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Abstract. It is an open problem whether weak bisimilarity is decidable
for Basic Process Algebra (BPA) and Basic Parallel Processes (BPP). A
PSPACE lower bound for BPA and NP lower bound for BPP have been
demonstrated by Stribrna. Mayr achieved recently a result, saying that
weak bisimilarity for BPP is ΠP

2 -hard. We improve this lower bound to
PSPACE, moreover for the restricted class of normed BPP.
Weak regularity (finiteness) of BPA and BPP is not known to be decid-
able either. In the case of BPP there is a ΠP

2 -hardness result by Mayr,
which we improve to PSPACE. No lower bound has previously been es-
tablished for BPA. We demonstrate DP-hardness, which in particular
implies both NP and co-NP-hardness.
In each of the bisimulation/regularity problems we consider also the
classes of normed processes.

Keywords: BPA, BPP, weak bisimulation, weak regularity, complex-
ity

1 Introduction

An intensive study of a variety of process algebras based on the
interleaving model of CCS (see [Mil89]) has taken place in the last
couple of years. Lots of activity has been focused on the analysis
of infinite state systems. The two central questions are decidability
and complexity of certain behavioural equivalences (for a survey see
[Mol96]) and verification of system properties expressed in suitable
logics (for a survey see [BE97]).

? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.



In this paper we address the first question with a special focus
on the bisimulation equivalence. Strong bisimulation equivalence is
known to be decidable for the classes of Basic Process Algebra (BPA)
[CHS95] and Basic Parallel Processes (BPP) [CHM93]. If we restrict
ourself to normed processes, there are even polynomial time algo-
rithms for bisimilarity of BPA and BPP [HJM96a,HJM96b].

However, we draw our attention towards the notion of weak bisimi-
larity, which is a more general equivalence than strong bisimilarity,
in the sense that it allows to abstract from internal behaviour of
processes by introducing a silent action τ , which is not observable
[Mil89].

Decidability of weak bisimulation equivalence and weak regularity
(finiteness) for BPA and BPP are well known open problems. There
are partial results, e.g. by Hirshfeld [Hir96], showing decidability of
weak bisimilarity for restricted classes of so called totally normed
BPA and BPP. Stribrna proved in [Str98] NP-hardness for these re-
stricted classes. Also, some results are known about weak bisimilarity
of BPA/BPP with finite state systems [JKM98,KM99]. In spite of
the fact that weak bisimilarity and regularity are not known to be
decidable, only a few lower bounds have been found.

For weak bisimilarity in the BPA class, PSPACE-hardness was proved
by Stribrna [Str98], using a reduction from totality problem for fi-
nite nondeterministic automata. No lower bound has previously been
established for weak regularity in this class.

In the class of BPP, weak bisimilarity appeared to be NP-hard
[Str98]. This result was recently improved by Mayr [May00a] to ΠP

2

(in polynomial hierarchy). In the same paper, ΠP
2 -hardness for weak

regularity is proved.

Our contribution. We show PSPACE-hardness of weak bisimilar-
ity for BPP, thus improving the ΠP

2 -hardness result by Mayr, and
moreover we prove our result for the restricted class of normed BPP.
This result can be transformed to weak regularity for BPP, thus
achieving PSPACE lower bound (again even for normed processes).

For the class of BPA we prove DP-hardness of weak regularity, which
in particular means both NP and co-NP-hardness. Moreover NP-
hardness can be transformed to the normed case.
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All these results hold also for PA (Process Algebra [BW90]), which
is a natural “union” of BPA and BPP, where we are allowed to use
both sequential and parallel composition.

2 Basic definitions

Let Act and Const be countable sets of actions and process constants
such that Act ∩ Const = ∅. Moreover suppose that Act contains a
distinguishable silent action τ . Let Op ⊆ {. , ||}. We define the class
of process expressions over Op as

EOp ::= ε | X | E ⊗ E

where ε is the empty process, X ranges over Const and ⊗ ranges over
Op. The operator ‘.’ is a sequential composition, and ‘||’ stands for a
parallel composition. In what follows we will not distinguish between
process expressions related by a structural congruence, which is the
smallest congruence over process expressions such that the following
lows hold:

– ‘.’ is associative
– ‘||’ is associative and commutative
– ‘ε’ is a unit for ‘.’ and ‘||’.

In this paper we consider the class of PA (Process Algebra [BW90])
expressions E{., ||} and its natural subclasses; BPA (Basic Process
Algebra, also known as context-free processes) expressions E{.} with
only sequential composition; and BPP (Basic Parallel Processes) ex-
pressions E{||} with only parallel composition.
A PA (resp. BPA or BPP) process rewrite system (PRS) [May00b]
is a finite set ∆ of rules of the form X

a−→ E, where X ∈ Const,
a ∈ Act and E ∈ E{., ||} (resp. E ∈ E{.} or E ∈ E{||}). Let us denote
the set of actions and process constants that appear in ∆ as Act(∆)
resp. Const(∆) (note that these sets are finite). A process rewrite
system ∆ determines a transition system [Plo81,Mol96] where the
states are process expressions over Const(∆), and Act(∆) is the set
of labels. The transition relation is the least relation satisfying the
following SOS rules (recall that ‘||’ is commutative).

(X
a−→ E) ∈ ∆

X
a−→ E

E
a−→ E ′

E.F
a−→ E ′.F

E
a−→ E ′

E||F a−→ E ′||F

3



As usual we extend the transition relation to the elements of Act∗.
We also write E −→∗ E ′, whenever E

w−→ E ′ for some w ∈ Act∗. A
state E′ is reachable from a state E iff E −→∗ E ′.
A weak transition relation is defined as follows.

a
=⇒def

=




τ∗−→ ◦ a−→ ◦ τ∗−→ if a 6= τ
τ∗−→ if a = τ

We define a process as a pair (P, ∆), where P is a process expression
and ∆ is a process rewrite system. States of (P, ∆) are the states
of the corresponding transition system. We say that a state E is
reachable iff P −→∗ E. Whenever (P, ∆) has only finitely many
reachable states, we call it a finite-state process.
Important subclasses of process algebras can be obtained by an extra
restriction on the involved processes - normedness. A process expres-
sion E is normed iff there is w ∈ Act∗ such that E

w−→ ε. A process
(P, ∆) is normed if all its process constants Const(∆) are normed.
We say that (P, ∆) is totally normed iff it is normed and moreover
there is no transition X

τ
=⇒ ε for any X ∈ Const(∆).

Now we will introduce the concept of weak bisimilarity [Par81,Mil89].
A binary relation R over process expressions is a weak bisimulation
iff whenever (E, F ) ∈ R then for each a ∈ Act:

– if E
a

=⇒ E ′ then F
a

=⇒ F ′ and (E′, F ′) ∈ R
– if F

a
=⇒ F ′ then E

a
=⇒ E ′ and (E′, F ′) ∈ R.

Processes (P1, ∆1) and (P2, ∆2) are weakly bisimilar, and we write
(P1, ∆1) ≈ (P2, ∆2), iff there is a weak bisimulation R such that
(P1, P2) ∈ R. Note that without loss of generality we can suppose
that ∆1 = ∆2 since we can always consider a disjoint union of ∆1

and ∆2 as a new ∆.
Bisimulation equivalence has an elegant characterisation in terms of
bisimulation games [Tho93,Sti95]. A bisimulation game on a pair of
processes (P1, ∆) and (P2, ∆) is a two-player game of an ‘attacker’
and a ‘defender’. The attacker chooses one of the processes and makes
an

a
=⇒-move for some a ∈ Act(∆). The defender must respond by

making an
a

=⇒-move in the other process under the same action
a. Now the game repeats, starting from the new processes. If one
player cannot move, the other player wins. If the game is infinite,
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the defender wins. The processes (P1, ∆) and (P2, ∆) are weakly
bisimilar iff the defender has a winning strategy (and non-bisimilar
iff the attacker has a winning strategy).

3 Hardness of Weak Bisimilarity and
Regularity for BPP

Problem: Weak bisimilarity of (normed) BPP

Instance: Two (normed) BPP processes (P1, ∆) and (P2, ∆).
Question: (P1, ∆) ≈ (P2, ∆) ?

In what follows we show that weak bisimilarity of normed BPP
is PSPACE-hard. We prove it by reduction from QSAT1, which is
known to be PSPACE-complete [Pap94].

Problem: QSAT
Instance: A natural number n and a Boolean formula φ in

conjunctive normal form with Boolean variables
x1, . . . , xn and y1, . . . , yn.

Question: Is ∀x1∃y1∀x2∃y2 . . .∀xn∃yn.φ true?

Literal is a variable or the negation of a variable. Let

C ≡ ∀x1∃y1∀x2∃y2 . . .∀xn∃yn.C1 ∧ C2 ∧ . . . ∧ Ck

be an instance of QSAT, where each clause Cj, 1 ≤ j ≤ k, is a
disjunction of literals. We define the following BPP processes (P1, ∆)
and (P2, ∆), where

Const(∆) = {Q1, . . . , Qk, X1, . . . , Xn, Y1, . . . , Yn}
and

Act(∆) = {q1, . . . , qk, x1, . . . , xn, x1, . . . , xn, y}.

For each i, 1 ≤ i ≤ n, let
1 This problem is known also as QBF, for Quantified Boolean formula.
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αi be a parallel composition of process constants from {Q1, . . . , Qk}
such that Qj appears in αi iff the literal xi occurs in Cj (i.e. if xi

is set to true then Cj is satisfied),
αi be a parallel composition of process constants from {Q1, . . . , Qk}

such that Qj appears in αi iff the literal ¬xi occurs in Cj (i.e. if
xi is set to false then Cj is satisfied),

βi be a parallel composition of process constants from {Q1, . . . , Qk}
such that Qj appears in βi iff the literal yi occurs in Cj,

βi be a parallel composition of process constants from {Q1, . . . , Qk}
such that Qj appears in βi iff the literal ¬yi occurs in Cj.

The set of transition rules ∆ is given by

Xi
xi−→ Yi||αi Xi

xi−→ Yi||αi for 1 ≤ i ≤ n

Yi
y−→ Xi+1||βi Yi

y−→ Xi+1||βi for 1 ≤ i ≤ n − 1

Yn
y−→ βn Yn

y−→ βn

Xi
qj−→ Xi Yi

qj−→ Yi for 1 ≤ i ≤ n and 1 ≤ j ≤ k

Qj
qj−→ Qj Qj

τ−→ ε for 1 ≤ j ≤ k.

Finally, let

P1
def
= X1||Q1||Q2|| . . . ||Qk and P2

def
= X1.

We can see the processes P1 and P2 using Petri net notation in
Figure 1. This figure is only illustrative, and some transitions, namely

Xi
qj−→ Xi and Yi

qj−→ Yi for 1 ≤ i ≤ n, 1 ≤ j ≤ k are missing. The
curly lines stand for the corresponding sets of arrows for αi, αi, βi

resp. βi. The intuition is that the attacker will be forced to play only
in the process P1 and if C is true then the defender will have the
possibility to add all the process constants {Q1, . . . , Qk}.
Let γ be a parallel composition of elements from Const(∆). We

define the set of process constants that occur in γ as set(γ)
def
=

{X ∈ Const(∆) | X occurs in γ} and we also define setQ(γ)
def
=

set(γ) ∩ {Q1, . . . , Qk}. The following proposition is an immediate
consequence of the definition of ∆.
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Fig. 1. The processes (P1, ∆) and (P2, ∆) as Petri nets.

Proposition 1. Let γ resp. γ′ be a parallel composition of some pro-
cess constants from {Q1, . . . , Qk}. If setQ(γ) = setQ(γ′) then (γ, ∆) ≈
(γ′, ∆).

We want to show that C is true if and only if (P1, ∆) ≈ (P2, ∆).

Lemma 1. If (P1, ∆) ≈ (P2, ∆) then C is true.

Proof. We show that (P1, ∆) 6≈ (P2, ∆), supposing that C is false. If

C is false then C ′ def
= ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn.¬(C1 ∧ C2 ∧ . . . ∧ Ck)

is true and from this we claim that the attacker has a winning strat-
egy in the bisimulation game for (P1, ∆) and (P2, ∆). The attacker
plays only in the process P1 (without using τ actions) performing
the following sequence of actions

x̃1, y, x̃2, y, . . . , x̃n, y
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where x̃i, 1 ≤ i ≤ n, corresponds to either xi or xi, depending on the
truth values for which the formula C ′ is true. It does not matter, how
the choice of the rule for the action y is solved. The defender can
only respond by performing the same actions x̃1, y, x̃2, y, . . . , x̃n, y
(eventually using some τ actions). The actions x̃1, . . . , x̃n are forced.
For the action y there are always two possibilities, corresponding to
assigning a truth value for some yi, 1 ≤ i ≤ n. Finally the processes
P1 and P2 are in states P ′

1 and P ′
2, respectively, such that set(P ′

1) =
{Q1, . . . , Qk} and set(P ′

2) ⊆ {Q1, . . . , Qk}. Since we assume that C ′

is true, there must be a clause Cj, 1 ≤ j ≤ k, which is not satisfied.
Hence Qj 6∈ set(P ′

2) and P ′
2 cannot perform qj . However, qj is enabled

in P ′
1 and thus the attacker has a winning strategy. This implies that

(P1, ∆) 6≈ (P2, ∆). ut
For the proof of the opposite direction let us first observe the fol-
lowing property of (P1, ∆) and (P2, ∆) above. Let δ be some state
such that set(δ) ∩ {Q1, . . . , Qk} = ∅ and let γ and γ′ be a parallel
composition of some process constants from {Q1, . . . , Qk} satisfying
the condition that setQ(γ) ⊇ setQ(γ′). Let us consider the processes
δ||γ and δ||γ′. Whenever the attacker chooses any move in the second
one, the defender has an answer, which makes these two processes
weakly bisimilar (exploiting τ actions to eliminate the extra process
constants Qj from the first process and then using Proposition 1).
We are now ready to prove the following lemma.

Lemma 2. If C is true then (P1, ∆) ≈ (P2, ∆).

Proof. Let P ′
1 and P ′

2 denote successors of P1 and P2, respectively,
in the bisimulation game. The defender’s strategy is to satisfy the
following conditions during the game

– setQ(P ′
1) ⊇ setQ(P ′

2) and
– never delete (using τ actions) any process constant Qj , 1 ≤ j ≤ k,

in the process P ′
2, unless it is necessary for satisfying the first

condition.

Of course these conditions are true at the beginning of the game.
Using the argument above this lemma, we can see that whenever
the attacker makes a move in the process P ′

2, he immediately looses,
since the defender can make the resulting processes weakly bisim-
ilar. This means that the only possible winning strategy for the

8



attacker is to keep playing in P ′
1. However, now the defender can

always fulfil the conditions of his strategy. On a move containing xi

resp. xi there is only one possible response for the defender. When-
ever the attacker makes a y move, the defender chooses one of the
rules Yi

y−→ Xi+1||βi and Yi
y−→ Xi+1||βi, such that the formula

∀xi+1∃yi+1 . . .∀xn∃yn.C1 ∧ . . . ∧ Ck is still true. Since we have the

rules Xi
qj−→ Xi and Yi

qj−→ Yi for any i, j such that 1 ≤ i ≤ n and
1 ≤ j ≤ k, the only possibility for the attacker to win is to perform
some sequence

x̃1, y, x̃2, y, . . . , x̃n, y

possibly including also some τ actions and then reach some state
P ′

1, where set(P ′
1) ⊆ {Q1, . . . , Qk}. Since C is true the defender can

always get to a corresponding state P ′
2, where set(P ′

1) = set(P ′
2).

Hence (using Proposition 1) the attacker looses again. This means
that the defender has a winning strategy and so (P1, ∆) ≈ (P2, ∆).

ut

Theorem 1. Weak bisimilarity of normed BPP is PSPACE-hard.

Proof. Observe that all the process constants in ∆ are normed and
that the reduction is in polynomial time. The theorem is then an
immediate consequence of Lemma 1 and Lemma 2. ut

Corollary 1. Weak bisimilarity of BPP is PSPACE-hard.

Proof. Directly from Theorem 1. ut

Remark 1. Theorem 1 can be easily extended to 1-safe Petri nets
where each transition has exactly one input place (for the definition
of 1-safe Petri nets see e.g. [JM96]). It is enough to introduce for
each αi/αi and βi/βi, 1 ≤ i ≤ n, a new set of process constants
{Q1, . . . , Qk} to ensure that in each reachable marking there is at
most one token in every place. Related results about 1-safe Petri
nets can be found in [JM96].

Another problem we will analyse, is weak regularity of BPP pro-
cesses.
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Problem: Weak regularity of (normed) BPP

Instance: A (normed) BPP process (P, ∆).
Question: Is there a finite-state process (F, ∆′) such that

(P, ∆) ≈ (F, ∆′) ?

Mayr has proved that weak regularity of BPP is ΠP
2 -hard [May00a],

demonstrating a reduction from the weak bisimilarity problem be-
tween a pair of special processes with finitely many reachable states.
It can be easily seen that his proof works also for a general pair of
weakly regular processes and moreover it preserves normedness.

Theorem 2 ([May00a]). Let (P1, ∆) and (P2, ∆) be weakly regular
BPP processes. We can construct in polynomial time a BPP process
(P, ∆′) such that

(P1, ∆) ≈ (P2, ∆) ⇐⇒ (P, ∆′) is weakly regular.

Moreover, if (P1, ∆) and (P2, ∆) are normed, so is (P, ∆′).

Observe that the processes P1 and P2 from the proof of PSPACE-
hardness of weak bisimilarity (Theorem 1) are regular and moreover
they are normed. This gives the following theorem with an immediate
corollary.

Theorem 3. Weak regularity of normed BPP is PSPACE-hard.

Proof. Because of Theorem 2, there is a reduction from a PSPACE-
hard problem of weak bisimilarity for normed BPP to weak regularity
of normed BPP. ut

Corollary 2. Weak regularity of BPP is PSPACE-hard.

4 Hardness of Weak Bisimilarity and
Regularity for BPA

In this section we consider the same problems for BPA, as we did
for BPP.

10



Problem: Weak bisimilarity of (normed) BPA

Instance: Two (normed) BPA processes (P1, ∆) and (P2, ∆).
Question: (P1, ∆) ≈ (P2, ∆) ?

Problem: Weak regularity of (normed) BPA

Instance: A (normed) BPA process (P, ∆).
Question: Is there a finite-state process (F, ∆′) such that

(P, ∆) ≈ (F, ∆′) ?

First, we show that there is a reduction from weak bisimilarity of
regular BPA to weak regularity. The idea of the proof is similar to
the case of BPP mentioned above from [May00a].

Theorem 4. Let (P1, ∆) and (P2, ∆) be weakly regular BPA pro-
cesses. We can construct in polynomial time a BPA process (P, ∆′)
such that

(P1, ∆) ≈ (P2, ∆) ⇐⇒ (P, ∆′) is weakly regular.

Moreover, if (P1, ∆) and (P2, ∆) are normed, so is (P, ∆′).

Proof. Assume that (P1, ∆) and (P2, ∆) are weakly regular BPA
processes. We construct a BPA process (P, ∆′) with

Const(∆′) def
= Const(∆) ∪ {A, B, C, B1, B2}

and
Act(∆′) def

= Act(∆) ∪ {a}
where A, B, C, B1, B2 are new process constants and a is a new ac-

tion. Then ∆′ def
= ∆ ∪ ∆1 ∪ ∆2, where ∆1 and ∆2 are defined as

follows. The set of transition rules ∆1 is given by

A
a−→ A.B A

τ−→ ε

B
a−→ ε B

τ−→ ε

C
a−→ B1 C

a−→ P1

B1
a−→ B1 B1

a−→ P1

11



and ∆2 is given by

C
a−→ B2 C

a−→ P2

B2
a−→ B2 B2

a−→ P2.

Let P
def
= A.C. Observe that if (P1, ∆) and (P2, ∆) are normed, so is

(P, ∆′). We show now that our reduction is correct.

Lemma 3. If (P1, ∆) 6≈ (P2, ∆) then (P, ∆′) is not weakly regular.

Proof. Suppose that (P1, ∆) 6≈ (P2, ∆). Then we demonstrate that
there are infinitely many weakly nonbisimilar states reachable from
P . Let us consider Bi.C for any natural number i. Of course P −→∗

Bi.C and we claim that (Bi.C, ∆′) 6≈ (Bj .C, ∆′) for any i 6= j.
Without loss of generality assume that i < j. The attacker has the
following winning strategy (playing only in the second process –
see Figure 2). He performs a sequence of j actions a in Bj.C, thus

Bi.C

ai′

��

≈? Bj.C

ai′

��
C

a
��

Bj−i′.C

a
��

B1

aj−i′−1

��

Bj−i′−1.C

aj−i′−1

��
B1

a
��

C

a
��

P1 6≈ P2

Fig. 2. The winning strategy for the attacker (i < j).

reaching C. Since Bi cannot do this sequence, the defender has to
reach C eventually (let us say after i′ steps, where i′ ≤ i). As neither
P1 nor P2 can perform a, he has only two choices when responding to
the action a – either C

a−→ B1 or C
a−→ B2. Assume that he chooses

B1 (the other case is symmetric). Now the defender’s only possibility
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is to stay in B1 for another aj−i′−1 moves of the attacker. After the
attacker has reached C (in the second process), he chooses to go to P2

in the next round. If the defender stays in B1 he looses immediately
and if he moves to P1 he looses as well, since (P1, ∆

′) 6≈ (P2, ∆
′). ut

Lemma 4. If (P1, ∆) ≈ (P2, ∆) then (P, ∆′) is weakly regular.

Proof. Assume that (P1, ∆) ≈ (P2, ∆), which implies that (P, ∆′) ≈
(P, ∆′′), where ∆′′ = ∆′ − ∆2 (weak bisimilarity is a congruence on
BPA). Notice that (B1, ∆

′′) is weakly regular, so it is enough to show
that (A.C, ∆′′) ≈ (B1, ∆

′′). Obviously, (C, ∆′′) ≈ (B1, ∆
′′), which

implies that for any n ≥ 0, (Bn.C, ∆′′) ≈ (B1, ∆
′′) since B1

a−→ B1

and Bn τ∗−→ ε. This gives that (A.Bn.C, ∆′′) ≈ (B1, ∆
′′) for any

n ≥ 0, which in particular means that (A.C, ∆′′) ≈ (B1, ∆
′′). ut

Theorem 4 is an immediate consequence of Lemma 3 and Lemma 4.
ut

In the paper by Stribrna [Str98] it is shown (Theorem 2.5) that
weak bisimilarity for totally normed BPA is NP-hard. The proof is
by reduction from a variant of the bin-packing (knapsack) problem
and the processes in this proof have finitely many reachable states
(and so they are weakly regular). Thus we can use Theorem 4 to
obtain the following result with an obvious corollary.

Theorem 5. Weak regularity of normed BPA is NP-hard.

Corollary 3. Weak regularity of BPA is NP-hard.

We remind the reader of the fact that PSPACE-hardness of weak
bisimilarity for BPA achieved by Stribrna [Str98] does not imply
PSPACE-hardness of weak regularity for BPA, since the described
processes are not regular. In the next theorem, however, we prove
that weak regularity for BPA is not only NP-hard but also co-NP-
hard. This we demonstrate by showing that weak bisimilarity for
BPA is co-NP-hard, where the involved processes are finite-state
(nevertheless they are unnormed in this case).

Theorem 6. Weak regularity of BPA is co-NP-hard.

Proof. We reduce the complement of 3-SAT [Pap94] to weak bisim-
ilarity of BPA and then we use Theorem 4.
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Problem: 3-SAT COMPLEMENT
Instance: A natural number n and a Boolean formula φ in

disjunctive normal form with implicants of length
3 and with Boolean variables x1, . . . , xn.

Question: Is ∀x1∀x2 . . .∀xn.φ true?

Let
D ≡ ∀x1∀x2 . . .∀xn.D1 ∨ D2 ∨ . . . ∨ Dk

be an instance of 3-SAT COMPLEMENT, where each implicant Dj ,
1 ≤ j ≤ k, is a conjunction of three literals. Let us define the follow-
ing BPA processes (X1, ∆) and (X ′

1, ∆), where

Const(∆)
def
= { D1

1, . . . , D
1
k, D

2
1, . . . , D

2
k, D

3
1, . . . , D

3
k,

X1, . . . , Xn, Xn+1, X
′
1, . . . , X

′
n, X

′
n+1, Y1, . . . , Yk, A, S }

and

Act(∆)
def
= { d1

1, . . . , d
1
k, d

2
1, . . . , d

2
k, d

3
1, . . . , d

3
k,

x1, . . . , xn, x1, . . . , xn, a, s}.

For each i, 1 ≤ i ≤ n, let

αi be a sequential composition (in some fixed ordering) of process
constants Dr

j (1 ≤ r ≤ 3 and 1 ≤ j ≤ k) such that
• D1

j appears in αi iff the literal xi occurs in Dj in the first
position

• D2
j appears in αi iff the literal xi occurs in Dj in the second

position
• D3

j appears in αi iff the literal xi occurs in Dj in the third
position

αi be a sequential composition (in some fixed ordering) of process
constants Dr

j (1 ≤ r ≤ 3 and 1 ≤ j ≤ k) such that
• D1

j appears in αi iff the literal ¬xi occurs in Dj in the first
position

• D2
j appears in αi iff the literal ¬xi occurs in Dj in the second

position
• D3

j appears in αi iff the literal ¬xi occurs in Dj in the third
position.
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The set of transition rules ∆ is given by

Xi
xi−→ Xi+1.αi X ′

i
xi−→ X ′

i+1.αi for 1 ≤ i ≤ n

Xi
xi−→ Xi+1.αi X ′

i
xi−→ X ′

i+1.αi for 1 ≤ i ≤ n

Xn+1
a−→ Yj X ′

n+1
a−→ Yj for 1 ≤ j ≤ k

X ′
n+1

a−→ A

A
a−→ A

A
τ−→ ε

S
s−→ S

Yj

d1
j−→ S Yj

d2
j−→ S Yj

d3
j−→ S for 1 ≤ j ≤ k

Yj
a−→ Yj for 1 ≤ j ≤ k

Yj
τ−→ ε for 1 ≤ j ≤ k

D1
j

d1
j−→ S D2

j

d2
j−→ S D3

j

d3
j−→ S for 1 ≤ j ≤ k

D1
j

τ−→ ε D2
j

τ−→ ε D3
j

τ−→ ε for 1 ≤ j ≤ k.

The intuition is that the attacker plays in X ′
1 and generates some

truth assignment. When he reaches the process constant A, the de-
fender chooses an implicant that is satisfied by the truth assignment
by performing a transition Xn+1

a−→ Yj. The attacker can now test
whether this implicant is indeed satisfied.

Lemma 5. If (X1, ∆) ≈ (X ′
1, ∆) then D is true.

Proof. For the sake of contradiction suppose that D is false, i.e.
there is some assignment of truth values for x1, . . . , xn such that
D1 ∨ D2 ∨ . . .∨ Dk is false, which means that for each j, 1 ≤ j ≤ k,
there is at least one false literal in Dj. We show that the attacker
has a winning strategy in the bisimulation game. First, the attacker
plays in X ′

1 generating this false assignment and finally he uses the
transition X ′

n+1
a−→ A. The defender can only respond by performing

the same actions xi/xi with the final transition Xn+1
a−→ Yj for some

j (observe that the defender cannot use the transition Yj
τ−→ ε,

otherwise the attacker wins immediately). Now the attacker changes
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the processes and plays Yj

dr
j−→ S, where r is a position of a false

literal in Dj . This means that the defender looses, since he has no
response to this move. ut

Lemma 6. If D is true then (X1, ∆) ≈ (X ′
1, ∆).

Proof. We show that the defender has a winning strategy. Whatever
the attacker performs during the first n moves the defender imitates
in the other process. Finally we get a pair of processes Xn+1α and
X ′

n+1α. If the attacker chooses the rule Xn+1
a−→ Yj for some j then

he looses, since the defender can do the same move in X ′
n+1α and

make the resulting processes equal. The same happens if the attacker
chooses the rule X ′

n+1
a−→ Yj for some j in the second process.

So the only possibility for the attacker to win is to move under a
to A.α in the second process. The defender answers by performing
Xn+1

a−→ Yj, where Dj is the implicant which makes the formula
D1 ∨ D2 ∨ . . . ∨ Dk true. Now the attacker has to switch processes
since if he continues in A.α doing the τ action, he looses again (the
defender can make the two processes equal). In the process Yj.α the

attacker has essentially two possibilities. He can perform Yj

dr
j−→ S for

some r, 1 ≤ r ≤ 3. However, the defender can perform some sequence
of τ actions to enable dr

j in the second process and then he performs

the transition Dr
j

dr
j−→ S. As S is unnormed, the resulting processes

are bisimilar (since (S.β, ∆) ≈ (S.β ′, ∆) for any β and β ′). The other
attacker’s possibility is to perform first Yj

τ−→ ε, but then he looses as
well (the resulting processes can be made equal). Thus the defender
has a winning strategy, which means that (X1, ∆) ≈ (X ′

1, ∆). ut

The proof of Theorem 6 is then a consequence of Lemma 5, Lemma 6,
Theorem 4 and the fact that both (X1, ∆) and (X ′

1, ∆) are finite-
state processes. ut

Corollary 3 and Theorem 6 show that weak regularity for BPA
is both NP and co-NP-hard. We use these results to obtain DP-
hardness. The class DP is defined as follows [Pap94]. A language L
is in DP iff there are two languages L1 ∈ NP and L2 ∈ co-NP such
that L = L1 ∩ L2. Obviously NP ∪ co-NP is contained in DP and
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moreover the other inclusion is unlikely. We show that weak regular-
ity is DP-hard by demonstrating a reduction from the SAT-UNSAT
problem [Pap94].

Problem: SAT-UNSAT
Instance: Two Boolean formulae φ1 and φ2.
Question: Is φ1 satisfiable and φ2 is not?

Theorem 7. Weak regularity of BPA is DP-hard.

Proof. As we know that weak regularity is both NP and co-NP-hard,
we can construct in polynomial time processes (P1, ∆) and (P2, ∆)
such that (P1, ∆) is weakly regular iff φ1 is satisfiable, and (P2, ∆)
is weakly regular iff φ2 is not satisfiable. Let us now construct a
process (P, ∆′) such that (P, ∆′) is weakly regular iff φ1 is satisfiable

and φ2 is not. We define Const(∆′) def
= Const(∆)∪{P} and Act(∆′) def

=
Act(∆) ∪ {a1, a2} where P is a new process constant and a1, a2 are
new actions. The set ∆′ contains all the rules from ∆ together with

P
a1−→ P1 P

a2−→ P2.

Obviously (P, ∆′) is regular iff both (P1, ∆) and (P2, ∆) are regular.
This proves that (P, ∆′) is weakly regular iff φ1 is satisfiable and φ2

is not. ut

5 Conclusion

In the following tables we summarise known results about weak
bisimilarity and regularity problems for BPA, BPP and PA. The
results obtained in this paper are in boldface. Question mark means
that there has not been any known lower bound yet.
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≈ ≈
of normed processes

BPA PSPACE-hard [Str98] NP-hard [Str98]

NP-hard [Str98] NP-hard [Str98]

BPP ΠP
2 -hard [May00a]

PSPACE-hard PSPACE-hard

PA PSPACE-hard [Str98] NP-hard [Str98]

PSPACE-hard PSPACE-hard

For the case of ≈ in the class of PA, the result in this paper is more
general, since our processes are weakly regular, which is not the case
for the result by Stribrna.

weak regularity
weak regularity

of normed processes

BPA ? ?

DP-hard NP-hard

BPP ΠP
2 -hard [May00a] ?

PSPACE-hard PSPACE-hard

PA ΠP
2 -hard [May00a] ?

PSPACE-hard PSPACE-hard

We remind the reader of the fact that DP-hardness means in partic-
ular both NP and co-NP-hardness.
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