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Email: baris@brics.dk

2 BRICS†, University of Aalborg, Denmark,
Email: kgl@cs.auc.dk
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Abstract. In this paper we address the problem of scheduling and syn-
thesizing distributed control programs for a batch production plant. We
use a timed automata model of the batch plant and the verification tool
Uppaal to solve the scheduling problem.
In modeling the plant, we aim at a level of abstraction which is suffi-
ciently accurate in order that synthesis of control programs from gener-
ated timed traces is possible. Consequently, the models quickly become
too detailed and complicated for immediate automatic synthesis. In fact,
only models of plants producing two batches can be analyzed directly! To
overcome this problem, we present a general method allowing the user to
guide the model-checker according to heuristically chosen strategies. The
guidance is specified by augmenting the model with additional guidance
variables and by decorating transitions with extra guards on these. Ap-
plying this method have made synthesis of control programs feasible for
a plant producing as many as 60 batches.
The synthesized control programs have been executed in a physical plant.
Besides proving useful in validating the plant model and in finding some
modeling errors, we view this final step as the ultimate litmus test of our
methodology’s ability to generate executable (and executing) code from
basic plant models.

1 Introduction

In this paper we suggest a solution to the problem of synthesizing and
verifying valid scheduling control programs for resource allocation,

? This work is partially supported by the European Community Esprit-LTR Project
26270 VHS (Verification of Hybrid systems).

† Basic Research In Computer Science, Centre of the Danish National Research
Foundation.



based on a batch plant of SIDMAR [BS99,Feh99], which is a case
study of the VHS project1. We model the plant in a network of timed
automata, with the different components of the plant (e.g. batches,
recipes, casting machine, cranes, etc.) constituting the individual
timed automata. The scheduling problem is formulated as a time-
bounded reachability question allowing us to apply the real-time
model-checking tool Uppaal [LPY95,LPY97] to derive a schedule.
An overview of the methodology is shown in Figure 1.

Uppaal offers a trace with actions of the model and timing infor-
mation of the actions. The remaining effort required in transform-
ing such a model trace into an executable control program depends
heavily on the accuracy of the model with respect to the control
programming language and the physical properties of the plant. In
the Uppaal model given in [Feh99], movement along tracks and on
the cranes was assumed to be instantaneous. Making a schedule con-
taining timing information from a trace like that is very hard, and
sometimes it is not possible at all. However, given a sufficiently high
level of accuracy of the plant model, a schedule can be obtained from
a trace by projection, and synthesis of the control program from a
schedule amounts to textual substitution. Unfortunately model suit-
able for such program synthesis becomes very detailed as all the
necessary information about the plant, such as the timing bounds
and the physical constraints for movements of loads, cranes etc, have
be to specified. As an immediate drawback, synthesizing schedules
for several batches quickly becomes infeasible. Even for the more
abstract models presented in [Feh99] this problem was also encoun-
tered.

To deal with this (unavoidable) problem we introduce a method,
allowing the user to guide the model-checking according to certain
chosen strategies. Each strategy will contribute with a reduction of
the search-space, but in contrast to fully automatic reduction meth-
ods like partial order reduction [BJLY98] it is up to the user to
’guarantee’ preservation of schedulability. However, if a schedule is
identified via the guided search, the schedule is indeed a valid one for
the original model. Since we are not interested in optimal schedules
this is sufficient.
1 See the web site http://www-verimag.imag.fr//VHS/main.html.
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Fig. 1. Overview of methodology.

To be able to run the generated control programs in a physical plant,
we consider a LEGO MINDSTORMS plant, instead of the orig-
inal plant of SIDMAR. We have used the plant to successfully run
synthesized control programs and by doing so increased our confi-
dence in the plant model. We view this final, scientifically rather
simple, step as the ultimate litmus test of our methodology’s abil-
ity to generate executable (and executing) code from rather natural
plant models.

The SIDMAR plant has been studied by several other researchers.
Our timed automata model is based on the model in [Feh99], which
is similar to ours but more abstract in the sense that some infor-
mation, such as delays for the moving of batches, is not included.
A Petri net model of the plant is presented in [BS99]. In [Sto00],
constraint programming techniques are used to generate schedules
of the SIDMAR plant for up to 30 batches. This result is achieved
by reducing the size of the plant model using techniques similar to
the guiding techniques presented in this paper. Other work apply-
ing the model of timed automata and Uppaal to analyze and solve
planning problems of batch plants include [KLPW99] in which an
experimental batch plant is studied.

The rest of this paper is organized as follows: In the next two sections
we describe the scheduling problem and how it has been modeled in
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Uppaal. In Section 4 and 5 we present the guiding techniques and
evaluate their effect on the plant model. In Section 6 we describe
experiments with the LEGO plant and how programs are synthe-
sized for the plant. Section 7 concludes the paper. Finally, timed
automata descriptions of four plant components are enclosed in the
appendix.

2 The Scheduling Problem

Our plant is based on a part of the SIDMAR steel production plant
located at Gent in Belgium. We will consider the part of the plant
between the blast furnace and the continuous casting machine where
molten pig iron is converted into steel of different qualities. The
process is started when pig iron being poured into ladles by one of
two converter vessels. The iron is transported in the ladles while
it is being processed. By treatments in different machines the iron
is converted into steel and finally casted in the casting machine.
Depending on the machines used and how long the treatment in
the machines last, different qualities of steel are produced. When
the steel in a ladle has been casted the empty ladle must be moved
to a storage place. From here the ladles are cleaned and reused.
However, this is not part of our model, where ladles are stored at
the storage place but not reused. The physical components of the
process are: two converter vessels where molten iron is poured into
ladles, five machines, tracks connecting these, two cranes running on
one overhead track, a buffer place, a storage place for empty ladles,
and one casting machine. The layout of the plant can be seen in
Figure 2.

Machines number one and four are of the same type and so are
machines number two and five. Each crane can only hold one ladle
and they cannot overtake each other. On each track and in each
machine there is room for at most one ladle. This means that the
ladles cannot overtake each other without using one of the cranes.

The steel must sustain a minimum temperature during the process.
This gives an upper bound on the time a batch is allowed to spend
in the plant from it is poured and until it is casted. Casting takes a
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track#2

machine#2 machine#3
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cranes

machine#4 machine#5

track#1

crane#2

crane#1

buffer

convertor
vessel #1

Fig. 2. Layout of the plant.

fixed time and must be continuous. Therefore a new ladle filled with
steel must be waiting in the holding place of the casting machine
when casting of a ladle has finished.

Steel of different qualities can be produced depending on which types
of machines are visited and for how long. For each batch this is
specified by a recipe. The problem to be solved can now be stated
as:

Given an ordered list of recipes, if possible synthesize a control
program for the plant such that steel specified by the recipes are
produced in the right order and within a given time.

The major part of solving this problem is finding a schedule for the
production if one exists. A schedule for the plant defines which action
takes place in the plant e.g. moving of batches and cranes, and when
the actions take place.

3 Scheduling with Timed Automata

Finding a schedule for producing an ordered list of steel qualities is
the main part of the problem. It can be solved in a number of ways.
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S0
x<=4

S1
x<=5,
y<=3

S2

P: Q:x>=1, j<50 y:=0, j:=j+2

x:=0, y:=0            a!

i<10

i:=i+1
a?

Fig. 3. A Network of Timed Automata.

Here we chose to model the plant using timed automata [AD94]
and use the verification tool Uppaal [LPY95,LPY97] to solve the
scheduling problem 2. The use of timed automata for modeling the
plant allows the scheduling problem to be reformulated as a reacha-
bility problem which can be solved by Uppaal. A discussion of this
approach to scheduling can be found in [Feh99].

The modeling language in Uppaal is networks of timed automata
extended with data variables [LPY97]. To meet requirements from
various case-studies the language has been further extended with the
notion of committed locations [BGK+96], urgent synchronization ac-
tions [LPY97], and data structures such as arrays of data-variables
etc. In this section we give a brief informal description of the mod-
eling language of Uppaal. For a detailed description we refer the
reader to [LPY97].

3.1 Networks of Timed Automata

Consider the network of timed automata P and Q shown in Fig-
ure 3.1. Automaton P has two control locations S0 and S1, two
real-valued clocks x and y, and a data variable j. A state of the
automaton is of the form (l, s, t, k), where l is a control location, s
and t are non-negative reals giving the value of the two clocks x and
y, and k is a natural number giving value to the data variable j.
A control location is labelled with a condition (the location invari-
ant) on the clock values that must be satisfied for states involving
this location. Assuming that the automaton starts to operate in the

2 See the web site http://www.uppaal.com/ for more information about Uppaal.
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state (S0, 0, 0, 0), it may stay in location S0 as long as the invari-
ant x ≤ 4 of S0 is satisfied. During this time the values of the
clocks increase synchronously. Thus from the initial state, all states
of the form (S0, t, t, 0), where t ≤ 4, are reachable. The edges of a
timed automaton may be decorated with a condition (guard) on the
clocks and the data variable values that must be satisfied in order for
the edge to be enabled. Thus, only for the states (S0, t, t, k), where
1 ≤ t ≤ 4 and k < 50, is the edge from S0 to S1 enabled. Addition-
ally, edges may be labelled with assignments and synchronization
labels. An assignment may reset the value of the clocks and update
the data variables. For example, when following the edge from S0 to
S1 the clock y is reset to 0 and the data variable j is incremented
by 2, leading to states of the form (S1, t, 0, 2), where 1 ≤ t ≤ 4. The
synchronization label is used to establish synchronization between
automata. For example the transition from S1 to S0 of automaton
P is labeled with a!, requiring the transition to be synchronized with
the transition of automaton Q offering the complementary action a?.

In general, a timed automaton is a finite-state automata extended
with a finite collection C of real-valued clocks ranged over by x, y
etc. and a finite set of data variables D ranged over by i, j etc. We
use B(C) ranged over by g to stand for the set of formulas that can
be an atomic constraint of the form: x ∼ n or x− y ∼ n for x, y ∈ C,
∼∈{<,≤, =,≥>} and n being a natural number, or a conjunction
of such formulas. Similarly, we use B(D) to stand for the set of data-
variable constraints that are the conjunctive formulas of i ∼ j or
i ∼ k, where ∼ ∈ {<,≤, =, 6=,≥, >} and k is an integer number. To
denote the set of formulas that are conjunctions of clock constraints
and a data-variable constraints we use B(C,D) (ranged over by g).
The elements of B(C,D) are called constraints or guards.

An assignment in Uppaal is a sequence of operations of the form
x :=0, or i :=Expr, where x is a clock, i is a data variable, and Expr
is an integer expression, e.g. 2∗(i−j)+3 (where j is a data variable).
We shall use R to denote the set of assignments. Furthermore, we
use Act to denote a finite set of actions ranged over by a, a?, a!, b?,
b!, etc.

7



Definition 1 (Timed Automata). A timed automaton A over
clocks C and data variables D is a tuple 〈N, l0,−→, I〉 where N is
a finite set of (control-)locations, l0 is the initial location, −→⊆
N × B(C,D) × Act × R × N corresponds to the set of edges and
finally, I : N 7→ B(C) assigns invariants to locations. In the case,

〈l, g, a, r, l′〉 ∈−→, we write l
g,a,r−→ l′. ut

To formalize the semantics we use variable assignments. A variable
assignment is a mapping which maps the clocks C to the non-negative
reals and the data variables D to integers. A semantical state of an
automaton A is now a tuple (l, u), where l is a location of A and
u is a an assignment for C and D, and the semantics of A is given
by a transition system with the following two types of transitions
(corresponding to delay-transitions and action-transitions):

– (l, u) −→ (l, u ⊕ d) if I(l)(u) and I(l)(u ⊕ d)

– (l, u) −→ (l′, u′) if there exist g and r such that l
g,a,r−→ l′, g(u),

u′ = r[u], and I(l′)(u′)

where d is a non-negative real number, u⊕d denotes the assignment
which maps each clock x in C to the value u(x) + d and leaves each
data variable i with the unchanged value u(i), and r[u] denotes the
result of updating the clocks C and the data-variables in D according
to r ∈ R.

Finally, we briefly introduce the notion of networks of timed au-
tomata [YPD94,LPY95]. A network is a finite set of automata com-
posed in parallel with a CCS-like parallel composition operator [Mil89].
For a network with the timed automata A1, . . . , An the intuitive
meaning is similar to the CCS parallel composition of A1, ..., An with
all actions being restricted, that is, (A1|...|An)\Act. Thus an edge
labelled with action a must synchronize with an edge labelled with
an action complementary to a, and edges with the silent τ action are
internal, so they do not synchronize. In Uppaal ’?’ and ’ !’ are used
to represent complementary actions, so a? and a! are considered
complementary and can synchronize.
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3.2 Analysis

Given a network of timed automata and a set of states, Uppaal can
analyze whether or not one of the states is reachable from the initial
state of the network. If the answer is positive, Uppaal produces
a trace with action- and delays-transitions leading from the initial
state to one of the specified states.

For the model of the plant, which will be presented in the follow-
ing, a trace defines a schedule for the plant since it specifies what
happens in the plant (the synchronization actions) and when (the
delays). From a schedule a working program controlling the plant
may be generated. The level of detail in the trace (and therefore in
the schedule) influences the work needed to generate the program.
In [Feh99] the traces generated did not include time for the moving
of batches, making the generation of executable programs from the
schedules hard. To minimize the effort needed during the transla-
tion, we produce traces with detailed and precise information about
timing of all actions in the plant.

3.3 A Model for Scheduling the Plant

An instance of the problem is given by a list of qualities of steel
(or recipes) and a maximal production time. A model of a prob-
lem instance consists of: for each recipe one automaton representing
the recipe and one automaton representing the movement of the
batch; one automaton for each of the two cranes; one automaton
testing that the recipes finish in the correct order; one automaton
for making some actions synchronizing; and one automaton modeling
the casting machine. Figure 4 shows the synchronizations between
the different automata. The batch automata communicate with each
other through two shared arrays and the two cranes also share an
array. These arrays will be described in more detail later.

The most complex of the automata is the one modeling the possible
behaviors of a batch (see Figure 16 of the appendix3)4. The batch
3 Unless stated otherwise, guided versions of the automata are shown since these have

been used for most of the experiments.
4 Pictures of all the automata and the LEGO plant can be found at the web site
http://www.brics.dk/~baris/CaseStudy/.
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Recipe 3

Recipe n

Tester

Batch 1

Controller Crane A Crane BMachine
Casting

Recipe 2

Recipe 1

Batch 2

Batch 3

Batch n

Fig. 4. Synchronization between the automata of a model.

automaton reflects the topology of the plant (shown in Figure 2) as
well as the physical constraints on the movements of a batch. Ba-
sically, there is one location for each position of the plant a batch
can be located at. A position is either a machine, a track segment,
the storage place, the casting machine, or a position on the overhead
track. Positions on the overhead track are over one of the two tracks,
the storage place, the casting machine, or in between any of these. A
batch automaton has a clock named x associated to it which is used
to measure the time spend on moving along a track. The time spend
is the worst case time measured in the physical plant which is given
by the constant bmove. Shared among all the batch automata in a
model are the two binary arrays posI and posII, which are used for
storing which positions are occupied on the two tracks. These are
used to ensure that each position is occupied by at most one batch
at a time. Figure 5 shows the part of the unguided batch automaton
modeling the position named i2, between machines number one and
two on track one. Moving a batch between positions in the model
is done in two steps. First a transition is taken to an intermediate
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i1a

x<=bmove

i2 i2a

x<=bmove

k1

i1aa
x<=bmove

i2aa
x<=bmove

c1down

i1

x==bmove,
posI[4]==0

posI[4]:=1,
posI[3]:=0

posI[5]==0

posI[5]:=1,
posI[4]:=0,
x:=0

b2right?

cAIup!

posI[3]==0

posI[3]:=1,
posI[4]:=0,
x:=0

b2left?
x==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

cIdown_end?
cBIup!

posI[3]==0

posI[3]:=1,
posI[2]:=0,
x:=0

m1right?

x==bmove,
posI[2]==0

posI[2]:=0,
posI[3]:=0

Fig. 5. Part of the unguided batch automaton.

position, e.g. from i2 to i1aa. A batch can only start to move to
a position if this position is free, which in this case is ensured by
checking the array posI using the guard posI[3] == 0. Taking the
transition resets the clock x and updates which positions are occu-
pied by the assignment posI[3] := 1, posI[4] := 0. The batch can
stay in the intermediate position at most bmove time units because
of the invariant x ≤ bmove in the location. However, it cannot leave
the location before bmove time units have passed because of the
guard x == bmove on the transition leaving the intermediate loca-
tion. This means that moving a batch along a track is modeled as
taking exactly bmove time units. A batch can also move when it is
carried by a crane. The time spend during such moving is measured
by the crane automaton.

Each batch has a recipe associated to it (a recipe using machine type
one and two is shown in Figure 6). The recipe defines which machines
should be visited, in which order, and for how long. It also measures
the overall time the batch has spend in the plant. A recipe has two
clocks associated to it. One, tot, is reset as the batch starts in the
plant and measures the overall time spend in the plant by the batch.
The other clock, t, is used for measuring the time of the different
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gotoT1

tot<=rtotalby3

onT1

t<=mtreat, tot<=rtotalby2

gotoT2

tot<=rtotal

onT2

t<=mtreat, tot<=rtotal

rend

tot<=rtotalcastcasted
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terminus
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dumped
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onT1still
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t:=0, nextbatch:=nextbatch+1

M2on!

t==mtreat

next:=fin

M2off!

try?quality1!

tot<=rtotal

done?

tot:=0

go?

dump!

nextbatch==(number-1)
next := (posI[0]+posI[1]+posI[2]+
   posI[3]+posI[4]+posI[5]<=
   posII[0]+posII[1]+posII[2]+
   posII[3]+posII[4]+posII[5]+
   posII[6] ? m1 : m4 )

t:=0

M4on!

t:=0, nextbatch:=nextbatch+1

M5on!

t==mtreat

next:=fin

M5off!

t==mtreat

M1off!

next := (posI[0]+posI[1]+posI[2]+
   posI[3]+posI[4]+posI[5]+(next==m1 ? -2 : 0 )<
   posII[0]+posII[1]+posII[2]+
   posII[3]+posII[4]+posII[5]+
   posII[6]+(next==m4 ? -2 : 0 ) ? m2 : m5 )

t==mtreat

M4off!

Fig. 6. An example recipe automaton.

treatments the batch goes through. When a batch is located at a
machine of the right type according to the recipe, the batch and the
recipe can synchronize to start the machine. This resets the clock
measuring the time of treatments. When the specified time for the
treatment has passed the recipe and the batch synchronize to turn
the machine off. When the treatments are completed and the batch
is ready to be casted the recipe synchronizes with the test automaton
to ensure that the production order is kept. Here it is also checked
that the batch has not spend too much time in the plant.

As mentioned the positions of a crane are over the two tracks, over
the storage place, over the casting machine and in between these. An
automaton modeling a crane has two locations for each of these po-
sitions, one modeling the crane being empty and one modeling the
crane carrying a batch. The automaton modeling the upper crane
which is only moving between the two tracks is shown in Figure 7
(the automaton modeling the other crane can be seen in Figure 14
of the appendix.) A crane picking up a batch is modeled by the
two automata synchronizing. Similarly when a crane moves or sets a
batch down. Each crane automaton has one clock which is used for
measuring time when the crane is moving. The movement of a crane
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cAIup?
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x==cup posII[4]:=0

posII[4]==0

x:=0, 
posII[4]:=1

cAIIdown_start?
x==cup

cIIdown_end!

Fig. 7. The upper crane.

between two positions is modeled like movement between two posi-
tions in the batch automaton with an intermediate location where
the time for the movement passes. The two crane automata share a
binary array like the batch automata for storing which positions are
occupied

The test automaton synchronizes with a recipe automaton just be-
fore the recipe allows the batch to enter the casting machine. This
ensures that the order of the production as stated in the problem
description is kept (Figure 15 in the appendix shows a test automa-
ton).

There is also one automaton which has no influence on the overall
behavior of the model (shown in Figure 8). However, since we will
use the traces obtained from the model for generating schedules, it
is important that the all actions of the plant affecting the schedule
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run

not_run

b3right!
b3left!

b4left!
b4right!

b2right!
b2left!
b1right!
b1left!

b5left!
b5right!

m1right!
m2right!
m4right!

m1left!
m2left!
m3left!
m4left!
m5left!

moveAup!
moveAdown!
moveBup!
moveBdown!

caststart!

cpos[2]:=1,
cpos[4]:=1,
nextbatch:=1

Fig. 8. The automaton ensuring synchronization.

appear directly in the trace. Some of these actions are internal ac-
tions in the batch automaton and will therefore not appear in the
generated traces. An example is the movements of a batch on the
belts. The purpose of this automaton is to synchronize with the in-
ternal actions (modified to external actions) to make them appear
in the traces.

Finally there is an automaton modeling the casting machine (see
Figure 13 of the appendix). It synchronizes with a batch to start the
casting. After a specific time when the batch has been casted, the
casting machine and the batch should synchronize again to let the
batch leave the casting machine. Then the casting machine is ready
to synchronize with the next batch which must be waiting, unless
the production has finished.

4 Guiding Timed Automata

The timed automata described in the previous section models the
steel production plant at a high level of accuracy. The details in
the model are needed to allow generation of schedules from model
traces by projection, and to allow generation of control programs
from schedules by textual substitution. However, the fact that the
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i1a

x<=bmove

i2 i2a

x<=bmove

k1

i1aa
x<=bmove

i2aa
x<=bmove

c1down

i1

x==bmove,
posI[4]==0

posI[4]:=1,
posI[3]:=0

posI[5]==0,
next>m1,next<m4

posI[5]:=1,
posI[4]:=0,
x:=0

b2right?

next>m3

cAIup!

posI[3]==0,
next==m1

posI[3]:=1,
posI[4]:=0,
x:=0

b2left?
x==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

cIdown_end?

next>m3
cBIup!

posI[3]==0,
next!=m1

posI[3]:=1,
posI[2]:=0,
x:=0

m1right?

x==bmove,
posI[2]==0

posI[2]:=0,
posI[3]:=0

Fig. 9. Guided part of the batch automaton.

model is detailed and consisting of a many parallel timed automata
with several clocks is also a serious problem, as the model is too
big and complicated for automatic analysis. In fact, finding traces of
a plant model with just a few batches is infeasible in practice (see
Section 5). The limiting factor is the amount of time and memory
consumed during the analysis to (symbolically) explore and store the
reachable state-space of the analyzed model. To solve this problem
we introduce a way of user directed guiding of a state-space explo-
ration algorithm according to a number of certain chosen strategies.

4.1 Guiding

The overall idea of guiding an automata model is to let the user im-
plement reduction strategies by augmenting the automata with a set
of additional clocks, data variables, constraints and assignments 5.
Each strategy will contribute to the reduction of the state-space by
constraining the behavior of the model. However, in contrast to auto-
matic state-space reduction techniques, the guiding technique trust
the user to preserve schedulability of the plant model.
5 The technique of adding guiding variables presented in this paper is reminiscent of

the notion of history and prophesy variables used in traditional program verification,
as in the work of Abadi and Lamport [AL91].
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Assume a network of timed automata over clocks C and data vari-
ables D. The automata are guided by introducing a set of new
clocks CG and integer variables DG. We call CG ∪ DG guiding vari-
ables. A guide is implemented by conjuncting new constraints from
B(CG ∪C,DG ∪D) to the existing guards of the automata, new clock
constraints from B(CG ∪ C) to the location invariants, and adding
new assignments of variables in CG ∪ DG to the resets. Thus, the
guides may test the values of all the clocks and the data variables in
the transition guards and the location invariants of the automata. A
guide may also assign the guiding variables in the reset sets. How-
ever, the original clocks and data variables of the timed automata
(i.e. C ∪ D) should not be assigned. This ensures the essential prop-
erty that a trace generated from a guided network of timed automata
indeed is a valid trace of the original network of timed automata. In
the plant model this means that the schedules generated from the
guided plant model is guaranteed to also be valid in the original
plant model.

4.2 Implemented Strategies

We have used guiding to implement a number of strategies in the
plant model. In the following we describe the strategies abstractly, in
terms of the physical plant, and give some detailed examples of how
the guides are introduced in the plant model. We emphasize that
many of the strategies are heuristics and most of them could in fact
reduce the number of valid schedules of the plant model. However,
this is not a problem as long as it is still possible to generate valid
schedules from the model (as we are not concerned with finding
optimal schedules).

The implemented strategies are based on the general observation
that the plant model described in the previous section models all
possible behaviors of the plant. This also includes several behaviors
that should not (or are unlikely to) appear in a valid schedule. The
implemented strategies aim at reducing these ‘unwanted’ behaviors.

Strategy 1: Ordering of Batches. When the scheduling problem
is stated the production order of the steel qualities is given. One
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strategy is to use this order when starting new batches in the plant.
According to the engineers at SIDMAR the same strategy is used
there.

To implement the strategy we introduce the new guiding variable
nextbatch in the recipe automaton associated to each batch, to
control which batch is allowed to start next. A recipe automaton
is shown in Figure 6. The guard nextbatch==(number-1) on the
first transition of the automaton, where number is a unique con-
stant number associated to each recipe, implements the guide. The
guide ensures that the recipe starts the batch when the value of
nextbatch is equal to number-1. The recipe automaton increments
the nextbatch variable on a transition from location goT2 to onT2
(see also Strategy 2 below) to allow the next batch to start.

Strategy 2: Delaying of Batches. Related to the first strategy
is the starting time of batches. Since there is an upper bound on
the time a batch is allowed to spend in the plant, all batches should
not be started at the same time. Therefore, we prevent a batch from
starting based on the progress of the batch just before it. If too much
time passes before the batch undergoes the treatments in the recipe,
the time bound will also be violated. Based on the progress in theh
recipe we can check whether it is still possible for the batch to reach
the casting machine in time.

The strategy is implemented in the recipe automata by delaying the
update of the nextbatch variable. In the recipe1 automaton shown
in Figure 6 the nextbatch guiding variable is incremented on the
transition from location goT2 to onT2 instead of immediately after
the test on the first transition. This prevents the next batch to start
before the batch has been treated by two machines. To make sure
that it is still possible for the batch to reach the casting machine in
time, invariants over the clock tot are added to some of the locations
of the recipe.

Strategy 3: Global Routing of Batches. To make the movement
of the batches more deterministic we choose a target for where the
batches should move to next. The recipe of each batch chooses a
target for the batch which is the machine the batch should visit
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next. When there is a choice of machines the recipe will chose the
machine on the track with fewest batches present.

We introduce a new guiding variable named next for each batch to
realize this strategy. The value of next specifies where the batch
should go next, based on the next machine treatment specified in
its recipe. For example the choice of the first machine (there is a
machine of this type on each track, so there is a choice here) is
implemented by a guiding expression on the first transition of the
recipe automaton:

if (track1 ≤ track2) then next :=m1 else next :=m4

where track1 is the number of batches present on track one and
track2 the number of batches on track two. In the recipe automaton
in Figure 6 the value of track1 and track2 are computed as the sum
of active bits in the bit vectors posI and posII respectively (recall
from the previous section that posI and posII are used to ensure
mutex on the positions of the two production tracks).

Strategy 4: Local Routing of Batches. The possible movements
of the batches are further reduced by a strategy deciding how a batch
should move between two given position. The implemented strategy
selects the only direct route between two positions.

To implement the strategy in the plant model we use the guiding
variable next. A guard constraining the value of next is added to
all transitions of the batch automata leaving a location modeling a
physical position in the plant. Figure 9 shows a part of the guided
batch automaton corresponding to the partial original automaton
shown in Figure 5. Machine one is the only machine located to the
left of position i2 on track 1. Therefore, the guides require the next

variable to have value m1 (representing machine 1) to move in the left
direction. This is ensured by the guard next==m1 on the transition
from location i2 to i1aa. The transitions from location i2 to k1
represents the batch being picked up by one of the cranes. When
this is the case the next destination of the batch should not be a
machine on track one (i.e. not machine 1, 2, or 3) therefore next is
required to be greater than m3.
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Strategy 5: Moving of Cranes. When a crane is carrying a batch
it always follows the strategy of the batch. If a crane is empty, the
strategy is to move only when something is ready to be picked up or
if it is blocking the other crane. To allow a crane to move when it is
blocking the other crane we enable the two cranes to communicate.

Guiding guards in the crane automata testing bits in posI and posII

ensure that the cranes move towards the pick up positions on the
tracks only when a batch is waiting to be picked up (see e.g. the
transition from location c2emp to c2c1emp in Figure 14 of the
Appendix). To allow an empty crane to move in other situations the
guiding variables creq1 and creq2 are introduced. Guards testing
their value are introduced on some transitions to allow the crane to
move from certain positions in a specified directions when the vari-
ables are non-zero. The variables are typically assigned by the other
crane to indicate that it is moving towards a (possibly) occupied
position that must be empty. For example, in the craneB automaton
shown in Figure 14 the variable creq1 is assigned on the transitions
from location c2emp to c1emp to allow crane 1 to leave crane posi-
tion 1 (modeled by the locations c1emp, c1up, c1down, and c1full
in the craneB automaton).

Other Strategies. It is possible to imagine other strategies and
other experiments that would be interesting. However, the strategies
presented here have been very effective as shown by the results in the
next section. Using the approach to guiding presented here allows for
easy adding and changing of guides. This is important since guides
are based on heuristics so experimenting is sometimes needed for
finding good strategies.

5 Experimental Results

The plant models described in the previous sections have been ana-
lyzed in the validation and verification tool Uppaal [LPY95,LPY97].
In this section we present the results of the analysis for three versions
of the model, with varying number of guides and batches. In partic-
ular, we present the measured time and space needed by Uppaal to
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perform the analysis. Comparing the requirements for the different
models allows us to evaluate the benefits of the presented guiding
techniques. To evaluate the effect of adding guides, we use the stan-
dard UNIX programs time and top to measure the CPU time and
the memory consumed by Uppaal when generating a trace from the
two models.

The three analyzed models are: the original plant model without the
guides described in Section 3, the plant model with all guides added
described in Section 4, and a model with all guides added except the
once using the nextbatch variable described in Section 4.

Uppaal offers a number of options to control the internal verifi-
cation algorithm applied in the tool [LPY97]. When analyzing the
plant models we have used the compact data-structure for con-
straints [LLPY97], the control-structure reduction [LLPY97], and a
recently implemented version of the (in-)active clock reduction [DT98].
In addition we experiment with using breadth-first (BFS), depth-first
search strategy (DFS), or depth-first search in combination with bit-
state hashing (BSH) [Hol91]6.

All Guides Some Guides No Guides
# BFS DFS BSH BFS DFS BSH BFS DFS BSH

sec MB sec MB sec MB sec MB sec MB sec MB sec MB sec MB sec MB

1 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 3.2 6.1 0.8 2.2 3.9 3.3
2 18.4 36.4 0.1 1.0 0.1 1.1 - - 2.1 4.4 7.8 1.2 - - 19.5 36.1 - -
3 - - 3.2 6.5 3.4 1.4 - - 72.4 92.1 901 3.4 - - - - - -
4 - - 4.0 8.2 4.6 1.8 - - - - - - - - - - - -
5 - - 5.0 10.2 5.5 2.2 - - - - - - - - - - - -
10 - - 13.3 25.3 16.1 9.3 - - - - - - - - - - - -
15 - - 31.6 51.2 48.1 22.2 - - - - - - - - - - - -
20 - - 61.8 89.6 332 46.1 - - - - - - - - - - - -
25 - - 104 144 87.2 83.3 - - - - - - - - - - - -
30 - - 166 216 124.2 136 - - - - - - - - - - - -
35 - - 209 250 - - - - - - - - - - - - - -

Table 1. Time and space requirements for generating schedules.

6 The bit-state hashing technique generates a sub set of the reachable state-space. A
feasible schedule found with this technique is therefore guaranteed to also be feasible
in the original plant model.

20



Table 1 shows the time (in seconds) and space (in MB) consumed
by Uppaal version 3.0.12 7 when generating schedules from the
three models. The numbers in the leftmost column corresponds to
the number of batches in the model (and in the generated schedule).
We use the marker “-” to indicate that the corresponding execution
requires more than 256MB of memory, more than two hours of ex-
ecution time, or that a suitable hash table size has not been found.
When applying the hash table technique, we have used table sizes
from 1048577 to 33554441 bits. The reported results corresponds to
the most suitable hash table sizes found.

As can be seen in Table 1, the use of guides significantly increases the
size of models that can be analyzed. In the guided model, schedules
can be generated for 35 batches using 250 MB in 3.5 minutes, whereas
no schedule can be generated for three batches (or more) when no
guides are used. We also observe that adding some guides improves
the situation by enabling analysis of systems with three batches.

It can also be observed that the bit-state hashing technique does not
allow analysis of larger models in this experiment, even though it
performs well space-wise on most models. We experienced that find-
ing suitable hash table sizes is very tedious for large system models.
The largest system analyzed in the experiment is therefore a guided
model using depth-first search strategy but without the bit-state
hashing technique.

We have also installed Uppaal on a Sun Ultra machine equipped
with 1024MB of memory. On this machine, a schedule for 60 batches
can be generated from the guided model in 2 257 seconds.

6 Synthesis of Control Programs

We did not expect to be able to run the generated control programs
in the original plant of SIDMAR. Therefore we have used a LEGO
plant (see Figure 10) to run the synthesized programs in. This allows
for experimenting with the plant to validate the model and it also

7 The tool was installed on a Linux Redhat 5.2 machine equipped with a Pentium III
processor and 256MB of memory.
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Fig. 10. The LEGO plant.

makes it easy to find answers to a number of questions about the
plant (e.g. measuring time bounds).

The plant consists of a number of distributed units, each controlled
locally by one RCX [LEG98] brick. There are three types of units
used in the plant: a crane, a machine with a track segment, and
the casting machine. For the cranes there is an overhead track. The
interface to the units consists of a set of commands like MoveTrack-
Right, TurnOnMachine, and LiftBatch. Commands are send to the
local units by one central controller which is running the synthesized
program. Ideally, one would want the local controllers to give feed-
back to the central controller when actions have finished or when an
error occurs. However, since the communication between the RCX
bricks is slow and unreliable especially if more than one brick tries
to send at one time, the only feedback from the local controllers are
acknowledgements of commands received from the global controller.
This has big influences on how the generated programs. There are
no loops or branches in the control of the plant, only to implement
communication between the RCX bricks are loops and branches
used.
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As a result of the model checking in Uppaal a trace containing in-
formation about synchronizations between automata and delays is
obtained. Some of the synchronizations in the model, like the recipe
synchronizing with the test automaton, are not relevant for the gen-
erated schedule. To get a schedule for the plant we project the trace
to the actions relevant for the plant. Given some numbering of tracks
and machines, part of a schedule looks like in Figure 11. There is a
one-to-one correspondence between a schedule of this kind and the
commands of the synthesized central control program. Each line with
a Delay action is translated into a delay in the control program (in
RCX code there is a Wait instruction doing this). For the rest of
the lines only the second part is used, which defines what unit the
command should be send to and what the command is. For example
in the line Load1.Track2Right, the part Track2Right is translated
to a command MoveTrackRight and sent to the local controller of
track two.

... Delay(5)

Load1.Track1Right Crane1.Move1Left

Delay(10) Delay(5)

Load1.Machine1On Load1.Machine2On

Load2.Track5Right Delay(1)

Delay(4) Crane1.Move1Left

Crane1.Move1Left Delay(6)

Delay(6) Crane1.Move1Left

Load1.Machine1Off Delay(3)

Load1.Track2Right Load1.Machine2Off

Crane1.Pickup1 ...

Fig. 11. Part of a generated schedule.

The projection and the translation have been implemented using the
pattern scanning and processing language gawk. Since the RCX
language does not offer reliable communication primitives, each line
in the schedule is translated into a code segment implementing such
communication. Figure 12 shows a part of a synthesized control pro-
gram. The language does not support functions or procedures there-
fore the code implementing the communication has to be in-lined for
each instruction send to a local unit.
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’’’’moveAup();

’’’’Crane A - Move UP

PB.PlaySystemSound 1

PB.SendPBMessage 2, 99 ’ Move up, on C1

PB.SetVar 1, 15, 0 ’Wait for ack

PB.While 0, 1, 3, 2, 99

PB.Wait 2, 20

PB.SetVar 1, 15, 0 ’Read the message

PB.ClearPBMessage

PB.SumVar 2, 2, 1

PB.If 0, 2, 2, 2, 20 ’If looped 20 times

PB.PlaySystemSound 1

PB.SendPBMessage 2, 99 ’Then Send message,

again same as sendig 0

PB.SetVar 2, 2, 0

PB.EndIf

PB.EndWhile

’’’’Delay 12

PB.Wait 2, 1200

Fig. 12. Part of a synthesized program.

The synthesized programs have been executed in the plant. This was
mainly intended as validation of the Uppaal model of the plant.
During the validation we found three errors in the model: the crane
started to move horizontally too early when an empty ladle was
picked up from the casting machine, causing the crane to collide
with the casting machine and accidently drop the lifted ladle, so
here a delay was missing in the model; when two cranes were located
at positions next to each other and started to move in the same
direction they could collide because the crane ’in front’ was started
last; in systems with only one batch the casting machine did not
turn correctly. These problems were corrected in the model and new
control programs were synthesized.

At one point during the experiments with the plant the batteries
running the crane started to wear out. This meant that the initial
timing information obtained from the plant was inaccurate because
the cranes were moving slower. At this point having the complete
process from generating traces to synthesizing control programs fully
automated proved especially useful. New times for the moving of
the cranes were measured and put into the model. Since scheduling
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still was possible, new programs were quickly synthesized and were
running in the plant as expected.

Performing the experiments also validate the implementation of the
translation from schedules to programs and here no problems were
found. Our confidence in the correctness of the model has been sig-
nificantly increased by conducting these experiments.

7 Conclusion

In this paper, we have used timed automata and the verification tool
Uppaal to synthesize control programs for a batch production plant.
To deal with the unavoidable complexity of a plant model suitably
accurate for program synthesis, we suggest and apply a general ap-
proach of guiding a model according to certain strategies. With this
technique, we have been able to synthesize schedules for as many as
60 batches on a machine with 1024 MB of memory. Applying bit-
state hashing the space consumption may be decreased even further.

Based on traces from the model checking tool Uppaal, schedules are
generated. From theses schedules, control programs are synthesized
and later executed in a physical plant. During execution a few mod-
eling errors were detected. After correcting the model, new schedules
were generated and correct programs were synthesized and executed
in the plant.

The presented method for guiding model-checking has proved very
successful in significantly increasing the size of models which can
be analyzed. The largest model we analyze consists of 125 timed au-
tomata and a total of 183 clocks. The notion of guides allows the user
to add heuristics for controlling the behavior of the plant, and we
believe that the approach is applicable and useful for model check-
ing in general and reachability checking in particular. The validation
of the model by running the synthesized programs also proved use-
ful: having access to the (a) physical plant during the design of the
model, allowed a number of questions to be readily answered.

Based on the traces generated from the Uppaal model other types of
control programs can be synthesized. Here it would be especially in-
teresting to study how more communication between the distributed
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controllers can be used, e.g. for generating more optimal programs,
and for detecting run-time errors. The guides added here decrease
the size of the state-space. However, most of the strategies presented
here could also be realized by changing the search order to first search
the states which are most likely to lead to a goal state. This would
not delete possible solutions, which would be particular useful if one
were searching for optimal schedules. Searching for optimal sched-
ules, a notion of cost should be added to the model. Here an obvious
choice would be the time passed.

Acknowledgements: The authors wish to thank Ansgar Fehnker
and K̊are Jelling Kristoffersen for fruitful discussions and many use-
ful suggestions.
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Appendix

emptyempty

fullempty
x<=casttotal

fullempty2
x<=casttotal

emptyfull

fullfull
x<=casttotal

turning
x<=castturn

fullfull2
x<=casttotal

turning2

go finish?

x==casttotal

x:=0
nrut!

x==casttotal

x:=0
nrut!

outcast?

incast?

incast?

x==castturn
turn!

x>=castturnoutcast?

x:=0turn!

caststart?

Fig. 13. The casting machine.
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c1emp c1full

c2emp

c2c1emp
tCB<=cdelay
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tCB<=cdelay

c2full

c3emp
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tCB<=cup

c2down
tCB<=cup
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c1down
tCB<=cup

c3up
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c3down
tCB<=cup

c4up

tCB<=cup

c4down
tCB<=cup

c5up
tCB<=cup

c5down
tCB<=cup

cpos[3]==0, cpos[2]==0,
posI[4]==1

cpos[3]:=1,
cpos[4]:=0,
tCB:=0,
creq1:=1

moveBup?

tCB==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[3]:=0,
creq1:=0

tCB==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[3]:=0,
creq1:=0

evom21?

cpos[3]==0

cpos[3]:=1,
cpos[4]:=0,
tCB:=0,
creq1:=1

moveB21?

cpos[5]==0

cpos[5]:=1,
cpos[6]:=0,
tCB:=0,
creq1:=1

moveBup?

tCB==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[5]:=0

tCB==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[5]:=0

evom32?

cpos[5]==0

cpos[5]:=1,
cpos[6]:=0,
tCB:=0

move32?

cpos[7]+creq2==0

cpos[7]:=1,
cpos[8]:=0,
tCB:=0

moveBup?
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move43?
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moveBup?
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cpos[8]:=1,
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cpos[8]:=1,
cpos[9]:=0

evom54?

cpos[9]==0
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tCB:=0
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tCB==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[5]:=0

cpos[7]==0,
creq2==2

cpos[7]:=1,
cpos[6]:=0,
tCB:=0

moveBdown?

tCB==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[7]:=0

cpos[9]==0,
creq2==2

cpos[9]:=1,
cpos[8]:=0,
tCB:=0

moveBdown?

tCB==cdelay,
cpos[10]==0

cpos[10]:=1,
cpos[9]:=0

cpos[3]==0

cpos[3]:=1,
cpos[2]:=0,
tCB:=0

moveB12?

tCB==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[3]:=0

evom12?

cpos[5]==0

cpos[5]:=1,
cpos[4]:=0,
tCB:=0

move23?

tCB==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[5]:=0

evom23?

cpos[7]==0

cpos[7]:=1,
cpos[6]:=0,
tCB:=0

move34?

tCB==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[7]:=0

evom34?

cpos[9]==0

cpos[9]:=1,
cpos[8]:=0,
tCB:=0

move45?

tCB==cdelay,
cpos[10]==0

cpos[10]:=1,
cpos[9]:=0

evom45?

tCB:=0
cBIIup?

tCB==cup
posII[4]:=0

posII[4]==0tCB:=0, 
posII[4]:=1

cBIIdown_start?
tCB==cup

cIIdown_end!

tCB:=0
cBIup?

tCB==cup
posI[4]:=0

posI[4]==0tCB:=0, 
posI[4]:=1

cBIdown_start?
tCB==cupcIdown_end!

tCB:=0
cIIIup? tCB==cup

tCB==cupcIIIdown?

creq2!=2
tCB:=0cIVup? tCB==cup

tCB:=0 cIVdown_start?tCB==cup
cIVdown_end!

tCB:=0
cVup?

tCB:=0 cVdown_start?tCB==cupcVdown_end!

Fig. 14. The lower crane.
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finalt1 t2 t3 terminus

finish!quality1? quality2? quality1?

Fig. 15. A test automaton for producing three batches.
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k5
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machine1 machine2 machine3

machine4

machine5
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p2

sink

source

x1

i0aa
tRB1<=bmove i1aa

tRB1<=bmove i2aa
tRB1<=bmove

i3aa
tRB1<=bmove

i4aa
tRB1<=bmove

ii0aa
tRB1<=bmove

ii1aa
tRB1<=bmove

ii2aa
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c2down

c1down

c4down

c5down

preii0

tRB1<=bmove

preI0
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park>0park:=park-1 cIIIup!
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posI[1]==0

posI[1]:=1,
posI[0]:=0,
tRB1:=0

b1right?
tRB1==bmove,
posI[2]==0

posI[2]:=1,
posI[1]:=0

posI[3]==0,
next!=m1

posI[3]:=1,
posI[2]:=0,
tRB1:=0

m1right?

M1on?

tRB1==bmove,
posI[4]==0
posI[4]:=1,
posI[3]:=0

posI[5]==0,
next>m1,next<m4

posI[5]:=1,
posI[4]:=0,
tRB1:=0

b2right?

next>m3

cAIup!

tRB1==bmove next==m3

tRB1:=0
m2right?

M2on?

tRB1==bmove next==m3

tRB1:=0
b3right?

tRB1==bmove

M3on?

tRB1==bmove,
posII[0]==0

posII[0]:=1,
posII[1]:=0

posII[1]==0,
next==NA

posII[1]:=1,
posII[2]:=0,
tRB1:=0

m4left?

M4on?

tRB1==bmove,
posII[2]==0

posII[2]:=1,
posII[3]:=0

posII[3]==0,
next==m4

posII[3]:=1,
posII[4]:=0,
tRB1:=0
b5left?

tRB1==bmove,
posII[4]==0

posII[4]:=1,
posII[5]:=0

posII[5]==0,
next!=m5

posII[5]:=1,
posII[6]:=0,
tRB1:=0
m5left?

M5on?

move01!

next==NA move10!

next>m3

moveA12!

evom10!

evom01!

next<=m3

moveA21!

next==fin

move23!

next<=m3

evom21!

next>m3

evom12!

park<buf_size park:=park+1
cIIIdown!

next==NA
move32!

next==fin

move34!

next==NA

evom32!

next==fin
evom23!

next==NA
move43!

dumpB1?

next==fin
move45!

next==NA
evom43!

next==fin
evom34!

next==emp

move54!

next!=emp

incast!

tryB1!

next==emp
evom54!

next==fin

evom45!

M1off? M2off? M3off?

M4off?

M5off?

next==m1,
posI[0]==0

posI[0]:=1

goB1!

next==m4,
posII[0]==0

posII[0]:=1

goB1!

next!=m4,
next!=m5,
next!=fin

cAIIup!

tRB1==bmove,
posI[0]==0
posI[0]:=1,
posI[1]:=0

posI[1]==0,
next==NA

posI[1]:=1,
posI[2]:=0,
tRB1:=0

m1left? tRB1==bmove,
posI[2]==0
posI[2]:=1,
posI[3]:=0

posI[3]==0,
next==m1

posI[3]:=1,
posI[4]:=0,
tRB1:=0

b2left?
tRB1==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

next!=m2,
next!=m3

tRB1:=0
m2left?

tRB1==bmove

next!=m3

tRB1:=0
b3left? tRB1==bmove

next!=m3

tRB1:=0
m3left?

posII[1]==0

posII[1]:=1,
posII[0]:=0,
tRB1:=0

b4right?

tRB1==bmove,
posII[2]==0

posII[2]:=1,
posII[1]:=0

posII[3]==0,
next!=m4

posII[3]:=1,
posII[2]:=0,
tRB1:=0

m4right?

tRB1==bmove,
posII[4]==0

posII[4]:=1,
posII[3]:=0

posII[5]==0,
next==m5

posII[5]:=1,
posII[4]:=0,
tRB1:=0

b5right?

tRB1==bmove,
posII[6]==0

posII[6]:=1,
posII[5]:=0

turn?

creq2:=2 nrut?

next>m3
cAIIdown_start!

cIIdown_end?

next<=m3
cAIdown_start!

cIdown_end?

cIVdown_start! cIVdown_end?

cVdown_start! cVdown_end?

next>m3,next!=fin
cBIIdown_start!

next!=m4,
next!=m5

cBIIup!

next<=m3
cBIdown_start!

next>m3

moveB12!

next<=m3

moveB21!

next>m3

cBIup!
tRB1:=0
b4right?

tRB1==bmove

tRB1:=0

b1right?

tRB1==bmove

Fig. 16. The batch automaton.
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