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Abstract

A lambda-encoding such as the CPS transformation gives rise to ad-
ministrative redexes. In his seminal article “Call-by-name, call-by-value
and the lambda-calculus”, 25 years ago, Plotkin tackled administrative
reductions using a so-called colon translation. In “Representing control,
a study of the CPS transformation”, 15 years later, Danvy and Filinski
integrated administrative reductions in the CPS transformation, making
it operate in one pass. This one-pass transformation is higher-order, and
can be used for other lambda-encodings, but we do not see its associated
proof technique used in practice—instead, Plotkin’s colon translation ap-
pears to be favored. Therefore, in an attempt to link the higher-order
transformation and Plotkin’s proof technique, we recast Plotkin’s proof
of Indifference and Simulation in a higher-order setting. To this end, we
extend the colon translation from first order to higher order.

Keywords: Call by name, call by value, λ-calculus, continuation-passing style
(CPS), CPS transformation, administrative reductions, colon translation, one-
pass CPS transformation, Indifference, Simulation.
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1 Introduction

In “Call-by-name, call-by-value and the λ-calculus” [9], Plotkin provided the
first formalization of the transformation into continuation-passing style (CPS)
[10, 11]. Plotkin’s CPS transformation is first-order. As most λ-encodings,
it is plagued with so-called administrative redexes, i.e., redexes that are only
artefacts of the λ-encoding. Their reduction steps are interspersed with the re-
duction steps corresponding to actual reduction steps in the original direct-style
program. In the early 90s, a higher-order version of the CPS transformation was
developed that eliminates all administrative redexes at transformation time, in
one pass [1, 3, 12]. This higher-order version has been formalized in several
ways: using a notion of ‘schematic’ continuations [3], using higher-order rewrit-
ing [4], and using logical relations [2]. None of these various ways of formalizing
a one-pass CPS transformation, however, match Plotkin’s original proof tech-
nique.

Does it mean that Plotkin’s proof technique is inherently first-order? In this
article, we answer this question negatively. We adapt his proof technique to the
higher-order setting of one-pass CPS transformations.

To tackle administrative reductions, in his formalization, Plotkin introduced
a so-called colon translation that eliminates administrative redexes until a redex
is reached that corresponds to an actual redex in the original program. Our goal
here is to present a higher-order colon translation that yields the same effect for
a one-pass CPS transformation, thus adapting Plotkin’s original proof technique
to a higher-order operational setting.

Prerequisites: We assume a basic familiarity with Plotkin’s work, as can
be gathered from his original article [9] or from Hatcliff and Danvy’s revisita-
tion [7]. The one-pass CPS transformation is presented in Danvy and Filinski’s
article [3] (Section 3 of that article reviews administrative redexes and the colon
translation). A pictorial presentation of actual and administrative reductions
can be found in Section 3 of Danvy, Dzafic, and Pfenning’s 1999 article [2].
Nevertheless, we have tried to make the present article stand alone.

Overview: Section 2 reviews call by name and call by value in the untyped
λ-calculus. Sections 3 and 4 present the one-pass CPS transformation and its
meta-language. Section 5 states our goal (proving Plotkin’s Indifference and
Simulation theorems) and our means (a higher-order colon translation). Sec-
tion 6 recasts Plotkin’s four lemmas and Section 7 restates his proof. Section 8
concludes.
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2 Call-by-name and call-by-value λ-calculi

We define the untyped λ-calculus by giving its syntax and two semantics, one
for call by value (CBV) and the other for call by name (CBN).

Definition 1 (Syntax of the λ-calculus with uninterpreted constants)

e ::= x | λx.e | e @ e | c

We only distinguish expressions up to renaming of bound variables. So for
example, λx.x and λy.y are considered equal.

2.1 Call by value

The CBV semantics of closed expressions is given using evaluation contexts in
the style of Felleisen [5].

The evaluation contexts are as follows.

Cv[ ] ::= [ ] | Cv[ ] @ e | vv @ Cv[ ]

where vv is a value.
Values form a subset of expressions and are defined as follows.

vv ::= λx.e | c

The reduction rule is defined as follows.

Cv[(λx.e) @ vv] 7−→v Cv[e[vv/x]]

where e[v/x] is the standard capture-avoiding substitution.
Evalv is the following partial function:{

Evalv(e) = vv iff e 7−→i
v vv for some value vv and integer i

Evalv(e) is undefined otherwise

where 7−→i
v denotes i iterations of 7−→v.

2.2 Call by name

We give the CBN semantics for closed expressions as in Section 2.1.
The evaluation contexts are:

Cn[ ] ::= [ ] | Cn[ ] @ e

The values are:
vn ::= λx.e | c

The reduction rule is:

Cn[(λx.e) @ e′] 7−→n Cn[e[e′/x]]

Evaln is the following partial function:{
Evaln(e) = vn iff e 7−→i

n vn for some value vn and integer i
Evaln(e) is undefined otherwise
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2.3 Evaluation-order independent reduction

In the remainder of this article, the arrow 7−→ (without annotation) corresponds
to a reduction that is legal in both call by value and call by name. In other
words, the 7−→ relation is the intersection of the 7−→v and 7−→n relations.

2.4 Stuck terms

In both the call-by-value and the call-by-name semantics, we can write closed
expressions that are not values, but for which there are no legal reductions.
Plotkin said that such expressions “stick”.

The stuck closed expressions w.r.t. the CBV semantics are:

Sticksv ::= c @ vv | Sticksv @ e | vv @ Sticksv

or simply Cv[c @ vv].
The stuck expressions are disjoint from the values. All closed expressions

are either values, stuck, or there is a possible reduction.
The stuck closed expressions w.r.t. the CBN semantics are:

Sticksn ::= Sticksn @ e | c @ e

or simply Cn[c @ e].
Again the stuck expressions are disjoint from the values, and all closed ex-

pressions are either values, stuck, or allow a reduction.

3 The meta language of the one-pass CPS trans-

formation

The one-pass CPS transformation maps direct-style λ-expressions into λ-expr-
essions that can be reduced at transformation time, yielding λ-expressions in
CPS. Therefore, the implementation language for the transformation contains
two kinds of applications, two kinds of λ-abstractions, and two kinds of variables:

E ::= c | x | λx.E | E @ E | X | λX.E | E @E

Following tradition we refer to overlined constructs as static and non-overlined
ones as dynamic. The identifiers ranged over by X and x are called static and
dynamic variables, respectively. Substituting an expression for a static variable
is a static substitution, and substituting an expression for a dynamic variable
is a dynamic substitution. As in Section 2, we only distinguish expressions up
to renaming of bound variables, both for static and dynamic variables.

We define the following typing system for the meta language:

τ ::= Syntax | τ → τ

5



Γ ` c : Syntax Γ ` x : Syntax

Γ ` E : Syntax

Γ ` λx.E : Syntax

Γ ` E0 : Syntax Γ ` E1 : Syntax

Γ ` E0 @ E1 : Syntax

Γ(X) = τ

Γ ` X : τ

Γ, X : τ1 ` E : τ2

Γ ` λX.E : τ1 → τ2

Γ ` E0 : τ1 → τ2 Γ ` E1 : τ1

Γ ` E0 @E1 : τ2

Any expression typeable in this typing system is simply typed and hence
its reduction terminates and any evaluation strategy leads to the same normal
form. We choose to use call by value, arbitrarily.

The meta-language values are:

vV ::= c | x | λx.vV | vV @ vV | λX.E

N.B. If a meta-language value vV has type Syntax, it is an expression in the
λ-calculus as defined in Section 2. In particular, vV is free of static variables.

The evaluation contexts are:

CV[ ] ::= [ ] | λx.CV[ ] | CV[ ] @ E | vV @ CV[ ] | CV[ ] @E | vV @ CV[ ]

The reduction rule only allows us to reduce static β-redexes:

CV[(λX.E)@ vV] 7−→V CV[E[vV/X ]]

Proposition 1 (Context nesting) Since nested contexts are themselves con-
texts, the reduction rule satisfies the following property.

E 7−→V E′ ⇐⇒ CV[E] 7−→V CV[E′]

Proof: Omitted. �
We define the static evaluation function, EvalV, by

EvalV(E) = vV ⇐⇒ E 7−→∗
V vV

where 7−→∗
V denotes zero or more iterations of 7−→V. By definition reductions

on well-typed expressions are strongly normalizing, so EvalV is total on these.
We treat the meta language as a higher-order language in the sense that we

equate expressions up to β-equivalence (written ≡V). We only use simply typed
and thus strongly normalizing expressions, so we can equate any expression to
the value it reduces to.

The dynamic substitution of a closed value, as used for λ-expressions in
Section 2, can be extended directly to meta-language terms. The interaction
between static and dynamic substitutions satisfies the following property.
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Proposition 2 (Substitution) If E is a meta-language expression, vV is a
meta-language value, and e is a closed λ-expression, then

E[vV/X ][e/x] = E[e/x][vV[e/x]/X ].

Proof: By structural induction on E.

Cases E = c, x, and Y (Y 6= X): In these cases X is not free in E, and hence
X is not free in E[e/x]. It follows that

E[vV/X ][e/x] = E[e/x] = E[e/x][vV[e/x]/X ].

Cases E = E1 @ E2 and E1 @E2: These cases both follow directly from the in-
duction hypothesis and the definition of substitution.

Case E = X: X [vV/X ][e/x] = vV[e/x] = X [e/x][vV[e/x]/X ]

Case E = λy.E1 and λY.E1: Since we equate expressions up to alpha-renaming
of bound variables, we can assume that y is not free in vV and y 6= x as
well as Y 6= X . These cases are thus similar to the E1 @ E2 case.

�

Corollary 1 (Dynamic substitution respects static β-equivalence) If E
and E′ are meta-language expressions, v is a value, and x is a dynamic variable,
then

E 7−→∗
V E′ =⇒ E[v/x] 7−→∗

V E′[v/x].

I.e., if E ≡V E′ then E[v/x] ≡V E′[v/x].

Proof: It suffices to show that if E 7−→V E′ then E[v/x] 7−→V E′[v/x]. Since
E 7−→V E only if there exists a context CV[ ] such that E = CV[(λX.E1)@V ]
7−→V CV[E1[V/X ]] = E′, the proof is by induction on the structure of the
context.

Case CV[ ] = [ ]: In this case E = (λX.E1)@V and E′ = E1[V/X ].

((λX.E1)@ V )[v/x] = (λX.E1[v/x])@ V [v/x]
7−→V E1[v/x][V [v/x]/X ]

= E1[V/X ][v/x] by Proposition 2

Case CV[ ] = C1[ ] @E2:

E[v/x] = C1[(λX.E1) @V ][v/x]
= (C1[(λX.E1)@V ] @E2)[v/x]
= C1[(λX.E1) @V ][v/x] @ E2[v/x]

7−→V C1[E1[V/X ]][v/x] @E2[v/x] by I.H. and Prop. 1
= (C1[E1[V/X ]] @E2)[v/x]
= CV[E1[V/X ]][v/x]
= E′[v/x]
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Cases CV[ ] = C1[ ] @ E2, V @C1[ ], V @ C1[ ], and λy.C1[ ]: Similar to the pre-
vious case.

�
This corollary shows that we can use an arbitrary representative for the

equivalence classes up to ≡V when performing dynamic reductions. Therefore,
in the remainder of this article, we will use = instead of ≡V.

4 The one-pass CPS transformation

We consider the one-pass version of Plotkin’s (left-to-right) call-by-value CPS
transformation [3]. (Many others exist, depending, e.g., on the evaluation order
of the source language [6].)

[[·]] : Syntax → (Syntax → Syntax) → Syntax

[[c]] = λK.K@ c

[[x]] = λK.K@x

[[λx.e]] = λK.K@λx.λk.[[e]]′ @k
[[e1 @ e2]] = λK.[[e1]] @λV1.[[e2]] @λV2.V1 @ V2 @ λv.K@ v

[[·]]′ : Syntax → Syntax → Syntax

[[c]]′ = λK.K@ c

[[x]]′ = λK.K@ x

[[λx.e]]′ = λK.K@ λx.λk.[[e]]′ @k
[[e1 @ e2]]′ = λK.[[e1]] @λV1.[[e2]] @λV2.V1 @ V2 @ K

The transformation uses some fixed variables that are assumed to
be “fresh”, i.e., that do not occur in the program to be transformed.
These variables are denoted by ‘k’ and ‘v’, which are dynamic
variables. We also fix the static variables K, V1, and V2. The
static variables cannot clash with variables in the original program,
but they must be distinct. All these fresh variables are written in
Roman font.

Figure 1: The left-to-right, call-by-value CPS transformation in one pass

The one-pass CPS transformation is defined inductively with the two func-
tions [[·]] and [[·]]′ displayed in Figure 1. Whereas Plotkin’s CPS transforma-
tion uses only one function, the one-pass transformation uses two, depending
on whether the continuation is known statically ([[·]]) or not ([[·]]′). These two

8



functions map λ-expressions as defined in Section 2 to expressions in the meta
language defined in Section 3. Their type are easily inferred using the rules of
Section 3.

We define the function Ψ to map direct-style values to CPS values:

Ψ(c) = c

Ψ(λx.e) = λx.λk.[[e]]′ @k

N.B. [[vv]] = λK.K@Ψ(vv) and [[vv]]′ = λK.K@ Ψ(vv).
The two-level η-redex λv.κ @ v coerces a meta-language expression of type

Syntax → Syntax into a meta-language expression of type Syntax, and
therefore, the two CPS-transformation functions are related as follows.

Proposition 3 If e is a λ-expression and κ is a meta-language expression of
type Syntax → Syntax then

[[e]]′ @ λv.κ @v 7−→∗ [[e]] @ κ

remembering that we equate expressions up to static β-equivalence and that the
identifier v is fresh, so it is not free in κ.

Proof: By structural induction on e.

Case e = x:

[[x]]′ @ λv.κ @v = (λv.κ @ v)@ x

7−→ κ @v[x/v]
= κ @x by Corollary 1
= [[x]] @κ

Case e = λx.e1:

[[λx.e1]]′ @ λv.κ @v = (λv.κ @v)@ Ψ(λx.e1)
7−→ κ @v[Ψ(λx.e1)/v]
= κ @Ψ(λx.e1)
= [[λx.e1]] @κ

Case e = e1 @ e2:

[[e1 @ e2]]′ @ λv.κ @v = [[e1]] @λV1.[[e2]] @λV2.V1 @ V2 @ λv.κ @v
= [[e1 @ e2]] @κ

�
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5 The goal

Plotkin proved three properties of the CPS transformation: Indifference, Simu-
lation, and Translation. We prove the first two for the one-pass CPS transfor-
mation.

Theorem 1 (Indifference) Evalv([[e]] @λV.V) = Evaln([[e]] @ λV.V).

The Indifference theorem formalizes a key property of CPS, namely that
CPS programs are evaluation-order independent.

Theorem 2 (Simulation) Evalv([[e]] @ λV.V) = Ψ(Evalv(e)).

where Ψ was defined in Section 4, just before Proposition 3.
The Simulation theorem formalizes the correctness of the call-by-value CPS

transformation. For one point, the theorem shows that termination is preserved,
but more essentially, it says that evaluating a CPS-transformed program yields
the CPS counterpart of the result of evaluating the original program.

To prove Indifference and Simulation, Plotkin used four lemmas. We prove
the same four lemmas for the one-pass CPS transformation. Plotkin’s proof
then applies as is (see Section 7).

To handle administrative redexes, Plotkin introduced a colon translation.
This translation is an infix operation mapping an expression and a continua-
tion to the CPS counterpart of that expression applied to the continuation, but
bypassing the initial administrative redexes introduced by the CPS transfor-
mation. To account for meta-level reductions at CPS-transformation time, we
define a higher-order version of Plotkin’s colon translation.

Definition 2 (Higher-order colon translation)

c : κ = κ @Ψ(c)
λx.e : κ = κ @Ψ(λx.e)

v1 @ v2 : κ = Ψ(v1)@ Ψ(v2)@ λv.κ @ v
v1 @ e2 : κ = e2 : λV2.Ψ(v1)@ V2 @ λv.κ @ v e2 not a value
e1 @ e2 : κ = e1 : λV1.[[e2]] @λV2.V1 @ V2 @ λv.κ @ v e1 not a value

Unlike Plotkin’s colon translation, which is first order and interspersed with
the actual reductions, this colon translation is higher order (as indicated by
the overlines) and its static, administrative reductions occur before the actual,
dynamic reductions.
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6 Plotkin’s four lemmas

Lemma 1 (Substitution lemma)
For all λ-expressions e and all closed values v and variables x,

[[e]][Ψ(v)/x] = [[e[v/x]]]
[[e]]′[Ψ(v)/x] = [[e[v/x]]]′

Proof: By structural induction on e.

Case e = x:
[[x]][Ψ(v)/x] = (λK.K@ x)[Ψ(v)/x]

= λK.K@Ψ(v)
= [[v]]
= [[x[v/x]]]

Case e = y:
[[y]][Ψ(v)/x] = (λK.K@ y)[Ψ(v)/x]

= λK.K@ y
= [[y[v/x]]]

Case e = λy.e1, where y 6= x

[[λy.e1]][Ψ(v)/x] = (λK.K@λy.λk.[[e1]]′ @k)[Ψ(v)/x]
= λK.K @((λy.λk.[[e1]]′ @k)[Ψ(v)/x])
= λK.K @(λy.λk.[[e1]]′[Ψ(v)/x] @ k)
= λK.K @(λy.λk.[[e1[v/x]]]′ @k) by I.H.
= [[λy.e1[v/x]]]

Case e = e1 @ e2:

[[e1 @ e2]][Ψ(v)/x]
= λK.([[e1]] @λV1.[[e2]] @λV2.V1 @ V2 @ λv.K@ v)[Ψ(v)/x]
= λK.([[e1]][Ψ(v)/x])@λV1.([[e2]][Ψ(v)/x]) @λV2.V1 @ V2 @ λv.K@ v
= λK.[[e1[v/x]]] @ λV1.[[e2[v/x]]] @ λV2.V1 @ V2 @ λv.κ @v by I.H.
= [[e1[v/x] @ e2[v/x]]]
= [[(e1 @ e2)[v/x]]]

The cases for [[·]]′ are similar. �

Lemma 2 (Administrative reductions)
If e is a closed λ-expression and κ is a closed meta-language expression of type
Syntax → Syntax then [[e]] @ κ 7−→+

V e : κ (i.e., they are equal modulo ≡V).

Proof: By structural induction on e.

Case e = c:
[[c]] @κ = (λK.K @ c)@ κ

7−→V κ @ c
= c : κ

11



Case e = λx.e1:

[[λx.e1]] @ κ = (λK.K@ Ψ(λx.e1))@κ

7−→V κ @Ψ(λx.e1)
= λx.e1 : κ

Case e = v1 @ v2:

[[v1 @ v2]] @ κ

= (λK.[[v1]] @λV1.[[v2]] @λV2.V1 @ V2 @ λv.K @v)@κ

= (λK.(λK.K @Ψ(v1))@
λV1.(λK.K @Ψ(v2))@λV2.V1 @ V2 @ λv.K@ v)@κ

7−→5
V Ψ(v1)@ Ψ(v2)@ λv.κ @ v

= v1 @ v2 : κ

Case e = v1 @ e2:

[[v1 @ e2]] @κ

= (λK.[[v1]] @λV1.[[e2]] @λV2.V1 @ V2 @ λv.K@ v)@κ

= (λK.(λK.K @Ψ(v1))@λV1.[[e2]] @λV2.V1 @ V2 @ λv.K@ v)@κ

7−→3
V [[e2]] @λV2.Ψ(v1)@ V2 @ λv.κ @v

7−→∗
V e2 : λV2.Ψ(v1)@ V2 @ λv.κ @v by I.H.

= v1 @ e2 : κ

Case e = e1 @ e2:

[[e1 @ e2]] @ κ

= (λK.[[e1]] @ λV1.[[e2]] @ λV2.V1 @ V2 @ λv.K @v)@ κ

7−→V [[e1]] @λV1.[[e2]] @λV2.V1 @ V2 @ λv.κ @v
7−→∗

V e1 : λV1.[[e2]] @λV2.V1 @ V2 @ λv.κ @v by I.H.
= e1 @ e2 : κ

This enumeration accounts for all expressions e. �

Lemma 3 (Single-step simulation)
If e is a closed λ-expression, κ is a closed meta-language expression of type
Syntax → Syntax, and e 7−→v e′ then e : κ 7−→+ e′ : κ.

Proof: By structural induction on the evaluation context in the derivation of
e 7−→v e′.

12



Case C[ ] = [ ], i.e., (λx.e) @ v 7−→v e[v/x]:

(λx.e) @ v : κ

= Ψ(λx.e)@ Ψ(v)@ λv.κ @v
= (λx.λk.[[e]]′ @ k)@ Ψ(v)@ λv.κ @v
7−→ ((λk.[[e]]′ @k)[Ψ(v)/x])@ λv.κ @ v
= (λk.[[e]]′[Ψ(v)/x] @ k)@ λv.κ @v by Corollary 1
= (λk.[[e[v/x]]]′ @k)@ λv.κ @v by Lemma 1
7−→ [[e[v/x]]]′ @ (λv.κ @v)
7−→∗ [[e[v/x]]] @κ by Proposition 3
= e[v/x] : κ by Lemma 2

Case C[ ] = C1[ ] @ e2, i.e., C1[e1]@ e2 7−→v C1[e′1] @ e2 derived from e1 7−→v e′1:

C1[e1] @ e2 : κ

= C1[e1] : λV1.[[e2]] @λV2.V1 @ V2 @ λv.κ @v
7−→+ C1[e′1] : λV1.[[e2]] @λV2.V1 @ V2 @ λv.κ @v by I.H.

= e′ to give it a name

• If C1[e′1] is not a value, then C1[e′1] @ e2 : κ = e′

• If C1[e′1] is a value then

e′ = [[e2]] @λV2.(Ψ(C1[e′1])@ V2)@ λv.κ @v
= e2 : λV2.Ψ(C1[e′1])@ V2 @ (λv.κ @v) by Lemma 2
= e′′

– If e2 is not a value, then C1[e′1] @ e2 : κ = e′′.
– If e2 is a value, then

e′′ = Ψ(C1[e′1])@ Ψ(e2)@ λv.κ @v
= C1[e′1] @ e2 : κ

Case C[ ] = v1 @ C1[ ], i.e., v1 @ C1[e2] 7−→v v1 @ C1[e′2] derived from e2 7−→v e′2:

v1 @ C1[e2] : κ = C1[e2] : λV2.Ψ(v1)@ V2 @ λv.κ @v
7−→+ C1[e′2] : λV2.Ψ(v1)@ V2 @ λv.κ @v by I.H.

= e′

• If C1[e′2] is a not value then v1 @ C1[e′2] : κ = e′.

• If C1[e′2] is a value then

e′ = Ψ(v1)@ Ψ(C1[e′2])@ λv.κ @v
= v1 @ e′2 : κ

�
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Lemma 4 (Coincidence of stuck expressions)
If e ∈ Sticksv and κ is a closed meta-language expression with type Syntax →
Syntax, then e : κ ∈ Sticksn ∩ Sticksv.

Proof: By induction on the structure of the stuck expression e.

Case e = c @ v:
(c @ v) : κ = Ψ(c)@ Ψ(v)@ λv.κ @v

= c @ Ψ(v)@ λv.κ @v

which is stuck since c @ Ψ(v) is stuck both in call-by-name and call-by-
value.

Case e = v1 @ e2 where e2 ∈ Sticksv:

(v1 @ e2) : κ = e2 : λV2.Ψ(v1) @ V2 @ λv.κ @v

which is stuck by induction hypothesis, e2 being closed and structurally
smaller that e.

Case e = e1 @ e2 where e1 ∈ Sticksv:

(e1 @ e2) : κ = e1 : λV1.[[e2]] @ λV2.V1 @ V2 @ λv.κ @v

which is stuck by induction hypothesis, e1 being closed and structurally
smaller that e.

�

7 Plotkin’s double proof

Plotkin proved both Indifference and Simulation using four lemmas similar to
the ones in the previous section. Let us restate his proof.
Proof: Let us show that for any e, Evalv([[e]] @ λV.V) and Evaln([[e]] @ λV.V)
either are both defined and yield the same result, which is Ψ(Evalv(e)), or they
are both undefined.

1. If Evalv(e) = vv (i.e., if e 7−→i
v vv for some i, by the definition of Evalv(·)

in Section 2.1) then

[[e]] @λV.V = e : λV.V by Lemma 2
7−→∗ vv : λV.V by repeated use of Lemma 3
= (λV.V) @ Ψ(vv) since vv is a value
= Ψ(vv)
= Ψ(Evalv(e))

Therefore Evalv([[e]] @λV.V) = Ψ(Evalv(e)). Furthermore, Lemma 3
only uses reductions in 7−→, and this relation is the intersection of the 7−→v

and 7−→n relations. Therefore Evalv([[e]] @λV.V) = Evaln([[e]] @ λV.V).
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2. If Evalv(e) is undefined then it is either because e reduces to a stuck
term, or because e has an infinite reduction sequence.

(a) In the first case there exists an e′ ∈ Sticksv such that e 7−→∗
v e′. In

that case

[[e]] @λV.V = e : λV.V by Lemma 2
7−→∗ e′ : λV.V by repeated use of Lemma 3
∈ Sticksn ∩ Sticksv by Lemma 4

In words, whether one uses call by name or call by value, [[e]] @ λV.V
reduces to a stuck term.

(b) In the second case there exists a sequence of expressions

e 7−→v e1 7−→v e2 7−→v · · · 7−→v en 7−→v · · ·
In that case

[[e]] @λV.V = e : λV.V by Lemma 2
7−→+ e1 : λV.V by Lemma 3
7−→+ e2 : λV.V by Lemma 3
7−→+ . . .

7−→+ en : λV.V by Lemma 3
7−→+ . . .

In words, [[e]] @ λV.V has an infinite reduction sequence too, both in
call by name and in call by value.

Together these two cases prove the Simulation and Indifference theorems. �

8 Conclusion

We have adapted Plotkin’s four lemmas to the one-pass CPS transformation,
which required us to introduce a higher-order colon translation. Given these
four lemmas, Plotkin’s Indifference and Simulation theorems and their proof
apply directly to validate the one-pass CPS transformation.

Other λ-encodings exist that give rise to administrative reductions—for ex-
ample, in denotational semantics, the denotation of a program is obtained by
a syntax-directed translation into the λ-calculus. The resulting λ-term con-
tains many administrative redexes that need to be dealt with to reason about
programs. A good semantics-directed compiler is expected to eliminate these
administrative redexes at compile time. For example, an identifier is typically
mapped into an application of the environment, and scope resolution is expected
from a compiler, so that variables are looked up in constant time at run time.
Factoring out administrative redexes at compile time (a.k.a. staging [8]) is ac-
cepted good practice. When the compiler is written in a higher-order functional
language (say, ML), administrative reductions can be represented as ML re-
ductions. What we have shown here is a way to prove the correctness of this
higher-order representation in the particular case of the CPS transformation.
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