
B
R

IC
S

R
S

-00-41
K

larlund
etal.:

T
he

D
S

D
S

chem
a

Language
and

its
A

pplications

BRICS
Basic Research in Computer Science

The DSD Schema Language and
its Applications

Nils Klarlund
Anders Møller
Michael I. Schwartzbach

BRICS Report Series RS-00-41

ISSN 0909-0878 December 2000

Copyright c© 2000, Nils Klarlund & Anders Møller & Michael I.
Schwartzbach.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/41/

The DSD Schema Language and its Applications∗

Nils Klarlund
AT&T Labs–Research

klarlund@research.att.com

Anders Møller & Michael I. Schwartzbach
BRICS, University of Aarhus

{amoeller,mis }@brics.dk

Abstract

XML (eXtensible Markup Language), a linear syntax for trees, has gathered
a remarkable amount of interest in industry. The acceptance of XML opens new
venues for the application of formal methods such as specification of abstract syn-
tax tree sets and tree transformations.

A user domain may be specified as a set of trees. For example, XHTML is
a user domain corresponding to the set of XML documents that make sense as
HTML. A notation for defining such a set of XML trees is called aschema lan-
guage. We believe that a useful schema notation must identify most of the syntactic
requirements that the documents in the user domain follow; allow efficient pars-
ing; be readable to the user; allow a declarative default notation `a la CSS; and be
modular and extensible to support evolving classes of XML documents.

In the present paper, we give a tutorial introduction to the DSD (Document
Structure Description) notation as our bid on how to meet these requirements. The
DSD notation was inspired by industrial needs, and we show how DSDs help man-
age aspects of complex XML software through a case study about interactive voice
response systems (automated telephone answering systems, where input is through
the telephone keypad or speech recognition).

The expressiveness of DSDs goes beyond the DTD schema concept that is al-
ready part of XML. We advocate the use of nonterminals in a top-down manner,
coupled with boolean logic and regular expressions to describe how constraints on
tree nodes depend on their context. We also support a general, declarative mecha-
nism for inserting default elements and attributes that is reminiscent of Cascading
Style Sheets (CSS), a way of manipulating formatting instructions in HTML that
is built into all modern browsers. Finally, we include a simple technique for evolv-
ing DSDs through selective redefinitions. DSDs are in many ways much more
expressive than XML Schema (the schema language proposed by the W3C), but
their syntactic and semantic definition in English is only 1/8th the size. Also, the
DSD notation is self-describable: the syntax of legal DSD documents andall static
semantic requirements can be captured in a DSD document, called themeta-DSD.

∗This article is a revised version of “DSD: A Schema Language for XML” [18]; in addition, material
from [15] has been included.

1

1 Introduction

XML (eXtensible Markup Language) [5] is a syntax derived from SGML for markup
of text. XML is particularly interesting to computer scientists because the markup
notation is really nothing but a way of specifying labeled trees. The tree view and the
convenient SGML syntax of HTML have been important to the development of the
World Wide Web. Thus, it may not be surprising that XML syntax has been hyped as a
universal solution to the pervasive problem of format incompatibility.

Such generous promises notwithstanding, at least one fascinating and fundamen-
tal quality sets XML-based notations apart from ad hoc syntax: they encourage tree
transformations—a technique that application programmers usually do not take ad-
vantage of. In fact, it would probably be considered a hassle even to define a set of
parse trees and procedures according to which they are constructed and parsed. XML
circumvents this problem by offering a primary representation based on trees, at the
expense of syntactic succinctness. Of course, trees and mappings between trees are
a main ingredient of computer science; for example, such mappings are essential to
building compilers, where the compilation process is partitioned into several phases,
most of which simply massage one intermediate tree format into another one.

The purpose of the present article is to indicate how XML opens new ways of ap-
plying formal computer science techniques to general, practical problems. Specifically,
we study the formal specification of XML languages, that is sets of abstract syntax
trees, and tree-based default insertion mechanisms for common tree transformations
needed by application programmers. Both aspects are part of the DSD (Document
Structure Description) notation, which we introduce informally in this article. Before
we explain DSDs, let us mention some fundamental XML technologies that are already
standardized (in the sense of being a W3C recommendation) or under development:

• CSS (Cascading Style Sheet): for documents to be rendered visually through (1)
a simple tree transformation language and (2) a target language of text properties
for layout. CSS2 [1] is the latest official recommendation.

• Transformation language: for rather general transformations between XML lan-
guages. XSLT [6], which is also called a style sheet language, became an official
recommendation in 1999.

• Linking: for generalized links between XML resources. XLink [11] and XPointer
[10] are almost completed, whereas XPath [7], a simple expression language un-
derlying several of the XML efforts, is already an official recommendation.

• Schema language: for describing the formal syntax of XML applications (XML
has already inherited the DTD concept from SGML, but this notation is consid-
ered inadequate by many). The W3C notation is called XML Schema [25] and it
has recently achieved Candidate Recommendation status.

• Query language: for generalizing database queries to semi-structured data rep-
resented by XML documents.

2

• Namespaces: for allowing an XML document to consist of syntax from several
domains at once; typically, an XML document may be extended with syntax that
is foreign to its primary use—such syntax must be specially tagged. Names-
paces are introduced into XML in [4], but their meaning has been the subject of
controversy.

In the area of schema languages, several proposals, such as DDML [2], DCD [3],
SOX [9], Schematron [14], and RELAX [22] have already emerged. Recently, W3C
has issued an official draft proposal for XML Schema, which has been met with intense
debate.

Our DSD proposal—which is rigorously summarized in [17]—is more ambitious
than other proposals, perhaps with the exception of Schematron, which is based on a
pattern matching paradigm instead of a parsing view, and RELAX, which is more ex-
pressible in some regards (at least in an earlier version, where it allowed all regular tree
languages to be expressed). A DSD defines a grammar for a class of XML documents,
documentation for that class, and additionally a CSS-like notation for specifying de-
fault parts of documents. A DSD is itself an XML document.

We recall that an XML document consists of namedelementsrepresenting tree
nodes. Elements haveattributes, representing name/value pairs, andcontent, which is
text (calledchardata), interspersed with subelements. For an example, take the HTML
markup:

<body class=’mystuff’>
Hello there

</body>

This text is an element named “body ” that corresponds to a tree node labeled “body ”.
The node has an attribute named “class ” and two children corresponding to its con-
tent (the stuff between the start tag<body...> and the end tag</body>): a text
node with value “Hello ” and an element node labeled “em”; the “em” node in turn
has one child node, which is a text node.

We have six major goals for the descriptive power of the DSD notation. These
goals are by no means comprehensive, of course. But they reflect most of the needs we
have seen in document processing and database applications. The only major omission
is the concept of namespaces, whose semantics until recently have been the subject of
uncertainty. DSDs should:

• allow context dependent descriptions of content and attributes, since the context
of a node, such as ancestors and attribute values, often govern what is legal
syntax;

• generalize CSS [1] (Cascading Style Sheets) so that readable, CSS-like rules for
default attribute values and default content can be defined for arbitrary XML
domains, not only predefined user formatting models;

• complement XSLT [6] in the sense that the expressive power of DSDs should be
close to that of XSLT, so that assumptions made by XSLT style sheets can be
made explicit in a DSD;

3

• permit the description of semi-structured data, that is, the description of what
references may point to;

• enable the redefinitions of syntactic classes, so that evolving XML languages can
be expressed in terms of existing DSDs; and

• be self-describable.

It is also important to us that a DSD yields a linear time algorithm for checking con-
formance of XML documents and that DSDs are based on simple concepts familiar
to computer scientists. To honor these ambitions, our design combines several ele-
mentary ideas: a uniform notion ofconstraintthat captures the legality of attributes,
attribute values, and content;conditional constraints, guarded byboolean expressions,
that capture dependencies between attributes, attribute values, element contexts, and
content;nonterminalsin the form of element IDs that allow several different versions
of an element to coexist; the concept ofprojected contentthat allows succinct de-
scriptions of both ordered and unordered content;regular expressionsto describe both
attribute values and content sequences; automatic insertion ofdefaultattributes and
elements guided by boolean expressions; several ID types to allow easy redefinitions;
andpoints-torequirements that constrain the targets of references.

Despite its expressive power, the DSD language is simple enough that it can be
rigorously defined in 15 pages [17] (where the page count excludes examples and in-
troduction). The specification of the Structural Part of XML Schema runs to about 140
pages (counted in the same way)—although it must be admitted that XML Schema
does address the important area of namespaces. The present paper describes the main
ideas of the DSD notation and relates it to other XML schema language proposals. We
also provide an account of an industrial example that motivated DSDs: HTML-like
languages for defining Interactive Voice Response systems (that is, user interfaces that
work through spoken prompts and telephone pad or speech input).

In the rest of the article

After an overview of the XML tree model in Section 2, we introduce most DSD con-
cepts through little examples in Section 3, and we explain the concept of meta-DSD.
In Section 4, we present a complete DSD for book data, and, in Section 5, we discuss
how an application programmer would benefit from DSDs when learning and using a
domain specific language for IVR (Interactive Voice Response) applications. We de-
scribe our prototype implementation of the DSD processor in Section 6. In Section 7,
we discuss related work, in particular XML Schema and RELAX. We give a conclusion
in Section 8.

2 XML Concepts

The reader is assumed familiar with the most common XML concepts (XML is offi-
cially defined in [5]). We now give a brief description of the XML object model used
in DSDs.

4

A well-formed XML document is represented as a tree. The leaf nodes correspond
to empty elements, chardata (text), processing instructions, and comments. The inter-
nal nodes correspond to non-empty elements. For that reason, we often abuse language
by confounding elements and nodes. DTD information is not represented. Each ele-
ment is labeled with a name and a set of attributes, each consisting of a name and a
value. Names, values, and chardata are strings.

Child nodes are ordered. Thecontentof an element is the sequence of its child
nodes. Thecontextof a node is the path of nodes from the root of the tree to the
node itself. Element nodes are ordered according todocument order: an elementv is
beforean elementw if the start tag ofv occurs before the start tag ofw in the usual
textual representation of the XML tree. The observant reader may have noticed that
our representation allows adjacent text nodes; in fact, we will assume that trees are a
normalized by a process that matches such nodes by concatenation of their text.

Processing instructions with targetdsd or include , as well as elements and at-
tributes with namespacehttp://www.brics.dk/DSD , contain information relevant
to the DSD processing. All other processing instructions and also chardata consisting
of white-space only and comments are ignored.

3 The DSD Language

A DSD defines the syntax of a family of conforming XML documents. Anapplication
documentis an XML document intended to conform to a given DSD. It is the job of a
DSD processorto determine whether an application document is conforming or not.

A DSD is itself an XML document. This section describes the main aspects of the
DSD language and its meaning. For a complete definition, we refer to [17].

A DSD is associated to an application document by placing a special processing
instruction in the document prolog. This processing instruction has the form

<?dsd URI=" URI"?>

whereURI is the location of the DSD. A DSD processor basically performs one top-
down traversal of the application document in order to check conformance. During this
traversal, constraints and other requirements from the DSD areevaluatedrelative to a
current element (node)of the application document. The DSD processor consults the
DSD to determine the constraints that areassignedto each node for later evaluation.
Initially, a constraint is assigned to the root node. Evaluation of a constraint may entail
the insertion of default attribute values and default content in the current element.

If no constraints have been violated during the traversal, then the original document
conforms to the DSD. The document augmented with inserted defaults is the result of
the DSD processing.

A DSD consists of a number of definitions, each associated with an ID so that they
can be referred to and, possibly, redefined. In the following, the various kinds of DSD
definitions are described. We use a number of small examples, some inspired by the
XHTML language [23] and some that are fragments of the book example described in
Section 4.

5

3.1 Element constraints

The definition central to DSDs is theelement definition. An element definition specifies
an element name and a constraint. During conformance checking, each node of the
application document is assigned an ID of an element definition. Naturally, an element
can be assigned only the ID of an element definition for the same name as that of the
element.

The IDs of element definitions are reminiscent of nonterminals in context-free
grammars. Each ID determines the requirements imposed on the content, attributes,
and context of the element to which it is assigned. We allow several different element
definitions with the same name; thus, element names are not used as nonterminals.
This distinction allows several versions of an element to coexist.

As an example, consider a DSD describing a simple database containing informa-
tion about books, such as, their titles, authors, ISBN numbers, and so on. Imagine
that both the whole database and each book entry must contain atitle element, but
with different structure. Book entry titles may contain only chardata (and no markup);
also, defaults may be specified for book entry titles. Database titles may contain arbi-
trary content and no attributes. These two kinds oftitle elements can be defined as
follows:

<ElementDef ID="book-title" Name="title" Defaultable="yes">
<Content><StringType/></Content>

</ElementDef>

<ElementDef ID="database-title" Name="title">
<ZeroOrMore>

<Union>
<StringType/><AnyElement/>

</Union>
</ZeroOrMore>

</ElementDef>

A constraint is defined by a constraint expression, which can contain declarations of
attributes, declarations of element content, boolean expressions about attributes and
context, and conditional subconstraints guarded by boolean expressions. These aspects
are described in the following sections.

The example below expresses something that is impossible or cumbersome to for-
malize in other schema proposals. The requirement is that anchor elements in XHTML
are not nested:

<ElementDef ID="a">
<Constraint>

<Not>
<Context>

<Element Name="a"/><SomeElements/>
</Context>

</Not>
</Constraint>

6

...
<ElementDef>

3.2 Attribute declarations

During evaluation of a constraint, attributes are declared gradually. Only attributes that
have been declared are allowed in an element. Since constraints can be conditional and
attributes are declared inside constraints, this evaluation scheme allows hierarchical
structures of attributes to be defined. Such structures cannot be described by other
schema proposals although they are common; for instance, in an XHTMLinput
element, thelength attribute may be present only if thetype attribute is present
and has valuetext or password .

An attribute declarationconsists of a name and a string type. The name specifies
the name of the attribute, and the string type specifies the set of its allowed values. It is
an error if an attribute being declared is not present in the current element, unless it is
declared as optional.

The presence and values of declared attributes can be tested in boolean expressions
and context patterns. For instance, the expression

<Attribute name="action">
<StringType IDRef="URI"/>

</Attribute>

evaluates totrue if and only if the attribute namedaction satisfies two conditions:
it has been declared and it is present in the current element with a value matching the
string typeURI.

Our notion of gradual attribute declaration is essential to the use of CSS-like mech-
anisms in generic XML settings. For example, the proposed use of CSS in SMIL [13] is
not entirely well-defined: with a CSS-like mechanism both setting and testing attributes
in no pre-defined order the result of default insertion is ambiguous. (This ambiguity
does not appear when CSS is used to set formatting properties that live in a different
universe from attributes.)

3.3 String types

A string typeis a set of strings defined by a regular expression. String types are used
for two purposes: to define valid attribute values and to define valid chardata.

Regular expressions provide a simple, well-known, and expressive formalism for
specification of sets of strings. Many reasonable sets can be defined, and by the cor-
respondence with finite-state automata, an efficient implementation is possible. A rich
set of operators is provided, such asSequence , ZeroOrMore , Union , Optional ,
Intersection , andComplement .

The use of regular expressions is more flexible than using a predefined collection
of data types. Furthermore, the relationship to finite-state automata guarantees an ef-
ficient implementation. Special automata representations for large alphabets, such as
MONA [16], holds the promise that this approach extends to Unicode [8].

7

All well-known data types, such as URIs, e-mail addresses, and ZIP codes, can be
described by regular expressions. The following example shows the definition of ISBN
numbers:

<StringTypeDef ID="isbn">
<Sequence>

<Repeat Value="9">
<Sequence>

<CharSet Value="0123456789"/>
<Optional>

<CharSet Value=" -"/>
</Optional>

</Sequence>
</Repeat>
<CharSet Value="0123456789X"/>

</Sequence>
</StringTypeDef>

3.4 Content expressions

Recall that the content of an element, its children, is a sequence of element nodes and
chardata nodes.Content expressionsare used to specify sets of such sequences. These
expressions are a kind of regular expression; they occur in element constraints.

Content expressions are built of atomic expressions and content expression opera-
tors. An atomic expression is either an element description or a string type. Element
descriptions are used to assign constraints to the element children, and string types
specify chardata child nodes. There is no non-local backtracking across constraint
assignments to children: once a sequence of children has been matched for a given
element, the assignment of constraints to them is fixed, and parsing continues in a top-
down manner. (Backtracking, however, is possible for a sequence of children as long
as not all of them have been matched.)

The content expression operators includeSequence , ZeroOrMore , AnyEle-
ment , Union andIf .

As an example, the valid content of a XHTMLtable element (see [23], App.
A.1) can be described by the following content expression:

<Sequence>
<Optional>

<Element IDRef="caption"/>
</Optional>
<Union>

<ZeroOrMore>
<Element IDRef="thead"/>

</ZeroOrMore>
<ZeroOrMore>

<Element IDRef="tfoot"/>

8

</ZeroOrMore>
</Union>
<Optional>

<Element IDRef="thead"/>
</Optional>
<Optional>

<Element IDRef="tfoot"/>
</Optional>
<Union>

<OneOrMore>
<Element IDRef="tbody"/>

</OneOrMore>
<OneOrMore>

<Element IDRef="tr"/>
</OneOrMore>

</Union>
</Sequence>

Modulo the syntactic overhead of the XML notation, this example could just as eas-
ily be expressed in DTD. But, as explained in the following, DSDs also allow more
complex content requirements to be specified.

A constraint may contain a collection of content expressions. Each of them must
match some of the content of the current element, just like each attribute declaration
must match an attribute. More precisely, each content expression is matched against
a subsequence of the content that consists of elements mentioned in the content ex-
pression itself. Thus, the actual content isprojectedonto the elements that the content
expression is about. If, for instance, the content expression mentions elementsA and
B, and the content is a sequence of elementsA, B, C, a chardata node, and an ele-
mentA, then this expression is matched against the projected contentA, B, A (and the
match fails). This method makes it easy to specify requirements of bothorderedand
unorderedcontent. Additionally, unordered content is declared just like attributes.

In the XHTML specification, the content of thehead element is described as
“head.misc , combined with a singletitle and an optionalbase element in any
order”. In a DTD, this requirement can be formalized only by listing all the possible
combinations in a single regular expression. The XML schema proposal introduces a
separate operator to express interleavings. With a DSD, a set of three content expres-
sions in a constraint does the job:

<Content IDRef="head.misc"/>
<Element IDRef="title"/>
<Optional><Element IDRef="base"/></Optional>

When such a set of content expressions is evaluated, each of them is evaluated on
projected content, namely the subsequence of the content that mentions the element
names in the expression. Additionally, each content node must be matched by exactly
one content expression. Thus, generally speaking, content expressions in a constraint
must not overlap with respect to element names they mention, just as it is an error to
declare an attribute more than once.

9

3.5 Context patterns

A context patterncan be used with defaults, constraints and content descriptions to
make them context dependent.

Context patterns are very similar to CSS selectors [1]. A context pattern is a se-
quence of context terms; acontext termis either an element pattern or aSomeEle-
ments element. Anelement patternspecifies an element name and a set of attributes.
The contextof the current element is a sequence of nodes, starting at the root of the
XML tree, and ending in the current element.

Before summarizing the meaning of context patterns, we provide an example of a
context pattern that matches thoseli elements immediately withinul elements inside
form elements whosemethod attribute has valuepost :

<Context>
<Element Name="form">

<Attribute Name="method" Value="post"/>
</Element>
<SomeElements/>
<Element Name="ul"/>
<Element Name="li"/>

</Context>

The matching semantics of contexts is as follows. The context of the current element
is matched by a context pattern if the context can be decomposed into consecutive
fragments such that the sequence of context terms matches the sequence of context
terms in the pattern. An element pattern matches a single element node if the name
and attributes match (in the obvious way). ASomeElements matches any context
fragment. Implicitly, all context patterns begin with aSomeElements element.

To see how useful context-dependent definitions are, let us consider a common
situation: an XML grammar that represents not one but several related XML notations.
For example, a DSD may specify both draft and final markup notations for books. This
is the scenario mentioned in the XML 1.0 specification, where conditional sections of
DTDs may be used to describe variations:

<!ENTITY % draft ’INCLUDE’ >
<!ENTITY % final ’IGNORE’ >
<![%draft;[
<!ELEMENT book (comments*, title, body, supplements?)>
]]>
<![%final;[
<!ELEMENT book (title, body, supplements?)>
]]>

Here, two flags (macros or parameter entities), calleddraft and final are used
to control the expansion of the two conditional definitions ofbook . Typically, these
flags would be declared in the document type declaration of the application document,
whereas the conditional sections would be declared in an external DTD. The declara-
tions in the application document are processed before the external DTD.

As stated, the first conditional definition is expanded since the first item of the
conditional definition expands toINCLUDE. Similarly, the second definition is not

10

expanded since the first item expands toIGNORE. In our opinion, this mechanism is
somewhat unsafe. A document writer must set two flags at the same time, and they
must not both beINCLUDEor IGNORE.

With DSDs, the parameterization of the XML grammar can be explained in terms
of the application document itself. For example, if the root element is calledDOC, then
an attributedraft of this element would govern the definition of abook :

<ElementDef ID="book">
<Sequence>

<If>
<Context>

<Element Name="DOC">
<Attribute Name="draft" Value="true"/>

</Element><SomeElements/>
</Context>
<Then><ZeroOrmore>

<Element IDRef="comments"/>
</ZeroOrMore></Then>

</If>
<Element IDRef="title"/>
<Element IDRef="body"/>
<Optional>

<Element IDRef="supplements"/>
</Optional>

</Sequence>
</ElementDef>

Here the logic of the different versions is clearly spelled out at the XML level of the
application document itself. We believe that this simple mechanism is not possible with
any other of the XML schema proposals (perhaps with the exception of Schematron).

3.6 Default insertion

Default attributes and content are defined by an association to a boolean expression.
Such attributes or content isapplicablefor insertion at a given place in the application
document if the boolean expression evaluates to true at that place.

The following example defines that thelength of input fields of typetext is
by default 20:

<Default>
<Context>

<Element Name="input">
<Attribute Name="type" Value="text"/>

</Element>
</Context>
<DefaultAttribute Name="length" Value="20"/>

</Default>

Defaults are inserted “upon request” by constraints:

11

• When an attribute declaration is encountered and the declared attribute is not
present in the current element, an applicable default is inserted, if a such exists.

• During evaluation of a content expression, if an element description or a string
type is encountered and the next content node does not match the description,
then an applicable default is inserted, if a such exists. Default elements can be
inserted only if declared as defaultable by the description.

A notion of specificityof defaults, based on CSS [1], is used to determine a default
when more than one is applicable. Intuitively, the default with the most complex
boolean expression is chosen; if two are equally complex, the one latest defined is
chosen.

For convenience, defaults can also be defined in the application document. Every
application document element may contain default definitions, which in a sense extend
the DSD. Such default definitions are recognized using theDSDnamespace. They are
not considered part of the application document by the DSD processor. Their scope is
not the whole application document; they are considered as applicable default defini-
tions only in the subtree rooted by the element in which they occur.

The following example shows how thelength default previously defined may
be overridden for certaintext type input elements, namely those insideform el-
ements that have anaction attribute whose value is a string starting with the prefix
http://www.brics.dk/ :

<DSD:Default>
<Context>

<Element Name="form">
<Attribute Name="action"/>

<Sequence>
<String Value="http://www.brics.dk/"/>
<ZeroOrMore><AnyChar/></ZeroOrMore>

</Sequence>
</Attribute>

</Element>
<SomeElements/>
<Element Name="input">

<Attribute Name="type" Value="text"/>
</Element>

</Context>
<DefaultAttribute Name="length" Value="30"/>

</DSD:Default>

Defaults defined in the application document are always considered more specific than
defaults defined in the DSD document. Moreover, when two application document
defaults are applicable and they are not siblings, the one with the smallest scope, that
is, the innermost one, will always be considered more specific than the other.

In Section 5, we will look at examples that involves managing a great number of
interdependent defaults.

12

3.7 ID attributes and points-to requirements

In attribute declarations, a DSD may declare that application document attributes are of
typeID or IDRef , as is also possible with DTDs. An attribute of typeID is considered
a definitionof the value of the attribute. Such a definition must be unique. Similarly,
an IDRef attribute is areferenceto the element containing the attribute defining the
given value, and such an element must exist.

Additionally, a DSD may impose apoints-torequirement on the element denoted by
a reference. Such a requirement is defined by a boolean expression, which may probe
attribute values and context as we have seen. This mechanism allows the description
of semi-structured data (such as the DSD notation itself, see Section 3.10.).

In the following example, abook-reference attribute is declared. It must refer
to an element with an attribute of typeID occurring in abook element:

<AttributeDecl ID="book-reference" IDType="IDRef">
<PointsTo>

<Context><Element Name="book"/></Context>
</PointsTo>

</AttributeDecl>

Points-to requirements are checked in a separate phase after the main traversal of the
application document.

3.8 Redefinitions and evolving DSDs

In practice, not one but a whole class of related XML schemas is to be defined. In
particular, an XML schema is often created from an existing schema through modifica-
tions and extensions. DSDs support these software practices by providing two simple
mechanisms:document inclusionandredefinition.

Both DSD documents and application documents can be created as extensions of
other documents using a specialinclude processing instruction of the form:

<?include URI=" URI"?>

whereURI denotes the document to be included, that is, inserted in place of the pro-
cessing instruction. A document can only be included once into a given document;
subsequent attempts are ignored.

In DSDs, all definitions can be renewed. One can include a document containing
a definition of a concept and then later redefine the concept. Since the DSD language
is designed to be self-describable, the meta-DSD must be able to express this notion of
redefinition.

To accommodate modifications of DSD definitions, two new attribute types,Re-
newID andCurrIDRef , are introduced besideID andIDRef . All definitions can
be redefined usingRenewID ; an IDRef attribute refers to thefinal definition or re-
definition in the document for thatID . An attribute of typeCurrIDRef refers to the
current definition, which is the last definition or redefinition occurring before the refer-
ence (and that does not contain it). Assume that in some existing DSD abook element
has been defined as follows:

13

<ElementDef ID="book">
<Constraint IDRef="book-constraints"/>

</ElementDef>

<ConstraintDef ID="book-constraints">
...

</ConstraintDef>

Consider a situation where we want to reuse this DSD but would like to extend the
book constraints with a new attribute declaration. This can be done usingRenewID
to redefinebook-constraint andCurrIDRef to refer to the original definition:

<ConstraintDef RenewID="book-constraints">
<Constraint CurrIDRef="book-constraints"/>
<AttributeDecl Name="new-attribute"/>

</ConstraintDef>

3.9 Self-documentation

Documentation may be associated to most constructs in a DSD. Documentation is
treated as meta-information, which does not affect the processing. It allows a DSD
to be virtually self-documenting towards application authors. Also, a DSD processor
may use this information when errors are detected to provide the author with useful
help.

The DSD language allows three kinds of documentation:Label , which can be
used to attach a label to the construct;Doc, which is intended for full documenta-
tion of the construct; andBriefDoc , intended for a brief description, which could be
translated in a title attribute of HTML (the effect is that a box with the brief documen-
tation pops up when the mouse is over the construct). Documentation may consist of
arbitrary XML, but a XHTML-like subset is recommended.

3.10 The Meta-DSD

The DSD language is self-describable: there is a DSD that completely captures the
requirements for an XML document to be a valid DSD. We provide such a DSD of
less than 500 lines (allowing sometimes several tags on the same line), called themeta-
DSD. It can be used both as a human readable description of DSD to clarify unclear
issues, and by DSD processors to check whether a given XML document is a valid
DSD. The meta-DSD resides athttp://www.brics.dk/DSD/dsd.dsd ; thus,
all DSD documents should contain the processing instruction:

<?dsd URI="http://www.brics.dk/DSD/dsd.dsd"?>

stating that they are intended to conform to the meta-DSD.

14

4 The Book Example

We now present a small example of a complete DSD. It describes an XML syntax for
databases of books. Such a description could be arbitrarily detailed; we have settled
for title, ISBN number, authors (with home pages), publisher (with home page), publi-
cation year, and reviews. The main structure of the DSD is as follows:

<?dsd URI="http://www.brics.dk/DSD/dsd.dsd"?>

<DSD IDRef="database" DSDVersion="1.0">
<ElementDef ID="database">

<ZeroOrMore>
<Element IDRef="book"/>

</ZeroOrMore>
<Element IDRef="database-title"/>

</ElementDef>
...

</DSD>

In thedatabase element we use projected content to allow thetitle to appear any-
where. The remaining definitions are presented below, excluding thetitle element
and theisbn string type that are shown in Section 3.

<ElementDef ID="book">
<AttributeDecl Name="isbn" Optional="yes">

<StringType IDRef="isbn"/>
</AttributeDecl>
<Sequence>

<If><Attribute Name="isbn"/>
<Then>

<Optional>
<Element IDRef="book-title"/>

</Optional>
</Then>
<Else>

<Element IDRef="book-title"/>
</Else>

</If>
<OneOrMore>

<Element IDRef="author"/>
</OneOrMore>
<Element IDRef="publisher"/>
<Element Name="year">

<StringType IDRef="digits"/>
</Element>
<Optional>

<Element Name="review">

15

<StringType IDRef="url"/>
</Element>

</Optional>
</Sequence>

</ElementDef>

The isbn attribute is optional; if it is not present in abook , then atitle is manda-
tory.

<ElementDef ID="author">
<Sequence>

<Element Name="first">
<StringType IDRef="simple"/>

</Element>
<Optional>

<Element Name="initial">
<StringType IDRef="simple"/>

</Element>
</Optional>
<Element Name="last">

<StringType IDRef="simple"/>
</Element>

</Sequence>
<Optional>

<Element IDRef="homepage"/>
</Optional>

</ElementDef>

<ElementDef ID="publisher">
<StringType IDRef="simple"/>
<Optional>

<Element IDRef="homepage"/>
</Optional>

</ElementDef>

An order is imposed onfirst , initial , andlast , but projected content allows
the optionalhomepage element to appear anywhere.

<ElementDef ID="homepage">
<StringType IDRef="url"/>

</ElementDef>

<StringTypeDef ID="url">
<ZeroOrMore><AnyChar/></ZeroOrMore>

</StringTypeDef>

A naive definition ofurl is chosen here. It could be replaced with the full 200 line
official definition, which is indeed a regular language.

16

<StringTypeDef ID="simple">
<OneOrMore>

<Union>
<CharRange Start="a" End="z"/>
<CharRange Start="A" End="Z"/>
<CharSet Value="._- &"/>

</Union>
</OneOrMore>

</StringTypeDef>

<StringTypeDef ID="digits">
<ZeroOrMore>

<CharRange Start="0" End="9"/>
</ZeroOrMore>

</StringTypeDef>

Such string types should be part of a standard library.

<Default>
<Context>

<Element Name="book"/>
</Context>
<DefaultContent>

<title>Untitled</title>
</DefaultContent>

</Default>

This definition allows untitled books to receive the default titleUntitled . An exam-
ple of a conforming application document looks as follows:

<?dsd URI="http://www.brics.dk/DSD/book.dsd"?>

<database>
<title>

Classic Computer Science Books
</title>
<book isbn="0201485419">

<title>The Art of Computer Programming</title>
<author>

<first>Donald</first>
<initial>E</initial>
<last>Knuth</last>
<homepage>

http://www-cs-faculty.stanford.edu/˜knuth/
</homepage>

</author>
<publisher>

Addison-Wesley

17

<homepage>http://www.aw.com</homepage>
</publisher>
<year>1998</year>
<review>

http://www.amazon.com/exec/obidos/ASIN/0201485419
</review>

</book>
</database>

5 Industrial case study

IVR (Interactive Voice Response) systems range from simple telephony applications
(“press 1 for sales, press 2 for customer service”) to complicated dialogue systems
based on speech recognition. But even the simpler systems are notoriously difficult to
construct since their programming involves timing and error issues that always tend
to get complex. To simplify the task, many layers of abstractions are introduced. At
the highest level, an application programmer is then mainly concerned about choosing
pre-canned dialogues, which are filled in with a variety of parameters, such as prompts
and timeout durations. In this section, we will study how XML and the DSD Schema
may help an application programmer learn and use a specialized notation with many
interdependent parameters such as prompts, timeout values, error counts, error mes-
sages, etc. In particular, we will show how a DSD processor automates the filling-in of
defaults for such parameters according to the programmer’s preferences.

Our case study is based on XPML (Extensible Phone Markup Language), an HTML-
like experimental language developed at AT&T Labs. The XPML notation has evolved
from being a simple version of HTML, dubbed PML, to becoming a rather elaborate
programming notation for telephone services that rely on text-to-speech, touchtone in-
put, speech recognition, and call control.

Often, XPML documents resemble conventional marked-up documents; but some-
times they are heavily customized with many default time and prompt settings, making
them more like notations in a programming language. For such markup language appli-
cations, DSDs may play an important role, since they can describe almost all syntactic
constraints, while providing a practical solution to the handling of defaults. (Indeed,
the needs of PML originally motivated the development of the DSD language.)

(The XPML notation as outlined here is somewhat incomplete. It is similar to
VoiceXML, a new dialogue markup language developed by AT&T, IBM, Lucent and
Motorola. VoiceXML is not very similar to HTML, but otherwise resembles XPML in
scope and purpose.)

5.1 The IVR scenario

We will present our case study from the application programmer’s point of view. Our
scenario calls for this programmer to develop a little whimsical, interactive voice ap-
plication that probes the mood of a customer. The programmer will use XPML (for
Extensible Phone Markup Language), which he is not yet very familiar with. The main

18

idea of PML is that simple HTML-like pages describe a finite-state machine, where
intra-page hyperlinks become goto statements and text becomes synthesized speech;
input fields corresponds to subdialogues for obtaining numbers and select elements
become dialogues `a la “for sales, choose 1; for customer service, choose 2,...”.

Each subdialogue construct provides numerous parameters for specifying prompts,
help messages, timeout durations, timeout counts, and messages in various error sit-
uations. As a further complication, there are several interdependencies among these
parameters. For example, some HTML elements are associated with several possible
interaction stylesthat support situations such as: unusually many choices in a menu,
number input restricted to certain ranges, variations in dialogue style (“press any key
when you hear the right choice”), etc. The interaction style is specified by aninter-
action attribute. Naturally, the kinds of prompt parameters, along with many other
settings, are dependent on the value of this attribute.

5.2 DSDs for syntax explanations

Our application programmer wants to use XPML, but he doesn’t know much about it
except for some examples he has seen. Naturally, he will mainly use these examples
for guidance, but the DSD may provide a readable, concise syntactic summary. We do
not envisage that the programmer will read the DSD as an XML file. Instead, a hyper-
linked HTML document may be produced by an XSLT style sheet transformation. For
example, the DSD definition of the elementXPML, the top element of an XPML doc-
ument, is shown below (left) through an XSLT style sheet transformation into HTML.
The pretty-printed version is designed to resemble the concrete syntax of an applica-
tion document; the original DSD definition (right) probably should not be shown to the
application programmer:

19

<XPML>ID=XPML:
(<head>

Constrainthead-constraint
</head> [Defaultable],
<body>

Constraintbody-constraint
</body>)

</XPML>

<ElementDef ID="XPML">
<Sequence>

<BriefDoc>
The head element
may be omitted.

</BriefDoc>
<Element Name="head"

Defaultable="yes">
<Constraint IDRef=

"head-constraint"/>
</Element>
<BriefDoc>

The body element is
mandatory.

</BriefDoc>
<Element Name="body">

<Constraint IDRef=
"body-constraint"/>

</Element>
</Sequence>

</ElementDef>

TheBriefDoc documentation strings of the XML version are translated into HTML
title attributes—they provide the effect of a pop-up explanation when the mouse
pointer is over the corresponding definition. This particular snippet of a DSD speci-
fies that theXPMLelement consists of ahead element followed by abody element.
The head is defaultable (which means that it may be omitted if a default for it has
been specified), and its attributes and content are specified by the constraint named
head-constraint . Similarly, thebody element is specified by the constraint
body-constraint . The XSLT style sheet can be found at the DSD Web site (at
http://www.brics.dk/DSD); it is rather complicated, approximately 25 pages.

5.3 DSDs for debugging

Now, we will explore how schemas may help debug XML documents. Let’s assume
that the application programmer’s first attempt at the mood-probing XPML program is:

<?dsd URI="xpml-att.dsd"?>
<XPML>

<head>
<application name="HELLOWORLD"/>
<maintainer address="karam@research.att.com"

loglevel="2"/>
<title>The Greeting Application</title>

20

</head>
<body>

Welcome to greetings are us.

<audio url="/audioclips/greeting.vox"/>

<menu name="feelings">

<option dtmf="0">To end</option>
<do>

<comment>go to end point</comment>
</do>
<option> If you are feeling like a cowboy. </option>
<do> Howdy world! </do>
<option> If you are feeling like a Canadian. </option>
<do> Gid’day world, how’s it going eh? </do>

</menu>

</body>
</XPML>

The programmer has inserted a<?dsd URI="xpml-att.dsd"?> processing in-
struction to mark that the document must conform to the DSD namedxpml-att.dsd .
He can now use the DSD processor to check the syntax of the document. It’ll tell him:

Error in ’greetings-first-attempt.pml’
line 10: attribute ’nointerrupt’ has illegal value ’y’
while checking attribute in constraint
"message-attributes", ’xpml-core.dsd’ line 377

An automated error analysis tool would display this constraint along with pertinent
auxiliary definitions:

ConstraintDef ID=message-attributes:
nointerrupt=”YesOrNo”[Optional]

StringTypeDef ID=YesOrNo:
(”yes” | ”Yes” | ”no” | ”No”)

So, the programmer must write"yes" , not "y" . Naturally, the other schema nota-
tions offer similar capabilities. Most people will probably get acquainted with schemas
only through such error-reporting (grammar reading being not a favorite pastime of
programmers)—thus, it is very important that the schema notation itself is a simple as
possible, otherwise error messages will be difficult to interpret for the non-expert.

5.4 DSDs for myriads of defaults

Once the above error is corrected, the DSD processor accepts the document and inserts
all the default attributes and default elements specified by the DSD for XPML. The
resulting document is:

21

<?dsd URI="xpml-att.dsd"?>
<XPML>

<head>
<application name="HELLOWORLD"/>
<maintainer address="karam@research.att.com" loglevel="2"/>
<title>The Greeting Application</title>

</head>
<body>

Welcome to greetings are us.

<audio url="/audioclips/greeting.vox"/>

<menu asrmode="none" endchars="#" finaltimeout="5000ms"

interaction="basic" interdigittimeout="4000ms"
maxmisselected="3" maxtimeout="2" maxtterrs="3"
name="feelings" timeout="0ms">

<option dtmf="0">To end</option>
<do><comment>go to end point</comment></do>
<option> If you are feeling like a cowboy. </option>
<do> Howdy world! </do>
<option> If you are feeling like a Canadian. </option>
<do> Gid’day world, how’s it going eh? </do>
<help>No help is available.</help>
<initial>

<enumerate><option/>Press
<emph><dtmf/></emph>.

</enumerate>
</initial>
<timeout> You have exceeded the time limit. </timeout>
<toomanyerrors> Sorry, too many errors. </toomanyerrors>
<counttimeout> Sorry, too many timeouts. </counttimeout>
<pause> Pausing. Press pound sign to continue. </pause>

</menu>

</body>
</XPML>

It is similar to the original document except that all timing and counting parameters that
are relevant according to the schema have been inserted. Also, various default mes-
sages used in error and help situations, like<help>No help is available.
</help> have been inserted. Voice programming, as well as layout via HTML lay-
out, is dependent on a great number of parameters whose tuning is often essential to
obtaining the right performance. But just as with HTML, they are not usually some-
thing that the programmer wants to explain in detail for every part of the document,
since it would ruin the document as an abstract representation of the contents.

This example shows how DSDs generally allow XML notations to be abstracted
away from rendering details in a way similar to CSS. However, we should note that
DSDs do not quite subsume CSS: in the domain of visual formatting, there are some
arithmetic rules about inheritance of values that cannot currently be expressed in DSDs.

22

DSD style sheets

DSD defaults defined by both the system and the application programmer may be gath-
ered in files known asexternal parsed entities. These are just like XML documents
except that multiple root elements are allowed. They work as style sheets by inclusion
in the application document via theinclude processing instruction.

Below, the application programmer has defined a DSD style sheet that overrides
the defaulthelp element for themenu construct in two ways: for amenu without a
class attribute, the message “We’re sorry, can’t help you more right now, but please
call us at 1-800-greetings” is specified; for amenu with a class attribute of value
moody, the default content ofhelp becomes “How are you feeling, dud? press 1 to
get relief”,

<DSD:Default>
<Context>

<Element Name="menu"/>
</Context>

<DefaultContent>
<help>

We’re sorry, can’t help you more right now,
but please call us at 1-800-greetings

</help>
</DefaultContent>

</DSD:Default>

<DSD:Default>
<Context>

<Element Name="menu">
<Attribute Name="class" Value="moody"/>

</Element>
</Context>
<DefaultContent>

<help>
How are you feeling, dud? press 1 to get relief

</help>
</DefaultContent>

</DSD:Default>

Thus, parameters can be gathered hierarchically in files to achieve the cascading effect
that enable abstractions, formulated as sets of defaults, to be easily further customized.

5.5 The XPML core: big picture

We will now describe how a description of XPML may be layered. (The collection of
DSDs mentioned in the following can be found athttp://www.brics.dk/DSD .)
XPML has a simple core, similar to HTML; for example, a DSD (and even a DTD)
may easily express thatstatements compriseselect , a andmenu elements and
inline content, whereinline is text oraudio or span elements. However, the
DSD reflects the fact that the syntax really is more complicated:form statements may

23

occur only when not nested inside anotherform statement, andinput statements
may occur only inside aform statement. These context dependencies are easily ex-
pressed using a combination of boolean logic and regular expressions.

The XPML core: attribute dependencies

Thetype attribute of theinput statement determine what other attributes are possi-
ble and what the allowed content is. For example, when thetype attribute istext , a
size attribute is allowed.

Platform specific markup

Variations in hardware or device choices influence language constructs, such as at-
tributes and their value ranges. These constraints are modeled in separate DSDs that
amend the description of the core XPML language. For example, thexpml-att DSD
describes metric attributes for controlling how information about user sessions are re-
ported back to the server.

Additional abstractions

At the other end of the abstraction spectrum is the need for numerous variations on ba-
sic constructs, such as the select element. Each variation is a generic interaction style
characterized by how the user is prompted and how error situations are handled. Each
interaction style is itself further parameterized by various messages, timeout parame-
ters, and so on. These variations would be hard describe using other formal techniques
such as object-oriented types; they are simply too heterogeneous. Nevertheless, they
look rather much alike on the surface. As an example, themenu element is already
described in the core DSD as containing elements according a regular expression

<ElementDef ID="menu">
<OneOrMore>

<Sequence>
<Element IDRef="menu-option"/>
<Optional>

<Element IDRef="menu-do"/>
</Optional>

</Sequence>
</OneOrMore>
<Constraint IDRef="menu-constraint"/>
<Constraint IDRef="menu-dtmf-constraint"/>

</ElementDef>

The content expression denotes any non-empty sequence ofoption elements, where
eachoption element allows an optionaldo element immediately following it. Also,
a constraintmenu-constraint is introduced to be a place holder for attributes
common to both speech and touchtone (DTMF) input as the DSD evolves; similarly,
menu-dtmf-constraint is introduced as a place holder for touchtone specific
constraints.

24

In a separate DSD that describe the interaction style abstraction, theinteraction
attribute that selects an interaction style, eitherbasic or optional , is introduced,
along with the extra elementscounttimeout andpause that are allowed:

<ConstraintDef RenewID="menu-constraint">
<Constraint CurrIDRef="menu-constraint"/>
<AttributeDecl Name="interaction"

Optional="yes">
<StringType IDRef="Menu-interaction-name"/>

</AttributeDecl>
<If>

<Or>
<Attribute Name="interaction" Value="basic"/>
<Attribute Name="interaction" Value="optional"/>

</Or>
<Then>

<Element Name="counttimeout" Defaultable="yes">
<Constraint IDRef="message-attributes"/>
<Content IDRef="menu-message-content"/>

</Element>
<Element Name="pause" Defaultable="yes">

<Constraint IDRef="message-attributes"/>
<Content IDRef="menu-message-content"/>

</Element>
</Then>

</If>
</ConstraintDef>

5.6 Platform dependent defaults

The number of defaults for XPML is very large; there are many patterns in the as-
signments, and the CSS-like default mechanism is particularly suited for capturing the
defaults in as systematic a way as possible. For example, we can express that both
select andmenu elements share certain default values for some of their attributes:

<Default>
<Or>

<Context><Element Name="select"/></Context>
<Context><Element Name="menu"/></Context>
<Context><Element Name="input"/></Context>

</Or>
<DefaultAttribute Name="maxtterrs" Value="3"/>
<DefaultAttribute Name="maxmisselected" Value="3"/>
<DefaultAttribute Name="maxtimeout" Value="2"/>
<DefaultAttribute Name="endchars" Value="#"/>
<DefaultAttribute Name="interdigittimeout"

Value="4000ms"/>

25

<DefaultAttribute Name="finaltimeout" Value="5000ms"/>
<DefaultAttribute Name="timeout" Value="0ms"/>

</Default>

5.7 DSDs for simplifying XPML processing

With a DSD processor, an XML documents may benormalizedby default insertion in
the sense that (1) without inserted defaults (assuming all default information is erased
from the DSD) the document is not conforming and (2) with defaults inserted the doc-
ument is conforming and no more defaults would be inserted—if it were to be run
again. (Strictly speaking, DSD semantics currently present the problem that default
element insertion may cause the DSD processing to be a non-idempotent operation, so
the preceding statement is not always true when one expects it to be true.)

Since defaults cannot be removed by defaults in an application document, only
overridden, the defaults given with the DSD itself provide a set of assumptions about
the shape of the document that results from running the DSD processor on a valid
document. For example, the XPML interpreter can assumemenu elements are fully
filled-in with timing attributes and content such ashelp anderror messages, since
an application programmer provided default can change this information, but not let it
disappear.

For this reason, the system programmer, who is writing a semantic interpreter for
XPML, may omit a host of error and default situations that would otherwise be typical
of a domain specific language like XPML. In other words, the DSD notation itself, with
its emphasis on parameters and defaults, becomes a domain modeling tool that directly
simplifies the building of software.

5.8 Summary of DSD advantages

We have made a preliminary description of the full XPML language. Our experiments
show that almost all of the syntax and static semantics of XPML can be captured as
DSDs. We have illustrated four practical aspects of DSD schemas:

• DSDs aid the XPML programmer to choose the right syntactic constructs. DSDs
are by themselves not easy too read because of the XML syntax, so we indicate
how to present them in a more conventional BNF-like way that closely resembles
the concrete syntax of the XPML notation.

• XPML programmers can easily check their documents for most errors using the
DSD processor alone.

• XPML programmers can use the CSS-like default mechanism that comes with
DSDs. Thus, XPML programs can be “styled” in a declarative and modular
fashion.

• DSD descriptions significantly simplify the programming of an interpreter for
XPML.

26

In contrast, the XML Schema notation proposed by the W3C covers only the first two
points, and only partly so: first, the notation is incapable of capturing much of the
attribute structure of XPML, and second, the notation itself is so complicated (as ar-
gued previously) that it may impede its use as an explanatory medium directed towards
computer professionals.

6 The DSD 1.0 Tool

A prototype DSD processor has been implemented and is freely available. This proto-
type shows that it is possible to implement a complete DSD processor in less than 5000
lines of simple C code. The processor tests conformance of application documents and
inserts defaults.

By using a DSD processor as a front-end for other XML tools, these often become
much simpler to construct. The DSD processor itself relies on this technique. Using
the meta-DSD, which is a complete description of DSDs, the processor checks that a
purported DSD document is indeed a DSD. This bootstrapping technique has reduced
the size of the implementation and made it more readable.

The DSD processor analyzes application documents in linear time in the following
sense: execution time is proportional to the size of the application document (where
DSD defaults are viewed as belonging to an extended DSD). The constant of propor-
tionality depends on the complexity of the given DSD. If DSD defaults in the applica-
tion document are not discounted, then the running time is quadratic in the size of the
document. In practice, the number of defaults is sufficiently small that the quadratic
running time is not observed.

Functionality

The DSD tool is given the URI of an application document containing a DSD-reference
processing instruction. It performs the traversal of the application document as de-
scribed in Section 3, and if it succeeds, it then performs the points-to check described
in Section 3.7.

Before the application document is processed, the DSD document (including all
application document defaults) is checked to see whether it conforms to the meta-DSD.
This check can be omitted by a command-line option if the user is certain that the DSD
is in fact valid.

If an error occurs, that is, if a document is not conforming to its DSD, then a suit-
able error message is inserted in the document which is then output. If the processing
succeeds without errors, then the defaults are added to the application document. As
an extra feature, the tool can be instructed to add special attributes that detail the el-
ement ID assigned to a node. Such parsing information can be useful in subsequent
processing by other XML tools.

27

Availability

The DSD processor is available in an open source distribution. Please visit the DSD
project home page athttp://www.brics.dk/DSD/ for more information. This
home page also contains other DSD resources, such as the official specification of the
DSD 1.0 language, example DSDs and application documents, the XSLT style sheet
for DSDs, and more.

7 Related work

There are currently two major W3C initiatives aiming at describing classes of XML
documents.

The first initiative is called RDF (Resource Description Framework) Schema Spec-
ification. RDF is a generic notation for describing metadata, such as content ratings,
user references, or content relationships. It is based on well-known concepts: named
properties and entity-relationship diagrams. Thus an RDF description is a graph ex-
pressed in a generic notation. RDF schemas, in turn, declare properties and allowed
relationships that constrain the shape of an RDF description. An RDF schema defines
a number of domains, mappings among them, and classes, which may be related by
subclass constraints. Thus, RDF schemas aim at describing data models, not XML
syntax as such.

The second initiative is named XML Schemas. The requirements that a schema
language should address are summarized in the document [19]. The DSD language,
we believe, satisfies the principles and requirements outlined, except that we have paid
less attention to a precise coordination with other W3C standards (some of which are
under development). In particular, we have not addressed the relatively modest issue
of integrating primitive datatypes with our structural descriptions. Neither have we
addressed the issue of namespaces [4].

The XML Schema proposal [25] contains many features that may directly be com-
pared to the DSD language. Other features, such as those that deal with namespaces
and import mechanisms, are outside the scope of the current DSD proposal.

• The XML Schema proposal introduces several mechanisms, inspired by object-
oriented programming, for restraining how schemas are constructed such as final,
abstract, and equivalence notions. They contribute to the complexity of the lan-
guage, while impeding self-describability. The current DSD proposal does not
rely on object-orientation, since we found that many application domains, such
as HTML, do not lend themselves to this paradigm.

• In XML Schema, a number of constraint-like concepts are introduced: complex
types, attribute group definition, and content type concepts. We propose to unify
these, and our additional notion of a boolean constraint, into one concept.

• The XML Schema proposal introduces three different kinds of content models
element content model, element-only content, and named model group. We in-
troduce only one kind of content model, which may be anonymous or identified
by an ID.

28

Apparently, the current XML Schema proposal does not satisfy two of the requirements
in [19]:

• it is not self-describing, since many syntactic constraints on schemas are so com-
plicated that they are not describable by a schema; and

• it does not address schema evolution, that is, how existing schemas may be com-
bined or amended to reflect new features or restrictions.

We address the first requirement by making the DSD language strong enough to cover
boolean conditions, including context descriptions and the description of where ID
references point to. Our meta-DSD, which describes the class of valid DSDs, covers
all syntactic constraints.

We address the second requirement by our use of definitions and redefinitions of
nonterminals as a simple solution to the problem of extending grammatical categories
in schemas as they evolve.

There are other significant differences between DSDs and XML Schema. First, our
notion that attributes must be declared gradually avoids semantic ambiguities in how
CSS is used for inserting default attribute values for XML languages like SMIL [13],
where CSS is transplanted from a translator into a visual formatting language to a
translator into XML. Second, our schema language captures that content and attribute
declarations often depend on ancestors and other attributes; XML Schema does not
allow attributes value dependencies, which are common to XML languages (including
XML Schema itself!). Finally, the key notions of XML Schema of how to specify the
recursive structure of a document are, in our opinion, too weak and at the same time
much too complicated as far as we gather from the current draft [25].

There have been several other schema language proposals. DDML [2] was the
result of a collaborative effort on the XML-DEV mailing list. It is a relatively straight-
forward generalization of DTD concepts. A similar notion called DCD was proposed
in [3]. A different approach was suggested by SOX [9], which is based on an object-
oriented paradigm. These languages do not appear to offer a unifying notion of con-
straint, or context-dependent declarations.

A interesting approach [24], called assertion grammars, achieves some of our goals
since it is based implicitly on nonterminals. Recast in our terminology, assertions are
redefinitions of nonterminals that conditionally extend their meaning. The condition
reflects the context where the addition is valid. We believe it would be possible to ex-
plain assertion grammars fully in terms of DSD concepts; conceivably, assertion gram-
mar concepts could be integrated with DSDs, where they would stand for abbreviations
of DSD constructs. Assertion grammars allow only a restricted class of extensions, and
they do not allow as flexible context dependencies as DSDs.

Another approach closely related to ours is that of RELAX [22], which is based on
the automata-theoretic characterization of regular tree languages formulated in [20].
According to the original RELAX concept, a specification expresses a nondetermin-
istic tree automaton. In order to decide whether a given document is accepted by the
automaton, an efficient algorithm must work bottom-up in order to carry out a subset
construction on the fly. We depart fundamentally from RELAX on this point: we chose
to make DSDs similar to deterministic, top-down automata—otherwise, it would not

29

be obvious how DSDs could become a foundation for CSS extended to arbitrary XML.
With our semantics, defaults are inserted deterministically as a part of the parsing pro-
cess; had we chosen a more general automaton model, default insertion would become
very complex—seemingly amounting to the solution of a kind of system of equations.
Indeed, RELAX is suggested as a notation that is explicitly designed not to support
default insertions. We disagree: declarative default mechanisms are so important that
they must be supported by the semantics of the schema notation.

Our notion of constraint assignment is superficially similar to the way automata
states are assigned by RELAX to nodes of the XML tree; also, we use the idea of [20]
to express the transition relation by regular expressions over automata states. However,
our current semantics is that of a parsing process, not that of automata theory. (We may
in the future decide on a purer semantics, although we are committed to a top-down
approach.)

Recently, it was announced [21] that the RELAX project, influenced by the DSD
notation, would adopt a top-down approach based on an automata-theoretic semantics.

We know of no other work that have suggested a generalization of CSS based on
a schema notation; the Simple Tree Transformation Language outlined in [12] is also
meant to be easily understandable, but it is based on a more operational, and explicit,
semantics.

The DSD notation is similar in some respects to the XSLT transformation language:
both employ a top-down traversal of a tree based on testing properties, such as attribute
values, of a current node and its ancestors. But the XSLT language is much more
powerful (so that more properties can be tested—in fact, it is Turing-complete), the
output may look very different from the input (whereas DSDs only insert element and
attribute default), and there are no uniquely named constraints assigned to nodes during
parsing. In practice, many XSLT programs visit each node only once; in this case,
even the mode concept of XSLT has a counterpart in DSDs, namely IDs. DSDs with
their more restricted formal apparatus allow features such as CSS-like defaults, linear
parsing, and redefinitions, which are hard to achieve with XSLT.

In fact, the Schematron [14] proposal is not based on grammatical structures, but
uses patterns expressed in XPath/XSLT to impose collections of individual require-
ments that could possibly be used in conjunction with grammar-based schema nota-
tions. Being based on XSLT, Schematron is unlikely to be readable by the occasional
XML programmer or application engineer.

8 Conclusion

The DSD language provides a simple but very expressive alternative to other XML
schema proposals. It embodies a formal approach to the specification, validation, and
default completion of XML syntax. It addresses issues such as context dependen-
cies, CSS-like defaults, schema evolution, semi-structured data, complex data types,
and efficient implementation. It has an expressive power reminiscent of XSLT since
some XSLT recursion and testing based on boolean expressions (probing element and
attribute content) is expressible as DSDs. Moreover, the DSD language has been im-
plemented and tested in practice. It is our hope that DSD ideas may further simple

30

XML standards that go beyond just being grammar notations.

References

[1] Bert Bos, Håkon Wium Lie, Chris Lilley, and Ian Jacobs, editors.
Cascading Style Sheets, level 2, CSS2 Specification. W3C, 1998.
URL: http://www.w3.org/TR/REC-CSS2/ .

[2] Ronald Bourret, John Cowan, Ingo Macherius, and Simon St. Laurent, edi-
tors.Document Definition Markup Language (DDML) Specification, Version 1.0.
W3C, 1999. URL:http://www.w3.org/TR/NOTE-ddml .

[3] Tim Bray, Charles Frankston, and Ashok Malhotra, edi-
tors. Document Content Description for XML. W3C, 1998.
URL: http://www.w3.org/TR/NOTE-dcd .

[4] Tim Bray, Dave Hollander, and Andrew Layman, editors.Namespaces in XML.
W3C, 1999. URL:http://www.w3.org/TR/REC-xml-names .

[5] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, edi-
tors. Extensible Markup Language (XML) 1.0. W3C, 1998.
URL: http://www.w3.org/TR/REC-xml .

[6] James Clark. XSL Transformations (XSLT) Specification. W3C, 1999.
URL: http://www.w3.org/TR/WD-xslt .

[7] James Clark and Steve DeRose, editors.XML Path Language. W3C, 1999.
URL: http://www.w3.org/TR/xpath .

[8] The Unicode Consortium.The Unicode Standard, Version 2.0. Addison Wesley,
1996. URL: http://www.unicode.org/ .

[9] A. Davidson et al. Schema for Object-Oriented XML 2.0. W3C, 1999.
URL: http://www.w3.org/TR/NOTE-SOX/ .

[10] Steve DeRose, Ron Daniel Jr., and Eve Maler, editors.XML Pointer Language.
W3C, 1999. URL:http://www.w3.org/TR/xptr .

[11] Steve DeRose, Eve Maler, David Orchard, and Ben Trafford, editors.XML Link-
ing Language. W3C, 2000. URL:http://www.w3.org/TR/xlink .

[12] Daniel Glazman. Simple tree transformation sheets 3. Technical Report NOTE-
STTS3-19981111, W3C, 1998. http://www.w3.org/TR/NOTE-STTS3.

[13] Philipp Hoschka et al. Synchronized Multimedia Inte-
gration Language (SMIL) 1.0 Specification. W3C, 1998.
URL: http://www.w3.org/TR/REC-smil .

31

[14] Jeff Jelliffe. The schematron: An xml structure validation language using
patterns in trees, 1999. URL:http://www.ascc.net/xml/resource
schematron/schematron.html .

[15] Nils Klarlund. From the programmer’s point of view: XML
for IVR and how DSD Schemas may help. Unpublished re-
vision of “XPML: industrial case study”, currently available at
http://www.research.att.com/projects/DSD/industrial-case/ .

[16] Nils Klarlund and Anders Møller.MONA Version 1.3 User Manual. BRICS Notes
Series NS-98-3 (2nd revision), 1998. URL:http://www.brics.dk/mona .

[17] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. Doc-
ument Structure Description 1.0. AT&T & BRICS, October 1999.
URL: http://www.brics.dk/DSD/specification.html .

[18] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. DSD: A schema
language for XML. InACM SIGSOFT Workshop on Formal Methods in Software
Practice, FMSP’00, 2000.

[19] Ashok Malhotra and Murray Maloney.XML Schema Requirements. W3C, 1999.
URL: http://www.w3.org/TR/NOTE-xml-schema-req .

[20] Makoto Murata. Hedge automata: a formal model for XML schemata, 1999.
http://www.xml.gr.jp/relax/hedge nice.html .

[21] Makoto Murata. Announcement onhttp://www.xmlhack.com , 2000.

[22] Makoto Murata. How to RELAX. Technical report, xml.gr, 2000.
http://www.xml.gr.jp/relax/ .

[23] Steven Pemberton et al.XHTML 1.0: The Extensible HyperText Markup Lan-
guage. W3C, 1999. URL:http://www.w3.org/TR/WD-html-in-xml .

[24] Dave Raggett. Assertion grammars. Draft, URL:http://www.w3.org/
People/Raggett/dtdgen/Docs/ , 1999.

[25] Henry S. Thompson et al.XML Schema Part 1: Structures. W3C, 2000.
URL: http://www.w3.org/TR/xmlschema-1/ .

32

Recent BRICS Report Series Publications

RS-00-41 Nils Klarlund, Anders Møller, and Michael I. Schwartzbach.
The DSD Schema Language and its Applications. December
2000. 32 pp. Shorter version appears in Heimdahl, editor,3rd
ACM SIGSOFT Workshop on on Formal Methods in Software
Practice, FMSP ’00 Proceedings, 2000, pages 101–111.

RS-00-40 Nils Klarlund, Anders Møller, and Michael I. Schwartzbach.
MONA Implementation Secrets. December 2000. 19 pp. Shorter
version appears in Daley, Eramian and Yu, editors,Fifth Inter-
national Conference on Implementation and Application of Au-
tomata, CIAA ’00 Pre-Proceedings, 2000, pages 93–102.

RS-00-39 Anders Møller and Michael I. Schwartzbach.The Pointer As-
sertion Logic Engine. December 2000. 23 pp. To appear in
ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’01 Proceedings, 2001.

RS-00-38 Bertrand Jeannet. Dynamic Partitioning in Linear Relation
Analysis: Application to the Verification of Synchronous Pro-
grams. December 2000.

RS-00-37 Thomas S. Hune, Kim G. Larsen, and Paul Pettersson.Guided
Synthesis of Control Programs for a Batch Plant usingUP-
PAAL . December 2000. 29 pp. Appears in Hsiung, editor,
International Workshop in Distributed Systems Validation and
Verification. Held in conjunction with 20th IEEE International
Conference on Distributed Computing Systems (ICDCS ’2000),
DSVV ’00 Proceedings, 2000.

RS-00-36 Rasmus Pagh.Dispersing Hash Functions. December 2000.
18 pp. Preliminary version appeared in Rolim, editor, 4th.
International Workshop on Randomization and Approximation
Techniques in Computer Science, RANDOM ’00, Proceedings
in Informatics 8, 2000, pages 53–67.

RS-00-35 Olivier Danvy and Lasse R. Nielsen.CPS Transformation of
Beta-Redexes. December 2000. 12 pp.

RS-00-34 Olivier Danvy and Morten Rhiger.A Simple Take on Typed Ab-
stract Syntax in Haskell-like Languages. December 2000. 25 pp.
To appear in Fifth International Symposium on Functional and
Logic Programming, FLOPS ’01 Proceedings, LNCS, 2001.

	Introduction
	XML Concepts
	The DSD Language
	Element constraints
	Attribute declarations
	String types
	Content expressions
	Context patterns
	Default insertion
	ID attributes and points-to requirements
	Redefinitions and evolving DSDs
	Self-documentation
	The Meta-DSD

	The Book Example
	Industrial case study
	The IVR scenario
	DSDs for syntax explanations
	DSDs for debugging
	DSDs for myriads of defaults
	The XPML core: big picture
	Platform dependent defaults
	DSDs for simplifying XPML processing
	Summary of DSD advantages

	The DSD 1.0 Tool
	Related work
	Conclusion

