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Matching Modulo Associativity and

Idempotency is NP–complete?

Ondřej Kĺıma1 and Jǐŕı Srba2

1 Faculty of Science MU, Dept. of Mathematics, Janáčkovo nám. 2a, 662 95 Brno,
Czech Republic, klima@math.muni.cz

2 BRICS? ? ?, Department of Computer Science, University of Aarhus, Ny
Munkegade bld. 540, DK-8000 Aarhus C, Denmark, srba@brics.dk

Abstract. We show that AI–matching (AI denotes the theory of an
associative and idempotent function symbol), which is solving matching
word equations in free idempotent semigroups, is NP-complete.
Note: this is a full version of the paper [9] and a revision of [8].

Keywords: unification, word rewriting, idempotent semigroups, com-
plexity

1 Introduction

Solving equations appears as an interesting topic in several fields of
computer science. Many areas such as logic programming and au-
tomated theorem proving exploit solving equations, and syntactic
(Robinson) unification is a typical example of it. An important role
is played also by semantic unification, which allows to use several
function symbols with additional algebraic properties (e.g. associa-
tivity, commutativity and idempotency). Makanin (see [16]) shows
that the question whether an equation in a free monoid has a solu-
tion is decidable. It can be generalized in the way that existential
first-order theory of equations in a free monoid with additional reg-
ular constraints on the variables is decidable [19]. For an overview
of unification theory consult e.g. [4].

AI–matching is one example of semantic unification where the
considered equational theory is of one associative and idempotent

? The paper is supported by the Grant Agency of the Czech Republic, grant No.
201/97/0456 and by grant FRVŠ 409/1999.

? ? ? Basic Research in Computer Science,
Centre of the Danish National Research Foundation.



function symbol. In this paper we focus on a subclass of word equa-
tions which we call pattern equations. Pattern equations are word
equations where we have on the left-hand side just variables and
on the right-hand side only constants. In the usual interpretation,
AI–matching is a AI–unification of systems of equations where all
right-hand sides are variable–free. However, we can eliminate con-
stants on the left-hand sides by adding new equations and so pattern
equations are as general as AI–matching.

Many practical problems such as speech recognition/synthesis
lead to this kind of equations. This work has been inspired by the
papers [12] and [13] where the basic approach – syllable-based speech
synthesis – is in assigning prosody attributes to a given text and seg-
mentation into syllable segments. We examine the solvability of word
equations in the variety of all idempotent semigroups, which we call
stuttering equations. Their name comes from practical motivation.
For example in speech recognition the speaker sometimes stutters
some words and we would like to eliminate this effect and enable the
correct variables assignment even in the case of stuttering. Therefore
we allow to eliminate multiple occurrences of the same subword into
only one occurrence, which can be modelled by the identity x2 = x.
The decidability of the satisfiability problem (even in the general
case) is a consequence of the local finiteness of free idempotent semi-
groups and an exponential upper bound on the length of a minimal
solution can be given ([6]). A polynomial time decision procedure for
the word problem in a free idempotent semigroup can be also easily
established. Recently it has been proved in [3] that AI–unification
remains decidable even if additional uninterpreted function symbols
in the equations are allowed.

Unification problems for the AI–theory have been investigated
e.g. in [1, 2, 20], however, the complexity questions were not an-
swered. In this paper we prove that there is a polynomial bound on
the length of a minimal solution in the case of stuttering pattern
equations and thus we show that the satisfiability problem is in NP.
The proof exploits the confluent and terminating word rewriting sys-
tem for idempotent semigroups by Siekmann and Szabo (see [21]).
This means that the identity p = q holds in a free idempotent semi-
group if and only if the words p and q have the same normal form
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w.r.t. the rewriting system {xx → x | C(x) 6= ∅}∪{uvw → uw | ∅ 6=
C(v) ⊆ C(u) = C(w)}, where C(y) denotes the set of letters of y.

Showing a reduction from 3–SAT to our problem, we prove its
NP–completeness. This is a more general result than Theorem 7
in the paper by Kapur and Narendran [11], where they prove NP–
hardness for AI–matching, where additional uninterpreted function
symbols are allowed. In our proof we use only one associative and
idempotent function symbol. NP–hardness means that the problem
is probably difficult. One of the ways how to solve the problem is
to use heuristic algorithms. They are the current field of interest in
speech recognition.

2 Basic definitions

An idempotent semigroup (also called a band) is a semigroup where
the identity x2 = x is satisfied. Let C be a finite set. We define a
binary relation → ⊆ C∗×C∗ such that uvvw → uvw for u, v, w ∈ C∗

and let ∼ be its symmetric, reflexive and transitive closure, i.e. ∼
:= (→ ∪ →−1)∗. Then the identity p = q holds in a free band over
C if and only if p ∼ q (completeness of the equational logic).

Let C be a finite set of constants and V be a finite set of variables
such that C ∩ V = ∅. A word equation L = R is a pair (L, R) ∈ (C ∪
V)∗× (C ∪V)∗. A system of word equations is a finite set of equations
of the form {L1 = R1, . . . , Ln = Rn} for n > 0. A solution (in
a free idempotent semigroup) of such a system is a homomorphism
α : (C ∪ V)∗ → C∗ which behaves as an identity on the letters from
C and equates all the equations of the system, i.e. α(Li) ∼ α(Ri)
for all 1 ≤ i ≤ n. Such a homomorphism is fully established by a
mapping α : V → C∗. A solution is called non-singular, if α(x) 6= ε
for all x ∈ V, where ε denotes the empty word. Otherwise we will
call it singular. We say that a system of word equations (in a free
idempotent semigroup) is satisfiable whenever it has a solution. For
the introduction into word equations and combinatorics on words
you can see [14], [15] and [18]. We refer to word equations in a free
idempotent semigroup as stuttering equations.

In what follows we will use a uniform notation. The set C =
{a, b, c, . . . } denotes the alphabet of constants and V = {x, y, z, . . .}
stands for variables (unknowns) with the assumption that C∩V = ∅.
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We will use the same symbol α for the mapping α : V → C∗ and its
unique extension to a homomorphism α : (C ∪V)∗ → C∗. The empty
word will be denoted by ε and the length of a word w by |w|.

We exploit the fact that the word problem in a free band is
decidable (see [7] and its generalization [10]), which is a consequence
of the next lemma. Let w ∈ C+. We define

C(w) – the set of all letters that occur in w,
0(w) – the longest prefix of w in card(C(w)) − 1 letters,
1(w) – the longest suffix of w in card(C(w)) − 1 letters.

Let also 0(w) resp. 1(w) be the letter that immediately succeeds
0(w) resp. precedes 1(w).

Lemma 1 ([7]). Let p, q ∈ C+. Then p ∼ q if and only if C(p) =
C(q), 0(p) ∼ 0(q) and 1(p) ∼ 1(q).

It is obvious that if a stuttering equation system has a solution
then it has always infinitely many solutions, which we show in the
following lemma.

Lemma 2. Let {L1 = R1, . . . , Ln = Rn} be a stuttering equation
system with a solution α. Then also any β that satisfies α(x) ∼ β(x)
for all x ∈ V (we simply write α ∼ β) is a solution.

Proof. Immediate. ut
This gives an idea that we should look just for the solutions

where α(x) is the shortest word in the ∼ class for each variable x.
We introduce a size of a solution α as size(α) := maxx∈V |α(x)| and
say that α is minimal iff for any solution β of the system we have
size(α) ≤ size(β). Given a stuttering equation system it is decidable
whether the system is satisfiable because of the local finiteness of
free idempotent semigroups. The following lemma just gives a precise
exponential upper bound on the size of a minimal solution.

Lemma 3 ([6]). Let k = card(C) ≥ 2 and let {L1 = R1, . . . , Ln =
Rn} be a stuttering equation system. If the system is satisfiable then
there exists a solution α such that size(α) ≤ 2k + 2k−2 − 2.

In general it can be shown that there are stuttering equation systems
such that all their solutions are at least exponentially large w.r.t.
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the cardinality of the set C . Consider the following sequence of
equations: x1 = a1 and xi+1 = xiai+1xi for a sequence of pairwise
different constants a1, a2, . . . . For any solution α of the system we
have that |α(xi)| ≥ 2i − 1.

In this paper we focus on a special kind of word equations which
we call pattern equations.

Definition 1. A pattern equation system is a set {X1 = A1, . . . ,
Xn = An} where Xi ∈ V∗ and Ai ∈ C∗ for all 1 ≤ i ≤ n. A solution
of a pattern equation system is defined as in the general case.

Remark 1. In the usual interpretation AI–matching allows constants
to appear also on the left-hand sides, i.e. the equations are of the
type X = A where X ∈ (V ∪ C)∗ and A ∈ C∗. However, we can
w.l.o.g. consider only pattern equations, since an equation of the
type X1aX2 = A where a ∈ C can be transformed into X1xX2 = A
and x = a, where x is a new variable.

Two natural decidability problems (Pattern-Equation and Non-
Singular-Pattern-Equation problem) appear in this context
and are defined below.

Definition 2. Given a pattern equation system {X1 = A1, . . . , Xn =
An} as an instance of the Pattern-Equation problem, the task is
to decide whether this system has a solution. If we require the solution
to be non-singular we call the problem Non-Singular-Pattern-
Equation.

The Pattern-Equation problem for a single stuttering pattern
equation X = A is trivial since it is always solvable: α(x) = A for
all x ∈ V. On the other hand a system is not always solvable: e.g.
{x = a, x = b} has no solution.

We give an example of a pattern equation system and demon-
strate its solutions.

Example 1. Let us have the following system where C = {a, b}, V =
{x, y, z} and the pattern equations are {yxy = aba, yz = a}. A
singular solution exists α(x) = aba, α(y) = ε, α(z) = a, however,
there is also a non-singular solution β(x) = bab, β(y) = a, β(z) = a
since ababa ∼ aba and aa ∼ a. We have also another non-singular
solution γ(x) = b, γ(y) = a, γ(z) = a.
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Our goal is to show that a minimal solution of a stuttering pattern
equation system is of a polynomial length. This implies that the
problem of deciding whether a stuttering pattern equation system is
satisfiable is in NP.

3 Rewriting system for idempotent semigroups

In this section we summarize several properties of the rewriting sys-
tem by Siekmann and Szabo in [21] and prove some technical lem-
mas. First of all we have to give some definitions and results con-
cerning rewriting systems as it can be found e.g. in [5].

A rewriting system R over C is a subset of C∗×C∗. The elements
of R will be called rules. Having such a system R we can define a
rewrite relation →⊆ C∗ × C∗ in the following way:

∀p, q ∈ C∗ : p → q iff ∃(u, v) ∈ R, s, t ∈ C∗ : p = sut, q = svt.

The elements (u, v) of R will be often written as u → v. For a word
q ∈ C∗ we write q 6→ iff there is no q′ such that q → q′ and we say
that q is in a normal form. We define the set of normal forms of
p ∈ C∗ as 〈p〉 = {q | p →∗ q 6→}. We say that R (resp. the relation
→) is terminating iff there is no infinite sequence p1, p2, p3, . . . ∈ C∗

such that p1 → p2 → p3 → . . . . The system R (resp. the relation →)
is confluent iff ∀p, p1, p2 ∈ C∗∃q ∈ C∗ :

if (p →∗ p1 and p →∗ p2) then (p1 →∗ q and p2 →∗ q).

The system R (resp. the relation →) is locally confluent iff ∀p, p1, p2 ∈
C∗∃q ∈ C∗ :

if (p → p1 and p → p2) then (p1 →∗ q and p2 →∗ q).

The following lemma shows the relationship between confluence and
local confluence.

Lemma 4 ([5]). Let R be a terminating rewriting system. Then R
is confluent if and only if R is locally confluent.

It is easy to see that if R is a confluent and terminating rewriting
system, then a word p ∈ C∗ has exactly one normal form, i.e. 〈p〉 =
{q} for some q, and in such a case we simply write 〈p〉 = q.
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Example 2. Let {xx → x | x ∈ C∗, C(x) 6= ∅} be a rewriting sys-
tem over C. Then this system is terminating but it is not conflu-
ent. For p = ababcbabc we have p = (ab)(ab)cbabc → abcbabc and
p = a(babc)(babc) → (ab)(ab)c → abc where abcbabc and abc are in
normal form. It is easy to see that 〈p〉 = {abc, abcbabc}.

In this paper we will exploit the rewriting system by Siekmann
and Szabo in [21].

Lemma 5 ([21]). The rewriting system {xx → x | x ∈ C∗, C(x) 6=
∅} ∪ {uvw → uw | u, v, w ∈ C∗, ∅ 6= C(v) ⊆ C(u) = C(w)} is
confluent and terminating. Moreover for p, q ∈ C∗ we have p ∼ q if
and only if p and q have the same normal form w.r.t. the system.

We will refer the rewriting system {xx → x | C(x) 6= ∅}∪{uvw →
uw | ∅ 6= C(v) ⊆ C(u) = C(w)} as RS. Since RS contains two
different types of rewriting rules we denote RS1 the rewriting system
{xx → x | C(x) 6= ∅} and RS2 the rewriting system {uvw → uw |
∅ 6= C(v) ⊆ C(u) = C(w)}. The corresponding rewrite relations are
denoted →, →1 resp. →2 and for a word p ∈ C∗ the set of its normal
forms is denoted by 〈p〉, 〈p〉1 resp. 〈p〉2.

If we want to investigate the complexity issues for stuttering
equations, the first question we have to answer is the complexity
of checking whether some identity holds in a free band. We will
show that the word problem (i.e. the problem whether p ∼ q) can
be decided in polynomial time by using the rewriting system RS.
If we note that a string of length k contains O(k2) substrings (each
substring is identified by its beginning and its length) we get that
each reduction of RS can be done in polynomial time. Since every
reduction decreases the length of the word, we have a polynomial
time decision algorithm for the word problem in a free band.

We know that RS is confluent and terminating. Our goal in this
section is to show that RS2 is also a confluent and terminating rewrit-
ing system and that 〈p〉 = 〈〈p〉2〉1.

We define a rewrite relation →2l⊂→2 such that suvwt →2l suwt
if and only if |v| = 1 and C(v) ⊆ C(u) = C(w). It is easy to see
that →2⊆→∗

2l and hence →∗
2l=→∗

2. The last relation we will use is
→2m⊂→2, consisting of all rules that leave out the maximal number
of letters in the following sense. Let H(w) resp. T(w) mean the first
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resp. the last letter of the word w. We write suvwt →2m suwt iff
∅ 6= C(v) ⊆ C(u) = C(w) and the following conditions hold:

(i) C(s0u) 6= C(wt0), for any suffix s0 of s and any prefix t0 of t
(including empty s0 or t0, but not both)

(ii) u = 0(u)T(u)
(iii) w = H(w)1(w).

Note that if suvwt →2m suwt then the last letter of s and the
first letter of t (if they exist) are new and different letters1. Also note
that T(u) is the only occurrence of this letter in u and we can write
it as u = 0(u)0(u). Similarly w = 1(w)1(w).

We remind that whenever →2 rewriting applies then so does →2m

and →2l. Moreover a word is in normal form w.r.t. →2 iff it is in nor-
mal form w.r.t. →2m and iff it is in normal form w.r.t. →2l. In what
follows, we will use these trivial observations without any explicit
reference.

We show that 〈p〉2m = 〈p〉2. The inclusion 〈p〉2m ⊆ 〈p〉2 is obvious
and the rest is the content of the following lemmas. For more trans-
parent proofs we use the notation suvwt →2 suwt in the sense that
suvwt →2 suwt where ∅ 6= C(v) ⊆ C(u) = C(w) (and the same for
→2l, →2m). In the following, whenever we say that u is a subword
of sut, we always refer to the concrete (and obvious) occurrence of
the subword u in sut.

Lemma 6. The relation →2m is confluent and terminating.

Proof. The termination is obvious. Let p be a word and suppose that
we can apply two different rules of →2m on p, say p = s1u1v1w1t1 →2m

s1u1w1t1 and p = s2u2v2w2t2 →2m s2u2w2t2.
Let us suppose that u1 is a subword of u2v2w2. Then the whole

u1v1w1 is a subword of u2v2w2, because u2v2w2 is followed by a new
letter (if t2 is non-empty), which is not contained in u1. If u1v1w1 is
a subword of u2 resp. w2 then our two rules commute (i.e. they are
independent of the order of their applications). If it is not the case,
we will show that v1 is a subword of v2. Suppose that the occurrence
of 0(u2) (the last letter of u2) is in u1v1w1, then it is surely in u1.
1 Observe that it doesn’t hold in general that if p →2m q then spt →2m sqt for s, t ∈
C∗. This means that →2m is not a rewriting relation in the previously introduced
sense.
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Similarly if the occurrence of 1(w2) is in u1v1w1, then it is in w1.
This implies that v1 is a subword of v2. Let us define s0 as a prefix
of u2 and t0 as a suffix of w2 s.t. s0u1v1w1t0 = u2v2w2. Observe that
C(s0u1) = C(u2) = C(w2) = C(w1t0) and using the condition (i) in
the definition of →2m we get that s0 = t0 = ε. So we have that
u1v1w1 = u2v2w2 and v1 is a subword of v2, which is a contradiction
with the conditions (ii) and (iii).

If u1 resp. w1 is not a subword of u2v2w2, and u2 resp. w2 is not
a subword of u1v1w1, then our two rules commute. ut

Remark 2. From the previous proof we can see that two arbitrary
applications of →2m, say p = s1u1v1w1t1 →2m s1u1w1t1 and p =
s2u2v2w2t2 →2m s2u2w2t2, commute and they can be nested exactly
in one of the following ways (up to symmetry):

1. w1 = w′
1q, u2 = qu′

2 and p = s1u1v1w
′
1qu

′
2v2w2t2

2. u1v1w1 is a subword of u2

Lemma 7. RS2 is a confluent and terminating rewriting system and
〈p〉2m = 〈p〉2 for any p ∈ C∗.

Proof. The termination is clear. If we have u →2 v, u →2 w then
there is v1 and w1 such that v →∗

2 v1, w →∗
2 w1, u →2m v1 and

u →2m w1. Since →2m is confluent, we have the confluence of RS2.
The equality 〈p〉2m = 〈p〉2 is a trivial consequence. ut

Lemma 8. For any p, q ∈ C∗ such that p = 〈p〉2 and p →1 q it holds
that 〈q〉2 = q. In particular for a word p ∈ C∗ we have 〈〈p〉2〉1 = 〈p〉.

Proof. Assume for the moment that 〈q〉2 6= q, which means that
q = suawt where s, u, w, t ∈ C∗, a ∈ C, a ∈ C(u) = C(w), i.e.
q = suawt →2l suwt. Then (up to symmetry) p = su1xu2awt where
u1, x, u2 ∈ C∗, u1u2 = u and su1 has a suffix x or u2awt has a prefix
x. We discuss four different cases:

1) x is a suffix of u1

2) x is a suffix of su1 and |x| > |u1|
3) x is a prefix of u2aw

4) x is a prefix of u2awt and |x| > |u2aw|.
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In the case 1) we get C(x) ⊆ C(u) = C(w) and we could also use
the reduction p = su1xu2awt →2l su1xu2wt since a ∈ C(u1xu2) =
C(u) = C(w). In the case 2) we may write x = x1u1 and then
p = su1x1u1u2awt = su1x1uawt →2l su1x1uwt. Cases 3) and 4)
are similar and all the four cases lead to a contradiction. ut

4 Upper bound for the size of the solution

This section aims to prove that the Pattern-Equation problem
is in NP by giving a polynomial upper bound on the size of a mini-
mal solution. In the following we assume implicitly that A, B ∈ C∗.
Realise that each reduction of RS just leaves out some subword, the
case uvw → uw is clear, and in the case xx → x we leave out the
right occurrence of x in the square. If we have a word uAv, we can
speak about the residual of A in the sense that the residual con-
sists of all letter occurrences of A that were not left out during the
sequence of reductions. Moreover if we use two different sequences
of reductions by →2m, which give normal form w.r.t. →2, then the
residuals are the same after the both reduction sequences, since any
two applications of →2m commute by Remark 2.

Lemma 9. Let A and B be in normal form and AB →2m AB′ 6→2m

where B′ is the residual of B. Then the word B′ contains at most
one square x2. If B′ contains such a square, then x2 arises from xvx
where v is the word left out by the reduction rule uvw →2m uw, and
x is both a suffix of u and a prefix of w. Moreover in the case when
B′ contains a square we have B′ →1 〈B′〉.
Proof. Assume that we have used AB = suvwt →2m suwt = AB′

and B′ contains a square x2. Since B is in normal form, x2 contains
“space” of the cancelled v, i.e. xx = u1w1 where u1 is a suffix of u
(u starts in A) and w1 is a prefix of wt.

We show that w1 is a prefix of w. In the case when |w1| > |w|
we can deduce that occurrences of T(u1) and H(t) must lie in the
left x since they are the first occurrences of the constants T(u1) and
H(t) in B (from the maximality of →2m). It means that x = u1wz
where z is a prefix of t. Since C(u1) ⊆ C(u) = C(w) ⊆ C(wz), we can
reduce xx = u1wzu1wz →2 u1wzwz and this is a contradiction with
B′ 6→2.

10



So, w1 is a prefix of w. The last letter of u1 is in the left x and
the first letter of w1 is in the right x and we see that x2 arises from
xvx and x is a suffix of u and a prefix of w (i.e. u = u0x, w = xw0).

We have uwt = u0xxw0t →1 u0xw0t. Let us denote B′′ as the
residual of B′; in fact B′′ = u′′

0xw0t where u′′
0 is a suffix of u0.

It is enough to show that the word B′′ does not contain a square
and in such a case we get B′ →1 〈B′〉1 = B′′. Assume that u′′

0xw0t
contains a square y2. Recall xw0t = wt is a suffix of B. Thus y2 is a
subword of u′′

0xw0 since H(t) 6∈ C(u′′
0xw0) and because of the similar

arguments as in the second paragraph. Since u′′
0x and xw0 = w are

subwords of B then y2 contains both T(u′′
0) and H(w0). However,

T(x) = T(u) is the first occurrence of this letter in u′′
0xw0 and it

must be in the left y and from the same reason H(x) = H(w) is in
the right y. This is impossible. So u′′

0xw0t contains no square.
If B′ contains two (or more) squares then one is a subword of the

other and we get two different residuals of B′. This is a contradiction
with B′ →1 〈B′〉1 = 〈B′〉. So B′ contains at most one square. ut
Remark 3. The same arguments as in the proof of Lemma 9 give the
following analogue. If A1, B, A2 are in normal form and A1BA2 →2m

A1B
′A2 6→2m and if the residual B′ of B contains a square x2, then

B′ →1 〈B′〉1 and x has the same properties as in Lemma 9.

Proposition 1. Let A and B be in normal form such that 〈AB〉2 =
AB′ where B′ is the residual of B, then |B′| ≤ |〈B′〉|2.
Proof. By Lemma 7 we have 〈AB〉2 = 〈AB〉2m and we can use the
maximal reductions. W.l.o.g. assume that the reductions →2m did
not leave out some prefix B1 of the word B, otherwise we can start
with the words A and B2 where B = B1B2. Remark 2 shows how
two applications of →2m can be nested. Since A and B are in normal
form, we can see that any reduction →2m uses some letters from both
A and B. Since A is left untouched, we can write A = sn+1sn . . . s1,
B = u1v1w1 . . . unvnwnun+1 where si, ui, vi, wi ∈ C∗ for all possible i
and we have n reductions of the form

sn+1 . . . si . . . s1u1w1 . . . uiviwi . . . un+1 →2m

sn+1 . . . s1u1w1 . . . uiwi . . . un+1

11



where C(vi) ⊆ C(si . . . s1u1w1 . . . ui) = C(wi) and B′ is of the form
B′ = u1w1 . . . unwnun+1.

Since each step of the maximal reduction needs a new letter (the
letter that immediately succeeds wi), we get an upper bound for n
(the number of steps in →∗

2m), n + 1 ≤ card(C(B)). Let us denote
B′′ = 〈B′〉1 = 〈B′〉 and w0 = ε. By induction (where i = 1, . . . , n)
and by Lemma 9 applied on A and 〈w0u1 . . . wi−1ui〉viwiui+1 we can
see that |B′′| ≥ maxn+1

i=1 {|wi−1ui|} since after every application xx →
x we can find each wi−1ui as a subword in the residual of B. Hence

we get |B′′| ≥ maxn+1
i=1 {|wi−1ui|} ≥ 1

n+1

∑n+1
i=1 |wi−1ui| = |B′|

n+1
and

from the fact n+1 ≤ card(C(B)) = card(C(B′′)) we can deduce that

|〈B′〉|2 = |B′′|2 ≥ card(C(B′′)) · |B′′| ≥ (n + 1) |B′|
n+1

= |B′|. ut
The previous proposition can be generalized in the following way.

Proposition 2. Let A1, B and A2 be in normal form such that
〈A1BA2〉2 = A′

1B
′A′

2 where A′
1, B′, A′

2 are the residuals of A1, B,
A2. Then |B′| ≤ 2 · |〈B′〉|2.
Proof. We prove the assertion for A′

1 = A1 and A′
2 = A2, because in

the case when we leave out some occurrences of letters in A1 and A2,
we can reduce A′

i →∗
1 〈A′

i〉 and start with these new surroundings
〈A′

1〉 and 〈A′
2〉 of the word B, since 〈〈A′

1〉B〈A′
2〉〉2 = 〈A′

1〉B′〈A′
2〉. So,

〈A1BA2〉2 = A1B
′A2 where B′ is the residual of B.

We will use the maximal reduction again and for an arbitrary
word Bi ∈ C∗ we denote B′

i its residual (after the applications of
→2m). Three different cases must be discussed.

1) There is a reduction →2m using letters from both A1 and A2.
2) There is a letter in B which is not involved in any reduction →2m.
3) Otherwise.

In the case 1) we can write B = B1vB2, A1 = su1 and A2 = w2t
where su1B1vB2w2t →2m A1B1B2A2. We apply twice Proposition 1
on the words A1B

′
1 and B′

2A2. We can deduce |B′| = |B′
1B

′
2| =

|B′
1|+ |B′

2| ≤ |〈B′
1〉|2 + |〈B′

2〉|2 ≤ 2 · |〈B′
1B

′
2〉|2 = 2 · |〈B′〉|2 where

the last inequality holds, because by Remark 3 we have 〈B′
1〉〈B′

2〉 →1

〈B′〉 (in the case when 〈B′
1〉〈B′

2〉 contain a square) and so |〈B′
1B

′
2〉| ≥

max{|〈B′
1〉|, |〈B′

2〉|}, which implies that 2 · |〈B′
1B

′
2〉|2 ≥ |〈B′

1〉|2 +
|〈B′

2〉|2.
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In the case 2) we can write B = B1B2B3 where B2 is not involved
in any reduction by →2m. Then we have 〈B′〉 = 〈B′

1〉B2〈B′
3〉 and so

by Proposition 1 we get |B′| = |B′
1B2B

′
3| = |B′

1| + |B2| + |B′
3| ≤

|〈B′
1〉|2 + |B2| + |〈B′

3〉|2 ≤ |〈B′
1〉B2〈B′

3〉|2 = |〈B′〉|2.
In the case 3) we can write B = B1v1B2B3B4v2B5, A1 = su1,

A2 = w2t where

A1BA2 = su1B1v1B2B3B4v2B5w2t →2m A1B1B2B3B4v2B5A2,

A1BA2 = su1B1v1B2B3B4v2B5w2t →2m A1B1v1B2B3B4B5A2

are the unique overlapping reductions (Remark 2). We have B′ =
B′

1B2B3B4B
′
5 and B0 = 〈B′

1B2B3〉 is a prefix of 〈B′〉 = 〈B0B4B
′
5〉,

and so |B0| ≤ |〈B′〉|. Let us now observe that |B′| = |B′
1B2B3B4B

′
5|

= |B′
1B2B3| + |B4B

′
5| ≤ |〈B′

1B2B3〉|2 + |B0B4B
′
5| ≤ |B0|2 +

|〈B0B4B
′
5〉|2 ≤ 2 · |〈B′〉|2. ut

Lemma 10. Let sxxt be a word such that 〈sxxt〉2 = sxxt and sxxt
contains another square y2 (|y| ≤ |x|) such that one of these occur-
rences of y lies inside the x2. Then one of the following conditions
holds:

1. y is a suffix of s and a prefix of x
2. y is a prefix of t and a suffix of x
3. y2 is a subword of x

Proof. Since y is a subword of x2, we have C(y) ⊆ C(x) and let us
suppose that conditions 1. and 2. do not hold. If |x| = |y| then we
get C(x) = C(y) and we can apply →2 (w.l.o.g. xvy →2 xy where
v is both a prefix of x and a suffix of y), which is a contradiction.
Assume that |y| < |x|. Notice that the first and the last letter of x
are unique occurrences of these constants in the word x because in
another case we can apply →2l on x2. This implies that y2 does not
contain the first letter of the right x and y2 also does not contain
the last letter of the left x, requiring that y2 is a subword of x. ut
Remark 4. The previous lemma shows that for two applications of
the rules xx →1 x and yy →1 y on a word p in normal form w.r.t.
→2, one of the following conditions holds (up to symmetry):

1. xx and yy do not overlap
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2. yy is a subword of x
3. x = x′z, y = zy′ and xx′zy′y is a subword of p

Lemma 11. If 〈sxxt〉2 = sxxt and sxt contains a square y2 which
is not in sxxt then y = s1xt1 where |s1|, |t1| ≥ 1.

Proof. Since y2 is not in sxxt, we have y2 = s0xt0 where s0 is a suffix
of s and t0 is a prefix of t. If x is not a subword of y then y = s0x1,
y = x2t0 where x = x1x2. Hence s0xxt0 = s0x1x2x1x2t0 →2 s0x1x2t0
since C(x2x1) ⊆ C(y) = C(s0x1) = C(x2t0). The case when x1 or x2

is an empty word (i.e. x is a prefix or a suffix of y) is also included
and we can conclude that y = s1xt1 and |s1|, |t1| ≥ 1. ut
Proposition 3. Let A and B be in normal form, card(C(AB)) ≥ 2
and 〈AB〉2 = AB. Then |AB| ≤ |〈AB〉|2.
Proof. We denote k the length of 〈AB〉1 = 〈AB〉. The case k = 2 is
trivial: there is no word (in normal form w.r.t. →2) over a 2–letter
alphabet of length greater than 4. Now we assume that k ≥ 3.

At first we have a look at the squares in AB. Since A and B are
in normal form, each square has got some letters from A and some
from B. By Remark 4 we have that AB contains at most two squares
because the cases 1. and 2. of Remark 4 are impossible.

By Lemma 8, anytime during any reduction sequence by →1 the
residuals of A and B remain in normal form and their concatenations
are in normal form w.r.t. →2. So by the previous arguments there
are at most two squares and by Lemma 11, if the reduction →1

introduces a new square then it is larger at least by two letters
than the previous one. We use the sequence of reductions which in
each step reduces the smallest square. Then the last reduction in
this sequence reduces a square x2 with the property |x| ≤ k. The
previous reduction reduces a square y2 with the property |y| ≤ k−1
(the case |y| = |x| = k = |〈AB〉| is a contradiction with AB is in
normal form w.r.t. →2). Thus we can see that for the length of AB
we have an upper bound k + k + (k − 1) + (k − 2) + . . . ≤ k2. ut
Proposition 4. There is a polynomial p : IN → IN, such that for an
arbitrary A1, B, A2 ∈ C∗ in normal form and 〈A1BA2〉2 = A′

1B
′A′

2

where A′
i, 1 ≤ i ≤ 2, is the residual of Ai and B′ is the residual of

B, we have |B′| ≤ p(|〈A1BA2〉|).
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Proof. We may assume that card(C(B)) ≥ 2 and by Proposition 2
we know that |B′| ≤ 2 · |〈B′〉|2, which is of course less or equal to
2·|〈A′

1〉〈B′〉|2. Since 〈〈A′
1〉〈B′〉〉2 = 〈A′

1〉〈B′〉 by Lemma 8, we can use
Proposition 3 and we get that 2 · |〈A′

1〉〈B′〉|2 ≤ 2 · |〈A′
1B

′〉|4, which
is again less or equal to 2 · |〈A′

1B
′〉〈A′

2〉|4. Analogously we have that
2·|〈A′

1B
′〉〈A′

2〉|4 ≤ 2·|〈A′
1B

′A′
2〉|8. Thus we have |B′| ≤ p(|〈A1BA2〉|)

for the polynomial p(n) = 2 · n8. ut
Proposition 5. Let p be a polynomial that satisfies the condition
from Proposition 4. If a stuttering pattern equation system {X1 =
A1, . . . , Xn = An} is satisfiable then there exists a solution α with
size(α) ≤ ∑n

i=1 |Xi|· p(|Ai|).
Proof. Of course, we can assume that all Ai’s are in normal form.
Let α be a solution of the stuttering pattern equation system {X1 =
A1, . . . , Xn = An} which minimizes both size(α) and the number of
variables x such that |α(x)| = size(α). Assume for the moment that
there is some x such that size(α) = |α(x)| >

∑n
i=1 |Xi|p(|Ai|). We

may assume that α(x) is in normal form, otherwise we have a smaller
solution.

We now reduce α(Xi) →∗
2m 〈α(Xi)〉2. If we look at an arbi-

trary residual B′ of an occurrence of α(x) in 〈α(Xi)〉2, we see that
|B′| ≤ p(|Ai|) by Proposition 4. This means that there are at most∑n

i=1 |Xi|p(|Ai|) letter’s occurrences in the residuals of all occur-
rences of α(x) in all 〈α(Xi)〉2.

By the assumption |α(x)| >
∑n

i=1 |Xi|p(|Ai|) we get that there
is an occurrence of a letter a in α(x), i.e. α(x) = u1au2, that has
been left out from all the occurrences of α(x) by the rule →2m. We
can erase this occurrence of the letter a from α(x) and we get a
smaller solution β s.t. β(y) = α(y) for y 6= x and β(x) = u1u2. The
homomorphism β is indeed a solution since α(Xi) →∗

2l β(Xi). This
is a contradiction because we have found a smaller solution. ut
The previous considerations lead to the following corollary.

Corollary 1. The Pattern-Equation problem is in NP.

Proof. We can guess a solution α and by Proposition 5, if the system
is satisfiable then there is a solution of a polynomial length. Checking
whether α solves all the equations takes also polynomial time and
so the problem is in NP. ut
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5 NP–hardness of the Pattern-Equation

problem

In this section we show that the Pattern-Equation problem in a
free idempotent semigroup is NP–hard. We use a reduction from the
NP–complete problem 3–SAT (see [17]).

Proposition 6. The Pattern-Equation problem is NP–hard.

Proof. Suppose we have an instance of 3–SAT, i.e.

C ≡ C1 ∧ C2 ∧ . . . ∧ Cn

is a conjunction of clauses and each clause Ci, 1 ≤ i ≤ n, is of the
form

l1 ∨ l2 ∨ l3

where lj, 1 ≤ j ≤ 3, is a literal (lj is a variable from the set Var, pos-
sibly negated – we call it positive resp. negative literal). A valuation
is a mapping v : Var → {T, F}. This valuation extends naturally
to C and we say that C is satisfiable if and only if there exists a
valuation v such that v(C) = T .

We construct a stuttering pattern equation system such that the
system is satisfiable if and only if C is satisfiable. The system will
consist of the following sets of equations (1) – (6) and C = {a, b, c},
V = {x, sx

1, t
x
1 , s

x
2 , t

x
2 | x ∈ Var ∪ Var} ∪ {ya, yb, yc} where Var = {x |

x ∈ Var} is a disjoint copy of Var. For the constants a, b and c there
are three equations

ya = a, yb = b, yc = c. (1)

We define x̃ = x if x is a positive literal, ¬̃x = x if ¬x is a negative
literal and for all clauses Ci ≡ l1 ∨ l2 ∨ l3 we have the equation

ya l̃1l̃2 l̃3ya = aba (2)

for each x ∈ Var we add the equations

ybxxyb = bab (3)

yaxxya = aba (4)
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and finally for each x ∈ Var ∪ Var we have the following equations:

sx
1xtx1 = acb, sx

1yc = ac (5)

sx
2xtx2 = bca, sx

2yc = bc. (6)

The intuition behind the construction is following. If a variable x is
true then x = b and if x is false then x = a. The second equation
ensures that at least one literal in each clause is true and the other
equations imply consistency, i.e. a literal and its negation cannot
be both true (false). In particular, the equation (3) means that at
least one of x and x contains a. Similarly for b and (4). The last two
equations make sure that a variable x ∈ Var ∪ Var cannot contain
both a and b.

Suppose that C is satisfiable, i.e. there is a valuation v such that
v(C) = T . Then we show that α defined below is a solution of our
system. Let us state

α(ya) = a, α(yb) = b, α(yc) = c

and for all x ∈ Var such that v(x) = T let

α(x) = b, α(x) = a

α(sx
1) = ac, α(tx1) = b, α(sx

1) = a, α(tx1) = cb

α(sx
2) = b, α(tx2) = ca, α(sx

2) = bc, α(tx2) = a

and if v(x) = F then

α(x) = a, α(x) = b

α(sx
1) = a, α(tx1) = cb, α(sx

1) = ac, α(tx1) = b

α(sx
2) = bc, α(tx2) = a, α(sx

2) = b, α(tx2) = ca.

Checking that α is a solution (even non-singular) is a routine. The
only interesting equation is (2). This equation is also satisfied by α
since we have the assumption that under the valuation v there is at
least one true literal in each clause.

Let us suppose that α is an arbitrary solution of our system and
we find a valuation that satisfies C. The equation (3) implies that
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C(α(x)) ⊆ {a, b} for all x ∈ Var ∪ Var. We will conclude that it is
not possible that C(α(x)) = {a, b}.

Suppose that it is the case and using the equations (5) we get that
α(x) does not begin with the constant a. For the moment assume
that α(x) begins with a. We have ac = 0(acb) ∼ 0(α(sx

1xtx1)) and
from (1) and (5) we get that a ∈ C(α(sx

1)) ⊆ {a, c}. If C(α(sx
1)) = {a}

then C(0(α(sx
1xtx1))) = {a, b} whereas C(0(acb)) = {a, c}, which is

a contradiction. Otherwise we have C(α(sx
1)) = {a, c} and we get

0(α(sx
1xtx1)) ∼ aca 6∼ ac = 0(acb).

By the similar arguments and using the equations (6) we get
that α(x) does not begin with the constant b. This yields that there
are just three possibilities for α(x), namely α(x) ∼ a, α(x) ∼ b or
α(x) = ε.

By the equations (3) and (1) we know that for all x ∈ Var at
least α(x) ∼ a or α(x) ∼ a. The equation (4) implies that either
α(x) ∼ b or α(x) ∼ b. Similarly for each clause, the equation (2)

with (1) gives that there is j, 1 ≤ j ≤ 3, such that α(l̃j) ∼ b. Let us
finally define the valuation v as v(x) = T if α(x) ∼ b and v(x) = F
if α(x) ∼ a for each x ∈ Var. The valuation is consistent and it holds
that v(C) = T .

This is enough to demonstrate that the Pattern-Equation
problem is NP–hard since the reduction can be done effectively in
polynomial time. ut

It is not difficult to see that the same reduction as above would
also work for the Non-Singular-Pattern-Equation problem,
which is consequently also NP–hard. We can now formulate the main
result of this paper.

Theorem 1. Pattern-Equation and Non-Singular-Pattern-
Equation problems are NP–complete.

As an immediate corollary of this theorem (using Remark 1), we get
the following result.

Corollary 2. AI-matching with only one associative and idempo-
tent function symbol is NP–complete.

Acknowledgements We would like to thank Ivana Černá and Michal
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