
B
R

IC
S

R
S

-00-38
B

.Jeannet:
D

ynam
ic

P
artitioning

in
Linear

R
elation

A
nalysis

BRICS
Basic Research in Computer Science

Dynamic Partitioning in
Linear Relation Analysis

Application to the Verification of
Synchronous Programs

Bertrand Jeannet

BRICS Report Series RS-00-38

ISSN 0909-0878 December 2000

Copyright c© 2000, Bertrand Jeannet.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/38/

Dynamic Partitioning In Linear Relation Analysis

Application To The Verification Of Reactive

Systems∗

Bertrand Jeannet†

December, 2000

Abstract

We apply linear relation analysis [CH78, HPR97] to the verifica-
tion of declarative synchronous programs [Hal98]. In this approach,
state partitioning plays an important role: on one hand the precision
of the results highly depends on the fineness of the partitioning; on the
other hand, a too much detailed partitioning may result in an expo-
nential explosion of the analysis. In this paper we propose to consider
very general partitions of the state space and to dynamically select a
suitable partitioning according to the property to be proved. The pre-
sented approach is quite general and can be applied to other abstract
interpretations.

Keywords and Phrases: Abstract Interpretation, Partitioning,
Linear Relation Analysis, Reactive Systems, Program Verification

1 Introduction

Reactive systems are a privileged field for applying formal verification meth-
ods, as they are generally used in critical systems where errors can have dra-
matic consequences. Since these systems interact with an environment, they

∗This work was mostly carried out in VERIMAG and finalized in BRICS; it has been
partially supported by the ESPRIT-LTR project “SYRF”.

†BRICS: Basic Research in Computer Science, Centre of the Danish National Re-
search Foundation, Department of Computer Science, Aalborg University, Fr. Bajersvej
7E, 9220 Aalborg Ø, Denmark. Email: bjeannet@cs.auc.dk. Fax: +45 9815 9889.
Supported by an INRIA grant: Institut National de Recherche en Informatique et
Automatique, Domaine de Voluceau – BP 105, 78153 Rocquencourt, France

1

are usually modeled as dynamic systems the evolution of which depends on
the environment. They can be classified according to the structure of their
state space and the expressiveness of their evolution laws, and as a conse-
quence to the decidability of the verification problem. In this paper, we are
interested in the verification of safety properties of systems that exhibit both
Boolean and numerical behavior, such as linear hybrid systems [ACH+95],
or synchronous programs containing numerical state variables [HPR97], for
which the verification problem is undecidable.

A common solution to overcome the undecidability of the verification is
to make use of approximation to conservatively check properties and to use
abstract interpretation as a theoretical framework. The use of approximation
can also be justified, in a more positive way, as a technique to reduce the
complexity of the algorithms and to afford the practical verification of bigger
systems.

Now, a major difficulty is to adjust the level of approximation used. A
tradeoff has to be found between precision and efficiency. Rough approxima-
tions make analysis cheaper but may fail in showing non trivial properties;
more precise analyses may be too expensive to be of practical interest.

In this paper, we propose a solution to find automatically such a trade-
off between precision and efficiency, based on abstract interpretation tech-
niques, and we apply it to the particular case of synchronous programs.
This solution could be applied as well to linear hybrid systems with minor
modifications. Let us make more precise the problem we attack and the
principle of our solution.

Partitioning in abstract interpretation. Partitioning is a classical
technique, in abstract interpretation [CC77], which consists of splitting the
state space of the system S = K ×S′ into a control part (a set K of control
point) and a data value part S′, and in associating with each control point
a set of reachable data values. No approximation is made on the control
part — control points are enumerated —, whereas sets of data values are
represented by elements of an abstract lattice L having suitable relationships
with S′. The analysis consists then in solving a system of fixpoint equations∧

k∈K X(k) = F (k)(X(1), . . . ,X(|K|)) where X(k) ∈ L is associated to the
control point k. As a consequence, the “global” abstract lattice used by the
analysis is the lattice LK .

Precision and complexity issues. In this context, a classical ap-
proach to adjust the precision — and the complexity — of the analysis, is to

2

signs

zones

convex polyhedra

intervals
linear equalities

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

��
signs

intervals
zones

polyhedra

set of states

(a) Hierarchy of abstract domains
for numerical sets

(b) Example of abstraction

Figure 1: Abstract domains for numerical sets

choose the abstract lattice L depending on the type of information one wants
to obtain. For numerical sets, one can choose, for instance, signs, intervals
[CC76], zones [HNSY92], linear equalities [Kar76], and convex polyhedra
lattices [CH78], the precision of which can be ordered as shown on Fig. 1(a).
Fig. 1(b) gives the abstract value representing a set of states, depending on
the abstract domain.

However, this approach is somewhat coarsed-grained, and sometimes
inefficient: for instance, all the abovementioned numerical lattices abstract
the set [−∞,−5] ∪ [5,+∞] into the top element: these lattices can only
represent convex sets, and their lub (least upper bound) operator can lose
too much information.

In addition, another problem arises, which is not addressed at all by
the choice of the numerical lattice: the set K of control point may be large
enough to become the main source of complexity. This state explosion prob-
lem, well-known in the verification of finite state systems, happens as well
in our case:

• Timed and hybrid systems are generally described by compositions
of many timed or hybrid automata. Performing the product of these
components to obtain a single automaton, often results in an explosion
of the size of the automaton.

• In data-flow synchronous languages [HCRP91, LGLL91], and in cir-
cuits, the automaton is implicitly given by means of Boolean (or finite
domain) state variables. By performing a partial evaluation [JGS93] of
all Boolean variables of the program, an explicit interpreted automa-
ton may be built [Hal98] and used for the analysis.

In both cases, the control structure is often too large to be managed: obvi-

3

initial not b0 and not b1 and (x=0) and (y=0);
transition

b0’ = not b1;
b1’ = b0;
x’ = if b0=b1 then x+1 else x;
y’ = if b0=b1 then y else y+1;

Figure 2: An example “program”

y:=y+1

b0 b1
y:=y+1

b0 b1

(b)

x:=y:=0

x:=x+1

x:=x+1

b0 b1b0 b1

x:=y:=0

b0=b1

b0 6=b1

(c)

x:=x+1

y:=y+1

if b0=b1 then

x:=x+1

else y:=y+1

b0:=F

b1:=F

y:=0

(a)

x:=0

(not b1,b0)

(b0,b1):=

Figure 3: Control structures for the example program

ously, in case where abstract values are convex polyhedra, solving a system
made of millions of equations is hopeless.

Let us consider a trivial example: the synchronous program shown on
Fig. 2 is, basically, a system of equations defining the dynamic behavior
of a set of Boolean (“b1, b2”) and integer (“x, y”) variables. Their possible
initial states are specified by a formula (“initial”), then each equation defines
the “next” (primed) value of a variable as an expression of the current
values of variables. Fig. 3 (a) and (b) show two imperative versions of
this program: Fig. 3(a) is the trivial control structure (one control state),
while Fig. 3(b) shows the automaton obtained by a partial evaluation of the
Boolean variables. If our goal is to prove, by linear relation analysis, that
x is always greater than or equal to y, the control structure of Fig. 3(a) is
too coarse (the behavior of Boolean variables is ignored); conversely, the
partitioning of Fig. 3(b) is too much detailed: we could complexify the
program, with n Boolean variables, and get a ring of 2n locations, while
the property can indeed be shown on an automaton with only 2 locations
(Fig. 3(c)).

4

Principle of our method. We propose a fine-grained method to ad-
just the precision according to the property under verification, which was
first presented in [JHR99]. This method is orthogonal to the choice of the
lattice L and addresses the state explosion problem. It relies on the use of
a new abstract lattice combining Boolean and numerical properties and a
more general partitioning method:

• On one hand it allows an explicit union of elements of L to be associ-
ated to a control point, thus providing a better precision when the lub
operator of the lattice L loses too much information; in the same time,
as the cardinal of the explicit union is bounded, the gain in complexity
is kept under control.

• On the other hand it makes possible to associate a unique element of L
to several control points, as in Fig 3(c), thus reducing the complexity
of the analysis, at the expense of a possible loss of precision.

The challenge is now to choose automatically a suitable partition for the
verification of a safety property on a program, i.e., being detailed enough to
conclude if the property is true, but being also the coarsest possible to limit
the complexity of analysis. This partition cannot be found statically, as it
depends of the dynamic behavior of the program. Our solution consists in
starting from a very coarse partition (basically, distinguishing only between
initial states, bad states and others), and in refining it dynamically according
to heuristics, until the unreachability of bad states from initial ones has been
shown.

The paper is organized as follows. Section 3 introduces the Abstract
Interpretation theory as well as the notion of partitioning, and defines the
model of programs we want to check. We define in section 4 a new abstract
lattice that is suitable for dynamic partitioning. It allows the definition, in
section 5, of more general control structures, as well as the kind of analysis
we perform on them. Section 6 describes an original approximate technique
to compute pre- and post-condition of abstract values, which appears ex-
perimentally to be essential in the overall success of dynamic partitioning.
Section 7 presents the most challenging part of this work, namely the refine-
ment heuristics, which are required to be automatic. Section 8 describes the
tool NBac implementing the method and some experiments we conducted
with it. Section 9 concludes the paper.

5

2 Related Work

Some works proposed solutions, either to solve the precision problem, either
to reduce the size of the control structure.

The problem of the approximations induced by the lub operator on an
abstract lattice L is well-known. A simple solution is to use the disjonc-
tive completion of L [CC92a], which consists basically in considering non
redundant unions of elements of L. The problem is then to limit the size
of the union. [Bou92] proposes a refined version of this solution, in which
the number of disjunctions is limited by the application of suitable widening
operators. The term “dynamic partitioning” is used in this context. This
solution is applied to the computation of good abstractions of minimal func-
tion graphs. Thus, this method is not guided by a property to prove, unlike
ours.

In order to reduce the size of control structure, in the particular case
of timed automata, minimization methods were proposed [ACD+92, YL93,
STA98]. The refinement process is always associated with a reachability
analysis. These works however differ greatly from ours, because they handle
decidable systems, and they perform only exact computations. Moreover,
they do not address the complexity of non-numerical control: locations are
split w.r.t. numerical constraints only, starting from the explicit timed au-
tomaton to be verified, possibly furthermore decomposed w.r.t. numerical
guards of transitions [YL93].

The work that is the closest of ours in spirit is certainly [DWT95]. Our
refinement method presents also some similarities with refinement methods
that have been devised for techniques combining theorem proving and model
checking [CGJ+00]. These works will be cited with greater details in the
following.

3 Preliminaries

3.1 Abstract interpretation

Abstract interpretation is a general method to find approximate solutions of
fixpoint equations. Most program analysis problems come down to solving
a fixpoint equation x = F (x). Solving such an equation generally raises two
kinds of problems:
(1) The solution must be computed in a complex ordered domain (typically,
the powerset of the state space of a program). Elements of this domain
must be efficiently represented and normalized; functions defined on the

6

domain, and the ordering relation among the domain, must be computed.
A first approximation can take place at this level: instead of computing in
the complex domain C of concrete values, one can choose a simpler abstract
domain A, connected to C by means of two functions α : C 7→ A , γ : A 7→ C
forming a Galois connection:

∀x ∈ C,∀y ∈ A, α(x) ≤A y ⇐⇒ x ≤C γ(y)

where ≤C ,≤A respectively denote the order relations on C and A. The
approximation of a function F , from C to C, will be the function α(F) =
α ◦ F ◦ γ, from A to A. The basic result is that, if C is a complete lattice,
if F is increasing from C to C, then

α(lfp(F)) ≤A lfp(α(F))

where lfp(F) denotes the least fixpoint of F . So, computing the least fixpoint
in the abstract domain provides an upper approximation of the fixpoint in
the concrete one.
(2) The iterative resolution of a fixpoint equation can involve infinite (or
even transfinite) iterations. In some cases, the abstraction performed in (1)
is so strong that the abstract domain is either finite or of finite depth (there
is no infinite, strictly increasing chain y0 <A y1 <A . . .). In such a case,
the resolution in the abstract domain converges in a finite number of steps.
However, requiring the abstract domain to satisfy such a finiteness condition
is quite restrictive. Better results [CC77, CC92b] can often be obtained by
performing another kind of approximation: when the depth of the abstract
domain is infinite, specific operators may be defined to extrapolate the limit
of a sequence of abstract values. For an increasing sequence (computation of
a least fixpoint) one uses a widening operator, usually noted ∇, from A×A
to A, satisfying the following properties:

• ∀y1, y2 ∈ A, y1 ≤A y1∇y2 and y2 ≤A y1∇y2

• For any increasing chain (y0 ≤A y1 ≤A . . .), the increasing chain de-
fined by y′0 = y0, y

′
i+1 = y′i∇yi+1, is not strictly increasing (i.e., stabi-

lizes after a finite number of terms).

Now, to approximate the least fixpoint y of a function G:

y = lim
i≥0

yi, with y0 = ⊥ (the least element of A) and yi+1 = G(yi)

we can compute an ascending approximation sequence (y′i)i≥0:

y′0 = ⊥ , y′i+1 = y′i∇G(y′i)

7

which converges after a finite number of steps towards an upper approxima-
tion ỹ of y . This approximation can be made more precise by computing a
descending approximation sequence

y′′0 = ỹ , y′′i+1 = G(y′′i)

i.e., starting from ỹ a standard sequence, without widening. Each term of
the descending sequence is an upper approximation of the least fixpoint y .

3.2 Partitioning in abstract interpretation

Assume the concrete domain C is the powerset of some set S of states, let
K be a finite set of locations and K = {S(1), . . . , S(|K|)} be a finite partition
(or a finite covering) of S (i.e., such that S =

⋃
k∈K S(k)). For each k ∈ K,

let C(k) = 2S(k)
; for each x ∈ C, x(k) = x ∩ S(k) belongs to C(k). Clearly,

for each x ∈ C, the set {x(k) | k ∈ K} is a finite covering of x. Now, any
fixpoint equation x = F (x) on the domain C can be written as a system of
equations ∧

k∈K

x(k) = F (k)(x(1), x(2), . . . , x(|K|))

on the domain CK = C(1) × . . .× C(|K|), where

F (k)(x(1), x(2), . . . , x(|K|)) = F (x(1) ∪ x(2) ∪ . . . ∪ x(|K|)) ∩ S(k)

The partition can obviously be reflected in the abstract domain, by setting
y(k) = α(x(k)), resulting in an abstract system of equations∧

k∈K

y(k) = G(k)(y(1), y(2), . . . , y(|K|))

on the domain AK =
⊗

k∈K A(k), where A(k) = {y ∈ A | y v α(S(k))} and
G(k) is an upper-approximation of F (k) on the functional domain AK → A(k).
C and AK are then connected by the Galois connection (αK, γK) with

αK(x) =
(
α(x ∩ S(1)), . . . , α(x ∩ S(|K|))

)
γK(y(1), . . . , y(|K|)) = γ(y(1)) ∪ . . . ∪ γ(y(|K|))

We will often denote (y(1), . . . , y(|K|)) ∈ AK by y(1) ∪ . . . ∪ y(|K|). This
partitioning first allows more efficient iterative resolution by using chaotic
iterations [Cou77]. But it can also make the results more precise for two
main reasons:

8

• When the least upper bound operator on A loses information, which
is the case for most classical numerical lattice (intervals, zones, linear
equalities, convex polyhedra), partitioning allows a concrete element
x ∈ C to be abstracted by an explicit union. For example, if S =
ZZ 2 and C = 2S is abstracted by the lattice of intervals A = I(ZZ)2,
taking S(1) = {(x, y) | x ≥ 0} and S(2) = {(x, y) | x < 0} as a
partition allows X = {(x, y) | x ≥ 0 ⇔ y ≥ 0} to be abstracted by
[0,+∞]× [0,+∞]∪ [−∞,−1]× [−∞,−1] instead of ZZ 2. Notice that a
partitioning of S according to the positivity of y would give the same
result: different partitioning can lead to the same results.

• Partitioning allows also a less frequent application of the widening op-
erator, which can lose most information. Let us define the dependence
relation RG on elements of K as follows: k depends on k′ if the value
of G(k)(y(1), y(2), . . . , y(|K|)) can depend on the value of y(k′). Let K∇
be a subset of K such that the graph of RG restricted to K \ K∇
has no loop. Then the convergence of the ascending approximation
sequence is guaranteed even if the widening operator is only applied
to components belonging to K∇:

∀k ∈ K, y
′(k)
0 = ⊥

∀k ∈ K∇, y
′(k)
i+1 = y

′(k)
i ∇G(k)(y(1)

i , y
(2)
i , . . . , y

(|K|)
i)

∀k ∈ K \K∇, y
′(k)
i+1 = G(k)(y(1)

i , y
(2)
i , . . . , y

(|K|)
i)

In the case of imperative programs, a standard partitioning is naturally
given by a set K of control points (“program counter” values). The state
space of the program has the form S = K×S′ and an abstract value is a pair
〈k, v〉 where k ∈ K and v representing a set of data values in S′. However,
we will start from declarative programs, where no obvious partitioning is
available.

3.3 Symbolic Representation of Programs and Properties

We address the particular case of declarative synchronous programs, whose
syntax and semantics are given below.

3.3.1 Syntax

We express a program together with the property to be proved by:

9

state b0,b1,ok : bool; x,y : int;
initial not b0 and not b1 and (x=0) and (y=0) and ok;
transition

b0’ = not b0;
b1’ = b0;
x’ = if b0=b1 then x+1 else x;
y’ = if b0=b1 then y else y+1;
ok’ = ok and (x≥y);

invariant ok;

Figure 4: A program with a property

• the declaration of Boolean state variables (bi)i=1...m and Boolean input
variables (cj)j=1...n, and the declaration of numerical state variables
(xk)k=1...p and numerical input variables (y`)`=1...q

• a set of equations b′i = φi(~b,~c, ~x, ~y), i = 1 . . .m and x′k = ψk(~b,~c, ~x, ~y),
k = 1 . . . p giving the value of each state variable at the next instant,
as a function of the current values of state and input variables. In
these equations, expressions φi and ψk are well-formed expressions
(of suitable types), possibly mixing Boolean expressions and linear
numerical expressions. Atoms of Boolean expressions can be either
Boolean variables or linear constraints.1

• two Boolean functions Init(~b, ~x) and Inv(~b, ~x), respectively defining
the set of initial states and the invariant (i.e., the safety property to
be verified) of the program.

For instance, Fig. 4 shows our example program augmented with an
“invariant”, which becomes false whenever x < y.

3.3.2 Semantics and Verification Goal

Let us note IB = {T,F} the set of Boolean values, and N the set of numerical
values (which may be integer, rational, or real numbers). A state of the
automaton is a pair (~β, ~ξ) ∈ IBm × N p of valuations of the Boolean and
numerical state variables. A state (~β, ~ξ) is initial iff Init(~β, ~ξ) = T . The

1Linearity is here for simplicity: one can also abstract non linear constraints or assign-
ments.

10

transition relation is defined by

(~β, ~ξ)
(~χ,~ν)−→(~β′, ~ξ′) ⇐⇒

{
β′i = φi(~β, ~χ, ~ξ, ~ν) i = 1 . . . m
ξ′k = ψk(~β, ~χ, ~ξ, ~ν) k = 1 . . . p

A run of the automaton is an infinite sequence (~β(i), ~χ(i), ~ξ(i), ~ν(i))i≥0, where
(~β(0), ~ξ(0)) is an initial state, and ∀i ≥ 0 : (~β(i), ~ξ(i)) (~χ(i),~ν(i))→(~β(i+1), ~ξ(i+1)).

A state (~β, ~ξ) is reachable if it belongs to the projection of a run onto state
variables. The goal of the verification is to show that, for any reachable
state (~β, ~ξ), Inv(~β, ~ξ) = T .

In the sequel, IBm×N p will be denoted by S, the set of inputs IBn×N q by
E, the set of initial states by Sinit and the set of states violating the invariant
by Serror. We assume that Sinit ∩ Serror = ∅ 2. Let τ be the projection of
the relation −→ onto state variables: τ(s, s′) ⇔ (∃e ∈ E : s e−→s′).

4 Choosing an abstract domain

Our state space is S = IBm × N p. We have to define an abstract domain
A connected to C = 2S as a basic abstract domain on which dynamic par-
titioning will be defined. The small example presented in the introduction
shows the interest of associating the same polyhedron (or more generally the
same abstract value for numerical variables) to several valuations of Boolean
variables. Conversely it can be necessary to associate several polyhedra to
the same Boolean valuation, as shown by the example of Fig. 5.

We assume the existence of a lattice (LN ,vN ,tN ,uN) connected by a
Galois connection (αN , γN) to the concrete lattice 2N p

. LN may be any
lattice for numerical domains mentioned in the introduction.

4.1 Definition

We propose to take as an abstract lattice A = 2IBn ×LN : an abstract value
(B,P) is a pair made of a subset of the Boolean space (or a Boolean formula)
and an abstract numerical value. We will call these abstract values convex
states. The meaning function γ is simply the canonical injection, whereas α
can be defined as ∀x ⊆ S, α(x) = u{y ∈ A | x ⊆ γ(y)}. This construction
is the classical reduced product of abstract domain defined in [CC79], the
reduction is here the implicit merging of the different representations of the
empty set.

2In the opposite case, the property is trivially false.

11

Consider the following program:

state x,y : int;
input ix,iy : bool;
initial (x=0) and (y=0);
transition

x’ = if ix then x+1 else x;
y’ = if x>=10 and iy then y+1 else y;

invariant (y=0) or (x>=6);

x≥10x≥6

2 106

y

x

It has no Boolean state variable and two integer state variables which
are incremented when a corresponding input signal is true. Moreover, y
can be incremented only if x >= 10. The exact reachable state space
is shown on the picture. We want to show that if y > 0 then x ≥ 6.
Obviously, because of the convex hull, if we use only one polyhedron P
to represent an upper-approximation of the reachable state space, we will
obtain P = {(x, y) | x≥ 0 ∧ y ≥ 0} and we will not be able to prove the
property. Now, if we partition the space according to the constraint x≥6
for instance, the reachable state space will be approximated by the exact
union P1 ∪ P2 of two polyhedra, where P1 = {(x, y) | 0≤x≤5∧ y=0} and
P2 = {(x, y) | x≥6 ∧ y≥0}, which allows to conclude that the property is
true.

Figure 5: A program for which you need an exact union of polyhedra

4.2 Fundamental operations

The definition and implementation of inclusion test, glb (greatest lower
bound) and lub operators are straightforward:

(B1, P1) v (B2, P2) ⇔ (B1 ⇒ B2) ∧ (P1 vN P2)
(B1, P1) u (B2, P2) = (B1 ∧B2, P1 uN P2)
(B1, P1) t (B2, P2) = (B1 ∨B2, P1 tN P2)

The widening operator is defined in the same way:

(B1, P1)∇(B2, P2) = (B1 ∨B2, P1∇NP2)

where ∇N is the standard widening operator on LN . IBn being of finite
depth 2n, and ∇N being a widening operator, ∇ : A×A→ A is a widening.

Notice that lub loses information not only because of the use of the lub
on the numerical part, but also because Boolean and numerical parts are
considered separately; for instance, if LN is the polyhedra lattice, (b, x > 0)t
(¬b, x ≤ 0) = (>,>) = > instead of the exact result which is (b ≡ (x > 0)).
Here, a partitioning of S according to b or the constraint x > 0 would allow
to represent exactly this set.

12

The transformation of a convex state by our transition functions is a
more complex topic and is delayed to the section 6.

4.3 Discussion

The lattice of convex states can only represent simple relations between
Boolean and numerical values. Several proposals have been made in the
literature to combine Boolean and numerical properties in a more precise
way, most of which being based on Binary Decision Diagrams (BDDs). The
principle is to use extended BDDs, the atoms of which are either normal
Boolean variables, or pseudo-variables whose value are interpreted as the
satisfaction of a numerical constraint.

tf

f t

tf

1

b

0

b

x>0

Figure 6: BDD
for b ≡ (x>0)

For instance, [Mau96] associates to pseudo-variables
linear constraints, and can represent arbitrary union of
convex polyhedra, or more generally any relation be-
tween Boolean variables and numerical constraints; the
figure shows such a diagram representing b ≡ (x > 0).
By associating difference constraints to pseudo-variables
(i.e., constraints of the form xi − xj ≤ d) [MLAH99]
is able to represent finite union of zones and apply
this technique to the verification of timed automata.
[BLP+99] proposes a variation on that idea by using n-ary nodes allowing
multiple choice depending of the value of a difference xi − xj.

We could have used such diagrams as an abstract domain, but we did
not because such abstract domains do not induce any approximation (and
makes partitioning useless), whereas we are convinced that approximation is
the key issue to overcome the complexity of the verification problem. Other
objections are first that these diagrams do not exhibit canonicity properties
and need to be simplified regularly, a costly operation, and secondly that it
is not obvious at all to define a suitable widening operator.

5 Control structures

A control structure is a more operational view of a partitioned system,
equipped with some attributes. Let K = {S(1), . . . , S(|K|)} be a partition
(or a covering) of the state space S of the program. A control structure
based on the partition (or covering) K is an automaton (K,KI ,KF ,;, def)
where

• K is the finite set of locations;

13

• def is the function

{
K −→ A

k 7−→ α(S(k))

• KI and KF are subsets of K (respectively called sets of initial and
final locations), such that

Sinit ⊆
⋃

k∈KI

γ(def (k)) and Serror ⊆
⋃

k∈KF

γ(def (k))

• ; is a binary relation on K (transition relation), such that(
∃s ∈ def (k),∃s′ ∈ def (k′) such that τ(s, s′)

)
⇒ k ; k′

Such an automaton is an abstraction of the program. Each location k repre-
sents a set of concrete states def (k) and the transition relation is an upper
approximation of the program transition relation. The important point is
that, if there is no path in the automaton from an initial to a final location,
then no bad state can be reached from an initial state in the program.

5.1 Initial Control Structure

We start from a very coarse control structure, which distinguishes initial
states, final (bad) states, and others; ideally, KI , KF and K \ KF should
cover exactly respectively initial, bad and invariant states. However, we only
require exact separation of bad and invariant state:⋃

k∈KI

def (k) = Sinit ,
⋃

k∈K\KF

def (k) = S \ Serror ,
⋃

k∈KF

def (k) = Serror

Before any analysis, the transition relation ; is assumed to be complete,
with two exceptions: locations in KI are sources, which is sound because
initial states are also covered by locations in K \KI , and locations in KF

are sinks, as we are not interested in the future of bad states. Fig. 7 shows
the initial control structure for our example program. In this figure, the
definition def (k) of each location k is shown in a grey box.

Notice that such a detailed covering of initial, bad and invariant states
results from a deliberate choice: on one hand, it starts the analysis with
a precise separation of relevant states; on the other hand, the influence of
this separation on the analysis cost will not be dramatic: since locations in
KI and KF never belong to loops, they will not be involved in iterations.
Anyway, one can always transform the program such that there is only one

14

ok∧
¬b0 ∧ ¬b1
∧x = y = 0 ok ¬ok

Figure 7: Initial control structure

location of each type. For instance, in the program of Fig 4, the invari-
ance property “x≥y” has been “delayed” into a Boolean state variable ok,
and “good” and “bad” states are those in which respectively ok=true and
ok=false. A similar transformation can ensure that there is only one initial
location.

5.2 Analysis on control structures

We use both forward and backward analyses on control structures, using
the underlying abstract domain AK. Forward analysis computes, for each
location k, an upper approximation reach(k) of the set of states in def (k)
that are reachable from an initial state of the program. Backward analysis
computes, for each location k, an upper approximation coreach(k) of the set
of states in def (k) from which one can reach a final state (these states are
said to be “coreachable” from final states). The equations for reach(k) and
coreach(k) are respectively

k ∈ KI reach(k) = def (k)
k 6∈ KI reach(k) =

⊔
k′;k

post (reach(k′)) u def (k)
k ∈ KF coreach(k) = def (k)
k 6∈ KF coreach(k) =

⊔
k;k′

pre(coreach(k′)) u def (k)

assuming, for any X ∈ L, that

post(X) is an upper-approximation in L of {s′ ∈ S | ∃s ∈ X : s→ s′}
pre(X) is an upper-approximation in L of {s ∈ S | ∃s′ ∈ X : s→ s′}

The solutions are computed by standard fixpoint computation, using chaotic
iterations, and application of the widening operator ∇ to ensure convergence,
as described in section 3.2.

15

Restricting the considered state space. Remember that our goal
is to show that there is no path from initial to final states: we are interested
only in states that are both reachable from initial states, and coreachable
from final states, which we call dangerous states. So we discard other states
in the control structure:

• After a forward analysis, we update the relation “;” as:

k ; k′ ⇔ post(reach(k)) u reach(k′) 6= ⊥
and we take def (k) = reach(k);

• After a backward analysis, we update the relation “;” as:

k ; k′ ⇔ pre(coreach(k′)) u coreach(k) 6= ⊥
and we take def (k) = coreach(k).

As a consequence, def (k) represents an upper-approximation of the set of
dangerous states in location k, and S =

⋃
k∈K γ(def (k)) becomes the global

set of dangerous states after analysis.

Forward and backward analyses are combined by performing them in alter-
nation, until convergence. Fig. 8.(a) shows in an oval box for each location
the result obtained by the forward analysis on the initial control structure
shown on Fig. 7. Then, the definitions of locations are updated, as shown
on Fig. 8.(b). Backward analysis doesn’t give any additional information on
this new control structure.

6 Approximate pre- and post-condition operator

We describe here our technique to compute pre- and post-condition of ab-
stract values by transition functions. The difficulty comes from the compos-
ite nature of convex states and transition functions.

6.1 An introductive example

Let us start with an example: consider a program with a Boolean state
variable b and an integer one x, the transition function of which is{

φb = b ∧ (x≤2)
ψx = if b ∧ (x≤2) then x+ 10 else x− 1

Let τ be the transition relation induced by the above transition functions.
Assume we want to compute post(τ)(X) with X = (>, x ∈ [0, 5]), and that
states are partitioned according to x≤8.

16

k0

(c) Refinement + forward analysis

k11

k2k1k0

k11 k12

k0 k1 k2

k2

(d) Updating + Backward analysis

k0

(a) Forward analysis on the initial structure

k12

(b) Updating of the definitions

k2

ok ∧ ¬b0 ∧ ¬b1,
x = y = 0

∧y ≤ x+1 y−2 ≤ x ≤ y
x ≥ 1 ∧ y ≥ 0

x ≤ y − 1

false

false

ok ∧ ¬b0 ∧ ¬b1,
x = y = 0

ok

x = y − 1

ok,
x ≥ 1∧
x ≥ y ≥ 0

¬ok ∧ b0 6= b1,
x ≥ 2 ∧ x = y

b0 6= b1

false,⊥
x = y ∧ x ≥ 1

x+y ≥ 4∧

¬ok

x ≥ y

ok ∧ b0 = b1,

b0 6= b1,

x ≤ y − 1

x ≥ 1∧

b0 6= b1

b0 = b1 b0 6= b1,
x ≥ 2 ∧ x = y

x = y = 0
ok ∧ ¬b0 ∧ ¬b1,

ok,
x ≥ 1∧
x ≥ y ≥ 0

ok,
x ≥ 1∧
x = y − 1

¬ok,
y−2 ≤ x ≤ y
∧x+y ≥ 4

x = y = 0

ok, ¬ok,
x ≥ 1 ∧ y ≥ 0 y−2 ≤ x ≤ yok ∧ ¬b0 ∧ ¬b1, ∧y ≤ x+1 ∧x+y ≥ 4

x ≥ y

Figure 8: Analysis of the simple example

17

post(τ)(X)

X >

¬b′ ¬b′ b′

b
¬b

12

¬b′

0 4

b′

x′102

Projection
on the partition

−1 1 3 5

Figure 9: Computation of a post-condition

6.1.1 The exact technique

If we want to compute the best correct approximation of post (τ)(X), we can
decompose X according to the value of b and x≤2, in order to remove:

• any numerical constraints from Boolean transition functions;

• any literal from numerical transition functions.

This decomposition is necessary because functions are composite and we
only know how to compute directly the image of a purely Boolean function
and the image of a non-guarded linear assignment. We obtain here, Fig. 9,

X = (¬b, x ∈ [0, 2]) ∪ (>, x ∈ [3, 5]) ∪ (b, x ∈ [0, 2])
post(τ)(X) = (¬b′, x′ ∈ [−1, 1]) ∪ (¬b′, x′ ∈ [2, 4]) ∪ (b′, x′ ∈ [10, 12])

We project then this result on the partition and apply possibly convex union:
(¬b′, x′ ∈ [−1, 4]) ∪ (b′, x′ ∈ [10, 12]).

Such a technique has two main drawbacks:

1. The size of decomposition grows exponentially with the number of
conditions appearing in the transition functions;

2. When the size of the partition is small, it is a bad idea to compute
with accuracy the postcondition, knowing that several convex unions
will be applied afterwards that may lose a lot of information.

6.1.2 A compilation technique

We will compute postconditions using the Lustre compiler technique
[Ray91], which generates a sequential version of the transition function:
(state) variables are sorted according to their dependencies, a reduced num-
ber of auxiliary variables are introduced if necessary (for instance for the

18

b

x:=x−1 x:=x+10

x≤2 t

x≤2

b:=b′

x:=x−1

f

b′:=false b′:=b

b′:=b

b

x:=x−1 x:=x+10

b:=b′

x≤2

b′:=false

x:=x−1

tf

b

x:=x−1 x:=x+10

x≤2

b:=false

x:=x−1

tf

(a) (b) (c)

Figure 10: Three possible sequences for our transition function

exchange of two variables), and the postcondition is progressively computed
by a sequence of tests and assignments. For the example above, three correct
sequences would be given by the flowcharts of Fig. 10.

When using such a sequence for computing a postcondition, test opening
corresponds to splitting the input abstract value according to the condition
of the test, whereas test closing corresponds to merging (by convex union)
the results of the two branches. The motivation to minimize the number
of auxiliary variables comes from the fact that introducing systematically
primed variables is known to be expensive in BDDs computations, and that
the complexity of polyhedra operations is exponential w.r.t. the number
of variables. The drawback of this choice is that dependency constraints
between operations are tighter.

This technique allows us to apply least upper bounds not only on lo-
cations of the control structure but also while computing postconditions,
and to make the precision vary. Here the second sequence (Fig. 10(b)) can
be considered better, because the test on x ≤ 2 is shared between the two
operations and the least upper bound is thus applied less frequently. We say
that the test on x ≤ 2 is factorized between the two operations. Notice that
if we never close tests (Fig. 10(c)), we obtain the exact technique described
in the previous paragraph.

6.2 Definition of sequences and associated operators

Sequences have the following syntax:

〈sequence〉 ::= 〈operation〉; . . . ; 〈operation〉
〈operation〉 ::= 〈action〉

| if 〈cond〉 then 〈sequence〉 else 〈sequence〉

19

Actions are operations that can be computed directly: purely Boolean
assignments or non-guarded linear assignments; conditions are formulas par-
titioning any convex state into two ones: purely Boolean formula or single
linear constraints. A sequence s defines approximate post- and pre- condi-
tion operators:

post(op1; . . . ; opn)(X) = post(op2; . . . ; opn) ◦ post(op1)(X)
pre(op1; . . . ; opn)(X) = pre(op1; . . . ; opn−1) ◦ pre(opn)(X)

post (if c then s+ else s−) = post(s+)(X u c) t post (s−)(X u ¬c)
pre(if c then s+ else s−) = (pre(s+)(X) u c) t (pre(s−)(X) u ¬c)
post (act)(X), pre(act)(X) : terminal cases

6.3 Data structures for transition functions

In order to represent transition functions, we use the diagrams mentioned
in section 4.3:

Boolean functions are represented by BDDs, the atoms of which are ei-
ther Boolean variables of the program, or pseudo-variables associated
with linear inequalities of the program.

Numeric functions are represented in the same spirit by MTBDDs
(Multi-Terminal BDDs), the set of atoms of which is the same than
for Boolean functions and the leaves of which are affine expressions on
numerical variables of the program.

Such diagrams are well-suited for the operations we will use to build se-
quences and compute pre- and post-conditions. Our tool uses the CUDD
package [Som].

6.4 Basic sequentialisation algorithm

We call sequentialisation the operation consisting in generating a sequence
for a transition function. We use a more complex algorithm than in [Ray91],
but the cost remains still reasonable w.r.t that of fixpoint computation.
We suppose that auxiliary variables have been introduced, and that we
have an acyclic graph of operations as input to the algorithm. An edge
si → sj between two variables and their associated operations indicates
that the assignment of si should take place before the assignment of sj.
This sequentialisation operation can then be sketched as follows:

20

Scheduling of actions: we put first in the sequence the operations that
can be generated directly, i.e., the actions that have no predecessors in
the graph; we pick them until there is not such actions in the graph any
more; at this point, a test has to be opened;

Selection of a test condition: we have first to select a condition on
which opening the test;

Selection of operations under test: then we have to select the opera-
tions we will schedule in the two branches of the test. The graph of
selected operations O are partially evaluated by the condition and its
negation, giving respectively the graphs O+ and O−. Partial evaluation
is done with the cofactor operations on BDDs and MTBDDs, and it may
relax some dependencies in these graphs.

Recursive calls: the algorithm is finally applied recursively to the graphs
O+ and O− under the branches of the test, and also to the graph of non
selected operations, which are scheduled after the test closing.

The most important part of the algorithm is the selection of the condition
and the selection of operations under test heuristics:

• In order to select a condition, we consider the set of operations without
predecessors in the graph, and we select a condition by choosing the
one that appears in the biggest number of these operations. This is
implemented by considering the support of corresponding diagrams,
i.e., the set of atoms that appear in them.

• We select operations under the test by picking iteratively operations
without predecessors, that are actions or that depend on the test con-
dition, until this process is blocked. We don’t allow the selection of
operations that don’t depend on the condition in order to avoid “du-
plication” of sequences, as in the Fig. 11.

This algorithm represents a good tradeoff between the factorization of test
between different operations, which favorized accurate results, and the size
of the sequence.

6.5 Refining sequences and improving the precision

Approximations are valuable only if we know how to control them. We
describe how we link the precision induced by sequences to the fineness of
control structure.

21

Operation O1

Operation O2

c2
c4c3

c1

c1
Operation O3

c4c3

c2 c2
c3

c1

c4

(a) Our choice: no duplication (b) Factorization of test on c1
but duplication of operation O2

Figure 11: Factorization v.s. duplication in sequences. O2 is supposed to
be scheduled between O1 and 03.

6.5.1 Principle

Using a single sequence, computing the post- and pre- condition of any state
X ∈ A would be too unprecise. An obvious idea is to take advantage of the
control structure to specialize sequences, taking into account the definitions
def (k) of locations k. This can be done by partially evaluating the transition
functions on def (k) before applying the sequentialisation algorithm. Partial
evaluation may remove conditions from the transition functions and may
also remove some dependency constraints: it makes sequentialisation easier
and favorizes the factorization of tests, which increase the precision of the
associate operators.

Remember that our motivation, in approximating post- and pre-condition
operators, was to avoid too precise computations when the roughness of the
control structure makes them useless. Specializing sequences on definitions
allows the precision of the sequence to be linked with the precision of the
control structure: globally, as the analysis progresses, the global danger-
ous state space becomes smaller; locally, higher is the number of locations,
smaller are their definitions. In both cases, the precision induced by the
sequence is improved.

We will actually specialize sequences according to their destination lo-
cation as well, and combine forward and backward propagation, as for the
analysis of control structures. As a consequence, they will be attached to
the edges of the control structure.

22

6.5.2 Refinement by forward and backward propagation of defi-
nitions

Consider again our introductory example. Fig. 12(a) represents the sequence
of Fig 10(a) joining the two locations of the partition (the big circles), the
definition of which is given by the grey boxes. The small circles are inter-
mediate states, called micro-states, which correspond to intermediate steps
during the computation of a reaction. We will use for micro-states similar
notions of definition, reachable part and coreachable part than for locations.
Initially, just after the generation of the sequence, the definition of micro-
states is the top element, >.

A necessary condition for a state of location k1 to lead to location k2

by a postcondition is b ∧ (x ≤ 2); obviously, one could take advantage of
this fact to replace the tests by a simple intersection. Unfortunately, a
normal pre-condition computation cannot discover this fact because of least
upper bounds. To achieve this goal, we need to use forward and backward
propagation of definitions through micro-states:

• first, we will compute post (seq(k1 ; k2))(def (k1)) and propagate cor-
responding values on micro-states, thus computing their reachable part
from location k1, which becomes their new definition. In Fig. 12(a),
those are given by convex states on the left of micro-states;

• then, we will compute pre(seq(k1 ; k2))(def (k2)), and intersect the
intermediate values with the new definitions of corresponding micro-
states, thus computing their coreachable part; definitions are then
updated; on the figure, these new definitions are given by convex states
on the right of micro-states.

Micro-states the definition of which becomes empty, correspond to “dead”
branches that can be discarded. By considering conditions guarding such
branches, we can associate with each transition k ; k′ of the control struc-
ture a formula ast(k ; k′), called assertion, which is a necessary condition
for the transition to be taken. In our example, we have ast(k1 ; k2) =
b ∧ (x ≤ 2). Now a partial evaluation of the transition functions according
to this formula, followed by a sequentialisation give the new sequence of
Fig. 12(b), which is much simpler and moreover gives exact results.

6.5.3 Partial evaluation method

Partial evaluation has been mentioned several times, in this section. Let us
make precise how it is applied: partial evaluation is not performed according

23

(b,[−1,2])

(t, [−∞, 8])

b
(b,[−1,2])

x≤2

(b,[9,12])

(t,[9,12])

(t, [9,+∞]) k2

k1

⊥

⊥

⊥

(b,[−1,2])

⊥

⊥

⊥

(b∨¬b′,[9,12])

(b,[−1,2])

x≤2

b′:=b

b:=b′

b′:=false

x:=x−1

x:=x−1

(b∧b′,[−1,2])

(t,[−∞,8])

(t,[−∞,2])

(b,[−∞,12])

(t,[−∞,12])

(¬b′,[3,8])

(t,[3,8])

(b∨¬b′,[−∞,8])

(b,[3,8])

(b=b′,[−∞,2])

(¬b∧¬b′,[−∞,7])

(b∨¬b′,[−∞,12])

(b,[2,7])

(b,[−1,2])

(b,[9,12])

x:=x+10

(b,[−∞,12])

(b,[−∞,2])

(b,[−∞,8])(¬b∨¬b′,[−∞,8])

(a) Sequence before refinement

b:=true

x:=x+10

λX.Xu(b,[−∞,2])

(t, [−∞, 8])

k1

(t, [9,+∞])

k2

(b,[9,12])(b,[−∞,12])

(b,[−1,2])(t,[−∞,8])

(b) Sequence after refinement

Figure 12: Sequences and micro-states

24

to convex states, but to formulas, and more precisely to assertions, repre-
sented with BDDs. Indeed, BDDs make partial evaluation easy and very
powerful: it is done by applying a generalized cofactor operator, such as the
“restrict” operator [CBM89], or the one presented in [Ray91], which is very
efficient to reduce the support of BDDs, although much more expensive. We
use one of those two operators to simplify transition functions by assertions
before building the corresponding sequence.

6.5.4 Conclusion about sequences

Now a control structure will be equiped with assertions (represented by
BDDs) and sequences, both associated to transitions. On the initial control
structure, we have ast(q ; q′) = def (q). Each time we build the corre-
sponding sequence seq(k ; k′), this assertion is taken into account. Then
we propagate definitions of locations k and k′ as described in the previous
section. If we discover dead branches, we strengthen the assertion and we
repeat the operation.

During fixpoint analysis, we intersect intermediate values computed by
post- or pre-condition operators with the definitions of micro-states, and
we memorize their reachable (forward analysis) or coreachable (backward
analysis) part.

Finally, after an analysis, definitions of locations and micro-states are
updated, and, when micro-states of a sequence becomes empty, assertions
are updated and the sequence is recomputed. Notice that the result of an
analysis is now not only given by the new definitions, but also by the new
assertions.

The technique presented here for computing post- and pre-condition is
powerful: it speeds up computations without introducing too much loss in
precision. Moreover, as the control structure becomes finer and induces a
better precision in analysis, sequences are refined as well.

7 Control structure refinement

7.1 Principles

Control structure refinement is needed when the analysis on the initial con-
trol structure doesn’t succeed to prove the property, which usually happens
because that control structure is too rough. Remember that our goal is to
show that there are no dangerous states, or equivalently that there is no

25

l2l1

j2j1

l3 l2

k2k1

l3l1

k

j1 j2

(b)(a)

Figure 13: Refining a location: principle

path from initial to final location in the control structure:

∀k, def (k) = ⊥, and ;= ∅

We suppose that the analysis fails because of approximations induced by
the least upper bound.

The goal of our refinement method is to separate states that exhibit
different behavior in term of accessibility, and to refine the abstract transi-
tion relation ;. For instance, consider the fragment of structure shown on
Fig. 13(a). Let us note, for n = 1, 2, Yn = post(def (jn))u def (k) (which are
resp. the triangle and the rectangle of the figure), and let X be the set of
states added by the least upper bound: X = γ(Y1 t Y2) \ (γ(Y1) ∪ γ(Y2)).
Assume, as shown on the figure, that:

post(Y1) u def (l2) = post(Y1) u def (l3) = ⊥
post(Y2) u def (l3) = ⊥

post(α(X)) u def (l3) 6= ⊥

In such a case, splitting k into k1 and k2 with def (ki) = Yi, as shown in
Fig. 13(b), has three desirable effects:

• it suppresses a least upper bound, thus allowing the exact representa-
tion of Y1 ∪Y2; moreover, the set of states X added by the least upper
bound is no longer propagated in the control structure;

• it suppresses the transition k ; l3, which was only enabled because of
the set X;

26

(a) (b)

ll

k′ k′′k

c ¬c
c?

Figure 14: Refining a location by removing a transition

• it suppresses also paths in the control structure; for example after
refinement the path j1 ;∗ l2 is removed; remember that we have to
cut any paths between initial and final locations.

Now such refinements must be performed with care: arbitrary refinements
may uselessly complexify the control structure, and even result in infinite
computations.

7.2 Location refinement by means of transition refinement

In this section, we explain the kind of refinements implemented in our tool.
To avoid the risk of infinite refinements, we adopt the following restriction:
locations will only be split according to atomic conditions (Boolean vari-
ables, or linear inequalities) appearing in the program. This still allows
quite detailed control structures.

Our heuristic in fact tries to refine transitions. Let k and l be two
locations such that k ; l, Fig. 14(a). Assume there exists a condition
c appearing in the program, such that def (k) u pre(def (l)) v c ; in other
words, c is a necessary condition for the transition k ; l to be taken. Then k
can be safely split into two locations k′ and k′′, with def (k′) = def (k)uc and
def (k′′) = def (k) u ¬c, and k′′ 6; l, Fig. 14(b): the refinement suppresses
at least one transition in the control structure and allows more accurate
analysis, because states in def (k) satisfying or violating the condition c will
no longer be merged with the least upper bound.

Notice that this case is rather common, since transitions are generally
guarded by conditions, which naturally separate preconditions. Moreover,
with our technique, such conditions, that we call splitting conditions, are
easily obtained by considering the assertions of transitions leaving the con-
sidered location.

27

Let us illustrate this heuristic by detailing the analysis of our simple
example (Fig. 2). The initial control structure was shown by Fig. 7, and
Fig. 8(b) showed the results of the analysis on this structure. Transitions
are labelled with non trivial assertions. Now consider the location k1. Its
states can either lead directly to the final location k2 if x < y, or otherwise
loop on k1. Intuitively, the first ones may be viewed as more dangerous
than the second ones, and they should be separated. The location k1 is thus
split according to the inequality x ≥ y. Fig. 8(c) shows the result of forward
analysis on the refined structure. Finally, backward analysis disconnects the
initial location (Fig 8(d)), thus completing the proof of the property. Notice
that initially we wanted to separate states where b0 = b1 from the others
(Fig. 3(c)); we have effectively reached this goal, but in an indirect way by
splitting the invariant location according to x ≥ y.

This example is trivial, but it shows that the general approach is suc-
cessful: the verification steps remain exactly the same if we generalize the
program into a ring of n cycles of alternate incrementations, or/and by
adding more counters incremented alternately. This meets our goal that
the verification be independent of details irrelevant to the satisfaction of the
property.

7.3 Implementation of the refinement heuristic

Now, the effective application of such refinements has to be detailed. First,
we must design a strategy to choose the locations and the transitions to be
refined. Next, since the splitting conditions obtained by the first step are
not atomic in the general case, we need a strategy to extract splitting atoms
from such conditions. Finally, we describe the splitting process itself, and
we discuss the combination of the analysis with the refinement process.

7.3.1 Choice of locations and transitions to be refined.

How to apply the refinement when the control structure has several locations
and, for each location, several outgoing transitions, like in Fig. 15 ? A first
approach is to try to cut transitions between invariant and final locations,
as in the example above. But this is not always efficient:

• since we want to cut paths from initial to final locations, all edges
belonging to these paths are dangerous and are candidates for refine-
ment;

• most penalizing approximations often take place in internal loops of
the control structure, and are then propagated in the whole graph.

28

Depth 2Depth 1 Depth 3

k2

k1 k5

k6

k4

k3

FinalInitial

ki ke

Figure 15: A control structure and its decomposition in strongly connected
subcomponent

As a consequence, we decompose the graph into its strongly connected sub-
components (scscs) using the algorithm of [Bou93], the principle of which is,
first, to decompose the graph into its strongly connect components (sccs),
then to apply recursively the decomposition to the components without their
heads. The obtained decomposition is not unique, since the head of an scc

depends on the order of the depth-first exploration of the graph. In Fig. 15,
components are enclosed by dashed boxes, and their “depth” is indicated
by the level of grey. Thick locations are heads of subcomponents. Such a
decomposition provides a notion of more or less internal transitions between
locations.

Now, our refinement algorithm first tries to disconnect strongly con-
nected components from each other, since this process is the most likely to
cut paths between initial and final states. If it does not find any splitting
condition, it tries to disconnect from each other subcomponents of increasing
depth.

The algorithm always considers a single location, trying to remove its
outgoing transitions. For instance, in Fig. 15, suppose we want to cut tran-
sition between subcomponents of depth 1 and we consider location k4: we
will consider the two transitions k4 ; k5 and k4 ; k6, and take the union of
their assertions ast(k4 ; k5)∨ ast(k4 ; k6), which is a necessary condition
to leave the subcomponent {k3, k4} from the location k4. Such a condition

29

is called a splitting formula.

7.3.2 Extraction of a splitting atom from a splitting formula.

We only roughly explain this process, which is rather technical. In order to
obtain binary splits, splitting is done only w.r.t. atoms, i.e., inequalities or
Boolean variables, whereas splitting formulas are general formulas. Assume
(b ∨ (x ≥ 0)) ∧ (y ≥ 0) is a necessary condition for a set of transitions to be
taken. We can choose any of the atoms b, x ≥ 0 or y ≥ 0, but y ≥ 0 is the
best choice because it is still a necessary condition. If there are several such
atoms in factor, we choose one arbitrarily. A good heuristic is to favorize
Boolean variables and to choose the first one according to the BDDs order.
In case no atomic necessary condition exists — as in the formula b∨ (x ≥ 0)
—, we choose arbitrarily an atom, but we are no longer sure to remove a
path in the graph.

7.3.3 Splitting the location w.r.t. a splitting atom.

Given a location k that we must split according to an atom c, we create two
new locations k′ and k′′ with def (k′) = def (k)uα(c) and def (k′′) = def (k)u
α(¬c). Incoming sequences of k are duplicated and refined by backward
propagation of micro-states, whereas for every outgoing transitions k ; ks,
we strengthen assertions: ast(k′ ; ks) = ast(k ; ks) ∧ c and ast(k′′ ;

ks) = ast(k ; ks) ∧ ¬c, and we compute new sequences seq(k′ ; ks) and
seq(k′′ ; ks).

7.3.4 Combination of the analysis with the refinement process.

When the analysis fails in proving the property, we have clearly to refine
the control structure to increase the precision. We should however choose
between splitting only one location between two analyses, or many. The
former possibility may avoid unnecessary blow-up of the automaton, as a
single refinement followed by an analysis can eliminate the apparent need of
other refinements, but has the drawback of increasing the number of anal-
yses. Our algorithm tries to split all locations for which it finds a splitting
formula before applying a new analysis.

7.4 Related works

The refinement method proposed here presents similarities symbolic bisim-
ulation [BFH+92, BdS92] that has been for instance applied to timed au-

30

tomata [ACD+92, YL93, STA98]; we use indeed preconditions to splits ele-
ments of the partition. The main difference is that in-between we perform
fixpoint analysis on the abstract domain with propagation over the whole
graph, whereas in these methods one deduce reachability informations only
by doing one step precondition computations, followed by discrete reach-
ability analysis of the obtained automaton. Another difference is that we
combine forward and backward analysis: the obtained partition has nothing
to do with bisimulation and is usually much coarser.

Another kind of refinement criteria would be to measure directly the
loss of information induced by the least upper bound operator. For instance,
given two polyhedra P and Q, we could compare the volume of P tN Q with
the sum of the volumes of P and Q. But this idea is not practical for several
reasons: volume computations in high dimension are very expensive, most
polyhedra we compute are not bounded, and their dimension vary: how to
compare a small cube with an infinite line ? [DWT95] uses a criterion of
that kind in order to verify timed automata; the main point is the ability to
perform under -approximations. Let’s give the intuition of the proposed re-
finement: an under-approximate backward analysis, for instance, computes
a set of states that necessarily lead to the violation of the property. Now,
during an over-approximate forward analysis, if we compute P t Q, with
P and Q not containing any such surely dangerous states, and that the re-
sult contains one of these states, the t operator should be avoided. Notice
that, with convex polyhedra, it is possible to afford the under approximate
of dense sets, like regions of timed automata, but not of the discrete sets
considered in our case.

Some works combining theorem proving and model-checking [SUM96,
GS97, BLO98, CU98] also use this idea. The basic idea of this combination
is the following: the state space is first partitioned, then theorem proving
is used to test the fireability of abstract transitions linking members of the
partition, and possibly to generate auxiliary invariants [BBM97, BLS96];
finally model checking is used to explore the obtained finite graph. As
usual, the proof may fail because of approximations. In that case, [CGJ+00]
proposes to start the backward generation of a counter-example trace; such
a generation is a particular case of under approximate backward analysis
and may be used in the same way for the refinement of the partition.

31

c′≥10 ?
late

#b′−#s′≤0 ?

#b′−#s′≥10 ? c:=0

#b′−#s′≤0 ?
c++

#b′−#s′≥0 ?

#b′−#s′≤−10 ?

#s frozen

on time

initial

on brake stopped

Figure 16: Automaton for one subway

8 Implementation and experimental results

8.1 The verification tool NBac

We implemented the method and algorithms described above in the verifi-
cation tool NBac, whose size is about 10000 lines of OCaml code [CAM]
and 3000 lines of C code. This tool takes as input a Lustre synchronous
program together with the observer of the safety property to check [HLR93],
performs a so-called cone of influence analysis, translates the result into the
format of the section 3.3, and builds an initial control structure for the sys-
tem. Then it starts the dynamic partitioning process, up to either success or
to a point where no further refinement can be performed. In this last case,
we have not implemented yet a technique that attempt to extract a diagnosis
trace from the obtained automaton. The tool uses the BDD library CUDD
[Som] to handle formulas and the recently improved polyhedra library [Jea]
to handle convex polyhedra.

8.2 A subway speed regulation system

We first illustrate the behavior of our tool on the subway example taken
from [HPR97]. This example is extracted from an actual proposal for an
automatic subway. It concerns a (simplified version of a) speed regulation
system avoiding collision. Each train detects beacons that are placed along
the track, and receives the “second” from a central clock. Ideally, a train
should encounter one beacon each second. So the space left between beacons
rules the speed of the train. Now, a train adjusts its speed as follows: let #b
and #s be respectively the number of encountered beacons and the number
of received seconds.

• When #b ≥ #s + 10, the train notices it is early, and puts on the
brake as long as #b > #s. Continuously braking makes the train stop
before encountering 10 beacons (using a counter c).

32

Prop Complexity Verification
bool num cont auto bdd ana div m. size time mem

sub1-1 4/2 3/0 11 8 2.6e3 3 0/3 6/13 0.9s -
sub1-2 3/2 4/0 13 5 2.5e3 3 0/2 5/9 1.3s -
sub2-1 6/3 5/0 22 29 1.2e4 3 1/2 6/14 12.6s 46
sub2-2 5/3 6/0 24 17 1.3e4 4 1/5 9/27 15.8s 54
sub2-3 5/3 5/0 23 17 1.1e4 4 1/6 10/37 9.1s 37
sub2-4 5/3 5/0 23 17 1.1e4 5 3/10 16/67 14.3s 39
sub3-1 8/4 7/0 33 113 1.6e5 3 1/2 6/14 5m27s 188
sub3-2 7/4 8/0 35 65 9.6e4 4 2/4 9/29 4m53s 192
sub3-3 7/4 7/0 34 65 9.3e4 4 2/5 10/39 10m10s 200
sub3-4 7/4 7/0 34 65 9.3e4 5 6/8 17/93 14m53s 200

Table 1: Verification of the subway system

• When #b ≤ #s − 10, the train is late, and will be considered late as
long as #b < #s. A late train signals it to the central clock, which
does not emit the “second” as long as at least one train is late.

Fig. 16 shows the automaton for one subway, after removing the unfeasi-
ble transitions. The transition functions of #b and #s are not displayed,
and the guards are given using primed variables (substituting to them their
transition functions leads to more tricky conditions).

This system does not exhibit many Boolean variables, and actually the
classical technique of [HPR97] performs well. We aim, here, at showing that
our refinement heuristic is powerful enough to separate relevant states to
prove properties without introducing too many locations. We wish to prove
the following properties, on a system with n trains sharing the central clock

1. A train cannot move in one step from the state late to the state
on brake, and conversely. If there are several trains, we prove it for
the first one.

2. The number #b− #s remain in the interval [−10, 20].

3. When there is at least two trains, their respective numbers of beacons,
#b1 and #b2 satisfy #b2 − #b1 ≤ 40. This means that if they are
initially separated by 40 beacons, they will never collide.

4. Same property, but with the real bound: #b2 − #b1 ≤ 30.

Experiments were conducted on a 600 MHz pentium III processor with
2GB RAM. The results are shown in Table 1, where ’subn-p’, n is the number

33

bool number of Boolean variables (state/input)
num idem for numerical variables
cont number of linear inequalities in the source of the program
auto size of the Boolean automaton reduced by Boolean bisimulation
bdd maximum number of alive BDD nodes, as indicated by the library

CUDD
ana number of analysis and refinement step performed
div number of division on Boolean variables/numerical inequalities
m. size maximum size of the current control structure

(locations/transitions)
time overall verification time, measured by time command
mem estimation of the memory consumption in MB, using top command

Table 2: Meaning of the columns in benchmarks

of trains and p the property to prove. The meaning of the columns is given
by Table 2. We can make the following remarks:

• We succeeded in proving all properties, and always with a control
structure that is smaller than the Boolean automaton; notice also that
many splits are done w.r.t. numerical inequalities.

• The verification time increases very quickly with the number of trains,
even for properties that explicitly involve only one train. This comes
from the fact that all trains are linked by the central clock, and that
transition functions become quickly very complex. Another reason is
that the cost of polyhedra operations is exponential w.r.t. the number
of numerical variables.

• Comparison of properties 3 and 4 shows that the first one, which is
intuitively easier to prove, requires less time and refinement to be
proved than the second one. Such a behavior is indeed a very nice
property of the tool.

We made also some experiments on the sequentialisation method. The use
of an exact method to compute post- and pre- conditions multiplies by 4
the verification time with n = 2, and that we did not succeed in proving
properties in this way with n = 3.

8.3 A lift controller

As a more challenging example we choosed the lift controller found in [Bou99]
and depicted on Fig. 17. This example exhibits complex Boolean behavior,

34

Controller
Lift

Software

0

3

1

2

opened
closed

0

3

2

1
req[Floor]

down[Floor]

up[Floor]

above[Floor]

at[Floor]

below[Floor] stop

going down

going up

cabine motor

doors motor
open
close

lights[Floor]

low[Floor]

high[Floor]

doors captors

cabine position captors

User Interface

Figure 17: The lift controller and its environment

while containing some counters, and represents a good target for our tool.
The lift has N floors. At each floor, there are “up” and “down” request
buttons, and in the cabin N request buttons allowing a user to choose the
destination floor. The requests are buffered, which results in a quite com-
plex control. The controller has also to set information lights adequately.
Concerning the cabin, opening and closing the door are modelled, as well as
its moves, decomposed by half floors for the departure and the arrival.

We have modified the original program by adding counters to model the
time taken by the lift to move up or down (from one floor, or half a floor
for departure and arrival), and the time needed by the door to be opened
or closed.

Most logical properties can be proved on this system with a model
checker such as Lesar [RHR91] by considering its Boolean abstraction. We
concentrated thus on the following time properties:

1. Lower bound for the delay between closing of the doors at floor 0 and
opening at floor 1.

2. Idem as the last one, but with the real bound.

3. Lower bound between two departures of the cabin from the first floor.
This implies that in between, the cabin went up then down.

35

4. Idem as the last one, but the first floor is replaced by the second one,
from which the cabin can go first up or down.

The size of the Lustre program with these properties is about 700 lines,
and the results are given Tab. 3, with N varying from 3 to 5.3 The number
of Boolean state variables is several dozens, and there are several input
variables.

Prop Complexity Verification
bool num cont auto bdd ana div m. size time mem

lift3-1 26/7 3/0 6 497 3.8e5 6 18/9 30/75 16.9s 52
lift3-2 26/7 3/0 6 497 3.8e5 8 44/26 73/188 21.5s 53
lift3-3 26/7 3/0 6 489 3.9e5 2 1/0 4/6 15.7s 72
lift3-4 26/7 3/0 6 489 2.5e5 4 3/4 10/26 21.2s 69
lift4-1 32/10 3/0 6 3235 8.3e5 4 5/2 10/26 1m03s 90
lift4-2 32/10 3/0 6 ≈ 8.3e5 8 29/15 47/103 1m12s 90
lift4-3 32/10 3/0 6 ≈ 9.7e5 4 4/2 9/19 1m02s 110
lift4-4 32/10 3/0 6 ≈ 1.6e6 6 12/10 25/67 1m34s 150
lift5-1 38/13 3/0 6 ? 3.4e6 4 5/2 10/26 8m35s 130
lift5-2 38/13 3/0 6 ? 3.4e6 11 87/30 118/350 9m30s 140
lift5-3 38/13 3/0 6 ? 5.0e6 6 10/6 19/44 9m57s 310
lift5-4 38/13 3/0 6 ? 5.3e6 6 17/7 27/68 11m13s 310

Table 3: Verification of the lift system

All these properties have been proved, and they are quite involved. Such
proofs require indeed to separate successive states of the controller and its
environment: closing the door, going up or down floor by floor, opening the
door, etc. Observe also that the Boolean automaton reduced by bisimulation
grows very quickly whereas the control structures generated by our tool
are much smaller. Moreover the automaton generation for N = 4 took 40
minutes! We were clearly unable to build it for N = 5. Here the addition of
one floor does not induce a too large increase of the memory consumption,
although the verification time grows more quickly. One can observe once
again that properties that are intuitively easier are more easily proved by
our tool (properties 1 vs. 2 and 3 vs. 4).

It should be noted that such verifications are not affordable by others
techniques, as far as we know. The timed automata model could represent
such a model (counters are never frozen here and could be implemented by
clocks) but verification tools like Kronos [DOTY96] or Uppaal [LPY97]

3For N = 6, BDDs become very large, even with the use of reordering techniques, and
we failed to build the initial control structure with its sequences.

36

cannot handle so many control states (when N = 5 for instance). We did
not try techniques combining proof and model checking like [GS97, BLO98],
which partitions the state space according to some guards appearing in the
program, use a theorem prover to remove transitions, apply possibly com-
pilation analysis techniques, and finally model-check the resulting graphs.
They would probably fail on such an example:

• If only guards of numerical transition functions are considered, the ob-
tained partition is too rough because the same counters are used many
times in delay properties, and the formula guarding the incrementa-
tion of those counters have to be decomposed in order to distinguish
their different uses.

• If guards of all transition functions are considered, the resulting con-
trol structure is at least as big as the Boolean control automaton re-
duced by bisimulation.

9 Conclusion

The initial goal of this work was to solve both the state explosion problem
and the unprecision problem that are met in the verification of synchronous
programs that have both complex Boolean control and non trivial numerical
one.

This work is based on two main assumptions:

1. Being able to symbolically handle both Boolean and numerical proper-
ties is required, as well as the possibility to establish relations between
the two kinds of properties. Indeed, the behavior of the two kinds of
variables may influence each other and symbolic techniques become
necessary when the number of variables increases.

2. Using approximations to keep the verification problem under a tract-
able complexity is required as well, whereas they are often used only
to solve undecidability problems.

Abstract Interpretation is thus a natural theoretical framework. The first
requirement is fulfilled on one hand by using as an abstract lattice the re-
duced product of the Boolean lattice and any abstract numerical lattice,
and on the other hand by using the control structure to establish precise
relations between the two kinds of properties. The second requirement is
implemented by the use of the control structure to finely control the tradeoff

37

between precision and efficiency. An initial and small control structure is
analyzed and refined progressively using refinement heuristics, according to
the needs of verification. The principle of the refinement is to separate states
according to their past or future behavior, in order to obtain a more pre-
cise knowledge about locations accessibility and to cut paths in the control
structure. During this process the precision of the analysis is increased while
the considered state space is considerably reduced, which allows acceptable
performances to be achieved.

The programs we were able to verify show experimental evidence of the
power of this technique. They justify our conviction that approximation is a
very efficient way to increase the size of the systems for which it is possible
to apply automatic verification methods, if it is possible to improve them in
order to verify a wide spectrum of properties. The main observation is that
properties generally involve only small parts of a program, which have to
be analyzed with precision, whereas other parts can be roughly abstracted.
This observation is especially true for big programs.

Further work. A source of complexity we did not handle in this work
is the number of numerical variables: polyhedra operations have an exponen-
tial complexity w.r.t. that number. A possibility that began to be studied
is to decompose or to approximate high dimension polyhedra with cartesian
products of lower dimension polyhedra. Another direction would be to use
other numerical lattices, less precise but also less costly, such as the interval
lattice [CC76] or, more interesting, the lattice of zones [HNSY92, LLPY97]
that is used in the verification of timed automata, and its generalization
described in [Min00]. The last two lattices exhibit “only” cubic time and
quadratic space complexity.

Another promising experiment is to apply the dynamic partitioning to
the verification of linear hybrid systems, similar to those handled by the tool
HyTech [HHWT95]. Such a work has been already started and requires
only the addition of the time elapse operator, as described in [HPR97].

Perspectives. Dynamic partitioning has more general applications
than the verification of synchronous programs. Actually, it allows to com-
bine Boolean properties, at low cost, with any other abstract interpretation,
in order to limit the state explosion problem that always happens in con-
current systems. For instance, a suitable abstract lattice to represent queue
contents could enable the use of dynamic partitioning to verify automata
communicating by unbounded FIFO channels [BG96, ABJ98].

38

On the other hand, the problem of the approximations induced by the
least upper bound is very common in abstract interpretation. In this context,
dynamic partitioning allows to improve automatically the precision of an
analysis whose goal is the proof of an invariance property.

Acknowledgment

I thank Nicolas Halbwachs and Pascal Raymond for their valuable advices
and for many helpful discussions and suggestions.

References

[ABJ98] P. Aziz Abdulla, A. Bouajjani, and B. Jonsson. On-the-fly anal-
ysis of systems with unbounded, lossy fifo channels. In Computer
Aided Verification, CAV’98, volume 1427 of LNCS, July 1998.

[ACD+92] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-
Toi. Minimization of timed transition systems. In Proceed-
ings of the Third Conference on Concurrency Theory CONCUR
’92, Lecture Notes in Computer Science 630, pages 340–354.
Springer-Verlag, 1992.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorith-
mic analysis of hybrid systems. Theoretical Computer Science
B, 138:3–34, January 1995.

[BBM97] N. Bjørner, A. Browne, and Z. Manna. Automatic generation
of invariants and intermediate assertions. Theoretical Computer
Science, 173(1), 1997.

[BdS92] A. Bouali and R. de Simone. Symbolic bisimulation minimisa-
tion. In Computer Aided Verification, CAV’92, volume 663 of
LNCS, July 1992.

[BFH+92] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, P. Raymond, and
C. Ratel. Minimal state graph generation. Science of Computer
Programming, 18:247–269, 1992.

[BG96] B. Boigelot and P. Godefroid. Symbolic verification of commu-
nication protocols with infinite state spaces using QDDs. In

39

Computer Aided Verification, CAV’96, volume 1102 of LNCS,
July 1996.

[BLO98] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstrac-
tions of infinite state systems compositionally and automati-
cally. In Computer Aided Verification, CAV’98, volume 1427 of
LNCS, July 1998.

[BLP+99] G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi.
Efficient timed reachability analysis using clock difference dia-
grams. In Computer Aided Verification, CAV’99, volume 1633
of LNCS, July 1999.

[BLS96] S. Bensalem, Y. Lakhnech, and H. Säıdi. Powerful techniques
for the automatic generation of invariants. In Computer Aided
Verification, CAV’96, volume 1102 of LNCS, July 1996.

[Bou92] F. Bourdoncle. Abstract interpretation by dynamic partition-
ning. Journal of Functional Programming, 2(4), 1992.

[Bou93] F. Bourdoncle. Efficient chaotic iteration strategies with widen-
ings. In International Conference on Formal Methods in Pro-
gramming and their Applications, volume 735 of LNCS, 1993.

[Bou99] L. Du Bousquet. Test fonctionnel statistique de systèmes
spécifiés en lustre. Thesis Université Joseph Fourier, Greno-
ble, 1999.

[CAM] The Caml language. http://caml.inria.fr/.

[CBM89] O. Coudert, C. Berthet, and J. C. Madre. Verification of syn-
chronous sequential machines based on symbolic execution. In
International Workshop on Automatic Verification Methods for
Finite State Systems, Grenoble. LNCS 407, Springer Verlag,
1989.

[CC76] P. Cousot and R. Cousot. Static determination of dynamic prop-
erties of programs. In 2nd Int. Symp. on Programming. Dunod,
Paris, 1976.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or

40

approximation of fixpoints. In 4th ACM Symposium on Prin-
ciples of Programming Languages, POPL’77, Los Angeles, Jan-
uary 1977.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In 6th ACM Symposium on Principles of Program-
ming Languages, POPL’79, San Antonio, January 1979.

[CC92a] P. Cousot and R. Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 1992.

[CC92b] P. Cousot and R. Cousot. Comparing the Galois connection
and widening/narrowing approaches to abstract interpretation.
In M. Bruynooghe and M. Wirsing, editors, PLILP’92, Leuven
(Belgium), January 1992. LNCS 631, Springer Verlag.

[CGJ+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Computer
Aided Verification, CAV’2000, volume 1855 of LNCS, July 2000.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In 5th ACM Sympo-
sium on Principles of Programming Languages, POPL’78, Tuc-
son (Arizona), January 1978.

[Cou77] P. Cousot. Asynchronous iterative methods for solving a fixpoint
system of monotone equations. Technical Report IMAG-RR-88,
Université scientifique et médicale de Grenoble, 1977.

[CU98] M. A. Colón and T. E. Uribe. Generating finite-state abstrac-
tions of reactive systems using decision procedures. In Computer
Aided Verification, CAV’98, volume 1427 of LNCS, July 1998.

[DOTY96] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kro-

nos. In Hybrid Systems III, Verification and Control, volume
1066 of LNCS, 1996.

[DWT95] D. Dill and H. Wong-Töı. Verification of real-time systems by
successive over and under approximations. In Seventh Con-
ference on Computer-Aided Verification, CAV’95, Liège (Bel-
gium), July 1995. LNCS 939, Springer Verlag.

41

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with
PVS. In Conference on Computer Aided Verification CAV’97,
Haifa, volume 1254 of LNCS, June 1997.

[Hal98] N. Halbwachs. About synchronous programming and abstract
interpretation. Science of Computer Programming, Special Issue
on SAS’94, 31(1), May 1998.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
chronous dataflow programming language lustre. Proceedings
of the IEEE, 79(9):1305–1320, September 1991.

[HHWT95] T. Henzinger, P. Ho, and H. Wong-Töı. HyTech: The next
generation. In RTSS’95, 1995.

[HLR93] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous ob-
servers and the verification of reactive systems. In M. Nivat,
C. Rattray, T. Rus, and G. Scollo, editors, Third Int. Conf. on
Algebraic Methodology and Software Technology, AMAST’93,
Twente, June 1993. Workshops in Computing, Springer Verlag.

[HNSY92] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model-checking for real-time systems. In LICS’92, June 1992.

[HPR97] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-
time systems using linear relation analysis. Formal Methods in
System Design, 11(2):157–185, August 1997.

[Jea] B. Jeannet. The convex polyhedra library New Polka.
http://www-verimag.imag.fr/b̃jeannet/newpolka-english.html.

[JGS93] N. D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall International,
1993.

[JHR99] B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic parti-
tioning in analyses of numerical properties. In Static Analy-
sis Symposium, SAS’99, volume 1694 of LNCS, Venezia (Italy),
September 1999.

[Kar76] M. Karr. Affine relationships among variables of a program.
Acta Informatica, 6:133–151, 1976.

42

[LGLL91] P. LeGuernic, T. Gautier, M. LeBorgne, and C. LeMaire. Pro-
gramming real time applications with signal. Proceedings of
the IEEE, 79(9):1321–1336, September 1991.

[LLPY97] Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang
Yi. Efficient Verification of Real-Time Systems: Compact Data
Structures and State-Space Reduction. In Proc. of the 18th
IEEE Real-Time Systems Symposium. IEEE Computer Society
Press, December 1997.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a
nutshell. Springer International Journal of Software Tools for
Technology Transfer, 1(1/2), 1997.

[Mau96] C. Mauras. Calcul symbolique et automates interprétés. Tech-
nical Report 10, IRCyN, November 1996.

[Min00] A. Miné. Representation d’ensembles de contraintes de somme
ou de difference de deux variables et application a l’analyse
automatique de programmes. Master’s thesis, Laboratoire
d’Informatique de l’École Normale Supérieure de Paris, July
2000.

[MLAH99] J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard.
Difference decision diagrams. In Computer Science Logic, The
IT University of Copenhagen, Denmark, September 1999.

[Ray91] P. Raymond. Compilation efficace d’un langage déclaratif syn-
chrone : Le générateur de code Lustre-V3. Thesis, Institut
National Polytechnique de Grenoble, November 1991.

[RHR91] C. Ratel, N. Halbwachs, and P. Raymond. Programming and
verifying critical systems by means of the synchronous data-flow
programming language Lustre. In ACM-SIGSOFT’91 Confer-
ence on Software for Critical Systems, New Orleans, December
1991.

[Som] F. Somenzi. Cudd: Colorado University Decision Diagram
Package. ftp://vlsi.colorado.edu/pub.

[STA98] R. F. Lutje Spelberg, W. J. Toetenel, and M. Ammerlaan. Par-
tition refinement in real-time model checking. In 5th Inter-
national Symposium on Formal Techniques in Real-Time and

43

Fault-Tolerant Systems, pages 143–157. LNCS 1486, Springer
Verlag, 1998.

[SUM96] H. Sipma, T.E. Uribe, and Z. Manna. Deductive model check-
ing. In 8th International Conference on Computer Aided Veri-
fication, CAV’96, volume 1102 of LNCS, July 1996.

[YL93] M. Yanakakis and D. Lee. An efficient algorithm for mini-
mizing real-time transition systems. In Fifth Conference on
Computer-Aided Verification, CAV’93, Elounda (Greece), July
1993. LNCS 697, Springer Verlag.

44

Recent BRICS Report Series Publications

RS-00-38 Bertrand Jeannet. Dynamic Partitioning in Linear Relation
Analysis: Application to the Verification of Synchronous Pro-
grams. December 2000. 44 pp.

RS-00-37 Thomas S. Hune, Kim G. Larsen, and Paul Pettersson.Guided
Synthesis of Control Programs for a Batch Plant usingUPPAAL.
December 2000. 29 pp. Appears in Lai, editor,International
Workshop in Distributed Systems Validation and Verification.
Held in conjunction with 20th IEEE International Conference
on Distributed Computing Systems (ICDCS ’2000), DSVV ’00
Proceedings, 2000.

RS-00-36 Rasmus Pagh.Dispersing Hash Functions. December 2000.
18 pp. Preliminary version appeared in Rolim, editor,4th Inter-
national Workshop on Randomization and Approximation Tech-
niques in Computer Science, RANDOM ’00, Proceedings in In-
formatics, 2000, pages 53–67.

RS-00-35 Olivier Danvy and Lasse R. Nielsen.CPS Transformation of
Beta-Redexes. December 2000. 12 pp.

RS-00-34 Olivier Danvy and Morten Rhiger.A Simple Take on Typed Ab-
stract Syntax in Haskell-like Languages. December 2000. 25 pp.
To appear in Fifth International Symposium on Functional and
Logic Programming, FLOPS ’01 Proceedings, LNCS, 2001.

RS-00-33 Olivier Danvy and Lasse R. Nielsen.A Higher-Order Colon
Translation. December 2000. 17 pp. To appear inFifth In-
ternational Symposium on Functional and Logic Programming,
FLOPS ’01 Proceedings, LNCS, 2001.

RS-00-32 John C. Reynolds.The Meaning of Types — From Intrinsic to
Extrinsic Semantics. December 2000. 35 pp.

RS-00-31 Bernd Grobauer and Julia L. Lawall. Partial Evaluation of
Pattern Matching in Strings, revisited. November 2000. 48 pp.

RS-00-30 Ivan B. Damg̊ard and Maciej Koprowski. Practical Thresh-
old RSA Signatures Without a Trusted Dealer. November 2000.
14 pp.

