/>

<const value="718"/>

<const value="917"/>

</union>

<anything/>

</concat>

</match>

</and>

<then><anything/></then>

<else><empty/></else>

</if>

</format>

Residents from other cities will find that they cannot depress the button.
As a final example of the detailed control that we offer, consider the form

in Figure 9 which invites users to request a new version of a product. Until
the client has stated whether he has a license or not, it is impossible to choose
a version. Once the choice has been made, licensed users can choose between
all versions, others are limited to versions 1.1 and 1.2. The format on the last
group of radio buttons is:

<format name="version">

<if><equal name="license" value="yes"/>

<then><anything/></then>

<else>

<if><equal name="license" value="no"/>

<then><union>

<const value="1.1"/>

<const value="1.2"/>

</union>

</then>

<else><empty/></else>

</if>

</else>

</if>

</format>

17

Figure 9: Collecting user information.

4 Applet results

Java applets can be used in conjunction with forms to implement new GUI
components that collect data from the client. However, it is not obvious how to
extract and validate data from an applet and submit it to the server on equal
footing with ordinary form data.

We propose a simple mechanism for achieving this goal. We extend the
applet syntax to allow result elements in addition to param elements. An
example is the following:

<applet codebase="http://www.brics.dk/bigwig/powerapplets"

code="slidebar.class">

<param name="low" value="32">

<param name="high" value="212">

<result name="choice">

</applet>

When this applet is displayed, it shows a slide bar ranging over the interval
[32..212]. When the form is submitted, the applet will be requested to supply a
value for the choice result. This value is then assigned to a hidden form field
named choice and will now appear with the rest of the form data. If the applet
is not ready with the result, then the form cannot be submitted.

This extension only works for applets that are subclasses of the special
class PowerApplet that we supply. It implements the method putResult that
is used by the applet programmer to supply results, as well as the methods
resultsReady and getResult that are called by the JavaScript code that im-
plements the form submission.

In relation to PowerForms, applet results play the same role as input fields.
Thus, they can have associated formats and be tested in boolean expressions.
The value of an optional error attribute will appear in the alert box if an
attempt is made to submit the form with a missing or invalid applet result.

5 Translation to JavaScript

A PowerForms document is parsed according to a very liberal HTML grammar
that explicitly recognizes the special elements such as format and regexp. The
generated HTML document retains most of the original structure, except that

18

it contains the generated JavaScript code. Also, each input field is modified to
include onKeyup, onChange, and onClick functions that react to modifications
from the client.

A function update foo is defined for each input field name foo. This func-
tion checks if the current data is valid and reacts accordingly. Another function
update all is responsible for computing the global fixed-point.

Each regular expression is by the compiler transformed into a minimal, de-
terministic finite-state automaton, which is directly represented in a JavaScript
data structure. It is a simple matter to use an automaton for checking if a
data value is valid. For text and password fields, the status lights green, yel-
low, and red correspond to respectively an accept state, a non-accept state, and
the crash state. For efficiency, the generated automata are time-stamped and
cached locally; thus, they are only recompiled when necessary.

The generated code is quite small, but relies on a 500 line standard library
with functions for manipulating automata and the Document Object Model [1].

6 Availability

The PowerForms system is freely available in an open source distribution from
our Web site located at http://www.brics.dk/bigwig/powerforms/. The
package includes documentation, the examples from this paper and many more,
and the compiler itself which is written in 4000 lines of C. The generated
JavaScript code has been tested for Netscape on Unix and Windows and for
Explorer on Windows.

PowerForms are also directly supported by the <bigwig> system which is a
high-level language for generating interactive Web services [4, 3, 11, 10]. It is
likewise available at http://www.brics.dk/bigwig/.

7 Conclusion

We have shown how to enrich HTML forms with simple, declarative concepts
that capture advanced input validation and field interdependencies. Such forms
are subsequently compiled into JavaScript and standard HTML. This allows
the design of more complex and interesting forms while avoiding tedious and
error-prone JavaScript programming.

We would like to thank the entire <bigwig> team for assisting in experiments
with PowerForms. Thanks also goes to the PowerForms users, in particular
Frederik Esser, for valuable feedback.

References

[1] Vidur Apparao et al. Document Object Model (DOM)
Level 1 Specification. W3C Recommendation, 1998.
http://www.w3.org/TR/REC-DOM-Level-1/.

19

[2] Paul V. Biron and Ashok Malhotra. XML Schema
Part 2: Datatypes. W3C Working Draft, April 2000.
http://www.w3.org/TR/xmlschema-2/.

[3] Claus Brabrand, Anders Møller, Anders Sandholm, and Michael I.
Schwartzbach. A runtime system for interactive Web services. Computer
Networks, 31:1391–1401, 1999. Also in proceedings of WWW8.

[4] Claus Brabrand, Anders Møller, Anders Sandholm, and Michael I.
Schwartzbach. Designing a language for developing interactive Web ser-
vices, 2000. http://www.brics.dk/bigwig/research/publications/.

[5] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, editors. Extensi-
ble Markup Language (XML) 1.0. W3C Recommendation, February 1998.
http://www.w3.org/TR/REC-xml.

[6] John Desborough. Cold Fusion 3.0 Intranet Application. International
Thomson Publishing, 1997.

[7] Andreas Girgensohn and Alison Lee. Seamless integration of in-
teractive forms into the web. In Proceedings of WWW6, 1997.
http://www.scope.gmd.de/info/www6/technical/paper083/paper83.html.

[8] Jukka Korpela. JavaScript and HTML: possibilities
and caveats, 2000. http://www.hut.fi/u/jkorpela/
forms/javascript.html.

[9] Netscape Corp. JavaScript form validation sam-
ple code, 1999. http://developer.netscape.com/
docs/examples/javascript/formval/overview.html.

[10] Anders Sandholm and Michael I. Schwartzbach. Distributed safety con-
trollers for Web services. In Fundamental Approaches to Software Engineer-
ing, FASE’98, LNCS 1382, pages 270–284. Springer-Verlag, March/April
1998.

[11] Anders Sandholm and Michael I. Schwartzbach. A domain specific language
for typed dynamic documents. In Proceedings of POPL’00, 2000.

[12] Sebastian Schnitzenbaumer, Malte Wedel, and Mu-
ditha Gunatilake, editors. XHTML-FML 1.0: Forms
Markup Language. Stack Overflow AG, 1999.
http://www.mozquito.org/documentation/spec xhtml-fml.html.

[13] Sebastian Schnitzenbaumer, Malte Wedel, and Dave Raggett, ed-
itors. XHTML Extended Forms Requirements. W3C, 1999.
http://www.w3.org/TR/xhtml-forms-req.html.

[14] Paul Thistlewaite and Steve Ball. Active forms. In Pro-
ceedings of WWW5, 1996. http://www5conf.inria.fr/
fich html/papers/P40/Overview.html.

20

[15] Martin Webb and Michel Plungjan. JavaScript form
FAQ knowledge base, 2000. http://developer.irt.org/
script/form.htm.

21

Recent BRICS Report Series Publications

RS-00-43 Claus Brabrand, Anders Møller, Mikkel Christensen, Ricky,
and Michael I. Schwartzbach.PowerForms: Declarative Client-
Side Form Field Validation. December 2000. 21 pp. To appear
in World Wide Web Journal, 4(3), 2000.

RS-00-42 Claus Brabrand, Anders Møller, and Michael I. Schwartzbach.
The <bigwig> Project. December 2000. 25 pp.

RS-00-41 Nils Klarlund, Anders Møller, and Michael I. Schwartzbach.
The DSD Schema Language and its Applications. December
2000. 32 pp. Shorter version appears in Heimdahl, editor,3rd
ACM SIGSOFT Workshop on on Formal Methods in Software
Practice, FMSP ’00 Proceedings, 2000, pages 101–111.

RS-00-40 Nils Klarlund, Anders Møller, and Michael I. Schwartzbach.
MONA Implementation Secrets. December 2000. 19 pp. Shorter
version appears in Daley, Eramian and Yu, editors,Fifth Inter-
national Conference on Implementation and Application of Au-
tomata, CIAA ’00 Pre-Proceedings, 2000, pages 93–102.

RS-00-39 Anders Møller and Michael I. Schwartzbach.The Pointer As-
sertion Logic Engine. December 2000. 23 pp. To appear in
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’01 Proceedings, 2001.

RS-00-38 Bertrand Jeannet. Dynamic Partitioning in Linear Relation
Analysis: Application to the Verification of Synchronous Pro-
grams. December 2000.

RS-00-37 Thomas S. Hune, Kim G. Larsen, and Paul Pettersson.Guided
Synthesis of Control Programs for a Batch Plant usingUP-
PAAL . December 2000. 29 pp. Appears in Hsiung, editor,
International Workshop in Distributed Systems Validation and
Verification. Held in conjunction with 20th IEEE International
Conference on Distributed Computing Systems (ICDCS ’2000),
DSVV ’00 Proceedings, 2000.

RS-00-36 Rasmus Pagh.Dispersing Hash Functions. December 2000.
18 pp. Preliminary version appeared in Rolim, editor, 4th.
International Workshop on Randomization and Approximation
Techniques in Computer Science, RANDOM ’00, Proceedings
in Informatics 8, 2000, pages 53–67.

	Introduction
	Validation of Input Formats
	Interdependencies of Form Fields
	Applet results
	Translation to JavaScript
	Availability
	Conclusion

