
B
R

IC
S

R
S

-00-36
R

.P
agh:

D
ispersing

H
ash

F
unctions

BRICS
Basic Research in Computer Science

Dispersing Hash Functions

Rasmus Pagh

BRICS Report Series RS-00-36

ISSN 0909-0878 December 2000

Copyright c© 2000, Rasmus Pagh.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/00/36/

Dispersing Hash Functions∗

Rasmus Pagh
BRICS†, Department of Computer Science, University of Aarhus,

8000 Aarhus C, Denmark
Email:pagh@brics.dk

Abstract

A new hashing primitive is introduced: dispersing hash functions. A family
of hash functions F is dispersing if, for any set S of a certain size and random
h ∈ F , the expected value of |S|−|h[S]| is not much larger than the expectancy
if h had been chosen at random from the set of all functions.

We give tight, up to a logarithmic factor, upper and lower bounds on the
size of dispersing families. Such families previously studied, for example uni-
versal families, are significantly larger than the smallest dispersing families,
making them less suitable for derandomization. We present several applica-
tions of dispersing families to derandomization (fast element distinctness, set
inclusion, and static dictionary initialization). Also, a tight relationship be-
tween dispersing families and extractors, which may be of independent interest,
is exhibited.

We also investigate the related issue of program size for hash functions
which are nearly perfect. In particular, we exhibit a dramatic increase in
program size for hash functions more dispersing than a random function.

1 Introduction

Universal families of hash functions [1], widely used in various areas of computer
science (data structures, derandomization, cryptology), have the property, among
other things, that any set S is dispersed by a random function from the family. More
precisely, for a universal family F and any set S, if we pick a function uniformly
at random from F , the expected value of |S| − |h[S]| is not much larger than the
expectancy if h had been chosen at random from the set of all functions. Another
way of putting this property is that a dispersing family is good at distinguishing
the elements of any set (the average function maps the elements to many different

∗A preliminary version appeared at RANDOM 2000. Proceedings in Informatics 8, p. 53–67.
 Carleton Scientific.
Section 4.3 and appendix A were added after publication, and some minor changes were made.
Theorem numbers changed.

†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

http://www.brics.dk/~pagh/
http://www.brics.dk/
http://www.daimi.au.dk/
http://www.au.dk/
http://www.denmark.dk
mailto:pagh@brics.dk

values). For comparison, a universal family is good at distinguishing any pair of
elements (few functions map them to the same value).

In section 3 we will see that hash function families much smaller than any
universal family can be dispersing. In other words, dispersion is a property strictly
weaker than universality. While our first upper bound is non-constructive, section 4
explores explicit construction of small dispersing families. In particular, we exhibit
a strong connection to the construction of extractors.

Small families of functions with random properties are important for deran-
domization (removing or reducing the use of random bits in algorithms). It is hard
to characterize the situations in which a dispersing family could be used instead
of a universal one. Indeed, the three derandomization examples given in section 5
use dispersing families in somewhat different ways than one would use universal
families. We also give an example from the literature where replacing a universal
family with a dispersing one immediately gives an improved result.

We will also consider a weaker form of dispersing families, where we only care
about the existence of a single function h for which |S|−|h[S]| is small. One special
case of this has previously been intensely studied, namely perfect hash function
families, where a function with |h[S]| = |S| always exists. In section 6 we will see
that the size of existentially dispersing families explodes once we require |S|−|h[S]|
to be smaller than that expected for a random h from the family of all functions.
In other words, storing a “near-perfect” hash function is nearly as expensive as
storing a perfect one.

1.1 Related work

The dispersion property of universal families was shown and first used in [6]. It has
since found application in several papers [4, 9, 13].

Another formulation of the dispersion property of a family {hi} is that that
Ei|hi[S]| should be “large”. The definition of a disperser is similar to this in that
one requires |∪i hi[S]| to be “large”. However, in the usual treatment of dispersers,
the range R has size |S| or smaller (whereas we will be interested in |R| ≥ |S|), and
“large” means greater than (1−ε) |R|, for some choice of parameter ε (while we can
only hope for some fraction of |S|). Nisan’s survey [12] gives a good introduction to
dispersers. It also covers the stronger notion of extractors, where the requirement
is near-uniformity of the random variable hi(x), for uniformly and independently
chosen hi and x ∈ S.

Mehlhorn [10] has given tight bounds (up to a constant factor) on the number
of bits needed to represent perfect and universal hash functions, i.e. determined the
size of such families up to a polynomial (see also [5, 15]).

2

1.2 Notation

In the following, S denotes a subset of U = {1, . . . , u}, |S| = n, and we consider
functions from U to R = {1, . . . , r} where r ≥ n > 1 and u ≥ 2r. The set of all
functions from U to R is denoted by (U → R), and

(
U
n

)
denotes the subsets of U of

size n. The number of collisions for S under h is C(S, h) = n − |h[S]|. A uniform
random choice is denoted by ∈R, and is always independent of other events. The
base of “log” is 2, the base of “ln” is e = 2.718 . . .

2 The family of all functions

As preparation for the results on dispersing families, this section contains some
results on the distribution of C(S, h) for h ∈R (U → R). The probability that
i 6∈ h[S] is (1 − 1

r)n for i ∈ {0, . . . , r − 1}. Thus the expected size of R\h[S] is
(1 − 1

r)n r, and the expected size of h[S] is

µ := r (1 − (1 − 1
r)n) = r (

(n
1

)
/r − (n

2

)
/r2 + . . .) = n − Θ(n2

r) . (1)

Hence the expected value of C(S, h) is:

λ := n − µ =
n−1∑
i=1

(
n

i+1

)
(−1/r)i ∈ [n

2

4r ; n2

2r] . (2)

We now turn to giving tail bounds. Let S = {s1, . . . , sn} and let Xi be the 0-1
random variable which assumes the value 1 iff h(si) ∈ {h(s1), . . . , h(si−1)}. Clearly
C(S, h) =

∑
i Xi. The random variables X1, . . . ,Xn are not independent; however,

they are negatively related:

Definition 1 (Janson [7]) Indicator random variables (Ii)ni=0 are negatively re-
lated if for each j there exist random variables (Jij)ni=0 with distribution equal to
the conditional distribution of (Ii)ni=0 given Ij = 1, and so that Jij ≤ Ii for every i.

The random variables Yij corresponding to the condition Xj = 1, j > 1, are defined
in the same way as the Xi, except that we pick h from the set of functions satisfying
h(sj) ∈ {h(s1), . . . , h(sj−1)}. The negative relation means that we can employ the
Chernoff-style tail bounds of [7, Theorem 4]. In particular, tail bound (1.9) states
that, for c ≤ 1,

Pr[C(S, h) ≤ cλ] ≤ exp(−(1 − c)2λ/2) . (3)

And tail bound (1.5) gives that, for c ≥ 1,

Pr[C(S, h) ≥ cλ] ≤
(

ec−1

cc

)λ

. (4)

3

Analogously, for a sequence h1, . . . , hb ∈R (U → R), one can derive the following
estimate, for c ≥ 1:

Pr

[
1
b

b∑
i=1

C(S, hi) ≥ cλ

]
≤

(
ec−1

cc

)λb

. (5)

3 Dispersing families

Definition 2 A family F ⊆ (U → R), is (c, n, r, u)-dispersing if for any S ⊆ U ,
|S| = n, the expected value of C(S, h) for h ∈R F is at most cλ, where λ is given
by (2). When parameters n, r and u follow from the context, we shall use the term
c-dispersing.

We first give a simple non-constructive argument (using the probabilistic meth-
od) that a small family of c-dispersing functions exists for c ≥ 1 + ε, where ε > 0
is a constant (the requirement on c ensures that the constant factor of the bound
does not depend on c). Let k(c) = ln(cc/ec−1) = Θ(c log c). The family can be
constructed by picking h1, . . . , hb ∈R (U → R), where b > n ln(ue/n)

k(c)λ = O(r log(u/n)
n c log c).

With non-zero probability this gives a family with the desired property, namely
1
b

∑b
i=1 C(S, hi) ≤ c λ for any S ∈ (U

n

)
. By inequality (5),

Pr

[
1
b

b∑
i=1

C(S, hi) ≥ cλ

]
≤

(
ec−1

cc

)λb

< (ue/n)−n .

Since there are less than (ue/n)n sets of size n (see e.g. [8, section 1.1]), the
probability of failure for at least one set is less than 1, as desired.

We now show a lower bound on the size of a c-dispersing family. Take any
such family F = {h1, . . . , hb}. We construct U1, . . . , Uk, with Uk ⊆ Uk−1 ⊆ · · · ⊆
U1 ⊆ U0 = U such that |Ui| ≥ u (n/2r)i and |hi[Uk]| ≤ n/2 for i ≤ k. The set
Ui is constructed from Ui−1 using the pigeonhole principle to pick a subset with
|hi[Ui]| ≤ n/2 of size at least |Ui−1|/(2r/n). Setting k = blog(u/n)/ log(2r/n)c we
have |Uk| ≥ n and can take S ⊆ Uk of size n. Since F is c-dispersing we must have∑

i C(S, hi) ≤ b c λ. On the other hand, by construction
∑

i C(S, hi) ≥ k n/2, so
we must have:

b ≥ k n

2 c λ
≥ r log(u/n)

2n c log(2r/n)
.

We summarize the bounds as follows:

4

Theorem 3 For r ≥ n > 1, u ≥ 2r and c > 1 + ε, for constant ε > 0, a minimal
size (c, n, r, u)-dispersing family F satisfies:

r log(u/n)
2n c log(2r/n)

≤ |F | = O

(
r log(u/n)
n c log c

)
.

The gap between the bounds is O(log(2r/n)
log c). In a certain sense we have a tight

bound in most cases: Parameter c ranges from 1+ε to O(r/n), and for c = (r/n)Ω(1)

the bounds differ by a constant factor.

A random function h from a (δn
λ , n, r, u)-dispersing family has expected size of

h[S] at least (1 − δ)n. This makes the following version of theorem 3 convenient.

Corollary 4 For r ≥ n > 1, u ≥ 2r and δ > (1 + ε)λ/n, for constant ε > 0, a
minimal size (δn

λ , n, r, u)-dispersing family F satisfies:

log(u/n)
2δ log(2r/n)

≤ |F | = O

(
log(u/n)

δ log(4δr/n)

)
.

3.1 An impossibility result

We have seen examples of c-dispersing families for c ≥ 1. A natural question is
whether such families exist for c < 1. This section supplies a generally negative
answer for any constant c < 1. However, it is possible to disperse slightly more than
a totally random function by using the family of all “evenly distributing” functions.
This is analogous to universal hash functions, where it is also possible to improve
marginally upon the performance of a truly random function [18].

Example 1 Consider the case n = r = 3, u = 6, where λ = 8/9. If we pick
a function at random from those mapping two elements of U to each element in
the range, the expected number of collisions is 3/5. That is, this family is 27/40-
dispersing.

We need the following special case of a more general result shown in section 6.

Lemma 5 Let k(c) = (1−c)2

100 log(4/(1−c)) . Assume r ≤ k(c)n2 and u ≥ 100 r
1−c , and let

h : U → R be any function. For S ∈R

(U
n

)
we have Pr[C(S, h) ≤ 1+c

2 λ] < 1− 2c
1+c .

Corollary 6 For 0 < c < 1, r ≤ k(c)n2 and u ≥ 100 r
1−c , no (c, n, r, u)-dispersing

family exists.

5

Proof. Suppose F is a (c, n, r, u)-dispersing family with parameters satisfying the
above. By an averaging argument, there must exist a function h ∈ F such that
for S ∈R

(U
n

)
the expected value of C(S, h) is at most cλ. In particular, Markov’s

inequality gives that the probability of C(S, h) ≤ 1+c
2 λ must be at least 1 − 2c

1+c ,
contradicting lemma 5. 2

4 Explicit constructions

This section concerns the explicit construction of dispersing families, concentrating
on O(1)-dispersing families. By explicit families Fc,n,r,u we mean that there is a
Turing machine algorithm which, given parameters c, n, r and u, the number of
some function f in (an arbitrary ordering of) Fc,n,r,u, and x ∈ U , computes f(x) in
time (log |Fc,n,r,u| + log(u + c))O(1). The general goal, not reached here, would be
explicit families of sizes polynomially related to the bounds of theorem 3. Picking
a random element from such a family uses a number of random bits which is within
a constant factor of optimal (i.e., the sample complexity is optimal).

4.1 Universal families

Definition 7 A family F ⊆ (U → R) is c-universal if for any x, y ∈ U , x 6= y
and h ∈R F , Pr[h(x) = h(y)] ≤ c/r. It is strongly c-universal if for any a, b ∈ R,
Pr[h(x) = a, h(y) = b] ≤ c/r2.

A strongly (1 + ε)-universal (and thus (1 + ε)-universal) family for 0 < ε ≤ 1 is:

Fsu = {h | h(x) = ((t x + s) mod p) mod r, m/2 ≤ p ≤ m, p prime, 0 ≤ s, t < p} .

where m = 24 r2 log(u)/ε. The universality proof is given in appendix A. Note
that the family has size (r log(u)/ε)O(1), and that, given parameters s, t and p,
and input x, we can compute h(x) in polynomial time. As for universal families
with parameter higher than 2, we note that taking any 1/c fraction of a 2-universal
family yields a 2c-universal family.

We now establish that universal families are dispersing, slightly generalizing an
observation in [6]:

Proposition 8 A c-universal family is 2c-dispersing.

Proof. Let F be a c-universal family, and take S ∈ (U
n

)
. For h ∈R F consider

K(S, h) = |{{x, y} ∈ (S
2

) | h(x) = h(y)}|. Since C(S, h) ≤ K(S, h) we just need to
bound the expected value of K(S, h). By c-universality this is at most

(
n
2

)
c/r, and

6

by (2) we have the bound
(n
2

)
c/r < cn2/2r ≤ 2 c λ. 2

Mehlhorn [10, Theorem D] has shown that a c-universal family can have size
no smaller than r (dlog u/ log re − 1)/c. This is Ω(n log c/ log r) times larger than
the upper bound of theorem 3. Hence, dispersion is a property strictly weaker
than universality. The minimum sizes of c-universal and O(c)-dispersing families
are polynomially related when r/n ≥ nΩ(1) + c1+Ω(1). Under the same condition,
the family Fsu, as well as a c-universal sub-family for c > 2, has size polynomially
related to the minimum. In particular, we have explicit O(1)-dispersing families of
optimal sample complexity for r = n1+Ω(1).

4.2 Extractor based construction

This subsection addresses the construction of dispersing families for r = n1+o(1),
where universal families do not have optimal sample complexity (except for very
large universes). We give an explicit construction of a O(1)-dispersing family from
an an extractor (see definition below). Plugging in an explicit optimal extractor
would yield an explicit O(1)-dispersing family with optimal sample complexity
(except perhaps for very small universes). We need only consider the case where r
is a power of two, since such families are also O(1)-dispersing for ranges up to two
times larger.

Definition 9 A random variable X with values in a finite set T is ε-close to uni-
form if ∑

i∈T

|Pr[X = i] − 1/|T || ≤ 2 ε.

Definition 10 A function E : U × {0, 1}s → {0, 1}t is an (n, ε)-extractor if for
any S ∈ (U

n

)
, the distribution of E(x, y) for x ∈R S, y ∈R {0, 1}s is ε-close to

uniform over {0, 1}t.

Non-constructive arguments show that for t ≤ log n and ε > 0 there exist (n, ε)-
extractors with s = O(log(log(u)/ε)). Much research effort is currently directed
towards explicit construction of such functions (see e.g. the surveys [11, 12]).

Theorem 11 Suppose r is a power of 2, E : U ×{0, 1}s → {0, 1}t is an (bn/2c, ε)-
extractor, where ε = O(n/r), F ′ ⊆ (U → {0, 1}s) is strongly (1 + ε)-universal, and
F ′′ ⊆ (U → {0, 1}log(r)−t) is 2-universal. Then the family

F1 = {h | h(x) = E(x, f ′(x)) ◦ f ′′(x), f ′ ∈ F ′, f ′′ ∈ F ′′} ⊆ (U → R)

where ◦ denotes bit string concatenation, is O(1)-dispersing.

7

Proof. Let S ∈ (U
n

)
. By the extractor property, the distribution of E(x, z) for

x ∈R S and z ∈R {0, 1}s is ε-close to uniform. We can therefore identify a set
B ⊆ {0, 1}t of “bad” points, such that |B| ≤ ε 2t and for i ∈ {0, 1}t\B and x ∈R S
we have:

Pr
z∈R{0,1}s

[E(x, z) = i] ≤ 2−t+1 . (6)

Also note that the distribution of E(x, f ′(x)) for x ∈R S and f ′ ∈R F ′ must be
γ-close to uniform for γ = O(ε). We choose f ′ ∈R F ′, f ′′ ∈R F ′′, set h(x) =
E(x, f ′(x)) ◦ f ′′(x), and bound the expected value of C(S, h):

E[C(S, h)] ≤ E[|{x ∈ S | E(x, f ′(x)) ∈ B}|]+
E[|{{x1, x2} ∈ (

S
2

) | h(x1) = h(x2) ∧ E(x1, f
′(x1)) 6∈ B ∧ E(x2, f

′(x2)) 6∈ B}|] .
(7)

For x ∈R S the first term is:

n Pr[E(x, f ′(x)) ∈ B] ≤ (γ + ε)n = O(n2/r) . (8)

For {x1, x2} ∈R

(S
2

)
, the second term is:

(
n
2

)
Pr[h(x1) = h(x2) ∧ E(x1, f

′(x1)) 6∈ B ∧ E(x2, f
′(x2)) 6∈ B]

=
(n
2

) ∑
i∈{0,1}t\B

Pr[E(x1, f
′(x1)) = E(x2, f

′(x2)) = i ∧ f ′′(x1) = f ′′(x2)]

≤ (n
2

)
2− log(r)+t+1

∑
i∈{0,1}t\B

Pr[E(x1, f
′(x1)) = E(x2, f

′(x2)) = i] .

(9)

To bound Pr[E(x1, f
′(x1)) = E(x2, f

′(x2)) = i] for i ∈ {0, 1}t\B we note that the
random choice {x1, x2} ∈R

(S
2

)
can be thought of in the following way: First choose

S1 ∈R

(S
bn/2c

)
and then choose x1 ∈R S1, x2 ∈R S\S1. By symmetry, this procedure

yields the same distribution. Since for any S1, we choose x1 and x2 independently
from disjoint sets of size at least bn/2c, we have:

Pr
f ′∈RF ′[E(x1, f

′(x1)) = E(x2, f
′(x2)) = i]

≤ (1 + ε) Pr
z1,z2∈R{0,1}s

[E(x1, z1) = E(x2, z2) = i]

= (1 + ε) Pr
z1∈R{0,1}s

[E(x1, z1) = i] Pr
z2∈R{0,1}s

[E(x2, z2) = i]

≤ (1 + ε) (n
bn/2c 2−t+1)2 .

(10)

8

The factor of n
bn/2c relative to (6) is due to the fact that x1 and x2 are sampled

from a fraction ≥ bn/2c
n of S. Plugging this into (9) we obtain:(n

2

)
Pr[h(x1) = h(x2) ∧ E(x1, f

′(x1)) 6∈ B ∧ E(x2, f
′(x2)) 6∈ B]

≤ n2 2− log(r)+t 2t (1 + ε) (n
bn/2c 2−t+1)2

≤ 36 (1 + ε)n2/r = O(n2/r) .

(11)

Hence, the expected value of C(S, h) is O(n2/r), as desired. 2

Corollary 12 Given an explicit (bn/2c, ε)-extractor E : U ×{0, 1}s → {0, 1}t with
ε = O(n/r) and t = log n − O(1), there is an explicit O(1)-dispersing family with
sample complexity O(log(r log(u)/n) + s).

Proof. We use the construction of section 4.1 for the universal families of the
above construction. The number of bits needed to sample f ′ ∈R F ′ is O(log(2s) +
log(log(u)/ε)) = O(s + log(r log(u)/n)). The number of bits needed to sample
f ′′ ∈ F ′′ is O(log(2log(r)−t) + log log u) = O(log(r/n) + log log u). 2

The best explicit extractor in current literature with the required parameters has
seed length s = O((log log(u r/n))3) [17].

Of course, theorem 11 and corollary 12 are trivial in cases where the O(1)-
parameter of the dispersing family is bigger than n/λ = O(r/n). In these cases
we can get a nontrivial family by using corollary 12 to obtain an O(1)-dispersing
family with range {1, . . . , r′}, where r′/r is a suitably large constant power of 2.
To get the family F with range R, simply cut away log(r′/r) bits of the output.
This only decreases sizes of images of sets by a constant factor, which means that
for h ∈R F and S ∈ (U

n

)
the expected size of h[S] is still Ω(n).

4.3 Equivalence of extractors and dispersing families

This section points out that nontrivial O(1)-dispersing families with range {0, 1}log n

are also (n, ε)-extractors for a constant ε < 1.

Proposition 13 Let {hz}z∈{0,1}s ⊆ (U → {0, 1}t), t = log n − O(1), be such
that for any S ∈ (

U
n

)
the expected size of hz[S] for z ∈R {0, 1}s is Ω(n). Then

E(x, z) = hz(x) is an (n, 1 − Ω(1))-extractor.

Proof. Let S ∈ (
U
n

)
. For x ∈R S and z ∈R {0, 1}s, let B ⊆ {0, 1}t consist of the

values i ∈ {0, 1}t for which Pr[hz(x) = i] < 2−t. We have:∑
i∈B(2−t − Pr[hz(x) = i]) = 1 − ∑

i∈{0,1}t min{Pr[hz(x) = i], 2−t}
≤ 1 − E[|hz[S]|]/2t = 1 − Ω(1) .

9

This implies that the distribution of E(x, z) is (1 − Ω(1))-close to uniform. 2

It should be noted that there is an efficient explicit way of converting an ex-
tractor with non-trivial constant error into an extractor with almost any smaller
error [16]. Unfortunately, this conversion slightly weakens other parameters, so the
problem of constructing optimal extractors cannot be said to be quite the same as
that of constructing optimal dispersing families.

5 Applications

The model of computation used for our applications is a unit cost RAM with
word size w. We assume that the RAM to has a special instruction which, given
the parameters of a dispersing family, a “function number” i and an input x,
returns fi(x), where fi is the ith function from a dispersing family with the given
parameters. The RAM also has an instruction to generate random numbers.

5.1 Element distinctness

We first consider the element distinctness problem for a list of n machine words.
It is well known that in a comparison-based model this problem requires time
Ω(n log n), whereas using universal hashing (and indirect addressing) on a RAM,
the problem can be solved in expected linear time, and linear space. The number
of random bits used for this is Ω(log n + log w). We now show how to decrease the
number of random bits to O(log w), using dispersing hash functions.

We pick a function h from a (n/ log n
λ , n, n2, 2w)-dispersing family (of size wO(1)).

By corollary 4, the expected size of h[S] is |S| − O(n/ log n), where S is the set of
machine words considered. In time O(n) we can sort the machine words according
to their function values (using radix sort). Words involved in a collision are put
into a balanced binary tree, each in time O(log n). Since only O(n/ log n) elements
(expected) can be inserted before a duplicate (if any) is found, this also takes
expected time O(n).

It would be interesting if the more general problem of determining the number
of distinct elements in a list of machine words (the set cardinality problem), could
be solved in a similar way. However, so far this has not been achieved. Possibly, a
slightly stronger property than dispersion is needed.

5.2 Set inclusion

Now consider the problem of determining if the elements in a list of machine words
is a subset of the elements in another list. We assume that both lists have no

10

duplicate values, and denote the length of the longer list by n. The situation is
very similar to that of element distinctness: Comparison-based algorithms require
Ω(n log n) time, and using universal hashing the time can be improved to O(n),
expected, using linear space. Again, the number of random bits required can be
reduced to O(log w). The algorithm is a simple modification of that for element
distinctness. Note that we immediately also have a test for set equality.

5.3 Static dictionary construction

The next problem considered is that of constructing a static dictionary, i.e. a data
structure for storing a set S ⊆ U = {0, 1}w , |S| = n, allowing constant time lookup
of elements (plus any associated information) and using O(n) words of memory.
The best known deterministic algorithm runs in time O(n log n) [14]. Randomized
algorithms running in time O(n), can be made to use as few as O(log n + log w)
random bits [2]. Here, we see how to achieve another trade-off, namely expected
time O(n logε n), for any constant ε > 0, using O(log w) random bits.

Randomized universe reduction

Picking random functions from a (n/ log n
λ , n, n2, 2w)-dispersing family of size wO(1),

we can first reduce our problem to two subproblems: one with O(n/ log n) colliding
elements and one within a universe of size n2. The first subproblem is handled using
the deterministic O(n log n) algorithm. The second subproblem can be dealt with
by a deterministic algorithm described below. The expected number of random
bits needed to find a suitable reduction function is O(log w).

A deterministic algorithm for “small” universes

By the above, we only need to deal with the case w ≤ 2 log n. However, we will
make the weaker assumption that w = logk n for some constant k. Let ε > 0
be arbitrary. We start with a (n/ logε n

λ , n, 2logk−ε n, 2w)-dispersing family of size
O(logO(ε) n). Running through the functions we find in time O(n logO(ε) n) a func-
tion h such that |h[S]| ≥ n − n/ logε n (the size of h[S] can be found by sorting in
time O(n(log log n)2), see [19]). Now choose S1 ⊆ S maximally such that h is 1-1
on S. We have reduced our problem to two subproblems: A dictionary for S\S1

(which has size at most n/ logε n) and a dictionary for h[S1] (which is contained
in a universe of size 2logk−ε n). For the S1 dictionary, we need to store the origi-
nal elements as associated information, since h is not 1-1 on U . The subproblems
are split in a similar way, recursively. After a constant number of steps (taking
O(n logO(ε) n) time), each subproblem either has O(n/ log n) elements or a universe
of size at most 2log1+ε n. All the dictionaries for small sets can be constructed in

11

(2logk n

n

) −−−−→ (2logk−ε n

n

) −−−−→ . . . −−−−→ (2log1+ε n

n

) split−−−−→ (2logε n

·
)

y y(2logk n

n/ logε n

) −−−−→ (2logk−ε n

n/ logε n

) −−−−→ . . .y y
...(2logk n

n/ log n

)
Figure 1: Overview of subproblems for the deterministic dictionary construction algorithm.

O(n) time using the O(n log n) algorithm. The small universes can be split into n
parts of size 2logε n. Using the O(n log n) algorithm on each part takes total time
O(n logε n). The “translations” using dispersing functions are sketched in figure 1.

Theorem 14 On a RAM with an instruction set supporting dispersing families,
using O(log w) random bits, expected, and space O(n) we can:

• Solve the element distinctness problem in expected time O(n).

• Solve the set inclusion problem in expected time O(n).

• Construct a static dictionary in time O(n logε n), for any ε > 0.

5.4 An implicit dictionary

As a final application, we consider the implicit dictionary scheme of Fiat et al.
[4]. In an implicit dictionary, the elements of S are placed in an array of n words.
A result of Yao states that without extra memory, a lookup requires log n table
lookups in the worst case [20]. The question considered in [4] is how little extra
memory is needed to enable constant worst case lookup time. The information
stored outside the table in their construction is the description of (essentially)
a universal hash function, occupying O(log n + log w) bits. However, the only
requirement on the function is that it is (Ω(n)

λ , n,O(n), 2w)-dispersing, so we can
reduce the extra memory to O(log w) bits (this result was also shown in a follow-up
paper [3], using an entirely new construction).

12

6 Existentially dispersing families

By the result of section 3.1, we cannot expect C(S, h) ≤ λ/2 (or better) when
picking h at random function from some family. But there are situations in which
such functions are of interest, e.g. in perfect hashing. This motivates the following
weaker notion of dispersion.

Definition 15 A family F ⊆ (U → R) is existentially (c, n, r, u)-dispersing if for
any S ⊆ U , |S| = n, there exists h ∈ F with C(S, h) ≤ c λ, where λ is given by
(2). When parameters n, r and u follow from the context, we shall use the term
existentially c-dispersing.

Existentially 0-dispersing families are of course better known as perfect families.
It is well known that for r = O(n2/ log n), perfect hash functions have program
size Θ(n2/r +log log u) [10] (i.e., the description of a perfect hash function requires
this number of bits). In this section we investigate the “nearly perfect” families
between existentially 0-dispersing and existentially 1-dispersing.

6.1 A dual tail bound

We will need a tail bound “dual” to the one in (3). Specifically, h is fixed to some
function, and we consider C(S, h) for S ∈R

(U
n

)
. We want to upper bound the

probability that C(S, h) ≤ cλ, for c < 1. First a technical lemma:

Lemma 16 Take 0 < c < 1 and k ∈ N with k < (1− c)n2/4r. For any h ∈ (U →
R), when picking S ∈R

(
U
n

)
we have

Pr[C(S, h) ≤ cλ] ≤ (5
2 n2/ku)k + exp(−(1 − c − 4 k r/n2)2 n2/8r) .

Proof. In this proof we will use the inequalities of section 2 with various values
substituted for r, n and c (λ is a function of these). We use primed variables to
denote the substitution values.

We consider the random experiment in which n + k elements Y1, . . . , Yn+k are
picked randomly and independently from U . It suffices to bound the probability
of the event “|{Y1, . . . , Yn+k}| < n or |h({Y1, . . . , Yn+k})| ≥ n − c λ”, which occurs
with greater probability than C(S, h) ≤ c λ (Given that |{Y1, . . . , Yn+k}| ≥ n, the
sets of

(
U
n

)
are contained in {Y1, . . . , Yn+k} with the same positive probability).

The probability that |{Y1, . . . , Yn+k}| < n is at most e−n2/4u(e (n+k)2

2 k u)k, by use of
(4) with parameters r′ = u, n′ = n + k and c′ = k/λ′. Since k < n/4, we have the
bound (5

2 n2/ku)k.

13

To bound the probability that |h({Y1, . . . , Yn+k})| ≥ n − c λ, first notice that
without loss of generality we can assume the function values h(Yi) to be uni-
formly distributed over R — this can only increase the probability. Now (3) can
be used with r′ = r, n′ = n + k and c′ = (cλ + k)/λ′ ≤ c + 4 k r/n2: The
probability of |h({Y1, . . . , Yn+k})| ≥ n − c λ is at most exp(−(1 − c′)2λ′/2) ≤
exp(−(1 − c − 4 k r/n2)2 n2/8r). 2

We can now show the dual tail bound, which also implies lemma 5.

Lemma 17 Suppose 0 < c < 1, r ≤ (1−c)2

25 n2 and u ≥ 100
1−c r. For any h ∈ (U →

R), when picking S ∈R

(U
n

)
we have

Pr[C(S, h) ≤ cλ] ≤ 2−
(1−c) n2

20 r + e−
(1−c)2n2

25 r < 1 .

In particular,
Pr[C(S, h) ≤ cλ] = 2−Ω((1−c)2n2/r) .

Proof. Note that we can choose a positive integer k ∈ ((1−c) n2

20 r ; (1−c) n2

10 r] and apply

lemma 16. Since u ≥ 100
1−c r, we have (5

2 n2/ku)k ≤ 2−k < 2−
(1−c) n2

20 r . By choice of

k, (1 − c − 4k r/n2)2/8 ≥ (1−c)2

25 . Finally, (1−c)2

25 n2/r ≥ 1, so the sum is at most
2−1 + e−1 < 1. The second inequality follows directly. 2

Proof of lemma 5. Applying lemma 17, we see that

Pr[C(S, h) ≤ 1+c
2 λ] < 2−

(1−c) n2

40 r + e−
(1−c)2 n2

100 r ≤ 21− (1−c)2 n2

100 r .

For this to be less than 1 − 2c
1+c > (1 − c)/2, it suffices that (1−c)2n2

100 r ≥ log(4
1−c).

The lemma follows by isolating r.

6.2 The program size of existentially dispersing hash functions

Given lemma 17, a lower bound on the program size of existentially c-dispersing
families, for c < 1, follows.

Theorem 18 For any constant c, 0 < c < 1, there exist further constants
k1, k2, k3 > 0 such that for u ≥ k1 r and r ≤ k2 n2, elements of an existentially
(c, n, r, u)-dispersing family F cannot be stored using less than

max(k3 n2/r, logblog(u/n)/ log(2 r/n)c) bits.

14

Proof. Take k1 = 100/(1 − c), k2 = (1 − c)2/25. Then by lemma 17 there exists
k3 > 0 such that any function h ∈ (U → R), less than a fraction 2−k3 n2/r of S ∈ (U

n

)
has C(S, h) ≤ n cλ. Since for each S ∈ (U

n

)
there must be a function h ∈ F with

C(S, h) ≤ cλ, we must have |F | ≥ 2k3 n2/r.
The lower bound of logblog(u/n)/ log(2 r/n)c stems from the observation that

S in the lower bound proof of section 3 is constructed to have an image of size at
most n/2 for blog(u/n)/ log(2 r/n)c arbitrary functions. 2

The bound of the theorem is within a constant factor of the upper bound
on the size of perfect families for a wide range of parameters (specifically, when
r = O(n2/ log n) and either log log u = O(n2/r) or log log u = (1 + Ω(1)) log log r).
At least in these cases, being “nearly perfect” is almost as hard as being perfect.

7 Open problems

The most obvious open problem is to find explicit dispersing families of close to
minimal size. As shown in section 4.2, explicit O(1)-dispersing families with opti-
mal sample complexity will follow if optimal extractors are constructed, and such
families are themselves extractors with nontrivial error. The issue of constructing
explicit c-dispersing families with parameter c close to r/n is interesting in view of
the applications given in section 5.

There also are some things left to completely settle regarding the size of dis-
persing and existentially dispersing families. First of all, there still is a small gap
between the bounds of theorem 3. Secondly, only quite weak lower bounds are
known on the size of existentially c-dispersing families for c > 1. The best upper
bounds are the same as for c-dispersing families, but can existentially dispersing
families be much smaller?

Acknowledgments: The author would like to thank Martin Dietzfelbinger and
Johan Kjeldgaard-Pedersen for helpful discussions, and Peter Bro Miltersen for
valuable suggestions, including the possible use of extractors.

A Universality proof

This appendix gives a proof of strong (1+ε)-universality, for arbitrarily small ε > 0,
of a small explicit family of functions. To the knowledge of the author, such a proof
never appeared explicitly in the literature. However, the proof is along the lines of
the universality proof in [6].

15

Theorem 19 For 0 < ε ≤ 1 and m ≥ 24 r2 log(u)/ε the family

Fsu = {h | h(x) = ((t x + s) mod p) mod r, m/2 ≤ p ≤ m, p prime, 0 ≤ s, t < p}
⊆ (U → R)

is strongly (1 + ε)-universal.

Proof. (Sketch) For any a, b ∈ R and x, y ∈ U , where x 6= y, and h ∈R Fsu we
must show that we have Pr[h(x) = a ∧ h(y) = b] ≤ (1 + ε)/r2. So pick a random
prime p in the range m/2 to m and s, t ∈R {0, . . . , p − 1}. According to the prime
number theorem, p divides x y |x − y| with probability at most

ln(u3)/ ln(m/2)/(m/ ln(m)/3) < 12 log(u)/m ≤ 1/2r2

using m > 4. With probability at most 2/m ≤ 1/4r2, parameter t is zero. Hence,
with probability at least 1 − 3ε/4r2 we have that p does not divide x y |x − y| and
t 6= 0.

Conditioned on this, x and y are distinct nonzero numbers in Zp, and hence the
values t x + s and t y + s are independent and uniformly distributed in Zp. This
means that the probability that h(x) = a and h(y) = b is at most dp/re2/p2 ≤
1/r2 + 2/pr + 1/p2 ≤ (1 + r/p + (r/p)2)/r2 < (1 + ε/4)/r2. Summing up, the
chances of h(x) = a and h(y) = b are at most (1 + ε)/r2, as desired. 2

16

References

[1] Carter, J. L., and Wegman, M. N. Universal classes of hash functions. J. Comput. System
Sci. 18, 2 (1979), 143–154.

[2] Dietzfelbinger, M., Gil, J., Matias, Y., and Pippenger, N. Polynomial hash functions
are reliable (extended abstract). In Proceedings of the 19th International Colloquium on
Automata, Languages and Programming (ICALP ’92), vol. 623 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1992, pp. 235–246.

[3] Fiat, A., and Naor, M. Implicit O(1) probe search. SIAM J. Comput. 22, 1 (1993), 1–10.

[4] Fiat, A., Naor, M., Schmidt, J. P., and Siegel, A. Nonoblivious hashing. Journal of
the ACM 39, 4 (1992), 764–782.

[5] Fredman, M. L., and Komlós, J. On the size of separating systems and families of perfect
hash functions. SIAM Journal on Algebraic and Discrete Methods 5, 1 (1984), 61–68.

[6] Fredman, M. L., Komlós, J., and Szemerédi, E. Storing a sparse table with O(1) worst
case access time. J. Assoc. Comput. Mach. 31, 3 (1984), 538–544.

[7] Janson, S. Large deviation inequalities for sums of indicator variables. Tech. Rep. 34,
Department of Mathematics, Uppsala University, 1993.

[8] Jukna, S. Extremal Combinatorics with Applications in Computer Science. Springer-Verlag,
Berlin, 2000.

[9] Linial, N., and Sasson, O. Non-expansive hashing. Combinatorica 18, 1 (1998), 121–132.

[10] Mehlhorn, K. Data structures and algorithms. 1, Sorting and searching. Springer-Verlag,
Berlin, 1984.

[11] Miltersen, P. B. Derandomizing complexity classes. Manuscript, to appear in Handbook
of Randomized Computation, 2000.

[12] Nisan, N. Extracting randomness: How and why: A survey. In Proceedings of the 11th Annual
IEEE Conference on Computational Complexity (CCC ’96). IEEE Comput. Soc. Press, Los
Alamitos, CA, 1996, pp. 44–58.

[13] Pagh, R. Low Redundancy in Static Dictionaries with O(1) Lookup Time. In Proceedings of
the 26th International Colloquium on Automata, Languages and Programming (ICALP ’99),
vol. 1644 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1999, pp. 595–604.

[14] Pagh, R. Faster Deterministic Dictionaries. In Proceedings of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’00). ACM Press, New York, 2000, pp. 487–493.

[15] Radhakrishnan, J. Improved bounds for covering complete uniform hypergraphs. Inform.
Process. Lett. 41, 4 (1992), 203–207.

[16] Raz, R., Reingold, O., and Vadhan, S. Error reduction for extractors. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science (FOCS ’99) (Los Alamitos,
CA, 1999), IEEE Comput. Soc. Press, pp. 191–201.

[17] Raz, R., Reingold, O., and Vadhan, S. Extracting all the randomness and reducing the
error in trevisan’s extractors. In Proceedings of the 31st Annual ACM Symposium on Theory
of Computing (STOC ’99). ACM Press, 1999, pp. 149–158.

[18] Sarwate, D. V. A note on: “Universal classes of hash functions” [J. Comput. System Sci. 18
(1979), no. 2, 143–154; MR 80f:68110a] by J. L. Carter and M. N. Wegman. Inform. Process.
Lett. 10, 1 (1980), 41–45.

17

http://www.brics.dk/~pagh/papers/dict.pdf
http://www.brics.dk/~pagh/papers/det.pdf

[19] Thorup, M. Faster deterministic sorting and priority queues in linear space. In Proceedings
of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’98). ACM Press,
New York, 1998, pp. 550–555.

[20] Yao, A. C.-C. Should tables be sorted? J. Assoc. Comput. Mach. 28, 3 (1981), 615–628.

18

Recent BRICS Report Series Publications

RS-00-36 Rasmus Pagh.Dispersing Hash Functions. December 2000.
18 pp. Preliminary version appeared in 4th. International
Workshop on Randomization and Approximation Techniques in
Computer Science, RANDOM ’00, Proceedings in Informatics
8, 2000, pages 53–67.

RS-00-35 Olivier Danvy and Lasse R. Nielsen.CPS Transformation of
Beta-Redexes. December 2000. 12 pp.

RS-00-34 Olivier Danvy and Morten Rhiger.A Simple Take on Typed Ab-
stract Syntax in Haskell-like Languages. December 2000. 25 pp.
To appear in Fifth International Symposium on Functional and
Logic Programming, FLOPS ’01 Proceedings, LNCS, 2001.

RS-00-33 Olivier Danvy and Lasse R. Nielsen.A Higher-Order Colon
Translation. December 2000. 17 pp. To appear inFifth In-
ternational Symposium on Functional and Logic Programming,
FLOPS ’01 Proceedings, LNCS, 2001.

RS-00-32 John C. Reynolds.The Meaning of Types — From Intrinsic to
Extrinsic Semantics. December 2000. 35 pp.

RS-00-31 Bernd Grobauer and Julia L. Lawall. Partial Evaluation of
Pattern Matching in Strings, revisited. November 2000. 48 pp.

RS-00-30 Ivan B. Damg̊ard and Maciej Koprowski. Practical Thresh-
old RSA Signatures Without a Trusted Dealer. November 2000.
14 pp.

RS-00-29 Luigi Santocanale.The Alternation Hierarchy for the Theory
of µ-lattices. November 2000. 44 pp. Extended abstract ap-
pears in Abstracts from the International Summer Conference
in Category Theory, CT2000, Como, Italy, July 16–22, 2000.

RS-00-28 Luigi Santocanale. Free µ-lattices. November 2000. 51 pp.
Short abstract appeared inProceedings of Category Theory 99,
Coimbra, Portugal, July 19–24, 1999. Full version to appear in
a special conference issue of theJournal of Pure and Applied
Algebra.

RS-00-27 Zolt́an Ésik and Werner Kuich. Inductive -Semirings. October
2000. 34 pp.

	Introduction
	Related work
	Notation

	The family of all functions
	Dispersing families
	An impossibility result

	Explicit constructions
	Universal families
	Extractor based construction
	Equivalence of extractors and dispersing families

	Applications
	Element distinctness
	Set inclusion
	Static dictionary construction
	An implicit dictionary

	Existentially dispersing families
	A dual tail bound
	The program size of existentially dispersing hash functions

	Open problems
	Universality proof

