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Abstract

In this note we show that AMexp 6⊆ NP ∩ coNP/poly, where
AMexp denotes the exponential version of the class AM. The main
part of the proof is a collapse of EXP to AM under the assumption
that EXP ⊆ NP ∩ coNP/poly

1 Introduction

The issue of how powerful circuit based computation is, in comparison with
Turing machine based computation has considerable importance in complex-
ity theory. There are a large number of important open problems in this
area. In particular, are there functions in EXP those do not have Boolean
circuits of polynomial size? While it is highly likely that the answer to this
question is affirmative, proving such a lower bound is considered beyond the
current techniques in complexity theory. A fruitful approach towards this
problem has been to obtain uniform upper bounds on the complexity of lan-
guages those do not have circuits of certain size. There are a number of
papers addressing this issue, including [Kan82, KW95, BFT98, MVW99]. In
particular, it is shown in [BFT98] that there are languages in MAexp those
require super polynomial circuit size; that is MAexp 6⊆ P/poly. The line of
argument that is used in the proofs of these results is; first show a weaker
upper bound on the languages requiring super polynomial circuits, and then
use a collapse result in order to bring down the complexity of such languages.
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In [BFT98], the authors use a collapse result based on certain results from
interactive proof systems[BFL91].

In this note, investigating the computational power of nonuniform com-
putations further, we show that the exponential version of AM (the class
AMexp) has languages not in NP ∩ coNP/poly.

A weak upper bound of Σe
4 (4th level of exponential hierarchy) on lan-

guages not in NP ∩ coNP/poly can be proved using a counting argument
along the lines of [Kan82]. In order to improve the bound of Σe

4 to AMexp,
we prove the following collapse result; if EXP ⊆ NP ∩ coNP/poly then
EXP = AM. The technique that we use to show this result is similar to the
technique of [BFL91] for showing that if EXP ⊆ P/poly then EXP ⊆ MA.
However, for the proof to work in the nondeterministic setting we need to
make use of some additional property of LFKN-Shamir interactive protocol
for PSPACE.

In order to show the collapse (if EXP ⊆ P/poly then EXP ⊆ MA), in
[BFL91], the authors use the powerful multiprover interactive protocol for
EXP that they develop in their paper. Since the contents of the interactive
proof in this protocol can be computed in EXP, if EXP is in P/poly, Merlin
can first send the polynomial advice to Arthur. Arthur can then compute the
bits of the proof by himself as and when required, and simulate the verifier
in the protocol for deciding the language.

While it appears that the protocol for EXP is necessary for proving the
above-mentioned collapse, we notice that in fact one only needs the well-
known LFKN-Shamir[LFKN92, Sha92] interactive protocol for PSPACE
for showing this collapses. This is because, if EXP ⊆ P/poly then we
already know from [KL80] that EXP ⊆ PSPACE. Then one can use the
interactive protocol for PSPACE insted of the protocol for EXP in order
to show the collapse. We also make use of certain property of the interactive
proof for PSPACE, that the locations of the proof probed by the verifier
depends only on the random bits he/she makes. The verifier does not use the
contents that he/she previously read to compute the locations that he/she
subsequently wishes to read.

In the next section we introduce some notations and definitions necessary
for this paper.
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2 Notations and Definitions

We assume the necessary complexity theoretic notations and definitions, in-
cluding the definitions of standard complexity classes like P, NP, PSPACE,
E, EXP. Please refer to [BDG95, BDG90, Pap94] for these definitions. Σe

4

denotes the fourth level of the exponential hierarchy.
For any complexity class C, the corresponding nonuniform class, denoted

by C/poly is defined as follows.
A language L ∈ C/poly if there exists a language A ∈ C and a function

f : N → Σ∗ (f is called the advice), such that |f(n)| ≤ nk for some k and
for all x,

x ∈ L ⇔ 〈x, f(|x|)〉 ∈ A

The nonuniform classes that we consider are NP ∩ coNP/poly and
PSPACE/poly. The inclusion NP ∩ coNP/poly ⊆ PSPACE/poly holds
between these classes.

A language L is defined to be in AM if there is a language A ∈ P and a
polynomial p, so that for all x ∈ {0, 1}n,

x ∈ L ⇒ Pr
y∈{0,1}p(n)

(∃z ∈ {0, 1}p(n) (x, y, z) ∈ A) ≥ 2

3

x 6∈ L ⇒ Pr
y∈{0,1}p(n)

(∃z ∈ {0, 1}p(n) (x, y, z) ∈ A) ≤ 1

3

The exponential version of the class, denoted by AMexp, can be defined
analogously.

3 Main Theorem

We show the main theorem. For proving this, we first show a collapse result,
namely if EXP ⊆ NP ∩ coNP/poly, then EXP ⊆ AM. The result is
proved by a “double-collapse” argument, namely, first a collapse of EXP to
PSPACE and then to AM. The first collapse is a result from [KL80] which
we state below.

Theorem 1 ([KL80]) If EXP ⊆ PSPACE/poly then EXP ⊆ PSPACE.

For the second collapse, we need the well-known interactive proof for
PSPACE [LFKN92, Sha92]. It will be useful to state it in the language of
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PCP (Probabilistically Checkable Proofs). We refer the reader to [ALM+98]
for exact definition of this notation. In this notation, we have that PSPACE ⊆
PCP(nO(1), nO(1)). It is also known that for L ∈ PSPACE, for any instance
x, the PCP-proof of the fact that x ∈ L (or x 6∈ L) can be computed by a
Turing machine using PSPACE. In addition to these, we also require the
fact that the locations of the PCP-proof probed by the verifier depends only
on the random bits he makes; that is the verifier does not use the contents
that he previously read to compute the locations that he subsequently wishes
to read. We state these facts in the following theorem.

Theorem 2 ([LFKN92, Sha92]) For any L ∈ PSPACE,
L ∈ PCP(nO(1), nO(1)) such that,

1. The verifier makes all the random coin tosses in the beginning of the
protocol and then decides on nO(1) locations where she is going to probe
the proof.

2. There is a Turing machine running in polynomial space which takes as
input 〈x, i〉 and outputs the ith bit of the PCP proof of the fact that
x ∈ L (or x 6∈ L).

Theorem 3 If EXP ⊆ NP ∩ coNP/poly then EXP ⊆ AM.

Proof Since NP ∩ coNP/poly ⊆ PSPACE/poly, the assumption implies
that EXP ⊆ PSPACE/poly. Hence, from Theorem 1 we have that actually
EXP ⊆ PSPACE. We now have the assumption that PSPACE ⊆ NP ∩
coNP/poly. We will show that if PSPACE ⊆ NP ∩ coNP/poly, then
PSPACE ⊆ AM.

Let L ∈ PSPACE. Let V be the verifier for L guaranteed by Theo-
rem 2. Let L′ be the language {〈x, i〉‖ithbit of the PCP proof for x is 1}. L′

is in PSPACE. Also, by assumption L′ is in NP ∩ coNP/poly. Let A be
the language in NP ∩ coNP witnessing this, where M and M be the non-
deterministic turing machines accepting A and A respectively. For length n,
let fn be the correct advice for L′.

We will show that there is a constant round Arthur-Merlin protocol for
accepting L, this will show that L ∈ AM[Bab85, BM88]. The protocol works
as follows. Merlin first sends the advice fn to Arthur. Arthur then makes the
random coin tosses and computes the queries on which he needs the entries
of the proof, by simulating V . For a query 〈x, i〉, if 〈x, i〉 ∈ L′, Merlin gives
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an acepting path of M and if 〈x, i〉 6∈ L′ Merlin gives an acepting path of
M . Using these Arthur can verify that the bits are indeed correct given the
correct advice and the correct witnesses. Finally Arthur simulates the verifier
V and accepts if and only if V accepts.

It is easy to see that this is a 3 round Arthur-Merlin protocol for L.

Remark 1: We would like to mention that insted of relying on (1)
of Theorem 2 explicitly, it is possible to use the fact that PSPACE ⊆
PCP(nO(1), O(1)) for showing the above result.

Now we can use this collapse to show the lower bound. The proof is
very similar to the proof of the fact that MAexp does not have polynomial
circuits[BFT98]. We first note the following upper bound for languages not in
NP∩coNP/poly. We can use counting argument similar to that in [Kan82]
to get the following theorem.

Theorem 4 Σe
4 6⊆ NP ∩ coNP/poly.

Theorem 5 AMexp 6⊆ NP ∩ coNP/poly.

Proof Suppose EXP 6⊆ NP ∩ coNP/poly. Then, since EXP ⊆ AMexp,
we are done. Otherwise EXP ⊆ NP ∩ coNP/poly. Then from Theo-
rem 5, EXP ⊆ AM. By padding we have EEXP ⊆ AMexp. Then Σe

4 ⊆
EEXP ⊆ AMexp. It follows from Theorem 4 AMexp 6⊆ NP∩coNP/poly.
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helpful discussions.

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan,
and Mario Szegedy. Proof verification and the hardness of ap-
proximation problems. Journal of the ACM, 45(3):501–555, May
1998.

5
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Complexity II. Number 22 in EATCS Monographs on Theoretical
Computer Science. Springer, Berlin-Heidelberg-New York, 1995.
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