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On Ajtai’s Lower Bound Technique for
R-way Branching Programs and the

Hamming Distance Problem

Jakob Pagter∗

BRICS†

Department of Computer Science
University of Aarhus

Denmark

Abstract

In this report we study the proof employed by Miklos Ajtai
[Determinism versus Non-Determinism for Linear Time RAMs
with Memory Restrictions, 31st Symposium on Theory of Com-
putation (STOC), 1999] when proving a non-trivial lower bound
in a general model of computation for the Hamming Distance
problem: given n elements decide whether any two of them have
“small” Hamming distance. Specifically, Ajtai was able to show
that any R-way branching program deciding this problem using
time O(n) must use space Ω(n lg n).

We generalize Ajtai’s original proof allowing us to prove a
time-space trade-off for deciding the Hamming Distance prob-
lem in the R-way branching program model for time between n
and αn lg n

lg lg n , for some suitable 0 < α < 1. In particular we prove
that if space is O(n1−ε), then time is Ω(n lg n

lg lg n).

∗E-mail: pagter@brics.dk. Part of this work was done while the author was
visiting University of Toronto.

†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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1 Introduction

Recently Miklos Ajtai [Ajt99b] was able to prove that any R-way branch-
ing program using sub-linear space deciding Element Distinctness
must use super-linear time. The technical details of the proof are com-
plicated. However, the basic ideas underlying the proof are not and
based on these Ajtai is able to prove an even stronger bound for the
so called Hamming Distance problem—a generalization of Element
Distinctness—using much simpler arguments. An interesting aspect
of these bounds is that they are valid in the well known RAM model with
word size lg R, as time in the R-way model corresponds to the number
of times we read a word from the input, and thus bounds in this model
are valid for RAMs independent on the specific instruction set.

The Element Distinctness theorem is the more interesting of Aj-
tai’s two theorems, as Element Distinctness is an interesting and
very well-studied problem not only when considering time, but also when
considering time-space trade-offs [BFMadH+87, Kar86, Yao94]. On the
other hand, the Hamming Distance proof is arguably the more inter-
esting of the two proofs, as it is gives the best possible bound in the
model using a clear and elegant proof.

The purpose of this report is to study the latter proof with several
goals: 1) To what extent does the Hamming Distance proof generalize,
i.e. for what intervals of time and space do we have a lower bound in
the form of a time-space trade-off? 2) How strong is the proof, e.g. can
the simpler of the two proofs actually be used to prove something for
Element Distinctness? 3) Can the Hamming Distance proof be
used to give non-trivial lower bounds in the Boolean model?

The answer to the two latter questions is negative, but the proof can
be generalized to achieve the following:

Theorem 1 (General theorem, vanilla version) Any R-way branch-
ing program deciding Hamming Distance in time O(k(n) · n) , k(n) <
α lg n

lg lg n
1 for a suitable constant 0 < α < 1 must use space

S(n) > β
n lg n

k(n)10k(n)
,

for some constant β > 0.

1Following [Knu98] we use “lg” to denote the logarithm in base 2.
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The full version of this theorem which can be found in Section 4 will
imply all three answers. For now, let us just observe that Theorem 1
implies that any R-way branching program, and thus any RAM with
word size lg R, solving the Hamming Distance problem using O(n1−ε)
bits of space must use time Ω(n lg n

lg lg n
). In terms of time this is the

strongest result that can be achieved using our results. Similarly, us-
ing time O(n lg n

lg lg n
)) implies using space Ω(n1−ε) for some 0 < ε < 1.

The contributions of this report is the actual generalization of Ajtai’s
original proof, together with some technical modifications allowing us
to achieve a trade-off for time up to Ω(n lg n

lg lg n
) rather than Ω(n lg lg n

lg lg lg n
),

which is what the immediate generalization yields. We also observe that
the proof works for randomized branching programs with one-sided error.
Our final contribution is the presentation of the proof, which we hope is
more accessible than the original.

2 Previous work

Proving lower bounds in general models of computation is notoriously
hard. Early approaches restricted the computational model, for exam-
ple to comparison based models. Natural models such as the RAM do
not obey such restrictions. Another approach has been to restrict the re-
sources available, e.g. limiting the amount of space which we allow a given
algorithm to use. This gives rise to time-space trade-offs, for which sev-
eral breakthroughs have recently been achieved [Ajt99a, Ajt99b, BST98].

A model that has been very useful for this line of study is the branch-
ing program model. In particular much insight has been gained us-
ing the R-way branching program model introduced by Borodin and
Cook [BC82]. Results obtained in this model include general lower
bounds for Sorting [Bea91, BC82] and Universal Hashing [MNT93].
The problems for which the bounds are obtained are characterized by
having a large output domain, which is essential for the employed proofs.
It was only recently that non-trivial lower bounds for a decision problem
were obtained in this model [Ajt99b, BST98].

When proving upper bounds for problems like those mentioned in
this report (Hamming Distance, Element Distinctness, Sorting,
Universal Hashing), the de facto standard model is the transdichoto-
mous RAM. Much debate has taken place over which instruction set is
better, giving rise to some confusion in the literature. One of the very
nice properties of R-way branching programs is that they are strictly
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more powerful than a RAM with word size lg R and any instruction set
as we measure time in terms of how many times we look at the input,
meaning that the bounds obtained in this model will hold in the RAM
no matter what specific instruction set we are working with.

For a great many people the holy grail of computational complexity
is to show non-trivial (i.e. T ∈ ω(n) or even just T > n) lower bounds
for Boolean decision problems. When studying Boolean complexity in
the time-space setting the model used is the Boolean branching pro-
gram. The first non-trivial bound in this model was given by Beame
et al. [BST98], who exhibited a problem for which they could prove a
lower bound of 1.0178 n (sic) on time for space restricted to being sub-
linear. Ajtai [Ajt99a] later found another problem for which he was able
to prove that super-linear time is required when space is sub-linear. His
proof relies heavily on the Element Distinctness proof from [Ajt99b].

Lower bounds in the R-way model can be transferred to the Boolean
model—at a cost.

Proposition 1 Suppose we can prove a lower bound of f(n) for some
problem in the R-way branching program model, then this translates into
a f(n)/ lg R lower for the same problem in the Boolean branching program
model. Likewise for space.

Proof: In the Boolean model we measure the size of the input, n, in bits.
In the R-way model n refers to the number of words each consisting of
lg R bits. Thus, if we translate inputs of size n from the R-way model,
they will become inputs of size n lg R bits in the Boolean model. 2

So if we have that R ∈ nO(1), we need ω(n lg n) bounds in the R-way
model to infer ω(n) bounds in the Boolean model.

3 Model of computation

We employ the R-way branching program model, which is at least as
strong as a RAM with word size dlg Re and any instruction set. In this
report we will only give an informal presentation of the model. For a
detailed account see [BC82] or [Sav98]. Boolean branching programs are
the special case of R = 2, corresponding to looking at one bit at a time.

An R-way branching program is a directed acyclic graph. It has one
node with in degree 0 which is called the start node. Every node with out
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degree 0 is called a terminal node, and is labelled either “YES” or “NO”,
depending on whether the branching program accepts or rejects the given
input. Every node which is not a terminal node is called a computation
node and is labelled with some index i (referring to the i’th word of the
input). A computation node has exactly R outgoing edges, each with a
unique label from 1, . . . , R. The input to the branching program consists
of n elements from some universe of size R (which may be a function
of n), and computation proceeds as follows: we start in the start node
where we read the word indexed by the label of this node; if the value in
this word is r, then we follow the outgoing edge with label r. We continue
this procedure for the computation nodes we encounter until we end up
in some terminal node which tells us the result of the computation.

As measures of complexity we define time T to be the height of our
branching program, and space S to be dlg #nodese.

For the rest of this report we will assume all branching programs to
be levelled, which means that we can partition the nodes into T disjoint
sets V1, V2, . . . VT , such that all edges originating from Vi go to Vi+1. For
asymptotic purposes we may assume this without loss of generality. For
proofs and definition see e.g. Borodin et al. [BFK+81].

In this model of computation all “internal” computation is free, we
only “pay” for reading the input. As a consequence we have the following
easy proposition.

Let ∆ ⊆ U ×U be a binary relation on a universe U . For such a
relation we define a computational decision problem D∆ ⊆ Un: given
x = 〈x(1), x(2), . . . , x(n)〉, D∆(x) = “YES” if and only if ∃i 6= j :
∆(x(i), x(j)).

Proposition 2 Let ∆ be any binary relation on a universe U of size R.
We can decide D∆ on Un in time T and space S such that

T ·S ∈ O(n2 lg R),

for time between n and n2.

Proof: First observe that in time n we may decide ∆ using Rn nodes
or n lg R bits of space, using an R-way decision tree—i.e. reading all
the inputs once, remembering them, and then exploit the free internal
computation.

This easily generalizes by splitting the input into b(n) blocks each
containing n/b(n) words. Now what we will do is do decide ∆ for each of
the O(b(n)2) pairs of blocks. For each pair we may do the computation
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in time 2n/b(n) using 2(n/b(n)) lg R bits of space. In total we use time
O(nb(n)) and space O((n/b(n)) lg R), yielding the desired trade-off. 2

For time n this construction off course works for any problem, which
shows that for time Θ(n) one cannot give space-bounds better than
Ω(n lg n) (when R = 2c lg n), i.e. we cannot hope for a better general
bound for any problem in this model.

4 The result

Before stating the result, a few definitions are required. We study prob-
lems on inputs x = 〈x(1), x(2), . . . , x(n)〉 ∈ Un—typically U = {0, 1}c lg n

(where c is a suitable fixed natural number), i.e. x(i) ∈ {0, 1}c lg n and
|U | = nc. We emphasize the difference in notation between xi ∈ Un

(an entire input consisting of n elements from U) and x(i) ∈ U (the i’th
element from U of the input x).

For 0 < γ < 1
2

we define the parameterized Hamming Distance
relation HDγ(a, b) ⊂ {0, 1}c lg n×{0, 1}c lg n which relates a and b if and
only if they differ in at most γc lg n positions. To alleviate notation HD
will refer to HD1/4 and Hamming Distance, or DHD, will refer to the
computational version of this relation with γ = 1/4. Equality is the
problem of deciding whether the input contains to identical words. It
should be clear that Hamming Distance is a natural generalization of
Equality 2.

A relation ∆ is said to be λ(n)−full iff for any pair of subsets of U of
size bigger than λ(n)|U | there exists a pair of elements, one from each of
the two subsets, satisfying the relation. Formally, ∆ is λ(n)−full if the
following holds

∀A, B ⊆ U : |A|, |B| > λ(n)|U | ⇒ ∃a ∈ A, b ∈ B : ∆(a, b) (1)

It should be clear that Equality is 1
2
− full, as any two subsets of U

containing more than half of U will have a non-empty intersection. In
[Ajt99b] it is proved that for all 0 < γ < 1

2
, HDγ, and in particular HD,

is 2−δ lg n − full on U = {0, 1}c lg n where c and δ are natural numbers
suitably chosen (independent on n, but depending on γ) such that c > δ.

2When Ajtai says Element Distinctness in [Ajt99b], he actually means the
dual problem Equality.

6



This means that if we have two subsets of U of size bigger than 2(c−δ) lg n,
we are guaranteed to have two elements with low Hamming distance.

A relation ∆ is said to be ζ(n)−sparse iff the number of inputs of
length n for which D∆(x) = “YES” is less than ζ(n)|U | (a ζ(n) fraction
of all possible inputs). Intuitively this means that the computational
version of the relation has many “NO” instances. In [Ajt99b] it is proved
that for all 0 < γ < 1

2
HDγ is 1

2
− sparse for a fixed c ∈ N (recall that

|U | = nc) and n sufficiently large. This means that for at least half of all
input to Hamming Distance the answer is “NO”. Ajtai [Ajt99b] also
proves that Equality is c= − sparse for a suitable fixed c= > 0.

We are now ready to state the result.

Theorem 2 (General theorem, full version) Let ∆ be a λ(n)−full
and (non-trivial) ζ(n)−sparse relation on U×U with |U | = R. Consider
an R-way branching program deciding D∆, in time T (n) = k(n) ·n and
space S(n). If,

72 k(n) lg k(n) < lg 1
λ(n)

, (2)

and

lg 1
ζ(n)

<
n lg 1

λ(n)

k(n)5k(n)
. (3)

Then,

S(n) ≥ n lg 1
λ(n)

k(n)4k(n)
. (4)

Let us discuss this theorem. First of all, many of the constant in the
above statement may possibly be improved, albeit not significantly.

What kind of fullness is required to achieve a non-trivial result?
¿From Ajtai’s paper it might seem as if the Hamming Distance proof
works only for what we might call polynomial fullness i.e., 1/|U |O(1)-
fullness, whereas the Element Distinctness (or rather Equality)
proof handles constant fullness. If k(n) ∈ O(1), we see from (2) that
constant fullness, specifically λ(n) < 2−144, actually does give rise to a
non-trivial lower bound. However, it does not seem to be the case that the
parameters of the proof can be improved enough to achieve anything for
1
2
−fullness, i.e., we cannot prove anything for Element Distinctness,

but we can get closer than what Ajtai’s original statement suggests.
If λ(n)|U | < 1 the relation in question would be trivial to decide (as

two subsets of size 1 would then be enough to ensure satisfaction of the
fullness property), hence we can assume that λ(n)|U | ≥ 1. Combining
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this with (2) yields,

lg |U | ≥ lg
1

λ(n)
> 72 k(n) lg k(n).

Recalling Proposition 1, we see that the best result we can achieve in the
Boolean model is,

T (n)

lg |U | <
k(n)·n

126 k(n) lg k(n)
∈ ω(n).

In conclusion, no matter how we might chose the parameters, we can get
no non-trivial implications for the Boolean model.

As stated previously, on U = {0, 1}c lg n Hamming Distance is
nδ − full and 1

2
− sparse, giving Theorem 1 as corollary to Theorem 2.

Interesting special cases include Ajtai’s original theorem: time in O(n)
implies space in Ω(n lg n), and space O(n1−ε) implies time Ω(n lg n

lg lg n
).

5 Proof of Theorem 2

We would like to stress that almost all the arguments closely follow those
of Ajtai [Ajt99b], yet we give the proof in full detail. This has two
reasons: 1) in the generalized version many constants, say c, are replaced
by functions, c(n), and it is imperative to give the full proof to see exactly
where the proof holds and where it breaks down; 2) it makes it clear
exactly where we deviate from the original proof.

The proof presented here deviates from that of Ajtai in two aspects.
When counting we use tighter estimates where it is possible, this has little
effect on Ajtai’s original proof, but significantly extends the interval of
time for which the generalized proof works—an immediate generalization
will work for time up to roughly n lg lg n

lg lg lg n
, whereas our proof works up to

Θ(n lg n
lg lg n

). Another deviation is our proof of Lemma 1 (corresponding to
Lemmas 7 and 8 in [Ajt99b]). Besides these technical differences, changes
have also been made for reasons of presentation.

The overall intuition behind the proof is as follows. Suppose we have
a “large” set of inputs for which any algorithm basically behaves the
same, i.e. it gives the same answer for all these inputs. Suppose further
that the nature of the problem at hand is such that if we have a large set
of inputs (of a certain kind), then for at least one of these inputs must
be accepted. Ajtai’s scheme is to use the space restriction to construct a
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large set of inputs that are all rejected by the algorithm. The structure
and size of this set will be such that we can utilize the fullness property
of our problem to ensure that at least one input, which we will call xfail,
in the above set must be accepted. This of course gives a contradiction
on the assumed time and space restrictions of the algorithm.

Assume we have an R-way branching program, A, deciding D∆ in
time k(n) ·n and space S(n) satisfying (2) and (3) but not (4). We
will show that then there exists an input x such that A(x) = “NO” but
D∆(x) = “YES”, contradicting our assumption that is, assuming (2) and
(3) we may conclude (4).

Define state(x, t) as the state of A (one of 2S(n)) after time step t
on input x. For a time interval I, define state(x, I) to be state(x, tI),
where tI is the last element of I that is, given x and a time interval
I we get the state of the program when leaving I. An arbitrary set of
times T may be written as a disjoint union of maximal intervals Ij , i.e.
T = ∪jIj. If we assert that state(x, T ) = state(y, T ) we mean that
∀j : state(x, Ij) = state(y, Ij).

We will construct xfail from another input x with some desirable prop-
erties. The first property is that D∆(x) = “NO” and hence A(x) =
“NO”, as A is assumed to decide D∆ correctly. Suppose that we have
two disjoint subsets of indices W1, W2 ⊂ {1, . . . , n} and two disjoint sub-
sets of times T1, T2 ⊂ {1, . . . , k(n)·n}. Suppose now that on input x the
indices of Wi (i = 1, 2) are not read outside Ti; let

Sx
i ⊆ {xi|( obtained by modifying x on Wi only)

∧ state(x, Ti) = state(xi, Ti)},
i.e. x and xi are identical outside Wi and each time we leave Ti on
both x and xi we are in the same state. Hence A(x) = A(xi) for all
xi ∈ Sx

i as the only differences between the two inputs are in Wi and
hence “forgotten” when we leave Ti, the only place where Wi is read.

Based on x we can thus construct x1 and x2 such that A(x) = A(x1) =
A(x2) = “NO”. As W1 and W2 are disjoint we may make these two
different changes to x simultaneously, obtaining the input xfail. We would
like to ensure that A(x) = A(xfail) = “NO”, but currently this might not
be the case. The reason is that in the set of time intervals, say T1, A is
in principle able to look outside W1 and hence A might look at W2. This
is not a problem as long as x on W2 is unchanged, but when making the
two changes simultaneously we no longer have any guarantee that the
states are fixed. The way to eliminate this problem is to enforce that the

9



indices of Wj are not read in Ti on xi, removing the possibility that A
detects the change in W2 when in T1 and vice versa.

We can now construct xfail such that A(xfail) = A(x) = “NO” by
making changes to x on W1 and W2. The plan is of course to choose
xfail such that D∆(xfail) = “YES”, giving the desired contradiction. One
way to achieve this is to have so many choices for each of x1 and x2 that
we can put the fullness property into play. If S ⊂ Un, let S(l) be S
projected onto the l’th dimension (or index).

Proposition 3 Let W ⊆ {1, . . . , n} and let S ⊂ Un be a set of inputs
that are all identical outside W . If |S| > (λ(n)|U |)|W | then for at least
one l ∈ W it will be the case that |S(l)| > λ(n)|U |, i.e. some x(l) (over
x’s in S) must take on more than λ(n)|U | values from U .

Proof: Suppose that ∀l ∈ W it is the case that |S(l)| ≤ λ(n)|U | then
clearly |S| ≤ (λ(n)|U |)|W |. 2

If we have many different inputs on Wi to choose from, there will be
an index for which we have many values to choose from, allowing us to
exploit the fullness property.

Based on the above idea, we define a µ(n)−hard set, HA, for a branch-
ing program A deciding D∆ in time k(n)·n.

Definition 4 (Hard Set) A set of inputs HA ⊂ Un is called a
µ(n)−hard set for a branching program A deciding D∆ in time k(n) ·n
and space S(n) if we have
• W1, W2 ⊂ {1, . . . , n} with W1 ∩ W2 = ∅ and |Wi| ≥ µ(n)·n,
• T1, T2 ⊂ {1, . . . , k(n)·n} with T1 ∩ T2 = ∅,
such that ∀x ∈ HA :
• D∆(x) = “NO”.
• The indices of Wi are only read in Ti (on x).
• state(x, Iij) is fixed for all the intervals comprising Ti—i.e. every

time we leave Ti, A will behave identically for all x ∈ HA.

2

The proof of Theorem 2 splits naturally in three parts. In Lemma
1 we show that if we have a large hard set, we may obtain x1 and x2

in “many” ways (relative to the fullness property). Then in Lemma 2
we show that given the time and space restrictions there exists a “large”
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hard set (relative to the sparseness property). Finally these two lemmata
are combined.

Lemma 1 Let ∆ be a λ(n)−full relation on U, A be a branching program
deciding D∆ in time k(n)·n and space S(n), and let HA be a µ(n)−hard
set for A so that,

|HA| > 4λ(n)µ(n)·n|U |n,

then there exists some x ∈ HA from which we can find xfail such that
D∆(xfail) = “NO” but A(x) = “YES”.

Proof: Define x|W , where W ⊆ {1, . . . , n}, to be x where all values
at positions are overwritten with some standard symbol, say ⊥ 6∈ U .
Suppose we have some set of inputs H ⊆ U and some set of indices
W ⊆ {1, . . . , n}; define

Sx = {y ∈ H|x|W = y|W}, (5)

i.e. the set of elements in H which are identical to x outside W . We
claim the following

#x ∈ HA with |Sx| ≤ 1
4

|H|
|U |n−|W | is less than 1

4
|H|. (6)

Given W , define a partition of H according to Sx, i.e. x and y are in the
same class if and only if Sx = Sy (thus y ∈ Sx, and x ∈ Sy). Clearly
there are no more than |U |n−|W | classes, as we have at most this many
ways of choosing a y which is different from x outside W . The number of
inputs in classes of size at most 1

4
|H|/(|U |n−|W |) is at most this number

(the maximum size of these classes) times |U |n−|W | (the maximum total
number of classes), implying (6).

Based on a hard set HA, let Sx
i be defined as in (5) based on HA

and Wi. Clearly (6) holds for Sx
1 and Sx

2 , so these sets are relatively
large for most inputs in HA. We would like an x for which both Sx

1 and
Sx

2 are large, but in principle the x’s that give large Sx
1 might not be

the same as those that give large Sx
2 (and vice versa). According to (6),

|Sx
i | ≥ 1

4
|H|/(|U |n−|W |) for 3

4
of the elements in H , hence for 1

4
of these

elements both Sx
1 and Sx

2 are no smaller than 1
4
|H|/(|U |n−|W |); certainly

for any HA, W1 and W2, this gives us an x such that both Sx
1 and Sx

2 has
this size.

By Proposition 3 we would like to have |Sx
i | strictly larger than

(λ(n)|U |)|Wi|, as this would give xfail such that by the fullness property
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D∆(xfail) = “YES”, but A(xfail) = A(x) = 0, as x ∈ HA. We would like
|Sx

i | > (λ(n)|U |)|Wi|, which is the case if 1
4
|H|/(|U |n−|W |) > (λ(n)|U |)|Wi|.

Recalling that |Wi| ≥ µ(n)·n we are done. 2

Lemma 2 Let ∆ be a ζ(n)− sparse relation on U, A be a branching
program deciding D∆ in time k(n) ·n and space S(n), and let µ(n) =
k(n)−4k(n). A has a µ(n)−hard set of size

|HA| ≥ ζ(n)|U |n(
n

µ(n)·n
)2

(3k(n))8k(n) 24k(n)S(n)
.

Proof: We start by constructing a partitioning Px of the indices as
follows. Split time into 9k2(n) intervals of length3 n/(9k(n)). Two indices
i and j are in the same class of Px if and only if they are read in exactly
the same intervals on input x. P ′

x is Px restricted to classes of Px whose
members are queried in at most 2k(n) time intervals on x. Finally Γx is
P ′

x restricted to classes whose size is at least n/(4|P ′
x|).

Define intervals(x, W ) to be the intervals in which W is queried
on input x. By construction, intervals(x, W ) contains at most 2k(n)
intervals for all W ∈ Γx.

Our restricted partitioning Γx has the following properties,

∀W ∈ Γx : |W | ≥ µ(n) · n, (7)

∀x : ∃W1, W2 ∈ Γx : intervals(x, W1) ∩ intervals(x, W2) = ∅. (8)

Each class of P ′
x is uniquely identified by the corresponding set of at most

2k(n) intervals in which the indices of the class are read. Hence we may
bound the number of classes in P ′

x by the number of ways to choose up
to 2k(n) intervals from 9k2(n),

|P ′
x| ≤

2k(n)∑
i=0

(
9k2(n)

i

)

= 29k2(n)H(
2

9k(n)
)−1

2
lg 9k2(n)+O(1)

≤ k(n)3k(n),

3The interval length is parameterized in [Ajt99b], however the present choice leaves
little room for improvement.
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according to [GKP94, p. 492]4, H(m) is the entropy function m lg 1
m

+
(1 − m) lg 1

1−m
. By the lower bound on the size of the classes in Γx we

have proved (7).
It is a fact that no more n/2 elements can be queried in more than

2k(n) ·n intervals, as then we would have more than n indices in total;
hence P ′

x covers at least n/2 elements. Classes of P ′
x with size no greater

than n/(4|P ′
x|) can cover at most n/4 indices (as we have most |P ′

x| such
classes). Thus Γx covers at least n

2
− n

4
= n

4
indices.

Define indices(x, I) to be the indices queried in time interval I on in-
put x. We will now prove (8); in fact we will prove the stronger statement
that

∀W1 ∈ Γx ∃W2 ∈ Γx : intervals(x, W1) ∩ intervals(x, W2) = ∅. (9)

Suppose that this is not the case, namely that for some fixed x there
exists W1 such that

∀W2 : intervals(x, W1) ∩ intervals(x, W2) 6= ∅, (10)

which implies that for each W2 there exists some interval
I ∈ intervals(x, W1) such that W2 ⊆ indices(x, I)—all of W2 is
read in I on x. This implies that

⋃
W2∈Γx

W2 ⊆
⋃

I∈intervals(x,W1)

indices(x, I).

4These estimates are not correct for k(n) ∈ O(1), in which case we can just use
Ajtai’s original estimate. Also, using

(
n
k

)
< (n

e )k gives a bound that is almost as good,
but we use the above estimate to emphasize that significantly better estimates are
not possible.
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Of course ∪W2∈ΓxW2 covers all of Γx, but its size is bounded by

|Γx| ≤
∣∣∣∣

⋃
W2∈Γx

W2

∣∣∣∣
≤

∣∣∣∣
⋃

I∈intervals(x,W1)

indices(x, I)

∣∣∣∣
≤

∑
I∈intervals(x,W1)

|indices(x, I)|

≤
∑

I∈intervals(x,W1)

n

9k(n)

≤ 2k(n)
n

9k(n)

< 1
4
n,

hence (10) is not true, as |Γx| ≥ 1
4
, and we may conclude (9), which in

turn imply (8).
To conclude the proof we will use Γx to construct a hard set. For each

x ∈ Un with D∆(x) = “NO” let W1 and W2 be the set of indices whose
existence is promised in (8), and let Ti = intervals(x, Wi). Define Hx

A
to be the set of y ∈ Un that satisfy,
• D∆(x) = “NO”.
• Ti = intervals(y, Wi) (= intervals(x, Wi)), hence Wi is a class of

both Γx and Γy.
• state(x, Ti) = state(y, Ti).

Define Fi to be a function that given x and Ti lists state(x, Iij) where
Ti is comprised of ∪jIij ; Fi gives an ordered lists of the states of A each
time we leave Ti.

The above is a hard set as (7) means that |Wi| ≥ µ(n)·n as required,
and the indices of Wi are certainly not read in Tj , in fact they are only
read in Ti.

Each hard set Hx
A is uniquely determined by the six-tuple

〈W1, W2, T1, T2, F1, F2〉. If we can choose this six-tuple in at most h(n)
ways, there must be an x such that |Hx

A| ≥ ζ(n)|U |n
h(n)

as there are at least
ζ(n)|U |n inputs x with D∆(x) = “NO”.

Observe that Wi need not be bigger than µ(n) ·n; if we have more
indices than this, just take the first µ(n) ·n. This may collapse a number
of classes into one, meaning that we may choose each class Wi in

(
n

µ(n)·n
)

ways. This restriction on the size of Wi significantly increases the size of
the interval in which we can obtain a bound.

14



As Ti consists of at most 2k(n) out of 9k(n) intervals, the number
of ways to choose Ti is bounded by (9k(n))2k(n) = (3k(n))4k(n) (actually
a better estimate should be possible, but it will not improve the result
significantly). Finally, as Ti consists of at most 2k(n) intervals we fix the
state of our computation in at most this many places, each with 2S(n)

choices, meaning that Fi can be chosen in at most (2S(n))2k(n) ways. In
total we get that

h(n) ≤
(

n

µ(n)·n
)2

· ((3k(n))4k(n)
)2 · ((2S(n))2k(n)

)2

= (

(
n

µ(n) · n
)2

(3k(n))8k(n) 24k(n)S(n).

2

Proof of Theorem 2: Let ∆ be a λ(n)−full and ζ(n)−sparse relation on
U . Assume that A is an R-way branching program deciding D∆ on Un

in time k(n)·n and space S(n), such that (2) and (3) but not (4) holds.
Based on these assumptions our aim is to arrive at a contradiction, thus
proving the theorem. Specifically we will show that there exists an input
xfail such that D∆(xfail) = “YES”, but the branching program answers
A(xfail) = “NO”.

Combining Lemma 1 and Lemma 2 we see that we can find xfail if

ζ(n)|U |n(
n

µ(n)·n
)2

(3k(n))8k(n) 24k(n)S(n)
> 4λ(n)µ(n)·n|U |n.

Using Stirling’s approximation for n! (see eg. [Knu97, p. 115]) we get
that

lg

(
n

µ(n)n

)
< 3µ(n)n lg 1

µ(n)

for n sufficiently large, it is sufficient that

2 + lg 1
ζ(n)

+ 6µ(n)n lg 1
µ(n)

+ 8k(n) lg 3k(n) + 4k(n)S(n) < µ(n)n lg 1
λ(n)

.

If k(n) < n (which it will be) then 8k(n) lg 3k(n)+4k(n)S(n) < 12k(n)S(n)
as S(n) > lg n (necessarily). Likewise the constant 2 is dominated by
k(n)S(n). Hence, the above is satisfied if

lg 1
ζ(n)

+ 6µ(n)n lg 1
µ(n)

+ 13k(n)S(n) < µ(n)n lg 1
λ(n)

.
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This certainly holds if each of the three terms on the left hand side is
less than a third of the term on the right hand side. We have the desired
xfail if

lg 1
ζ(n)

< 1
3
µ(n)n lg 1

λ(n)
,

6µ(n)n lg 1
µ(n)

< 1
3
µ(n)n lg 1

λ(n)
,

13k(n)S(n) < 1
3
µ(n)n lg 1

λ(n)
.

Which is implied by (2), (3) and ¬(4), since µ(n) = k(n)−4k(n). 2

6 Randomization

Definition 5 (Randomized R-way branching program) A random-
ized R-way branching program using r random bits, consists of a collec-
tion of 2r deterministic R-way branching programs. Each execution of
the randomized branching program starts by uniformly at random choos-
ing one of the 2r deterministic programs which is then executed.

We say that a randomized R-way branching program A deciding a
problem D has constant 1-sided error if for 0 ≤ ε < 1

2
the following holds

• If D(x) = 1 then our randomized branching program A answers cor-
rectly on input x.

• If D(x) = 0 then Pr[A(x) = 0] > 1−ε.

2

Corollary 6 The statement of Theorem 2 holds for randomized R-way
branching programs with constant 1-sided error if we modify the constants
slightly.

Proof: By a standard averaging argument, one of the 2r determinis-
tic branching programs must correctly answer “NO” for at least a 1−ε
fraction of the inputs with answer “NO”. Apply Theorem 2 to this deter-
ministic branching program computing D∆. Hence we only reduce the
size of our hard set with a factor ε. 2
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