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SOAP — Semantics of Objects As Processes

Purpose One of the most widespread programming paradigms today is
that of object-oriented programming. With the growing popularity of the
language C++ and the advent of Java as the language of choice for the World
Wide Web, object-oriented programs have taken centre stage. Consequently,
the past decade has seen a flurry of interest within the programming language
research community for providing a firm semantic basis for object-oriented
constructs.

Recently, there has been growing interest in studying the behavioural
properties of object-oriented programs using concepts and ideas from the
world of concurrent process calculi, in particular calculi with some notion of
mobility. Not only do such calculi, as the well-known m-calculus by Milner
and others, have features like references and scoping in common with object-
oriented languages; they also provide one with a rich vocabulary of reasoning
techniques firmly grounded in structural operational semantics.

The process calculus view has therefore proven to be advantageous in
many ways for semantics and verification issues. On the one hand, the use
of encodings of object-oriented languages into existing typed mobile process
calculi enables formal reasoning about the correctness of programs; on the
other hand, using standard techniques from concurrency theory in the setting
of calculi for objects may help in reasoning about objects, e.g. by finding ap-
propriate and mathematically tractable notions of behavioural equivalences.
Encodings may also help clarify the overlap and differences of objects and
processes, and suggest how to integrate them best in languages with both.

The aim of the one-day SOAP workshop is to bring together researchers
working mainly in this area, but in related fields as well, where other process
models or calculi are used as a basis for the semantics of objects.

Contents The '99 edition of SOAP, taking place as a satellite workshop of
ECOOQOP 99, is composed of two complementary thematic building blocks.

The first is addressing the motto ‘Semantics of Objects As Processes’ lit-
erally in that objects are represented as a derived concept within a framework
of processes; we are happy to welcome Oscar Nierstrasz, Markus Lumpe, and
Jean-Guy Schneider as invited speakers to present the work they have been
accomplishing in this area—starting out from a mobile process calculus—and
to let us learn about their conclusions. This session is rounded up by a veri-
fication approach using a temporal logic as a target setting for, in this case,
UML-style objects.

The second building block, divided into a session on behavioral subtyping
and another one on behavioral typing, is more to be seen as an adaptation



of the process-theoretic viewpoint to some object-oriented framework. While
the typed A-calculus is a firm ground to study typing for object-oriented
languages, the typing of concurrent objects poses particular problems due to
synchronization constraints. A static notion of typing is not powerful enough
to capture dynamic properties of objects’ behavior, like non-uniform service
availability. Concurrency theory inspires dynamic notions of typing and sub-
typing, and the works that constitute this block of SOAP ’99 exemplify the
research currently being done in the field.

By means of a formal refereeing process, among the nine submitted ab-
stracts five were recommended by the programme committee (Hans Hiittel,
Josva Kleist, Uwe Nestmann, and Anténio Ravara) and are presented here.
(It is expected that the contributions will also appear elsewhere at other
conferences or in journals.)

We would like to thank the organizers of ECOOP ’99, in particular Ana
Maria Moreira, for helping us logistically to set up the SOAP workshop, we
thank BRICS, in particular Uffe H. Engberg, for the publication of these
proceedings, and we thank Massimo Merro and Silvano Dal-Zilio for their
assistance in the refereeing process.

Hans Hiuttel Josva Kleist Uwe Nestmann Anténio Ravara
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Piccoh — A Small Composition Language
Oscar Nierstrasz

Software Composition Group, University of Berne,
Institute for Computer Science and Applied Mathematics (IAM),
Neubiickstrasse 10, CH-3012 Bern, Switzerland.

oscar@iam.unibe.ch
http://www.iam.unibe.ch/ ~oscar

Abstract

Although object-oriented languages are well-suited to implementing soft-
ware components, they fail to shine in the construction of component-based
applications, largely because object-oriented design tends to obscure a com-
ponent-based architecture. We propose to tackle this problem by clearly
separating component implementation and composition. Piccola is a small
“composition language” that embodies the paradigm of “applications = com-
ponents + scripts.” Piccola models components and composition abstrac-
tions by means of a unifying foundation of communicating concurrent agents.
Flexibility and extensibility are obtained by modelling both interfaces to
components and the contexts in which they live by extensible records, or
“forms”. We illustrate the realization of an architectural style in Piccola and
show how external components may be adapted and composed according to
the style. We show how separating components from their composition can
improve maintainability.






TherL-Calculws - A Formal Foundation for
Software Composition

Markus Lumpe

Software Composition Group, University of Berne,
Institute for Computer Science and Applied Mathematics (IAM),
Neubiickstrasse 10, CH-3012 Bern, Switzerland.

lumpe@iam.unibe.ch
http://www.iam.unibe.ch/ ~lumpe

Abstract

In this talk, we present a formal language for software composition that
is based on the-calculus. More precisely, we present thé-calculus, a
variant of ther-calculus, in which agents communicate by passing extensi-
ble, labeled records, or so-called “forms”, rather than tuples. This approach
makes it much easier to model compositional abstractions than it is possi-
ble in the plainr-calculus, since the contents of communications are now
independent of positions, agents are more naturally polymorphic since com-
munication forms can be easily extended, and environmental arguments can
be passed implicitly. The £-calculus is developed in three stages: (i) we
analyse whether the-calculus is suitable to model composition abstrac-
tions, (ii) driven by the insights we got using thecalculus, we define a
new calculus that has better support for software composition (e.g., provides
support for inherently extensible software construction), and (iii), we define
a first-order type system with subtype polymorphism that allows us to stat-
ically check an agent system in order to prevent the occurrences of runtime
errors.






Object Models in ther £-Calculus
Jean-Guy Schneider

Software Composition Group, University of Berne,
Institute for Computer Science and Applied Mathematics (IAM),
Neubiickstrasse 10, CH-3012 Bern, Switzerland.

schneidr@iam.unibe.ch
http://www.iam.unibe.ch/ ~schneidr

Abstract

The development of concurrent object-based programming languages
has suffered from the lack of any generally accepted formal foundation for
defining their semantics, although several formal models have been pro-
posed. Most of these models define objects and object-oriented abstractions
as primitives, but they either do not incorporate important features found in
object-based programming languages (e.g., they lack inheritance), hard-wire
the underlying inheritance model, or integrate concepts in a non-orthogonal
way. As an approach to overcome the problems of existing models, we
present a (meta-level) framework for object models instifecalculus. We
show that common object-oriented programming abstractions such as in-
stance variables and methods, different method dispatch strategies as well
as class features are most easily modelled when class metaobjects are ex-
plicitly reified as first class entities. We illustrate that various concepts
which are typically merged (or confused) in object-oriented programming
languages can be expressed in a more natural way by making a clear sep-
aration between functional elements (i.e. methods) and their compositions
(i.e. inheritance). Furthermore, we show that the same concepts can also be
applied for modelling mixins, mixin application, and mixin composition.






Composing object-oriented specifications and
verifications with ¢TLA

Giinter Graw, Peter Herrmann, Heiko Krumm
Dept. of Computer Science, Dortmund University, D-44221 Dortmund, Germany

Internet: {graw|herrmann|krumm}@ls4.cs.uni-dortmund.de

Abstract

In order to support formally correctness preserving refinement steps of object-
oriented system designs, we refer at one hand to the practically well-accepted Unified
Modelling Language (UML) and at the other hand to L. Lamport’s Temporal Logic
of Actions (TLA) which supports concise and precise notions of properties of dy-
namic behaviours and corresponding proof techniques. We apply cTLA which is an
extension of TLA and supports the modular definition of process types. Moreover,
in ¢TLA process composition has the character of superposition which facilitates the
modular transformation of UML diagrams to corresponding formal ¢TLA process
system definitions and their structured verification. We exemplify transformation
and formal verification. Moreover we outline the application of this method for
the establishment of domain-specific specification frameworks which can directly
support the UML-based correct design of OO-systems.

1 Introduction

Meanwhile, the practical design of object-oriented application systems is mostly based
on the Unified Modelling Language UML [21]. Systems are modeled and described by a
series of UML diagrams where each diagram corresponds to a partial view of a system
and concentrates on certain property types and aspects. So, class diagrams describe
the static class structure. Use case diagrams are devoted to specific utilizations and the
objects instances which are responsible for their realization. Collaboration diagrams focus
on the partners and interactions of specific cooperation relations. Statechart diagrams
describe the behaviour of object instances. While several approaches exist which assign
formal semantics to the different diagram types (e.g., [16]), usually UML-based designs
are non-formal. Since the diagrams support intuitive interpretations, the designers easily
understand their pragmatical meanings without reference to formal models. Therefore,
often formal designs are not desirable, especially, since the development and analysis
of formal models would introduce considerable additional costs. Furthermore, for many
interesting formal design checks separate formal models of single diagrams would not
suffice. Instead, very complex models of diagram combinations would be necessary which
model a set of diagrams in context with each other in order to cover interrelations.

The design of critical systems, however, can essentially profit from formal verifications.
We expect benefits at least from formal checks of those functions, aspects, and properties



which are as well crucial as their provision depends on complex and not easy-to-understand
mechanisms. In particular, aspects of the design of dynamic object system configuration
at runtime, of concurrent execution threads, of combined behaviour of object instances,
and of object interactions are inherently complex and difficult to master without formal
support. In order to support formal modelling and analysis of partial aspects of UML-
based object-oriented system designs, especially with respect to questions of concurrency,
object behaviour, and interactions, we developed transformations from UML diagrams to
formal ¢TLA specifications [9] and underlying state transition system models.

¢TLA is based on L. Lamports Temporal Logic of Actions (TLA) [17] and refers to the
concepts of state transition systems, refinement mappings [1], and the separate definition
of both safety and liveness properties. Unlike TLA, the ¢cTLA composition principle is
oriented at CCS [19] and Lotos [14] and applies the principle of superposition like DisCo
[6]. In comparison with [2], the ¢TLA processes do not interact via shared variables but
perform joint actions. This stateless way of interaction has different benefits. Especially
constraint-oriented processes can be represented (cf. [23]) which are well suited for the
diagrams of the UML. Furthermore, cTLA supports decompositional proofs. A system
is the logical conjunction of its processes and the style conventions assure the absence of
contradictions in the system formula. Thus, process properties are directly inherited to
the system. The compositionality of ¢cTLA supports the transformation of UML-based
descriptions since each UML diagram of a system description can be modelled by a single
c¢TLA process which contributes to the system as a whole in a well-defined way. For the
analysis of properties of interrelations relatively small subsystems can be used comprising
only those processes which influence the properties of special interest.

This paper shortly outlines our approach as a whole and concentrates on the formal
verification of refinement steps where a step is represented by two sets of UML diagrams.
The first set describes the starting point of the refinement which we call the abstract
model. The second set specifies the result of the refinement by means of the so-called
refined model. Both models can be transformed to ¢TLA. Thus, there are two corre-
sponding systems of cTLA processes, the first describing a more abstract state transition
system, the second describing a refined state transition system. The formal verification
shall prove that the refined system has in fact all those safety and liveness properties
which are required by the specification of the abstract system. Since TLA’s formal refine-
ment relation directly corresponds to this practically relevant notion of correct refinement,
verifications can be performed on the basis of TLA where a refinement step is correct,
exactly if the implication ‘Refined System implies Abstract System’ can proved to be a
valid TLA-formula cf. [17].

Of course, the transformation of UML diagrams to ¢TLA processes and the TLA-
based verification introduces additional efforts. Therefore methods are of high interest
which support correctness relations directly applying to UML specifications of abstract
and refined systems. These objectives are similar to those of the pUML group whose
members investigate diagrammatical transformation rules where a rule directly applies to
an abstract diagram and transforms it to the refined diagram of a correct refinement [20].
Thus, the approach of pUML transformation rules is very ambitious and shall combine the
advantages of correctness-preserving source-code transformations [4] with those of graph-
ical specification and modelling support. With respect to the preservation of behavioural



properties of concurrent and distributed systems, however, we made the experience that
general correctness-preserving transformation rules are very difficult to handle in the
course of practical design processes. Moreover, the rules are accompanied by so-called
application conditions. The correctness of a transformation is only assured if the appli-
cation condition holds. Since many application conditions are relatively complex, efforts
for their proofs are necessary which are comparable to that of a posterio verifications of
freely designed refinements.

Under these considerations, our present work investigates another direction of di-
rect refinement support. It follows up the framework approach of software development
(cf. [15]) and translates it into the field of specification development. Consequently, we
study special domains of application (e.g., protocol design [11], distributed control of
chemical plants). Corresponding collections of specification modules and patterns for
abstract and refined systems are under development. Moreover, the relations between
those abstract and refined modules and patterns are investigated which correspond to
correct refinement steps. The results are documented by a collection of theorems. The
theorems are implications between refined system patterns and abstract patterns. In
principle, their function is comparable to that of general correctness preserving transfor-
mation rules. Nevertheless, the theorems connect domain-specific specification patterns
and therefore can provide direct application-specific design support.

In the remainder, we outline the formal specification language cTLA. Thereafter we
address basic notions of dynamic behaviours of object systems and their representations
in UML models. We describe the essentials of the transformation from UML diagrams
to ¢TLA processes. From that, the TLA-based verification of refinements is discussed.
Transformation and verification are exemplified by means of a small application scenario.
Finally, we sketch our present work which is constructing a domain-specific specification
framework for distributed control of chemical plants.

2 Compositional specification style cTLA

c¢TLA [10, 18] is based on Leslie Lamports Temporal Logic of Actions (TLA) [17] and
supports the definition of parametrized process and system types. A specification of
a simple process or a (sub)system is formed by instantiating a ¢TLA process type resp.
system type. As in the formal description language Lotos [14], systems are composed from
processes which interact by means of joint actions. Due to this method of composition,
processes can model not only implementation parts but also logical system constraints
(cf. [23]).

As an example of a ¢TLA process type we outline Object in Fig. 1 describing the
behaviour of an UML object (cf. Sec. 4). In the process type header the name Object
and the process parameters cf, id, and class are declared. The state variables (e.g., state,
lifecycle, qu) model the process state. The set of initial states is descibed by the predicate
INIT. State transitions are specified by means of actions. An action (e.g., callAction) is
a predicate about action parameters (e.g., receiver), state variables describing the state
before executing the action (e.g., lifecycle), and so-called primed state variables modelling
the state after executing the action (e.g., lificycle’). Besides of state transitions specified
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PROCESS Object (cf : ClassFrame ; id : 0Id ; class : ClassName)
VARIABLES

state : cf.State ; ! object data, links, and control

lifecycle : (unborn, alive, dead); ! life cycle state

qu : queue of Message ; ! messages received

awvaitReturnOf : MessageIld ; ! if blocked: call message id

R ! message id management, etc.
INIT = lifecycle = unborn A ... ; ! initially, object does not exist
ACTIONS

callAction ( receiver : 0Id ; objState, objNextState : cf.State ;
message : Message ; mode : SyncMode ) = ! send Call-message
lifecycle=alive A lifecycle’=lifecycle A
cf .nextState(state,state,message,receiver,mode) A
awaitReturnOf '=IF mode=blocking THEN message.id ELSE nullld A
qu'=qu A ... ;
receiveAction ( objState, objNextState : cf.State ;
message : Message ) = ... ; ! receive a message
I if message is a return message awaited, it is inserted at the front
! of qu otherwise appended.
returnAction ( receiver : 0Id ; objState, objNextState : cf.State ;

message : Message ) = ... ; ! send Return-message
createAction ( receiver : 0Id ; objState, objNextState : cf.State ;
message : Message) = ... ; ! send Create-message

END
Figure 1: Process type Object.

by actions, a process may perform stuttering steps where it does not change its state while
the process environment performs a state transition.

The ¢TLA process type Object describes safety properties. Liveness constraints (cf. [3])
are described by additional weak or strong fairness assumptions forcing the execution of an
action if it would be enabled for an infinite period of time otherwise. Weak fair actions (de-
noted by WF : callAction) are only required to execute if the action would otherwise be
incessantly enabled while execution of strong fair actions (denoted by SF : callAction)
is guaranteed even if the action is sometimes disabled. Unlike the definition of [3] and
TLA, cTLA provides for conditional fairness assumptions in order to keep the composi-
tionality of systems. A fair action has to execute only if otherwise infinitely many states
exist where the action is enabled as well as its execution is tolerated by the environment.

Systems and subsystems are described as compositions of concurrent processes which
encapsulate their state variables and change their local states according to the process
actions. The vector of the process state variables represent the state of the entire system.
System state transitions are described by system actions which are logical conjuncts of
process actions and process stuttering steps. Since each process contributes to each system
action by exactly one action or a stuttering step, concurrency is modeled by interleaving
and the coupling of processes by joint actions. The action parameters are used to describe
data transfer between processes.
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PROCESS GlobalSystem ( cfs : [class — ClassFrame]; 0Id : data type;
classOf : [0Id — class] )
PROCESSES ! the infinite array of object processes
ARRAY obs [0Id] of Object(cfs[class0f(index)],index,class0f (index));
ACTIONS ! system actions defining the coupling of the objects
operationCall (caller, callee: 0Id ;
callerState, callerNextState,
calleeState, calleeNextState : State ;
message : Message ; mode : SyncMode ) =
! caller calls operation of callee
obs[caller] .callAction(callee,callerState,callerNextState,
message,mode) A
obs[callee] .receiveAction(calleeState,calleeNextState,message) A
V i € 0Id \ {caller,callee} obs[i].Stutter ;

operationReturn (...) = ...; ! callee operation returns to caller
objectCreate (...) = ...; ! object sends create message
cees

END

Figure 2: Process type GlobalSystem.

As an example Fig. 2 shows the system type GlobalSystem modelling a system of UML
objects. The processes composing the system are listed in the section PROCESSES. For in-
stance, GlobalSystem consists of OId many instances o0bs/i] of the process type Object (cf.
Fig. 1). The system actions are listed in the section ACTIONS. In the example, the action
operationCall models that the object obs/caller] calls an operation of the object obs/callee].
Therefore obs/caller| participates to operationCall by the process action callAction and
obs[callee] by the process action receiveAction. The other processes participate to oper-
ationCall by stuttering steps. Data between the caller and the callee are described by
the system action parameter message. During the execution of operationCall, the process
action parameters message in obs/caller].callAction and obs/callee].receive Action have to
carry identical values.

c¢TLA facilitates the combination of different property types like safety and liveness.
Thus, in the resource oriented specification style, all relevant aspects of a component can
be described by a single process type. In the constraint-oriented specification style one
can specify different aspects of a component by separate constraint processes. In order
to support the modularity of verifications, however, liveness properties may be combined
with models of the safety behaviour of the component’s environment (cf. [11]).

3 Dynamic behaviour

Since we concentrate on the issues of concurrency and concurrent object interaction we
give a short outline of the according UML concepts. We view an object system as a set of
objects and a set of threads of activity. An object system evolves during runtime from an
initial object configuration performing steps of execution changing the system state. The
relevant state of a system depends on the set of currently existing objects and their control
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1. withdraw( &)
.
AQO2 : Business Account AOL : BusinessTransaction
2. withdraw( a) 1. withdraw( &)
>< . .
02 : Business Account O3 : Proxy O1 : BusinessTransaction

Figure 3: Collaboration diagram of the example system

and data (attribute values) states (cf. Fig. 1). The state of the object system as a whole
identifies the set of currently existing objects and moreover contains the object states
as components (see [9] for the according ¢TLA specification of the global system). The
UML uses statechart, interaction (sequence and collaboration), and use case diagrams for
the description of the dynamic behaviour. In the UML, an execution step with an object
corresponds to an action which is modelled in a statechart. Actions may effect the local
and foreign objects as well. There are several kinds of actions:

e A call action results in the invocation of an operation.
e Send actions result in the asynchronous sending of a signal.

e Create actions cause the creation of an instance of a class. They are not permitted
to have a target object.

e By return actions a value or a set of values is returned to the caller.

e A terminate action results in the self-destruction of an object. It should not have
parameters.

e Local invocation actions cause the local invocation of an operation without gener-
ating a call or signal event.

e Actions that are not previously defined are called uninterpreted actions.

Like the UML-metamodel [21] we assume run-to-completion semantics (RTC) for state
machines which follows the idea that requests are processed in sequence one after the
other. This assumption simplifies the synchronization of an object, since an incoming
request is only processed, if the object has reached a stable state configuration. Commu-
nication between objects is specified by means of signal or operation requests. Objects
communicate by means of operation (service provided for another object) requests if the
calling object demands a service by the called object. A request is forwarded by a mes-
sage instance which can carry a set of arguments. Operations can be called synchronously
(sender is blocked, cross in message symbol) or asynchronously, which is modelled which
is modelled in collaboration diagrams. The number which precedes the name of a message
represents its order in an execution sequence.
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4 Transformation

Since c¢TLA facilitates constraint-oriented specifications, the different diagrams of UML
specifications can be modeled formally by a couple of individual ¢cTLA-processes. Be-
low, we will outline the transformation of UML collaboration diagrams and statecharts
by means of a simple example specification. The idea of the example is that money is
withdrawn from a business account in a business transaction. In the top of Fig. 3 a col-
laboration is shown which represents the withdrawal of money from the business account.
A refined design of the example is presented in the bottom of Fig. 3. The refinement
is manifested in the introduction of a new proxy object for the business account which
is located in another address space. The statecharts of the according object classes are
given in Fig. 4.

Collaboration diagrams are transformed to the cTLA process type CollaborationDia-
gramUnit shown in Fig. 5. We introduce a new process instance for each two objects which
are relevant in the context of the according use case. The process parameters 01 and 02
in CollaborationDiagramUnit are used to address the corresponding process types. More-
over, a constraint process instance should manage the set of active use cases. This causes
the introduction of a corresponding parameter activeUseCases to the actions. The state
variable actMessage keeps track of call messages and callerLocked of blocking caused by
synchronous calls (callerLocked). Since the process type CollaborationDiagram Unit shall
constrain only those actions, which are related to the objects 01, O2 and to the active
use case myUseCase, each action is furnished with a term applying a stuttering step of
the constraint process to those action occurrences which are irrelevant for the constraint
(synchronous mode, no other message until termination.), except for disjunctive terms
applying real constraints (under condition caller = O1 A callee = 02 N myUseCase €
activeUseCases).

The transformation of UML statechart diagrams to ¢TLA processes is performed in
two steps. At first, a statechart which may contain nested states and transitions labelled
by action sequences is transformed to an ordinary state transition system following the
principles explained in [13, 22]. For instance, the statechart at the right side of Fig. 4
describing the BusinessTransaction O1 is transformed to a simple state transition system
s ‘ ‘ R

\L withdraw/CallBA( a)

CallBA(a)

withdraw

finished/return
receiveReturn/return

Figure 4: Statechart diagrams of the example system
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PROCESS CollaborationDiagramUnit (01, 02 : 0Id; myusecase : UseCase)
BODY

VARIABLES
actMessage : SUBSET(Message.Id); ! List of active messages
callerLocked : {"yes","no" ; ! Is caller locked ?

INIT actMessage = ) A callerLocked = "no";

ACTIONS

operationCall (caller, callee : 0Id; message : Message;
mode : SyncMode; activeUseCases : SUBSET(UseCase) ) =
! If 01 is caller, 02 is callee, and myusecase is an active use case, only
! messages of type "Withdraw" may be send; message becomes active and
! caller is locked
( caller = 01 A callee = 02 A myusecase € activeUseCases A
callerLocked = "no" A
( ( message.operationname = "Withdraw" A mode = "synchronized" A
actMessage’ = actMessage U {message.id} A
callerLocked’ = "yes" ) ) ) V
! Otherwise process performs a stuttering step
( ( caller # 01 V callee # 02 V myusecase # activeUseCases ) A
actMessage’ = actMessage A callerLocked’ = callerLocked );

operationReturn (caller, callee : 0Id; message : Message;

activeUseCases : SUBSET(UseCase) ) = ...;
! If 02 is caller, 01 is callee, and myusecase is an active use case, only
! messages of type "Withdraw" may be returned; furthermore a message must
! be active; message becomes passive and caller is unlocked

Figure 5: Process type CollaborationDiagramUnit.

listed in Fig. 6.

In the second step the transition system is transformed to a cTLA process type. Since
cTLA process types model state transitions in a direct way, this step is very simple.
The process type BusinessTransaction (Fig. 7) contains the state variable state modelling
the three states of the state transition system. The condition INIT specifies that ”:” is
the initial state and the actions callAction, receiveAction, and internalAction model the
transitions. The process parameter id describes the object identifier while myusecase is
used to manage the active use cases in accordance with a further constraint process.

Relations between UML diagrams are modeled in ¢TLA by means of process action

callAction d internal Action
("withdraw")
receiveAction
("withdraw")

Figure 6: State transition system of the BusinessTransaction O1.
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PROCESS BusinessTransaction (id : 0Id; myusecase : UseCase)

BODY
VARIABLES
state : {"i","wfr","t"}; ! actual process state
INIT state = "i";
ACTIONS

callAction (caller : 0Id; message : Message;
activeUseCases : SUBSET(UseCase) ) =
( state = "i" A myusecase € activeUseCases A id = caller A
message.operationname = "Withdraw" A state’ = "wfr" ) V
( ( state # "i" V myusecase ¢ activeUseCases V
id # caller V message.operationname # "Withdraw" ) A
state’ = state );
receiveAction (callee : 0id; message : Message;
activeUseCases : SUBSET(UseCase) ) =
( state = "wfr" A myusecase € activeUseCases A id = callee A
message.operationname = "Withdraw" A state’ = "wfr" ) V
( ( state # "wfr" V myusecase ¢ activeUseCases V
id # callee V message.operationname # "Withdraw" ) A
state’ = state );

internalAction (this : 0Id; activeUseCases : SUBSET(UseCase) ) = ...;
END

Figure 7: Process Type BusinessTransaction.

conjunctions. Assume that OI : BusinessTransaction is the ¢TLA process specifying
the example object O1 and CollO103 : CollaborationDiagramUnit the ¢TLA process
describing the operation call withdraw in which O1 is the caller and O3 the callee. Since
the operation call is triggered by O1 performing a callAction, the process actions callAction
of ¢TLA process O1 and operationCall of CollO103 are conjoined. Likewise, the process
actions returnAction in O1 and operationReturn in CollO108 are coupled. The action
internalAction of O1 does not correspond to any collaboration diagram transitions and
therefore is linked with a stuttering step of CollO103.

5 An example proof

Below we will outline the proof that the abstract system consisting of the business trans-
action object AO1 and the business account object AO?2 is realized by a more detailed
system consisting of O1, O2, and an additional proxy O3. The UML collaboration di-
agrams and statecharts are transformed into ¢TLA specifications according to Sec. 4.
The proof utilizes the compositionality of ¢TLA. It can be decomposed into three sim-
pler proof steps. At first, we have to prove that the subsystem SO;/3 consisting of the
processes representing the statecharts of O1 and O3 (Fig. 4) composed with the process
Coll0103 modelling the collaboration diagram unit connecting O1 with O3 (Fig. 3) ful-
fills the process representing the abstract business transaction object AO1. Secondly, we
prove that the process representing O2 implies that implementing AO2. Finally, we have
to verify that the process describing the collaboration between O3 and O2 realizes that
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representing the collaboration between AO1 and AO2.

Here, we will sketch only the first proof corresponding to the verification of the impli-
cation SOy/3 = AO1 which is performed as a regular TLA refinement proof (cf. [17]). In
order to compare the two state spaces of SO;/3 and AO1, we define a mapping between
them, the so-called refinement mapping:

RM= O3.state ="1" — AO1.state ="1"
Ol.state ="t" — AO1.state ="t"
otherwise — AO1.state = "withdrawCalled”

Instead of AO1 we use the equivalent process AO1 for the proof where the local variable
AO1.state is replaced by variables of O1 and O3 according to RM.

Firstly, we have to verify that all initial states of SO;,3 are also initial states of AOL.
Since in the initial states of both processes the equation O3.state = 74" holds, this proof
is trivial. Secondly, we have to prove that each action of SO;/3 implies either an action
or a stuttering step in AO1. This proof, however, cannot be performed directly. Before,
we have to prove that the following formula I is an invariant of the subsystem SOy /3:

I= Ol.state ="i" = O3.state ="1" N\ Ol.state ="t" = O3.state ="t" A\
O3.state = "waitingFor Reply” = Ol.state = "withdrawCalled’ N
"withdraw” € 03.qu = (Ol.state = "withdrawCalled” N\ O3.state ="i")A\
"withdrawReturn” € Ol.qu = (Ol.state = "withdrawCalled” N O3.state ="t")

The invariant proof is performed by checking that I holds initially and is preserved by all
actions of SO /3.

Using the proven fact, that I holds before and after execution of any action in SO /s,
we can now verify that the actions of SO;/3 correspond to actions or stuttering steps of
AO1. As an example we outline that the action T changing the state state of O1 from
withdrawCalled to t implies the action T of AO1 changing the state Ol.state # "t” A
O3.state # "i” (AO1.state = "withdrawCalled”) to Ol.state = "t”. T is a joint action
conjoining the actions receiveAction of O1 and operationReturn of the collaboration
between O1 and O3. It can only be executed if the message ”withdraw Return” is in the
message queue O1.qu of O1. This implies that due to the last conjunct of I the condition
Ol.state = "withdrawCalled” N O3.state = ”t” holds before executing 7. Thus, the
enabling condition of 7' implies the enabling condition of T. After the execution the
condition Ol.state = ”t” holds as well in SO;/3 as in AO1. Therefore, the effect of T
implies the effect of T, too, and T implies T' as a whole. Likewise, all actions of SO; /3
are proven.

6 Verification with cTLA patterns

In this section we focus on the UML descriptions of properties of a software product
on different levels of abstraction and the correctness of these descriptions. Therefore we
introduce two models on different levels of abstraction which stem from the software life
cycle(requirements engineering, design) of a given product. These are:

10
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e The abstract software model (ASM) serves as interface between application engi-
neering and software development. It models the structuring of the software parts
of the system into logical components. It is a result of analysis activities performed
during the requirements engineering of a software product which typically bases on
knowledge from previously performed domain engineering.

e The concrete software model (CSM) is a refinement of the ASM. It structures the
software into implementation-oriented components. It explicitly refers to distribu-
tion and network communication, to fault- tolerant mechanisms and performance
optimisation as well as to the allocation and management of resources.

Both models are described in terms of patterns which have currently a growing impact on
software development. On the one hand there are the well- known design patterns (e.g.
given in [8]). On the other hand, analysis patterns have to be defined for each individual
domain on their own applying techniques for domain engineering. Analysis patterns have
been applied by Fowler [7] who has found and applied them in several industrial projects.
Analysis patterns are described by the terms and concepts of an application domain.
Taking these concepts, it is obvious that analysis patterns are applied in the ASM while
design patterns are used in the CSM. Furthermore, some practitioners claim that there
exist relationships between collections of patterns which might be expressed in a so called
system of patterns [5].

Now we concentrate on the verification of a CSM-level specification against the ab-
stract requirements expressed by an ASM-level specification. We have to prove that the
CSM specification implements the relevant properties of the ASM specification. For that
purpose comprehensive and compatible formal models of the dynamic semantics of both,
the ASM and the CSM model, are needed. Moreover, one needs the formal inference
system TLA to perform these proofs. While ¢cTLA is well-suited to the formal mod-
elling of highly structured systems, there is a very high complexity when ASM and CSM
specifications of practical systems are transformed to ¢TLA. As previously stated, the
statecharts are translated to process behaviour descriptions. The interaction diagrams
and the activity diagrams (used for the modelling of synchronisation aspects) are trans-
lated to configuration and process coupling descriptions. To model the dynamic creation
of objects, infinite state space structures (i.e., for each object type an infinite array of
object instances) are used which are accompanied with an explicit state representation
of the current existence of an object. In general, the operations of objects can be exe-
cuted concurrently and there is a wide spectrum of object interaction mechanisms and
synchronisation methods. Since state transition systems model behaviours by series of
atomic transitions, the wide spectrum of object interactions induces a very fine granu-
larity of atomicity. Thus, models with a very complex state space and with a very fine
transition structure are needed in general. We think that these models are too difficult-to-
understood to form a convenient basis of manageable formal verifications in practice. On
the other hand, we are aware that the complexity of the models does not result from cTLA
but is a direct consequence of the modelling power of UML-descriptions of object-oriented
systems. Therefore, the approach has to be enhanced by additional concepts.

In order to render possible manageable formal proofs of practical systems, we utilise
the proposed application of conceptual patterns in the ASM and of software design pat-

11
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terns in the CSM for the verification, too. The benefits of patterns are twofold. On the
one hand, patterns restrict system structures, the interactions, the concurrency, and the
synchronisation of objects. The formal modelling recognises the restrictions and provides
for less complex models which are more easy-to-understand since they directly correspond
to application-oriented interaction schemes. On the other hand, there are logical relation-
ships between conceptual patterns and software design patterns since a design pattern
serves for the purpose of implementation of a conceptual pattern. This implementation
relation between patterns of a system of patterns are formally modelled by the refinement
relation of TLA, i.e., there exist valid implications from design patterns to conceptual pat-
terns. In connection with the modularity and the genericity features of cTLA, theorems
are stated which correspond directly to the logical relationships between patterns. E.g.
in the example proof listed in section 5 there is a theorem which states the refinement
relationship from a proxy pattern and a refined controller to the more abstract analysis
pattern controller. These theorems can easily be instantiated to represent the particular
refinement relations of a specific practical project.

In the domain of communication protocols comprehensive libraries of patterns and
theorems are already established [11] and the experience showed that even complex prac-
tical protocols can be verified by means of theorems only, i.e., in order to verify a protocol
it was not necessary to perform basic TLA deductions since all necessary implications of
the proofs were instantiated from theorems [12].

7 Conclusion

We reported on present work which aims to the establishment of domain-specific speci-
fication frameworks for the object-oriented and pattern-based design of concurrent and
distributed software systems. In particular, the frameworks will supply theorems which
describe patterns of correct refinements and facilitate formal verification enormously since
theorems can replace nearly all complex original proofs of verifications. Our report con-
centrated on the formal background of theorems which is given by transformations of
UML diagrams to modular ¢TLA specifications enabling the application of TLA-based
proof methods. According to this procedure the theorems of the specification frameworks
under development are proven. Besides of our former work supporting the cTLA-based
formal specification and verification of communication protocols, there is additional work
the specification framework approach is related to. So, meanwhile extensions of cTLA ex-
ist which support the handling of real-time and continuous properties. Under application
of these extensions already several hazard analysis and safety proofs for chemical plants
were accomplished.
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A Practical Approach to Behavioural Inheritance in the Context
of Coloured Petri Nets

Charles Lakos' and Glenn Lewis>

EXTENDED ABSTRACT

Introduction

As Taivalsaari observes: Inheritance is often regarded as the feature that distinguishes
object-oriented programming from other modern programming paradigms, and many of
the alleged benefits of object-oriented programming, such as improved conceptual
modelling and reusability are accredited to it. [18, p438]

Inheritance means one can begin with an abstract representation of an object that is easy to
understand and clutter-free, and refine that to a more concrete representation. In other words,
inheritance provides support for abstraction, which is the most common and effective
technique for dealing with complexity [7].

In object-oriented systems, when a more abstract class of object is incrementally changed to a
more refined class (via inheritance) the relationship between the classes is often interpreted as
is-a. For example, a car is a vehicle. By saying this, we mean that, with respect to a set of
expectations about vehicles, anything that is a car also fulfils the expectations about vehicles.
That is, the is-a relationship implies substitutability with respect to a given set of
expectations. The principle of substitutability has been proposed in various forms to give the
expectations that an incrementally changed component should comply with if it is to be
substituted for a component.

Wegner and Zdonik enunciate a principle of substitutability as an instance of a subtype can
always be used in any context in which an instance of a supertype is expected [21]. They
propose a number of variants of this. One possibility, which is known as weak
substitutability, relates to the compatibility of method parameter and result types — it does
not require behavioural compatibility.

Many consider weak substitutability as not enough — substitution may still lead to incorrect
behaviour even if the weak substitutability principle is satisfied. Liskov gives the example
that a stack could be substituted for a queue without causing an error (i.e. the weak
substitutability principle is satisfied), however the substitution will produce a system with
incorrect behaviour [12]. Another version of the substitutability principle, referred to as
strong substitutability is specified by Liskov as follows: If for each object ol of type S there is
an object 02 of type T such that for all programs P defined in terms of T, the behaviour of P is
unchanged when ol is substituted for o2 then S is a subtype of T [11]. Strong substitutability
requires behavioural compatibility between the type and subtype.

There has been significant work on program equivalences or preorder relations in the context
of concurrent systems. Van Glabbeek examines a selection of 155 such equivalences [20].
The use of inheritance in object-oriented development together with the associated
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substitutability principle has provided a fertile ground for applying such equivalences or
preorders and for developing new ones.

Hence a common approach to the formalisation and characterisation of strong substitutability
in concurrent systems is to use a behavioural equivalence relation (for example, [2], [3], [4],
[17], and [19] all use an equivalence relation to define strong substitutability). The big
question is the appropriate form of equivalence or preorder for subclasses. Some have
distinguished subtyping and code reuse [1]. However, there is not a clear or obvious
separation of these since subtypes are often defined by code reuse [S5]. Also, relations that
were originally proposed for subtypes have more recently been used to constrain code reuse
instead [2], [3].

In all of this, there is the important issue of the level of practical applicability of theoretical
proposals [2], [14]. In other words, are theoretical proposals helpful or too constraining for
practitioners? There is another issue, namely whether common practical usage is constrained
in such a way that can be exploited by the theory. The former can be illustrated by the notion
of weak substitutability, as in Wegner [21]. This is essentially a matter of whether type safety
can be guaranteed by compile-time analysis. It has been well recognised that contravariant
redefinition of methods is (statically) type safe, while practical experience suggests that
covariant redefinition is more appropriate in practice. Thus the development of the Eiffel
language has supported covariant redefinition of methods in order to cater for appropriate
practical application [13]. However, it has also noted that type safety can be guaranteed in
most circumstances (provided there are no so-called polymorphic cat calls). Similarly,
Palsberg and Schwartzbach have proposed inheritance mechanisms which support covariant
redefinition in a type safe way because contravariant ordering of functions ... is, however,
somewhat controversial for object-oriented languages, even though there have been some
attempts to justify it on purely methodological grounds [15]. The recent work on LOOM
reflects similar concerns [6].

Strong substitutability proposals

In the field of concurrent systems, full behavioural compatibility can be established by
examining the presence or absence of an equivalence or preorder relation.

Clearly any subtype relation should be a preorder (that is, it should be reflexive and
transitive) but not symmetric. Therefore, proposals for strong substitutability that use an
equivalence relation make certain assumptions about the environment of the subtype that
ensure the relationship is not symmetric.

The notion of strong substitutability as enunciated by Liskov (above) requires that an object
of a type can be replaced by an object of the subtype without being visible to the (unchanged)
environment. This is the motivation for the request substitutability preorder proposed by
Nierstrasz [14]. Lifecycle inheritance, as proposed by van der Aalst and Basten [19] involves
a combination of protocol inheritance and projection inheritance. Protocol inheritance
allows the deletion of (new) methods, or ignoring those methods by the environment, to give
the same behaviour. Projection inheritance allows for (new) methods which must be called
by the environment or, equivalently, can be hidden in order to prove the equivalence. The
assumption of a modified environment is not contemplated in Liskov’s definition of strong
substitutability.

The Liskov definition of strong substitutability does not cater for the situation where
subclassing is used to refine the behaviour of the objects of the class. Here, further details are
added which will, naturally enough, constrain the behaviour. In other words, the refinement
will result in additional behaviour, but if this is abstracted then you should get behaviour that
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was present in the abstract version. What such refinement does not do is introduce additional
refined behaviour which corresponds to new abstract behaviour. For example, Balzarotti et.al.
quote an example of a Printer which is a subtype of a MonoPrinter [2]. (A MonoPrinter will
print exactly one copy between the loading and discarding of a print job. On the other hand,
a Printer can print multiple copies between the loading and discarding.) In our view, a Printer
is not a refinement of a MonoPrinter since it introduces additional abstract behaviour —
multiple print copies — which was not present in the abstract version. It may be possible to
reformulate the refinement to avoid this problem, but as it stands, it would not be acceptable
in our proposed framework.

The above proposals may also require difficult proofs to justify the strong substitutability —
proof of bisimilarity [19], [4], proof of finite state machine equivalence [14], or proof of ST-
preorder [3]. (Automatic tests for deciding equivalence are inherently complex, for example,
in [8] bisimulation is shown to be DEXPTIME-complete for a class of Petri nets known as 1-
Safe Petri nets).

Proposed refinements in the context of Coloured Petri Nets

Petri Nets are a well-established formalism for concurrent systems. For example, Figure 1
shows a simple Petri Net for the lifecycle of a library book. The places (shown as circles)
indicate state information, while the transitions (shown as rectangles) indicate possible
changes of state. The directed arcs indicate how the changes of state affect the state
components. Tokens (shown as dots) indicate the current state. Thus, in Figure 1, a library
book can be in one of 3 states — Available, On loan, Overdue — and the current or initial
state shows a book in the Available state. In this state, the transition Borrow can fire and, in
doing so, removes a token from the place Available and adds a token to the place On loan.

Available

Colours:

C(Available) = Book

C(On loan) = Book x User
C(Overdue) = Book x User

C(Borrow) = Book x User
C(Return) = Book x User
C(Loan expires) = Book x User
C(Pay Fine) = Book x User

Pay Fine

(b.u) (b.u)
Overdue Loan expires On loan

Figure 1: Petri Net for the lifecycle of library books

For practical application, Petri Nets are usually extended with the notion of colour. Here, the
tokens can have associated data values (or colours), the arcs can indicate which colour of
token is to be consumed or generated, and the transitions can have guards to ensure that
certain constraints are met. In the example of Figure 1, the colour function C indicates how
we can attach colours to places (i.e. the associated token colours) and to transitions (i.e. the
associated firing modes). The colour for library book tokens would indicate the author, title,
ISBN number, etc. Then the arc annotations indicate particular books (variable b) and
particular users (variable u). The values of these variables are determined by the particular
firing modes of the transitions.

Equivalences and preorder relations for concurrent systems can be formulated in Petri Net
terms, though this tends to be in the context of elementary Petri Nets [16]. A subtype is a
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refinement of the (more abstract) supertype (recall our introductory discussion on the is-a
relationship) and therefore, in the context of CPNs, we propose three forms of refinement that
we consider appropriate for substitutability. Our focus on refinement, where some abstract
behaviours may be lost, results in a definitions for substitutability that is more restrictive than
weak substitutability, but less restrictive than strong substitutability (in the sense of full
behavioural compatibility). The constraints that we propose have the advantage of being able
to be checked statically. Further, if the refinement is ar least as live as the abstraction, then
strong substitutability holds. What we mean by this is as follows. If a refined behaviour has
a corresponding abstract behaviour, then the liveness of the refined behaviour will imply the
liveness of the abstract behaviour. The reverse does not necessarily hold, but if it does, then
we say that the refinement is at least as live as the abstraction. (This notion is clarified below
in the context of specific refinements.)

The refinements we propose are in the context of net morphisms. These are mappings
between nets — from the refined to the abstract net. They specify how components from the
refined net are mapped into components of the abstract net, or are simply ignored in the
abstraction. They will also indicate how the refined state will map into the abstract state, and
how refined behaviours map into abstract behaviours. (The latter will not necessarily be a
total function.)

The first form of refinement is called type refinement. Here, the types of the tokens and
modes are replaced by subtypes. In this context, the types simply define a set of values
without any associated behaviour. Each subtype will have an associated projection function
which will project subtype values onto supertype values. (Typically, a subtype will introduce
additional value components which are simply ignored by the projection function.) In the
library book example of Figure 1, we might modify the token type for library books by
including additional information such as loan restrictions. This additional information should
be propagated round the net, thus requiring corresponding subtypes for transition modes. The
constraint we impose on this form of refinement is that the projection of a refined behaviour
will (always) correspond to an abstract behaviour. In the example, if we have a refined
behaviour in which the additional loan restrictions are ignored, then we will get a behaviour
of the original (abstract) net. There is no guarantee that liveness at the abstract level implies
liveness at the refined level, contrary to many of the proposals already considered. However,
if this is the case (and we say that the refined version is at least as live as the abstract
version), then strong substitutability holds.

The second form of refinement is called node refinement. Here, a net component — a place
or a transition — 1is replaced by a place-bordered or a transition-bordered subnet
(respectively). This reflects a situation where some state component (i.e. a place) is refined
into a number of components, possibly with associated (internal) actions; or where some
action component (i.e. transition) is refined into a number of actions, possibly with associated
(internal) state. It is not obvious how this form of refinement is addressed in the proposals
considered earlier. In the example of Figure 1, we might refine the place Available to indicate
that the return of a library book may involve a number of subsidiary states, which take into
account the delay in reshelving a book, the possibility of repairs, etc. The node refinement for
this place is shown in Figure 2. Note that the border places are Returned (for deposit of
tokens) and On Shelves (for removal of tokens). Thus the arcs 7o the place Available in Figure
1 would become arcs fo the place Returned of Figure 2, and the arcs from the place Available
in Figure 1 would become arcs from the place On Shelves of Figure 2. Similarly, it would be
possible to refine the transition Return book of Figure 1 into a subnet which would identify a
number of subsidiary activities, such as taking the book to the library, having the book
stamped, etc.
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Defer Under repair Finish
b

Colours:
Iredeemable the colour of all places and
b all transitions of this subnet
is Book
To repair ‘ Shelve
b
Returned On Shelves

Figure 2: Subnet indicating the processing of returned books

The constraint we apply on this form of refinement is that (in the case of place refinement) it
is possible to project the refined state components into an abstract state, and (in the case of
transition refinement) that it is possible to map an abstract action into a sequence of refined
actions. (These mappings are constrained to maintain consistency with the abstraction [9].
Thus, for a place refinement, the abstract marking should not change without the refined
subnet exchanging tokens with its environment. Similarly, for a transition refinement, the
effect of firing the abstract transition should be same as the effect of firing the border
transitions of the refined subnet.) In the example quoted, the book tokens in the places of the
subnet of Figure 2 would correspond to the tokens in the abstract place Available of Figure 1.
Similarly, if we refined the transition Return book as indicated, then the return of a book
would correspond to a sequence of subsidiary actions. Again, there is no guarantee that
liveness at the abstract level implies liveness at the refined level. In the example of Figure 2,
the book may be become so damaged as to be irrepairable (and added to the place
Irredeemable) and will never be placed on the shelves again. Similarly, it is not necessarily
the case that every refined behaviour corresponds to an abstract behaviour since, in the case of
transition refinement, a refined behaviour may correspond to part of an abstract firing.
However, if liveness at the abstract level does imply liveness at the refined level (and we say
that the refined version is at least as live as the abstract version), then strong substitutability
holds

The third form of refinement is called subnet refinement. Here, a subnet is refined by the
addition or modification of places, transitions and arcs. In the example of Figure 1, we might
introduce extra places and transitions to deal with reservations of books, as shown in Figure 3.
Here, transition Reserve can fire if there is no reservation on a book, in which case it will now
be reserved for user #. Then the transition Borrow can only fire if the relevant book is not
already reserved, or is reserved by the user in question. The constraint we impose on this kind
of refinement is that a refined behaviour with the additional components ignored should
(always) correspond to an abstract behaviour. This implies that a newly added (or modified)
transition cannot modify (except temporarily) an existing place. Once again, liveness at the
abstract level does not necessarily imply liveness at the refined level, but if it does, then
strong substitutability holds.
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Reservation Reserve
status (b,)

Available

Colours:

C(Available) = Book

C(On loan) = Book x User
C(Overdue) = Book x User

Pay Fine Borrow C(Reservation status) = Book x User

C(Borrow) = Book x User
C(Return) = Book x User
C(Loan expires) = Book x User
C(Pay Fine) = Book x User
C(Reserve) = Book x User

(b.u)

(b,u) (b,u)

Loan expires On loan

Figure 3: the net of Figure 1 refined to handle reservations

Conclusions

There are a number of proposals for substitutability in the context of concurrent object-
oriented systems. It is unclear whether these proposals are overly constrained for practical
application.

In the context of CPNs, we have proposed a set of three incremental modifications which lie
somewhere between weak and strong substitutability. The constraints that we impose can be
checked statically and they have the property that if the refinement is at least as live as the
abstraction, then strong substitutability holds. (This property cannot be checked statically.)
An examination of case studies in the literature suggests that the above forms of refinement
are applicable in practice [9].

While the above proposals were formulated in the context of CPNs, it turns out that if the
CPNs are transformed into the corresponding (elementary) Petri Nets, then the three forms of
refinement correspond to recognised net morphisms. The formal definition for these
morphisms can be found elsewhere [9], as can the proofs that the composition of refinements
is a refinement.

Current work is investigating the extent to which analysis techniques can take advantage of
the structure implicit in the above incremental modifications in producing more efficient
analysis [10].
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Abstract. Behavioural typing and subtyping has proved to be a ussful
concept for the support of incrementaluse inthe area ofobject-oriented
(O-0) languages. With the emergence of formalismiegrating the O-O ap-
proach and Petri nets, the question arises how behavioural subtyping may be
supported by such formalisms. We present a formal framework fadefiri-

tion of behavioural typing in CoOperative Objects, a concurrent Object Ori-
ented language, based up@iient/Server Petri nets. Thiframework is
based upon the preordandequivalencerelations whichare considered in

the study of concurrergystems, allowing talefine varioussubtyping rela-
tions.

1. Motivation

First of all, subtyping has to kdistinguished from inheritancCook...94]. Inheri-

tance refers tdhe reuse ofsome (or all) elements of the definition of a class by an-
other one. Subtypingefers tothe use of componentagccording tothe substitution
principle enunciated by P. Wegner falows [Wegner88]: s is a subtype of t if an
instance of type s may be substituted whemstance oftype t isexpectedInheri-

tance is a matter of structure sharing and it is mainly related to implementation issues,
while subtyping is a matter of semantics and it is mainly related to behaviour analysis
and validation. Since Petri nets (Patemainly usedfor analysisandvalidation pur-

poses, they are highly concerned by subtyping.

Subtyping is an essential concept of the object-oriented (O-O) approach as it is both
a cognitive tool to ease the understanding of complex systems, and a technical support
for software reuse and change. With #mergence oformalisms integrating the O-O
approachandthe Petri net (PN) theory, the question arises how subtyping may be
supported bysuch formalisms, irorderthat they benefit from thadvantages othis
concept. Subtyping has been originahyroducedwithin the framework ofdata proc-
essing and sequential languages, while PN are mainly concerned with the behaviour of
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concurrent processes. Moreover, it has been pointed out that subtyping ceithin-

rent O-O languagesntails theoccurrence ofmany difficult problems or anomalies
[Matsuoka...93], [Aksit...94]. Thus, one may think that integrating the subtyping
concept within the PN theory also raises some difficulties.

Within concurrent O-Olanguages, two kinds of subtyping relatioase distin-
guished. The weak, dnterfacesubtypingrequiresthats is a subtype of t if an in-
stance of type s may be substituted when an instance of typggeistedand notype
error will occur[Wegner 88].

The strong, obehaviourform of subtyping requires thédr a system S, s is a sub-
type of t if aninstance oftype s may be substituted when iastance oftype t is
expected and the behaviour of S is unchafgézbner 88]. Howevetrthis definition is
problematicbecausehe subtype relatiofetweentwo componentslepends on the
considered context S; thus its use in another contere&ls sspecific check, even if
S'is an incremental change of S. Such a relation isre$tected practicanterest: if
s is a subtype of t, we would like that this holds in any context.

In [Liskov...94], anotherequiremenfor the subtyping relation igproposed:Let
¢(x) be a property provable about objects x diype t. Theng(y) should berue for
objects y of type s where s is a subtype Afthough thisdefinition avoidsthe diffi-
culty of the Wegner's one, it raises another problem entailed by the properties that one
wish to be preserved by the subtype relation. Indeed, there are a great nubatevef
ioural properties, and the properties whare expected to be presendspend on the
system under consideration. Using the type tin a context S may desaikablethat a
propertyd be preserved, whilasing t in a context S' makegsirablethat nott) be
preservedThus, the use of Liskov'definition in any contextand thereforefor any
property, leads to the equivalence of s and t vétfard tothe propertiesinder consid-
eration, while we are looking for a subtype relation which is a preorder.

This paper addresses the behavioural form of subtyping. It aims to prog&teial
framework for behavioural subtyping relations in CoOperative Objects [Sibertin 98], a
concurrent Object Oriented language based upon Petri nets. For the simpliaitytathe
processing aspect of CoOperative Objects is avoided and we consider orhetiasir
ioural aspect, which is based upon Client/Server nets [Sibertin 93].

In the second chapter, Client/Server ratsinformally introduced.Such netscom-
municate in an asynchronous way by channel places according to a request/reply proto-
col. In thethird chapter wepropose tworequirementghat anyC/S nets subtyping
relation should satisfy iorder to bequit easy to use in practice. The foudhapter
shows that the language semantiefines arelation that satisfies thesequirements.

An extended version of this paper may be found in [Sibertin...97].

2. Client/Server Nets

A Client/Server net is a labelled Petri net which on the one hand makessepices
available to other nets and is capable of rendering these services, and on thandther
can request servicdsom other netsand needsheserequests to béulfilled. Each of-
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feredservice is associated tone orseveraltransitions which may beequested by
other nets, and the service is available when one of these transitienabied. These
transitionsarereferred to asccept-transitionsandthey constitute thenterface of a
C/S net.

To request @ervice, aClient netincludestwo relatedtransitions, ondor issuing
the request(referred to as aequest-transitionandanother for retrieving th&erver's
reply (referred to as get-transition).Moreover, these transitions azennecteadhrough
a waiting-placein such a way that theccurrence of aequest-transition makes its
matching get-transitioenabled.Thus there is a one-to-oneorrespondence between
transitions which request and get services: a service is requested iff it can be got.

A Server nets a C/S net which accepts at least one service, that i SA where
SA is the set ofAcceptedServices; &Client netis a C/S netvhich requests at least
one service, that is SR, where SR is the set &equested®ervices. Thidistinc-
tion allows to focus either upon tiserver side of &£/S net or its clienside. For a
Server net S, the séB(S) 0 SA*, calledits Supply is the set oBervicesequences
that S can accept to process. Symmetrically for a Client nat(C) = Lg(C) O SR*,
called itsDemandjs the set of service sequences that C can request or get. Wil we
see, the Supply of a C/S net is a good picture cfatger sideandmay beconsidered
as itsspecification whereas its Demand is a good picture of its clgé andmay be
considered as itequirement

Figure 1 shows two simple C/S nefdhe net (b) is duffer which provides the
pushandpop servicesandrequestghe copyservice whenever it receivespaish re-
guest (when the label of a transition is not empty, it is written inside its box). The net
(a) is adinning philosopherWhen the philosopher has no fork, the t2 transition
requiring the give service is enabled. Then t3 may occur to get fMikan there is a
token into the 2forks place, theat transition isenabled asvell as the t1 transition
which accepts the give service.

eat

2forks 3 tl
Lg(t3)=give La(t1)= push _,.?
L

3
‘ t1 r(t3)=copy
La(t1)=give wait
wait
o t4
y_nofork @ La(t2)=pop Lg(t4)=copy
(' ) > Lr(t2)=give
SA = {give} = SR SA ={push, pop}, SR = {copy}
(a) A Dinning Philosopher C/S net (b) A Buffer C/S net

Figure 1: Client/Server nets
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A Client net C and &ervernet Sarecomposabldéf SR: (0 SAs. Then they may

becomposednto a C/S neCP = Cp(C, S)whereCp: Netx Net [, Net [J {unde-
fined}is the composition function which combines a coupl€{8 nets into dhird
one.Whencomposing a Client net with Servernet, eachaccept-transition othis

latter is providedwith an entry-placefor receiving therequestsand aresult-placefor
storing the replies. Then, the Client netcennectedvith the Serverthrough these
communication places by aarc from each request-transition towardthe suitable
entry-place and an arc from the suitable result-place tovemtisget-transition. Figure

2 shows the composition N = Cp(P2, P1) of two copies of the Philosopher C/S net of
Figure 1 with an appropriate initial marking. In the following, we will alwagsume

that nets which are composed are composable, without recalling the hypothes§is SR

SAe.

eat? eatl
fork2 32 forkl t31
plgiver : )‘— Lg(t13)=give

N
y t12 tl1
La(t21y=give () waie waitl
A
Y, nofork2 02 plgivea X_ noforkl 2l
. ( >—P Lr(t12)=give

SA ={give} = SR
Figure 2: The composition of two Philosophers, CP(P2, P1).

C/S netscommunicate in an asynchronous way by channel placesrding to a
request/reply protocol: when@lient netrequests a service to a Servet, it puts a
token into a Server’s entry place for that service; then, the Server protresesguest
and supplies a token in thesult-place othe service; the communication completes
when theClient retrievesthis result token. As aonsequence&;/S netsobey the re-
quest/reply protocol and the encapsulation principle with regard to their behaviour, and
thus they benefit from themdvantagesThanks to the PN theory, theyealso pro-
vided with formal semantics of intrandinter-object concurrencyrinally, C/S nets
communicate in an asynchronous mode and thus enjoy the expressiveness of Petri nets
composed byusion of places (The fusion of placesconsists in merging a set of
places into a single one surrounded by the arcs of the ipidaés). Thaequest/reply
protocol allows to analyse the behaviour afyatem in an incremental way as Petri
nets composed by fusion of transitions [Vogler 92]: the behaviour of a compound C/S
net may be deduced from the behaviour of its components [Hameurlain 98].
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3. Requirements for behavioural subtyping in C/S nets

Our proposal is to bassubtyping relations on thgreorder andquivalenceelations

which have been introduced to comptire behaviour ofoncurrentsystems, such as

the state, language, complete language, faileainessdeadlock, divergenceimu-

lation and bisimulation preorderand/or equivalenceelations (see [Pomello...92],
[Glabbeek...89, 90][Vogler 92] for a comparative study of these relatiohsiieed,

these relationsire defined on &@ormal basis, withoutegardfor the peculiarities of a

given language, so that they are suitable for the study of the behavioural properties of
any concurrentsystem.Moreover, theyhave been extensivelstudied,and alot of

results about their properties have been obtained. Summing up, such relations seem to
be the best theoretical framework to compare the behaviour of concurrent objects.

In C/S nets, a behavioural subtyping relatinis a preorder satisfying the follow-
ing requirements, where;NN,, and N are any C/S nets:
0] N2 <4 Ny OO N, Cp(N, N) <4 Cp(N, N)
(I N2 <y Ny O ON (Cp(N, N) =1 N I Cp(N, N) =, Cp(N,
Nyp))
where=,; are some behavioural equivalence relations.
Notice that N subtype of Nis denoted Bl<y Ny, in accordancevith the ideathat
N, extends the capabilities of|N
Requirement (1) asserts thaf is compositional for the net composition operation.
This property isnecessary to ensutke compatibility of the subtyping relation with

the incrementatlesign ofsystems; if itdoesnot hold,there is no way to relate the
behaviour ofCp(S, Cp(N, N)) andCp(S, Cp(N, N)) when N <4 N;. The corre-

sponding requirement for the weak subtyping is that e. g. arrays of 64-bits integers are
a subtype ofarrays of32-bits integers if 64-bits integeese asubtype of 32-bits
integers.

In requirement (I)the consequencéCp(N, N,) =., Cp(N, N)” formalises the

substitutability principle as the impossibility for N to distingutsttweenthe behav-
iours of N; and N, with regard tothe properties whiclare accountetbr by the =.,

relation. Indeed, the set of propertiesG(N, N;) which can bepreserved byCp(N,
N,) depends on the way, is defined; for instance, Ky is defined by arnnterleaving
semantics, it is not reasonable to require that CpgNséatisfies the same partiaider
properties as Cp(N, )l Requirement (Il) asserts thas Khay be substituted for |Nf
N, <4 N4 and inadditionthe net N which isconsideredsatisfies Cp(N, B) =«; N.
Without such a restriction, the subtyping relatisould be an equivalencelation,
since it certainly exists some trivial net Much thatCp(N;, Ng) =«; N; for any net
N;. In addition, it is of interest to know that Cp(NyNs«, Cp(N, Ny) only if Cp(N,
N,) behaves properly; in the opposite case, nothinggised byknowing that Cp(N,
N;) andCp(N, N,) areboth a wrong system! Now, th®p-down approacteads to
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considerthat thecorrectbehaviour of Cp(N, N is characterised bits relation with
the behaviour of N, which is formalised by the condition Cp(N,¥; N.

Thus, to prove that a preorder relation is a subtyping relation for a composition op-
eration Cp, we just have to prove that (1) it is compositional for Cp andlthablds
for some couples oéquivalenceelations =«; and =.,. Then, thepracticaluse of a

subtyping relation is quite easy: once &, N, has been established, it is enough to
check whether Cp(N, l=+ N holds to beallowed tosubstitute N for N; in a safe
way, whatever is the net N under consideration.

The first advantage of the above requirementgherbehaviourasubtyping is that
they have awide range ofapplicability and suffer no ambiguity. Theyprovide the
concept of subtype with a formal definitioand are based ontheory (the theory of
the behavioural preorder and equivalence relations) which is relevant feoaoyrrent
language supporting a composition mechanism. TxgndLiskov's approach, since
requirement (II) automatically determinedat arethe properties of Cp(N, )Y which

are preserved by Cp(N,Nwhen N, is a subtype of N so that nospecific verifica-
tion has to be done. Indeed, most of th@nd= relations enjoy results of the follow-
ing kind,$ being some property:
if N5 < Ny, thendp(N,) O ¢(Ny)
if N2 = Ny, thend(N2) = ¢(Ny)
A second advantage tifie aboverequirements ighat they do notefine just one
subtyping relation but allow tdefine severalsuch relationsFacedwith a given sys-

tem, thedesignemay use the subtyping relatigmeserving the properties which are
of importance for that system.

4. The semantics of compound C/S nets

In [Hameurlain98], some semantidsave beerconsidered to definsubtyping rela-
tions. Namely, we have shown that theguagepreorder, denoted, ,, where $ <,
S, iff La(S;) O La(S), is a subtyping relation satisfyingquirement (1), i.e. for
any Client net C, we have Cp(C))S.a Cp(C, ) as soon as S<;, S;; extending
the Supply of a Server net also extends the Supply of its composition with any Client

net. According to requirement (Bndthe fact that for anyClient C andServer S, C
<12 Cp(C, SJHameurlain 98], the< , preorder is aubtyping relation folC/S nets,

and we have the following form oéquirement (lI) :
S<aS and Cp(C, § = C U Cp(C, 9) =a Cp(C, 9)-

As an example, consider the unbounded buffer ServéBishown in Figure 3 (a)
and the 5-size bounded buffer ServerBigshown in Figure 3 (b). It is easy prove
that UB<, ; BB holds. Therefore, for anglient net C, if CandCp(C, BB) have the
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same behaviour when only the transitions ofu€ observedthen the same holds for
C and Cp(C, UB), so that Cp(C, BB) and Cp{4B) havethe same behaviour on the
transitions of C. On the othéand, ifthe behaviour ofCp(C, BB) is more restricted

than the behaviour of C (&, Cp(C, BB)), we canonly say that the behaviour of

Cp(C, UB) stands in between the behaviour£p{C, BB) and C (C<,, Cp(C, UB)
<12 Cp(C, BB)).

push push
stored stored available
pop pop
SA ={push, pop} SA = {push, pop}

(a) The unbounded buffer Server net UB (b) The bounded buffer Server net BB
Figure 3: UB subtype of BB.

In order toeasily applyrequirement (ll),one needs acriterion to decidewhether
Cp(C, ) =14 C holds where C is an€/S net. In [Sibertin97], watroduce behav-

ioural relationship between a Client nea@d aServernet S which is compatibility:

S is compatible with C iff C and Cp(C, S) are trace equivalent on the transitions of C,
and therCp(C, ) =, C. In addition, we proveéhat S is compatible with C iff Lr

(C) = La(S); therefore, the Language subtyping relation is quite easy to use, since it is
enough to compute onlgncethe Supplyandthe Demand ofthe involvedC/S nets.

Then, the hypothesises of requirement (Il) are established by compari8gphly of

the Serversandcomparing theDemand ofthe Client with the Supply of the first
Server.

The Languagesemantics is ofteregarded asoo weak for many applications be-
cause it isnot able toexpress branchinime and deadloclbehaviour.Therefore, we
have addressed other semantics to define subtyping relations s8ohudation, Fail-
ure and Bisimulation semantics. IfHameurlain 99] weshow that Simulation and
Failure preordersdenoted<g, and<gm, aresubtyping relations foC/S nets.How-

ever, compatibility is not sufficient to decide whetl@p(C, §) =4 C holdswhere H

0 {Fa, sima} and C is any C/S net, since it rests upon a linear time semantics. In the
case of the simulation subtyping relation, we show@m®C, 3) =ima C holds if C

on its Requestedservices is similar to Son its AcceptedServices, while for the

failure subtyping relation, wehave introduced behaviour relationshifbetween the
Client C andthe Server S which is transparency: S is transparent for C iff C and
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Cp(C, S) are bisimilar on the transitions of C, and prove tthasparencygonstitutes
a criterion to decide wheth@p(C, S) =g, C holds.

The above requirements for subtyping relations giggeater place t&lients than
to Servers since they compaep(C, S) with Candnot with S,where S is a Server
composable with the Client C. Theye in accordancewith a top-down approach
where Cp(C, S) igonsidered as eefinement of the net C: C is a specification of (a
part of) a system, while Cp(C, S) is one implementation. Since the siitnbf C
vanishes into Cp(C, S), only the server side afa@ becomparedwith Cp(C, S), so
that the appropriate semantics are based upon the accept-transitions.

According to a bottom-up approach, Cp(C,v@)uld beconsidered abeing an ex-
tension of the C/S net @&nd wewould be interested isomparing the behaviour of
Cp(C, S) with the one of S. In fact, adapting our requirements tapipsach igust
achieved byfocusing on the clienside of C/S netsinstead oftheir serverside. For
instance, consider the, preorder, where £<,, C, iff Lr(C,) O Lr(C,). <, satisfies

the following requirements, wherg G, and S are C/S nets:
Requiremen(l') : C; <., C, U U S, Cp(G, S)~ir Cp(C, S).
Requiremen(Il') : C, <, C, O OS (Cp(G, S)=., SO Cp(C, S)=., Cp(GC,
S)).

The Laand Lrsubtyping relationgrenot exclusiveandmay beusedtogether. In
this case, we can use the fact that La(S) = Lr(C) iff Cp(Qr&ervedoth theserver
side of C (Cp(C, Sy, C) and the client side of S (Cp(C, §), S). As anexample,
consider the Philosopher C/S net introduced in chapter 2. Cp(P1, P2) is bisimilar both
to P1 on the transitions of P1 and to P2 on the transitions of P2.

5. Discussion

This paperproposes a formdtamework forthe definition of behaviourasubtyping
relations in CoOperative Objects,cancurrent ObjecOrientedlanguage pasedupon
Client/Server Petri nets. Thisameworkconsists ofrequirementghat any subtyping
relation ought to satisfyand it is basedipon thepreorder ancequivalencerelations
commonly considered in the study of concurrgygtems. It is iraccordancavith the
principle of substitutability and extends Liskov’'s approach.

The starting point of the presented approach are the ideas on behdualwntance
in O-O languages based upon Petri nets. In CLOWN, inheritance is defimeebeder
based upon a semantic accounting for observable places, in suchtlatvagerived
net class'extendsthe parents’ specificatiorand specialises them in gestricted do-
main” [Battiston...95], but theonsequencefor net compositionare not addressed.
[Biberstein...95]defines arinheritance relation iCOOPN/2 whichensuresthat the
composechetsarebisimilar for a given netthis relation isbasedupon anAbstract
Data type semantics, and it seems to be difficult to verifyapproach ishasedupon
the preordeand equivalenceelations whichare considered itthe study ofconcurrent
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systems,and leads to definsubtyping relations in CoOperative Objects that enjoy
nice properties.
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Abstract

Sequencing of messages specified by types of objects is desirable especially in
concurrent systems. Types in popular concurrent object calculi cannot support
sequencing of messages. We present a calculus that supports sequencing of messages
and compare it to the calculus of Vasconcelos and Honda. Type safety in our calculus
does not allow a certain kind of nondeterminism supported by other calculi.

1 Introduction

Objects in a concurrent system communicate by passing sequences of messages. The
set of acceptable messages may depend on previously received messages. Consider, for
example, a buffer object understanding “put” and “get”: If empty, the object accepts
only a “put” message; “get” may lead to an error. We expect that a type system ensures
statically that only acceptable messages are sent. This condition must hold even though
in distributed systems it is possible that new objects are added at run time. Especially
in concurrent systems it is important that the set of messages accepted by an object can
change dynamically, expressing synchronization conditions [8].

It is very difficult (if not impossible) to develop such type systems for process calculi
like the m-calculus [7]. For example, the type system developed by Pierce and Sangiorgi [9]
is quite powerful, but it cannot describe sequencing of values communicated along a
channel. A possibility to express sequences of communication in the 7-calculus are graph
types [15]. But graph types are just an observation of the behavior of the whole system
and they are not able to express nondeterminism. The use of logical languages like the
modal p-calculus to express sequences [4] results in a complex type checking system which
supports finite types only.

Types in the object-based process model of Vasconcelos and Honda [12, 13] also cannot
describe the sequencing of messages. The calculi proposed by Abadi and Cardelli [1] focus
on sequential object-oriented systems; hence, sequencing of messages is not even a topic
for these calculi. A concurrent version of one of these calculi is presented in [5], simply

*This work was supported by the FWF, project “Static Process Types for Active Objects” (P12703-
INF).
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by extending an imperative object calculus with primitives for parallel composition and
for synchronization via mutexes. This concurrent calculus even supports subtyping, but
acceptable message sequences cannot be expressed in types.

On the other side, process types [10] support sequencing of messages for a calculus
developed just for that purpose. What is the reason why sequencing of messages works for
this calculus, but not for the others? This is the question we want to answer in this paper.
We argue that the major difference is a certain kind of nondeterminism supported by the
other calculi, but not by our calculus: The sender of a message may not know which
receiver will deal with the message; hence, the sender cannot know how the receiver will
behave. We regard this kind of nondeterminism as rather unimportant for our purposes.

2 Owur calculus

Our calculus is based on active objects behaving as in the actor model [2, 3]. Messages
are passed asynchronously; the sender is not blocked until the message is received. Each
object has a single identifier, a modifiable behavior and a single thread of execution.
Different from the actor model, our communication system ensures that all messages are
handled in the same (logical) ordering they were sent. A property of this communication
mechanism is that when the receipt of a message changes the receiver’s behavior (as
specified in the receiver’s type), the sender knows about the change already when sending
the message. This property! is a precondition for process types [10].

Two infinite sets of names are considered given: X contains names (denoted by
a,b,c,... and also v, z,y...) used as object identifiers and parameters to be substituted
by object identifiers. A set C contains labels (I,...) with XN C = (. Names are under-
lined if they occur at positions where object identifiers shall be substituted for them. An
underlined occurrence of a name binds all following free occurrences of this name.

For each meta-symbol e, a sequence ey, ..., e, can be abbreviated by ¢ if n is arbitrary.
Likewise, {€} denotes the set containing ey, ..., e,, and |é| the length of the sequence. For
each operator o, an expression éo g (with |é| = |g|) stands for e;0 gy, ..., e;0g,. All names
in an underlined parameter list, for example z, are pairwise different. The simultaneous
substitution of e; for all free occurrences of g; (with ¢ = 1,...,|é]) in f is denoted by
f[é/3], where € and g are sequences of the same length, and § is a list of pairwise different
names. The set of all names occurring free in any expression in {é} is denoted by free(é).

This is the syntax of objects:

P = a(B/p) W= 1(0) M :=1(z)B
B :={M} | a<u.B | (a)@Qu.B | Qpu

An active object (or process, denoted by P,@,...) of the form a(B/fi) consists of an
object identifier a, a current behavior B and a queue of received and not yet handled
messages [i.

A message (u,v,&, ... ) of the form I(Z) associates a message selector | with a (possibly
empty) list of names Z used as actual parameters.

1Other communication mechanisms like synchronous message passing, rendezvous, procedure calls,
etc. also have this property.
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A method (M, N, ...) of the form [(Z)B specifies the behavior B preceded by a guard
defining a method name (or message selector) [ and formal parameters Z. There are two
kinds of methods: Globally visible creator methods are invoked when a new object is
created or an object changes its own behavior. A message-handling method (that belongs
to an object) is invokable if its guard matches the next message in the object’s message
queue. The invocation accepts a message sent to the object. The message used for
invoking a creator message is specified in the behavior (following @). After invocation,
the object behaves as B with the actual parameters substituted for the formal parameters.

A behavior (denoted by B, C, . ..) specifies if the object accepts a message and executes
the corresponding message-handling method, sends a message, creates a new object or
changes its behavior by invoking a creator method. An object behaving as {M } selects a
message-handling method in {M } for invocation, depending on the next message in the
queue. An object of behavior a<u.B sends a message u to the object with identifier a and
then behaves as B. One of behavior (a)@u.B creates a new object (with a new object
identifier substituting a) before behaving as B. The new object initially behaves as Qpu.
The behavior @ equals the behavior of a creator method matching p after substituting
actual parameters for formal parameters; this is, a creator method is invoked.

This is the syntax of types (denoted by 7, p,0,7,...):

Tu={a}[r] [ O{a}r] | mflm | ¢
a = 1(7)[r1][r2]

ro=1] 1%

A type of the form {a}[r] consists of a set of message descriptors (each denoted by
a,3,7,...) and a multi-set of tokens (r,s,...). We call {a} the static part and [7] the
dynamic part of the type. An object’s type changes dynamically by removing tokens from
and adding tokens to the type’s dynamic part when messages are accepted.

A token is either a label [ or an infinite token [* standing for a very large (or infinite)
number of tokens [.

Message descriptors are of the form [(7)[7][$], where [ is the message selector and the
7 are types of parameters. Message selector and parameter types together are considered
to be the signature of a message. The other parts of a message descriptor are the in-set
[7] and the out-set [§]. A message of the specified signature is acceptable (by an object
of a type containing the message descriptor in its static part) if each token in the in-set
occurs also in the dynamic part of the object’s type. When accepting the message, the
type is updated according to this message descriptor by removing all tokens contained in
the in-set from the type’s dynamic part and adding all tokens contained in the out-set to
the dynamic part.

A type of the form o||7 denotes the parallel composition of two types; o||7 can be split
into o and 7.

A type of the form (¢){a}[r] is a recursive version of the type. The type parameter ¢
can (recursively) occur in @. A type parameter can occur in each position where a type
can occur.

The static part of a window’s type can be expressed by:

Window = {iconify()[displ] [icon], uniconify()[icon] [displ] }
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When a window receives a message “iconify”, a token “displ” is removed from the type’s
dynamic part, and “icon” is added. When receiving “uniconify”, “icon” is removed and
“displ” added. An object of type Window[displ] first accepts “iconify”, then “uniconify”,
then “iconify” again, and so on.

We distinguish between the type of an object and the type of a reference to an object.
The type of an object describes all messages accepted by the object. The type of a
reference describes the messages that can be sent to the object via this reference. It may
contain only a part of the objects type information. The combination of the types of
all references to an object must keep the contract that the type of the object specifies.
This can be ensured with the mechanism of “type splitting”: When a new reference
(alias) is created, the type information is split in an old part (associated with an already
existing reference) and a new part (associated with the new reference). For example, a
reference’s type Window[displ] can be split into Window[displ] and Window[], but not
into Window[displ] and Window[displ] (because there is just a single token “displ”.

It is possible for a client to follow the changes of an object visible through a refer-
ence by keeping track of the messages that were sent via this reference. For example,
when a message is passed via a reference of type Window[displ], the reference will be up-
dated to Window[icon]. Type updating can be performed statically by means of abstract
interpretation.

3 Reduction Semantics

Now we formalize the semantics of our object calculus. We introduce congruence relations
on behaviors, methods, messages and objects. Each relation depends on a set of creator
methods; the set represents a program. Then, we define an execution relation on system
configurations; these are sets of objects reflecting snapshots of object systems.

First, we define structural equivalence of objects and their constituents: Two behav-
iors, methods, messages and objects are structurally equivalent if they can be made equal
by renaming bound parameters (a-conversion), and swapping and duplicating methods
in method collections of the form {M}.

Definition 1 The behavior congruence B =0 C on behaviors, method congruence

=0y N' on methods, message congruence p =iy v on messages and object congru-
ence P =y Q@ on objects, each relation depending on a set {M} of creator methods, are
the least congruences closed under structural equivalence and the following rules:

Q) =y Bla/7] ((2)B € {M}) (callx)
a{{l(2)B, N}/U(5), i) =1y a(Bly/]/ ) (select=)
a{a<€.B/ ) =y a{B/ i, €) (self send~)

The set {M} is used by (call~) to replace invocations of creator methods with the
corresponding behaviors. The rules (select~) and (self send~) on objects accept messages
and send messages to the objects themselves.

Sending messages to other objects and creating new objects are not dealt with by ob-
ject congruence: These actions are regarded as having effects that become visible outside
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of objects. Object congruence relates objects that behave in the same way when viewed
from outside.

A system configuration 7,7, is a set of objects with pairwise different object identifiers.
The creator method set { M} in the subscript specifies the program executed by the object
system the system configuration represents a snapshot of which.

Definition 2 The a-execution relation Nexry 4 G{M} on system configurations is the least
closure of these rules:

P P U {]5:} = Ny U {C?I} Q' =iy Q (congr_,)
Ny YU A{PY = npin U{Q}

neiny U {a(b<€.B/ i), 0(C/D)} = npiry U{a(B/ ), b(C/7,€)} (send,)

Tainy U {ad(@)OE B/} S nyyyy U {a(Blb/a) /i), H@Eb/2)/))  (new.,)

The execution relation Nar 5 9{1\?[} 1s the least reflexive and transitive closure of all a-
execution relations 1 yp RN O¢ipy with a € X.

Rule (congr_,) states that object congruence can be applied before and after each
execution step. When an object sends a message to another object (send_,), the message
is appended to the receiver’s message queue. A new object created using (new_,) gets an
empty message queue and a fresh constant name as object identifier.

4 Comparing the expressiveness

Vasconcelos’ calculus [12], called TyCO, describes processes and agents using this gram-
mar:

P:=a<l:0 | ad[li:A1& -+ - &l AL | PQ | || P | X(0) | A(D) |let X = Ain P
A:=(Z)P | rec X.A

The P are called processes; they are directly executable. The A are called agents;
they are a kind of templates from which processes can be instantiated. These agents can
be simply abstracted processes ()P or recursively abstracted agents rec X.A.

We omit the specification of the equivalence relation = over processes which covers
a-conversion, reordering of methods and recursion.

TyCO is based on objects of the form a>[li:A1& - - - &l,,:A,] where a is the location
and [l;:A1& - - - &l,,:A,,] an unordered collection of methods labeled by pairwise distinct
labels. In a method I:(9)P, © represents the formal parameters and P the body of the
method. A process sending a message is denoted by a<l:0. The communication rule is

] (a<ly:0, ap(ly: A& . . &l Ay, Q) — |W|([0/1:) P, Q)

where A; = (;)P;. The equivalence rules may be applied before and after reduction.

If a message is sent to an object, it may immediately be processed. There may be
several objects with the same identifier. The sender of the message never knows which
object handles the message. With this property we cannot guarantee an important pre-
condition for the use of process types because senders cannot keep track with changes of
the receivers’ state.
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We think that it is not necessary (for a majority of applications) to support this kind
of nondeterminism. This nondeterminism may even make it difficult for programmers to
understand programs. Hence, we propose to eliminate this kind of nondeterminism. In
terms of Vasconcelos’ calculus, we allow just one process of the form a>[l;: A& - - - &l,,: Ay
for each location a.

We will now sketch how TyCO programs (with the restriction that there is just one
reading atomic process per location) can be mapped into our calculus. TyCO agents
correspond to our creator methods. TyCO processes are always executed concurrently
(denoted by P,Q,...). To create an object corresponding to a TyCO process, we have
to map its behavior to a creator method and create an object using this creator method.
We simply map agent variables X, Y, ... of TyCO to labels in our calculus.

An instance A(?) corresponds to the call of a creator method I(2)[Q] corresponding
to [A], where [@Q] is the “behavior” of [A], and ¥ are the parameters of [A].

An applied agent-variable X (9) must be bound by a recursive agent or a let declaration.
We create it when it is bound.

We map a process of the form [letX = A in P] by creating a new object (z)@QIl(0).{}
using the creator method [(9)[@Q], where [Q] is the behavior of A. The parameters must
correspond to the parameters specified by [A]. Recursion via rec X.A is mapped to a
call of a creator method I(7) ... Q[(Z).

In general, we create a new concurrent object for each atomic process in TyCO. An
atomic process [a>[l1:A1& -+ &l,:A,]] is mapped to a{{li(Z1)[A1], ..., (@) [An]}/);
the message queue is empty. We provide a creator method I(){l1(21)[A1], ..., l(@n)[An]}
and create an object with (a)@I().{}. For each atomic process [a<l:0]| in TyCO, we
create a new object b(a<l(0).{}/). We map a restriction [|z|P] to an object creation
(2)Ql(g).[ P"], where [(0){l1(21)[ A1], . .., l.(@,) [ An ]} expresses the behavior of the single
object reading from x, and P’ corresponds to P after removing this object from P.

Now we sketch the reverse encoding from our calculus to TyCO. An active object
a(B/i) corresponds to a TyCO object representing a and a further object sending mes-
sages to a if requested by a. The additional object represents the sequential message
queue in each object of our calculus. Creator methods I(2)B correspond to (recursive)
agents [(Z)P] or [rec X.A]. Method handling methods {l;(#1)[A1],...,l.(Z,)[A.]}
correspond to a>[li:A & - - - &l,:A,]. We translate message sending a<i(9).[A] (and the
following sequential behavior) to |b|a’<l:0b, b>[l": A], where a’ is the location of the mes-
sage queue of object a, and [’ is the label of a message sent to b by the message queue
after putting the message into the queue. We translate object creation (a)@I(v).]B] to
la||b|A(D), A’, B, where a is a location corresponding to the new object, b a location cor-
responding to the object’s message queue, A an agent expressing the same behavior as
the creator method [, and A’ the implementation of the message queue.

The calculus of Vasconcelos and Honda can be encoded into the m-calculus and vice
versa [14]. Hence, all that has been said in this section also holds for the m-calculus.

5 Extensions of our Calculus

In our calculus it is also possible to introduce the kind of nondeterminism available in the
other calculi for the rare cases it may be needed. However, when the receiver of a message
is not known in advance, all possible receivers must have the same type. This type must

6
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not depend on changeable states. A clear distinction between object identifiers with just
one reader and such with multiple readers is necessary. Such an extension might be useful
in systems where one of several autonomous agents offering the same services is selected
dynamically on its availability.

Types in our model support subtyping [10]. The expressiveness of types can be im-
proved by adding higher-level constructions to the calculus [11]. For example, the use
of genericity and if-then-else constructions (where the equality of object references or
subtyping relationships are used as conditions) improves the flexibility while still being
statically typed.

6 Conclusion

The 7-calculus [7] and TyCO [12] allow that more than one agent reads from a channel.
The sender never knows which agent reads a message. This kind of nondeterminism makes
it impossible to use types like process types [10], where sequencing of messages can be
specified. When removing this (rarely needed) kind of nondeterminism, sequencing of
messages can be supported.

Unlike the untyped basic calculi, the expressiveness of statically typed calculi (using
process types) can be improved by using higher-level constructions (like conditional ex-
ecution). We think it is necessary to develop a process calculus together with its type
system to get a statically typed setting with sufficient expressiveness. A goal of our future
work is to further examine the interactions between process calculi and type systems to
improve the expressiveness of statically typed concurrent programs.
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Abstract

In this paper we describe an approach for typing objects with non-
uniform service availability. We define behavioral types for object inter-
faces based on labeled transition systems that specify the succession of
available methods (services) at an interface. Each transition label is a
method signature. In addition, each interface has to be declared public
or private. A private object interface has only one client at a time and
offers non-uniform services depending on the “protocol” the client and
the server have agreed on. On the other hand, a public interface can have
multiple clients at the same time and is required to perform the same
services for all its potential clients: the services on a public interface are
uniform.

1 Introduction

Let us consider the typical example of the one place buffer. Only one element
at a time can be stored in this buffer. So it offers repeatedly the method put
then the method get. An implementation of this buffer in Java would be as
shown in figure 1.

In this example the Buffer class has a boolean member: empty. Initially,
empty is true. The service put is available only if empty is true and conversely
the service get can be performed only if empty is false.

The inspection of the code of the buffer reveals that to be correctly used,
first the put method must be called and then the get method can be called, but
it is not possible to know this just by examining the type of the buffer. Thus,
it is very difficult to detect this kind of errors (service not available), because
the “synchronization constraints” are hidden in the object code.
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public class Buffer{
private Boolean empty;

public Buffer(){
empty := true;

}
public void put(Object o) throws ServiceNotAvailable {
if('empty) throw new ServiceNotAvailable();
elseq{
empty := false;

}
}
public Object get() throws ServiceNotAvailable {
if (empty) throw new ServiceNotAvailable();
elseq{
empty := true;

Figure 1: The one place buffer in Java

In addition, in the case of a parallel or distributed language, the buffer
can have two clients (a producer and a consumer) accessing concurrently to its
services. In this case, the producer and the consumer have to coordinate their
actions to avoid a service call when it is not available.

Our approach consists precisely in defining a type language that solves this
problem. An interface type is defined by a labeled transition systems where each
transition is a method signature. We also distinguish between public interfaces
that have a uniform service availability and private ones that have dynamically
changing service offers. To enforce coordination between objects, we do not
allow duplication of private interface references such that only one client at time
can invoke services of a private interface. Multiple clients must then “cooperate”
to access safely to the services.

An interface type specifies:

e the behavior type of the interface, i.e., the succession of the available
services;

e the mode of the interface: public or private;

e the role of the interface: client or server. An object that have the client
role (noted !) of an interface can invoke services offered at this interface.
An object that have the server role (noted ?) can offer services on the
interface.
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Remark: Usually, the client role of an interface is called a reference to this
interface, whereas the server role of an interface is simply called the interface.
This paper is a revised and extended version of the work presented in [8].

2 Behavior Types

A behavior type is a triplet (F, z,r), noted E > rz, where 2 is the behavior type
identifier, r its emitting/receiving capability (r C {!,7}) and F a finite set of
equations of the form zp = e where each x; 1s a behavior type identifier that
appears once and only once in the left-hand side of an equation and e is an
expression of the form:

e = Zmz(p]a:]),x: with | 21" = m; # my

where:
e cach m; 1s a method name. We call M the set of method names.

e each p;7; is a list of the form: plz}, ... | p¥z¥ describing the behavior types
of the arguments of method m;. Each z! is a behavior type identifier and
pl arole, i.e., client (1), server (?) or both (17).

e cach z! is a behavior type identifier.

There exists a predefined behavior type, nil, that does not appear in the
left-hand side of any equation.

In our model we consider only deterministic types, i.e., if there is a choice
between two messages of a behavior type expression, the names of the messages
must be different.

Note: In the following we will consider, without loss of generality! , that all
our behavior types are defined in the same environment, . We will then omit
this environment when writing a behavior type, i.e., F > rz will be written rz.
We let X, Y, Z range over behavior types.

2.1 Type Behavior

In this section, we define the dynamic aspects of behavior types. A behavior
type X that performs action @ and then evolves to a new behavior type X’ is
denoted by the transition:

X ——Xx

An action is a method signature annotated with a role: pm(Xy,..., X,).

1Two behavior types defined in two distinct environments can be simply redefined in the
union of these environments with an appropriate renaming of type variables.
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Behavior type transitions are defined by the following rule:

n
k kY.
x:ZmZ(pzlle,,pz.Lz),;c; where p € {!,?7} and
=1 — p C r and (Type-Act)

1.1
r;t—)p MG J)rl’} 1<j<n

Note : The behavior type, r nil where r is any (valid) set of capabilities,
cannot evolve.

We define now the function possible(X), which is the set of method names
that can be handled by the behavior type X.

Definition 1 (possible)

possible(X) = {m e M,3X’ Y | X L(Y)>X’}

2.2 Behavior Type Equivalence

Bisimulation is a behavioral equality relation over behavior types. This defini-
tion is very close to the definition of process bisimulation in CCS (see [6]). The
principal difference is that in our case the actions need to be bisimilar too.

Definition 2 (Bisimulation)

A binary relation 3 over behavior types is a bisimulation if (X1, Xa) € 5 implies :

i) Xy 22U r o x, POt and (X, XL) € 8, (Y1, V2) € B

m

i) X, 270 xr s x, 2P0 and (X5, X)) € B, (Va, Vi) € B

Definition 3 (Behavior type equivalence)

Two behavior types X1 and X9 are equivalent, noted X1 ~ Xo, if and only if,
there exists a bisimulation § such that (X1, X2) € 3.

We define a predicate uniform(X) formalizing the notion of uniform behav-
ior type.

Definition 4 (uniform)

uniform(X) holds if X L(Y)) X' implies X ~ X'
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2.3 Behavior Subtypes

Our subtyping relation is based on a simulation relation ([6]).

Definition 5 (Simulation)

A binary relation 8 over behavior types is a simulation relation if (X1, Xs) € S
implies :

?m( 7m(Ys) \

i) Xy 20 o x, TR x and (XL X €8, (i, Ya) €S

i) Xo 0% o xy POY ¥ and (XL, XD) €S, (Ya, V) €S

Informally, an interface type X is a subtype of a type X, iff:

client case: the processable messages of X2 are a subset of the processable
messages of X;.

server case: the processable messages of X; are a superset of the processable
messages of Xs.

This is to guaranty the safe substitution of a supertype by its subtype.

Definition 6 (Subtypes)

A behavior type X1 is a subtype of a behavior type X5, noted X1 < Xo, if there
exists a simulation S such that (X1, X3) € S.

3 The Object Calculus

Our object calculus is a variant of the w-calculus ([7]) with syntactic sugar for
method definition. We also restrict the choice operator to receiving actions
only. Communication is asynchronous for public interfaces and by rendez-vous
for private interfaces. Our calculus is in fact asynchronous. We have chosen
rendez-vous communication for private interfaces for technical reasons and for
simplifying the presentation. The formal syntax of the calculus is given in

figure 2.

3.1 Operational Semantics

We present the operational semantics of object configurations in two steps. We
first define a structural congruence relation and then we give a reduction relation
that specifies how object configurations evolve.
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I = wT
Del = A[l]=B
Recep == u[mi(l) = Bi, - ,mu(I,) = By]
B = 0
u.m(pv) > B
> iy Recep;

create A[pi] > B

new u:7Tin B

M = [um(?)]
C = B
|  new u:Tin C
| M|C
| ClC
Symbol Signification
T interface type
A behavior name
u, v interface name
m,my, -, My method name
p role
B behavior expression
M message
C object configuration
Del behavior definition

Figure 2: The Object Calculus Syntax

3.1.1 Structural Congruence

Bound and free variable occurrences are defined as usual.

Definition 7 (Bound and free variables)

Interface names occurrences appearing in the scope of a behavior definition

(A[Il = B), a reception action (u[mi(Iy) = Bi, - ,mn(I,) = Bn]) or an
interface creation (new u:T in C) are bound, otherwise they are free.

Definition 8 (Substitution)

The substitution Cfv/u] denotes the simultaneous replacement of all the free
occurrences of u by v in C.

We can define the congruence relation, noted =.
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The first structural rules state that the choice operator between receptions
is commutative and associative:

Recepy + Receps = Receps + Recepy

(Recepy + Receps) + Receps = Recepy + (Recepa + Receps)

The parallel operator is also commutative and associative and 0 is its neutral
element:

01|02 = Cz|Cl
(C1]C2)|C5 = C1](C2|C5)
cljo=c

The order of the introduction of the interfaces in meaningless:

new u;:71 in (new us:7Ts in C) = new uy:7T» in (new u;:7; in ()
for uy # us

The two last rules are the m-calculus scope extrusion and alpha-conversion:
(new u:T in C1)|Cs =new u:T in (C1]|Cs) if u is not free Cy

new u:7T in C' = new v:T in C[v/u] if v is not free C

3.1.2 Reduction Rules

We define now the reduction rules that specify how a configuration can evolve by
making a single and atomic step. The evolution of configurations may generate
messages. The syntax of a message is similar to the syntax of the method
invocation except that the message has no continuation. To avoid any ambiguity

messages will be written between brackets: [u.m(%)].

In some cases, the reductions will be annotated by a “label”: C} L> Cs.
The labels are of the form u.m where u is an interface name and m a method
name. These labels will be used to keep track of type evolution.

To distinguish between the interactions on public and private interfaces, the
emitting actions on public interfaces will be noted “,” whereas the emitting
actions on private interfaces will remain noted “.” (dot).

The reduction relation is defined by the following rules:

ul- - ’m(gj“) > B, -]+ X Recep;
| 27 Blw/©]|B’ (R1)
u.m(®) > B’

The synchronization on a private interface is by rendez-vous.

usm(¥) > B — B|[u.m(7)] (R2)

The invocation of a public interface generates a message ([u.m(?)]) whose be-
havior is to synchronize with this interface.
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uf- - - ,m(ﬁ:T) > B,---]+ X Recep;
| : (@) — B[w/7] (R3)

A message is absorbed by the appropriate (public) interface and then vanishes.

Ala: T 2" B
A[§] — Bli/i]

(R4)

We simply replace the instantiation of the object by its corresponding behavior.

Ali:T] %' B

create A[t] > B’ — B[v/u]|B’

(R5)

The created object runs in parallel with the continuation of the creating behav-
ior.

cy %

— (R6)
C|c1 % |t

This rule states that if a sub-configuration can evolve to a new one then the
whole configuration can evolve too.

C u.m o T pm(1) T

with p € {1,7} (R7)

new u:7 in ¢ — new u:7" in C'

When there is an interaction on a private interface we update its type.

C v.m Cl

. v,m -
new v:7 in C — new u:7 in C'

with v # u (R8)

The type of the variable u is not changed by an interaction on an other interface
.
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C— \
: : (R9)
new u:7T in C — new u:T in ('
A non annotated reduction does not impact the new operator.
Ci-50y =0 C=0
1 2 1 1 2 2 (R10)

o -5 oo,

This last rule states that configurations that are equivalent (according to =)
behave equally.

3.2 Static Semantics
3.2.1 Introduction

An interface type is a couple (g, X), noted g X, where u is the mode of the
interface (public or private) and X its behavior type. Interface types will be
ranged over by the meta-variable T'.

We extend type transitions and subtyping to interface types.

Definition 9 (Interfaces type behavior)

An interface type can perform the same actions as its behavior type:
Yi, o pin¥n . Y1, Yn
uX om(pu1Ya, N uX'if X om(Y1 ) X

Definition 10 (Interface subtyping)

An anterface type Ty is a subtype of an interface type To if they have the same
mode p and if the behavior type of Th is a subtype of the behavior type of Ty:
pXe 2 pXs if Xy 2 Xo.

Definition 11 (Role addition)

Role addition is defined by the following equations and is undefined otherwise:

(wrz)e? = p(ru{?he ifrér
(private r 2) ®! = private (r U{!} )z ifl¢r
(public rz)®! = public (rU{!})z

The client role of public interfaces can be “added” without restriction. In
the other cases the role addition is permitted only if the role is not present yet
in the interface type.
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Notation : The expression T'®!7 denotes the successive additions of the client
and server roles: (T @®!) @ 7.

Definition 12 (Interface type addition)

Interface type addition is defined by the following equations and is undefined
otherwise:

(uroz) = p((riz) ® ra) ifra#0
(urez) = prix if ro =)

(ur1 @)

®
(ur1z) ©

The second equation is necessary because role addition is not defined for an
empty capability.

A typing context I' is a set of bindings of the form: @ : T'or A : (T1,...,T,).
The set of interface names appearing in a context I is called the context domain:
Dom(T'). The static semantics is given using the following judgments:

Judgment Signification

T'kFu:T in the context I' the interface u has type T'

I A:(Cf) in the context I' the object A has type (f)

I'+B in the context I' the behavior B is well-typed
r+c in the context I' the configuration C' is well-typed

The context extension, noted T',u : T or T', A : (T), is defined such that
TuwTrFu:Tand T, A:(T)F A:(T).
We extend @ to typing contexts as follows:

Definition 13 (Context addition)

The addition of two contexts is defined by the following equation and is undefined
otherwise:

(T, u:Th) ®To,u:Te = (T1 ®Ta),u: (T & Tz), if Dom(T1) = Dom(T'3) and
Ti® Ty and Ty ® Ty are defined

Definition 14 (Addition of interface roles)

The addition of an interface role to a context, noted I' & pu is defined if u €
Dom(T') by the following equations and is undefined otherwise:

Tou: (T @ p)
Y pv = (T ®pv),u:T if utvw

55
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3.3 Typing Rules

The basic idea underlying our typing system is to guaranty that each object uses
the interfaces in a way compatible with their declared behavior type. These rules
ensure also that there is no undesired duplication of interface roles.

10
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TFu:pre = ((?€r)=> 2 =nil)

r=o (T1)

This rule introduces the notion of receiving obligation. If the behavior type of a
server can perform an action (is different from nil) then this server cannot stop.

Lbu:ThF B

T m(X1,, Xn) 7

Crhwiipary 2z T F vy par, 2,
prei 2 Xypntn 2 Xp

'@ pv defined
I po,u:Ty Fum(pivy, -, p1v1) > B

(T2)

This rule checks that the actual arguments of method m, vy of type pir1 21,

.., Up of type pnrn &, are subtypes of the expected argument types X, ...,
Xy. The behavior type of u and the capabilities of the arguments v are updated
in the new context.

IC[l.n]
T,u:T!,0;:T; + By forie I
ARSLNG S
possible(T) = {m; |i € I}
T, u:TF ufmy(v1 :Tl) =Bi- -, mu(vn fn) = B,]
This rule checks that each behavior is well-typed in a context where the method
parameters have their declared type. Servers must offer all the services that are

(T3)

defined by their behavior type, but are free to offer additional services.

I'F Recepy ...T'F Recep,

n (T4)
rr Z Recep;
i=1
The context is simply propagated as it is in all the branches of a choice.
[, u:private X - C
Capabilities(X) = {,7
pabitities(X) = {17} -

't new u:private X in C

11
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A newly created interface has both roles 2: client and server.

[, u:public X - C
Capabilities(X) = {!,7}
uniform(X)

- . (T5.2)
I'F new u:public X in C
In the case of a public interface, its behavior type must be uniform.
T,A:(T),a:T+ B :
(T6)

[ A:(T)F Ala:T) = B

This rule enforces that, in the case of an object declaration, the behavior of the
object is well-typed in a context where the declaration formal arguments have
their declared types.

I'+B
F}_A:(Nle:"' :/‘Lan)
Frhupipary 2 T F ug ey 2,

prr1 2 X1 pnx, 2 X,

'+ Alpu] (T7)

An interface having a subtype of another can replace it in an object instantia-
tion.

I'HB

THA: (X1, unXn)
FFuyipiry g T Euyippr, 2,
prr1 X X1 pprn 2 Xy

I' @ pu defined
I'qput Alpa) > B

(T8)

This is the same case as the precedent except that here we must update the
capabilities of the interfaces u.

2The function Capabilities is simply defined as follows: Capabilities(r z) = r

12
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=
s - Cs

I't ® I's defined
I'ioelyk 01|02

(T9)

Finally, this last rule states that there is no duplication of the roles of a client
interface when composing configurations.

4 An example

We present a small buffer example intended to show how interface types can
be defined and used in a configuration of objects. We demonstrate also how
coordination can be modeled using private interfaces.

Our initial step is to declare the interface type for a one place buffer that
stores elements (interfaces) of type elem:

Buff
Full

put(lelem) ; Full
get(!r_elem) ; Buff

These two equations simply state that a buffer is initially waiting for the
message put carrying an element of type !'elemt (a reference on elem) and then
behave according to the behavior type Full. When full, the buffer waits for
the message get with an argument of type !'r_elem which corresponds to the
return address.

Interfaces of type r_elem return elements of type elem:

r_elem = ret('elem) ; O

The behavior type 0 is a predefined behavior type that cannot evolve.

4.1 A buffer and a client

An object that encapsulates a one place buffer can be now written:

Buffer[self: private ?Buff] =

self[put(e: private !elem) =
Full-Buffer[?self, !el
]

This object starts with an initial server interface self which is ready to
accept a put method. Method put takes an argument e which is the client role
(the reference of the object to be stored) of an interface of type elem. After
accepting method put the object becomes a Full-Buffer which has the contin-
uation of the server role for self and a client role for interface e. Full-Buffer
is ready for method get which takes an interface r that is used as a target for
returning the value e:

13
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Full-Buffer[self: private ?Full,
e: private 'elem ] =
self[get(r: private !r_elem) =
r.ret('e) > Buffer[?self]
]

Note how, at the initial state of Full-Buffer, the behavior type of interface
self is PFull. We can now define a client that uses our buffer:

Buffer-Client[ buf: private !Buff,
e: private l!elem ]=
buf.put(le) >
new r: private !7?r_elem in
buf.get(!r) >
rlret(e: private l!elem) =
Buffer-Client['!'buf, 'el
]

Object Buffer—Client is parameterized with the (client) interface of the
buffer and the (client) interface of the element that is to be stored in the buffer.
Tt starts by invoking method put and then it creates a new interface (a newly
created interface always has both roles, client and server) that is used in the
argument of the invocation of method get.

4.2 A buffer and two clients

We turn now to modeling two coordinated clients for our buffer: a producer and
a consumer. We will take advantage of the private interface buf to synchronize
these two objects: the client role for buf is passed between the two objects - the
producer after storing an element in the buffer, and the consumer after getting
this element. The Producer object is as follows:

Producer[buf: private !Buff,
e: private !elem,
prod: private T7s_empty,
cons: private !s_fulll=
buf.put(le) >
cons.token(!buf) >
prod[token(buf: private !Buff) =
Producer[!buf, e, ?prod, ! cons]

]
and the Consumer object is given hereafter:

Consumer[cons: private ?s_full,
prod: private !s_empty 1=
cons[token(buf:private !'Full) =
new r: private !? r_elem in
buf.get(!r) >
rlret(e: private !elem) =
prod.token(!buf) >

14
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Consumer [?cons, !prod]

]

The previous objects make use of interface behavior types s_full and s_empty
which are simply defined by the following equations:

s_full = token(!'Full) ; s_full
s_empty = token(!Buff) ; s_empty

5 Run-time Safety

We first define run-time failures using the following rules.

m# m;, Vi€ [l.n]
ulmi(-+-) > By, ,mp(-++) > By] + L Recep;
| — error

u.m(¥) > B’

(E1)

A configuration where the server on a private interface is not ready to accept
a message m while the client of this interface is trying to invoke this service
reduces to error.

k#1
ul--,m(u, ... ,ug) > B, -]+ ZRecep;
| — error
um(vy, ..., u) > B

(E2)

Similarly, a configuration where the server is ready to process the message m,
but where there is a parameters number mismatch reduces to error.

m# m;, Vi€ [l.n]
ulmi(-+-) > B1, -+ ,mp(-++) > Bp] + L Recep;

| — error
[u.m(v)]

(E3)

A configuration where a message addressed to a public interface which cannot
process it reduces to error.

k#£1
ul--+,m(ur, ... ,ug) > B, -]+ L Recep;
| — error
[u.m(vy, ..., )]

(E4)

15
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As for the private interface case, a configuration where there is a parameters
number mismatch reduces to error.

C — error
. (E5)
new u:Tin C — error
Ci — error .
(E6)

Cy | Cy —> error

If a subconfiguration reduces to error the entire configuration does so.

Theorem 1 (subject reduction)

If a configuration C1 s well-typed in the context T'y and if Cy N Cy or Cy —
Cy then there exists a context I'y where Cy is well-typed.

Justification of the theorem: This result is mainly due to the following
properties of our calculus. These properties are enforced by the typing discipline
defined and by the synchronization mechanisms of the calculus (see [11] for the
proof).

e behavior types of public interfaces are uniform;
e client roles of privates interfaces cannot be duplicated;
e synchronization on private interfaces are by rendez-vous;

e objects use their interfaces according to their declared type.

Theorem 2 (Run-time safety)

A well-typed configuration C' cannot reduce to error: T'+ C = C 7Ll> error.

Justification of the theorem: This theorem follows (almost) immediately
from the subject reduction property.

6 Discussion and future work

We presented an object calculus which combines features of the asynchronous
m-calculus [7] and the actors model [1]. This calculus is endowed with typing
rules that guarantee a safety result which is there is no “message not under-
stood” errors at run-time. We extended this result to infinite types in [9] and
to guaranty a liveness property in [10] with proofs in [11].

16
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There is a lot of ongoing research in the field on behavioral typing. Among
these, we can cite [12, 13, 14, 5, 3, 4, 2]. Most of these contributions are based
on type inference, except [12, 13] which are based on explicit typing. The types
inferred by the system described in [14] are very close to the behavior types
presented in this paper. The other systems, especially [3, 2], perform a static
analysis of the code based on an approach close to type inference. But what is
inferred cannot really be called a type in the sense that it cannot be used, as an
IDL specification can be, to know what are the services offered at an interface.

As seen in our two small examples, a well known problem with object cal-
culi based on process calculi is the intensive use of intermediate channels used
for returning results. In our case, this leads to an increase of interface type
declarations since types have to be declared explicitly.

We are now exploring the possibility of using functional behavior types. For
example, the behavior type of a one place buffer would be something like:

Buff = put(elem) ; Full
Full = get() -> elem ; Buff

The buffer itself could be written in pseudo-code as follows:

Buffer[store: elem]: Buff

begin

void put(e: elem){
store := e;

¥

elem get(){
return store;
}

end

The buffer encapsulates a state which is the store in this case and possesses
two methods: put and get. The declaration of Buffer of type Buff specifies
the synchronization constraints on its methods. This way, we can separate the
functional aspects of the objects from the synchronization aspects. In addition,
the synchronization aspect are “visible” from the outside world of the object.
In such a language, we will have to be careful about the semantics of a private
reference and about the meaning of reference passing in a method call.
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