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The PEPM’99 workshop is bringing together researchers working in the areas
of semantics-based program manipulation and partial evaluation. The workshop
focuses on techniques and supporting theory for the analysis and manipulation
of programs. Technical topics include, but are not limited to:

Program manipulation techniques: program transformation, program special-
ization, type specialization, syntax-directed partial evaluation, type-direct-
ed partial evaluation, normalization, continuation-passing conversion, re-
flection, rewriting, run-time code generation.

Program analysis techniques: abstract interpretation, static analysis, binding-
time analysis, attribute grammars, constraints.

Related issues in language design and models of computation: imperative,
functional, logical, object-oriented, parallel, distributed, mobile, secure.

Programs as data objects: staging, meta-programming, incremental computa-
tion, mobility, tools and techniques, prototyping and debugging.

Applications: systems programming, scientific computing, algorithmics, graph-
ics, security checking, simulation, compiler generation, compiler optimiza-
tion, decompilation.

Original results that bear on these and related topics were solicited.
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Quasiquotation in Lisp

Alan Bawden

Brandeis University

bawden@cs.brandeis.edu

Abstract

Quasiquotation is the technology commonly used in

Lisp to write program-generating programs. In this

paper I will review the history and development of

this technology, and explain why it works so well in

practice.

1 Introduction

The subject of this paper is \quasiquotation".

Quasiquotation is a parameterized version of ordi-

nary quotation, where instead of specifying a value

exactly, some holes are left to be �lled in later. A

quasiquotation is a \template".

Quasiquotation appears in various Lisp dialects, in-

cluding Scheme [4] and Common Lisp [13], where it

is used to write syntactic extensions (\macros") and

other program-generating programs.

I have two goals in this paper. First, I wish to

simply introduce the reader to quasiquotation and to

record some of its history. Second, I wish to draw

attention to the under appreciated synergy between

quasiquotation and Lisp's \S-expression" data struc-

tures.

In this paper when I use the word \Lisp" I will

mean primarily the Lisp dialects Common Lisp and

Scheme, although what I say will usually be true of

most other Lisp dialects. When I write examples of

Lisp code, I will write in Scheme, although what I

write will often run correctly in many other Lisp di-

alects.

0

2 Why Quasiquotation?

Before looking at how you would use quasiquotation

to write program-generating programs in Lisp, let us

consider what would happen if you had to use the C

programming language instead. Seeing what can and

cannot be easily accomplished in C will help clarify

what a truly useful and well-integrated quasiquota-

tion technology should look like.

2.1 Quasiquotation in C

Suppose that you are writing a C program that gen-

erates another C program. The most straightforward

way for your program to accomplish its task is for it

to textually construct the output program via string

manipulation. Your program will probably contain

many statements that look like:

fprintf(out, "for (i = 0; i < %s; i++)

%s[i] = %s;\n",

array_size,

array_name,

init_val);

C's fprintf procedure is a convenient way to gener-

ate the desired C code and to specialize it as required.

Without fprintf, you would have had to write:

fputs("for (i = 0; i < ", out);

fputs(array_size, out);

fputs("; i++) ", out);

fputs(array_name, out);

fputs("[i] = ", out);

fputs(init_val, out);

fputs(";\n", out);

You can tell at a glance that the fprintf statement

generates a syntactically legal C statement, but when

looking at the sequence of calls to fputs, this isn't as

clear.

Using fprintf achieves the central goal of

quasiquotation: It assists you by allowing you to write

4



expressions that look as much like the desired output

as possible. You can write down what you want the

output to look like, and then modify it only slightly

in order to parameterize it.

Although fprintf makes it easier for you to write

C programs that generate C programs, two problems

with this technology will become clear to you after

you have used it for a while:

� The parameters are associated with their values

positionally. You have to count arguments and

occurrences of \%s" to �gure out which matches

up with which. If there are a large number of

parameters, errors will occur.

� The string substitution that underlies this tech-

nology has no understanding of the syntactic

structure of the programming language being

generated. As a result, unusual values for any of

the parameters can change the meaning of the re-

sulting code fragment in unexpected ways. (Con-

sider what happens if array_name was \*x":

C's operator precedence rules cause the result-

ing code to be parsed as \*(x[i])" rather than

the presumably intended \(*x)[i]".)

The �rst problem could be addressed by somehow

moving the parameter expressions into the template.

You would much rather write something like:

subst("for (i = 0; i < $array_size; i++)

$array_name[i] = $init_val;");

But even if this could be made to work in C,1 you will

still be left with the second problem: 
at character

strings are not really a very good way to represent re-

cursive structures like expressions. You will probably

wind up adopting some convention that inserts extra

pairs of parenthesis into your output just to be sure

that it parses the way you intended.2

We have identi�ed three goals for a successful im-

plementation of quasiquotation:

� Quasiquotation should enable the programmer

to write down what she wants the output to look

like, modi�ed only slightly in order to parame-

terize it.

� The parameter expressions should appear inside

the template, in the positions where their values

will be inserted.

� The underlying data structures manipulated by

quasiquotation should be rich enough to repre-

sent recursively de�ned structures such as ex-

pressions.

1I can think of several ways to do it|none of them very

pleasant.
2A technique often employed by users of the C preprocessor

for the very same reason.

As we shall see, the achievement of that last goal is

where Lisp will really shine.

2.2 Quasiquotation in Lisp

Now suppose that you are writing a Lisp program

that generates another Lisp program. It would be

highly unnatural for a Lisp program to accomplish

such a task by working with character strings, as the

C code in the previous section did, or even to work

with tokens, as the C preprocessor does. The natural

way for a Lisp program to generate Lisp code is for

it to work with Lisp's \S-expression" data structures:

lists, symbols, numbers, etc. So suppose your aim is

to generate a Lisp expression such as:

(do ((i 0 (+ 1 i)))

((>= i array-size))

(vector-set! array-name

i

init-val))

The primitive Lisp code to construct such an S-

expression is:

(list 'do '((i 0 (+ 1 i)))

(list (list '>= 'i array-size))

(list 'vector-set! array-name

'i

init-val))

It is an open question whether this code is more or

less readable than the C code in the previous section

that used repeated calls to fputs instead of calling

fprintf. But Lisp's quasiquotation facility will let

you write instead:

`(do ((i 0 (+ 1 i)))

((>= i ,array-size))

(vector-set! ,array-name

i

,init-val))

A backquote character (`) precedes the entire tem-

plate, and a comma character (,) precedes each pa-

rameter expression inside the template. (The comma

is sometimes described as meaning \unquote" be-

cause it turns o� the quotation that backquote turns

on.)

It is clear what this backquote notation is trying to

express, but how can a Lisp implementation actually

make this work? What is the underlying technology?

The answer is that the two expressions above are

actually identical S-expressions! That is, they are

identical in the same sense that

(A B . (C D E . ()))
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and

(A B C D E)

are identical. Lisp's S-expression parser (tradition-

ally called \read") expands a backquote followed by

a template into Lisp code that constructs the desired

S-expression. So you can write:

`(let ((,x ',v)) ,body)

and it will be exactly as if you had written:

(list 'let

(list (list x (list 'quote v)))

body)

Backquote expressions are just a handy notation for

writing complicated combinations of calls to list con-

structors. The exact expansion of a backquote ex-

pression is not speci�ed|read is allowed to build any

code that constructs the desired result.3 (One possi-

ble expansion algorithm is described in appendix A.)

So the backquote notation doesn't change the fact

that your program-generating Lisp program works by

manipulating Lisp's list structures.

Clearly this backquote notation achieves at least

the �rst two of our three goals for quasiquotation: the

code closely resembles the desired output and the pa-

rameter expressions appear directly where their val-

ues will be inserted.

Our third goal for a quasiquotation technology was

that the underlying data structures it manipulates

should be appropriate for working with programming

language expressions. It is not immediately clear that

we have achieved that goal. List structure is not quite

as stark a representation as character strings, but it

is still pretty low-level.

We can represent expressions using list structure,

but perhaps we would be happier if, instead of ma-

nipulating lists, our quasiquotation technology ma-

nipulated objects from a set of abstract data types

that were designed speci�cally for each of the various

di�erent syntactic constructs in our language (vari-

ables, expressions, de�nitions, cond-clauses, etc.).

After abandoning character strings as too low-level,

it seems very natural to keep moving towards even

higher-level data structures that capture even more

of the features of the given domain.

But this would be unnecessary complexity.

The problem with strings was that string substi-

tution didn't respect the intended recursive structure

3Actually, in Scheme [4], the exact expansion is speci�ed: it

expands into a special quasiquote expression. But I have never

seen a programmer take advantage of this fact in a way that

wasn't somehow problematic, so I am skeptical of its utility,

and I will therefore ignore it in this paper.

of expressions represented as strings. But list struc-

ture substitution does respect the recursive structure

of expressions represented as lists{and we haven't yet

identi�ed any additional problems that switching to

an even higher-level representation would solve. The

introduction of additional data types, and the proce-

dures to manipulate them, would certainly introduce

additional complexity into the system. The ques-

tion is, would that complexity pay for itself by solv-

ing some problem, or making something more conve-

nient?

For example, perhaps a well-designed set of ab-

stract data types for various programming language

constructs would prevent us from accidentally us-

ing quasiquotation to construct programs with illegal

syntax. This additional safety might make the addi-

tional complexity worthwhile. Or perhaps a higher-

level representation would enable us to do more pow-

erful operations on programming language fragments

beyond simply plugging them into quasiquotation

templates. This additional functionality might also

o�set the increased complexity.

Such possibilities can't be ruled out, but after

twenty years in its present form, no clearly superior

representations for quasiquotation to work with have

appeared. There just don't seem to be any compelling

reasons to complicate matters my moving up to a

higher-level representation. All three of our goals for

a quasiquotation technology are nicely achieved by

S-expression-based quasiquotation.

2.3 Synergy

In fact, there's a wonderful synergy between

quasiquotation and S-expressions. They work to-

gether to yield a technology that's more powerful

than the sum of the two ideas taken separately.

As we saw in the last section, Lisp code that con-

structs non-trivial S-expressions by directly calling

Lisp's list constructing procedures tends to be ex-

tremely unreadable. The most experienced Lisp pro-

grammers will have trouble seeing what this does:

(cons 'cond

(cons (list (list 'eq?

var

(list 'quote

val))

expr)

more-clauses))

But even a novice can see what the equivalent

quasiquotation does:

`(cond ((eq? ,var ',val) ,expr)

. ,more-clauses)
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S-expressions were at the core of McCarthy's origi-

nal version of Lisp [6]. The ability to manipulate pro-

grams as data has always been an important part of

what Lisp is all about. But without quasiquotation,

actually working with S-expressions can be painful.

Quasiquotation corrects an important inadequacy in

Lisp's original S-expression toolkit.

The bene�ts 
ow the other way as well. As we've

seen, character string based quasiquotation is an un-

tidy way to work with recursive data structures such

as expressions. But if our data is represented using S-

expressions, substitution in quasiquotation templates

works cleanly. So S-expressions correct an inadequacy

in string-based quasiquotation.

Quasiquotation and S-expressions compensate for

each other's weaknesses. Together they form a re-

markably e�ective and 
exible technology for manip-

ulating and generating programs. So it is not surpris-

ing that although quasiquotation didn't become an

o�cial feature of any Lisp dialect until twenty years

after the invention of Lisp, it was in common use by

Lisp programmers for many years before then.

3 Embellishments

Now that the reader is convinced that quasiquotation

in Lisp is an important idea, we can proceed to �ll in

the rest of the picture. Two important points about

the technology and how it is used need to be pre-

sented. First, we need to introduce an additional fea-

ture, called \splicing". Second, we need to take a look

at what happens when quasiquotations are nested.

3.1 Splicing

We brushed very close to needing splicing in a previ-

ous example. Recall:

`(cond ((eq? ,var ',val) ,expr)

. ,more-clauses)

The value of the variable more-clauses is presum-

ably a list of additional cond-clauses to be built into

the cond-expression we are constructing. Suppose we

knew (for some reason) that that list did not include

an else-clause, and we wanted to supply one. We

can always write:

`(cond ((eq? ,var ',val) ,expr)

. ,(append more-clauses

'((else #T))))

But calls to things like append are exactly what

quasiquotation is supposed to help us avoid.

The backquote notation seems to suggest that we

should be able to write instead:

`(cond ((eq? ,var ',val) ,expr)

. ,more-clauses

(else #T))

Unfortunately, this abuse of Lisp's \dot notation" will

be rejected by the Lisp parser, read. Fortunately,

this is a common enough thing to want to do that

the backquote notation allows us to achieve our goal

by writing:

`(cond ((eq? ,var ',val) ,expr)

,@more-clauses

(else #T))

This new two-character pre�x, comma-atsign (,@), is

similar to the plain comma pre�x, except the follow-

ing expression should return a list of values to be

\spliced" into the containing list.4

The expanded code might read:

(cons 'cond

(cons (list (list 'eq?

var

(list 'quote

val))

expr)

(append more-clauses

'((else #T)))))

The reader who �nds this expansion unenlightening

has my sympathy. A simple example should make

everything clear: If the value of X is (1 2 3), then

the value of

`(normal= ,X splicing= ,@X see?)

is

(normal= (1 2 3) splicing= 1 2 3 see?)

Splicing comes in handy in many situations. A look

at the BNF for any Lisp dialect will reveal many kinds

of expressions where a sequence of some sub-part oc-

curs: the arguments in a function call, the variables in

a lambda-expression, the clauses in a cond-expression,

the variable binding pairs in a let-expression, etc.

When generating code that uses any of these kinds of

expressions, splicing may prove useful.

There is no analog of splicing for character string

based quasiquotation. (This, incidentally, is another

argument for the superiority of S-expression based

quasiquotation.)

4Given the example, the reader may well wonder why the

pre�x comma-period (,.) wasn't chosen instead. The history

section will address this question!
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3.2 Nesting

Sometimes a program-generating program actually

generates another program-generating program. In

this situation, it will often be the case that a

quasiquotation will be used to construct another

quasiquotation. Quasiquotations will be \nested".

This sounds like the kind of highly esoteric con-

struction that would only be needed by the most wiz-

ardly compiler-writers, but in point of fact, even fairly

ordinary Lisp programmers can easily �nd themselves

in situations where they need to nest quasiquotations.

This happens because Lisp's \macro" facility works

by writing Lisp macros in Lisp itself.5 Once a pro-

grammer starts writing any macros at all, it is only

a matter of time before he notices a situation where

he has written a bunch of similar looking macro def-

initions. Clearly his next step is to design a macro-

de�ning macro that he can use to generate all those

similar looking de�nitions for him. In order to do this

he needs nested quasiquotations.

To illustrate this point, imagine that you had writ-

ten the following macro de�nition:6

(define-macro (catch var expr)

`(call-with-current-continuation

(lambda (,var) ,expr)))

This de�nes catch as a macro so that the call

(catch escape

(loop (car x) escape))

is expanded by binding var to the symbol escape and

expr to the list (loop (car x) escape) and execut-

ing the body of the macro de�nition. In this example,

the de�nition's body is a quasiquotation that will re-

turn:

(call-with-current-continuation

(lambda (escape)

(loop (car x) escape)))

which is then used in place of the original catch-

expression.

Procedures that accept a single-argument auxiliary

procedure, and invoke it in some special way, are a

fairly common occurrence. Calls to such procedures

are often written using a lambda-expression to cre-

ate the auxiliary procedure. So you may later �nd

yourself writing another macro similar to catch:

5Most other programming languages with a macro facil-

ity use a di�erent language to write the macros (e.g., the C

preprocessor).
6This is not how macros are de�ned in any actual Lisp di-

alect that I am aware of|but this isn't a paper about how to

write Lisp macros.

(define-macro (collect var expr)

`(call-with-new-collector

(lambda (,var) ,expr)))

If you suspect you'll be writing many more instances

of this kind of macro de�nition, you may decide to

automate the process by writing the macro-de�ning

macro:

(define-macro (def-caller abbrev proc)

`(define-macro (,abbrev var expr)

`(,',proc

(lambda (,var) ,expr))))

The previous two macro de�nitions can then be writ-

ten as

(def-caller catch

call-with-current-continuation)

and

(def-caller collect

call-with-new-collector)

The de�nition of def-caller would be completely

straightforward if it wasn't for the mystical incanta-

tion comma-quote-comma (,',)|where the heck did

that come from? It is not some new primitive nota-

tion, as comma-atsign (,@) was. It is the quasiquote

notation and the traditional Lisp quote notation (')

being used together in a way that can easily be de-

rived from their basic de�nitions.

Here is how you could have arrived at the de�nition

of def-caller: First, manually expand the quasiquo-

tation notation used in the de�nition of catch:

(define-macro (catch var expr)

(list 'call-with-current-continuation

(list 'lambda (list var) expr)))

Now you don't have to worry about being con-

fused by nested quasiquotations, and you can write

def-caller this way:

(define-macro (def-caller abbrev proc)

`(define-macro (,abbrev var expr)

(list ',proc

(list 'lambda

(list var)

expr))))

Now turning the calls to list back into a quasiquo-

tation, taking care to treat ',proc as an expression,

not a constant, yields the original de�nition.

Of course no Lisp programmer actually rederives

comma-quote-comma every time she needs it. In

practice this is a well-known nested quasiquotation

clich�e. Every Lisp programmer who uses nested

quasiquotation knows the following three clich�es:
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,X X itself will appear as an expression in the in-

termediate quasiquotation and its value will

thus be substituted into the �nal result.

,,X The value of X will appear as an expression

in the intermediate quasiquotation and the

value of that expression will thus be substi-

tuted into the �nal result.

,',X The value of X will appear as a constant

in the intermediate quasiquotation and will

thus appear unchanged in the �nal result.

3.3 Nested Splicing

The interaction of nesting with splicing yields ad-

ditional interesting fruit. Beyond the three clich�es

listed at the end of the previous section, things like

,@,X, ,,@X, ,@,@X and ,@',X will occasionally prove

useful. To illustrate the possibilities consider just the

following two cases:

,@,X The value of X will appear as an expression

in the intermediate quasiquotation and the

value of that expression will be spliced into

the �nal result.

,,@X The value of X will appear as a list of ex-

pressions in the intermediate quasiquota-

tion. The individual values of those expres-

sions will be substituted into the �nal result.

Intuitively, an atsign has the e�ect of causing the

comma to be \mapped over" the elements of the value

of the following expression.

Making nested splicing work properly in all cases

is di�cult. The expander in appendix A gets it right,

but at the expense of expanding into atrocious code.

4 History

The name \Quasi-Quotation" was coined by W. V.

Quine [10] around 1940. Quine's version of quasiquo-

tation was character string based. He had no ex-

plicit marker for \unquote", instead any Greek letter

was implicitly marked for replacement. Quine used

quasiquotation to construct expressions from mathe-

matical logic, and just as we would predict from our

experience representing expressions from C, he was

forced to adopt various conventions and abbreviations

involving parentheses. (He should clearly have used

S-expressions instead!)

McCarthy developed Lisp and S-expressions [6]

around 1960, but he did not propose any form of S-

expression based quasiquotation.7

7Given that he was inspired by the �-calculus, which has

During 1960s and 1970s the arti�cial intelligence

programming community expended a lot of e�ort

learning how to program with S-expressions and list

structure. Many of the AI programs from those

years developed Lisp programming techniques that

involved S-expression pattern matching and template

instantiation in ways that are connected to today's

S-expression quasiquotation technology. In particu-

lar, the notion of splicing, described in section 3.1, is

clearly descended from those techniques.

But nothing from those years resembles today's

Lisp quasiquotation notation as closely as the nota-

tion in McDermott and Sussman's Conniver language

[7]. In Conniver's notation `X, ,X and ,@X were writ-

ten !"X, @X and !@X respectively, but the idea was

basically the same. (Conniver also had a ,X construct

that could be seen as similar to @X, so it is possible

that this is how the comma character eventually came

to �ll its current role.)

The Conniver Manual credits the MDL language

[3] for inspiring some of Conniver's features. MDL's

notation for data structure construction is related,

but it is su�ciently di�erent that I'm unwilling to

call it a direct ancestor of today's quasiquote. I'll

have more to say about this issue in section 5.1.

After Conniver, quasiquote entered the Lisp pro-

grammer's toolkit. By the mid-1970s many Lisp pro-

grammers were using their own personal versions of

quasiquote|it wasn't yet built in to any Lisp dialect.

My personal knowledge of this history starts in

1977 when I started programming for the Lisp Ma-

chine project at MIT. At that time quasiquotation

was part of the Lisp Machine system. The nota-

tion was almost the same as the modern notation,

except that ,,X was being used instead of ,@X to in-

dicate splicing. This would obviously interfere with

nested quasiquotation, but this didn't bother any-

one because it was commonly believed that nested

quasiquotation did not \work right".

I set out to �gure out why nested quasiquotation

should fail to work. Employing the same reasoning

process I outlined above in section 3.2, I developed

some test cases and tried them out. To my sur-

prise, they actually worked perfectly. The problem

was simply that no one had been able to make nested

quasiquotation do what they wanted, not that there

was a �xable bug.8

Now that we knew that nested quasiquotation did

in fact work, we wanted to start using it, and so a

new notation for splicing had to be found. I suggested

its own notion of substitution, one can't help but wonder what

Lisp would have been like if he had also tried to work quasiquo-

tation into the mixture!
8The expander in use at that time did have bugs handling

nested splicing|but I didn't notice that.
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,.X because .,X already does a kind of splicing (see

section 3.1). I thought that this would be a good

pun. Other members of the group thought it might

be confusing. Probably inspired by Scheme, which in

those days was using just @X to indicate splicing [14],

we �nally decided on ,@X [15].9

Meanwhile McDermott altered the Conniver nota-

tion slightly by changing !"X to |"X. In this form it

appeared in [1] in 1980.

As far as I know, the problems of nested splicing

didn't get worked out until 1982. In January of that

year Guy Steele circulated an example of quasiquo-

tations nested three levels deep. He remarked that

,',',X was \fairly obvious", but that it took him

\a few tries" to get his use of ,,@X right [12]. I re-

sponded with an analysis of nested splicing in which

I observed that in order to get nested splicing cor-

rect, an expansion algorithm like the one presented

in appendix A was required. A correct semantics and

expansion algorithm for quasiquotation based on this

observation now appears in [13].

Sometime during the 1980s we started to spell

\quasi-quote" without the hyphen. My guess is that

this is the result of the adoption of a special form

named \quasiquote" into Scheme.

By the end of the 1980s, the standards for Common

Lisp [13] and Scheme [4] had adopted the modern

quasiquote notation.

5 Related Ideas

Here are three ideas related to quasiquotation that I

think the reader might be interested in.

5.1 Alternate views of quotation

The backquote notation for quasiquotation (`X) is

clearly inspired by Lisp's \forward quote" notation

for ordinary quotation ('X). While the backquote no-

tation is an abbreviation for a (potentially) complex

series of calls to various list constructors, the forward

quote notation is an abbreviation for a simple quote

expression. (I.e., 'X is the same as (quote X).) Mc-

Carthy invented quote expressions as a mechanism

for representing the constants that appeared in his

M-expression language [6].

Smith [11] and Muller [8] have both argued that

that there is something suspect about McCarthy's

quote. Both are worried that quote somehow con-

fuses levels of representation and reference. They

9When quasiquotation was migrated to MacLisp [9] ,.X was

chosen to mean a \destructive" version of splicing. They also

thought it was a good pun. This notation was also adopted in

Common Lisp [13].

would like to replace Lisp's eval function with some-

thing more in line with the �-calculus notion of nor-

malization.

Now given that a backquote followed by an ex-

pression that contains no commas is indistinguishable

from a front quote, and given that these authors have

concerns about front quote, they presumably have the

same concerns about backquote. So it is interesting

that both Smith's 2-LISP and Muller's M-LISP re-

semble the MDL language [3] in that expressions are

notationally distinct from constants, and so constants

are (in some sense) implicitly quasiquotations. E.g.

an expression like

<cdr (X <+ 2 3> Z)>

returns

(5 Z)

This is why I would deny MDL's direct ancestry,

via Conniver, of modern Lisp quasiquotation. MDL

and Conniver were wandering around in the dark

looking for convenient ways to construct list struc-

ture. Both found solutions, and Conniver may even

have thought that it was following MDL. But in the

light of hindsight, we can recognize that Conniver was

�rmly on the traditional Lisp path, while MDL had

stepped o� that path and had started in the direction

suggested by Smith and Muller.

5.2 Parameterized code

The `C language [2] adds a backquote operator to or-

dinary C as a way of specifying dynamically generated

code. Their backquoted expressions, while explicitly

inspired by Lisp's use of backquote, do not construct

ordinary C data structures (such as structures and

arrays), they only build dynamic code objects. This

is not surprising since C has no ordinary data struc-

tures for representing C programs (other than char-

acter strings). Inside a backquote, atsign (@) is used

to indicate the substitution of another dynamic code

object. Splicing is meaningless and backquotes do not

nest.

A particularly interesting di�erence from Lisp's

quasiquotation is that in `C backquoted code can

reference variables from the lexically enclosing code.

I.e., dynamic code objects are also closures. So a

`C backquote expression is sort of a cross between a

quasiquotation and a �-expression.

This is similar to Lamping's system of parameter-

ization [5]. His data-expressions specify parameter-

ized objects that are sort of cross between a quasiquo-

tation and a closure. Lamping was motivated by a de-

sire to manipulate expressions the way that quasiquo-

tation would allow, but without disconnecting them

from the context that they came from.
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Systems like these demonstrate that there is a lot

of unexplored territory in between the notion of data

and the notion of expression.

5.3 Self-generation

No paper on quasiquotation in Lisp would be com-

plete without mentioning quasiquote's contribution

to the perennial problem of writing a Lisp expres-

sion whose value is itself. The quasiquote notation

enables many elegant solutions to this problem, but

the following solution, due to Mike McMahon, is my

personal favorite:

(let ((let '`(let ((let ',let))

,let)))

`(let ((let ',let))

,let))

6 Conclusion

It took a while for the Lisp community to discover

it, but there's a synergy between quasiquotation and

S-expressions.
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A Expansion Algorithm

This appendix contains a correct S-expression

quasiquotation expansion algorithm.

I assume that some more primitive Lisp parser

has already read in the quasiquotation to be ex-

panded, and has somehow tagged all the quasiquo-

tation markup. This primitive parser must supply

the following four functions:

tag-backquote? This predicate should be true of the

result of reading a backquote (`) followed by an

S-expression.

tag-comma? This predicate should be true of the re-

sult of reading a comma (,) followed by an S-

expression.

tag-comma-atsign? This predicate should be true of

the result of reading a comma-atsign (,@) fol-

lowed by an S-expression.

tag-data This function should be applied to an ob-

ject that satis�es one of the previous three pred-

icates. It will return the S-expression that fol-

lowed the quasiquotation markup.

The main entry point is the function qq-expand,

which should be applied to an expression that im-

mediately followed a backquote character. (I.e., the

outermost backquote tag should be stripped o� before

qq-expand is called.)

(define (qq-expand x)

(cond ((tag-comma? x)

(tag-data x))

((tag-comma-atsign? x)

(error "Illegal"))

((tag-backquote? x)

(qq-expand

(qq-expand (tag-data x))))

((pair? x)

`(append

,(qq-expand-list (car x))

,(qq-expand (cdr x))))

(else `',x)))

Note that any embedded quasiquotations encoun-

tered by qq-expand are recursively expanded, and

the expansion is then processed as if it had been en-

countered instead.

qq-expand-list is called to expand those parts of

the quasiquotation that occur inside a list, where it is

legal to use splicing. It is very similar to qq-expand,

except that where qq-expand constructs code that re-

turns a value, qq-expand-list constructs code that

returns a list containing that value.

(define (qq-expand-list x)

(cond ((tag-comma? x)

`(list ,(tag-data x)))

((tag-comma-atsign? x)

(tag-data x))

((tag-backquote? x)

(qq-expand-list

(qq-expand (tag-data x))))

((pair? x)

`(list

(append

,(qq-expand-list (car x))

,(qq-expand (cdr x)))))

(else `'(,x))))

Code created by qq-expand and qq-expand-list

performs all list construction by using either append

or list. It must never use cons. This is important

in order to make nested quasiquotations containing

splicing work properly.

The code generated here is correct but ine�cient.

In a real Lisp implementation, some optimization

would need to be done. But care must be taken not

to perform any optimizations that alter the behavior

of nested splicing.

A properly optimizing quasiquotation expander for

Common Lisp can be found in [13, Appendix C]. I

am not aware of the existence of a correct optimiz-

ing quasiquotation expander for Scheme. (None of

the Scheme implementations that I tested implement

nested splicing correctly.)
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C++ Templates as Partial Evaluation

Todd L. Veldhuizen
�

Abstract

This paper explores the relationship between C++ tem-
plates and partial evaluation. Templates were designed to
support generic programming but unintentionally provided
the ability to write code generators and perform static com-
putations. These features are accidental, and as a result
their syntax and semantics are awkward. Despite being
unwieldy, these techniques have become somewhat popular
because they partially solve an important problem in scien-
ti�c computing{ how to provide libraries of domain-speci�c
abstractions without performance loss. It turns out that
the C++ template mechanism is really partial evaluation in
disguise: C++ may be regarded as a two-level language in
which types are �rst-class values and template instantiation
resembles o�ine partial evaluation. That C++ templates
have proven so useful underscores the potential importance
of partial evaluation as a language feature.

1 Introduction

1.1 Overview

C++ templates are of interest since they solve some impor-
tant performance problems in designing scienti�c comput-
ing class libraries (Section 1.2). Templates were intended to
support generic programming, but accidentally provided the
ability to perform static computations and code generation
(Section 2). It turns out that the C++ template mechanism
is a form of partial evaluation (Section 3); the experience of
library developers working with templates may o�er some
useful insights about partial evaluation as a language fea-
ture (Section 4).

1.2 Motivation

Scienti�c computing requires many abstractions. Every
subdomain has its own requirements, such as interval
arithmetic, tensors, polynomials, automatic di�erentiation,
meshes, and so on. For economic reasons, languages can only
provide the few concepts common to all, such as 
oating-
point numbers and arrays. In the past, people requiring
more than the limited abstractions provided by mainstream
languages have developed domain-speci�c languages (DSLs)
for sparse arrays, intervals, automatic di�erentiation, adap-
tive mesh re�nement, and others. Such languages are not

�Extreme Computing Laboratory, Indiana University Computer
Science Department, Bloomington Indiana 47405, USA. tveld-

hui@acm.org

ideal solutions: they tend to have short life-spans due to
limited support and portability, su�er from a lack of tools
(particularly debuggers), and it is usually impossible to use
two DSLs in the same source �le.

With the advent of languages such as C++ and For-
tran 90 which provided object-oriented features and opera-
tor overloading, it has become possible to create abstractions
using the language itself, and have notations which resemble
the mathematics being implemented. In recent years there
has been a proliferation of libraries which provide abstrac-
tions previously implemented as DSLs: data-parallel arrays,
sparse arrays, interval arithmetic, and automatic di�erenti-
ation are the most prominent examples.

However, the code generated by such libraries tends to
be naive. For example, array objects implemented using op-
erator overloading in C++ were originally 3-20 times slower
than the corresponding low-level implementation. This was
not because of poor design on the part of library develop-
ers, but rather because the language forced a style of imple-
mentation which was grossly ine�cient. These performance
problems are commonly called the abstraction penalty; ef-
forts to solve them have been many and ongoing.

One might think that a su�ciently smart optimizer
would eliminate the abstraction penalty. However, compil-
ers have di�culty because they lack semantic knowledge of
the abstractions: they do not know that a given piece of code
represents (for example) a sparse array operation; instead,
they just see pointers and loops. Knowledge of the seman-
tics is essential for doing appropriate optimizations. E�orts
to describe the semantics of a class to compilers have been
largely unsuccessful. Libraries tend to have layers of ab-
straction and side-e�ects which cause further di�culties for
optimizers. Also, it is doubtful there is a general-purpose
solution: every problem domain has its own optimization
tricks and peculiarities.

A more promising approach is to construct libraries
which both provide abstractions, and control how they are
optimized. This concept has been called \active libraries"
[5]. Such libraries handle high-level optimization them-
selves, leaving only low-level optimizations (register allo-
cation, instruction scheduling, software pipelining) to the
optimizer.

Meta-level processing systems such as Xroma [5],
MPC++ [9], Open C++ [3], and Magik [6] provide one pos-
sible route to building active libraries. Such systems open
up the compilation system and allow libraries to plug in
their own translation modules. While these approaches are
showing promise, a potential disadvantage is the complexity

1
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of code which one must write: modern languages have com-
plicated syntax trees, and so code which manipulates and
generates these trees tends to be complex as well.

C++ templates may point the way to a more usable
solution. Template techniques have been used to solve the
performance problems of C++ for arrays and linear algebra,
and several libraries based on these techniques are being dis-
tributed (e.g. POOMA [11], Blitz++ [20], and MTL [14]).
The syntax used to implement these libraries is awkward.
Partial evaluation o�ers hope for a cleaner syntax: there is
a strong resemblance between templates and partial evalu-
ation, so some mechanism based directly on partial evalua-
tion might solve the abstraction penalty problem, and avoid
the awkward syntax of template techniques. There is some
precedent for this hope: at least one scienti�c computing
project [15] reinvented the notion of two-level languages to
provide a convenient notation for generating runtime library
routines for parallelizing compilers.

So there is potential for fruitful collaboration: library de-
velopers need the technologies being developed by the par-
tial evaluation community. Researchers in partial evalua-
tion might bene�t from the experience of library developers
working with templates: there is a growing understanding
of what features are useful for creating active libraries.

2 The capabilities templates provide

2.1 Generic programming

The original intent of templates was to support generic pro-
gramming, which can be summarized as \reuse through pa-
rameterization". Generic functions and objects have param-
eters which customize their behavior.1 These parameters
must be known at compile time (i.e. must be statically
bound). For example, a generic vector class can be declared
as:

template<typename T, int N>1

class Vector f

...

private:5

T data[N];

g;

// Example use of Vector

Vector<int,4> x;10

The Vector class takes two template parameters (line 1): T,
a type parameter, speci�es the element type for the vector; N,
a nontype parameter, is the length of the vector. To use the
vector class, template arguments must be provided (line 10).
This causes the template to be instantiated: an instance of
the template is created by replacing all occurrences of T and
N in the de�nition of Vector with int and 4, respectively.

Functions may also be templates. Here is a function
template which sums the elements of an array:

template<typename T>11

T sum(T* array, int numElements)

f

T result = 0;

1In generic programming, generic function means a parameterized
function; this is a di�erent meaning than in e.g. CLOS and Dylan.

for (int i=0; i < numElements; ++i)15

result += array[i];

return result;

g

// Example use20

double a[] = f 1, 2, 3, 4 g;

double a sum = sum(a,4);

This function works for built-in types, such as int and
float, and also for user-de�ned types provided they have
appropriate operators (=, +=) de�ned. Note that in line 22,
no template parameters are provided { the compiler infers
the template parameter T from the type of a. Templates
allow programmers to develop classes and functions which
are general-purpose, yet retain the e�ciency of statically
con�gured code.

2.2 Compile-time computations

Templates can be exploited to perform computations at
compile time. This was discovered by Erwin Unruh [17],
who wrote a program which produced these compile errors:

unruh.cpp 10: Cannot convert 'enum' to 'D<2>'23

unruh.cpp 10: Cannot convert 'enum' to 'D<3>'

unruh.cpp 10: Cannot convert 'enum' to 'D<5>'

unruh.cpp 10: Cannot convert 'enum' to 'D<7>'

unruh.cpp 10: Cannot convert 'enum' to 'D<11>'

...

The program tricked the compiler into calculating a list of
prime numbers! This capability was quite accidental, but
has turned out to be very useful. Here is a simpler example
which calculates pow(X,Y) at compile time:

template<int X, int Y>29

struct ctime pow f

static const int result =

X * ctime pow<X,Y-1>::result;

g;

// Base case to terminate recursion35

template<int X>

struct ctime pow<X,0> f

static const int result = 1;

g;

40

// Example use:

const int z = ctime pow<5,3>::result; // z = 125

In C++, :: is a scope resolution operator: A::Bmeans, \the
symbol B in scope A." The �rst template de�nes a structure
ctime pow which has a single data member result. The
static const quali�ers of result indicate that its value
must be known at compile time. ctime pow<X,Y> refers to
ctime pow<X,Y-1>, so the compiler must recursively instan-
tiate the template for Y,Y-1, Y-2, ... until it hits the base case
provided by the second template, which is called a partial
specialization. C++ compilers include a pattern-matching
system to select among templates; in general the most spe-
cialized template is selected. This pattern-matching aspect
of templates results in a resemblance to logic-programming
systems; the implementation of ctime pow above resembles
a logic-programming implementation of pow:

pow(X,Y) :- X * pow(X,Y-1).43

pow(X,0) :- 1.

2

14



Here is an array class which uses ctime pow to calculate the
number of array elements needed:

// Array which is the same length in45

// every dimension

template<typename T, int Length,

int Dims>

class IsoDimArray f

// ...50

static const int numElements =

ctime pow<Length,Dims>::result;

T data[numElements];

g

55

// A 3x3 array: will have 9 elements

IsoDimArray<float,3,2> x;

// A 3x3x3 array: will have 27 elements

IsoDimArray<float,3,3> x;60

When the IsoDimArray template is instantiated, ctime pow

is used to calculate the array size required. This allows the
array elements to be allocated on the stack, which is much
faster than dynamic memory allocation. Similar template
techniques can be used to �nd greatest common divisors,
test for primality, and so on { all at compile time. As an
extreme example, it is possible to implement a subset of Lisp
(encoded in templates) which is \interpreted" at compile
time [4].

2.3 Code generation

It turns out that control structures (loops, if/else, case
switches) can be mimicked in templates. For example, the
de�nition of ctime pow (Section 2.2) emulates a for loop
using recursion. These compile-time programs can perform
code generation by selectively inlining code as they are \in-
terpreted" by the compiler. This technique is called tem-
plate metaprogramming [19]. Here is a template metapro-
gram which generates a specialized dot product algorithm:

template<int I>61

inline float meta dot(float* a, float* b)

f

return meta dot<I-1>(a,b) + a[I]*b[I];

g65

template<>

inline float meta dot<0>(float* a, float* b)

f

return a[0]*b[0];70

g

// Example use:

float x[3], y[3];

float z = meta dot<2>::f(x,y);75

In the above example, the call to meta dot in line 75 results
in code equivalent to:

float z = x[0]*y[0] + x[1]*y[1] + x[2]*y[2];76

Recursion is used to unroll the loop over the vector elements.
The syntax for writing such code generators is clumsy. How-
ever, the technique has proven very useful in producing spe-
cialized algorithms for scienti�c computing. The MTL li-
brary [14] uses similar generators to construct fast, �xed-
size kernels for use in linear algebra routines. By composing
these kernels, MTL is able to provide linear algebra oper-
ations which are sometimes faster than the native libraries
provided by hardware vendors. Similar generators are used
by the Blitz++ library [21] to specialize algorithms for small,
�xed-size vectors and matrices.

It is even possible to create and manipulate static data
structures at compile time, by encoding them as templates.
This is the basis of the expression templates technique [18],
which creates parse trees of array expressions at compile
time. These parse trees are used to generate e�cient eval-
uation routines for array expressions. This technique is the
backbone of several libraries for object-oriented numerics
[11, 20].

2.4 Traits

The traits technique [12] allows programmers to de�ne
\functions" which operate on and return types rather than
data. As a motivating example, consider a template func-
tion which calculates the average value of an array. What
should its return type be? If the array contains integers,
a 
oating-point result should be returned. But a 
oating-
point return type will not su�ce for all arrays (for example,
complex-valued arrays).

The problem may be solved by de�ning a traits class
which maps from the type of the array elements to a type
suitable for containing their average. Here is a simple im-
plementation:

// default behavior: T -> T77

template<typename T>

struct average traits f

typedef T T average;80

g;

// specialization: int -> float

template<>

struct average traits<int> f85

typedef float T average;

g;

An appropriate type for averaging an array of type T is given
by average traits<T>::T average. This pair of templates
encodes the behavior, \use the array element type for cal-
culating averages, except use 
oat for arrays of integers."
Again, note the strong resemblance between this traits class
and a corresponding logic-programming implementation:

average type(T) :- T.88

average type(int) :- float.

Here is an implementation of average:

template<class T>90

typename average traits<T>::T average

average(T* array, int N)

f

typename average traits<T>::T average

result = sum(array,N);95

return result / N;

g

3
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This version correctly handles arrays of integers, 
oating-
point, and complex arrays.

Similar problems are constantly encountered in tem-
plated class libraries. Templates provide general-purpose
rules for creating functions and classes; traits allow you to
handle the many exceptions which arise.

3 Templates as partial evaluation

Partial evaluators [10] regard a program's computation as
containing two subsets: static computations, which are per-
formed at compile time, and dynamic computations per-
formed at run time. A partial evaluator evaluates the static
portion of the program and outputs a specialized residual
program.

To determine which portions of a program may be evalu-
ated, a partial evaluator may perform binding time analysis
to label language constructs and data as static or dynamic.
Such a labelled language is called a two-level language. For
example, a binding-time analysis of some scienti�c comput-
ing code might produce this two-level code fragment:

float volumeOfCube(float length)

f

return pow(length,3);

g

float pow(float x, int N)

f

float y = 1;

for (int i=0; i < N; ++i)

y *= x;

return y;

g

in which static constructs have been overlined. A partial
evaluator such as CMix [1] would evaluate the static con-
structs to produce the residual code:

float volumeOfCube(float length)98

f

return pow3(length);

g

float pow3(float x)

f

float y = 1;105

y *= x;

y *= x;

y *= x;

return y;

g110

Such specializations can result in substantial performance
improvements for scienti�c code [2, 8].

3.1 C++ as a two-level language

C++ templates resemble a two-level language. Function
templates take both template parameters (statically bound)
and function arguments (dynamically bound). For example,
the pow function of the previous example might be declared
in C++ as:

template<int N>111

float pow(float x); // Calculate pow(x,N)

The static data (N) is a template parameter, and the dy-
namic data (x) is a function argument. To incorporate tem-
plate type parameters into this viewpoint, we need to regard
types as �rst-class values. For example, in a declaration such
as

template<typename X, int Y>113

void func(int i, int j);

we regard X as a type variable, as in ML. Since C++ is stat-
ically typed, type variables may only be statically bound.
This point of view has a certain simplifying power: for ex-
ample, one can view typedefs as declarations of type vari-
ables:

typedef float float type;115

can be regarded as equivalent to the (�ctional syntax)

typename float type = float;116

3.2 Template instantiation as o�ine PE

Partial evaluation of programs which contain explicit
binding-time information is called o�ine partial evaluation.
Template instantiation resembles o�ine partial evaluation:
the compiler takes template code (a two-level language) and
evaluates those portions of the template which involve tem-
plate parameters (statically bound values). For example,
consider this template class:

template<int X>117

struct ulam f

static const int result =

ulam<(X % 2 == 0) ? (X/2) : (3*X+1)>::result;120

g;

// Base case: X = 1

template<>

struct ulam<1> f125

static const int result = 0;

g;

The syntax A ? B : C is C's equivalent to the functional if
A then B else C. When ulam<X> is instantiated, the const

quali�er on result requires the compiler to evaluate the
right-hand side of the assignment at compile time. So it
determines if X % 2 == 0 (whether X is even). If true, it
instantiates ulam<X/2>; otherwise ulam<3*X+1> is instanti-
ated. In theory, this continues until the compiler hits the
base case X=1. Whether this recursion terminates for all X
is a well-known open problem. In C++, it is impossible to
determine if a chain of template instantiations will ever ter-
minate. For this reason, compilers place arbitrary limits on
the depth of template instantiation chains.

In C++, the binding time of code is inferred from the
binding time of data: if an expression is assigned to a
statically-bound value, the expression must be statically
bound. Templates in C++ only allow monovariant bind-
ing times; it is not possible to have data or code which is
statically bound in one context, but dynamically bound in
another. For example, standard library routines such as pow
and cos cannot be used at compile-time and for practical
applications this limitation is frustrating.

C++ does allow part-static, part-dynamic structures.
For example, the class

class Example f128

static const int x = 5;

int y;

g;
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contains both a statically bound member (x), and a dynamic
member (y). (Note that the static keyword refers to x

being shared among objects of type Example, and not to
binding times). Mixed static-dynamic data structures have
proven very useful; for example, they are the basis of the
expression templates technique [18].

4 What can be learned from the C++ experience?

Asymmetry between the static and dynamic lan-
guage is bad. In C++, the static and dynamic aspects
of the language bear little resemblance to each other. The
static version of the language is maddeningly limited: there
are no 
oating-point numbers, no objects, and no side-
e�ects. It might be desirable to have near-perfect symme-
try between the static and dynamic languages, even to the
extent of allowing side-e�ects at compile-time. For exam-
ple, being able to do �le I/O and issue console messages
at compile-time would be very useful: a library could gen-
erate specialized code based on the contents of a data or
con�guration �le, and issue compile-time errors and warn-
ing messages. Not being able to issue customized diagnostic
messages in C++ has hurt the usability of template libraries.

Re
ection and meta-objects would be useful. A
common headache in using C++ templates is that there is no
way to enforce constraints on template parameters. If users
unwittingly violate constraints, the result might be a cryp-
tic error message, or in the worst case, the program might
crash mysteriously. A staged or multilevel language with
some simple re
ection capabilities could provide a straight-
forward way to enforce constraints on template parameters
(an idea due to Vandevoorde [5]). For example, the sum

function template of Section 2.1 assumes that the template
type parameter T is some numeric type which may be initial-
ized to 0 and has the operator += de�ned. With re
ection
and staging, the sum function could examine the parameter T
and issue a friendly diagnostic message if these requirements
were not met.

There are open problems in reconciling multilevel
capabilities with other language features. Templates
interact with other language features in bizarre ways. Some
might regard this as evidence of poor design, but some of
these shortcomings point the way to interesting, possibly
unsolved problems. How can static initialization be handled
sensibly in a multilevel language, particularly one with rel-
ative binding times? Is it possible to provide a multilevel
language which preserves separate compilation? (This has
been an enormous headache for C++). How should object-
oriented language features interact with multilevel language
features?

First-class types are good. The ability to construct
and manipulate types has proven extraordinarily useful in
writing scienti�c C++ libraries. In particular, the traits
technique{ being able to write functions which operate on
and return types{ has proven very valuable.

Fixed rules for selecting among multiple tem-
plates are bad. In C++, the rules for matching templates
are well-designed { they work 95% of the time. It is the
other 5% which is annoying, since the rules are hard-coded
into the language. One can sometimes trick the compiler
into selecting particular templates, but sometimes not. In a
multilevel language, it would be possible to implement these
rules in the language itself while avoiding the overhead of
systems such as CLOS which resolve multimethods at run-

time. This would allow matching rules to be customized
when necessary. Languages in the ML family, with their pat-
tern matching syntax, might provide a natural mechanism
for duplicating the template pattern matching features.

Explicit binding-time annotations are good. Good
optimizers with inter-procedural analysis and procedure
cloning are approaching the power of online partial evalua-
tion. But undirected specialization is only marginally use-
ful to library developers. Optimizing the trade-o� between
compile-time and run-time evaluation is tricky: some non-
trivial scienti�c computing codes have no dynamic inputs.
Most importantly, online partial evaluation implies an as-
sumption that execution time is proportional to the amount
of computation. In most scienti�c computing codes, the cost
is in data 
ow between the caches and main memory. On-
line PE can generate residual code with \less computation,"
but so far not \smarter computation". To generate smarter
code, one needs a predictive model of the hardware: its
caches, pipelines, and so on. These are very di�cult de-
cisions to automate. For example, the Cray optimizer has
roughly 108 possible settings of its optimization switches;
�nding the best settings for a given code requires tedious
experimentation, even by experts. However, in the hands
of a library developer who understands the hardware, ex-
plicit binding-time annotations can be a powerful perfor-
mance tool, since compile-time computations can be used
to rearrange the 
ow of the run-time computation for e�-
cient cache use.

It is su�cient to label data with binding times.
In C++ templates, binding-time annotations apply to data
only { there is no way to label pieces of code as static or
dynamic. The binding times of code constructs follows nat-
urally from binding times of data. Although this may sound
limited, in practice it has been su�cient to solve many im-
portant performance problems in C++.

5 Conclusions

C++ templates have acquired a reputation as being overly
complex. In their defense, templates started as a simple
mechanism, and developed gradually over a decade in re-
sponse to experimentation and the needs of users. This in-
cremental process contributed to their current state of dis-
array. However, this same process has resulted in a use-
ful inventory of the capabilities which library developers re-
quire. Anyone developing similar mechanisms based on par-
tial evaluation may bene�t from examining this inventory.

C++ with templates may be regarded as a two-level lan-
guage in which types are �rst-class, statically-bound val-
ues. Template instantiation bears a striking resemblance to
o�ine partial evaluation. That templates have proven so
useful in C++ is an encouragement for continued work on
partial evaluation as a language feature. Languages incorpo-
rating partial evaluation may o�er a way to provide generic
programming, code generation, and compile-time computa-
tion via a single mechanism with simple syntax. In partic-
ular, research on explicit binding-time annotations, staging,
and the relationship between partial evaluation and type
systems could have many fruitful applications; developers of
scienti�c computing libraries would bene�t from language
features like these.
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Abstract

It is well-known that one cannot inside the pure untyped
lambda calculus determine equivalence. I.e., one cannot de-
termine if two terms are beta-equivalent, even if they both
have normal forms. This implies that it is impossible in the
pure untyped lambda calculus to do G�odelisation, i.e. to
write a function that can convert a term to a representa-
tion of (the normal form of) that term, as equivalence of
normal-form terms is decidable given their representation.
If the lambda calculus is seen as a programming language,
this means that you can't from the value of a function �nd
its text.

Things are di�erent for simply typed lambda calculus:
Berger and Schwichtenberg showed that, given its type, it
is possible to convert a function into a representation of its
normal form. This was termed \an inverse to the evalua-
tion function", as it turns values into representations. How-
ever, the main purpose was for normalising terms. Similarly,
Goldberg has shown that for a subset (proper combinators)
of the pure untyped lambda calculus, G�odelisation is possi-
ble. However, the G�odeliser itself is not a proper combina-
tor, though it (as all closed lambda terms) can be written
by combining proper combinators.

In this paper, we investigate G�odelisation for the full
untyped lambda calculus. To overcome the theoretical im-
possibility of this, we extend the lambda calculus with a
feature that allows limited manipulation of extensional as-
pects: A �nite set of labels on lambda terms and a predicate
for comparing these. Within this extended lambda calculus,
we can convert terms in the subset corresponding to nor-
mal form terms in the classical lambda calculus into their
representation.

The extension of the lambda calculus (we conjecture) re-
tains the Church-Rosser property. This implies that G�odeli-
sation must yield identical results for beta-equivalent terms.
We show only that terms in normal form G�odelise to their
representation, but the implication is that any term that
has a normal form will G�odelise to a representation of its
normal form. Hence, G�odelisation can be used as a tool for
normalising lambda terms.

1 Introduction

There are various ways to represent lambda terms as \data"
inside the lambda calculus. One is to represent the term by
its G�odel number and then represent that number inside the
lambda calculus by e.g. a Church-numeral. More tractable
representations can also be used, see e.g. Mogensen's pa-
pers [6], [7]. The representations used in these papers use
the notion of higher order abstract syntax [9]. In essence,
this means that variable bindings are represented by variable
bindings. Given three constructors, VAR, APP and ABS,
we can represent lambda terms by the following scheme:

dxe � VAR(x)
d�x:Ee � ABS(�x:dEe)
dE1 E2e � APP(dE1e; dE2e)

The constructors can be expressed in the lambda calculus
in a way that allow operations on syntax, including alpha-
equivalence testing.

The goal of this paper is to construct a lambda calculus
term G such that G E �! dEe if E is in normal form.
Equivalently (due to con
uence), we can say that G takes
a term and produces the representation of its normal form
(if such exist). However, such a term G does provably not
exist (see section 6.6 of Barendregts book on the lambda
calculus [1]). Hence, we must relax the condition somewhat.

Mayer Goldberg [5] relaxes the condition by restricting
the class of terms E that G works for to be the set of proper
combinators. Berger and Schwichtenberg [2] relax the con-
dition by requiring E to be in the simply typed lambda
calculus and that the type of E is given.

Instead of restricting the set of terms that can be G�odel-
ised, we want our G�odeliser to be able to take any normal-
izing closed lambda term and return a representation of its
normal form. To obtain this we allow G to be written in
an extension of the lambda calculus. G can not G�odelise
all terms in the extended calculus, but it can do so for all
closed normalising terms in the classical lambda calculus.

2 An extended lambda calculus

We extend the classical lambda calculus with labels: Each
lambda abstraction is given a label. The labelling is not
unique; di�erent abstractions can share the same label. In-
deed, we only need 3 di�erent labels. To make the labelling
visible we introduce a way of inspecting labels. The syntax
of the extended lambda calculus is
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�L ! x variable

j �lx:�L labelled abstraction

j �L

1 �L

2 application

j l?�L

1 �L

2 �L

3 label inspection

We have the following reduction rules for the extended lamb-
da calculus:

(�l:E1) E2 �! E1[x n E2] (�)

l?(�lx:E1) E2 E3 �! E2 (L1)

l?(�l
0

x:E1) E2 E3 �! E3 if l 6= l0 (L2)

The (�) rule is the usual beta-reduction rule. (L1) and (L2)
handle inspection of labels: If the �rst term is in weak head
normal form and its label matches the label that is tested
for, the second term is selected. If its label does not match,
the third term is selected.

Reduction in the extended lambda calculus is strongly
believed to be con
uent, but at the moment we have not
looked at proving this.

3 G�odelisation

As the basis of our G�odeliser we use the G�odeliser for the
typed lambda calculus by Berger and Schwichtenberg [2],
but using a notation similar to the extension of this work
found in Danvy's type-directed partial evaluators [3]. In
this, G�odelisation is de�ned by a pair of type-indexed func-
tions #t and "

t, where #t takes a value of type t and produces
an expression of type t and "t takes an expression of type
t and produces a value of type t. #t and "t are mutually
recursively de�ned by

#b v = v

#t1!t2
v = ABS(� x : t1: #t2 (v ("t1 (VAR(x))))

where x is a fresh variable

"b e = e

"t1!t2 e = � x : t1: "
t2 (APP(e; (#t1 x)))

If #t is applied to a closed term of type t, the represen-
tation of the normal form of that term is produced. The
constructors VAR, APP and ABS are like those described
in section 1, suitably modi�ed to handle typed terms.

3.1 Untyped G�odelisation

As can be seen, the functions #t and "t use the type t to
select between two actions: Either returning the argument
unchanged or doing what can be seen as a two-level eta-
expansion of the argument [4][3].

In the untyped world we don't have any type argument
to base this selection of actions on. So when do we want
to return the argument unchanged and when do we want to
eta-expand?

Initially, the # function will be applied to the term we
wish to G�odelise. In this situation, we surely want to eta-
expand to get the representation of the top-level abstraction1.
But we also apply the # function to the body of the abstrac-
tion we build in the representation of the term. This body
is obtained by, in the original body, substituting the bound
variable by the result of applying " to the representation of

1Since we work with closed terms, we are sure that any normal-

form term will have a top-level abstraction.

a variable. If the function we G�odelise is �x:x, we will hence
apply # to " (VAR(x)). In this situation we want to return
VAR(x) directly, in essence letting # and " cancel.

This is in fact the general idea: Whenever we apply # to
something produced by ", we let these cancel. Otherwise,
we eta-expand.

We can use the labels and label testing capability of our
extended lambda calculus to facilitate this: We let the re-
sults of applying " use labels di�erent from those used in the
term we want to G�odelise. Now, # can use the label to de-
cide its action: If the label indicates that the argument is the
result of applying #, it \undoes" the # operation (cancelling
the " and # operations), otherwise it does the eta-expansion.
If we assume we use the label 1 as label for the results of
applying ", we can write this as

# v = 1?v (cancel v) (ABS(�
0
x: # (v (" (VAR(x))))))

The remaining problem is how we can make " cancelable, i.e.
how to program " and cancel. We �rst look at a normal (not
canceled) use of a value returned by ". This is inside the #
function, when it is used as an argument to the original term
that we want to G�odelise. The original term might use this
as a function or it might return it. We have already covered
the latter case. The former case uses the eta-expansion done
by ". Since we can not in advance know how the result of "
is used, we must assume that the eta-expansion is necessary
and hence let " do this always, making our �rst attempt at
" be

" e = �
1
x: " (APP(e; (# x)))

However, this eta-expansion can not in general be undone,
as any argument we give to it just produces another eta-
expansion and so on ad in�nitum. However, we can use the
argument to the eta-expanded term as a signal that selects
between undoing the last eta-expansion and doing another.
We can use labels and label testing again for this purpose:
We let (cancel v) pass v an argument with a special label.
The abstraction that is the result of " will test for this label
in its input and when it gets this it will undo the last eta-
expansion. If we use 2 as this special signal-label, we get the
�nal versions of # and ":

# v = 1?v (v �2a:a) (ABS(�0x: # (v (" (VAR(x))))))
" e = �1x:2?x e (" (APP(e; (# x))))

We can then encode these mutually recursive functions by
using Y -combinators:

# � Y (�d:(�u:D) (Y (�u:U)))
where

D � �v:1?v (v �2a:a) (ABS(�0x:d (v (u (VAR(x))))))

U � �e:�1x:2?x e (u (APP(e; (d x))))

We have omitted the labels for the abstractions used in this
encoding. We can use any label for these, as they will never
get to a position where they are tested. Hence, we need
only a total of three labels: 0 for use in the input term, 1
to designate results of " and 2 to denote the special signal
value. We can e.g. use 0 for all remaining abstractions.

For ease of reading, we will in the following use the mu-
tually recursive de�nition of the functions.

As an example, �gure 1 shows G�odelisation of �ab:a b.
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# (�0a:�0b:a b)

�! 1?(�0a:�0b:a b)

((�0a:�0b:a b) �2a:a)

(ABS(�0x: # ((�0a:�0b:a b) (" (VAR(x))))))

�! ABS(�0x: # ((�0a:�0b:a b) (" (VAR(x)))))

�! ABS(�0x: # (�0b: " (VAR(x)) b))

�! ABS(�0x:(1?(�0b: " (VAR(x)) b)
((�0b: " (VAR(x)) b) �2a:a)
(ABS(�0y: # ((�0b: " (VAR(x)) b) (" (VAR(y))))))))

�! ABS(�0x:(ABS(�0y: # ((�0b: " (VAR(x)) b) (" (VAR(y)))))))

�! ABS(�0x:(ABS(�0y: # ((" (VAR(x))) (" (VAR(y)))))))

�! ABS(�0x:(ABS(�0y: # ((�1z:2?z (VAR(x)) (" (APP(VAR(x); (# z))))) (" (VAR(y)))))))

�! ABS(�0x:(ABS(�0y: # ((�1z:2?z (VAR(x)) (" (APP(VAR(x); (# z)))))
(�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w)))))))))

�! ABS(�0x:(ABS(�0y: # (2?(�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w)))))
(VAR(x))

(" (APP(VAR(x); (# (�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w)))))))))))))

�! ABS(�0x:(ABS(�0y: # (" (APP(VAR(x); (# (�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w))))))))))))

�! ABS(�0x:(ABS(�0y: # (" (APP(VAR(x);
(1?(�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w)))))
((�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w))))) (�2a:a))
(ABS(�p: # ((�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w))))) (" (VAR(p)))))))))))))

�! ABS(�0x:(ABS(�0y: # (" (APP(VAR(x);
((�1w:2?w (VAR(y)) (" (APP(VAR(y); (# w))))) (�2a:a))))))))

�! ABS(�0x:(ABS(�0y: # (" (APP(VAR(x);
(2?(�2a:a) (VAR(y)) (" (APP(VAR(y); (# (�2a:a))))))))))))

�! ABS(�0x:(ABS(�0y: # (" (APP(VAR(x); (VAR(y))))))))

�! ABS(�0x:(ABS(�0y: # (�1v:2?v (APP(VAR(x); (VAR(y)))) (" (APP(VAR(x); (VAR(y)))))))))

�! ABS(�0x:(ABS(�0y:

(1?(�1v:2?v (APP(VAR(x); (VAR(y)))) (" (APP(VAR(x); (VAR(y))))))
((�1v:2?v (APP(VAR(x); (VAR(y)))) (" (APP(VAR(x); (VAR(y)))))) (�2a:a))
(ABS(�0z:(# ((�1v:2?v (APP(VAR(x); (VAR(y)))) (" (APP(VAR(x); (VAR(y)))))) (" (VAR(z)))))))))))

�! ABS(�0x:(ABS(�0y:

((�1v:2?v (APP(VAR(x); (VAR(y)))) (" (APP(VAR(x); (VAR(y)))))) (�2a:a)))))

�! ABS(�0x:(ABS(�0y:

(2?(�2a:a)
(APP(VAR(x); (VAR(y))))
(" (APP(VAR(x); (VAR(y)))))))))

�! ABS(�0x:(ABS(�0y:(APP(VAR(x); (VAR(y)))))))

� d�0x:�0y:x ye

Figure 1: Example of G�odelisation
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We prove lemma 2 by induction over the structure of N and D. The induction hypothesis is the statement of lemma 2:
For N 2 �N , # N �!� dNe and for D 2 �, D �!�" (dDe).

N � �0x:N1:

# (�0x:N1)

�! 1?(�0x:N1) ((�0x:N1) (�
2a:a)) (ABS(�0x: # ((�0x:N1) (" (VAR(x)))))) by def. of #

�! ABS(�0x: # ((�0x:N1) (" (VAR(x))))) by (L2)

� ABS(�0x: # (((�0x:N1)[xin " (VAR(xi))]) (" (VAR(x))))); xi 2 FV (�0x:N1) by def. of �
�! ABS(�0x: # (N1[xin " (VAR(xi))][xn " (VAR(x))])); xi 2 FV (�0x:N1) by (�)

� ABS(�0x: # (N1[xin " (VAR(xi))])); xi 2 FV (N1)

� ABS(�0x: # (N1)) by def. of �
�!� ABS(�0x:dN1e) by induction

� d�0x:N1e

N � D 2 �:

# (D)
�!� # (" (dDe)) by induction
�!� dDe by lemma 1

D � x:

x
� " (VAR(x)) by def. of �
� " (dxe)

D � D1 N1:

D1 N1

� D1 N1

�!� " (dD1e) N1 by induction

�! 2?N1 dD1e (" (APP(dD1e; # (N1)))) by def. of "
�! " (APP(dD1e; # (N1))) by (L2)
�!� " (APP(dD1e; dN1e)) by induction
� " (dD1 N1e)

2

Figure 2: Proof of lemma 2

4 Proof of correctness

In this section we will prove the correctness of the G�odeliser.
We start by proving that # and " cancel in the expected

way, which we state in

Lemma 1 For all E 2 �L, # (" E) �!� E.

This is simple to prove:

# (" E) �! # (�1x:2?x E (" (APP(E; # x))))
�! 1?(�1x:2?x E (" (APP(E; # x))))

((�1x:2?x E (" (APP(E; # x)))) (�2a:a))
(ABS(�0y: # (� � �)))

�! ((�1x:2?x E (" (APP(E; # x)))) (�2a:a))
�! 2?(�2a:a) E (" (APP(E; # (�2a:a))))
�! E

2

We next de�ne the input to the G�odeliser: Lambda terms
in normal form with label 0 on all abstractions and not con-
taining label tests:

�N ! �0x:�N

j �

� ! x

j � �N

Note that this includes open terms. We will need to handle
open terms in a lemma below, even though the input to the
G�odeliser is assumed to be closed.

We now de�ne

N � N [xin " (VAR(xi))]; xi 2 FV (N)

where FV (N) is the set of free variables of N . Hence, N
replaces all free variables of N by " applied to the represen-
tations of the variables. Note that for closed N , N = N .

We continue with the central lemma of our proof:

Lemma 2 For N 2 �N , # N �!� dNe and for D 2 �,

D �!�" (dDe).

The proof of lemma 2 can be found in �gure 2.
We can now state the correctness theorem
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Theorem 3 If N 2 �N and N is closed, then # N �!�

dNe.

The proof is simple: Since N is closed, N � N and by
lemma 2, # N �!� dNe.

2

5 Implementation

The G�odeliser has been implemented in Scheme, where it has
been used to \decompile" functions. Scheme doesn't have
labels and label testing, but it does have pointer equality
tests. While not quite equivalent to label testing, it has in
conjunction with some of Scheme's non-functional features
been su�cient to emulate the label testing needed in the
G�odeliser. We will in this paper just show the program
text (in �gure 3) of the Scheme implementation and refer
to another paper [8] for more details. Note that we have
extended the #-part of the G�odeliser to work with base-type
values. Hence, terms containing base-type values can be
rei�ed.

The call-by-value nature of Scheme makes the implemen-
tation unable to G�odelise terms that do not reduce to normal
form under call-by-value reduction.

6 Discussion

While the extended lambda calculus is able to G�odelise clas-
sical lambda terms, it is not self-G�odelisable. For example,
it is not possible inside the calculus to distinguish (�0x:x)
from (�0x:1?x x x). It will be interesting to study what ex-
tensions are needed to the lambda calculus to make it fully
self-G�odelisable, short of adding G�odelisation as a primitive
operation. On a related issue, can we make smaller exten-
sions of the classical lambda calculus than we have in this
paper and still get G�odelisation of the classical fragment of
this calculus? In other words, how many of the properties
of the classical lambda calculus can we retain while allowing
G�odelisation of the classical fragment?

While the extended lambda calculus inherits many prop-
erties of the classical lambda calculus, for example (we con-
jecture) con
uence, it does not inherit all of them. As an
example, eta-reduction is not valid in the extended calculus.
Indeed, (�0x:x) and (�0x:(�0y:x y)) are G�odelised to rep-
resentations that can be distinguished even in the classical
lambda calculus.

In [10], it is shown that adding explicit G�odelisation (by
rei�cation) to the lambda calculus makes textual identity
the only valid equivalence. By retaining beta-equivalence,
we feel that our extension is less disruptive and more use-
ful than explicit G�odelisation. In particular, it allows the
G�odeliser to be used for normalisation of terms.

The G�odeliser has some similarities to Mogensen's self-
reducer for the lambda calculus [6], and was indeed partly
derived from this. The # function in the G�odeliser corre-
sponds to the R0 function in the self-reducer while the "
function corresponds to the P function in the self-reducer.
Where the P function in the self-reducer builds a pair of
two values, the " function in the G�odeliser builds a function
that selects between two values based on the form of the ar-
gument. This isn't too far from how pairs are traditionally
represented in the lambda calculus.

(define (downarrow v)
(cond
((number? v) v)
((boolean? v) v)
((char? v) v)
((string? v) v)
((vector? v) v)
((symbol? v) (list 'quote v))
((null? v) v)
((pair? v)
(list 'cons (downarrow (car v))

(downarrow (cdr v))))
((procedure? v)

(if (memq v registered) (v special)
(let ((x (gensym)))
(list 'lambda (list x)

(downarrow (v (uparrow x)))))))))

(define (uparrow e)
(let
((f (lambda (v)

(if (eq? v special) e
(uparrow (list e (downarrow v)))))))

(set! registered (cons f registered))
f))

(define registered '())

(define special '(special))

(define count 0)

(define (gensym)
(set! count (+ 1 count))
(string->symbol
(string-append "x" (number->string count))))

(define (goedelise v)
(set! count 0)
(set! registered '())
(downarrow v))

Figure 3: Scheme implementation of G�odeliser
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7 Conclusion

We have presented an extension to the lambda calculus
which allows G�odelisation of terms from the subset that cor-
responds to the classical lambda calculus. We have shown
this by developing a G�odeliser and proving it correct.

Since the extensions can be modeled by the standard
non-functional features of Scheme, the result can be used to
make a decompiler (and partial evaluator) for a fragment of
Scheme that includes the classical lambda calculus. When
used as a partial evaluator or normaliser, the Scheme imple-
mentation of the G�odeliser performs call-by-value reduction
to normal form, which is not a complete reduction strat-
egy. However, this is a small limitation compared to the
requirement that the residual programs must have normal
forms.
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Abstract

Type-directed partial evaluation was originally implemented
in Scheme, a dynamically typed language. It has also been
implemented in ML, a statically Hindley-Milner typed lan-
guage. This note shows how the latter implementation can
be derived from the former through a functional representa-
tion of inductively de�ned types.

1 Introduction

Type-directed partial evaluation is an approach to special-
izing a term written in a higher-order language. Such a
higher-order term is specialized by normalizing it with re-
spect to its type. Normalization is done by eta-expanding
the term in a two-level lambda-calculus and statically beta-
reducing the expanded term.

The two stages | eta-expansion and beta-reduction |
share an intermediate result: a two-level term. We con-
sider two versions of the type-directed partial evaluation al-
gorithm:

(i) If the two-level term is represented as a value of an
inductively de�ned data type then the algorithm can
be implemented in any (Turing complete) language.
In this case both eta-expansion and beta-reduction are
implemented in this language.

(ii) If the algorithm is implemented in a higher-order lan-
guage an alternative is to represent the two-level term
as a mixture of object-language terms (dynamic parts)
and implementation-language terms (static parts). In
this case eta-expansion is implemented in the im-
plementation language. It generates a two-level
term whose implementation-language parts are beta-
reduced by the native beta-reducer of the implemen-
tation language.

�Basic Research in Computer Science (http://www.brics.dk),
Centre of the Danish National Research Foundation.

yNy Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
E-mail: mrhiger@brics.dk

1.1 The Problem

Both of the versions of the algorithm are directed by the
type of the term to be normalized. They are applied to a
term and a representation of the type of the term. In (ii), if
the type is given as an element of an inductively de�ned type
then it is impossible to statically type-check the algorithm,
and indeed this also has been implemented in a dynamically
types language, Scheme [2, 4].

This note shows how to derive a statically typed analogue
of (ii) from (i). It is obtained by Church-encoding types as
higher-order values.

Andrzej Filinski was the �rst to use a Church-encoding
of types for type-directed partial evaluation.

1.2 Related Work

The �rst statically typed version of type-directed partial
evaluation is due to Andrzej Filinski in the spring of 1995.
This unpublished work showed that type-directed partial
evaluation could be implemented at all using a Hindley-
Milner type system. The second one is due to Zhe Yang
in the spring of 1996 [9]. Yang provides general methods
for encoding type-indexed values in a Hindley-Milner typed
language and applies them to type-directed partial evalua-
tion. The present work was carried out in the fall of 1997
and, according to Olivier Danvy, it is the third indepen-
dent implementation of type-directed partial evaluation in a
Hindley-Milner typed language [7].

Kristo�er Rose implemented type-directed partial eval-
uation in Haskell in the spring of 1998 using type classes
[8]. Haskell's type classes permit overloaded functions, i.e.,
functions that have several de�nitions, one for each type of
argument. Type-directed partial evaluation �ts exactly into
this pattern.

In her M. Sc. thesis, Belmina Dza�c implements type-
directed partial evaluation in Elf, a statically typed, con-
straint logical language (summer 1998) [5]. Furthermore,
she proves the equivalence of the dynamically typed and the
statically typed versions of type-directed partial evaluation.
Earlier on, Catarina Coquand stated and proved the correct-
ness of the type-directed partial evaluation algorithm using
the proof editor Alf [3].

1.3 The Derivation

Type-directed partial evaluation is given by # (reify) and "

(re
ect) in Figure 1. Based on this algorithm we derive a
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(types) t ::= b j t1 ! t2

(reify) #
b v = v

#
t1!t2 v = �x: #t2 (v@("t1 x))

where x is fresh

(re
ect) "b e = e

"t1!t2
e = �x: "t2 (e@(#

t1 x))

tdpe t v = #
t v

Figure 1: Type-directed partial evaluation

statically typed, type-directed partial evaluator analogous
to (ii) in the following steps:

� (Section 2.1) Starting from (i), we represent types as
a datatype Type and representing both static and dy-
namic terms as a datatype Term we translate the # and
" of Figure 1 into into reify and reflect. This so-
lution is interpretive in that it uses an explicit static
beta-reducer.

� (Section 2.2) We change the representation of static
terms from elements of the datatype Term into higher-
order values and replace the explicit beta reducer by the
native beta reducer of the implementation language.
This solution is not interpretive but it is also not stat-
ically typeable.

� (Section 3.1) We observe an invariant property: reify
is applied only to types occurring covariantly in the
source type, and reflect only to types appearing con-
travariantly in the source type. We encode this distinc-
tion in the datatype Type. This solution is not stati-
cally typeable but by changing the representation of
types from the datatype Type to higher-order values
we obtain a statically typed solution which is still not
interpretive: it uses the native (implicit) beta-reducer
to statically reduce the two-level term.

Using the implicit static beta-reducer or an explicit one is in-
dependent of the representation of types. However, using the
implicit static beta-reducer together with a datatype repre-
sentation of types does not yield a solution that is statically
typeable in a Hindley-Milner typing system.

1.4 Overview

We consider four successive implementations of type-
directed partial evaluation in this note.

In Section 2, object-language types are represented by an
inductively de�ned type. Terms are represented by values of
an inductively de�ned type in Section 2.1 and by a mixture
of higher-order values and terms in Section 2.2.

In Section 3, types are represented by higher-order val-
ues. The main result of this note is in Section 3.1 where
terms are represented by higher-order values. For complete-
ness we take a step backwards in Section 3.2 where terms are
represented by values of an inductively de�ned data type.

In Section 3.3 we brie
y consider the eÆcencies of the
programs in the note. Section 4 concludes and in appendix

A we present two extensions over the statically typed algo-
rithm.

All programs in this note are written in a functional no-
tation �a la Haskell [6]. We defer the problem of generating
fresh identi�ers [7].

2 Inductively De�ned Representation of

Types

First we consider two implementations of type-directed par-
tial evaluation that use a representation of types as elements
of the following inductively de�ned type.

data Type = Base | Func Type Type

The two implementations di�er in the way the static parts
of two-level terms are represented.

2.1 Inductively De�ned Representation of Terms

In this approach, of which only an outline is given here, both
the static and the dynamic parts of terms are represented
by an inductively de�ned type.

type Id = [Char]

data Term = Num Int | Str String

| SVar Id | SLam Id Term | SApp Term Term

| DVar Id | DLam Id Term | DApp Term Term

The static syntax constructors are pre�xed with an \S" and
the dynamic syntax constructors are pre�xed with a \D".
Constants are both static and dynamic.

The algorithm proceeds in two stages: First, given a com-
pletely static term and its type, a fully eta-expanded two-
level term is constructed using reify and reflect below.
Second, the static parts of the term are beta-reduced (the
beta-reducer is omitted here).

reify, reflect :: Type -> Term -> Term

reify Base v = v

reify (Func t1 t2) v =

DLam x (reify t2 (SApp v (reflect t1 (DVar x))))

where x = fresh "x"

reflect Base v = v

reflect (Func t1 t2) v =

SLam x (reflect t2 (DApp v (reify t1 (SVar x))))

where x = fresh "x"
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etaExpand t v = reify t v

staticBetaReduce v = ...

tdpe :: Type -> Term -> Term

tdpe t v = staticBetaReduce (etaExpand t v)

This program is statically typeable in a Hindley-Milner typ-
ing system and can be implemented in any language with
inductively de�ned types, regardless of the typing discipline.
The implementation-language type of the output of reify
and reflect does not depend on the representation of the
object-language type (a value of type Type).

The explicit use of a beta-reducer is undesirable since
it embeds the lambda calculus into the implementing lan-
guage via an interpreter. This is ineÆcient and the question
arises whether we could not implement the algorithm in a
higher-order language using the underlying beta-reduction
mechanism of this implementation language.

2.2 Higher-Order Representation of Terms

The following approach uses the beta-reduction mechanism
of the higher-order implementation language.

Types are represented by the same type as above. Two-
level terms are represented by a mixture of implementation-
language terms (values) and object-language terms.

reify Base v = v

reify (Func t1 t2) v =

DLam x (reify t2 (v (reflect t1 (DVar x))))

where x = fresh "x"

reflect Base v = v

reflect (Func t1 t2) v =

\x -> reflect t2 (DApp v (reify t1 x))

etaExpand t v = reify t v

tdpe t v = etaExpand t v

This program is not statically typeable in a Hindley-Milner
typing system: The implementation-language type of the
output of reify and reflect depends on the representation
of the object-language type (a value of type Type).

Short of dependent types, at compile time, there is not
enough information available so that the type-checker can
accept the program. The above program corresponds to the
original implementation of type-directed partial evaluation
in Scheme [4].

3 Higher-Order Representation of Types

Observe that reify is always applied to types that occur
covariantly in the source type (a value of type Type) and
that reflect is always applied to types that occur con-
travariantly in the source type. We make this explicit by
distinguishing between covariant occurrences (post�xed by
\P" for positive) and contravariant occurrences (post�xed
by \N" for negative):

data TypeP = BaseP | FuncP TypeN TypeP

data TypeN = BaseN | FuncN TypeP TypeN

type Type = TypeP

3.1 Higher-Order Representation of Terms

Now reify and reflect are

reify BaseP v = v

reify (FuncP t1 t2) v =

DLam x (reify t2 (v (reflect t1 (DVar x))))

where x = fresh "x"

reflect BaseN v = v

reflect (FuncN t1 t2) v =

\x -> reflect t2 (DApp v (reify t1 x))

This program is not statically typeable in a Hindley-Milner
typing system. Again, the implementation-language type of
the output of reify and reflect depends on the representa-
tion of the object-language type (values of types TypeP and
TypeN).

In order to obtain a statically typeable program we apply
the following change: instead of representing a positively
occuring type t as a TypeP we represent it as a value equal to
(reify t) and instead of representing a negatively occuring
type t as a TypeN we represent it as a value equal to (reflect
t).

baseP, baseN :: a -> a

funcP ::

(Term -> a) -> (b -> Term) -> (a -> b) -> Term

funcN ::

(a -> Term) -> (Term -> b) -> Term -> (a -> b)

baseP v = v

funcP t1 t2 v = DLam x (t2 (v (t1 (DVar x))))

where x = fresh "x"

baseN v = v

funcN t1 t2 v = \x -> t2 (DApp v (t1 x))

etaExpand t v = t v

tdpe :: (a -> b) -> a -> b

tdpe t v = etaExpand t v

This program is statically typeable in a Hindley-Milner typ-
ing system. The implementation-language type of tdpe does
not depend on the representation of the object-language
type, but on the type of the object-language type.

Thus, even without dependent types, the type-checker
has enough information to instantiate the polymorphic type
of tdpe. This is the main result of this note.

For example, the type b (a base type) is represented by
Base of type Type in Section 2.1. In the current section it
is represented by baseP (i.e., the identity function) of type
a -> a. Filinski and Yang's representation of this type is the
pair of functions (#b; "b), i.e., a pair of identity functions.
(See section A.2).

The type b ! b is represented by Func Base Base

of type Type in Section 2.1. In the current sec-
tion it is represented by funcP baseN baseP of type
(Term -> Term) -> Term. Filinski and Yang's representa-
tion of this type is the pair of functions (#b!b; "b!b).

As an example, let's specialize some terms that contains
static redeces using the result of this section:

> :t tdpe baseP

tdpe baseP :: a -> a

> :type tdpe (funcP baseN baseP)

tdpe (funcP baseN baseP) :: (Term -> Term) -> Term

> tdpe baseP ((\x -> x) (Num 42))

Num 42

> tdpe (funcP baseN baseP) ((\x -> \y -> x) (Num 42))

DLam "x0" (Num 42)

>
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3.2 Inductively De�ned Representation of Terms

For the record, let us repeat the solution above using a \tra-
ditional" inductively de�ned representation of terms. To
this end we use again the type of terms.

type Id = [Char]

data Term = Num Int | Str String

| SVar Id | SLam Id Term | SApp Term Term

| DVar Id | DLam Id Term | DApp Term Term

baseP v = v

funcP t1 t2 v = DLam x (t2 (SApp v (t1 (DVar x))))

where x = fresh "x"

baseN v = v

funcN t1 t2 v = SApp x (t2 (DApp v (t1 (SVar x))))

where x = fresh "x"

etaExpand t v = t v

staticBetaReduce v = ...

tdpe :: Type -> Term -> Term

tdpe t v = staticBetaReduce (etaExpand t v)

This program is statically typeable. It also requires explicit
static beta-reduction (which is omitted here).

3.3 Pragmatics

We have compared the performance of the three statically
typed solution in ML. We used a simple-minded, hand-coded
static beta-reducer for the programs in Section 2.1 and Sec-
tion 3.2, and the native beta-reducer of ML for the program
in Section 3.1. The hand-coded reducer uses the same re-
duction strategy as the native reducer of ML.

Specializing the power function with respect to a static
exponent of value 12 is about 9 times faster using the solu-
tion of Section 3.1 than using the solutions of sections 2.1
and 3.2. Specializing (S K)K at type b! b is about 4 times
faster using the solution of Section 3.1 than using the solu-
tions of sections 2.1 and 3.2. These results con�rm Berger,
Eberl, and Schwichtenberg's empirical observations [1].

There do not appear to be any perceptible di�erence be-
tween the two solutions that use the hand-coded static re-
ducer (Section 2.1 and Section 3.2).

4 Conclusion

Being directed by the type of a term, the type-directed
partial evaluation algorithm requires a way of representing
types. In dynamically typed languages an inductively de-
�ned sum over the di�erent kind of types (base types, prod-
uct types, function types, etc.) suÆces. In statically typed
languages with a Hindley-Milner typing system this does not
work: the type of the algorithm depends on the value of the
representation of the type.

The solution is to represent types as higher-order poly-
morphic functions. This works since the type of the algo-
rithm thus depends on the implementation-language type of
the representation of the object-language type.

Our work suggests to view the higher-order encoding as a
functional representation of types, specialised to the purpose
of being deconstructed by reify and re
ect.
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A Extending the Statically Typed Algo-

rithm

Consider again

tdpe baseP :: a -> a

tdpe (funcP baseN baseP) :: (Term -> Term) -> Term

This indicates that constants of base type must be coerced
to dynamic values in the source programs. For example, to
obtain something of type Term we must coerce the integer
42 into a Term in

> tdpe baseP (Num 42)

Num 42

> tdpe (funcP baseN baseP) (\x -> (Num 42))

DLam "x0" (Num 42)

>

Furthermore, we must explicitly indicate the variance of
types (by the post�x \P" or \N"). Both shortcomings are
alleviated below.

A.1 The Need for Coercing Base Values

At covariant base types the explicit coercion of values of
base type can be removed by distinguishing the base types.
We introduce a more speci�c version of baseP for each base
type.

numP v = Num v

strP v = Str v

tdpe numP :: Int -> Term

tdpe strP :: String -> Term

tdpe (funcP baseP numP) :: (Term -> Int) -> Term

These new functions will reify a static value into its dynamic
counterpart. Static values of base type, such as integers and
strings, are represented uniquely and these values are used
directly when constructing the dynamic term. A similar
solution does not work at contravariant base type since dy-
namic values of base type can be any dynamic term.

> tdpe (funcP baseN numP) (\x -> 42)

DLam "x0" (Num 42)

> tdpe (funcP baseN strP) (\x -> "fortytwo")

DLam "x0" (Str "fortytwo")

>

A.2 The Need for Specifying the Variance

The other shortcoming of the implementation | the explicit
distinction between covariant and contravariant types | can
also be alleviated. Instead of representing a type in two parts
(i.e., a covariant part and a contravariant part as above) we
can merge the two parts into a pair that represents the type,
obtaining Filinski and Yang's solution [9].
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base :: (a -> a, b -> b)

func :: (a -> Term, Term -> b) ->

(c -> Term, Term -> d) ->

((b -> c) -> Term, Term -> (a -> d))

base = (reify, reflect)

where reify v = v

reflect v = v

func t1 t2 = (reify, reflect)

where reify v =

DLam x (fst t2 (v (snd t1 (DVar x))))

where x = fresh "x"

reflect v =

\x -> (snd t2 (DApp v (fst t1 x))))

etaExpand t v = (fst t) v

tdpe :: (a -> b,c) -> a -> b

tdpe t v = etaExpand t v

Using this implementation we can specialise terms without
specifying the covariance and contravariance of the type in-
volved.

> tdpe (func (func base base) base) (\f -> f (Num 8))

DLam "x0" (DApp (DVar "x0") (Num 8))

>
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Abstract

We de�ne the static semantics of o�ine partial evaluation for
the simply-typed lambda calculus using a translation into a
Martin-L�of-style type theory with suitable extensions. Our
approach clari�es that the distinction between specializa-
tion-time and run-time computation in partial evaluation
can model the phase distinction between compile-time and
run-time computation in a module language. Working back-
wards from that connection, we de�ne partial evaluation for
a core language with modules.

Key Words lambda calculus, dependent types

1 Introduction

Program specialization subsumes a whole range of automatic
transformations that aim at making programs faster while
preserving their semantics. One particular instance is o�-
line partial evaluation, a specialization technique that trans-
forms an annotated program and some part of the input into
a specialized program. In an annotated program each ex-
pression is either marked executable at specialization time
or it is marked executable at run time. The specializer exe-
cutes the specialization-time expressions and generates code
for the run-time expressions.

Lambdamix [21, 22] is a specializer for the lambda cal-
culus. Its operation depends on the well-formedness of an-
notated expressions, a criterion which ensures that no type
errors occur during specialization. Lambdamix employs a
partial type system [20] to verify well-formedness. Special-
ization of a well-formed expression either loops or it returns
a specialized program, but it cannot fail due to type mis-
matches.

There are many approaches to de�ne the semantics of
Lambdamix-style specializers, based on denotational seman-
tics [22, 21], operational semantics [27], logical frameworks
[26], modal and temporal logics [16, 15], category theory
[35], and higher-order rewriting [14]. We add a further color

�This work has been done while at the School of Computer Science

and Information Technology, University of Nottingham, UK. The au-
thor acknowledges support by EPSRC grant GR/M22840 \Semantics
of Specialization".

to this palette by employing type theory as a semantic foun-
dation. Our plan is as follows:

� de�ne the static semantics by translating an annotated
expression into a term in a suitable type theory;

� obtain the specialized expression by applying an ex-
traction function to the type derivation of the trans-
lated expression;

� reverse the connection to obtain an extension of Lamb-
damix that encompasses a module calculus.

The translation establishes a semantics for specialization via
the semantics of type theory. We use a Martin-L�of-style
type theory [32, 8, 37] with some non-standard extensions.
Employing type theory as a semantic metalanguage yields
denotational as well as operational models for free. Fur-
thermore, it installs a sound framework for formal reason-
ing about specialization and a way of comparing di�erent
methods of specialization if they can all be speci�ed in the
same type theory.

Our particular translation to type theory applies to Lamb-
damix restricted to simply-typed programs1. Type inference
for the translated expression performs the specialization-
time computation. Extracting the specialized program from
the type derivation involves reducing all redexes involving
types in the type theory.

The main technical results are:

1. If E is a well-formed annotated expression then its
translation type checks and the extraction function re-
turns the same expression as applying Lambdamix to
E, up to �-conversion.

2. A well-formedness criterion for an extension of Lamb-
damix with a module language.

The rest of the paper is structured as follows. We start
with an introduction to the basic principles of Lambdamix
for the simply-typed lambda calculus in Section 2. Next, in
Section 3, we investigate the translation from Lambdamix
to type theory in a step-by-step manner, discovering the
necessary features of the type theory along the way. In Sec-
tion 4 we state the formal properties of our translation. The
connection to the phase distinction and to module calculus
is outlined in Sec. 5. Finally, we discuss related work in
Section 6 and conclude in Section 7.

1Full Lambdamix admits partially-typed programs where the un-

typed parts must be run-time expressions.

30



Basic knowledge of partial evaluation [7, 29, 13] is help-
ful for understanding this paper. Appendix A de�nes some
notation used throughout. For convenience, Appendix B
summarizes all translations de�ned in this paper and Ap-
pendix C states the rules of the underlying type theory.

2 Principles of Lambdamix

This section recalls the principles of Lambdamix specializa-
tion restricted to the simply-typed lambda calculus [21, 29].
We de�ne the syntax of annotated expressions and anno-
tated types along with a type system formalizing the well-
formedness criterion of types and expressions.

Figure 1 shows the syntax of annotated expressions and
types. The metavariable b ranges over binding times which
denote phases in the processing of an expression, S for spe-
cialization-time or D for run-time. Constants k are spe-
cialization-time values by de�nition. They are restricted to
numbers. The expression lift e converts a specialization-time
integer into the corresponding run-time value. Addition
e+ e serves as a representative primitive operation. Lambda
abstraction �x:e and application e@e have the usual call-by-
name meaning. The conditional if0 e1 e2 e3 tests the value
of e1 for the number zero and returns the value of e2 or e3.
The �xpoint operator fix x:e computes the �xpoint of �x:e.

There are only integer and function types. Both have
specialization-time and run-time variants. The Top function
extracts the top-level binding-time annotation from a type.

Lambdamix insists that annotated types are well-formed.
A type � is well-formed if � wft is a consequence of the rules
in Fig. 2. Well-formedness restricts run-time types with a
top-level annotation of D to have only run-time components.
For a type assumption A, A wft means that � wft for all x : �
in A.

Annotated expressions have annotated types as described
in Fig 3. Apart from the annotations, it de�nes a type
system with simple types. Regarding the annotations, all
introduction rules (b-cst), (b-abs), and (b-�x) enforce the
well-formedness of the type of the introduced object and
their expressions carry the same annotation as the top-level
annotation of the type. The annotation of the expression in
the elimination rules (b-add), (b-app), and (b-if) is equal to
the top-level annotation of the type of the eliminated object.
The (b-lift) rule is special because its argument is always a
specialization-time value while its result is a run-time value.
The (b-if) rule enforces the usual restriction: if the condition
has a run-time type (i.e., the specializer cannot evaluate it)
then both branches need to have a run-time type, too.

There is a tiny addition with respect to the usual system:
the type assumption A contains annotated pairs x :b � where
b indicates the binding time of the binding expression for x.
This does not change the set of typable terms or the assigned
types in any way but it is necessary for proving one of the
properties in Sec. 4.

2.1 Denotational speci�cation

The Lambdamix specializer is the interpreter of annotated
expressions shown in Fig. 4. The intended semantics extends
a call-by-name lambda calculus. The interpretation of the
run-time constructs is code generation in all cases, indicated
by the underlined syntax constructors which are considered
operators on an abstract type RExpr of run-time expres-
sions. The cases for �D and �xD involve the generation
of a fresh variable name for n. Although name generation
leads to complications in a semantic soundness-proof with

respect to the rules in Fig. 3 (as demonstrated and repaired
by Moggi [35]), the issue is not central to the topic of this
paper.

The de�ning equations of the specializer rely on a num-
ber of auxiliary operators. int(k) returns the integer value
of the syntactic representation of the constant k. if0 tests its
�rst argument for zero and returns its second or third argu-
ment. fix is a �xpoint operator of type (Val! Val)! Val.
quote(v) maps the integer v to its syntactic representation
of type RExpr.

2.2 Operational speci�cation

The denotational framework just outlined follows the stan-
dard de�nition of Lambdamix. However, to prove the prop-
erties that we are interested in, an operational framework
is more appropriate. Therefore, we de�ne an alternative se-
mantics of 2Expr in terms of reductions. For Lambdamix,
all reductions are static reductions, that is, every redex only
involves constructs which are annotated as specialization-
time.

i+S j ! i+ j

(�Sx:e1)@
Se2 ! e1fx := e2g

if0S 0 e1 e2 ! e1
if0S n e1 e2 ! e2 if n 6= 0

fixS x:e ! efx := fixS x:eg

The usual static reduction relation ) is the compatible clo-

sure of ! and
�

) is the re
exive and transitive closure of
). It is easy to prove the following lemma by induction on
the de�nition of ).

Lemma 1 If e1 ) e2 then, for all �, SJe1K� = SJe2K�.

A further simple induction on the length of a reduction
sequence yields the next lemma.

Lemma 2 If e1
�

) e2 then, for all �, SJe1K� = SJe2K�.

3 From Lambdamix to type theory

We discuss a translation from annotated expressions to type
theory by going through the di�erent syntactic constructs.
The basic idea is to translate a compile-time expression to an
expression on the type level and a run-time expression to a
value expression. The translation also requires to explicitly
state the type of a translated compile-time expression, which
is a kind.

For these reasons, there are two functions that work on
2Expr (more precisely, on a Lambdamix type derivation):

� E maps a typed 2Expr to a term at the value level and

� T maps a typed 2Expr to a term at the type level.

In addition, there is a function to classify terms at the type
level:

� K which maps a 2Type to a kind.

The intuition is that T extracts the specialization-time parts
whereas E extracts the run-time parts. K provides the \type"
of the terms generated by T , that is, � t̀t T JeK' : KJ�K for
suitable �. Here � t̀t M : N is the typing judgement of
the type theory with M and N ranging over its terms and
� over its environments. For E the connection is somewhat
more involved, since T does not always generate a type. It
may also yield a constructor function, which must �rst be
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binding times b ::= S j D ordered by S < D

expressions 2Expr 3 e ::= k j lift e j e+b e j x j �bx:e j e@be j if0b e e e j fixb x:e

types 2Type 3 � ::= intb j �
b
! �

top annotation Top(intb) = b

Top(�2
b
! �1) = b

Figure 1: Syntax of Lambdamix

intb wft

�1 wft �2 wft b � Top(�1) b � Top(�2)

�1
b
! �2 wft

Figure 2: Well-formedness of annotated types

(b-cst)
A wft

A l̀m k : intS

(b-lift)
A l̀m e : intS

A l̀m lift e : intD

(b-add)
A l̀m e1 : int

b A l̀m e2 : int
b

A l̀m e1+
b e2 : int

b

(b-var)
A wft x :b � in A

A l̀m x : �

(b-abs)
Afx :b �2g l̀m e : �1 �2

b
! �1 wft

A l̀m �bx:e : �2
b
! �1

(b-app) A l̀m e1 : �2
b
! �1 A l̀m e2 : �2

A l̀m e1@
be2 : �1

(b-if)
A l̀m e0 : int

b A l̀m e1 : � A l̀m e2 : � b � Top(� )

A l̀m if0b e0 e1 e2 : �

(b-�x)
Afx :b �g l̀m e : � � wft b � Top(� )

A l̀m fixb x:e : �

Figure 3: Typing rules of Lambdamix
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semantic values Val = Int + RExpr + (Val! Val)
environments � 2 Env = Var! Val

S : 2Expr! Env! Val

SJkK = ��:int(k)

SJe1+
S e2K = ��:SJe1K�+ SJe2K�

SJxK = ��:�(x)

SJ�Sx:eK = ��:�y:SJeK�[y=x]
SJe1@

Se2K = ��:(SJe1K�)(SJe2K�)
SJif0S e0 e1 e2K = ��:if0 (SJe0K�) (SJe1K�) (SJe2K�)
SJfixS x:eK = ��:fix �y:SJeK�[y=x]

SJlift eK = ��:quote(SJeK�)
SJe1+

D e2K = ��:SJe1K�+SJe2K�
SJ�Dx:eK = ��:�n:SJeK�[n=x]
SJe1@

De2K = ��:SJe1K�@SJE2K�
SJif0D e1 e2 e3K = ��:if0 (SJe1K�) (SJe2K�) (SJe3K�)
SJfixD x:eK = ��:fix n:SJeK�[n=x]

Figure 4: Lambdamix specializer

converted into a type by an auxiliary function type. Sec-
tion 4 states the exact relations between Lambdamix type
derivations and the translated terms.

Appendix C gives a summary of the target language.

3.1 Specialization-time integers

The encoding of specialization into type theory relies on
creating specialization-time copies of the basic types \ele-
vated" to kinds [4, 5]. For example, while int is the type
of the run-time integers 0; 1; : : :, its elevated copy, the kind
int with the types 0; 1; : : : as elements, models the compile-
time integers. Technically, for each integer i, the type i has
exactly one element > : i. Similarly, the primitive oper-
ator e+ e has an elevated copy, the binary type operator
:+ : (using in�x notation) which comes with a set of asso-

ciated � rules: i+ j ! i+ j. Just like the value operator
+ has type int ! int ! int, the type operator + has kind
int! int! int.

An alternative way of viewing the � rules is to consider
them as type equivalences so that the algebra of types is
no longer a free term algebra, but rather a quotient algebra
factored over the compatible closure of the � rules. Such
approaches are common in dealing with recursive types [6]
and with record types [40].

For specialization-time integer expressions, all computa-
tion in the translated term takes place on the type level.
However, we still need an expression of that type. This ex-
pression is never inspected, it is just there because we cannot
have a type without an expression. Therefore, we introduce
an expression > which can assume any type i. The expres-
sion translation maps any constant and any specialization-
time addition to this expression.

EJkK' = >

EJe1+
S e2K' = >

The actual specialization-time computation takes place at
the type level. The accompanying translation T from an-
notated expressions to terms at the type level takes care of

that:
T JkK' = k

T Je1+
S e2K' = T Je1K'+ T Je2K'

Finally, there is a translation from annotated types to kinds
of which we can deduce one case, so far.

KJintSK = int

For the minimal subset of expressions considered, we see
that if l̀m e : � then t̀t T JeK' : KJ�K, which is true in
general as we will see.

It happens to be the case that t̀t EJeK' : T JeK'. This is
a special case of the general relation between a type deriva-
tion for an annotated term and the type derivation of its
translation. See Sec. 4 for the general case.

3.2 Run-time integers

The kind structure for specialization-time integers provides
for values >, types i, and the kind int. For run-time integers
there is an analogous structure, which comprises values i,
the type int, and the singleton kind INT. The only member
of INT is the type int.

In Lambdamix, the expression lift e converts specializa-
tion-time integers to run-time integers. The translation must
transform an expression e of type i : int to an expression of
type int : INT. To this end we require a non-standard fea-
ture in the type theory: a constant choose :

Q
t : int : t !

int which maps a one-element type of kind int and an ex-
pression of this type to the corresponding element of int.
Hence, choose un-elevates these types.2

EJlift eK' = choose (T JeK') (EJeK')
T Jlift eK' = int

KJintDK = INT

2The operator choose is related to Girard's 0 operator of typeQ
� : � : �, which can be used together with Girard's J operator

of type
Q

� : � :
Q

� : � : � ! � to construct a diverging term

in System F [18]. In our calculus, this problem does not arise since
choose is suitably restricted to the one-element types corresponding

to elevated integers.
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EJ�Sx:e : �2
S
! �1K' = �t : KJ�2K:�x : type(�2)(t):EJeK'[x 7! t]

EJe1@
Se2K' = EJe1K'(T Je2K')(EJe2K')

EJxK' = x

Figure 5: Translation to expressions: specialization-time functions

type :
Q

� : 2Type :KJ�K ! TYPE

type(intS)(f : int) = f

type(intD)(f : INT) = int

type(�2
S
! �1)(f : KJ�2K ! KJ�1K) =

Q
t : KJ�2K : type(�2)(t)! type(�1)(ft)

Figure 6: Mapping constructors to types

The translation of the addition of run-time integers is
straightforward.

EJe1+
D e2K' = EJe1K'+ EJe2K'

T Je1+
D e2K' = int

3.2.1 Example

Consider the expression lift (17+S 4).

1. For 17, we have EJ17K' = > and T J17K' = 17.

2. For 4, we have EJ4K' = > and T J4K' = 4.

3. For e � 17+S 4, we have EJeK' = > and T JeK' =

17+ 4 by items 1 and 2. The last term is type-correct
(or rather well-kinded) since + : int! int! int.

4. By the conversion rule for types

� t̀t > : 17+ 4 � t̀t 21 : int 17+ 4 =� 21

� t̀t > : 21

5. For e2 � lift (17+S 4), we have EJe2K' = choose 21 >
and T Je2K' = int.

The extraction function (to be de�ned in Sec. 3.7) maps the

type derivation of choose 21 > to the specialized expression
21.

3.3 Specialization-time functions

The specializer executes specialization-time functions. Con-
sequently, in the translated term, we expect the type checker
to reduce specialization-time �-redexes, too. Although the
type checker cannot perform a reduction at the term level,
it can perform substitution into the types as part of the
application rule:

� t̀t M :
Q

x : A :B � t̀t N : A
� t̀t MN : Bfx := Ng

Hence, the translation of specialization-time functions in-
volves dependent product types. The following example
gives additional evidence. Consider the expression

(�
S
f:�

S
x:f@

S
(f@

S
x))@

S
(�
S
y:y+

S
1)@

S
7

Recalling that all specialization-time computation should
happen at the type level, we intuitively expect for the trans-
lation of f which is bound to �Sy:y+S 1 a type like n !
n+ 1 for some suitable n. However, f has two uses, one at
type 7 ! 8, and the other at type 8 ! 9. Hence, f must
have a polymorphic type which abstracts over all possible n.
The dependent product type

Q
t : int : t ! t+ 1 does the

trick.
To provide a term of such a dependent product type, a

translated specialization-time lambda expression must take
two parameters, the �rst one being a type-level parameter
that holds all the specialization-time information and the
second one being a value parameter of an associated type
containing the run-time information. In the example, the
specialization-time information is in t : int and the value
parameter has type t. Consequently, the translation of a
specialization-time application must provide an additional
parameter, too. Figure 5 shows the translation.

The translation of the specialization-time lambda refers
to a function type. type(� )(t) converts the constructor t of
kind KJ�K to a type. It is necessary for two reasons: Firstly,
the annotation of x on the right side of Fig. 5 must be a
type, i.e., a term of kind TYPE. Secondly, in general, t may
not be a type, but it can be a constructor function. The
latter case arises when the type � is a specialization-time

function type �2
S
! �1. In this case, t's kind is de�ned by

KJ�2
S
! �1K = KJ�2K ! KJ�1K

and the type translation produces the corresponding expres-
sions at the type level:

T J�Sx:e : �2
S
! �1K' = �t : KJ�2K:T JeK'[x 7! t]

T Je1@
Se2K' = T Je1K'(T Je2K')

T JxK' = '(x)

That is, a specialization-time function becomes a construc-
tor abstraction and a specialization-time application becomes
a constructor application.

In the example, the task of the type function is to map
a constructor f of kind int! int to the type

Q
t : int : t!

t+ 1. The solution is to abstract the parameter t : int and
to apply f to it to produce the result type. Figure 6 gives
the details. It is trivial if its constructor argument is already
a type.
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T JfixS x:e : �K' = � c : KJ�K:T JeK'[x 7! c]

EJfixS x:e : �K' = �x : type(�)(T JfixS x:eK'):EJeK'[x 7! T JfixS x:eK']

Figure 7: Translation of specialization-time �xpoints

3.3.1 Example

In the running example, the translation produces for

�
S
y:y+

S
1 : int

S S
! int

S

a term of type
Q

t : int : t! t+ 1.

Formally, we get for f = �Sy:y+S 1 and for � = intS
S
!

intS :

EJfK' = �t : int:�x : t:>

T JfK' = �t : int:t+ 1

type(�)(T JfK')
=
Q

t : KJintSK : type(intS)(t)! type(intS)((�t : int:t+ 1)t)

=
Q

t : int : t! (�t : int:t+ 1)t

=
Q

t : int : t! t+ 1

3.4 Run-time functions

Just as the translation maps a specialization-time function
to a function with a polymorphic type level argument, the
translation of a run-time function remains monomorphic.
This intuition is straightforward to carry through.

The translation of run-time function types to kinds is
just a constant function.

KJ�2
D
! �1K = TYPE.

The well-formedness criterion reveals that the mapping from
two-level types with top annotation D is straightforward. If

A l̀m �Dx:e : �2
D
! �1 it follows that �2

D
! �1 wft, which

means that all annotations in this type are D. Hence, there
is exactly one constructor CJ�2K with CJ�2K : KJ�2K:

CJintDK = int

CJ�2
D
! �1K = CJ�2K ! CJ�1K

The translation to expressions and to constructors is
straightforward, as promised.

EJ�Dx:e : �2
D
! �1K' = �x : CJ�2K:EJeK'[x 7! CJ�2K]

T J�Dx:e : �2
D
! �1K' = CJ�2

D
! �1K

We extend the conversion function from constructors to types
accordingly.

type(�2
D
! �1)(c : TYPE) = c

The translation of run-time application follows immedi-
ately from the translation of the lambda abstraction.

EJe1@
De2K' = EJe1K'(EJe2K')

T Je1@
De2 : �K' = CJ�K

3.5 Conditionals

The conditional does not introduce new problems. We ex-
press the type of a specialization-time conditional using a
conditional in the type expression and reduce it during type
checking using the conversion rule. To this end, there is a
conditional expression if0 T M N at the type level that re-
duces to M if T is the type 0 and to N , otherwise. This is
a � rule at the type level just as for elevated addition.

� t̀t T : int � t̀t M : A � t̀t N : B

� t̀t if0 T M N : if0 T AB

Using if0 T M N it is straightforward to de�ne the trans-
lations.

EJif0S e1 e2 e3K' = if0 (T Je1K') (EJe2K') (EJe3K')

T Jif0S e1 e2 e3K' = if0 (T Je1K') (T Je2K') (T Je3K')

The translations for the run-time conditional are obvi-
ous, thanks to the well-formedness criterion (b-if) which
states that the branches of a run-time conditional must have
run-time types, too.

EJif0D e1 e2 e3K' = if0 (EJe1K') (EJe2K') (EJe3K')
T Jif0D e1 e2 e3 : �K' = CJ�K

3.6 Fixpoints

Thus far, all of our translated terms live within a strongly
normalizing type theory. If we wish to translate the �xpoint
combinator, we give up strong normalization and require a
partial type theory instead [10]. However, if we only ad-
mit �xpoint operators at run-time, all specialization-time
computations remain strongly normalizing, the extraction
function is terminating, and type checking remains decid-
able.

The translation of the run-time constructs is straightfor-
ward.

EJfixD x:e : �K' = fix �x : CJ�K:e
T JfixD x:e : �K' = CJ�K

Specialization-time �xpoints are slightly more involved.
The basic insight is that the type transformation must take
the �xpoint of a constructor function. Once that is under-
stood, the expression translation follows immediately. � :::
is the �xpoint operator that works on constructors. Figure 7
shows the de�nition.

3.6.1 Example

As an example, consider a contrived identity function at
specialization time.

fix
S
i:�

S
n:if0

S
n 0 (2+

S
i@

S
(n {

S
1))

It has type � = intS
S
! intS and its type translation yields

� i : int! int:�t : int:if0 t 0 (2+ i(t { 1))
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1. (�t : K:�x : B:M)TN !Mft; x := T;Ng
where K : kind

2. (�t : K:M)T !Mft := Tg
where K : kind

3. if0 0M N !M

4. if0 nM N ! N if n 6= 0

5. choose n e! n

6. � t : K:M !Mft := � t : K:Mg

Figure 8: Extraction

3 ; 3;'0

A; �;'

A; x :D � ; �; x : CJ�K;'[x 7! CJ�K]

A; �;'

A; x :S � ; �; t : KJ�K; x : type(�)(t);'[x 7! t]

Figure 9: Mapping between assumptions

There is nothing to do for this function at run time, hence
the expression translation yields an uninteresting term.

� i : type(�)(T JfixS x:eK'):�t : int:�n : t:if0 t>>

3.7 Extraction

The extraction function is easy enough to describe: reduce
all type-indexed constructs. The remaining expression is the
result of specialization. More formally, extraction performs
the reductions in Fig. 8 exhaustively in the translated ex-
pression.

4 Formal properties

There are two basic results. First, we have to check whether
the translation of a well-formed expression type-checks in
the type theory. Second, we have to check that the extrac-
tion function simulates static reduction in Lambdamix.

To establish the typing property, we need to map Lamb-
damix assumptions to assumptions of the type theory. This
translation requires the annotated x :b � pairs. The function
A; �;' de�ned in Fig. 9 maps a Lambdamix assumption
A to an assumption � in the type theory and to a suitable
environment ' for the translation functions. The symbol
3 stands for the empty assumption and '0 for the empty
environment.

The following lemmas are both proved by induction on
the derivation of A l̀m e : � .

Lemma 3 Suppose A l̀m e : � and A; �;'.
Then � t̀t T JeK' : KJ�K.

Lemma 4 Suppose A l̀m e : � and A; �;'.
Then � t̀t EJeK' : type(�)(T JeK').

Theorem 1 Suppose e 2 2Expr closed, � 2 2Type, and

l̀m e : � .
Then t̀t EJeK'0 : type(� )(T JeK'0).

Proof Immediate from Lemma 4. 2

Running Lambdamix on an annotated expression is equiv-
alent to type checking the translated expression and apply-
ing the extraction function.

Theorem 2 Suppose e 2 2Expr closed, � 2 2Type, and

l̀m e : � . Let e0 be the result of the extraction transformation
from Sec. 3.7 applied to EJeK'0.

Then SJeK�0 = e0 up to �-conversion.

Proof (sketch) Using the alternative formulation of Lamb-
damix in terms of reductions (see Sec. 2.2), we show that
reduction in the type theory restricted to the rules from
Sec. 3.7 simulates static reduction in Lambdamix.

More precisely, if e1 ) e2 in Lambdamix then EJe1K'0 )tt

EJe2K'0. Therefore, if e1
�

) e2 in Lambdamix then EJe1K'0

�

)tt

EJe2K'0, by induction on the length of the reduction se-
quence. It is easy to see that if e2 is a normal form then
so is EJe2K'0. Using the Lemma 1, SJe1K�0 = SJe2K�0 in
particular.

Using the correctness of the binding-time analysis [38],
since l̀m e1 : � so does l̀m e2 : � . Furthermore, if e2 is a
normal form then it consists solely of run-time constructs.

Finally, induction on e2 yields that SJe2K�0 = EJe2K'0,
as desired. 2

5 Partial evaluation and the phase distinction

There is a deep relation between specialization and the \phase
distinction" in type theory, and our work simulates one with
the other. We demonstrate that Cardelli's original intuition
of the phase distinction [4] was too restrictive, whereas later
work on module languages by Harper and others [24] pro-
vides a perfect match. This latter work provides the starting
point for extending Lambdamix to embody a module lan-
guage, too.

5.1 The phase distinction | originally

Cardelli [4] argued for structuring a type system such that
arbitrary computations might be performed at compile-time
during type-checking while retaining a strict distinction be-
tween compile-time and run-time. He proposes [4, page 5]:

Phase Distinction Requirement

If A is a compile-time term and B is a subterm of A,
then B must also be a compile-time term.

This requirement is too restrictive to model specializa-
tion. With Lambdamix, compile-time terms may have run-
time subterms and vice versa. As examples, consider the
following Lambdamix terms:

� (�Sx:x)@S(�Dy:y), a compile-time term with a run-
time subterm;

� �Dx:(�Sy:y)@Sx, a run-time term with a compile-time
subterm.

Instead of the phase distinction requirement, Lambdamix
imposes the well-formedness criterion which restricts a com-
pile-time term embedded into a run-time term to have a
run-time type, which means that every component value of
a run-time value is also a run-time value.
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5.2 The phase distinction and modules

Our translation from Lambdamix to type theory corresponds
closely to the translation of a higher-order module calculus
into a structure calculus with explicit phase separation from
earlier work by Harper, Mitchell, and Moggi [24]3 (hereafter
HMM, for short). Since their work is concerned with mak-
ing the phase separation of the module language explicit,
their translation considers all lambda abstractions (func-
tors) and applications (functor applications) as compile-time
constructs. They do not consider the run-time constructs at
all.

Looking at the translation of compile-time constructs
[24, Table 7], the cases for variables (s), lambda abstrac-
tion (�s : S:M) and application (M1M2) correspond ex-
actly to our de�nitions for specialization-time functions (see
Sec. 3.3). In these cases, the type translation T yields their
compile-time part and the expression translation E yields
their run-time part. Furthermore, our function type gives
the same result as the run-time part of their translation for
dependent products (the type of a functor:

Q
s : S1 : S2).

Our function K provides the compile-time part.
While HMM does not consider compile-time integers and

conditionals, a recent paper by Crary, Harper, and Puri
considers �xpoints in the guise of recursive modules [12].
Their work includes a phase-splitting transformation (Fig. 4
of [12]) which is identical (modulo syntax) to our treatment
of the specialization-time �xpoint (cf. Fig. 7).

The close connection leads to the question if we can spec-
ify the elaboration of the module language using Lambdamix
or a suitable extension thereof. To this end, we consider a
simple example, freely borrowing ML-style syntax.

signature M =

sig

type t

val v : t * t

end

functor IdM (structure m : M) =

struct

type t = m.t

val v = m.v

end

In HMM's module calculus (which is based on MacQueen's
ideas [31]) the signature M is modeled as a dependent sum
type

P
t : � : t � t, the elements of which are structures

like hint; h3; 4ii or hbool; htrue; falseii. The functor IdM is
expressed as a dependent function �m : M:hfst(m); snd(m)i
of type

Q
m : M : M.

There are the following correspondences:

functor specialization-time function
signature partially static dependent sum type

(a two-level type)
structure partially static pair
type declaration specialization-time value
value declaration run-time value

Consequently, the annotated versions of the terms of the
above example read:

� signature M:
PS

t : � : t�D t;

� typical structure (element): hint; hlift 3; lift 4iDiS ;

3This was suggested to the author by Moggi in September 1998.

� functor IdM: �Sm : M:hfstS(m); sndS(m)iS;

� the functor's type:
QS

m : M : M

The annotation S of the dependent sum's type means that
the specializer can access the �rst and second component of
the underlying pair. Thus, the annotated dependent sum
generalizes partially static pairs. In the same way, the spe-
cialization-time dependent product generalizes ordinary spe-
cialization-time functions.

5.3 The phase distinction | extended

Consequently, it is now easy to extend Lambdamix to em-
brace a module calculus. The intention is to regard the
types manipulated by the module calculus as specialization-
time values. Since they are actually types of pure run-time
values their embedding into 2Type must annotate all type
constructors with D.

Figure 11 shows the extended syntax. It adds the intro-
duction and elimination of pairs and also the types int and
e ! e to the previous set of expressions. The set of types
now encompasses annotated versions of dependent sums and
products, as well as the kind � (the \type" of types) and the
variable x. The function Top extracts the top-level anno-
tation, again. Its de�nition on dependent sum and prod-
uct types is obvious. A variable x is assumed to have an-
notation D. The embedding of the types at the expres-
sion level into 2Type motivates this choice. Once an ap-
plication rule substitutes an expression-level type e for x in
� 2 2Type, it will carry the annotation D everywhere. Since
Top(xfx := eg) = Top(e) = D it must be that Top(x) = D,
too. Similar reasoning leads to Top(�) = D.

Figure 12 de�nes additional well-formedness rules for Ex-
tended Lambdamix. The well-formedness judgement is now
A ` � : b for a type assumption A, a two-level type � , and a
binding time b. Obviously, A ` � : b implies Top(�) = b.

Any type variable x as well as � are well-formed 2Type
expressions of binding time D. A dependent sum is well-
formed, if either the top-level binding times work out in
the usual way or if the bound variable is a type (i.e., a
run-time value) and the binding time of the second compo-
nent is greater than or equal to the binding time of the sum
constructor. Well-formedness for dependent product types
works in the same way. Specializing the rules for the module
level constructs yields the derived rules in Fig. 10.

Afx :b �g ` �2 : b2 b � b2

A `
Pb

x : � : �2 : b

Afx :b �g ` �2 : b2 b � b2

A `
Qb

x : � : �2 : b

A wft
Afx : �g wft

Figure 10: Derived well-formedness rules

Finally, Figure 13 shows the typing rules for the new
expressions. The rules (b-int) and (b-fun) prescribe the type
� for the expressions int and e1 ! e2 (that is, they are types
at the expression level), provided that e1 and e2 also have
type �. The rules (b-pair), (b-fst), and (b-snd) are just
the usual elimination rules for weak sums, augmented with
annotations and well-formedness as appropriate. The rules
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(b-dabs) and (b-dapp) generalize rules (b-abs) and (b-app)
from Fig. 3.

The operational semantics does not change at all. In
fact, existing implementations of specializers can be used
with this extended well-formedness criterion.

5.4 Extended translation

Extending the translation is simple, now using HMM as a
guideline. We need to provide expression and type transla-
tions for each of the new expressions as well as kind trans-
lations for the new two-level types.

For the new expressions denoting types, this is particu-
larly easy, since these types denote run-time values.

EJintK' = int
EJe1 ! e2K' = EJe1K'! EJe2K'

T JintK' = TYPE
T Je1 ! e2K' = TYPE

KJ�K = kind

Function types are now generalized to dependent prod-
uct types. However, the expression and type translation of
abstraction and application does not change with respect to
Sec. 3.3 and Sec. 3.4. The only changes occur in the K, C,
and type functions (see Fig. 14).

KJ
QD

x : �2 : �1K = TYPE

KJ
QS

x : �2 : �1K =
Q

x : KJ�2K :KJ�1K

CJ
QD

x : �1 : �2K =
Q

x : CJ�1K : CJ�2K

Since pairs were not part of the language before, we in-
troduce all the translations directly for the more general de-
pendent sum types. The run-time case is entirely trivial and
the translation to constructors can fall back to the C func-
tion de�ned earlier, again by exploiting the well-formedness
criterion.

EJhe1; e2i
DK' = hEJe1K'; EJe2K'i

EJfstD(e)K' = fst(EJeK')
EJsndD(e)K' = snd(EJeK')

T Jhe1; e2i
D :
PD

x : �1 : �2K' = CJ
PD

x : �1 : �2K
T JfstD(e) : �K' = CJ�K
T JsndD(e) : �K' = CJ�K

CJ
PD

x : �1 : �2K =
P

x : CJ�1K : CJ�2K

KJ
PD

x : �1 : �2K = TYPE

The case for specialization-time pairs is not much more in-
volved. In fact, most of the translation is identical, since
even if the information is provided in the type level, there
must still be expressions of these types present.

EJhe1; e2i
SK' = hEJe1K'; EJe2K'i

EJfstS(e)K' = fst(EJeK')
EJsndS(e)K' = snd(EJeK')

T Jhe1; e2i
SK' = hT Je1K'; T Je2K'i

T JfstS(e)K' = fst(T JeK')
T JsndS(e)K' = snd(T JeK')

KJ
PS

x : �1 : �2K =
P

x : KJ�1K :KJ�2K

This translation di�ers from HMM. In HMM, every struc-
ture is a compile-time object with the �rst component a type

(a compile-time object) and the second component a run-
time value. Their translation takes advantage of this fact
and maps pairs as follows:

EJhe1; e2i
HMMK' = EJe2K'

T Jhe1; e2i
HMMK' = T Je1K'

EJsndHMM(e)K' = EJeK'
T JfstHMM(e)K' = T JeK'

with the remaining cases unde�ned.
Figure 14 shows the de�nition of the type function, ex-

tended to the new constructs.
The extended typing rules of the target language are

well-known and therefore omitted.

5.5 Discussion

We claim that this kind of calculus may give rise to more
powerful module languages. In addition to being able to per-
form type substitution (which is really the heart of HMM's
module language), such a module calculus can perform ar-
bitrary computations at compile/specialization time. The
two-level annotations could be chosen in such a way that the
specialization-time computation is sure to terminate, for ex-
ample, by ruling out the specialization-time �xpoint opera-
tor or by replacing it with a terminating iteration construct,
e.g., primitive recursion.

Another degree of 
exibility comes with the ability to
also express run-time modules and functors. This facility is
interesting in concert with a model that distinguishes be-
tween compile-time, link-time, and run-time computation.
Here, we might want to leave some module elaborations to
link-time or even to run-time. Extending our calculus to a
multi-level calculus [19] might yield a more accurate picture
in this case.

5.6 Further work

An alternative idea that might be worth pursuing is to have
a primitive type type of representations of types like int,
int -> int, etc, as specialization-time data. In this sce-
nario, the pair hint; 5i would have type

P
t : type : Set(t)

where \Set" maps the representation t of a type to the type
itself. Similar constructs are well-known in type theories
with universes [37].

A more general approach might allow for annotated types
in the module language instead of restricting the types that
are manipulated at specialization-time to types of run-time
values. Furthermore, the extended well-formedness judge-
ment of Fig. 13 suggests that b plays the role of a kind and
that the judgement should be revised to A ` � : �b. Alas,
we leave that for further work.

6 Related work

Type theory �nds many of its uses as a basis for formal
reasoning about mathematics but also to analyze and ver-
ify programs. It is the basis of a number of automatic and
semi-automatic systems for automated deduction and proof
construction [17, 8, 9, 37]. Some systems support sophis-
ticated program-extraction techniques that apply to com-
pleted proofs. These extraction mechanisms are geared to
remove the \logical" parts from the proofs while leaving the
algorithmic parts intact. For example, Paulin-Mohring's ex-
traction framework for the Calculus of Constructions [39]
removes all applications to and abstractions over objects of

38



expressions e ::= : : : j he; eib j fstb(e) j sndb(e) j int j e! e

types � ::= : : : j
Pb

x : � : � j
Qb

x : � : � j x j �

top function Top(
Pb

x : �1 : �2) = b

Top(
Qb

x : �1 : �2) = b
Top(x) = D
Top(�) = D

Figure 11: Syntax of Extended Lambdamix

A wft

A ` intb : b
A wft x :b � in A

A ` x : D

A wft
A ` � : D

A ` �1 : b1 Afx :b �1g ` �2 : b2 b � b1 b � b2

A `
Pb

x : �1 : �2 : b

A ` �1 : b1 Afx :b �1g ` �2 : b2 b � b1 b � b2

A `
Qb

x : �1 : �2 : b

3 wft
A wft A ` � : b1 b � b1

Afx :b �g wft

Figure 12: Well-formedness rules for types and type assumptions of Extended Lambdamix

(b-int)
A wft

A l̀m int : �

(b-fun)
A l̀m e1 : � A l̀m e2 : �

A l̀m e1 ! e2 : �

(b-pair)
A l̀m e1 : �1 Afx :b �1g l̀m e2 : �2 A `

Pb
x : �1 : �2 : b

A l̀m he1; e2i
b :
Pb

x : �1 : �2

(b-fst)
A l̀m e :

Pb
x : �1 : �2

A l̀m fstb(e) : �1

(b-snd)
A l̀m e :

Pb
x : �1 : �2

A l̀m sndb(e) : �2fx := fstb(e)g

(b-dabs)
Afx :b �2g l̀m e : �1 A `

Qb
x : �2 : �1 : b

A l̀m �bx:e :
Qb

x : �2 : �1

(b-dapp)
A l̀m e1 :

Qb
x : �2 : �1 A l̀m e2 : �2

A l̀m e1@
be2 : �1fx := e2g

Figure 13: Typing rules of Extended Lambdamix

type(
QD

x : �2 : �1)(c : TYPE) = c

type(
QS

x : �2 : �1)(c :
Q

x : KJ�2K :KJ�1K) =
Q

t : KJ�2K :
Q

x : type(�2)(t) : type(�1)(ct)

type(
PD

x : �2 : �1)(c : TYPE) = c

type(
PS

x : �2 : �1)(c :
P

x : KJ�2K :KJ�1K) =
P

x : KJ�2K : type(�1)(snd(c))
type(�)(c : kind) = c
type(x)(c : TYPE) = c

Figure 14: Extended type function
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type Prop. This is di�erent from our Lambdamix extraction
function which removes the specialization-time information
by reducing away all type manipulation.

Type theory has attracted some attention as a seman-
tic metalanguage for de�ning the semantics of programming
languages. Reynolds [41] gives a type-theoretic interpreta-
tion of Idealized Algol. Harper and Mitchell [23] do the
same for a fragment of Standard ML. Harper and Stone [25]
de�ne a type theoretic semantics for Standard ML. Crary
[11] de�nes the semantics of a higher-order kernel program-
ming language with recursion, records, and modules using
Nuprl [8]. There is no other work that de�nes the semantics
of specialization using type theory. The closest is probably
Davies's and Pfenning's work [16, 15] that connects modal
and temporal logics with specialization.

There are also a number of investigations of the phase
distinction in type theory [4, 5]. The idea of duplicating
certain values at the type level (and their types at the kind
level) is inspired from this work. Cardelli [5] calls these types
and kinds lifted versions of the original values and types.

Harper, Mitchell, and Moggi [24] have speci�ed the phase
distinction in the MLmodule language extended with higher-
order modules. They de�ne and prove correct a staging
transformation that separates the compile-time parts of a
module from the run-time parts. Although this transforma-
tion is motivated from category theory, similar transforma-
tions are well-known in the partial evaluation community
[33]. Moggi [34] has strengthened the connection between
module languages and the two-level languages of the Niel-
sons [36] and Lambdamix [22] by showing that both have
similar semantic models in terms of indexed categories. Our
work may be seen as a further clue to the close connec-
tions between these two areas. Speci�cally our E and T are
closely connected to the compile-time and run-time compo-
nents de�ned in Harper, Mitchell, and Moggi's work [24].
Hence, the latter work is also an important contribution to
partial evaluation.

In his thesis, Launchbury [30] explains a connection be-
tween partial evaluation and dependent types in his descrip-
tion of the type of a specializer. In his framework, the
source program has type

P
s2S

D(s) ! R, where S is the

type of specialization-time values, D(s) is the type of run-
time values which depends on the particular value of s 2 S,
and R is the type of the result. Then the partial evalua-
tor applied to the source program has a dependent product
type:

Q
s2S

D(s)! R. This typing seems to correspond to

our translation of unfoldable (specialization-time) functions,
where the additional type argument signi�es the static part
s and the value argument of type s only carries the dynamic
part of the value.

Nielson and Nielson [36] investigate a two-level lambda
calculus with slightly di�erent properties, in particular the
well-formedness criterion di�ers from the one considered here.
It should in principle be possible to construct a type-theoretic
semantics for their calculus along the same lines as done
here, but we leave that for further investigation.

The whole approach is inspired by Hughes's work on type
specialization [28]. Indeed, the translation to type theory
presented in this paper is applicable to type specialization
in a large degree. Unfortunately, the translation of run-time
functions does not quite work out because of the function
CJ:K. This function is not well-de�ned for type specialization
because type specialization does not require two-level types
to be well-formed.

7 Conclusion

We have shown a type-theoretical semantics of Lambdamix
specialization. The target language is a fairly powerful type
theory with subkinding and some special operators. Exploit-
ing the phase distinction in type theory, all specialization-
time computation is done during type checking.

Our translation also extends to a dependently typed source
language. Thus, it provides a foundation for specialization
for dependently typed programming languages [1] and for
module languages. Even the existing specializers should re-
main usable; it is only a question of supplying an appropriate
binding-time analysis.
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T Je1+
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T Je1+
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! �1K' = �t : KJ�2K:T JeK'[x 7! t]

T Je1@
Se2K' = T Je1K'(T Je2K')
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! �1K
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T Jif0D e1 e2 e3 : �K' = CJ�K
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Figure 16: Translation to constructors
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Figure 17: Translation to kinds
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A Notation

FV(M) denotes the set of free variables of expression M .
Mfx := Ng denotes the result of the capture-avoiding sub-
stitution of N for x in M . �[x 7! t] denotes the updating of
a �nite map (an environment).

B Summary of the translations

This section contains an overview of the translations de-
�ned in Sec. 3 of this work. Figure 15 contains the expres-
sion translation, Figure 16 contains the type translation, and
Figure 17 contains the kind translation.

C Typing rules of the target language

The typing rules prove judgements of the following forms:

1. Assumption � is well-formed t̀t � env (see Fig. 19)
with the empty assumption 3.

t̀t 3 env

t̀t � env � t̀t M : N x 62 �

t̀t �; x : M env

Figure 19: Environment construction

kinds int : kind
INT : kind
TYPE : kind

subkinding int <: TYPE
INT <: TYPE

constructors i : int (for all integers i)
int : INT
!: TYPE! TYPE! TYPE

+ : int! int! int

values i : int (for all integers i)

> : i (for all integers i)

rule set (TYPE;TYPE;TYPE)
(kind;TYPE;TYPE)
(kind; kind; kind)

Figure 20: Typing axioms

2. In assumption � expression M is an N : � t̀t M : N
(see Fig. 21). The formation rules are parameterized
over a set of rules (Fig. 20) in the style of pure type
systems [2, 3].

As customary, we write D ! E instead of
Q

x : D :E if
x 62 FV(E).

The use of subkinding (see Fig. 20) merely avoids an
explosion of the rule set. Without subkinding, we would
have to replace (TYPE;TYPE;TYPE) by (s1; s2;TYPE)

where s1; s2 2 fint; INT;TYPEg.
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EJkK' = >

EJe1+
S e2K' = >

EJe1+
D e2K' = EJe1K'+ EJe2K'

EJlift eK' = choose (T JeK') (EJeK')
EJxK' = x

EJ�Sx:e : �2
S
! �1K' = �t : KJ�2K:�x : type(�2)(t):EJeK'[x 7! t]

EJe1@
Se2K' = EJe1K'(T Je2K')(EJe2K')

EJ�Dx:e : �2
D
! �1K' = �x : CJ�2K:EJeK'[x 7! CJ�2K]

EJe1@
De2K' = EJe1K'(EJe2K')

EJif0D e1 e2 e3K' = if0 (EJe1K') (EJe2K') (EJe3K')
EJif0S e1 e2 e3K' = if0 (T Je1K') (EJe2K') (EJe3K')
EJfixD x:e : �K' = fix �x : CJ�K:e
EJfixS x:e : �K' = ��x : type(�)(T JfixS x:eK'):EJeK'[x 7! T JfixS x:eK']:

Figure 15: Translation to expressions

type :
Q

� : 2Type :KJ�K ! TYPE

type(intS)(c : int) = c

type(intD)(c : INT) = int

type(�2
S
! �1)(c : KJ�2K ! KJ�1K) =

Q
t : KJ�2K : type(�2)(t)! type(�1)(ct)

type(�2
D
! �1)(c : TYPE) = c

Figure 18: Mapping constructors to types

t̀t � env
� t̀t x : A

x : A in �

t̀t � env
� t̀t A : B

A : B is an axiom

� t̀t A : B B <: C
� t̀t A : C

� t̀t A : s1 �; x : A t̀t B : s2
� t̀t

Q
x : A :B : s3

(s1; s2; s3) is a rule

�; x : A t̀t M : B � t̀t

Q
x : A :B : s

� t̀t �x : A:M :
Q

x : A :B

� t̀t M :
Q

x : A :B � t̀t N : A
� t̀t MN : Bfx := Ng

� t̀t M : A � t̀t A
0 : s A =�� A

0

� t̀t M : A0

� t̀t A : int � t̀t M : B � t̀t N : B
� t̀t if0 AM N : B

� t̀t T : int � t̀t M : A � t̀t N : B

� t̀t if0 T M N : if0 T AB

Figure 21: Typing rules
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Program development often has to address two con
icting goals:

on the one hand, a program must adapt to a wide range of sit-

uations (e.g., large set of problems, varying usage patterns, and

evolving hardware features); and, on the other hand, the same

program must be as small and fast to execute as one dedicated

to a speci�c situation.

In this talk, we show how program specialization can reconcile

these con
icting goals by enabling programs to be highly adapt-

able without loss of eÆciency.

We present various strategies of adaptation ranging from param-

eterized programs to interpreters, and show how program spe-

cialization can uniformly be used to map an adaptable program

into an eÆcient one.
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Abstract

Program and data specialization have always been studied separately, although they are

both aimed at processing early computations. On the one hand, program specialization

encodes the result of early computations into a new program and, on the other hand, data

specialization encodes the result of early computations in data structures.

In this paper, we present an extension of the Tempo specializer, which performs both

program and data specialization. We show how these two strategies can be integrated in a

unique specializer. This new kind of specializer provides the programmer with complementary

strategies which widen the scope of specialization. We illustrate the bene�ts and limitations

of these strategies and their combination on a variety of programs.

1 Introduction

Program and data specialization are both aimed at performing computations which depend on
early values. However, they di�er in the way the result of early computations are encoded: on the
one hand, program specialization encodes these results in a residual program, and on the other
hand, data specialization encodes these results in data structures.

More precisely, program specialization performs a computation when it only relies on early data,
and inserts the textual representation of its result in the residual program when it is surrounded
by computations depending on late values. In essence, it is because a new program is being
constructed that early computations can be encoded in it. Furthermore, because a new program
is being constructed it can be pruned, that is, the residual program only corresponds to the
control �ow which could not be resolved given the available data. As a consequence, program
specialization optimizes the control �ow since fewer control decisions need to be taken. However,
because it requires a new program to be constructed, program specialization can lead to code
explosion if the size of the specialization values is large. For example, this situation can occur
when a loop needs to be unrolled and the number of iterations is high. Not only does code
explosion cause code size problems, but it also degrades the execution time of the specialized
program dramatically because of instruction cache misses.

The dual notion to specializing programs is specializing data. This strategy consists of splitting
the execution of program into two phases. The �rst phase, called the loader, performs the early
computations and stores their results in a data structure called a cache. Instead of generating
a program which contains the textual representation of values, data specialization generates a
program to perform the second phase: it only consists of the late computations and is parameterized

with respect to the result of early computations, that is, the cache. The corresponding program is
named the reader. Because the reader is parameterized with respect to the cache, it is shared by
all specializations. This strategy fundamentally contrasts with program specialization because it
decouples the result of early computations and the program which exploits it. As a consequence,

1
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as the size of the specialization problem increases, only the cache parameter increases, not the
program. In practice, data specialization can handle problem sizes which are far beyond the reach
of program specialization, and thus opens up new opportunities as demonstrated by Knoblock and
Ruf for graphics applications [7, 4]. However, data specialization, by de�nition, does not optimize
the control �ow: it is limited to performing the early computations which are expensive enough to
be worth caching. Because the reader is valid for any cache it is passed, an early control decision
leading to a costly early computation needs to be part of the loader as well as the reader: in
the loader, it decides whether the costly computation much be cached; in the reader, the control
decision determines whether the cache needs to be looked up. In fact, data specialization does
not apply to programs whose bottlenecks are limited to control decisions. A typical example of
this situation is interpreters for low-level languages: the instruction dispatch is the main target of
specialization. For such programs, data specialization can be completely ine�ective.

Perhaps the apparent di�erence in the nature of the opportunities addressed by program and
data specialization has led researchers to study these strategies in isolation. As a consequence, no
attempt has ever been made to integrate both strategies in a specializer; further, there exist no
experimental data to assess the bene�ts and limitations of these specialization strategies.

In this paper, we study the relationship between program and data specialization with re-
spect to their underlying concepts, their implementation techniques and their applicability. More
precisely, we study program and data specialization when they are applied separately, as well as
when they are combined (Section 2). Furthermore, we describe how a specializer can integrate
both program and data specialization: what components are common to both strategies and what
components di�er. In practice, we have achieved this integration by extending a program special-
izer, named Tempo, with the phases needed to perform data specialization (Section 3). Finally,
we assess the bene�ts and limitations of program and data specialization based on experimental
data collected by specializing a variety of programs exposing various features (Section 4).

2 Concepts of Program and Data Specialization

In this section, the basic concepts of both program and data specialization are presented. The
limitations of each strategy are identi�ed and illustrated by an example. Finally, the combination
of program and data specialization is introduced.

2.1 Program Specialization

The partial evaluation community has mainly been focusing on specialization of programs. That
is, given some inputs of a program, partial evaluation generates a residual program which encodes
the result of the early computations which depend on the known inputs. Although program
specialization has successfully been used for a variety of applications (e.g., operating systems
[10, 11], scienti�c programs [8, 12], and compiler generation [2, 6]), it has shown some limitations.
One of the most fundamental limitations is code explosion which occurs when the size of the
specialization problem is large. Let us illustrate this limitation using the procedure displayed
on the left-hand side of Figure 1. In this example, stat is considered static, whereas dyn and
d are dynamic. Static constructs are printed in boldface. Assuming the specialization process
unrolls the loop, variable i becomes static and thus the gi procedures (i.e., g1, g2 and g3) can
be fully evaluated. Even if the gi procedures correspond to non-expensive computations, program
specialization still optimizes procedure f in that it simpli�es its control �ow: the loop and one
of the conditionals are eliminated. A possible specialization of procedure f is presented on the
right-hand side of Figure 1.

However, beyond some number of iterations, the unrolling of a loop, and the computations it
enables, do not pay for the size of the resulting specialized program; this number depends on the
processor features. In fact, as will be shown later, the specialized program can even get slower
than the unspecialized program. The larger the size of the residual loop body, the earlier this
phenomenon happens.
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void f (int stat, int dyn, int d[ ]) void f_1(int dyn, int d[ ])

{ {

int j;
if(E_dyn) d[0] += 1 + dyn;

for ( j = 0; j < stat; j++) d[0] += 0 * dyn;

{ f(E_dyn) d[1] += 1 + dyn;

if (E_stat) d[j] = g1(j) - dyn; d[1] += 10 * dyn;

if (E_dyn) d[j] += g2(j) + dyn; if(E_dyn) d[2] += 2 + dyn;

d[j] += g3(j) * dyn; d[2] += 20 * dyn;

} if(E_dyn) d[3] += 6 + dyn;

} d[3] += 30 * dyn;

...

}

(a) Source program (b) Specialized program

Figure 1: Program specialization

For domains like graphics and scienti�c computing, some applications are beyond the reach of
program specialization because the specialization opportunities rely on very large data or iteration
bounds which would cause code explosion if loops traversing these data were unrolled. In this
situation, data specialization may apply.

2.2 Data Specialization

In late eighties, an alternative to program specialization, called data specialization, was introduced
by Barzdins and Bulyonkov [1] and further explored by Malmkjær [9]. Later, Knoblock and Ruf
studied data specialization for a subset of C and applied it to a graphics application [7].

Data specialization is aimed at encoding the results of early computations in data structures,
not in the residual program. The execution of a program is divided into two stages: a loader �rst
executes the early computations and saves their result in a cache. Then, a reader performs the
remaining computations using the result of the early computations contained in the cache. Let us
illustrate this process by an example displayed in Figure 2. On the left-hand side of this �gure, a
procedure f is repeatedly invoked in a loop with a �rst argument (c) which does not vary (and is thus
considered early); its second argument, the loop index (k) varies at each iteration. Procedure f is
also passed a di�erent vector at each iteration, which is assumed to be late. Because this procedure
is called repeatedly with the same �rst argument, data specialization can be used to perform the
computations which depend on it. In this context, many computations can be performed, namely
the loop test, E_stat and the invocation of the gi procedures. Of course, caching an expression
assumes that its execution cost exceeds the cost of a cache reference. Measurements have shown
that caching expressions which are too simple (e.g. a variable occurrence or simple comparisons)
actually cause the resulting program to slow down.

In our example, let us assume that, like the loop test, the cost of expression E_stat is not
expensive enough to be cached. If, however, the gi procedures are assumed to consist of expensive
computations their invocations need to be examined as potential candidate for caching. Since the
�rst conditional test E_stat is early, it can be put in the loader so that whenever it evaluates to
true the invocation of procedure g1 can be cached; similarly, in the reader, the cache is looked
up only if the conditional test evaluates to true. However, the invocation of procedure g2 cannot
be cached according to Knoblock and Ruf's strategy, since it is under dynamic control and thus
caching its result would amount to performing speculative evaluation [7]. Finally, the invocation
of procedure g3 needs to be cached since it is unconditionally executed and its argument is early.
The resulting loader and reader for procedure f are presented on the right-hand side of Figure 2,
as well as their invocations.
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extern int w[N][M]; extern int w[N][M];

struct data_cache { int val1;

... int val3;} cache[MAX];

f_load (c, cache);

for (k = 0; k < MAX; k++) for (k = 0; k < MAX; k++)

f (c, k, w[k]); f_read (c, k, w[k], cache);

...

... void f_load (stat,cache[ ])

int stat;

void f (int stat, int dyn, int d[ ]) struct data_cache cache[ ];

{ {

int j; int j;

for (j = 0; j < stat; j++) {

for (j = 0; j < stat; j++) if (E_stat) cache[j].val1 = g1(j);

{ cache[j].val3 = g3(j);

if (E_stat) d[j] = g1(j) - dyn; }

if (E_dyn) d[j] += g2(j) + dyn; }

d[j] += g3(j) * dyn; void f_read (stat, dyn, d[ ], cache[ ])

} int stat, dyn, d[ ];

} struct data_cache cache[ ];

{

int j;

for (j = 0; j < stat; j++) {

if (E_stat) d[j] = cache[j].val1 - dyn;

if (E_dyn) d[j] += s2(j) + dyn;

d[j] += cache[j].val3 * dyn;

}

}

(a) Source program (b) Specialized program

Figure 2: Data specialization

To study the limitations of data specialization consider a program where computations to be
cached are not expensive enough to amortize the cost of memory reference. In our example, assume
the gi procedures correspond to such computations. Then, only the control �ow of procedure f

remains a target for specialization.

2.3 Combining Program and Data Specialization

We have shown the bene�ts and limitations of both program and data specialization. The main
parameters to determine which strategy �ts the specialization opportunities are the cost of the
early computations and the size of the specialization problem. Obviously, within the same pro-
gram (or even a procedure), some fragments may require program specialization and others data
specialization. As a simple example consider a procedure which consists of two nested loops. The
innermost loop may require few iterations and thus allow program specialization to be applied.
Whereas, the outermost loop may iterate over a vector whose size is very large; this may pre-
vent program specialization from being applied, but not data specialization from exploiting some
opportunities.

Concretely performing both program and data specialization can be done in a simple way. One
approach consists of doing data specialization �rst, and then applying the program specializer on
either the loader or the reader, or both. The idea is that code explosion may not be an issue in
one of these components; as a result, program specialization can further optimize the loader or
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the reader by simplifying its control �ow or performing speculative specialization. For example,
a reader may consist of a loop whose body is small; this situation may thus allow the loop to be
unrolled without causing the residual program to be too large. Applying a program specializer to
both the reader and the loader may be possible if the fragments of the program, which may cause
code explosion, are made dynamic.

Alternatively, program specialization can be performed prior to data specialization. This
combination requires program specialization to be applied selectively so that only fragments which
do not cause code explosion are specialized. Then, the other fragments o�ering specialization
opportunities can be processed by data specialization.

As is shown in Section 4, in practice combining both program and data specialization allows
better performance than pure data specialization and prevents the performance gain from dropping
as quickly as in the case of program specialization as the problem size increases.

3 Integrating Program and Data Specialization

We now present how Tempo is extended to perform data specialization. To do so let us brie�y
describe its features which are relevant to both data specialization and the experiments presented
in the next section.

3.1 Tempo

Tempo is an o�-line program specializer for C programs. As such, specialization is preceded by
a preprocessing phase. This phase is aimed at computing information to guide the specialization
process. The main analyses of Tempo's preprocessing phase are an alias analysis, a side-e�ect
analyses, a binding-time analysis and an action analysis. The �rst two analyses are needed because
of the imperative nature of the C language, whereas the binding-time analysis is typical of any
o�-line specializer. The action analysis is more unusual: it computes the specialization actions
(i.e., the program transformations) to be performed by the specialization phase.

The output of the preprocessing phase is a program annotated with specialization actions.
Given some specialization values, this annotated program can be used by the specialization phase
to produce a residual program at compile time, as is traditionally done by partial evaluators. In
addition, Tempo can specialize a program at run time. Tempo's run-time specializer is based on
templates which are e�ciently compiled by standard C compilers [3, 12].

Tempo has been successfully used for a variety of applications ranging from operating systems
[10, 11] to scienti�c programs [8, 12].

3.2 Extending Tempo with Data Specialization

Tempo includes a binding-time analysis which propagates binding times forward and backward.
The forward analysis aims at determining the static computations; it propagates binding times
from the de�nitions to the uses of variables. The backward analysis performs the same propagation
in the opposite direction; when uses of a variable are both static and dynamic, its de�nition is
annotated static&dynamic. This annotation indicates that the de�nition should be evaluated both
at specialization time and run time. This process, introduced by Hornof et al., allows a binding-
time analysis to be more accurate; such an analysis is said to be use sensitive [5]. When a de�nition
is static&dynamic and occurs in a control construct (e.g., while), this control construct becomes
static&dynamic as well. The specialized program is the code where constructs and expressions
annoted static are evaluated at specialization time and its result are introduced in the residual
code and where constructs and expressions annoted dynamic or static&dynamic are rebuilt in the
residual code.

To perform data specialization an analysis is inserted between the forward analysis and back-
ward analysis. In essence, this new phase identi�es the frontier terms, that is, static terms oc-
curring in a dynamic (or static&dynamic) context. If the cost of the frontier term is below

49



a given threshold (de�ned as a parameter of the data specializer), it is forced to dynamic (or
static&dynamic).

Furthermore, because data specialization does not perform speculative evaluation, static com-
putations which are under dynamic control are made dynamic.

Once these adjustments are done, the backward phase of the binding-time analysis then deter-
mines the �nal binding times of the program. Later in the process, the static computations are
included in the loader and the dynamic computations in the reader; the frontier terms are cached.

The rest of our data specializer is the same as Knoblock and Ruf's.

4 Performance Evaluation

In this section, we compare the performance obtained by applying di�erent specialization strategies
on a set of programs. This set includes several scienti�c programs and a system program.

4.1 Overview

Machine and Compiler. The measurements presented in this paper were obtained using a Sun
UltraSPARC 1 Model 170 with 448 mega bytes of main memory, running Sun-OS version 5.5.1.
Times were measured using the Unix system call getrusage and include both �user� and �system�
times.

Figure 3 displays the speedups and the size increases of compiled code obtained for di�erent
specialization strategies. For each benchmark, we give the program invariant used for specialization
and an approximation of its time complexity. The code sources are included in the appendices.
All the programs were compiled with gcc -O2. Higher degrees of optimization did not make a
di�erence for the programs used in this experiment.

Specialization strategies. We evaluate the performance of �ve di�erent specialization meth-
ods. The speedup is the ratio between the execution times of the specialized program and the
original one. The size increases is the ratio between the size of the specialized program and the
original one. The data displayed in Figure 3 correspond to the behavior of the following special-
ization strategies:

� PS-CT: the program is program specialized at compile time.

� PS-RT: the program is program specialized at run time.

� DS: the program is data specialized.

� DS + PS-CT: the program is data specialized and program specialized at compile time. The
loops which manipulate the cache (for data specialization) are kept dynamic to avoid code
explosion.

� DS + PS-RT: the program is data specialized and program specialized at run time. As in
the previous strategy, the loops which manipulate the cache are kept dynamic to avoid code
explosion.

Source programs. We consider a variety of source programs: a one-dimensional fast Fourier
transformation (FFT), a Chebyshev approximation, a Romberg integration, a Smirnov integration,
a cubic spline interpolation and a Berkeley packet �lter (BPF). Given the specialization strategies
available, these programs can be classi�ed as follows.

Control �ow intensive. A program which mainly exposes control �ow computations; data �ow
computations are inexpensive. In this case, program specialization can improve performance
whereas data specialization does not because there is no expensive calculations to cache.
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Data �ow intensive. A program which is only based on expensive data �ow computations. As
a result, program specialization at compile time as well as data specialization can improve
the performance of such program.

Control and data �ow intensive. A program which contains both control �ow computations
and expensive data �ow computations. Such program is a good candidate for program
specialization at compile time when applied to small values, and well-suited for data special-
ization when applied to large values.

We now analyze the performance of �ve specialization methods in turn on the benchmark
programs.

4.2 Results

Data specialization can be executed at compile time or at run time. At run time, the loader of
the cache is executed before the execution of the specialized program, while at compile time, the
cache is constructed before the compilation. The cache is then used by the specialized program
during the execution. For all programs, data specialization yields a greater speedup than program
specialization at run time. The combination of these two specialization strategies does not make
a better result.

In this section, we characterize di�erent opportunities of specialization to illustrate our method
in the three categories of program.

4.2.1 Program Specialization

We analyze two programs where performance is better with program specialization: the Berkeley
packet �lter (BPF), which interprets a packet with respect to an interpreter program, and the cubic
spline interpolation, which approximates a function using a third degree polynomial equation.

Characteristics: For the BPF, the program consists exclusively of conditionals whose tests and
branches contain inexpensive expressions. For the cubic spline interpolation, the program consists
of small loops whose small body can be evaluated in part. Concretely, a program which mainly
depends on the control �ow graph and whose leaves contain few calculations but partially reducible,
is a good candidate for program specialization. By program specialization, the control �ow graph
is reduced and some calculations are eliminated. Since there is no static calculation expensive
enough to be e�ciently cached by data specialization, the specialized program is mostly the
same as the original one. For this kind of programs, only program specialization gives signi�cant
improvements: it reduces the control �ow graph and it produces a small specialized program.

Applications: The BPF (Appendix F) is specialized with respect to a program (of size n). It
mainly consists of the conditionals; its time complexity is linear in the size of the program and
it does not contain expensive data computations. As the program does not contain any loop, the
size of the specialized program is mostly the same as the original one. In Figure 3-F, program
specialization at compile time and at run time yields a good speedup, whereas data specialization
only improves performance marginally. The combination of program and data specialization does
not improve the performance further.

The cubic spline interpolation (Appendix E) is specialized with respect to the number of points
(n) and their x-coordinates. It contains three singly nested loops; its time complexity is O(n). In
the �rst two loops, more than half of the computations of each body can be completely evaluated
or cached by specialization, including real multiplications and divisions. Nevertheless, there is no
expensive calculation to cache, and data specialization does not improve performance signi�cantly.
The unrolled loop does not really increase the code size because of the small complexity of the
program and the small body of the loop. As a consequence, for each number of points n, the
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Figure 3: Program, data and combined specializations
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speedup of each specialization barely changes. In Figure 3-E, program specialization at compile
time produces a good speedup, whereas program specialization at run time does not improve
performance. Data specialization obtains a minor speedup because the cached calculations are
not expensive.

4.2.2 Program Specialization or Data Specialization

We now analyze two programs where performance is identical to program specialization or data
specialization: the polynomial Chebyshev, which approximates a continuous function in a known
interval, and the Smirnov integration, which approximates the integral of a function on an interval
using estimations.

Characteristics: These two programs only contain loops and expensive calculations in doubly
nested loops. As for the cubic spline interpolation (Section 4.2.1), more than half of the computa-
tions of each body loop can be completely evaluated or cached by specialization. In contrast with
cubic spline interpolation, the static calculations in Chebyshev and Smirnov are very expensive
and allow data specialization to yield major improvements. For the combined specialization, data
specialization is applied to the innermost loop and program specialization is applied to the rest
of the program. For this kind of programs, program and data specialization both give signi�cant
improvements. However, for the same speedup, the code size of the program produced by program
specialization is a hundred times larger than the specialized program using data specialization.

Applications: The Chebyshev approximation (Appendix C) is specialized with respect to the
degree (n) of the generated polynomial. This program contains two calls to the trigonometric
function cos: one of them in a singly nested loop and the other call in a doubly nested loop.
Since this program mainly consists of data �ow computations, program specialization and data
specialization obtain similar speedups (see Figure 3-C).

The Smirnov integration (Appendix D) is specialized with respect to the number of iterations
(n, m). The program contains a call to the function fabs which returns the absolute value of its
parameter. This function is contained in a doubly nested loop and the time complexity of this
program is O(mn). As in the case of Chebyshev, program and data specialization produce similar
speedups (see Figure 3-D).

4.2.3 Combining Program Specialization and Data Specialization

Finally, we analyze two programs where performance improves using program specialization when
values are small, and data specialization when values are large: the FFT and the Romberg in-
tegration. The FFT converts data from the time domain to a frequency domain. The Romberg
integration approximates the integral of a function on an interval using estimations.

Characteristics: These two programs contain several loops and expensive data �ow computa-
tions in doubly nested loops; however more than half of the computations of each loop body cannot
be evaluated. Beyond some number of iterations, when the program specialization unrolls these
loops, it increases the code size of the specialized program and then degrades performance. The
specialized program becomes slower because of its code size. Furthermore, beyond some problem
size, the specialization process cannot produce the program because of its size. In contrast, data
specialization only caches the expensive calculations, does not unroll loops, and improves perfor-
mance. The result is that the code size of the program produced by program specialization is a
hundred times larger than the specialized program using data specialization, for a speedup gain of
20%. The combined specialization delays the occurrence of code explosion. Data specialization is
applied to the innermost loop, which contains the cache computations, and program specialization
is applied to the rest of the program.
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Applications: The FFT (Appendix A) is specialized with respect to the number of data points
(N). It contains ten loops with several degrees of nesting. One of these loops, with complex-
ity O(N2), contains four calls to trigonometric functions, which can be evaluated by program
specialization or cached by data specialization. Due to the elimination of these expensive library
calls, program specialization and data specialization produce signi�cant speedups (see Figure 3-A).
However, in the case of program specialization, code unrolling degrade performance. In contrast,
data specialization produces a stable speedup regardless of the number of data points. When N
is smaller than 512, data specialization does not obtain a better result in comparison to program
specialization. However, when N is greater than 512, program specialization becomes impossible
to apply because of the specialization time and the size of the residual code. In this situation,
data specialization still gives better performance than the unspecialized program. Because this
program also contains some conditionals, combined specialization, where the innermost loop is not
unrolled, improves performance better than data specialization alone.

The Romberg integration (Appendix B) is specialized with respect to the number of iterations
(M) used in the approximation. The Romberg integration contains two calls to the costly function
intpow. It is called twice: once in a singly nested loop and another time in a doubly nested
loop. Because both specialization strategies eliminate these expensive library calls, the speedup
is consequently good. As for FFT, loop unrolling causes the program specialization speedup to
decrease, whereas the data specialization speedup still remains the same, even when M increases
(Figure 3-B).

5 Conclusion

We have integrated program and data specialization in a specializer named Tempo. Importantly,
data specialization can re-use most of the phases of an o�-line program specializer.

Because Tempo now o�ers both program and data specialization, we have experimentally
compared both strategies and their combination. This evaluation shows that, on the one hand
program specialization typically gives better speed-up than data specialization for small problem
size. However, as the problem size increases, the residual programmay become very large and often
slower than the unspecialized program. On the other hand, data specialization can handle large
problem size without much performance degradation. This strategy can, however, be ine�ective
if the program to be specialized mainly consists of control �ow computations. The combination
of both program and data specialization is promising: it can produce a residual program more
e�cient than with data specialization alone, without dropping in performance as dramatically as
program specialization, as the problem size increases.
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A Fast Fourrier

Transformation
#define PI 3.14159265358979323846

int fft(np, x, y)

int np ;

double x[2];

double y[2];

{

double *px,*py;

int i,j,k,m,n;

int i0,i1,i2,i3;

int is,id;

int n1,n2,n4;

double a,e,a3;

double cc1,ss1,cc3,ss3;

double r1,r2;

double s1,s2,s3;

double xt;

px = x - 1;

py = y - 1;

i = 2;

m = 1;

while (i < np)

{

i = i+i;

m = m+1;

};

n = i;

if (n != np)

{

for (i = np+1; i <= n; i++)

{

*(px + i) = 0.0F;

*(py + i) = 0.0F;

};

printf("\nuse %d point fft",n);

}

n2 = n+n;

for (k = 1; k <= m-1; k++ )

{

n2 = n2 / 2;

n4 = n2 / 4;

e = 2.0F * (float)PI / n2;

a = 0.0F;

for (j = 1; j<= n4 ; j++)

{

a3 = 3.0F*a;

cc1 = cos(a);

ss1 = sin(a);

cc3 = cos(a3);

ss3 = sin(a3);

a = j*e;

is = j;

id = 2*n2;

while ( is < n )

{

for (i0 = is; i0 <= n-1;)

{

i1 = i0 + n4;

i2 = i1 + n4;

i3 = i2 + n4;

r1 = *(px+i0) - *(px+i2);

*(px+i0) = *(px+i0) + *(px+i2);

r2 = *(px+i1) - *(px+i3);

*(px+i1) = *(px+i1) + *(px+i3);

s1 = *(py+i0) - *(py+i2);

*(py+i0) = *(py+i0) + *(py+i2);

s2 = *(py+i1) - *(py+i3);

*(py+i1) = *(py+i1) + *(py+i3);

s3 = r1 - s2;

r1 = r1 + s2;

s2 = r2 - s1;

r2 = r2 + s1;

*(px+i2) = r1*cc1 - s2*ss1;

*(py+i2) = -s2*cc1 - r1*ss1;

*(px+i3) = s3*cc3 + r2*ss3;

*(py+i3) = r2*cc3 - s3*ss3;

i0 = i0 + id;

}

is = 2*id - n2 + j;

id = 4*id;

}

}

}

/*

-------Last stage, length=2 butterfly---------

*/

is = 1;

id = 4;

while ( is < n)

{

for (i0 = is; i0 <= n;)

{

i1 = i0 + 1;

r1 = *(px+i0);

*(px+i0) = r1 + *(px+i1);

*(px+i1) = r1 - *(px+i1);

r1 = *(py+i0);

*(py+i0) = r1 + *(py+i1);

*(py+i1) = r1 - *(py+i1);

i0 = i0 + id;

}

is = 2*id - 1;

id = 4 * id;

}

/*

----------Bit reverse counter------------

*/

j = 1;

n1 = n - 1;

for (i = 1; i <= n1; i++)

{

if (i < j)

{

xt = *(px+j);

*(px+j) = *(px+i);

*(px+i) = xt;

xt = *(py+j);

*(py+j) = *(py+i);

*(py+i) = xt;

}

k = n / 2;

while (k < j)

{

j = j - k;

k = k / 2;

}

j = j + k;

}

return(n);

}
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B Romberg Integration

void romberg(float (*r)[50], float a, float b, int M)

{

int n, m, i, max;

float h, s;

h = b - a;

r[0][0] = (f(a) + f(b)) * h / 2.0;

for (n = 1; n <= M; n++) {

h = h / 2.0;

s = 0.0;

max = int_pow(2, n - 1);

for (i = 1; i <= max; i++) {

s = s + f(a + (float)(2.0 * i - 1) * h);

}

r[n][0] = r[n-1][0]/2.0 + h * s;

for(m = 1; m <= n; m++) {

r[n][m] = r[n][m-1] + (float)(1.0/(int_pow(4,m)-1))

* (r[n][m-1] - r[n-1][m-1]);

}

}

}

int int_pow(int base, int expon)

{

int accum = 1;

while (expon > 0) {

accum *= base;

expon--;

}

return(accum);

}

C Chebyshev Approximation

#define MAX1 100

#define PI 3.14159265358979323846

void cheb(float c[MAX1], int n, float xa, float xb)

{

int k, j;

float xm, xp, sm;

float f[MAX1];

xp = (xb + xa) / 2;

xm = (xb - xa) / 2;

for(k = 1; k <= n; k++) {

f[k] = func(xp + xm * cos(PI * (k - 0.5) / n));

}

for(j = 0; j <= n-1; j++) {

sm = 0.0;

for(k = 1; k <= n; k++) {

sm = sm + f[k] * cos(PI * j * (k - 0.5) / n);

}

c[j] = (2.0 / n) * sm;

}

return;

}

D Smirnov Integration

double smirnov(int m, int n, double D, double *u)

{

double c;

double W;

int i;

int j;

double temp;

c = (double)(m * n) * D - 1.0 ;

for (j = 0; j <= n; j++)

{

u[j] = 1.0;

if (c < (double)(m * j))

{

u[j] = 0.0;

}

}

for (i = 1; i <= m; i++)

{

double *suif_tmp0;

W = (double)i / (double)(i + n) ;

suif_tmp0 = u;

*suif_tmp0 = *suif_tmp0 * W;

if (c < (double)(n * i))

{

*u = 0.0;

}

for (j = 1; j <= n; j++)

{

u[j] = W * u[j] + u[j - 1]+1;

temp=(double)fabs(n * i - m * j);

if (c < temp)

{

u[j] = 0.0;

}

}

}

return 1.0 - u[n];

}

E Cubic Spline Interpolation

#define MAX 100

void csi(int n, float x[MAX], float y[MAX], float z[MAX])

{

float h[MAX],b[MAX],u[MAX],v[MAX];

int i;

for (i = 0; i<= n-1; i=i+1){

h[i] = x[i+1]-x[i];

b[i] = (6/h[i])*(y[i+1]-y[i]);

}

u[1] = 2*(h[0]+h[1]);

v[1] = b[1]-b[0];

for (i = 2; i <= n-1; i=i+1){

u[i] = 2*(h[i]+h[i-1])-h[i-1]*h[i-1]/u[i-1];

v[i] = b[i]-b[i-1]-h[i-1]*v[i-1]/u[i-1];

}

z[n] = 0;

i=n-1;

if ( i>=1 )

do {

z[i] = (v[i]-h[i]*z[i+1])/u[i];

i=i-1;

} while ( i>=1 );

z[0] = 0;

}
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F Berkeley Packet Filter
u_int bpf(pc, p, wirelen, buflen)

register struct bpf_insn *pc;

register u_char *p;

u_int wirelen;

register u_int buflen;

{

register u_int32 A, X;

register int k;

int32 mem[BPF_MEMWORDS];

u_char returned=FALSE;

if (pc == 0)

/*

* No filter means accept all.

*/

return (u_int)-1;

A = 0;

X = 0;

--pc;

while (!returned) {

++pc;

switch (pc->code) {

default:

returned=TRUE;

abort();

break;

case BPF_RET|BPF_K:

returned=TRUE;

return (u_int)pc->k;

break;

case BPF_RET|BPF_A:

returned=TRUE;

return (u_int)A;

break;

case BPF_LD|BPF_W|BPF_ABS:

k = pc->k;

if (k + sizeof(int32) > buflen) {

returned=TRUE;

return 0;

}

A = EXTRACT_LONG(&p[k]);

break;

case BPF_LD|BPF_H|BPF_ABS:

k = pc->k;

if (k + sizeof(short) > buflen) {

returned=TRUE;

return 0;

}

A = EXTRACT_SHORT(&p[k]);

break;

case BPF_LD|BPF_B|BPF_ABS:

k = pc->k;

if (k >= buflen) {

returned=TRUE;

return 0;

}

A = p[k];

break;

case BPF_LD|BPF_W|BPF_LEN:

A = wirelen;

break;

case BPF_LDX|BPF_W|BPF_LEN:

X = wirelen;

break;

case BPF_LD|BPF_W|BPF_IND:

k = X + pc->k;

if (k + sizeof(int32) > buflen) {

returned=TRUE;

return 0;

}

A = EXTRACT_LONG(&p[k]);

break;

case BPF_LD|BPF_H|BPF_IND:

k = X + pc->k;

if (k + sizeof(short) > buflen) {

returned=TRUE;

return 0;

}

A = EXTRACT_SHORT(&p[k]);

break;

case BPF_LD|BPF_B|BPF_IND:

k = X + pc->k;

if (k >= buflen) {

returned=TRUE;

return 0;

}

A = p[k];

break;

case BPF_LDX|BPF_MSH|BPF_B:

k = pc->k;

if (k >= buflen) {

returned=TRUE;

return 0;

}

X = (p[pc->k] & 0xf) << 2;

break;

case BPF_LD|BPF_IMM:

A = pc->k;

break;

case BPF_LDX|BPF_IMM:

X = pc->k;

break;

case BPF_LD|BPF_MEM:

A = mem[pc->k];

break;

case BPF_LDX|BPF_MEM:

X = mem[pc->k];

break;

case BPF_ST:

mem[pc->k] = A;

break;

case BPF_STX:

mem[pc->k] = X;

break;

case BPF_JMP|BPF_JA:

pc += pc->k;

break;

case BPF_JMP|BPF_JGT|BPF_K:

pc += (A > pc->k) ? pc->jt : pc->jf;

break;

case BPF_JMP|BPF_JGE|BPF_K:

pc += (A >= pc->k) ? pc->jt : pc->jf;

break;

case BPF_JMP|BPF_JEQ|BPF_K:

pc += (A == pc->k) ? pc->jt : pc->jf;

break;

case BPF_JMP|BPF_JSET|BPF_K:

pc += (A & pc->k) ? pc->jt : pc->jf;

break;

case BPF_JMP|BPF_JGT|BPF_X:

pc += (A > X) ? pc->jt : pc->jf;

break;

case BPF_JMP|BPF_JGE|BPF_X:
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pc += (A >= X) ? pc->jt : pc->jf;

break;

case BPF_JMP|BPF_JEQ|BPF_X:

pc += (A == X) ? pc->jt : pc->jf;

break;

case BPF_JMP|BPF_JSET|BPF_X:

pc += (A & X) ? pc->jt : pc->jf;

break;

case BPF_ALU|BPF_ADD|BPF_X:

A += X;

break;

case BPF_ALU|BPF_SUB|BPF_X:

A -= X;

break;

case BPF_ALU|BPF_MUL|BPF_X:

A *= X;

break;

case BPF_ALU|BPF_DIV|BPF_X:

if (X == 0) {

returned=TRUE;

return 0;

}

A /= X;

break;

case BPF_ALU|BPF_AND|BPF_X:

A &= X;

break;

case BPF_ALU|BPF_OR|BPF_X:

A |= X;

break;

case BPF_ALU|BPF_LSH|BPF_X:

A <<= X;

break;

case BPF_ALU|BPF_RSH|BPF_X:

A >>= X;

break;

case BPF_ALU|BPF_ADD|BPF_K:

A += pc->k;

break;

case BPF_ALU|BPF_SUB|BPF_K:

A -= pc->k;

break;

case BPF_ALU|BPF_MUL|BPF_K:

A *= pc->k;

break;

case BPF_ALU|BPF_DIV|BPF_K:

A /= pc->k;

break;

case BPF_ALU|BPF_AND|BPF_K:

A &= pc->k;

break;

case BPF_ALU|BPF_OR|BPF_K:

A |= pc->k;

break;

case BPF_ALU|BPF_LSH|BPF_K:

A <<= pc->k;

break;

case BPF_ALU|BPF_RSH|BPF_K:

A >>= pc->k;

break;

case BPF_ALU|BPF_NEG:

A = -A;

break;

case BPF_MISC|BPF_TAX:

X = A;

break;

case BPF_MISC|BPF_TXA:

A = X;

break;

}

}

return 0;

}
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Abstract

A certifying compiler takes a source language program and
produces object code, as well as a \certi�cate" that can be
used to verify that the object code satis�es desirable prop-
erties, such as type safety and memory safety. Certifying
compilation helps to increase both compiler robustness and
program safety. Compiler robustness is improved since some
compiler errors can be caught by checking the object code
against the certi�cate immediately after compilation. Pro-
gram safety is improved because the object code and certi�-
cate alone are su�cient to establish safety: even if the object
code and certi�cate are produced on an unknown machine
by an unknown compiler and sent over an untrusted net-
work, safe execution is guaranteed as long as the code and
certi�cate pass the veri�er.

Existing work in certifying compilation has addressed
statically generated code. In this paper, we extend this to
code generated at run time. Our goal is to combine certi-
fying compilation with run-time code generation to produce
programs that are both veri�ably safe and extremely fast.
To achieve this goal, we present two new languages with ex-
plicit run-time code generation constructs: Cyclone, a type
safe dialect of C, and TAL/T, a type safe assembly language.
We have designed and implemented a system that translates
a safe C program into Cyclone, which is then compiled to
TAL/T, and �nally assembled into executable object code.
This paper focuses on our overall approach and the front
end of our system; details about TAL/T will appear in a
subsequent paper.

1 Introduction

1.1 Run-time specialization

Specialization is a program transformation that optimizes a
program with respect to invariants. This technique has been
shown to give dramatic speedups on a wide range of appli-
cations, including aircraft crew planning programs, image
shaders, and operating systems [4, 11, 17]. Run-time special-
ization exploits invariants that become available during the
execution of a program, generating optimized code on the

y. Opportunities for run-time specialization occur when
dynamically changing values remain invariant for a period
of time. For example, networking software can be special-
ized to a particular TCP connection or multicast tree.

Run-time code generation is tricky. It is hard to correctly
write and reason about code that generates code; it is not
obvious how to optimize or debug a program that has yet

to be generated. Early examples of run-time code genera-
tion include self-modifying code, and ad hoc code generators
written by hand with a speci�c function in mind. These ap-
proaches proved complicated and error prone [14].

More recent work has applied advanced programming
language techniques to the problem. New source languages
have been designed to facilitate run-time code generation
by providing the programmer with high-level constructs and
having the compiler implement the low-level details [15, 21,
22]. Program transformations based on static analyses are
now capable of automatically translating a normal program
into a run-time code generating program [6, 10, 12]. And
type systems can check run-time code generating programs
at compile time, ensuring that certain bugs will not occur
at run time (provided the compiler is correct) [22, 25].

These techniques make it easier for programmers to use
run-time code generation, but they do not address the con-
cerns of the compiler writer or end user. The compiler writer
still needs to implement a correct compiler|not easy even
for a language without run-time code generation. The end
user would like some assurance that executables will not
crash their machine, even if the programs generate code
and jump to it|behavior that usually provokes suspicion
in security-concious users. We will address both of these
concerns through another programming language technique,
certifying compilation.

1.2 Certifying compilation

A certifying compiler takes a source language program and
produces object code and a \certi�cate" that may help to
show that the object code satis�es certain desirable proper-
ties [16, 18]. A separate component called the veri�er exam-
ines the object code and certi�cate and determines whether
the object code actually satis�es the properties. A wide
range of properties can be veri�ed, including memory safety
(unallocated portions of memory are not accessed), control
safety (code is entered only at valid entry points), and vari-
ous security properties (e.g., highly classi�ed data does ap-
pear on low security channels). Often, these properties are
corollaries of type safety in an appropriate type system for
the object code.

In this paper we will describe a certifying compiler for
Cyclone, a high-level language that supports run-time code
generation. Cyclone is compiled into TAL/T, an assembly
language that supports run-time code generation. Cyclone
and TAL/T are both type safe; the certi�cates of our system
are the type annotations of the TAL/T output, and the
veri�er is the TAL/T type checker.
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As compiler writers, we were motivated to implement
Cyclone as a certifying compiler because we believe the ap-
proach enhances compiler correctness. For example, we were
forced to develop a type system and operational semantics
for TAL/T. This provides a formal framework for reasoning
about object code that generates object code at run time.
Eventually, we hope to prove that the compiler transforms
type correct source programs into type correct object pro-
grams, an important step towards proving correctness for
the compiler. In the meantime, we use the veri�er to type
check the output of the compiler, so that we get immedi-
ate feedback when our compiler introduces type errors. As
others have noted [23, 24], this helps to identify and correct
compiler bugs quickly.

We also wanted a certifying compiler to address the safety
concerns of end users. In our system, type safety only de-
pends on the certi�cate and the object code, and not on the
method by which they are produced. Thus the end user does
not have to rely on the programmer or the Cyclone compiler
to ensure safety. This makes our system usable as the ba-
sis of security-critical applications like active networks and
mobile code systems.

1.3 The Cyclone compiler

The Cyclone compiler is built on two existing systems, the
Tempo specializer [19] and the Popcorn certifying compiler
[16]. It has three phases, shown in Fig. 1.

The �rst phase transforms a type safe C program into
a Cyclone program that uses run-time code generation. It
starts by applying the static analyses of the Tempo sys-
tem to a C program and context information that speci�es
which function arguments are invariant. The Tempo front
end produces an action-annotated program. We added an
additional pass to translate the action-annotated program
into a Cyclone run-time specializer.

The second phase veri�es that the Cyclone program is
type safe, and then compiles it into TAL/T. To do this, we
modi�ed the Popcorn compiler of Morrisett et al.; Popcorn
compiles a type safe dialect of C into TAL, a typed assembly
language. We extended the front end of Popcorn to han-
dle Cyclone programs, and modi�ed its back end so that it
outputs TAL/T. TAL/T is TAL extended with instructions
for manipulating templates, code fragments parameterized
by holes, and their corresponding types. This compilation
phase not only transforms high-level Cyclone constructs into
low-level assembly instructions, but also transforms Cyclone
types into TAL/T types.

The third phase �rst veri�es the type safety of the TAL/T
program. The type system of TAL/T ensures that the tem-
plates are combined correctly and that holes are �lled in
correctly. This paper describes our overall approach and
the front end in detail, but the details of TAL/T will ap-
pear in a subsequent paper. Finally, the TAL/T program is
assembled and linked into an executable.

This three phase design o�ers a very 
exible user inter-
face since it allows programs to be written in C, Cyclone,
or TAL/T. In the simplest case, the user can simply write
a C program (or reuse an existing program) and allow the
system to handle the rest. If the user desires more explicit
control over the code generation process, he may write (or
modify) a Cyclone program. If very �ne-grain control is de-
sired, the user can �ne-tune a TAL/T program produced by
Cyclone, or can write one by hand. Note that, since veri�-
cation is performed at the TAL/T level, the same program

Tempo front-end

Cyclone

TAL/T

verify & compile Cyclone

verify, assemble, link

C program & invariants

executable

translate action-annotated
program to Cyclone

Figure 1: Overview of the Cyclone compiler

safety properties are guaranteed in all three of these cases.

1.4 Example

We now present an example that illustrates run-time code
generation and the phases of our Cyclone compiler. Fig. 2
shows a modular exponentiation function, mexp, written in
standard C. Its arguments are a base value, an exponent,
and a modulus. Modular exponentiation is often used in
cryptography; when the same key is used to encrypt or de-
crypt several messages, the function is called repeatedly with
the same exponent and modulus. Thus mexp can bene�t
from specialization.

To specialize the function with respect to a given ex-
ponent and modulus, the user indicates that the two argu-
ments are invariant : the function will be called repeatedly
with the same values for the invariant arguments. In Fig. 2,
invariant arguments are shown in italics. A static analysis
propagates this information throughout the program, pro-
ducing an action-annotated program. Actions describe how
each language construct will be treated during specializa-
tion. Constructs that depend only on invariants can be eval-
uated during specialization; these constructs are displayed
in italics in the second part of the �gure.

To understand how run-time specialization works, it is
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C code (invariant arguments in italics)

int mexp(int base, int exp, int mod)
f
int s, t, u;

s = 1; t = base; u = exp;

while (u != 0) f
if ((u&1) != 0)

s = (s*t) % mod;

t = (t*t) % mod;

u >>= 1;

g
return(s);

g

Action-annotated code (italicized constructs can be evaluated)

int mexp(int base, int exp, int mod)
f
int s, t, u;

s = 1; t = base; u = exp;

while (u != 0) f
if ((u & 1) != 0)

s = (s*t) % mod;
t = (t*t) % mod;
u >>= 1;

g
return(s);

g

Specialized source code (exp = 10, mod = 1234)

int mexp sp(int base)

f
int s, t;

s = 1; t = base;

t = (t*t) % 1234;

s = (s*t) % 1234;

t = (t*t) % 1234;

t = (t*t) % 1234;

s = (s*t) % 1234;

t = (t*t) % 1234;

return(s);

g

Figure 2: Specialization at the source level

helpful to �rst consider how specialization could be achieved
entirely within the source language. In our example, the
specialized function mexp sp of Fig. 2 is obtained from the
action-annotated mexp when the exponent is 10 and the
modulus is 1234. Italicized constructs of mexp, like the while
loop, can be evaluated (note that the loop test depends only
on the known arguments). Non-italicized constructs of mexp
show up in the source code of mexp sp. These constructs can
only be evaluated when mexp sp is called, because they de-
pend on the unknown argument.

We can think of mexp sp as being constructed by cutting
and pasting together fragments of the source code of mexp.
These fragments, or templates, are a central idea we used
in designing Cyclone. Cyclone is a type safe dialect of C
extended with four constructs that manipulate templates:
codegen, cut, splice, and fill. Using these constructs,
it is possible to write a Cyclone function that generates a
specialized version of mexp at run time.

int (int) mexp gen(int exp, int mod)
f

int u;

u = exp;

return codegen(
int mexp sp(int base) f

int s, t;

s = 1; t = base;

cut
while (u != 0) f
if ((u & 1) != 0)
splice s = (s*t) % �ll(mod);

splice t = (t*t) % �ll(mod);
u >>= 1;

g

return(s);

g);
g

Figure 3: A run-time specializer written in Cyclone

In fact, our system can automatically generate a Cy-
clone run-time specializer from an action-annotated pro-
gram. Fig. 3 shows the Cyclone specializer produced from
the action-annotated modular exponentiation function of
Fig. 2. The function mexp gen takes the two invariant argu-
ments of the original mexp function and returns the function
mexp sp, a version of mexp specialized to those arguments.
In the �gure we have italicized code that will be evaluated
when mexp gen is called. Non-italicized code is template
code that will be manipulated by mexp gen to produce the
specialized function. The template code will only be evalu-
ated when the specialized function is itself called.

In our example, the codegen expression begins the code
generation process by allocating a region in memory for the
new function mexp sp, and copying the �rst template into
the region. This template includes the declarations of the
function, its argument base, and local variables s and t,
and also the initial assignments to s and t. Recall that this
template code is not evaluated during the code generation
process, but merely manipulated.

The cut statement marks the end of the template and in-
troduces code (italicized) that will be evaluated during code
generation: namely, the while loop. The while test and
body, including the conditional statement, splice state-
ments, and shift/assignment statement, will all be evalu-
ated. After the while loop �nishes, the template following
the cut statement (containing return(s)) will be added to
the code generation region.

Evaluating a splice statement causes a template to be
appended to the code generation region. In our example,
each time the �rst splice statement is executed, an assign-
ment to s is appended. Similarly, each time the second
splice statement is executed, an assignment to t is ap-
pended. The e�ect of the while loop is thus to add some
number of assignment statements to the code of mexp sp;
exactly how many, and which ones, is determined by the
arguments of mexp gen.

A fill expression can be used within a template, and it
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marks a hole in the template. When fill(e) is encountered
in a template, e is evaluated at code generation time to a
value, which is then used to �ll the hole in the template.
In our example, fill is used to insert the known modulus
value into the assignment statements.

After code generation is complete, the newly generated
function mexp sp is returned as the result of codegen. It
takes the one remaining argument of mexp to compute its
result.

Cyclone programs can be evaluated symbolically to pro-
duce specialized source programs, like the one in Fig. 2; this
is the basis of the formal operational semantics we give in
the appendix. In our implementation, however, we compile
Cyclone source code to object code, and we compile source
templates into object templates. The Cyclone object code
then manipulates object templates directly.

Our object code, TAL/T, is an extension of TAL with
instructions for manipulating object templates. Most of the
TAL/T instructions are x86 machine instructions; the new
template instructions are CGSTART, CGDUMP, CGFILL, CGHOLE,
TEMPLATE START, and TEMPLATE END. For example, the Cy-
clone program in Fig. 3 is compiled into the TAL/T pro-
gram shown in Fig. 4. (We omitted some instructions to
save space, and added source code fragments in comments
to aid readability.)

The beginning of mexp gen contains x86 instructions for
adding the local variable u to the stack and assigning it the
value of the argument exp. Next, CGSTART is used to dynam-
ically allocate a code generation region, and the �rst tem-
plate is dumped (copied) into the region with the CGDUMP

instruction. Next, the body of the loop is unrolled. Each
Cyclone splice statement is compiled into a CGDUMP instruc-
tion, followed by instructions for computing hole values and
a CGFILL instruction for �lling in the hole. At the end of the
mexp gen function, a �nal CGDUMP instruction outputs code
for the last template.

Next comes the code for each of the four templates. The
�rst template allocates stack space for local variables s and
t and assigns values to them. The second and third tem-
plates come from the statements contained within the Cy-
clone splice instructions, i.e., the multiplications, mods,
and assignments. The �nal template contains the code for
return(s). Each CGHOLE instruction introduces a place-
holder inside a template, �lled in during specialization as
described above.

1.5 Summary

We designed a system for performing type safe run-time code
generation. It has the following parts:

� C to action-annotated program translation

� Action-annotated program to Cyclone translation

� Cyclone language design

� Cyclone type system

� Cyclone veri�er

� Cyclone to TAL/T compiler

� TAL/T language design

� TAL/T type system

� TAL/T veri�er

_mexp_gen:

PUSH 0 ; int u = 0

MOV EAX,[ESP+8] ; int u = exp;

MOV [ESP+0],EAX

CGSTART ; codegen(...

CGDUMP ECX,cdgn_beg$18 ; (dump 1st template)

JMP whiletest$21 ; while ...

whilebody$20:

: ; if ((u & 1) != 0)

:

CMP EAX,ECX

JE ifend$24

CGDUMP ECX,splc_beg$25 ; (dump 2nd template)

MOV EAX,[ESP+12] ; mod

CGFILL ECX,splc_beg$25,hole$29,EAX

ifend$24:

CGDUMP ECX,splc_beg$31 ; (dump 3rd template)

MOV EAX,[ESP+12] ; mod

CGFILL ECX,splc_beg$26,hole$34,EAX

MOV ECX,1 ; u = u >> 1;

MOV EAX,[ESP+0]

SAR EAX,CL

MOV [ESP+0],EAX

whiletest$21:

:

:

CMP EAX,ECX ; ... (u != 0)

JNE whilebody$20

whileend$22:

CGDUMP ECX,cut_beg$33 ; (dump 4th template)

CGEND EAX

ADD ESP,4 ; (return spec. fun.)

RETN

TEMPLATE_START cdgn_beg$18,cdgn_beg$19

cdgn_beg$18 ; (1st template)

PUSH 0 ; int s = 0;

:

MOV EAX,[ESP+12] ; t = base;

MOV [ESP+0],EAX

TEMPLATE_END cdgn_beg$19

TEMPLATE_START splc_beg$25,splc_end$26

splc_beg$25: ; (2nd template)

CGHOLE EAX,splc_beg$25,hole$29 ; fill(...)

:

MOV [ESP+4],EAX ; s = mod(s*t,...));

TEMPLATE_END splc_end$26

TEMPLATE_START splc_beg$31,splc_end$32

splc_beg$31: ; (3rd template)

CGHOLE EAX,splc_beg$31,hole$34 ; fill(...)

:

MOV [ESP+0],EAX ; t = mod(t*t,...));

TEMPLATE_END splc_end$32

TEMPLATE_START cut_beg$36,cut_end$37

cut_beg$36: ; (4th template)

MOV EAX,[ESP+4] ; return s;

ADD ESP,8

RETN

TEMPLATE_END cut_end$37

Figure 4: TAL/T code
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� TAL/T to assembly translation

� Assembler/Linker

For some parts, we were able to reuse existing software.
Speci�cally, we used Tempo for action-annotated program
generation, Microsoft MASM for assembling, and Microsoft
Visual C++ for linking. Other parts extend existing work.
This was the case for the Cyclone language, type system,
veri�er, compiler, and the TAL/T language. Some compo-
nents needed to be written from scratch, including the trans-
lation from an action-annotated program into a Cyclone pro-
gram, and the de�nition of the new TAL/T instructions in
terms of x86 instructions.

We've organized the rest of the paper as follows. In Sec-
tion 2, we present the Cyclone language and its type sys-
tem. In Section 3, we give a brief description of TAL/T;
due to limited space we defer a full description to a later pa-
per. We give implementation details and initial impressions
about performance in Section 4. We discuss related work in
Section 5, and future work in Section 6. Our �nal remarks
are in Section 7.

2 Cyclone

2.1 Design decisions

Cyclone's codegen, cut, splice, and fill constructs were
designed to express a template-based style of run-time code
generation cleanly and concisely. We made some other de-
sign decisions based on Cyclone's relationship to the C pro-
gramming language, and on implementation concerns.

First, because a run-time specializer is a function that
returns a function as its result, we need higher order types
in Cyclone. In C, higher order types can be written using
pointer types, but Cyclone does not have pointers. There-
fore, we introduce new notation for higher order types in
Cyclone. For example:

int (float,int) f(int x) { ... }

This is a Cyclone function f that takes an int argument x,
and returns a function taking a 
oat and an int and return-
ing an int. When f is declared and not de�ned, we use

int (int) (float,int) f;

Note that the type of the �rst argument appears to the left of
the remaining arguments. This is consistent with the order
the arguments would appear in C, using pointer types.

A second design decision concerns the extent to which
we should support nested codegen's. Consider the following
example.

int (float) (int) f(int x) {

return(codegen(

int (int) g(float y) {

return(codegen(

int h(int z) {

... body of h ...

}));

}));

}

Here f is a function that generates a function g using
codegen when called at run time. In turn, g will generate a
function h each time it is called. Nested codegen's are thus

used to generate code that generates code. The �rst version
of Tempo did not support code that generates code (though
it has recently been extended to do so), and some other sys-
tems, such as `C [20, 21], also prohibit it. We decided to
permit it in Cyclone, because it adds little complication to
our type system or implementation. Nested codegen's are
not generated automatically in Cyclone, because of the ver-
sion of Tempo that we use, but the programmer can always
write them explicitly.

A �nal design decision concerns the extent to which Cy-
clone should support lexically scoped bindings. In the last
example, the function h is nested inside of two other func-
tions, f and g. In a language with true lexical scoping, the
arguments and local variables of these outer functions would
be visible within the inner function: f, x, g, and y could be
used in the body of h.

We decided that we would not support full lexical scop-
ing in Cyclone. Our scoping rule is that in the body of
a function, only the function itself, its arguments and local
variables, and top-level variables are visible. This is in keep-
ing with C's character as a low-level, machine- and systems-
oriented language: the operators in the language are close
to those provided by the machine, and the cost of executing
a program is not hidden by high-level abstractions. We felt
that closures and lambda lifting, the standard techniques for
supporting lexical scoping, would stray too far from this. If
lexical scoping is desired, the programmer can introduce ex-
plicit closures. Or, lexical scoping can be achieved using the
Cyclone features, for example, if y is needed in the body of
h, it can be accessed using fill(y).

2.2 Syntax and typing rules

Now we formalize a core calculus of Cyclone. Full Cyclone
has, in addition, structures, unions, arrays, void, break and
continue, and for and do loops.

We use x to range over variables, c to range over con-
stants, and b to range over base types. There is an implicit
signature assigning types to constants, so that we can speak
of \the type of c." Figure 5 gives the grammars for pro-
grams p, modi�ers m, types t, declarations d, sequences D
of declarations, function de�nitions F , statements s, and
expressions e.

We write t � m for the type of a function from m to t:
if t = b m1 � � � mn, then t � m = b m m1 � � � mn. If

D = t1 x1; : : : ; tk xn, then eD is de�ned to be the modi-
�er (t1, : : : , tn), so that a function de�nition t x(D) s

declares x to be of type t � eD.
We sometimes consider a sequence D = t1 x1; : : : ; tn xn

of declarations to be a �nite function from variables to types:
D(xi) = ti if 1 � i � n. This assumes that the xi are
distinct; we achieve this by alpha conversion when neces-
sary, and by imposing some standard syntactic restrictions
on Cyclone programs (the names of a function and its for-
mal parameters must be distinct, and global variables have
distinct names).

We de�ne type environments E to support Cyclone's
scoping rules:

E ::= outermost(t x(Dparams); Dlocal); Dglobal

j frame(t x(Dparams); Dlocal);E
j hidden(t x(Dparams); Dlocal);E

Informally, a type environment is a sequence of hidden and
visible frames, followed by an outermost frame that gives
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Evis =

8<: D2; D1; t � fD1 x;D3 if E = outermost(t x(D1); D2); D3

E0

vis if E = hidden(t x(D); D0
);E0

D0; D; t � eD x;E0

vis0 if E = frame(t x(D); D0
);E0

Evis0 =

(
D3 if E = outermost(t x(D1); D2); D3

E0

vis0 if E = hidden(t x(D); D0);E0

E0

vis0 if E = frame(t x(D); D0
);E0

rtype(E) =

(
t if E = outermost(t x(D1); D2); D3

rtype(E0) if E = hidden(t x(D); D0
);E0

t if E = frame(t x(D); D0);E0

E + d =

(
outermost(t x(D1); d,D2); D3 if E = outermost(t x(D1); D2); D3

hidden(t x(D); D0
);E0 + d if E = hidden(t x(D); D0

);E0

frame(t x(D); d,D0
);E0 if E = frame(t x(D); D0

);E0

Figure 6: Cyclone environment functions

Programs p ::= �

j d; p
j F p

Modi�ers m ::= (t1, : : : , tn)

Types t ::= b m1 � � � mn

Declarations d ::= t x

Decl. sequences D ::= d1, : : : , dn

Function defns. F ::= t x(D) s

Statements s ::= e;
j d = e;
j f s1 � � � sn g

j if (e) s1 else s2
j while (e) s
j return e;
j splice s
j cut s

Expressions e ::= x
j c
j e0(e1, ...,en)
j x = e
j codegen(F)

j fill(e)

Figure 5: The grammar of core Cyclone

the type of a top level function, the types of its local vari-
ables, and the types of global variables. The non-outermost
frames contain the type of a function that will be generated
at run time, and types for the parameters and local variables
of the function. If E is a type environment, we write Evis

for the visible declarations of E; Evis is de�ned in Figure 6.
Informally, the de�nition says that the declarations of the
�rst non-hidden frame and the global declarations are vis-
ible, and all other declarations are not visible. Note that
Evis is a sequence of declarations, so we may write Evis(x)
for the type of x in E.

Figure 6 also de�nes two other important operations on
environments: rtype(E) is the return type for the function
of the �rst non-hidden frame, and E+ d is the environment
obtained by adding declaration d to the local declarations
of the �rst non-hidden frame.

The typing rules of Cyclone are given in Figure 7. The
interesting rules are those for codegen, cut, splice, and
fill.

A codegen expression starts the process of run time code
generation. To type codegen(t x(D) s) in an environment
E, we type the body s of the function in an environment
frame(t x(D); �); E. This makes the function x and its
parameters D visible in the body, while any enclosing func-
tion, parameters, and local variables will be hidden.

An expression fill(e) should only appear within a tem-
plate. Our typing rule ensures this by looking at the envi-
ronment: it must have the form frame(t x(D); D0); E.
If so, the expression fill(e) is typed if e is typed in the en-
vironment hidden(t x(D); D0); E. That is, the function
being generated with codegen, as well as its parameters and
local variables, are hidden when computing the value that
will �ll the hole. This is necessary because the parameters
and local variables will not become available until the func-
tion is called; they will not be available when the hole is
�lled.

The rules for cut and splice are similar. Like fill,
cut can only be invoked within a template, and it changes
frame to hidden for the same reason as fill. Splice is the
dual of cut; it changes a frame hidden by cut back into a
visible frame. Thus splice introduces a template, and cut

interrupts a template.
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D ` p (p is a well-formed program)

D ` �

D ` p

D ` t x; p
D(x) = t

D ` p; D(x) = t �fD0

outermost(t x(D0
); � ); D ` s

D ` t x(D0
) s p

E ` s (s is a well-formed statement)

E ` e : t
E ` e;

E ` e : t
E ` t x = e;

E ` f g

E ` d = e; E + d ` f s1 � � � sn g

E ` f d = e; s1 � � � sn g

E ` s0; E ` f s1 � � � sn g

E ` f s0 s1 � � � sn g
s0 6= d = e;

E ` e : int; E ` s1; E ` s2
E ` if (e) s1 else s2

E ` e : int; E ` s

E ` while (e) s

E ` e : t
E ` return e;

rtype(E) = t

frame(t x(D); D0);E ` s

hidden(t x(D); D0);E ` splice s

hidden(t x(D); D0);E ` s

frame(t x(D); D0);E ` cut s

E ` e : t (e has type t)

E ` x : t if Evis(x) = t

E ` c : t where t is the type of the constant c

E ` e0 : t � (t1, ..., tn); E ` e1 : t1; : : : ; E ` en : tn
E ` e0(e1, ...,en) : t

E ` x : t; E ` e : t
E ` x = e : t

frame(t x(D); �);E ` s

E ` codegen(t x(D) s) : t � eD
hidden(t x(D); D0);E ` e : t

frame(t x(D); D0);E ` fill(e) : t

Figure 7: Typing rules of Cyclone

An operational semantics for Cyclone and safety theorem
are given in an appendix.

3 TAL/T

The output of the Cyclone compiler is a program in TAL/T,
an extension of the Typed Assembly Language (TAL) of
Morrisett et al. [16]. In designing TAL/T, our primary con-
cern was to retain the low-level, assembly language char-
acter of TAL. Most TAL instructions are x86 machine in-
structions, possibly annotated with type information. The
exceptions are a few macros, such as malloc, that would be
di�cult to type in their expanded form; each macro expands
to a short sequence of x86 instructions. Since each instruc-
tion is simple, the trusted components of the system|the
typing rules, the veri�er, and the macros|are also simple.
This gives us a high degree of con�dence in the correctness
and safety of the system.

TAL already has instructions that are powerful enough to
generate code at run time: malloc and move are su�cient.
The problem with this approach is in the types. If we malloc
a region for code, what is its type? Clearly, by the end of the
code generation process, it should have the type of TAL code
that can be jumped to. But at the start of code generation,
when it is not safe to jump to, it must have a di�erent
type. Moreover, the type of the region should change as
we move instructions into it. The TAL type system is not
powerful enough to show that a sequence of malloc and
move instructions results in a TAL program that can safely
be jumped to.

Our solution, TAL/T, is an extension of TAL with some
types and macros for manipulating templates. Since this
paper focuses on Cyclone and the front end of system, we
will only sketch the ideas of TAL/T here. Full details will
appear in a subsequent paper.

In TAL, a procedure is just the label or address of a se-
quence of TAL instructions. A procedure is called by jump-
ing to the label or address. The type of a procedure is
a precondition that says that on entry, the x86 registers
should contain values of particular types. For example, if
a procedure is to return it will have a precondition saying
that a return address should be accessible through the stack
pointer when it is jumped to.

In TAL/T, a template is also the label of a sequence
of instructions. Unlike a TAL procedure, however, a tem-
plate is not meant to be jumped to. For example, it might
need to be concatenated with another template to form a
TAL procedure. Thus the type of a template includes a
postcondition as well as a precondition. Our typing rules
for the template instructions of TAL/T will ensure that be-
fore a template is dumped into a code generation region,
its precondition matches the postcondition of the previous
template dumped. Also, a template may have holes that
need to be �lled; the types of these holes are also given in
the type of the template.

The type of a code generation region is very similar to
that of a template: it includes types for the holes that re-
main to be �lled in the region, the precondition of the �rst
template that was dumped, and the postcondition of the
last template that was dumped. When all holes have been
�lled and a template with no postcondition is dumped, the
region will have a type consisting of just a precondition, i.e.,
the type of a TAL procedure. At this point code generation
is �nished and the result can be jumped to.
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int f(int x) {

return(codegen(

int g(int y) {

return y+1;

})(x));

}

int h(int x)(int) {

return(codegen(

int k(int y) {

return(fill(f(x)))

}));

}

Figure 8: An example showing that two codegen expressions
can be executing at once. When called, h starts generating
k, but stops in the middle to call f which generates g.

Now we give a brief description of the new TAL/Tmacros.
This is intended to be an informal description showing that
each macro does not go beyond what is already in TAL|the
macros are low level, and remain close to machine code.

The macros manipulate an implicit stack of code genera-
tion regions. Each region in the stack is used for a function
being generated by a codegen. The stack is needed because
it is possible to have two codegen expressions executing at
once (for an example, see Figure 8).

� cgstart initiates run-time code generation by allocat-
ing a new code generation region. This new region is
pushed onto the stack of code generation regions and
becomes the \current" region. The cgstart macro is
about as complicated as malloc.

� cgdump r, L copies the template at label L into the
current code generation region. After execution, the
register r points to the copy of the template, and can
be used to �ll holes in the copy. Cgdump is our most
complicated macro: its core is a simple string-copy loop,
but it must also check that the current code generation
region has enough room for a copy of the template. If
there is not enough room, cgdump allocates a new region
twice the size of the old region, copies the contents of
the old region plus the new template to the new region,
and replaces the old region with the new on the region
stack. This is the most complex TAL/T instruction,
consisting of roughly twenty x86 instructions.

� cghole r, Ltemplate, Lhole is a move instruction con-
taining a hole. It should be used in a template with
label Ltemplate, and declares the hole Lhole.

� cgfill r1, Ltemplate, Lhole, r2 �lls the hole of a tem-
plate; it is a simple move instruction. Register r1 should
point to a copy of the template at label Ltemplate, which
should have a hole with label Lhole. Register r2 contains
the value to put in the hole.

� cgfillrel �lls the hole of a template with a pointer into
a second template; like cgfill it expands to a simple
move instruction. It is needed for jumps between tem-
plates.

int f() {

return(codegen(

int g(int i) {

cut { return 4; }

return(i+1);

})(7));

}

Figure 9: An example that shows the need for cgabort.
When called, the function f starts generating function g

but aborts in the middle (it returns 4).

� cgabort aborts a code generation; it pops the top region
o� the region stack. It is needed when the run-time code
generation of a function stops in the middle, as in the
example of Figure 9.

� cgend r �nalizes the code generation process: the cur-
rent region is popped o� the region stack and put into
register r. TAL can then jump to location r.

4 Implementation Status

We now describe some key aspects of our implementation.
As previously mentioned, some components were written
from scratch, while others were realized by modifying ex-
isting software.

4.1 Action-annotated program to Cyclone

We translate Tempo action-annotated programs into run-
time specializers written in Cyclone. Using the Tempo front
end, this lets us automatically generate a Cyclone program
from a C program.

An action-annotated program distinguishes two kinds of
code: normal code that will be executed during specializa-
tion, indicated in italics in Fig. 2; and template code that
will emitted during specialization (non-italicized code). The
annotated C program is translated into a Cyclone program
that uses codegen, cut, splice, and fill. Since italicized
constructs will be executed during code generation, they will
occur outside codegen, or within a cut statement or a fill

expression. Non-italicized constructs will be placed within
a codegen expression or splice statement.

Our algorithm operates in two modes: \normal" mode
translates constructs that should be executed at code gener-
ation time and \template" mode translates constructs that
will be part of a template. The algorithm performs a recur-
sive descent of the action-annotated abstract syntax, keep-
ing track of which mode it is in. It starts o� in \normal"
mode and produces Cyclone code for the beginning of the
run-time specializer: its arguments (the invariants) and any
local variables and initial statements that are annotated
with italics. When the �rst non-italic construct is encoun-
tered, a codegen expression is issued, putting the translation
into \template" mode. The rest of the program is translated
as follows.

An italic statement or expression must be translated in
\normal" mode. Therefore, if the translation is in \tem-
plate" mode, we insert cut (if we are processing a statement)
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or fill (if we are processing an expression) and switch into
\normal" mode. Similarly, a non-italic statement should be
translated in \template" mode; here we insert splice and
switch modes if necessary. It isn't possible to encounter a
non-italic expression within an italic expression.

Another step needs to be taken during this translation
since specialization is speculative, i.e., both branches of a
conditional statement can be optimistically specialized when
the conditional test itself cannot be evaluated. This means
that during specialization, the store needs to be saved prior
to specializing one branch and restored before specializing
the other branch. Therefore, we must introduce Cyclone
statements to save and restore the store when translating
such a conditional statement. This is the same solution used
by Tempo [6].

4.2 Cyclone to TAL/T

To compile Cyclone to TAL/T, we extended an existing com-
piler, the Popcorn compiler of Morrisett et al. Popcorn is
written in Caml, and it compiles a type safe dialect of C
into TAL, a typed assembly language [16]. Currently, Pop-
corn is a very simple, stack based compiler, though it is
being extended with register allocation and more sophisti-
cated optimizations.

The Popcorn compiler works by performing a traversal
of the abstract syntax tree, emitting TAL code as it goes. It
uses an environment data structure of the following form:

type env = { local_env: (id * int) list;

args_on_stack: int }

The environment maintains the execution state of each
function as it is compiled. The �eld local env contains
each variable identi�er and its corresponding stack o�set.
Arguments are pushed onto the stack prior to entry to the
function body; the �eld args on stack records the number
of arguments, so they can be popped o� the stack upon
exiting the function.

To compile Cyclone we needed to extend the environment
datatype: �rst, because Cyclone switches between generat-
ing normal code and template code, and second, because
Cyclone has nested functions. Therefore, we use environ-
ments with the same structure as the environments used in
Cyclone's typing rules:

type cyclone_env =

Outermost of env * (id list)

| Frame of env * cyclone_env

| Hidden of env * cyclone_env

That is, environments are sequences of type frames for func-
tions. A frame can either be outermost, normal, or hidden.
Once we have this type of environment, visible bindings are
de�ned as they are for Evis in Section 2.

An Outermost frame contains the local environment for a
top-level function as well as the global identi�ers. A Frame is
used when compiling template code. A new Frame environ-
ment is created each time codegen is encountered. A Frame

becomes Hidden to switch back to \normal" mode when a
cut or fill is encountered.

Popcorn programs are compiled by traversing the ab-
stract syntax tree and translating each Popcorn construct
into the appropriate TAL instructions; the resulting sequence
of TAL instructions is the compiled program. Compiling a
Cyclone program, however, is more complicated; it is per-
formed in two phases. The �rst phase alternates between

generating normal and template TAL/T instructions and a
second phase rearranges the instructions to put them in their
proper place. In order for the instructions to be rearranged
in the second phase, the �rst phase interleaves special mark-
ers with the TAL/T instructions:

type marker =

M_TemplateBeg of id * id

| M_TemplateEnd

| M_Fill of id * exp

These markers are used to indicate which instructions
are normal, which belong within a template, and which are
used to �ll holes. M TemplateBeg takes two arguments, the
beginning and ending label of a template, and is issued at
the beginning of a template (when codegen or splice is
encountered, or cut ends). Similarly, M TemplateEnd is is-
sued at the end of a template (at the end of a codegen or
splice, or the beginning of a cut). Note that between corre-
sponding M TemplateBeg and M TemplateEnd markers, other
templates may begin and end. Therefore, these markers can
be nested. When a hole is encountered, a M Fill marker is
issued. The �rst argument of M Fill is a label for the hole
inside the template. The second argument is the Cyclone
source code expression that should �ll the hole.

The following example shows how the cut statement is
compiled.

fun compile_stmt stmt cyclone_env =

match stmt of

Cut s ->

match cyclone_env with

Outermost _ -> raise Error

| Frame(env,cyclone_env') ->

cg_fill_holes (Hidden(env,cyclone_env'));

compile_stmt s (Hidden(env,cyclone_env'));

emit_mark(M_TemplateBeg(id_new "a", id_new "b"));

| Hidden _ -> raise Error

The function compile stmt takes a Cyclone statement
and an environment, and emits TAL/T instructions as a
side-e�ect. The �rst thing to notice is that a cut can only
occur when the compiler is in \template" mode, in which
case the environment begins with Frame. A cut statement
ends a template. Therefore, cg fill holes is called, which
emits a M TemplateEnd marker, and emits TAL/T code to
dump the template and �ll its holes. Filling holes must
be done using a \normal" environment, and therefore the
�rst frame becomes Hidden. Next, compile stmt is called
recursively to compile the statement s within the cut. Since
the statement s should also be compiled in normal mode, it
also keeps the �rst frame Hidden. Finally, a M TemplateBeg

marker is emitted so that the compilation of any constructs
following the cut will occur within a new template.

The second phase of the code generation uses the mark-
ers to rearrange the code. The TAL/T instructions issued
between a M TemplateBeg and a M TemplateEnd marker are
extracted and made into a template. The remaining, nor-
mal instructions are concatenated to make one function; hole
�lling instructions are inserted after the instruction which
dumps the template that contains the hole. The example
in Fig. 4 shows a TAL/T program after the second phase is
completed; the normal code includes instructions to dump
templates and �ll holes, and is followed by the templates.
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4.3 TAL/T to executable

TAL is translated into assembly code by expanding each
TAL macro into a sequence of x86 instructions. Similarly,
the new TAL/T macros expand into a sequence of x86 and
TAL instructions. A description of each TAL/T macro is
given in Section 3. The resulting x86 assembly language
program is assembled with Microsoft MASM and linked with
the Microsoft Visual C++ linker.

4.4 Initial Impressions

We have implemented our system and have started testing
it on programs to assess its strengths and weaknesses. Since
there is currently a lot of interest in specializing interpreters,
we decided to explore this type of application program. A
state-of-the-art program specializer such as Tempo typically
achieves a speedup between 2 and 20, depending on the
interpreter and program interpreted. To see how our system
compares, we took a bytecode interpreter available in the
Tempo distribution and ran it through our system.

Preliminary results show that Cyclone achieves a speedup
of over 3. This is encouraging, since this is roughly the
speedup Tempo achieves on similar programs. A more pre-
cise comparison of the two systems still needs to be done,
however. On the other hand, in our initial implementation,
the cost of generating code is higher than in Tempo. One
possible reason is that for safety, we allocate our code gener-
ation regions at run time, and perform bounds checks as we
dump templates. The approach taken by Tempo, choosing a
maximum bu�er size at compile time and allocating a bu�er
of that size, is faster but not safe.

5 Related Work

Propagating types through all stages of a compiler, from
the front end to the back end, has been shown to aid ro-
bust compiler construction: checking type safety after each
stage quickly identi�es compiler bugs [23, 24]. Additionally,
Necula and Lee have shown that proving properties at the
assembly language level is useful for safe execution of un-
trusted mobile code [18]. So far, this approach has been
taken only for statically generated code. Our system is in-
tended to achieve these same goals for dynamically gener-
ated code.

Many of the ideas in Cyclone were derived from the
Tempo run-time specializer [7, 12, 13]. We designed Cyclone
and TAL/T with a template-based approach in mind, and
we use the Tempo front end for automatic template identi-
�cation. Another run-time specializer, DyC, shares some of
the same features, such as static analyses and a template-
like back end [5, 9, 10]. There are, however, some important
di�erences between Cyclone and these systems. We have
tried to make our compiler more robust than Tempo and
DyC, by making Cyclone type safe, and by using types to
verify the safety of compiled code. Like Tempo and DyC,
Cyclone can automatically construct specializers, but in ad-
dition, Cyclone also gives the programmer explicit control
over run-time code generation, via the codegen, cut, splice,
and fill constructs. It is even possible for us to hand-tweak
the specializers produced by the Tempo front end with com-
plete type safety. Like DyC, we can perform optimizations
such as inter-template code motion, since we are writing our
own compiler. Tempo's strategy of using an unmodi�ed, ex-
isting compiler limits the optimizations that it can perform.

ML-box, Meta-ML, and `C are all systems that add ex-
plicit code generation constructs to existing languages. ML-
box and Meta-ML are type safe dialects of ML [15, 25, 22],
while `C is an unsafe dialect of C [20, 21]. All three systems
have features for combining code fragments that go beyond
what we provide in Cyclone. For example, in `C it is possible
to generate functions that have n arguments, where n is a
value computed at run time; this is not possible in Cyclone,
ML-box, or Meta-ML. On the other hand, `C cannot gener-
ate a function that generates a function; this can be done in
Cyclone (using nested codegens), and also in ML-box and
Meta-ML. An advantage we gain from not having sophisti-
cated features for manipulating code fragments is simplicity:
for example, the Cyclone type system does not need a new
type for code fragments. The most fundamental di�erence,
however, is that the overall system we present will provide
type safety not only at the source level, but also at the ob-
ject level. This makes our system more robust and makes it
usable in a proof carrying code system.

6 Future Work

In this paper we presented a framework for performing safe
and robust run-time code generation. Our compiler is based
on a simple, stack-based, certifying compiler written byMor-
risett et al. They are extending the compiler with register
allocation and other standard optimizations, and we expect
to merge Cyclone with their improvements.

We are interested in studying template-speci�c optimiza-
tions. For example, because templates appear explicitly
in TAL/T, we plan to study inter-template optimizations,
such as code motion between templates. Performing inter-
template optimizations is more di�cult in a system, like
Tempo, based on an existing compiler that is not aware of
templates.

We are also interested in analyses that could statically
bound the size of the dynamic code generation region. This
would let us allocate exactly the right amount of space when
we begin generating code for a function, and would let us
eliminate bounds checks during template dumps.

We would like to extend the front end of Tempo so that
it takes Cyclone, and not just C, as input. This would mean
extending the analyses of Tempo to handle Cyclone, which is
an n-level language like ML-box. Additionally, we may im-
plement the analysis of Gl�uck and J�rgensen [8] to produce
n-level Cyclone from C or Cyclone.

7 Conclusion

We have designed a programming language and compiler
that combines dynamic code generation with certi�ed com-
pilation. Our system, Cyclone, has the following features.

Robust dynamic code generation Existing dynamic code
generation systems only prove safety at the source level. Our
approach extends this to object code. This means that bugs
in the compiler that produce unsafe run-time specializers
can be caught at compile time, before the specializer itself
is run. This is extremely helpful because of the complexity of
the analyses and transformations involved in dynamic code
generation.
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Flexibility and Safety Cyclone produces dynamic code gen-
erators that exploit run-time invariants to produce opti-
mized programs. The user interface is 
exible, since the
�nal executable can be generated from a C program, a Cy-
clone program, or TAL/T assembly code. Type safety is
statically veri�ed in all three cases.

Safe execution of untrusted, dynamic, mobile code genera-
tors This approach can be used to extend a proof-carrying
code system to include dynamic code generation. Since ver-
i�cation occurs prior to run time, there is no run-time cost
incurred for the safety guarantees. Sophisticated optimiza-
tion techniques can be employed in the certifying compiler.
The resulting system could produce mobile code that is not
only safe, but potentially extremely fast.
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A Operational semantics of Cyclone

In this appendix, we de�ne a small-step operational seman-
tics for Cyclone based on evaluation contexts.

It is convenient to use a modi�ed grammar for Cyclone
in the operational semantics; this grammar is summarized in
Figure 10. We have extended the Cyclone expressions with a
new form, hhsiit. This is an expression consisting of a state-
ment that should �nish computing by evaluating return on
a value of type t. We have introduced a new class, f , of vari-
ables called function names. Function names are distinct
from the usual variables, x, and are intended to be used in
the semantics only|they are not present in user programs.
Values, v, are constants or function names, but not variables
x. Heaps, H, are sequences of de�nitions, for both normal
variables and for function names. The variables de�ned in
a heap must be distinct; in our semantics we implicitly use
alpha conversion when necessary to achieve this. If a heap

H de�nes variables z1; : : : ; zn with types t1; : : : ; tn, then eH
is de�ned to be the sequence of declarations t1 z1; : : : ; tn zn.

It is sometimes convenient to use eH where we would use D,
although, strictly speaking, some of the zi will be function
names, contrary to the de�nition of D.

Our new syntax requires some new typing rules, pre-
sented below. We assume that there is a distinguished func-

tion name, main, and for declarations D we de�ne D̂ to
be the environment outermost(int main(); �); D. The
name main is not permitted anywhere else. Additionally, we
extend Cyclone type environments as follows:

E ::= � � � j return(t); E

This marks an expected return type, and is used in typing
the new construct, hhsiit. The environment functions, like
rtype(E), are extended in the obvious way.

E ` e : t (e has type t)

return(t); E ` s

E ` hhsiit : t

E ` f : t if Evis(f) = t

D ` H (H is a well-formed heap)

D ` �

D̂ ` v : t; D ` H

D ` H;d = v
d = (t x) 2 D

outermost(t f(D0
); � ); D ` s

D ` H

D ` H; t f(D0) s
where D(f) = t �fD0

` H; s (H; s is a well-formed program)

eH ` H; êH ` s

` H; s

The evaluation contexts for Cyclone are given in Fig-
ure 11. We need about four times the number of contexts
as usual, because Cyclone distinguishes statements from ex-
pressions, and because we have both normal evaluation and
evaluation under templates. For example, the context SE[�]
becomes a statement when its hole is �lled by an expres-
sion, and the context SS[�] becomes a statement when its
hole is �lled by a statement. Similarly, the context TES[�]
becomes an expression when its hole is �lled by a statement;
the \T" contexts are meant to be used within templates.
Fortunately, the variations between the di�erent classes of
evaluation context are small.

Our rewriting semantics is de�ned by identifying \re-
dexes," which are the syntactic subterms where rewriting
will take place. We have two kinds of redexes, expression
redexes and statement redexes. The expression redexes are:

� x

� v0(v1,: : :,vn)

� x = v

� hhfgiit

� codegen(t x(D) s)

� fill(v)

The statement redexes are:

� v;

� d = v;

� f fg s � � � g

� if (v) s1 s2

� while (e) s

� return v;

� splice s

� cut fg

The evaluation contexts are used to specify which redex
in a program should be evaluated �rst; that is, they give the
evaluation order. The following lemma (easily proved by
induction) shows that our evaluation contexts and redexes
exactly capture all of the cases we will need to consider to
de�ne a complete, deterministic evaluation relation.

Lemma. For any statement s, exactly one of the following
cases holds:

� there is a unique context SS[�] such that s = SS[s0],
where s0 is a statement redex;

� there is a unique context SE[�] such that s = SE[e],
where e is an expression redex; or
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m ::= (t1, : : : , tn) t ::= b m1 � � � mn

d ::= t x D ::= d1; : : : ; dn

v ::= c j f H ::= � j H;d = v j H; t f(D) s

s ::= e; s ::= e;
j d = e; j d = e;
j f s1 � � � sn g j f s1 � � � sn g

j if (e) s1 else s2 j if (e) s1 else s2
j while (e) s j while (e) s
j return e; j return e;
j splice s j splice s
j cut s

e ::= x e ::= x
j c j c
j f j f
j e0(e1, ...,en) j e0(e1, ...,en)
j x = e j x = e
j hhsiit j hhsiit
j codegen(t x(D) s) j codegen(t x(D) s)
j fill(e)

Figure 10: Grammars for Cyclone's operational semantics

SE[�] ::= SS[�] ::= [�]
EE[�]; j ES[�];

j d = EE[�]; j d = ES[�];
j f SE[�] s1 � � � sn g j f SS[�] s1 � � � sn g
j if (EE[�]) s1 s2 j if (ES[�]) s1 s2

j return EE[�]; j return ES[�];
j cut SE[�] j cut SS[�]

EE[�] ::= [�] ES[�] ::=
j EE[�](e1 , : : : , en) ES[�](e1 , : : : , en)

j v(v0, : : : , EE[�] , e, : : :) j v(v0, : : : , ES[�] , e, : : :)

j x = EE[�] j x = ES[�]
j hhSE[�]iit j hhSS[�]iit
j codegen (t x(D) TSE[�]) j codegen (t x(D) TSS[�])
j fill(EE[�]) j fill(ES[�])

TSE[�] ::= TEE[�]; TSS[�] ::= TES[�];
j d = TEE[�]; j d = TES[�];
j f s � � � TSE[�] s

0 � � � g j f s � � � TSS[�] s
0 � � � g

j if (TEE[�]) s1 s2 j if (TES[�]) s1 s2

j if (e) TSE[�] s2 j if (e) TSS[�] s2

j if (e) s TSE[�] j if (e) s TSS[�]
j while (TEE[�]) s j while (TES[�]) s

j while (e) TSE[�] j while (e) TSS[�]
j return TEE[�]; j return TES[�];
j cut SE[�] j cut SS[�]

TEE[�] ::= TEE[�](e1 , : : : , en) TES[�] ::= TES[�](e1 , : : : , en)

j e0(e1, : : : , TEE[�] , en, : : :) j e0(e1, : : : , TES[�] , en, : : :)

j x = TEE[�] j x = TES[�]
j hhTSE[�]iit j hhTSS[�]iit
j fill(EE[�]) j fill(ES[�])

Figure 11: Evaluation contexts for Cyclone's operational semantics
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� s = fg.

The constructs return, cut, splice, and fillmay result
in errors depending on the context in which they execute.
The following de�nition makes the relevant conditions on
the contexts precise.

De�nition.

� A context SS[�] is in return mode if its hole does not
occur within hh�iit.

� A context SS[�] is in codegen mode if

SS[�] = SE[codegen(t x(D) SS0[�])]

where the hole of SS0[�] does not occur within cut.

� A context SE[�] is in codegen mode if

SE[�] = SE1[codegen(t x(D) SE2[�])]

where the hole of SE2[�] does not occur within cut.

Finally, the rewriting relation! is de�ned by the rewrite
rules in Figure 12. The relation rewrites a heap and state-
ment H; s. By the previous lemma and a case analysis of
the rewrite rules, we can see that there are four disjoint
possibilities:

� H; s ! H 0; s0 for some heap and statement H 0; s0;

� H; s ! error;

� H; s ! errorreturn; or

� s is the statement fg, in which case evaluation is halted
(there is no H 0; s0 such that H; s ! H 0; s0, and H; s
does not rewrite to error or errorreturn).

There are two kinds of error. Most errors are prevented
by the type system; these are simply lumped together un-
der \error." These errors include applying a function to
the wrong number of arguments, trying to apply a non-
function, using unde�ned variables, etc. There is also an
error, \errorreturn," that is not prevented by our type sys-
tem. It occurs when a function completes without executing
a return statement. In our implementation, when this hap-
pens execution halts and the error is reported to the user.
The full implementation has a few more errors of this sort,
including array bound, stack over
ow, and out of memory
errors.

The safety theorem is stated as follows.

Theorem (Safety). If ` H; s, then there is no H 0; s0 such
that H; s !� H 0; s0 ! error.

The theorem is proved by showing that types are pre-
served by each rule rewriting H; s ! H 0; s0, and by showing
that if a rule rewrites H; s ! error, then H; s is not well-
typed.
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H;SE[x] !

�
H; SE[v] if H = H1; t x = v;H2

error otherwise

H;SE[v0(v1, : : :, vn)] !

(
H;SE[hhfd1 = v1; � � �; dn = vn; sgiit]

if v0 = f and H = H1; t f(d1; : : : ; dn) s;H2

error otherwise

H;SE[x = v] !

�
H1; t x = v;H2; SE[v] if H = H1; t x = v0; H2

error otherwise

H;SE[hhfgiit] ! errorreturn

H; SE[codegen(t x(D) s)] ! H; t f(D) s[x := f ]; SE[f ] where f is a fresh function name

H; SE[fill(v)] !

�
H; SE[v] where SE[�] is in codegen mode
error otherwise

H;SS[v;] ! H;SS[fg]

H;SS[d = v;] ! H;d = v; SS[fg]
where the variable of d does not appear in H

H;SS[f fg s � � � g] ! H;SS[f s � � � g]

H;SS[if (v) s1 s2] !

�
H; SS[s2] if v = 0
H; SS[s1] otherwise

H;SS[while (e) s] ! H;SS[if (e) f s while (e) s g fg]

H; SS[return v;] !

�
H; SE[v] if SS[�] = SE[hhSS0[�]iit], and SS0[�] is in return mode
errorreturn otherwise

H;SS[splice s] !

(
H;SS1[f s cut SS2[fg] g] if SS[�] = SS1[cut SS2[�]];

where SS1[�] is in codegen mode
error otherwise

H;SS[cut fg] !

�
H; SS[fg] if the hole of SS[�] is in codegen mode
error otherwise

Figure 12: Rewrite rules of Cyclone's operational semantics
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Abstract

Information generated by abstract interpreters has long been
used to perform program specialization. Additionally, if the
abstract interpreter generates a multivariant analysis, it is
also possible to perform multiple specialization. Informa-
tion about values of variables is propagated by simulating
program execution and performing �xpoint computations
for recursive calls. In contrast, traditional partial evalua-
tors (mainly) use unfolding for both propagating values of
variables and transforming the program. It is known that
abstract interpretation is a better technique for propagat-
ing success values than unfolding. However, the program
transformations induced by unfolding may lead to impor-
tant optimizations which are not directly achievable in the
existing frameworks for multiple specialization based on ab-
stract interpretation. The aim of this work is to devise a
specialization framework which integrates the better infor-
mation propagation of abstract interpretation with the pow-
erful program transformations performed by partial evalua-
tion, and which can be implemented via small modi�cations
to existing generic abstract interpreters. With this aim, we
will relate top-down abstract interpretation with traditional
concepts in partial evaluation and sketch how the sophisti-
cated techniques developed for controlling partial evaluation
can be adapted to the proposed specialization framework.
We conclude that there can be both practical and concep-
tual advantages in the proposed integration of partial eval-
uation and abstract interpretation.

Keywords: Logic Programming, Abstract Interpretation,
Partial Evaluation, Program Specialization.

1 Introduction

Partial evaluation [JGS93, DGT96] specializes programs for
known values of the input. Partial evaluation of logic
programs has received considerable attention [Neu90, LS91,
Sah93, Gal93, Leu97] and several algorithms parameterized
by di�erent control strategies have been proposed which pro-
duce useful partial evaluations of programs. Regarding the
correctness of such transformations, two conditions, de�ned
on the set of atoms to be partially evaluated, have been
identi�ed which ensure correctness of the transformation:
\closedness" and \independence" [LS91].

From a practical point of view, e�ectiveness, that is, �nd-
ing suitable control strategies which provide an appropriate
level of specialization while ensuring termination, is a cru-

cial problem which has also received considerable attention.
Much work has been devoted to the study of such control
strategies in the context of \on-line" partial evaluation of
logic programs [MG95, LD97, LM96]. Usually, control is di-
vided into components: \local control," which controls the
unfolding for a given atom, and \global control," which en-
sures that the set of atoms for which a partial evaluation is
to be computed remains �nite.

In most of the practical algorithms for program spe-
cialization, the above mentioned control strategies use, to
a greater or lesser degree, information generated by static
program analysis. One of the most widely used techniques
for static analysis is abstract interpretation [CC77, CC92].
Some of the relations between abstract interpretation and
partial evaluation have been identi�ed before [GCS88, GH91,
Gal92, CK93, PH95, LS96, PH97, Jon97, PGH97, Leu98].
However, the role of analysis is so fundamental that it is nat-
ural to consider whether partial evaluation could be achieved
directly by a generic, top-down abstract interpretation sys-
tem such as [Bru91, MH92, CV94]. With this question in
mind, we present a method for generating a specialized pro-
gram directly from the output (an and{or graph) of such a
generic, top-down abstract interpreter. We then explore two
main questions which arise. First, how much specialization
can be performed by an abstract interpreter, compared to
on-line partial evaluation? Second, how do the traditional
problems of local and global control appear when placed in
the setting of generic abstract interpretation? We conclude
that there seem to be practical and conceptual advantages
in using an abstract interpreter to perform program special-
ization.

2 Abstract Interpretation

Abstract interpretation [CC77] is a technique for static pro-
gram analysis in which execution of the program is simulated
on an abstract domain (D�) which is simpler than the actual,
concrete domain (D). Abstract values and sets of concrete
values are related via a pair of monotonic mappings h�; 
i:
abstraction � : D! D�, and concretization 
 : D� ! D.

We recall some classical de�nitions in logic programming.
An atom has the form p(t1; :::; tn) where p is a predicate
symbol and the ti are terms. We often use t to denote a tuple
of terms. A clause is of the form H:-B1; : : : ; Bn where H,
the head, is an atom and B1; : : : ; Bn, the body, is a possibly
empty �nite conjunction of atoms. A de�nite logic program,
or program, is a �nite sequence of clauses.

Goal dependent abstract interpretation takes as input a
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program P , a predicate symbol1 p (denoting the exported
predicate), and, optionally, a restriction of the run-time
bindings of p expressed as an abstract substitution � in the
abstract domain D�. Such an abstract interpretation com-
putes a set of triples Analysis(P; p; �;D�) = fhp1; �

c
1; �

s
1i;

: : : ; hpn; �
c
n; �

s
nig. In each triple hpi; �

c
i ; �

s
i i, pi is an atom

and �ci and �
c
i are, respectively, the abstract call and success

substitutions. Correctness of abstract interpretation guar-
antees:

� The abstract success substitutions cover all the con-
crete success substitutions which appear during exe-
cution, i.e., 8i = 1::n 8�c 2 
(�

c
i ) if pi�c succeeds in P

with computed answer �s then �s 2 
(�
s
i ).

� The abstract call substitutions cover all the concrete
calls which appear during execution. 8c that occurs in
the concrete computation of p� s.t. � 2 
(�) where p
is the exported predicate and � the description of the
initial calls of p 9hpj; �

c
j ; �

s
ji 2 Analysis(P; p; �;D�)

s.t. c = pj�
0 and �0 2 
(�cj). This property is related

to the closedness condition [LS91] required in partial
deduction.

As usual in abstract interpretation, ? denotes the abstract
substitution such that 
(?) = ;. A tuple hpj ; �

c
j ;?i in-

dicates that all calls to predicate pj with substitution � 2

(�cj) either fail or loop, i.e., they do not produce any success
substitutions.

An analysis is said to be multivariant on calls if more
than one triple hp; �c1; �

s
1i, : : : ; hp; �

c
n; �

s
ni n � 0 with �ci 6= �cj

for some i; j may be computed for the same predicate. Note
that if n = 0 then the corresponding predicate is not needed
for solving any goal in the considered class (p; �) and is
thus dead code and may be eliminated. An analysis is
said to be multivariant on successes if more than one triple
hp; �c; �s1i; : : : ; hp; �

c; �sni n � 0 with �si 6= �sj for some i; j
may be computed for the same predicate p and call sub-
stitution �c. Di�erent analyses may be de�ned with di�er-
ent levels of multivariance [VDCM93]. However, unless the
analysis is multivariant on calls, little specialization may be
expected in general. Many implementations of abstract in-
terpreters are multivariant on calls. However, most of them
(such as PLAI [MH89, MH90, MH92]) are not multivariant
on successes, mainly for e�ciency reasons. As a result, and
as we are interested in reusing existing abstract interpreters
for performing partial evaluation, we will limit in principle
our discussion to analyses which are multivariant on calls
but not on successes. Note that this is not a strong re-
striction for our purposes as traditional partial evaluation
is not multivariant on successes either. Also, code gener-
ation from an analysis which is multivariant on successes
is not straightforward. However, multivariant successes can
in fact be captured by certain abstract domains even if the
analysis is not multivariant on successes, as will be discussed
in Section 5. Note that for analyses not multivariant on suc-
cesses when hp; �c; �s1i; : : : ; hp; �

c; �sni with n > 1 have been
computed for the same predicate p and call substitution �c,
the di�erent substitutions f�s1; : : : ; �

s
ng have to be summa-

rized in a more general one (possibly losing accuracy) �s

before propagating this success information. This is done
by means of the least upper bound (lub) operator.2

1Extending the framework to sets of predicate symbols is trivial.
2
D� is a poset.

r(X)

p(X)

r(a)q(a).

q(X)

p(A)

{X/a}

{} {A/a}

{X/a}{} {X/a}

{} {}{}{}

Figure 1: And{or analysis graph

In our case, in order to compute Analysis(P; p; �;D�),
an and{or graph AO(P; p; �;D�) is constructed which en-
codes dependencies among the di�erent triples. Such and{or
graph can be viewed as a �nite representation of the (possi-
bly in�nite) set of and{or trees explored by the (possibly in-
�nite) concrete execution [Bru91]. Finiteness of the and{or
graph (and thus termination of analysis) is achieved by con-
sidering abstract domains with certain characteristics (such
as being �nite, or of �nite height, or without in�nite ascend-
ing chains) or by the use of a widening operator [CC77]. If
it is clear in the context, we will often write AO instead of
AO(P; p; �;D�) for short.

Example 2.1 Consider the simple example program be-
low taken from [Leu97].

p(X):- q(X), r(X).

q(a).

r(a).

r(b).

We take as initial (exported predicate) the goal p(A) with A
unrestricted using the concrete domain as abstract domain.
In this case, Analysis(P; p(A); fg; D) = fhp(A); fg; fA=agi;
hq(X); fg; fX=agi; hr(X); fX=ag; fX=agig and Figure 1 de-
picts a possible and{or analysis graph. 2

Due to space limitations, and given that it is now well
understood, we do not describe in detail here how to build
analysis and{or graphs. More details can be found in [Bru91,
MH90, MH92, HPMS95, PH96]. The graph has two sorts of
nodes: those which correspond to atoms (called or{nodes)
and those which correspond to clauses (called and{nodes).
Or{nodes are triples hpi; �

c
i ; �

s
i i. As before, �ci and �si are,

respectively, a pair of abstract call and success substitutions
for the atom pi. For clarity, in the �gures the atom pi is
superscripted with �c to the left and �s to the right of pi
respectively. For example, the or{node hp(A);fg; fA=agi is

depicted in the �gure as fgp(A)fA=ag. And{nodes are pairs
hId;Hi where Id is a unique identi�er for the node and H
is the head of the clause the node refers to. In the �gures,
they are represented as triangles and H is depicted to the
right of the triangles. Note that the substitutions (atoms)
labeling and{nodes are concrete whereas the substitutions
labeling or{nodes are abstract. Finally, squares are used
to represent the empty (true) atom. Or{nodes have arcs
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Algorithm 2.2 [Code Generation] GivenAnalysis(P; p; �;D�) and AO(P; p; �;D�) generated by analysis
for a program P and an atomic goal  p with abstract substitution � 2 D�, and a partial concretization
function part conc do:

� For each tuple N = ha(t); �c; �si 2 Analysis(P; p; �;D�) generate a distinct predicate with name
predN = name(ha(t); �c; �si).

� Each predicate predN is de�ned by

{ predN(t) :- fail if �s = ?

{ (predN(t1) :- b01)�1 :: : : : :: (predN(tn) :- b0n)�n otherwise
where expansion(N;AO) = ON and
children(ON ; AO) = hId1; p1(t1)i :: : : : :: hIdi; pi(ti)i :: : : : :: hIdn; p(tn)i

� Each body b0i is de�ned as

{ b0i = fail if �sik
i

= ?

{ b0i = (predi1(ti1); : : : ; predik
i
(tik

i
)) otherwise

where predij = name(haij(tij); �
c
ij ; �

s
iji), and

children(hIdi; p(ti)i; AO) = hai1(ti1); �
c
i1; �

s
i1i :: : : : :: haiki(tiki); �

c
ik
i

; �sik
i

i.

� Each substitution �i is de�ned as

{ �i = � if b0i = fail

{ �i = mgu(std(part conc(�si1)); : : : ; std(part conc(�
s
ik
i

))) otherwise

Figure 2: Algorithm for Code Generation

to and{nodes which represent the clauses with which the
atom (possibly) uni�es. And{nodes have arcs to or{nodes
which represent the atoms in the body of the clause. Note
that several instances of the same clause may exist in the
analysis graph of a program. In order to avoid con
icts
with variable names, clauses are standardized apart before
adding to the analysis graph the nodes which correspond
to such clause. This way, only nodes which belong to the
same clause may share variables. As the head of the clause
(after the standardizing renaming transformation) is stored
in the and{node, we can always reconstruct (a variant of)
the original clause when generating code from an and{or
graph (see Section 3 below).

Intuitively, analysis algorithms are just graph traversal
algorithms which given P; p; �; andD� buildAO(P; p; �;D�)
by adding the required nodes and computing success sub-
stitutions until a global �xpoint is reached. For a given
P; p; �, and D� there may be many di�erent analysis graphs.
However, there is a unique least analysis graph which gives
the most precise information possible. This analysis graph
corresponds to the least �xpoint of the abstract semantic
equations. Each time the analysis algorithm creates a new
or{node for p and �c and before computing the correspond-
ing �s, it checks whether Analysis(P; p; �;D�) already con-
tains a tuple for (a variant of) p and �c. If that is the
case, the or{node is not expanded and the already computed
�s stored in Analysis(P; p; �;D�) is used for that or{node.
This is done both for e�ciency and for avoiding in�nite
loops when analyzing recursive predicates. As a result, sev-
eral instances of the same or{node may appear in AO, but
only one of them is expanded. We denote by expansion(N)
the instance of the or{node N which is expanded. If there
is no tuple for p and �c in Analysis(P; p; �;D�), the or{
node is expanded, �s computed, and hp; �c; �si added to
Analysis(P; p; �;D�). Note that the success substitutions

�s stored in Analysis(P; p; �;D�) are tentative and may be
updated during analysis. Only when a global �xpoint is
reached the success substitutions are safe approximations of
the concrete success substitutions.

3 Code Generation from an And{Or Graph

The information in Analysis(P; p; �;D�) has long been used
for program optimization. Multiple specialization is a pro-
gram transformation technique which allows generating sev-
eral versions p1; : : : ; pn n � 1 for a predicate p in P . Then,
we have to decide which of p1; : : : ; pn is appropriate for each
call to p. One possibility is to use run-time tests to de-
cide which version to use. If analysis is multivariant on
calls but not on successes, another possibility, as done in
[Win92, PH95], is to generate code from AO(P; p; �;D�) in-
stead of Analysis(P; p; �;D�). The arcs in AO(P; p; �;D�)
allow determining which pi to use at each call. Then, each
version of a predicate receives a unique name and calls are
renamed appropriately.

After introducing some notation, an algorithm which
generates a logic program from an analysis and{or graph
is presented in Figure 2 (Algorithm 2.2). Given a non-
root node N , we denote by parent(N;AO) the node M 2

AO such that there is an arc from M to N in AO, and
children(N;AO) is the sequence of nodes N1 :: : : : :: Nn n �
0 such that there is an arc from N to N 0 in AO i� N 0 = Ni

for some i and 8i; j = 0; : : : ; n Ni is to the left of Nj in AO
i� i < j. Note that children(N;AO) may be applied both to
or{ and and{nodes. We assume the existence of an injective
function name which given Analysis(P; p; �;D�) returns a
unique predicate name for each tuple and name(hq(t); �c; �si) =
q i� q(t) = p (the exported predicate) and �c = � (the re-
striction on initial goals), to ensure that top-level { exported
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{ predicate names are preserved.

De�nition 3.1 [partial concretization] A function
part conc : D� ! D is a partial concretization i� 8� 2
D� 8�

0
2 
(�) 9�00 s.t. �0 = part conc(�)�00.

part conc(�) can be regarded as containing (part of) the def-
inite information about concrete bindings that the abstract
substitution � captures. Note that di�erent partial con-
cretizations of an abstract substitution � with di�erent accu-
racy may be considered. For example if the abstract domain
is a depth-k abstraction and � = fX=f(f(Y ))orX=f(a)g, a
most accurate part conc(�) is fX=f(Z)g. Note also that
part conc(�) = � where � is the empty substitution, is a
trivially correct partial concretization of any �.

De�nition 3.2 [specialization] Let P be a de�nite pro-
gram. Let AO(P; p; �;D�) be an and{or graph. We say that
a program P 0 is a specialization of P w.r.t. AO(P; p; �;D�)
and part conc and we denote it P 0 = spec(AO(P; p; �;D�);
part conc) i� P 0 can be obtained by applying Algorithm 2.2
to AO(P; p; �;D�) using part conc.

Basically, Algorithm 2.2 for code generation creates a dif-
ferent version for each di�erent (abstract) call substitution
�c to each predicate pi in the original program. This is easily
done by associating a version to each or{node. Note that if
we always take the trivial substitution � as part conc(�) for
any � (such as in [PH95]) then such versions are identical ex-
cept that atoms in clause bodies are renamed to always call
the appropriate version.3 The interest in performing the
proposed multiple specialization is that the new program
may be subject to further optimizations, such as elimina-
tion of redundant type/mode checks, which are allowed in
the multiply specialized program because now each version
it to be used for a more restricted set of input values than in
the original program. Additionally, in Algorithm 2.2 predi-
cates whose success substitution is ? are directly de�ned as
p(t) : �fail, as it is known that they produce no answers.
Even if the success substitution �s for hp; �c; �si is not ?,
individual clauses for p whose success substitution is ? (use-
less clauses) for the considered �c are removed from the �nal
program.

By mgu we denote, as usual, the most general uni�er
of substitutions. std represents the result of standardizing
apart the results of part conc in order to avoid undesired
variable name clashes. Note that in Algorithm 2.2 atoms are
specialized w.r.t. answers rather than calls, as is the case in
traditional partial evaluation. This will in general provide
further specialized (and optimized) programs as in general
the success substitution (which describes answers) computed
by abstract interpretation is more informative (restricted)
than the call substitution. However, this cannot be done for
example if the program contains calls to extra-logical pred-
icates such as var/1. Other more conservative algorithms
can be used for such cases and for programs with side-e�ects.
Using Algorithm 2.2 it is sometimes possible to detect in�-
nite failures of predicates and replace predicate de�nitions
and/or clause bodies by fail, which is not possible in par-
tial evaluation, as the number of unfolding steps must be
�nite. Additionally, as mentioned above, dead code, i.e.,
clauses not used to solve the considered goal, are removed.

Note that Algorithm 2.2 is an improvement over the
code-generation phase of [PH95, PH97] in that it allows
applying non-trivial partial concretizations of the abstract

3The program obtained in this way is program0 in the notation
of [PH95].

r(X)

r(a)

q(X)

p(A)
{} {A/a}

{} {X/a}

{} {}{} {}

{X/a}

q(a)

{X/a}

p(X)

q(X)

q(Y)
{Y/a}{}

q(Y)

Figure 3: And{or analysis graph for a recursive program

(success) substitutions. The program obtained by Algo-
rithm 2.2 can then be further optimized by applying the
notion of abstract executability as presented in [PH97], which
reduces an atom w.r.t. an abstract substitution.

Theorem 3.3 Let AO(P; p; �;D�) be an analysis and{or
graph for a de�nite program P and an atomic goal  p
with the abstract call substitution � 2 D�. Let P 0 be the
program obtained from AO(P; p; �;D�) by Algorithm 2.2.
Then 8�c s.t. �c 2 
(�)

i) p�c succeeds in P 0 with computed answer �s i� p�c
succeeds in P with computed answer �s.

ii) if p�c �nitely fails in P then p�c �nitely fails in P 0.

Thus, both computed answers and �nite failures are pre-
served. However, the specialized program may fail �nitely
while the original one loops (see Example 4.2).

4 And{Or Graphs Vs. SLD Trees

It is known [LS96] that the propagation of success informa-
tion during partial evaluation is not optimal compared to
that potentially achievable by abstract interpretation.

Example 4.1 Consider the program of Example 2.1. The
program obtained by applying Algorithm 2.2 to the and{or
graph in Figure 1 is:

p(a):- q(a), r(a).

q(a).

r(a).

Note that Algorithm 2.2 may perform some degree of
specialization even if no unfolding is performed. The infor-
mation in AO(P; p; �;D�) allows determining that the call
to r(X) will be performed with X=a and thus the second
clause for r can be eliminated. Such information can only
be propagated in partial evaluation by unfolding the atom
q(X). 2

Example 4.2 Consider again the goal and program of Ex-
ample 2.1 to which a new clause q(X):- q(X). is added for
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predicate q. The and{or graph for the new program is de-
picted in Figure 3. The dotted arc indicates that the cor-
responding or{nodes have equivalent abstract call substitu-
tion. However, the set of tuples in Analysis(P 0; p(A); fg; D)
for the current program P 0 is exactly the same as in Exam-
ple 2.1, in spite of the more involved and{or graph in this
example. The program generated for this graph by Algo-
rithm 2.2 is the following:

p(a):- q(a), r(a).

q(a).

q(a):- q(a).

r(a).

The fact that r(X) will only be called with X=a cannot be
determined by any �nite unfolding rule. Note that the origi-
nal program loops for the goal p(b) while the specialized
one fails �nitely. 2

The two examples above show that and{or graphs allow
a level of success information propagation not possible in
traditional partial evaluation, either because the unfolding
rule is not aggressive enough (Example 4.1) or because the
required unfolding would be in�nite (Example 4.2). This ob-
servation already provides motivation for studying the inte-
gration of full partial evaluation in an analysis/specialization
framework based on abstract interpretation.

In addition, the fact that such a framework can work
uniformly with abstract or concrete substitutions makes it
more general than partial evaluation and may allow perform-
ing optimizations not possible in the traditional approaches
to partial evaluation. An additional pragmatic motivation
for this work is the availability of o�-the-shelf generic ab-
stract interpretation engines such as PLAI [MH92] or GAIA
[CV94] which greatly facilitate the e�cient implementation
of analyses. The existence of such an abstract interpreter in
advanced optimizing compilers is likely, and using the ana-
lyzer itself to perform partial evaluation can result in a great
simpli�cation of the architecture of the compiler.

5 Partial Evaluation using And{Or Graphs

We have established so far that for a given abstract inter-
pretation of a program in a system such as PLAI (even in-
terpretations over very simple domains such as modes) we
can get some corresponding specialized source program with
possibly multiple versions by applying Algorithm 2.2. Cor-
rectness of abstract interpretation ensures that the set of
triples computed by analysis must cover all calls performed
during execution of any instance of the given initial goal
(p; �). This condition is strongly related to the closedness
condition of partial evaluation [LS91]. Furthermore there
are well-understood conditions and methods for ensuring
termination of an abstract interpretation.

Thus, an important conceptual advantage of formaliz-
ing partial evaluation in terms of abstract interpretation is
that two of the main concerns of partial evaluation algo-
rithms { namely, correctness and termination { are treated
in a very general and 
exible way by the general principles,
methods, and formal results of abstract interpretation. The
other important concern is the degree of specialization that
is achieved, which is determined in partial evaluation by the
local and global control. We now examine how these control
issues appear in the setting of abstract interpretation.

5.1 Global Control in Abstract Interpreta-

tion

E�ectiveness of program specialization greatly depends on
the set of atoms A = fA1; : : : ; Ang for which (specialized)
code is to be generated. In partial evaluation, this mainly
depends on the global control used. If we use the specializa-
tion framework based on abstract interpretation, the num-
ber of specialized versions depends on the number of or{
nodes in the analysis graph. This is controlled by the choice
of abstract domain and widening operators (if any). The
�ner-grained the abstract domain is, the larger the set A
will be. In conclusion, the role of so-called global control
in partial evaluation is played in abstract interpretation by
our particular choice of abstract domain and widening op-
erators (which are strictly required for ensuring termination
when the abstract domain contains ascending chains which
are in�nite { as is the case for the concrete domain).

Note that the specialization framework we propose is
very general. Depending on the kind of optimizations we are
interested in performing, di�erent domains (and widening
operators) should be used and thus di�erent A sets would
be obtained. For example, if we are interested in eliminat-
ing redundant groundness tests, our abstract domain could
in principle collapse the two atoms p(1) and p(2) into one
p(ground) since, from the point of view of the optimization,
whether p is called with the value 1 or 2 is not relevant.

While the main aim of global control is to ensure termi-
nation and to avoid generating too many super
uous ver-
sions, it may often be the case that global control (or the
domain) does not collapse two versions in the hope that
they will lead to di�erent optimizations. If this is not the
case, a minimizing step may be performed a posteriori on
the and{or graph in order to produce a minimal number of
versions while maintaining all optimizations. This was pro-
posed in [Win92], implemented in [PH95] and also discussed
in [LM95]. We intend to extend the minimizing algorithm
in [PH95] for the case of optimizations based on unfolding.

5.2 Local Control in Abstract Interpreta-

tion

Local control in partial evaluation determines how each atom
in A should be unfolded. However, in traditional frame-
works for abstract interpretation we usually have a choice
for abstract domain and widening operators, but no choice
for local control is o�ered. This is because by default, in
abstract interpretation each or{node is related by just one
(abstract) unfolding step to its children. This corresponds to
a trivial local control (unfolding rule) in partial evaluation.

Unfolding is a well known program transformation tech-
nique in which an atom in the body of a clause, which can be
seen as a call to a procedure, is replaced by the code of such
procedure. We now introduce the notion of node-unfolding
which is a graph transformation technique which given an
and{or graph AO and an or{node N in AO builds a new
and{or graph AO0. Such graph transformation mimics the
e�ect of unfolding an atom in a program.

De�nition 5.1 [clause-unfolding]
Let A = hId;Hi be an and{or node in AO(P; p; �;D�)

s.t. children(A;AO) = L1 :: : : : :: N :: : : : Lm with m � 1
and N = ha; �c; �si. Let also C = HC :- B1; : : : ; Bn be a
clause in program P whose head HC uni�es with atom a.
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Figure 4: Example Node Unfoldings

The clause-unfolding of A and N w.r.t. C, denoted
cl unf(A;N;C), is the (partial) and{or graph AO0 with
root A0 = hId;H�i such that � is a mgu of a and HC and
children(A0; AO0) = L0

1 :: : : : :: N1 :: : : : Nn :: : : : L0
m.

Each or-node Nj is of the form hBj ; �
c
j ; �

s
ji, where

�cj and �sj have to be computed by the analysis algo-
rithm as usual. Provided that Li = hpi; �

c
i ; �

s
i i then,

L0
i = hpi�; Aadd(�; �

c
i); Aadd(�; �

s
i )i where Aadd(�; �) up-

dates the abstract substitution � by conjoining it with the
concrete substitution � (see for example [HPMS95]). A dis-
cussion on the e�ects of performing such conjoining (accu-
racy vs. e�ciency) can be found in Section 5.3.

As usual, mgu denotes a most general uni�er, in this case
of two atoms. Clause-unfolding mimics the e�ect of an SLD
resolution step.

De�nition 5.2 [node-unfolding]
Let N = ha; �c; �si be a non-empty or{node in AO. Let

C1 :: : : : :: Cn n � 1 be the sequence of standardized apart
clauses in program P s.t. a uni�es with the head of Ci. Let
parent(N;AO) = A, and let parent(A;AO) = GP with
children(GP;AO) = P1 :: : : : :: A :: : : : Pi, i � 1.

The node-unfolding of AO w.r.t. N , denoted node-
unfolding(AO;N) is the and{or graph AO0 obtained from
AO by making children(GP;AO0) be P1 :: : : : ::
cl unf(A;N;C1) :: : : : :: cl unf(A;N; Cn) :: : : : Pi and elim-
inating nodes A and N .

Node unfolding is achieved by performing clause-
unfolding with all clauses in the program whose head uni�es
with the unfolded atom.

Theorem 5.3 [node-unfolding] Let AO(P; p; �;D�) be a
(partially computed) and{or graph. Let part conc be a par-
tial concretization function, let PAO = spec(AO(P; p; �;D�);

part conc). Let N be an or{node in AO, let AO0 = node-
unfolding(AO;N), and let P 0 = spec(AO0; part conc). Then
8�c s.t. �c 2 
(�)

i) p�c succeeds in P 0 with computed answer �s i� p�c
succeeds in PAO with computed answer �s.

ii) if p�c �nitely fails in PAO then p�c �nitely fails in P 0.

Theorem 5.3 guarantees correctness of node-unfol�ng as
it states that performing node-unfolding on an and{or graph
preserves computed answers and �nite failures.

Example 5.4 Reconsider the program of Example 2.1 in
which an additional clause q(b). has been added to predi-
cate q. The new analysis graph generated without perform-
ing any node-unfolding is shown in Figure 4 as AO, using
the concrete domain as abstract domain and the most spe-
ci�c generalization (msg) as lub operator for summarizing
di�erent success substitutions into one. As discussed in Sec-
tion 5.5 below, the msg is a rather crude lub operator.
However, we use it for the sake of clarity of the example.
AO0 is an analysis graph for the same program but this time
the or{node hq(X); fg; fgi has been unfolded. Finally, graph
AO00 in the �gure is the result of applying node-unfolding
twice to AO0, once w.r.t. hp(a); fg; fgi and another one w.r.t
hp(b); fg; fgi. The code generated by spec(AO00; part conc)
(for any part conc) is the program:
p(a).

p(b).

5.3 Strategies for Local Control

Several possibilities exist in order to overcome the simplicity
of the local control performed by abstract interpretation:
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1. According to many authors, [Gal93, LM96] global con-
trol is much harder than local control. Thus, one pos-
sibility is to obtain AO using the traditional analysis
algorithm. Subsequent unfolding spec(AO; part conc)
can be done using traditional unfolding rules in order
to eliminate determinate calls or some non-recursive
calls, for example. The and{or analysis graph AO may
be of much help in order to detect such cases.

2. A second alternative it to use abstract domains for
analysis which allow propagating enough information
about the success of an or{node so as to perform use-
ful specialization on other or-nodes. This requires that
the lub operator not lose \much" information, for ex-
ample by allowing sets of abstract substitutions. The
advantage of this method is that no modi�cation of the
abstract interpretation framework is required. Also, as
we will see in Example 5.5, it may allow specializations
which are not possible by the methods proposed below
(nor by traditional partial evaluation).

3. Another possibility is a simple modi�cation to the al-
gorithm for abstract interpretation in order to accom-
modate a node-unfolding rule. In this approach, if the
node-unfolding rule decides that an or{node N in a
graph AO should not be unfolded, then N is treated
as in the traditional abstract interpretation algorithm.
If the rule decides that N should be unfolded, AO0 =
node-unfolding(AO;N) is computed and analysis con-
tinues for the new graph AO0. Note that in order to
unfold N it is not required to know its success substi-
tution. Thus, the graph transformation associated to
an unfolding is merely structural and can be performed
before or after computing the and{or graph below N .
If decisions on unfolding are taken before computing
the nodes below N , the unfolding rule corresponds to
those used in partial evaluation: only the history of
nodes higher in the top-down algorithm is available
for deciding whether to unfold or not. However, we
can delay this decision until the graph below N has
been computed. This allows making better decisions
as also the specialization history of atoms lower in the
hierarchy is known.

In the latter case, if N is not the leftmost atom in its
clause and the abstract domain is downwards closed,
there is a choice of whether to apply the (sequence
of) success substitution(s) for N to the sibling nodes
L1 :: : : : :: Lk to the left of N (i.e., to perform left
propagation) and reanalyze such nodes with the bet-
ter information or not. Both alternatives are correct.
The second alternative may allow better analysis and
specialization, but at a higher computational cost.

4. The last possibility we propose is to �rst compute AO
with a trivial unfolding rule (i.e., using the traditional
abstract interpretation algorithm). Once analysis has
�nished, further unfolding may be performed if de-
sired, as done in the �rst alternative proposed. How-
ever, unlike the �rst approach, rather than performing
unfolding externally to the analysis and without mod-
ifying the analysis graph, whenever an unfolding step
is performed for a node N in AO, a new analysis graph
AO0 = node-unfolding(AO;N) is computed.

This approach can be seen as an extreme case of de-
laying node-unfolding, not only until the graph be-

low N has been computed (as mentioned in the third
approach) but rather until a global �xpoint has been
reached for the whole analysis graph. The di�erence
with the third approach is that there, unfolding is com-
pletely integrated in abstract interpretation and the lo-
cal control decisions are taken when performing analy-
sis and as mentioned before, the only issue is whether
to perform left propagation of bindings or not. The
advantage over the previous approach is that unfold-
ing is performed once the whole analysis graph has
been computed. The bene�ts of the availability of such
better information for local control still have to be ex-
plored. The disadvantage is that in order to achieve as
accurate information as possible it may be required to
perform reanalysis in order to propagate the improved
information introduced due to the additional unfolding
steps, i.e., using hpi�; Aadd(�; �

c
i ); Aadd(�; �

s
i )i instead

of hpi; �
c
i ; �

s
i i for the nodes to the right of the unfolded

node, with the associated computational cost. This
cost could however be kept quite reasonable by the
use of incremental analysis techniques such as those
presented in [HPMS95, PH96].

Example 5.5 Consider the following program and the goal
 r(X)

r(X) :- q(X),p(X).

q(a).

q(f(X)) :- q(X).

p(a).

p(f(X)) :- p(X).

p(g(X)) :- p(X).

The third clause for p can be eliminated in the specialized
program for  r(X), provided that the call substitution for
p(X) (i.e., the success substitution for q(X)) contains the
information that X=a or X=f(Y). The abstract domain has
to be precise enough to capture, in this case, at least the set
of principal functors of the answers.

Note that no partial evaluation algorithm based on un-
folding will be able to eliminate the third clause for p, since
an atom of form p(X) will be produced, no matter what local
and global control is used.4 Thus, simulating unfolding in
abstract interpretation (such as methods 1, 3, and 4 above
do) will not achieve this specialization either. An approach
such as 2 is required. 2

5.4 Abstract Domains and Widenings for

Partial Evaluation

Once we have presented the relation between abstract do-
mains and widening with global control in partial evaluation,
in this section we discuss desired features for performing par-
tial evaluation. Ideally, we would like that

� The domain can simulate the e�ect of unfolding, which
is the means by which bindings are propagated in par-
tial evaluation. Our abstract domain has to be capable
of tracking such bindings. This suggests that domains
based on term structure are required.

� In addition, the domain needs to distinguish, in a
single abstract substitution, several bindings result-
ing from di�erent branches of computation in order

4Conjunctive partial deduction [LSdW96] can solve this problem
in a completely di�erent way.

81



to achieve the approach 2 for local control. A term
domain whose least upper bound is based on the msg
(most speci�c generalization), for instance, will rapidly
lose information about multiple answers since all sub-
stitutions are combined into one binding.

Two examples of classes of domain which have the above
desirable features are:

� The domain of type-graphs [BJ92], [GdW94], [HCC94].
Its drawback is that inter-argument dependencies are
lost.

� The domain of sets of depth-k substitutions with set
union as the least upper bound operator. However uni-
form depth bounds are usually either too imprecise (if
k is too small) or generate much redundancy if larger
values of k are chosen.

One way to eliminate the depth-bound k in the abstract
domain it to depend on a suitable widening operator which
will guarantee that the set of or{nodes remains �nite. Many
techniques have been developed for global control of partial
evaluation. Such techniques make use of data structures
which are very related to the and{or analysis graph such
as characteristic trees [GB91], [Leu95] (related to neighbor-
hoods [Tur88]), trace-terms [GL96], and global trees [MG95],
and combinations of them [LM96]. Thus, it seems possible
to adapt these techniques to the case of abstract interpreta-
tion and formalize them as widening operators.

6 Related Work

The integration of partial evaluation and abstract interpre-
tation has been attempted before, both from a partial eval-
uation and abstract interpretation perspective. In [GCS88,
Gal92] such an integration is attempted from the point of
view of partial evaluation. However, the approach is only
partially successful as the resulting specialization framework
does not exploit the full power of abstract interpretation.
Another attempt for functional rather than logic programs
is presented in [CK93].

From an abstract interpretation perspective, the integra-
tion has also received considerable attention. In [GH91], ab-
stract interpretation is used to perform multiple specializa-
tion in an ad-hoc way. Also in [GH91] the notion of abstract
executability is presented (and later formalized in [PH97])
and applied to remove redundant builtin checks. The �rst
complete framework for multiple specialization based on ab-
stract interpretation is presented in [Win92]. The �rst im-
plementation and experimental evaluation is presented in
[PH95] together with a framework based on existing ab-
stract interpreters. All these techniques, even though they
allow important specializations often not achievable by par-
tial evaluation, are not designed for performing unfolding,
which is one of the basic optimization techniques used by
partial evaluators.

On the other hand, the drawbacks of traditional partial
evaluation techniques for propagating success information
are identi�ed in [LS96] and some of the possible advantages
of a full integration of partial evaluation and abstract inter-
pretation are presented in [Jon97].

To the best of our knowledge, the �rst framework which
presents a full integration of abstract interpretation and par-
tial evaluation is [PGH97], on which this paper is based.

More recently, a di�erent formulation of such an integration
has been presented in [Leu98]. In this formulation a top-
down specialization algorithm is presented which assumes
the existence of an abstract unfolding function, possibly not
based on concrete unfolding, which generalizes existing al-
gorithms for partial evaluation. Rather strong conditions
are assumed over the behaviour of the abstract unfolding
function. Unfortunately, no method is given for comput-
ing interesting ones except by providing relatively simple
examples based on concrete unfolding. Also, the top-down
algorithm proposed su�ers from the same problems as tradi-
tional partial evaluation: lack of success propagation. This
problem is solved by integrating the top-down algorithm
with a bottom-up abstract interpretation algorithm which
approximates success patterns. Note that this alternative
corresponds to alternative 3 for local control (see Section 5.2,
or [PGH97]). The main di�erence is that in our approach a
single (and already existing) top-down abstract interpreta-
tion algorithm augmented with an unfolding rule performs
propagation of both the call and success patterns in an in-
tegrated fashion.

Another di�erence between the two approaches is that
[Leu98] is capable of dealing with conjunctions and not only
atoms. This allows conjunctive partial evaluation [LSdW96]
but adds an additional level of complexity to the control of
program specialization: in order to guarantee termination a
mechanism needs to be provided for deciding when and how
to split conjunctions into components. While a similar form
of conjunctive partial evaluation could be easily included in
our framework, there is another pragmatic reason for not
doing so: in general, existing abstract interpreters (and par-
tial evaluators) only analyze (specialize) atoms individually,
and we aim at reusing as much of existing analyzers as pos-
sible, an objective which is a further di�erence between our
work and [Leu98].

7 Conclusions

We have proposed an integration of traditional partial eval-
uation into standard, generic, top-down abstract interpreta-
tion frameworks. We now summarize the main conclusions
which can be derived from this work. As seen in [PH95],
a multiply specialized program can be associated to every
abstract interpretation which is multivariant on calls. Ab-
stract interpretation can be regarded as having the simple
local control strategy of always performing one unfolding
step. However, useful specialization can be achieved if the
global control is powerful enough. The global control is
closely related to the abstract domain which is used, since
this determines the multivariance of the analysis. If the ab-
stract domain is �nite (as is often the case), global control
may simply be performed by the abstraction function of the
abstract domain. However, if the abstract domain is in�-
nite (as is required for partial evaluation), global control
has to be augmented with a widening operator in order to
ensure termination. The strategies for global control used
in partial evaluation, such as those based on characteristic
trees [GB91, LD97], on global trees [MG95], and on com-
binations of both [LM96], are then applicable to abstract
interpretation. We have discussed di�erent alternatives for
introducing more powerful local unfolding strategies in ab-
stract interpretation, such as unfolding the specialized pro-
gram derived from abstract interpretation, or incorporating
unfolding into the analysis algorithm. In the latter case, it
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can be proved that the set of atoms AAI computed by ab-
stract interpretation is as good as or better approximation
of the computation than the set of atoms APE computed by
traditional on-line partial evaluation with the corresponding
global and local control, due to the better success propaga-
tion of abstract interpretation.
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Abstract

Parallel primitives (skeletons) intend to encourage program-
mers to build a parallel program from ready-made compo-
nents for which e�cient implementations are known to ex-
ist, making the parallelization process easier. However, pro-
grammers often su�er from the di�culty to choose a com-
bination of proper parallel primitives so as to construct ef-
�cient parallel programs. To overcome this di�culty, we
shall propose a new transformation, called di�usion, which
can e�ciently decompose a recursive de�nition into several
functions such that each function can be described by some
parallel primitive. This allows programmers to describe al-
gorithms in a more natural recursive form. We demonstrate
our idea with several interesting examples. Our di�usion
transformation should be signi�cant not only in develop-
ment of new parallel algorithms, but also in construction of
parallelizing compilers.

Keywords: Bird Meertens Formalisms, Data
Parallelism, Parallelization, Skeletal Parallel pro-
gramming

1 Introduction

Data parallelism is currently one of the most successful mod-
els for programming massively parallel computers, compared
with control parallelism that is explored from the control
structures [Pra92]. To support parallel programming, this
model basically consists of two parts, namely

� a parallel data structure to model a uniform collection
of data which can be organized in a way that each of
its elements can be manipulated in parallel;

� a set of parallel primitives on the parallel data struc-
ture to capture parallel skeletons of interest, which can
be used as building blocks to write parallel programs.

For instance, in the parallel language Nesl [Ble92], the par-
allel data structure is sequences, and the most important
parallel primitives on sequences are apply-to-each and scan;

and in the BMF parallel model [Bir87, Ski94], the parallel
data structure is parallel lists, and the parallel primitives
are mainly map and reduce.

This parallel model not only provides the programmer an
easily understandable view of a single execution stream of a
parallel program, but also makes the parallelization process
easier because of explicit parallelism in the parallel primi-
tives [HS86, Kar87, HL93].

Despite these promising features, the application of cur-
rent data parallel programming su�ers from a problem. Be-
cause parallel programming relies on a set of parallel primi-
tives to specify parallelism, programmers often �nd it hard
to choose proper parallel primitives and to integrate them
well in order to develop e�cient parallel programs. Con-
sider, as an example, that we want to develop an e�cient
parallel program for the bracket matching problem [Col95,
HT99]. This is a kind of language recognition problem, de-
termining whether the brackets of many types in a given
string are correctly matched. For example, the string \g +
f[o + o] � dg()" is well matched, whereas \bf[a)d]" is not.
The problem itself is so simple, but it is far from being that
simple to develop an e�cient parallel program in terms of
the speci�ed set of parallel primitives, say only with map,
reduce and scan.

Nevertheless, a simple straightforward sequential algo-
rithm still exists by using a stack. Opening brackets are
pushed, and each closing bracket is matched against the
current stack top. Failure is indicated by a mismatch, by
an empty stack when a match is required, or by a nonempty
stack at the end of the scan of the input. Thus we come to
the following naive program.

bm [ ] s = isEmpty s
bm (a : x) s = if isOpen a then bm x (push a s)

else if isClose a then
noEmpty s ^
match a (top s) ^
bm x (pop s)

else bm x s

A possible way to programming with parallel primitives
is to use the multi-pass programming method, well-known in
the sequential functional programming community [BW88].
We start by a naive speci�cation (without any concern of ef-
�ciency) of the problem by a composition of several passes so
that each pass can be described in terms of the parallel prim-
itives, and then we optimize it by correctness-preserving pro-
gram transformation. To be more concrete, an initial naive
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program in terms of the parallel primitives may be some-
thing like

prog = � � � scan (
) � reduce (�) � � �
scan (�) � map f � � �

This could be quite ine�cient if expensive operations of f ,

, � and � are used in the parallel primitives. To make it
e�cient, in the sequential programming we can adopt the fu-
sion (deforestation) transformation [Wad88, Chi92] to merge
several passes into a single pass resulting in a compact re-
cursive program; but in the parallel programming we cannot
do so easily. The major di�culty lies in the primitive-closed
requirement that the fusion of two primitives should give
a primitive again. In fact, it is known to be hard to es-
tablish a set of e�cient calculational rules for such kind of
fusion transformation [Bir87], and to construct a suitable
cost model to guide derivation of e�cient parallel programs
[Ski94].

In this paper, we shall propose a new transformation,
called di�usion, to calculate e�cient parallel programs in
terms of a �xed set of parallel primitives. In contrast to the
well-known fusion transformation, di�usion e�ciently de-
composes a recursive de�nition into several functions such
that each function can be described using a parallel prim-
itive, allowing programmers to de�ne their algorithms in a
natural recursive form. We shall adopt Bird Meertens For-
malisms as our abstract parallel computation model [Bir87,
Ski94]. Our main contributions are as follows.

� We propose a novel theorem for di�usion transforma-
tion (Section 3.1) in a calculational form [THT98].
Our di�usion theorem integrates the existing paral-
lelization technique [HTC98], and generalizes the well-
known homomorphism lemma [Bir87, Col95], with a
nice use of scan to deal with accumulating parameters
in recursive de�nitions.

� Our di�usion transformation can be applied to a wide
class of recursive de�nitions. In fact, the recursive
form in the di�usion theorem is very natural in its
own right. Moreover, as illustrated in derivation of
an e�cient parallel program for bracket matching in
Section 3.2, if combined with the normalization algo-
rithm [HTC98] which is based on fusion and tupling
calculation, a wider class of recursive de�nitions can
be turned into the form to which our di�usion theo-
rem can be applied.

� We highlight how to generalize our idea from recursive
de�nitions on lists to those on other data structures
like trees. This indicates a new way to do parallel pro-
gramming e�ciently over trees or more general data
structures, which has been argued to be important but
di�cult in data parallel programming [NO94, KC98].

In summary, our di�usion theorem provides a signi�cant
guide for both parallel programming by hand and automatic
parallelization by machine. If a recursive de�nition is in the
required form to which our di�usion theorem can be applied,
then it can be automatically parallelized into a set of e�cient
parallel primitives.

The organization of this paper is as follows. In Section
2, we review the notational conventions and some basic con-
cepts used in this paper, and explain the existing problem

of parallel programming in Bird Meertens Formalisms. We
propose our idea of di�usion transformation in Section 3,
and generalize the idea to be applicable to functions on data
structures other than lists in Section 4. Related work and
discussions are given in Section 5.

2 BMF and Parallel Computation

In this section, we brie
y review the notational conventions
and some basic concepts in Bird Meertens Formalisms (BMF
for short) [Bir87, Ski94], and point out some related results
which will be used in the rest of this paper.

Function application is denoted by a space and the ar-
gument which may be written without brackets. Thus f a
means f (a). Functions are curried, and application asso-
ciates to the left. Thus f a b means (f a) b. Function ap-
plication binds stronger than any other operator, so f a� b
means (f a) � b, but not f (a � b). Function composition
is denoted by a centralized circle �. By de�nition, we have
(f � g) a = f (g a). Function composition is an associative
operator, and the identity function is denoted by id. In�x
binary operators will often be denoted by �;
 and can be
sectioned ; an in�x binary operator like � can be turned into
unary functions by

(a�) b = a� b = (� b) a:

Besides, function zip which will be used later is informally
de�ned by:

zip [x1; x2; : : : ; xn] [y1; : : : ; yn] = [(x1; y1); : : : ; (xn; yn)]:

Lists are �nite sequences of values of the same type. A
list is either empty, a singleton, or the concatenation of two
other lists. We write [ ] for the empty list, [a] for the sin-
gleton list with element a (and [�] for the function taking
a to [a]), and x ++ y for the concatenation of two lists x
and y. Concatenation is associative, and [ ] is its unit. For
example, the term [1] ++ [2] ++ [3] denotes a list with three
elements, often abbreviated to [1; 2; 3]. We also write a : xs
for [a] ++xs.

2.1 BMF: An Architecture Independent Parallel
Model

It has been argued in [Ski90] that BMF [Bir87] is a nice
architecture-independent parallel computation model, con-
sisting of a small �xed set of speci�c higher order functions
which can be regarded as parallel primitives suitable for par-
allel implementation. Three important higher order func-
tions are map, reduce and scan.

Map is the operator which applies a function to every
element in a list. It is written as an in�x �. Informally, we
have

k � [x1; x2; : : : ; xn] = [k x1; k x2; : : : ; k xn]:

Reduce is the operator which collapses a list into a sin-
gle value by repeated application of some associative binary
operator. It is written as an in�x =. Informally, for an asso-
ciative binary operator �, we have

�= [x1; x2; : : : ; xn] = x1 � x2 � � � � � xn:
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Scan is the operator that accumulates all intermediate
results for computation of reduce. Informally, for an asso-
ciative binary operator � with an unit ��, we have

��== [x1; x2; : : : ; xn]
= [��; x1; x1 � x2; : : : ; x1 � x2 � � � � � xn]:

It has been shown that map, reduce and scan have nice
massively parallel implementations on many architectures
[Ski90, Ble89]. If k and an associative � use O(1) parallel
time, then k� can be implemented using O(1) parallel time,
and both �= and ��== can be implemented using O(logN)
parallel time (N denotes the size of the list). For example,
�= can be computed in parallel on a tree-like structure with
the combining operator � applied in the nodes, while k� is
computed in parallel with k applied to each of the leaves.
The study on e�cient parallel implementation of ��== can be
found in [Ble89], though it is not so obvious.

A similar model to BMF that sounds more practical to
use is the parallel functional language called Nesl [Ble92]
that includes two principle parallel primitives, namely apply-
to-each (like map) and scan.

2.2 Simple Di�usion: the Homomorphism Lemma

List homomorphisms (or homomorphisms for short) [Bir87]
are those recursive functions on �nite lists that promote
through list concatenation. A function h satisfying the fol-
lowing equations is called a list homomorphism:

h [a] = k a
h (x++y) = h x � h y

where � is an associative binary operator. We write ([k;�])
for the unique function h. For example, the function sum,
for summing up all elements in a list, can be de�ned as a
homomorphism of ([id;+]).

The relevance of homomorphisms to parallel program-
ming is basically from the homomorphism lemma [Bir87]:

([k;�]) = (�=) � (k�)

saying that every list homomorphism can be di�used to be
the composition of a reduce and a map. It follows that if
we can derive list homomorphisms, then we can get corre-
sponding parallel programs. Though being so simple, the
homomorphism lemma plays an important role to bridge
the gap between programs in recursive form and programs
in compositional form, and it has led to surprisingly many
good results [Gor96a, Gor96b, HIT97, HTC98]. The major
reason is that list homomorphisms provide us a new inter-
face to develop parallel programs.

The importance of using a recursion instead of map and
reduce in parallel programming has greatly motivated us to
study this simple di�usion in a more general and practical
manner.

2.3 Limitation of the Simple Di�usion

The homomorphism lemma, a simple di�usion transforma-
tion, is nice, but a closer look at the lemma reveals a practi-
cal limitation in the case where the result of the application
of ([k;�]) to a list returns a function instead of a basic value.

Take a look at the following homomorphism h for psums
(computing the pre�x sums of a list) derived in [HTC98].

psums : [Int]! [Int]
psums x = s where (s; g) = h x 0
h [a] c = ([c+ a]; a)
h (x++ y) c = let (sx; gx) = h x c

(sy ; gy) = h y (c + gx)
in (sx ++ sy ; gx + gyx)

Function h can be described in a more explicit homomorphic
way by

h : [Int]! (Int! [Int])
h = ([k;�])

where
k a = �c: ([c+ a]; a)
hx � hy = �c: let (sx; gx) = hx c

(sy ; gy) = hy (c+ gx)

in (sx ++ sy; gx + gy)

The problem lies in the de�nition for � where hx and hy
are functions. As indicated by the underlined parts above,
the computation of hy cannot be performed until it receives
gx, one of the results from the computation of hx. Thus, a
naive implementation of such � may lead to a big function-
closure, resulting in a sequential program. So we need to
study carefully this dependency re
ected in the use of accu-
mulating parameter (like c used in h) in the initial de�nition
(for h).

Another practical concern [Gor96a, CTT97, HTC98] is
that de�ning a function, say h, over join lists (as we do with
list homomorphism) like

h [a] c = :::
h (x++ y) c = :::

is much more di�cult than doing over cons lists like

h [ ] c = :::
h (a : x) c = :::

Fortunately, with the technique of parallelization transfor-
mation [HTC98], we are able to allow functions to be de�ned
in the latter easier form which will be handled later by our
proposing di�usion.

3 Di�usion

Di�usion is a transformation turning a recursive de�nition
into a composition of our higher order functions, namely
map, reduce and scan. To be useful, our proposing di�u-
sion transformation should satisfy the following two require-
ments.

� First, the di�usion transformation should be powerful
enough to be applied to a wide class of recursive forms
of interest.

� Second, the result parallel programs should be e�-
cient, in the sense that if the original program uses t
sequential time, then the derived parallel one should
take at most O(logN) times of the sequential time.
Here and after, we often use N to denote the size of
the input list.
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3.1 Di�usion Theorem

To meet our requirements, we should carefully choose proper
recursive forms to di�use We will be generous with paper
space to show how we reach our target form in this section.

The simplest form: di�used to reduce

We start by considering the following most natural and sim-
plest recursive form de�ned over the cons lists:

h [ ] = e
h (a : x) = a � h x:

Here, by choosing suitable e and �, we are able to de-
�ne many functions of our interest. This kind of de�nition
should be familiar enough to the functional programming
community, which is known to be catamorphism [MFP91]
or foldr in Haskell. To di�use this recursive form into our
parallel primitives, we require � to be associative, and thus
have

h x = (�=x) � e:

The correctness of this simple di�usion is obvious, and
the e�ciency requirement is satis�ed: the sequential pro-
gram uses O(N � t�) sequential time while the derived ver-
sion use O(logN � t�) parallel time, where t� denotes the
time to compute �.

The form with computation on elements: di�used
to reduce and map

We, however, should not be satis�ed with the power of the
simplest form. Even for the following simple function for
squaring each element of a list

sqrs [ ] = [ ]
sqrs (a : x) = sqr a : sqrs x

we cannot di�use it, because the � here is de�ned by

a� b = sqr a : b

which is not associative since a and b have the di�erent
types. Nevertheless, with the normalization algorithm given
in [HTC98], we can turn the second equation of sqrs to

sqrs (a : x) = [sqr a] ++ sqrs x:

Here ++ is an associative operator used to combine a com-
putation on a with the recursive part, as indicated by the
underlined parts. In fact we can and should allow such com-
putation on a. This leads to the following improved recursive
form, permitting a computation on a by any function k.

h [ ] = e
h (a : x) = k a � h x

This recursion can be di�used into the following if � is as-
sociative.

h x = ((�=) � k�) x � e

If e is the unit of �, this can be reduced to

h = (�=) � k�

which is the same as the homomorphism lemma except that
h is de�ned as a recursion on cons lists rather than that on
join lists.

The form with accumulating parameters: di�used
to reduce, map and scan

After discussing the two recursive forms that can be di�used,
we are ready to solve the problem in Section 2.3, in which h is
a function whose application to a list still gives a function.
To simplify our presentation, we shall focus ourselves on
those the functions that have an accumulating parameter as
in the following recursive form.

h : [I]! A! O
h [ ] c = g1 c
h (a : x) c = k(a; c) � h x (c
 g2 a)

Note that h has two parameters; the �rst is the inductive
one and the second is the accumulating one. This recursive
form extends the above second one with an accumulating
parameter. To be speci�c, the computation on element a
can include the use of the accumulating parameter c, and the
accumulating parameter in the recursive call can be updated
with a combination of some computation on a using a binary,
associative operator 
.

We need to deal with such additional accumulating pa-
rameter c. Our idea is to remove it from the recursion by
precomputation. We make the accumulating parameter look
like a constant by precomputing all the c, say cs, that will
be used during computation of h. The trick, and also an
important point here, is our use of scan, an e�cient parallel
primitive, to perform such precomputation in a parallel way:

cs = (c
) � (
�== (g2 � x)):

Now using the di�usion for the form that does not con-
tain accumulating parameters while paying attention to the
access to corresponding elements of cs, we can come up with
our di�usion theorem.

Theorem 1 (Di�usion) Given a function h de�ned in the
above recursive form, if � and 
 are associative and have
units, then h can be di�used into the following.

h x c = let cs0 ++[c0] = (c
) � (
�==(g2 � x))
ac = zip x cs0

in (�= (k � ac))� (g1 c0)

Proof : We can prove that the newly de�ned h is equivalent
to the original, by induction on the inductive parameter x,
as shown by the following calculation.

� Base case x = [ ].

h [ ] c
= f by the new de�nition g

let cs0 ++[c0] = (c
) � (
�==(g2 � [ ]))
ac = zip x cs0

in (�= (k � ac))� (g1 c0)
= f map g

let cs0 ++[c0] = (c
) � (
�==[ ])
ac = zip x cs0

in (�= (k � ac))� (g1 c0)
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= f scan g

let cs0 ++[c0] = (c
) � [�
]
ac = zip x cs0

in (�= (k � ac))� (g1 c0)
= f map, c
 �
 = c g

let cs0 ++[c0] = [c]
ac = zip x cs0

in (�= (k � ac))� (g1 c0)
= f by pattern matching: cs0 = [ ]; c = c0 g

let e = g1 c
ac = zip x [ ]

in (�= (k � ac))� (g1 c0)
= f zip, let g

(�= (k � [ ]))� (g1 c)
= f map, � g

�� � (g1 c)
= f �� is a unit of � g

g1 c

� Inductive case x = a : x0.

h (a : x0) c
= f by the new de�nition g

let cs0 ++[c0] = (c
) � (
�==(g2 � (a : x
0)))

ac = zip x cs0

in (�= (k � ac))� (g1 c0)
= f map g

let cs0 ++[c0] = (c
) � (
�==(g2 a : g2 � x
0))

ac = zip x cs0

in (�= (k � ac))� (g1 c0)
= f de�nition of scan [Bir87] g

let cs0 ++[c0] = (c
) � (�
 : (g2 a
)�

�== (g2 � x

0))
ac = zip x cs0

in (�= (k � ac))� (g1 c0)
= f map, associativity of 
 g

let cs0 ++[c0] = c : ((c
 g2 a)
) � (
�==(g2 � x
0))

ac = zip x cs0

in (�= (k � ac))� (g1 c0)
= f ((c
 g2 a)
) � (
�==(g2 � x0)) is not empty g

let cs" ++ [c"] = ((c
 g2 a)
) � (
�==(g2 � x
0))

ac = zip (a : x0) (c : cs")
in (�= (k � ac))� (g1 c")

= f zip g

let cs" ++ [c"] = ((c
 g2 a)
) � (
�==(g2 � x
0))

ac" = zip x0 cs"
ac = (a; c) : ac"

in (�= (k � ac))� (g1 c")
= f map, � g

let cs" ++ [c"] = ((c
 g2 a)
) � (
�==(g2 � x
0))

ac" = zip x0 cs"
in k(a; c)� (�= (k � ac"))� (g1 c")

= f let, associativity of � g

k(a; c) �
let cs" ++ [c"] = ((c
 g2 a)
) � (
�==(g2 � x

0))
ac" = zip x0 cs"

in (�= (k � ac"))� (g1 c")
= f inductive hypothesis g

k(a; c)� h x0 (c� g2 a)
2

Note that we use the matching notation of cs0 ++[c0] to
extract the leading part and the last element from a list. It
is not di�cult to check that this di�usion indeed meets our
requirements as given at the beginning of this section.

To see a simple use of this theorem, consider the follow-
ing function sbp to solve a simpli�ed bracket matching prob-
lem: determining whether a single type (not many types) of
brackets '(' and ')' are matched in a given string. It uses
a counter (starting with zero) to increase upon meeting '('
and to decrease upon meeting ')':

sbp [ ] c = c == 0
sbp (a : x) c = if a == '(' then sbp x (c+ 1)

else if a == ')' then
c > 0 ^ sbpx (c� 1)

else sbp x c:

Merging all recursive calls by the normalization algorithm
in [CDG96] will give

sbp [ ] c = g1 c
sbp (a : x) c = k(a; c) ^ sbp x (c+ g2 a)

where

g1 c = c == 0
k(a; c) = if a == '(' then True

else if a == ')' then c > 0 else True
g2 a = if a == '(' then 1

else if a == ')' then (�1) else 0

which is in the right form that the di�usion theorem can
be applied to get an e�cient parallel program for sbp. It is
worth noting that this problem was considered as a kind of
hard parallelization problem in [Col95]. By using the di�u-
sion theorem, its e�cient parallel program can be obtained
by a straightforward program calculation.

3.2 Di�usion Algorithm

Although we have argued that our recursive form is powerful
and general, user's programs may not be exactly in our form.
Therefore, we turn to �nd a way to transform more general
programs into the form that our di�usion theorem can be
applied. The di�usion algorithm is for this purpose.

We shall illustrate our algorithm by the derivation of an
explicit parallel algorithm for bracket matching in terms of
our parallel primitives from the naive program given in the
introduction.

Step 1: Linearizing Recursive Calls

It is required by the di�usion theorem that the occurrences
of the recursive call should appear once. If there are many
occurrences, we need to merge them into a single one. Recall
the de�nition of bm in the introduction. In the branch of
(a : x), there are three occurrences of the recursive call to
bm in the right hand side. We can merge them based on the
normalization algorithm [CDG96].

bm [ ] s = isEmpty s
bm (a : x) s = g1 (a; s) ^ bm x (g2 a s)

where

g1 (a; s) = if isOpen a then True
else if isClose a then

noEmpty s ^
match a (top s)

else True
g2 a s = if isOpen a then push a s

else if isClose a then pop s else s:
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Step 2: Identifying Associative Operators

Central to our di�usion theorem is the use of associativity
of the binary operators � and 
. Clearly, � should be an
associative operator over the resulting domain of function h,
while 
 is an associative operator over the resulting domain
of the accumulating parameter (e.g., s for bm).

For bm, it is easy to �nd that � is ^, but not so easy to
�nd what corresponds to 
 which is supposed to combine
two stacks, satisfying

g2 a s = s
 g02 a:

Consider the following stack we would like to use in bm:

Stack � = Empty j Push � Stack j Pop Stack

From this de�nition, we are able to systematically derive the
following associative operator 
 for combining two stacks as
shown in [SF93, HT99].

s
 Empty = s
s
 (Push a s0) = Push a (s
 s0)
s
 (Pop s0) = Pop (s
 s0)

Using this 
, we thus have

g2 a s = s
 g02 a
g02 a = if isOpen a then Push a Empty

else if isClose a then
Pop Empty else Empty:

Step 3: Applying the Di�usion Theorem

After merging recursive call occurrences and identifying as-
sociative operators, we are ready to apply the di�usion the-
orem.

For bm, it follows from the di�usion theorem that

bm x c = let cs0 ++[c0] = (c
) � (
�==(g2 � x))
ac = zip x cs0

in (^= (g1 � ac)) ^ (isEmpty c0)

Step 4: Optimizing Operators

So far we have derived a parallel program that is described in
terms of our parallel primitives. According to our cost model
for parallel primitives, we should continue to �nd e�cient
implementation for the operations like g1, g2, k, � and 

that are used in each parallel primitive to obtain a more
e�cient parallel program.

For bm, we need to show that 
 as well as the stack
operations can be implemented in O(1) parallel time if we
want an O(logN ) parallel program for bracket matching.
Notice that with the property of Pop (Push a s) = s, our
stack should, as discussed in [HT99], keep the form of

Push a1 (: : : (Push an (Pop (: : : (Pop
| {z }

m

Empty)))));

that can be naturally represented by

([a1; � � � ; an]; n;m)

Here, m denotes the number of Pop occurrences, and the
second component n is added to incrementally compute the

length of the �rst component. With this new representation,
we can re�ne all operations on stack to those using O(1)
parallel time as follows.

Empty = ([ ]; 0; 0)
isEmpty ([ ]; 0; 0) = True
isEmpty = False
Push c (cs; n;m) = ([c] ++ cs; n+ 1;m)
Pop (c : cs; n+ 1;m) = (cs; n;m)
Pop ([ ]; 0;m) = ([ ]; 0;m+ 1)

And

(cs1; n1;m1)
 (cs2; n2;m2)
= if m1 � n2 then (cs1; n1;m1 � n2 +m2)
else (cs1 ++ drop m1 cs2; n1 + n2 �m1;m2)

Function drop n x is to drop the �rst n elements from list x.
According to the fact that ++ and drop can be implemented
using constant parallel time (e.g., under the PRAM parallel
model [Ski94]), our �nal operators of 
, g1, and g2 can be
implemented using O(1) parallel time, and we thus got an
O(logN) parallel program for bracket matching.

It has been shown that the bracket matching problem
can be solved in O(logN) parallel time [GR88] where N
denotes the length of the input string, but the algorithm
involved is rather complicated and its correctness is di�cult
to prove. To resolve this problem, Cole [Col95] proposed an
informal development of an suboptimal O(log2 n) parallel
algorithm. In contrast, we propose a formal development of
a novel parallel one to solve this problem. In [HT99], we
proposed an homomorphic algorithm for the same problem
but left as an open work for the derivation of an explicit
Nesl parallel program in terms of parallel primitives.

4 Polytypic Di�usion

In this section, we highlight how to generalize the idea of dif-
fusion of recursive de�nitions on lists to those on other data
structures like trees. Rather than giving a formal study of
this generalization, we shall concentrate ourselves on trees,
and explain our idea in a concrete manner, It should not be
di�cult at all to generalize from trees to other data struc-
tures.

4.1 Tree Parallel Primitives

We consider binary trees de�ned by

Tree � = Leaf � j Node � (Tree �) (Tree �):

Based on the constructive algorithmics [MFP91, Fok92a],
we can de�ne a set of tree parallel primitives by a natural
generalization of those primitives on lists.

Map

Map is to apply two functions on a tree; one to all leaves
and the other to all internal nodes.

map f1 f2 (Leaf a) = Leaf (f1 a)
map f1 f2 (Node a l r) = Node (f2 a)

(map f1 f2 l)
(map f1 f2 r)
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The parallelism in map should be obvious. For exam-
ple, using enough processors we can easily implement it in
O(max(T (f1); T (f2))) parallel time, where T (f1) and T (f2)
denote the time for computing f1 and f2 respectively.

Scan

Formal study of binary tree scans (downwards and upwards
accumulations) can be found in [Gib92, BdM96]. We have
two kinds of scan: scanning a tree upwards or downwards.
They will be called upward scan, denoted by scanu, and
downward scan, denoted by scand, respectively.

Upward scan computes sum of all elements with a binary
operator �, while keeping all running sums during upwards
computation. Like list scans requiring a binary operator
that are associative, our tree scans relies on a binary op-
erator that are both associative and commutative, which is
su�cient (not necessary) to guarantee their e�cient parallel
implementation.

Given an associative and commutative operator � : A!
A! A, scanu is de�ned by

scanu (�) (Leaf a) = Leaf a
scanu (�) (Node a l r) = let l0 = scanu (�) l

r0 = scanu (�) r
in Node

(a� root l0 � root r0)
l0 r0

where
root (Leaf a) = a
root (Node a l r) = a:

Downward scan scand is to propagate information from
the root to the leaves with some computation at the internal
nodes by an associative �.

scand (�) g1 g2 (Leaf a) c
= Leaf c

scand (�) g1 g2 (Node a l r) c
= Node c (scand (�) g1 g2 l (c� g1 a)))

(scand (�) g1 g2 r (c� g2 a))

E�cient implementation of the scans is not so obvious.
Fortunately, so many studies have been devoted to show
that the tree contraction technique [LF80, TV84, MR85,
GMT87, ADKP87, Ble89] can be applied to implement our
scans e�ciently, and some more concrete studies can be
found [GCS94, Gib96, Ski96]. We do not recapitulate them,
rather we summarize the result. For the upward scan, the
parallel time is O(T (�) � logN) with N= logN processors,
where N denotes the number of tree nodes (no matter how
unbalanced the tree is). For the downward scan, the parallel
time is O(T (�)� logN +max(T (g1); T (g2))).

Reduce

Generalizing reduce from that on lists is straightforward.
Given an associative and commutative operator � : A !
A! A, reduce is de�ned by

reduce (�) (Leaf a) = a
reduce (�) (Node a l r)

= a � reduce (�) l � reduce (�) r

The reduce can be implemented in parallel by using the
tree contraction technique similarly to the upward scan.

Zip

Zip merges two trees of the same form into one by pairwisely
gluing elements.

zip (Leaf a1) (Leaf a2) = Leaf (a1; a2)
zip (Node a1 l1 r1) (Node a2 l2 r2)

= Node (a1; a2) (zip l1 l2) (zip r1 r2)

This de�nition can be extended from two data to any
number of data. The parallelism in zip is also obvious.

4.2 Tree Di�usion Theorem

We now generalize the di�usion theorem from list functions
to tree functions.

Theorem 2 (Tree Di�usion) Let h : Tree � ! A ! O
be de�ned in the following recursive way:

h (Leaf a) c = k1(a; c)
h (Node a l r) c = k2(a; c) �

h l (c
 g1 a) �
h r (c
 g2 a)

where � : O ! O ! O is an associative and commuta-
tive operator, 
 : A ! A ! A is an associative operator,
and k1, k2, g1 and g2 are given functions. Then, h can be
equivalently de�ned by

h x c = let cs = scand (
) g1 g2 x c
ac = zip x cs

in reduce (�) (map k1 k2 ac):

Proof Sketch: This can be proved by induction on the struc-
ture of x, quite similar to what we did for the the proof of
Theorem 1. 2

It is worth noting that the tree di�usion theorem is quite
similar to the list di�usion theorem but in a more compact
form due to our generalized de�nition of map and scan.

The tree di�usion theorem can be degenerated to the
following corollary where h does not use any accumulating
parameter.

Corollary 3 Let h : Tree � ! O be de�ned in the follow-
ing recursive way:

h (Leaf a) = k1 a
h (Node a l r) = k2 a � h l � h r

where � : O ! O ! O is an associative and commutative
operator, k1 and k2 are given functions. Then,

h x = reduce (�) (map k1 k2 x) 2

This corollary is similar to the homomorphism lemma
in Section 2.2. Another corollary, focusing on treating ma-
nipulation of the accumulating parameter, is obtained by
eliminating the last reduce step in the new de�nition of h in
the tree di�usion theorem.

Corollary 4 Let h : Tree � ! A ! Tree � be de�ned in
the following recursive way:

h (Leaf a) c = Leaf (k1(a; c))
h (Node a l r) c = Node (k2(a; c))

(h l (c
 g1 a))
(h r (c 
 g2 a))
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where 
 : A ! A ! A is associative, and k1, k2, g1 and g2
are given functions. Then, h can be equivalently de�ned by

h x c = let cs = scand (
) g1 g2 x c
in map k1 k2 (zip x cs): 2

To see how tree di�usion theorem works, consider the
following naive solution to the problem to number each node
and leaf of a tree in an in�x traversing order:

nt (Leaf a) c = Leaf c
nt (Node a l r) c = Node (c+ size l)

(nt l c)
(nt r (c+ size l + 1)):

Here size, computing the number of nodes of a tree, is de-
�ned by

size (Leaf a) = 1
size (Node a l r) = 1 + size l + size r

or simply by

size t = reduce (+) (map (�x: 1) (�x: 1) t):

We number a tree by using a counter c (starting from an
initial value). It is actually not easy to derive an O(logN)
(N denotes the number of tree nodes) parallel program, be-
cause of two seemingly sequential factors in the above naive
speci�cation, the counter c and a probably very unbalanced
tree, which may sequentialize the visit of each node.

We cannot directly apply the tree di�usion theorem to
parallelize nt, because nt uses an auxiliary function size.
Fortunely, this can be easily handled by sort of memoisation;
for the given tree t, we derive the following scansize from
size, which can memoise the size of the tree rooted at each
tree node

scansize t = scanu (+) (map (�x: 1) (�x: 1) t):

Suppose that we have a parallel operation getchildren
that can replace each node in parallel with a pair of the
root values of its two children, then we can associate the
children's sizes to each node of the original tree by

tup t = zip (getchildren (scansize t)) t:

We then de�ne

nt t = nt0 (tup t)

and a simple calculation can yield the following de�nition
for nt0.

nt0 (Leaf ((sl; sr); a) c = Leaf c
nt0 (Node ((sl; sr); a) l r) c = Node (c+ sl)

(nt l c)
(nt r (c+ (sl + 1))):

Now we can apply Corollary 4 to obtain the following
explicit parallel code for nt0.

nt0 x c = let cs = scand (
) g1 g2 x c
in map k1 k2 (zip x cs)

where
k1 (((sl:sr); a); c) = c
k2 (((sl:sr); a); c) = c+ sl
g1 ((sl:sr); a) = 0
g2 ((sl:sr); a) = sl + 1:

5 Related Work and Discussions

Besides the related work as in the introduction, our work is
closely related to three kinds of active research work, namely
parallel programming in BMF, parallel programming with
scans, and polytypic programming.

Parallel Programming in BMF has been attracting many
researchers. The initial BMF [Bir87] was designed as a cal-
culus for deriving (sequential) e�cient programs on lists.
Skillicorn [Ski90] showed that BMF could also provide an
architecture-independent parallel model for parallel program-
ming because a small �xed set of higher order functions in
BMF such as map, reduce can be mapped e�ciently to a
wide range of parallel architectures. Along with the exten-
sion of BMF from the theory of lists to the uniform theory of
most data types, Skillicorn [Ski93b, Ski94, Ski96] coincided
these data types as categorical data types, and established
an architecture-independent cost model for generic catamor-
phisms. This in
uence our de�nitions of parallel primitives
over data structures like trees.

Despite the architecture-independent cost model for the
extended BMF, we are lacking of powerful parallelization
theorem and laws for calculating e�cient parallel programs,
which more or less prevents it from being widely used. To
remedy this situation, Quite a lot of recent studies have
been devoted to the development of powerful paralleliza-
tion methods with BMF [Ski93a, Col95, Gor96b, Gor96a,
GDH96, HIT97, HTC98]. As explained in Section 2, the
main idea is based on derivation of list homomorphism from
a naive speci�cation. This is based on the fact that a list
homomorphism can be e�ciently implemented by a compo-
sition of two parallel primitives, namely reduce and map.
Our uniform recursions for structuring the parallel primi-
tives as in the di�usion theorem is more general and easier
to be used in programming than list homomorphisms. And
our di�usion theorem can be considered as an extension of
the homomorphism lemma. Our explicit use of accumulat-
ing parameters in recursive de�nitions and our use of scan
for memoization in a parallel way are quite new.

Parallel programming with scans (either on lists or trees)
is not new. For example, scan on lists is argued to be an
important parallel skeleton [Ble89], and is used as one of
the two important parallel constructs in Nesl [Ble92]. How-
ever, if we look at those programs in Nesl, they only contain
some very simple use of scan (with simple operations like
+). It lacks systematic way to develop parallel programs
with scans. It might be di�cult, even for an Nesl expert,
to write an e�cient program to solve our running example
of bracket matching, because scans with complicated oper-
ations needs to be carefully designed.

Formal study of binary tree scans (downwards and up-
wards accumulations) can be found in [Gib92, BdM96], but
to ensure the existence of e�cient parallel implementation
the complicated \cooperation condition" must be checked.
In contrast, we give a more natural de�nition using an ex-
plicit accumulating parameter, and simplify the condition to
guarantee the existence of e�cient parallel implementation.

Polytypic programming [JJ96, JJ97] are widely used in
the Squigol community [Mal89, Fok92b, MFP91], but its
importance in parallel programming has not been well rec-
ognized. Starting with [BdM96], more and more algorith-
mic problems have been considered in a polytypic setting
[dM95, Jeu95, Mee96, JJ96]. In this paper, we made an at-
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tempt to apply polytypic idea to the development of parallel
algorithms.

This work is a continuation of our e�ort to apply the so-
called program calculation technique [THT98] to the devel-
opment of e�cient parallel programs [HIT97, HTC98]. As a
matter of fact, our di�usion theorem is much related to our
previous parallelization theorem [HTC98]; the paralleliza-
tion theorem only derives a homomorphic program whereas
di�usion theorem gives an explicit parallel program using
parallel primitives. Nevertheless, the algorithm to turn a
general program to the form that the parallelization the-
orem can be applied [HTC98] has been borrowed here as
shown in Section 3.2.

We are working on a precise de�nition of the class of
recursive de�nitions that can be parallelized into parallel
primitives, and on formalization of the di�usion algorithm
in a more mechanical way. Although we have not verify our
idea in a practical system yet, we believe that it is promising
to be used practically. We are going to embed our idea in,
for example, the Nesl-like system in the future.

Another interesting future work is to deal with di�usion
of polymorphic recursive de�nitions into a set of communi-
cation primitives, which should be very important to ma-
nipulate data communications and distributions.
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Abstract

The best known approach to program transformation is the
unfold/fold methodology of Burstall and Darlington: a sim-
ple, intuitive, and expressive approach which serves as the
basis of many automatic program transformation algorithms
(such as partial evaluation and deforestation). Unfortu-
nately unfold/fold does not preserve total correctness and
requires maintaining a transformation history of the pro-
gram. Scherlis invented a similar approach, expression pro-
cedures, which solved these two problems: expression pro-
cedures preserve total correctness and require no transfor-
mation history.

Motivated by our desire to make expression procedures
more expressive by eliminating their one-directional nature
(they are designed to specialize but not to generalize func-
tions), we have developed an equational speci�cation of ex-
pression procedures, in which the essence of expression pro-
cedures is expressed in a single transformation rule. Our
approach has the following advantages over expression pro-
cedures: (1) all program derivations are reversible; (2) trans-
formations can be done which expression procedures cannot
do; (3) fewer and simpler rules are used; and (4) the proof
of correctness is simpler.

1 Introduction

1.1 Motivation

Program transformation has been an elusive goal of the pro-
gramming language research community. We talk about it,
write about it, preach about it, but in practice don't use it
very much. In the functional programming community the
situation is especially unfortunate, where we have the (pre-
sumably) simplest framework within which to do program
transformation, and at the same time have the greatest need
for it: functional programs typically run slower than imper-
ative programs with similar functionality. So what is the
problem? Why hasn't program transformation been used
more in practice? We see several reasons:

�This research was supported in part by NSF under Grant Number
CCR-9633390.

1. Program transformation is too tedious. Many steps are
often needed to perform even relatively simple trans-
formations.

2. Few good software tools exist for carrying out program
transformation. Most of what is done in practice is
done on paper, without formal veri�cation.

3. There are foundational problems with some approaches
to program transformation. For example, the well-
known unfold/fold approach is not safe: terminating
programs can be transformed into diverging ones.

In an attempt to bridge the gap between the theory
and practice of program transformation, we are developing
PATH (Programmer Assistant for Transforming Haskell),
a program transformation system for the language Haskell
[HJW92]. PATH, a programmer assistant, does not attempt
to be fully automatic although it attempts to automate and
mechanize as much as possible. For instance, PATH uses a
GUI to navigate the program and apply transformations to
it. PATH gives the user as much control as is safe, includ-
ing letting the user write his own meta-programs (such as
a deforestation algorithm). Because we give such control to
the user, total correctness is considered essential.

1.2 Approaches to Program Transformation

There are a number of approaches which we could take to
transforming a functional language such as Haskell. In their
survey paper [PS83], Partsch and Steinbrueggen classify var-
ious approaches to program transformation into two basic
approaches: (1) the schematic, or catalog, approach which
is based on using a large catalog of rules, each performing
a signi�cant transformation and (2) the generative set ap-
proach, which is based on a small set of simple rules which
in combination are very expressive. The Bird-Meertens For-
malism (or Squiggol) [BdM97, Mee86, MFP91] is an exam-
ple of the former. Unfold/fold [BD77] and expression pro-
cedures [Sch80] are examples of the latter.

Each approach has its advantages: The schematic ap-
proach can be more concise and allow for the development
of powerful rules which do major transformations in a single
step; the rules are symmetric, generally given in the form of
transformation templates such as \P1 = P2 if C". However,
a catalog may limit the possible transformations, especially
in the presence of arbitrary recursive programs. A genera-
tive set approach, such as unfold/fold, is considered to be
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more general and works well with arbitrary recursive pro-
grams. This approach can be easier to use as there is no
need to search a catalog. A disadvantage is that derivations
are more verbose: many of the same steps (unfold, simplify,
fold) are taken again and again.

A third approach would be to use a theorem prover into
which the formal semantics (usually denotational) of the lan-
guage was embedded, e.g., [Pau87]. Although this is the
most general approach, it is also the most complicated: one
must understand domain theory, inductive proof techniques,
the logic of the theorem prover, etc.

1.3 Our Approach

Section 2 of this paper follows the evolution of the approach
taken with PATH: We started o� using the generative set
approach because it is more general than the schematic ap-
proach and it is much simpler than theorem proving. Un-
willing to use a method such as unfold/fold which does not
preserve total correctness (section 2.1), we used Scherlis's ex-
pression procedures, a totally correct method (section 2.2).
But while attempting to increase the power of expression
procedures by eliminating their one-directional nature (sec-
tion 2.3) (they were designed to specialize but not to gen-
eralize functions), we realized that the generality of expres-
sion procedures can be achieved by using a schematic rule,
namely Fix-Point Fusion (section 2.4). As a result we can
use the schematic approach with a very small base catalog
to get a transformation system which is more powerful than
expression procedures.

We then give the semantics and transformation rules
of our system (section 3) and give examples of some pro-
gram derivations which would be problematic with other
approaches (section 4). We then show how we can very ele-
gantly add Scherlis's \quali�ed expression procedures" (sec-
tion 5).

2 From Unfold/Fold to Reversible Expres-

sion Procedures

In this section we compare various approaches to program
transformation and introduce our reversible expression pro-
cedures.

2.1 Unfold/Fold

The best known approach to program transformation is the
unfold/fold methodology of Burstall and Darlington [BD77].
Their approach is based on six rules: (1) unfold: the unfold-
ing of function calls by replacing the call with the body of the
function where actual parameters are substituted for formal
parameters; (2) laws: the use of laws about the primitives
of the language; (3) instantiation: adding an \instance" of
a function de�nition in which a parameter is replaced by a
constant or pattern on both sides of the de�nition; (4) fold:
the replacement of an expression by a function call when
the function's body can be instantiated to the given expres-
sion with suitable actual parameters|this can be done with
any previous de�nition of the function; (5) de�nition: the
addition of a new function de�nition; and (6) abstraction:
the introduction of a where clause. This methodology is

extremely e�ective at a broad range of program transforma-
tions.

Unfortunately, the unfold/fold methodology does not pre-
serve total correctness; both the instantiation and fold rules
are unsafe. Instantiation is easily modi�ed to be safe, but
fold is problematic. For example, consider the program

f x = x+1

Since the expression x+1 is an instance of the right-hand-
side of a function de�nition, we can replace it with a call to
the function, yielding

f x = f x

which results in a non-terminating de�nition for f. Although
this example is overly simple, similar situations can arise in
more subtle contexts, and thus non-termination can inad-
vertently be introduced.

Several approaches have been proposed to solve this prob-
lem of partial correctness. One is to suitably constrain the
use of fold, for example as proposed by Kott [Kot85]. An-
other is to provide a separate proof of termination. Yet
another is the \tick algebra" of Sands, which guarantees
incremental improvement in performance to all transforma-
tions [San95b].

Besides the problem with correctness, unfold/fold has a
signi�cant inconvenience in practice: a history must be kept
of all versions of the program as it is being transformed
(or the user must specify which versions to keep or throw
away). This history is essential because previous de�nitions
of functions are used to give folding its power.

2.2 Expression Procedures

Motivated by the problems with unfold/fold, Scherlis pro-
posed expression procedures [Sch80, Sch81]. (More recently
Sands [San95a] extended this work to a higher-order non-
strict language.) Scherlis's key innovation was a new pro-
cedure de�nition mechanism in which the left hand side of
an expression procedure de�nition can be an arbitrary ex-
pression: thus the name \expression procedure". In addi-
tion to laws about primitive functions, three rules are used
to transform programs: abstraction, which introduces new
procedures; composition, which introduces new expression
procedures; and application (or unfold), which replaces a
procedure call or expression procedure call with its de�ni-
tion.

An example of a program derivation using expression
procedures (adapted from [San95a]) follows. Suppose we
have these two function de�nitions

filter p [] = []

filter p (x:xs) = if p x then x : filter p xs

else filter p xs

iterate f x = x : iterate f (f x)

and we wish to specialize the expression

filter p (iterate f x)

Our goal is to create a new version of iterate which is
specialized to the context \filter p _". The �rst step is
to introduce an expression procedure for this context, by
�lling in the hole (\_") with each side of the de�nition of
iterate using the composition rule:
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filter p (iterate f x) =ep=

filter p (x : iterate f (f x))

We now have an expression procedure: the left hand side is
not just a function symbol applied to variables and patterns,
it is an arbitrary expression. (We use = for a regular function
de�nition and =ep= for an expression procedure de�nition.)
Now we transform the de�nition of this expression procedure
to obtain

filter p (iterate f x) =ep=

if p x then x : filter p (iterate f (f x))

else filter p (iterate f (f x))

Next, we notice that the context appears recursively, so by
introducing a new function de�nition using the abstraction
rule we can transform it to

filter p (iterate f x) =ep= filit p f x

filit p f x =

if p x then x : filter p (iterate f (f x))

else filter p (iterate f (f x))

Finally, we use the application rule to \apply" the expression
procedure, obtaining

filter p (iterate f x) =ep= filit p f x

filit p f x =

if p x then x : filit p f (f x)

else filit p f (f x)

So, the original expression is equal to filit p f x, a spe-
cialized version of iterate.

On the one hand, expression procedures are strictly less
powerful than unfold/fold (they can be simulated by un-
fold/fold); however, in practice, the great majority of un-
fold/fold transformations can be done just as well by expres-
sion procedures. We are not aware of any useful1 and to-
tal correctness preserving unfold/fold transformations which
cannot be done by expression procedures either directly or
indirectly (by �nding a \common ancestor" from which to
derive the two programs we wish to show equivalent).

On the other hand, expression procedures have two key
advantages over unfold/fold: (1) each of the transformation
rules preserves total correctness, and (2) no history needs
to be maintained, as all needed information is embedded in
expression procedures; and when compared to various meth-
ods of ensuring total correctness in unfold/fold, expression
procedures are both easier to use and more expressive:

� Unfold/fold followed by a proof of termination: Ex-
pression procedures are simpler as they need no sepa-
rate proof of termination. They are more expressive as
they can transform programs which may not terminate
on all inputs (i.e., for which no proof of termination
exists) [Sch80].

� Unfold/fold augmented with the methods of Kott or
Sands: Kott adds a number of constraints to the form
of program derivations and to the laws and functions
usable (so much so as to make his method unusable
in practice [Fir90, San96]), and Sands requires extra

1An example of a non-useful transformation is as follows [BD77,
Zhu94]: f x = 0 can be transformed to

f x = if x == 0 then 0 else f (x-1)

in unfold/fold, but the reverse transformation cannot be done. Ex-
pression procedures cannot transform in either direction.

machinery with his \tick" calculus2. Both methods
are essentially using the whole transformation history
to ensure total correctness. Expression procedures, in
contrast, are correct at each step irrespective of any
history.

Besides the technical improvements, in practice expres-
sion procedures have a simpler and more intuitive method
of program derivation: with unfold/fold, the ability to add
a new \eureka" de�nition to a program is essential; but with
expression procedures, the analogous operation is selecting
a recursive function and some context in which to special-
ize it. Thus, entering eureka de�nitions by hand is replaced
by selecting contexts in the program. This �ts well with
our vision of using a GUI to apply transformations to the
program.

2.3 The Reversibility Problem

Although expression procedures are an improvement over
unfold/fold, they have one signi�cant shortcoming: it is
easy to specialize a function, but it is not always even pos-
sible to generalize a function! This problem, shared with
unfold/fold, comes about because the transformation rules
are not reversible. For instance, given this de�nition of
reverse'

reverse' ([],ys) = ys

reverse' (x:xs,ys) = reverse'(xs,x:ys)

it is easy to go from

reverse(xs) = reverse'(xs,[])

to

reverse([]) = []

reverse(x:xs) = reverse'(xs, x:[])

using unfold/fold (or expression procedures), but, as noted
by Burstall and Darlington, it is not possible to derive the
�rst program from the second. Let P1 )

ep P2 signify
that we can derive the program P2 from P1 using some se-
quence of expression procedure rules. Note that )ep is not
symmetric, nor is )uf , the comparable derives relation for
unfold/fold. Even when both P1 )

ep P2 and P2 )
ep P1, the

derivation associated with P1 )
ep P2 may give no insight

into how to �nd a derivation for P2 )
ep P1.

Is reversibility that important? We believe so, for two
reasons: First, adding reversibility makes the system more
expressive: as in the reverse example, we often want to
make programs shorter or more modular; and even if we
want a more e�cient program, we sometimes need to make
it less e�cient before making it more e�cient (such transfor-
mations are impossible with a method|such as expression
procedures|in which every transformation step preserves or
increases some measure of e�ciency). Secondly, reversibil-
ity is important because the system becomes simpler if each
rule is reversible: the user can learn one law and use it in
two directions.

Note that to get reversibility, we could simply add a rule
such as this: \if P2 ) P1 then we can transform P1 to P2."
Such a rule, called rede�nition, was added to unfold/fold

2Sands's tick calculus couldn't prove the correctness of expression
procedures: this seems to have been the motivation for his paper on
expression procedures [San95a].
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by Burstall and Darlington to get around the problem with
the reverse derivation above. The disadvantage of this ap-
proach is that if we have P1 and want to transform it, we
need to know what P2 is before we start|we can't derive it
directly or incrementally from P1; also, the addition of this
ad hoc rule makes the system more complex.

Instead of adding a rule, we would rather modify the
rules to make them all reversible; i.e., we want to �nd a
characterization of expression procedures in terms of one or
more transformation rules.

2.4 Reversible Expression Procedures

We want to make expression procedures reversible. The
compose and apply rules are inherently one-directional, but
what if we were to merge into one step all the steps in-
volved in a prototypical expression procedure transforma-
tion? There are just four key steps (as seen in the example
in section 2.2):

1. the introduction of the expression procedure (compo-
sition),

2. the transformation of the body of the expression pro-
cedure,

3. the use of abstraction to capture the resulting recur-
sion, and

4. application of the expression procedure.

These four steps can be merged as follows. We begin
with a strict program context C[] and a function de�nition
f = F[f]. Introduction of the expression procedure (com-
position) gives

C[f] =ep= C[F[f]]

which is then transformed into the recursive expression pro-
cedure

C[f] =ep= G[C[f]]

for some context G[]. After we do abstraction we arrive at

C[f] =ep= g

g = G[C[f]]

Finally, application of the expression procedure yields

C[f] =ep= g

g = G[g]

The above steps can be merged into one rule (expressing
the values of f and g as the �x-points �f.F[f] and �g.G[g]):

C[�f.F[f]] )ep �g.G[g]
if

C[F[f]] )ep G[C[f]], C[] strict

This one rule replaces the three expression procedure rules|
composition, abstraction, and application. We don't have
reversibility yet, but if we could replace )ep with = in the
above rule we would have this reversible rule,

C[�f.F[f]] = �g.G[g]
if

C[F[f]] = G[C[f]], C[] strict

a theorem of Stoy [Sto77]. So, we join the company of
many who have rediscovered or used this theorem [AK82,
GS90, MFP91]. Our contribution is showing its connection
to expression procedures. Interestingly, it is a free theorem
[Wad89] of the �x-point operator �. We take its name, Fix-
Point Fusion, from Meijer et al. [MFP91] where the power of
the theorem is exploited considerably: most of their trans-
formations are instances of this one general theorem.

Fix-Point Fusion can be used in both directions:

C[�f.F[f]] ) �g.G[g] specialization (fusion)
�g.G[g] ) C[�f.F[f]] generalization (�ssion)

To do fusion, C[] and F[] are known, and G[] is desired;
so the premise is proven by �nding a derivation C[F[f]]

) G[C[f]]. To do �ssion, G[] is known, the user provides
C[], and F[] is desired; so the premise is proven by �nding
a derivation G[C[f]] ) C[F[f]]. (Had an extra \rede�-
nition" rule been added to expression procedures, the user
would also need to know the answer, F[], before proceed-
ing.)

So, we have accomplished our goal: we can do expres-
sion procedure transformations with one reversible rule, Fix-
Point Fusion. The advantages to using Fix-Point Fusion as
a replacement for expression procedures are as follows:

� We now have a symmetric derives relation and need no
ad hoc rules to get reversibility. (And henceforth we
use = rather than).) Thus the system is simpler than
expression procedures would be with an extra rule for
reversibility: there is one rule which the user uses to
both specialize and generalize, rather than an extra
rule added to a set of \one directional" rules.

� We do not need to extend our base language with ex-
pression procedures. Although we would not need to
actually implement expression procedures to use them
(they are removed in the �nal program) we would need
to add expression procedures to the operational se-
mantics of the language, which complicates reasoning
about the transformation system. With our approach
there is just one theorem to prove.

� Derivations are now structured in a goal-directed fash-
ion. Program derivations are structured as 1) goal :
a function and its context are speci�ed; and 2) sub-
goal : the derivation is developed which satis�es the
sub-goal (thereby synthesizing the new de�nition). Be-
sides clearly indicating the goal of each transformation,
this allows all the sub-goals of an unreachable goal to
be removed easily when the goal is removed. With
unfold/fold and expression procedures the derivations
can be, although seldom are, much more unstructured.

By showing how to do expression procedure transforma-
tions with a single transformation rule we have integrated
two di�erent approaches to doing program transformation:
the schematic approach and the generative set approach (as
described in the introduction). Chin and Darlington [CD89],
seeing the need to integrate these two approaches, added
schematic rules to unfold/fold along with a method to gen-
erate new schematic rules using unfold/fold. In contrast,
our method of integration is to use the schematic approach
in which we include a law which gives us the expressiveness
of one generative set approach.

With Fix-Point Fusion we believe we have a solid basis
for a totally correct, simple, and expressive transformation
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system. We will next describe the language and transforma-
tion rules of our system in detail.

3 The Language and Transformation Rules

3.1 The Language

Our language is a typed, non-strict functional language with
products, sums, integers, and an explicit �x-point operator
(i.e., un-sugared Haskell)3. The syntax of programs is as
follows:

e = �v.e | v | e e

| (e,e) | fst e | snd e

| L e | R e | case e of L v -> e; R v -> e

| n | p

| �v.e

n 2 integer constants

v 2 variables

p 2 strict primitive functions over integers

We consider only well-typed programs. The operational
semantics is given by applying the reduction rules (in Fig-
ure 1) from left to right with a leftmost outermost reduction
strategy.

The following syntactic sugar is used here:

[] � L 0

e1 : e2 � R (e1,e2)

[e1,...,en] � e1:(... en:[])

let v = e1 in e2 � (�v.e2) e1

�(x,y).e � �v.e{fst v/x}{snd v/y}

�(x,y).e � �v.e{fst v/x}{snd v/y}

if e1 then e2 else e3 �

case e1 of L v -> e2; R v -> e3

We use efe1=vg to represent the term e where free occur-
rences of v are replaced by e1; The set of free variables in
expression e is denoted by fv(e). A context (ranged over
by C,D,E,F,G) is an expression with zero or more holes, [].
C[e] is the expression with C[]'s holes replaced by e. A
context C[] traps a variable v if at any hole in C[] the vari-
able v is in scope. A context C[] is strict if for all closed
expressions, e, and substitutions, �, e diverges implies that
�(C[e]) diverges. e1 ! e2 signi�es that e1 reduces to e2
in one step and e1 !

+ e2 signi�es that e1 reduces to e2 in
one or more steps. More formally, ! is the least relation
satisfying the reduction rules (Figure 1) and that is closed
under e1 ! e2 ) C[e1]! C[e2]. We also de�ne * as follows
(note that f*g is strict if f and g are strict):

(f*g)(x,y) = (f x, g y)

3.2 The Transformation Rules

The transformation rules include the reduction rules as given
in Figure 1 plus the additional rules given in Figure 2. (The
notion of equivalence in these rules, =, is observational equiv-
alence at base types, here just integers.)

3Previously our examples used recursion equations, but now we
use an explicit �x-point operator in order to make our laws clearer.

Instantiation. The Instantiation rule lets us move
strict contexts into case expressions (and in the reverse di-
rection, out). It corresponds to the instantiation rule in
unfold/fold (which only goes in one direction). The con-
text C[] must be strict: as Sands [San95a] has noted, this
corresponds to the conditions described by Runciman et al.
[RFJ90] for safe instantiation in a non-strict language.

In actual use the strictness condition needed by the In-
stantiation and Fix-Point Fusion rules is often detected syn-
tactically: the contexts de�ned by S, an extension of reduc-
tion contexts, are strict (where e is as de�ned above):

S = [] | S e | p S S | p e S | p S e

| fst S | snd S

| case S of L x-> e; R x-> e

It is interesting to note that Instantiation happens to be
another free theorem, derivable from the type of case.

Eta. We have eta rules for functions, sums, and products.
The language di�ers from un-sugared Haskell by having an
unlifted product, not a lifted product; however, a lifted prod-
uct can be had by simply wrapping a constructor around the
unlifted product.

Fix-Point Fusion. This rule gives us the ability to
transform recursive de�nitions. As noted previously, the
Fix-Point Fusion rule lets us do transformations possible
with expression procedures. It requires that the context C[]
be strict. This strictness condition is necessary, otherwise
non-termination could be introduced.

Fix-Point Expansion. This rule enables us to ex-
pand, or inline, the de�nition of a recursive de�nition inside
itself.

4 Examples of Program Derivations

In this section we give some examples of program deriva-
tions. Although each of these examples is by necessity short,
each demonstrates a transformation which is problematic us-
ing other approaches.

4.1 In�nite Lists

Here we derive a program which is an in�nite list. Expres-
sion procedures are capable of doing this, but unfold/fold
with a proof of termination would not. This is because the
standard technique of using a well-founded ordering to prove
termination of functions [Fir90, MW79] is inapplicable for
recursively de�ned data structures. We assume that map and
succ are prede�ned.

map succ (�ones.1:ones)
fFusiong (= �twos.?)

8ones.

map succ (1:ones)

= freduceg

succ 1 : map succ ones

=

�twos. (succ 1) : twos

= freduceg

�twos. 2 : twos
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p n1 . . .nn ! n where n = [[p]] n1 : : : nn
fst (e1,e2) ! e1

snd (e1,e2) ! e2

case L e1 of L v -> e2; R v -> e3 ! e2fe1/vg
case R e1 of L v -> e2; R v -> e3 ! e3fe1/vg

(�v.e1) e2 ! e1fe2/vg
�v.e1 ! e1{�v.e1/v}

Figure 1: Reduction Rules

Instantiation:

C[case e of L x -> e1; R x -> e2] = case e of L x -> C[e1]; R x -> C[e2]

if C[] strict, fv(e) not trapped by C[], and x 62 fv(C[])

Eta:

e = �v.e v if e :: �! � and v 62 fv(e)

e = (fst e, snd e) if e :: (�; �)
e = case e of L x -> L x; R x -> R x if e :: � | �

Fix-Point Fusion:

8f.C[F[f]] = G[C[f]]

C[�f.F[f]] = �g.G[g]
if C[] strict, f, g neither free in nor trapped by F[] or G[]

Fix-Point Expansion:

e = �f.F[f] if e !+ F[e]

Figure 2: Additional Transformation Rules

A word of explanation is needed about the format of our
derivation given here: The horizontal line labeled fFusiong
marks where we start to derive the premise of Fix-Point Fu-
sion. This sub-derivation is indented and when the premise
is shown we know that the program above the sub-derivation
is equal to the program below it. The (= �twos.?) corre-
sponds to what the user might enter to give a name to the
variable bound by the new �.

4.2 Fission: The Generalization of Recur-

sive De�nitions

The reverse of fusion|bringing a context and a function
together|is �ssion, which splits a function into a context
and a function. This cannot in general be done with ex-
pression procedures and was the original motivation for our
work. Suppose, for example, that we wish to generalize
mapsucc to the standard map function. (To make the deriva-
tion smaller we use the map which is de�ned only on in�nite
lists|a derivation for the standard map is the same number
of steps but a larger program would be displayed at each
step.)

�mapsucc.�xs.succ (head xs) : mapsucc (tail xs)

fFissiong (= (�map.?) succ)

8map.

�xs.succ (head xs) : map succ (tail xs)

= fabstract succg

(�h.�xs.h (head xs) : map h (tail xs)) succ

=

(�map.�h.�xs.h (head xs) : map h (tail xs))

succ

If we read the derivation from bottom to top, we simply
have the specialization of map succ. Here, when we do Fix-
Point Fusion|or in this case, Fix-Point Fission|we use a
similar notation but the

(= (�map.?) succ)

(which corresponds to what the user would enter) gives the
form of the desired program.

4.3 Tupling

This example does tupling, or loop fusion. It takes a two-
pass average program and derives a one pass algorithm. This
transformation is normally beyond the scope of fully auto-
mated strategies such as deforestation or partial evaluation
(which is not surprising for a user-guided transformation
system).

let sum = �sum.�xs.case xs of

[] -> 0;

x:xs' -> x + sum xs'

len = �len.�xs.case xs of

[] -> 0;

x:xs' -> 1 + len xs'

�ys.sum ys / len ys

= fabstractg

�ys.let (s,l) = (sum ys, len ys) in s/l

= fabstractg

�ys.let (s,l) = (�xs.(sum xs, len xs)) ys

in s/l

Now we want to specialize

�xs.(sum xs, len xs)
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but neither sum nor len is in a strict context, so expression
procedures cannot specialize this program nor can Fix-Point
Fusion be directly applied here. One way to get around this
is to add a construct to the language by which we can express
a strict product; but even for cases in which the product
is not strict, we can continue with the help of the derived
rules FPF2 and ABIDES (derived rules whose de�nitions
and derivations are in the Appendix).

�xs.(sum xs, len xs)

fFPF2g (= �sumlen.?)
8sum,len.

�xs.(case xs of []->0; x:xs'->x+sum xs',

case xs of []->0; x:xs'->1+len xs')

= fABIDESg

�xs.case xs of

[] ->(0,0);

x:xs'->(x+ sum xs',1+ len xs')

= fabstractiong

�xs.case xs of

[] ->(0,0);

x:xs'->let (s,l) = (sum xs',len xs')

in (x+s,1+l)

= fabstractiong

�xs.case xs of

[] ->(0,0);

x:xs'->

let (s,l) = (�xs.(sum xs,len xs)) xs'

in (x+s,1+l)

=

�sumlen.�xs.case xs of

[] -> (0,0);

x:xs' -> let (s,l) = sumlen xs'

in (x+s,1+l)

The rule FPF2 is a variation on Fix-Point Fusion which
is applicable when we have two recursive de�nitions. Inter-
estingly, it is also a free theorem of �: we get Fix Point
Fusion (FPF ) when we use a binary relation, we get FPF2
when we use a ternary relation.

4.4 Mutually Recursive Expression Proce-

dures

It is not obvious that Fix-Point Fusion along with the other
laws can do all transformations that are possible with ex-
pression procedures: Can we do all transformations done by
combining expression procedure rules in ways other than the
prototypical order: composition, laws, abstraction, then ap-
plication? In the future we would like to prove this; but for
now, here is an expression procedure derivation that seems
di�cult to do with Fix-Point Fusion because the uses of
composition, abstraction, and application are completely in-
tertwined. Given this

f = F[f,g]

g = G[f,g]

and assuming

8f,g. C[F[f,g]] => A[C[f],D[g]]

8f,g. D[G[f,g]] => B[C[f],D[g]],

with expression procedures we can do this:

C[f] =ep= C[F[f,g]]

D[g] =ep= D[G[f,g]]

) fassumptiong

C[f] =ep= A[C[f],D[g]]

D[g] =ep= B[C[f],D[g]]

) fabstract twiceg

C[f] =ep= f'

f' = A[C[f],D[g]]

D[g] =ep= g'

g' = B[C[f],D[g]]

) fapply C[f] twice; apply D[g] twiceg

C[f] =ep= f'

f' = A[f',g']

D[g] =ep= g'

g' = B[f',g']

However, this is just as easy to do with Fix-Point Fusion
if we express the mutual recursion explicitly. Given this

(f,g) = �(f,g).(F[f,g],G[f,g])

we can specialize both de�nitions at the same time as fol-
lows:

(C[f],D[g])

= fdef. of *g

(C*D)(f,g)

fFusiong (= �(f',g').?)
8f,g.

(C*D)(F[f,g],G[f,g])

= fdef. of *g

(C[F[f,g]],D[G[f,g]])

= fassumptiong

(A[C[f],D[g]], B[C[f],D[g]])

= fdef. of *g

(A*B)(C[f],D[g])

= fdef. of *g

(A*B)((C*D)(f,g))

=

�(f',g').(A*B)(f',g')
= fsyntactic sugarg

(f',g') where f' = A[f',g'] and g' = B[f',g']

5 Quali�ed Expression Procedures

In his thesis [Sch80] Scherlis noted that expression proce-
dures allow us to specialize recursive functions in a syntactic
context, but do not allow us to specialize functions based on
non-syntactic information. For instance, expression proce-
dures can specialize f in the syntactic context \f x 0" but
couldn't take advantage of \x > y" in the specialization of
\f x y".

To take advantage of the non-syntactic information avail-
able, Scherlis extended his system to support \quali�ed ex-
pression procedures"4. A quali�ed expression procedure
looks like this

{p} e1 =ep= e2

in which p is a boolean valued expression similar to a pre-
condition. In the transformation of the de�nition, we can
assume p is true; the quali�ed expression procedure may
only be applied where the quali�er is true.

Thanks to the non-strict semantics of our language and
our schematic approach to expression procedures, we get the
power of quali�ed expression procedures without having to
add any ad hoc constructs to the language. Let's say we
have an assert function de�ned as

assert p e = if p then e else error

4With these we get the power of Generalized Partial Computation
[FN88, Tak91]. The importance of this extra information for special-
ization of programs is discussed in S�renson et al. [SGJ94].
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(where error is equivalent to ?) for which we add some
syntactic sugar:

{p} e = assert p e

{p _} e = {p e} e

With assert and some simple laws about it, we get the
power of quali�ed expression procedures. Some easily proven
laws regarding assertions are as follows:

Introducing/Eliminating Assertions

if p then a else b = if p then {p} a else b

if p then a else b = if p then a else {not p} b

Manipulating Assertions

{if p then p2 else p3} if p then a else b

=

if p then {p2} a else {p3} b

{p} = {p} {q} if p => q

{p} = {q} if p = q

{p} C[e] = C[{p} e] if C[] strict

Using Assertions

{e1=e2} D[e1] = {e1=e2} D[e2]

{p} D[if p then a else b] = {p} D[a]

{not p} D[if p then a else b] = {not p} D[b]

Assertions can be used either as a run-time construct or as
a construct which is introduced and removed during trans-
formation. Nothing needs to be added to the language with
our approach, nor do our transformation rules require any
change, we just add the assertion laws. Assertions and Fix-
Point Fusion allow us to bring pre-conditions into a recur-
sion and to bring post-conditions out of a recursion as seen
in following two laws, which follow directly from Fix-Point
Fusion:

Where f = �f.�x.F[f] and p is strict.

Pre-condition:

�x.{p x} F[f] = �x.{p x} F[�x.{p x} f x]

�x.{p x} f x = �f.�x.{p x} F[f]

Post-condition:

�x.F[�x.{p _} (f x)] = �x.{p _} F[f]

f = �x.{p _} (f x)

6 Conclusion

In our attempt to increase the expressiveness of expression
procedures we have made these contributions:

� We have shown that the essence of expression proce-
dure transformations is Fix-Point Fusion. Thus, the
power of expression procedures can be achieved with
a schematic program transformation rule.

� As a result, we have integrated two di�erent ap-
proaches to doing program transformation: the
schematic approach and the generative set approach.

� We can do transformations which neither expression
procedures nor safe restrictions of unfold/fold can do.
This is a consequence of the reversibility inherent in
the schematic approach.

� We have improved on the work of Scherlis and Sands.
By doing expression procedures in one step, we gain
simplicity over their approaches: (1) we have a simpler
proof of correctness since we need only prove one law
and need not show that a set of laws preserves con-
sistency and progressiveness; (2) we can dispense with
Sands's restriction on where we can perform abstrac-
tion in expression procedures (this restriction is moti-
vated by the proof of correctness); and (3) we need not
give a semantics to expression procedure de�nitions.

� We show how, with our approach, we get the expres-
siveness of Scherlis's quali�ed expression procedures
by simply adding assertion laws.

Future work on PATH will include designing and im-
plementing the user-interface, implementing various meta-
programs, building a useful catalog of rules, and applying
the system to more realistically sized programs. Other av-
enues of research related to the work here would be (1) de-
veloping a proof that our transformation rules really are as
expressive as unrestricted expression procedures, (2) inves-
tigating the relative power of our system compared to un-
fold/fold, and (3) investigating the limits of our approach
compared to, for instance, a theorem prover with �x-point
induction.

Acknowledgements. We would like to thank David
Sands for many helpful comments on an earlier version of
this paper.
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A Derived Rules

A.1 FPF2

Rule:

C[] strict,
8d,e. C[(D[d],E[e])] = G[C[(d,e)]]

C[(�d.D[d],�e.E[e])] = �g.G[g]

Derivation:
Assuming

C[] strict

8d,e. C[(D[d],E[e])] = G[C[(d,e)]]

We get

C[(�d.D[d], �e.E[e])]
= fSPLITg

C[�(d,e).(D*E)(d,e)]
fFusiong (= �g.?)

8d,e.

C[(D*E)(d,e)]

= fdef. of *g

C[(D[d],E[e])]

= fassumptiong

G[C[(d,e)]]

=

�g.G[g]

A.2 SPLIT

Rule:

�(d,e).(D*E)(d,e) = (�d.D[d], �e.E[e])
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Derivation:

let x = �(d,e).(D*E)(d,e)

fst x

= fdef. of xg

fst (�(d,e).(D*E)(d,e))
= fsyntactic sugarg

fst (�z.(D*E) z)

fFusiong (= �d.?)
8z.

fst ((D*E) z)

= feta expansiong

fst ((D*E) (fst z,snd z))

= fdef. of *g

fst (D[fst z],E[snd z])

= freductiong

D[fst z]

=

�d.D[d]

And similarly we get

snd x = �e.E[e]

Then we get

x

= feta expansiong

(fst x, snd x)

= fabove two lawsg

(�d.D[d], �e.E[e])

A.3 ABIDES

Rule:

(case e of L x->a1; R y->a2,

case e of L x->b1; R y->b2)

=
case e of L x->(a1,b1); R y->(a2,b2)

Derivation:

(case e of L x->a1; R y->a2,

case e of L x->b1; R y->b2)

= finverse reductions for fst and sndg

(case e of L x->fst(a1,b1); R y->fst(a2,b2),

case e of L x->snd(a1,b1); R y->snd(a2,b2))

= freverse instantiation, twiceg

(fst (case e of L x->(a1,b1); R y->(a2,b2)),

snd (case e of L x->(a1,b1); R y->(a2,b2)))

= feta contractiong

case e of L x->(a1,b1); R y->(a2,b2)
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Abstract

Applying �nite-state veri�cation techniques (e.g., model check-
ing) to software requires that program source code be trans-
lated to a �nite-state transition system that safely models
program behavior. Automatically checking such a transition
system for a correctness property is typically very costly,
thus it is necessary to reduce the size of the transition sys-
tem as much as possible. In fact, it is often the case that
much of a program's source code is irrelevant for verifying a
given correctness property.

In this paper, we apply program slicing techniques to
remove automatically such irrelevant code and thus reduce
the size of the corresponding transition system models. We
give a simple extension of the classical slicing de�nition, and
prove its safety with respect to model checking of linear tem-
poral logic (LTL) formulae. We propose various re�nements
to slicing that take advantage of common structural patterns
appearing in LTL software speci�cations. Finally, we discuss
how this slicing strategy �ts into a general methodology for
deriving e�ective software models using abstraction-based
program specialization.

1 Introduction

Modern software systems are highly complex, yet they must
be extremely reliable and correct. In recent years, �nite-
state veri�cation techniques, including model checking tech-
niques, have received much attention as a software validation
method. These techniques have been e�ective in validating
crucial properties of concurrent software systems in a va-
riety of domains including: network protocols [23], railway
interlocking systems [5], and industrial control systems [3].
Despite this success, the high cost of automatically check-
ing a given correctness property against a software system
(which typically has an enormous state space) casts doubt
on whether broad application of �nite-state veri�cation to
software systems will be cost-e�ective.

Most researchers agree that the best way to attack the
state-explosion problem is to construct a �nite-state tran-
sition system that safely abstracts the software semantics
[7, 10, 26]. The transition system should be small enough
to make automatic checking tractable, yet it should large

�Supported in part by NSF and DARPA under grants CCR-
9633388, CCR-9703094, CCR-9708184, and NASA under award NAG
21209.

ySupported in part by NSF under grant CCR-9701418, and NASA
under award NAG 21209.

enough to capture all information relevant to the property
being checked. One of the primary di�culties is determin-
ing which parts of the program are relevant to the property
being checked. In this paper, we show how slicing can au-
tomatically throw away irrelevant portions of the software
code, and hence safely reduce the size of the transition sys-
tems that approximates the software's behavior.

We envision slicing as one of a collection of tools for
translating program source code to models that are suit-
able for veri�cation. We previously illustrated how tech-
niques from abstract interpretation and partial evaluation
can be integrated and applied to help automate construc-
tion of abstract transition systems [11, 20, 21]. Applying
these techniques on several realistic software systems [12, 13]
has revealed an interesting interaction between slicing and
abstraction building: people currently perform slicing-like
operations manually to determine the portions of code that
are relevant for verifying a given property. Thus, preprocess-
ing software using slicing before applying partial-evaluation-
based abstraction techniques can: (i) provide a safe approxi-
mation of the relevant portions of code, (ii) enable scaling of
current manual techniques to signi�cantly larger and more
complex systems, (iii) reduce the number of components for
which abstractions must be selected and help guide that se-
lection, and (iv) reduce the size of the program to be treated
by abstraction-based partial evaluation tools.

This work is part of a larger project on engineering high-
assurance software systems. We are building a set of tools
that implements the transition system construction method-
ology above for Ada and Java. In this paper, we use a simple

owchart language in order to formally investigate funda-
mental issues. We have implemented a prototype for the
slicing system in the paper, and based on this we are scal-
ing up the techniques. We refer the reader to the project
web-site http://www.cis.ksu.edu/santos/bandera for the
extended version of this paper (which contains more exam-
ples, technical extensions, and proofs), for the prototype,
and for applications of the abstraction techniques to con-
current Ada systems.

In the next section, we describe the 
owchart language
that we use throughout the paper. We then present, in
Section 3, the de�nition of slicing for this language. We dis-
cuss a speci�c �nite-state veri�cation technique, LTL model
checking, and our approach to constructing safely abstracted
transition systems from source code in Section 4. Section 5
describes how slicing can be applied as a pre-phase to tran-
sition system construction. Section 6 sketches several meth-
ods for deriving slicing criteria from temporal logic speci�-
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cations based on the shape of commonly-used formula pat-
terns. Section 7 discusses related work on slicing, and Sec-
tion 8 summarizes and concludes with a description of future
work.

2 The Flowchart Language FCL

2.1 Syntax

We take as our source language the simple 
owchart lan-
guage FCL of Gomard and Jones [18, 25, 19]. Figure 1
presents an FCL program that computes the power func-
tion. The input parameters the program are m and n. These
variables can be referenced and assigned to throughout the
program. Other variables such as result can be introduced
at any time. The initial value of a variable is 0. The out-
put of program execution is the state of memory when the
return construct is executed.

Figure 2 presents the syntax of FCL. FCL programs are
essentially lists of basic blocks. The initial basic block to be
executed is speci�ed immediately after the parameter list. In
the power program, the initial block is speci�ed by the line
(init). Each basic block consists of a label followed a (pos-
sibly empty) list of assignments (we write � for the empty
list, and this is elided when the list is non-empty). Each
block concludes with a jump that transfers control from that
block to another one. Instead of including boolean values,
any non-zero value represents true and zero represents false
in the test of conditionals.

In the presentation of slicing, we need to reason about
nodes in a statement-level control-
ow graph (CFG) (i.e., a
graph where there is a separate node for each assignment
and jump) for given program p. We will assume that each
statement has a unique index i within each block. Then,
nodes can be uniquely identi�ed by a pair [l:i] where l is
block label and i is an index value. In Figure 1, statement
indices are given as annotations in brackets [�]. For exam-
ple, the second assignment in the loop block has the unique
identi�er (or node number) [loop:2].

The following de�nition introduces notions related to
statement-level control-
ow graphs.

De�nition 1

� A 
ow graph G = (N;E; s; e) consists of a set N of
statement nodes, a set E of directed control-
ow edges,
a unique start node s, and unique end node e.

� The inverse G�1 of a 
owgraph (N;E; s; e) is the 
ow-
graph (N;E�1

; e; s) (i.e., all edges are reversed and
start/end states are swapped).

� Node n dominates node m in G (written dom(n;m)) if
every path from the start node s to m passes through n.
(note that this makes the dominates relation re
exive).

� Node m post-dominates node n in G
(written post-dom(m;n)) if every path from node m to
the end node e passes through n (equivalently, dom(n;m)
in G�1).

� Node n is control-dependent on m (some intuition fol-
lows this de�nition) if

1. there exists a non-trivial path p from m to n such
that every node m0 2 p�fm;ng is post-dominated
by n, and

2. m is not post-dominated by n. [33]

We write cd(n) for the set of nodes on which n is
control-dependent.

Control dependence plays an important role in the rest of
the paper. Note that for a node n to be control-dependent
on m, m must have a least two exit edges, and there must
be two paths that connect m with e such that one con-
tains n and the other does not. For example, in the power
program of Figure 1, [loop:1], [loop:2], and [loop:3] are
control-dependent on [test:1], but [end:1] is not since it
post-dominates [test:1] (i.e., all paths from [test:1] to halt

go through it).
Extracting the CFG from an FCL program p is straight-

forward. The only possible hitch is that some programs
do not satisfy the \unique end node" property required by
the de�nition (for example, the program may have multiple
return's). To work around this problem, we assume that
when we extract the CFG from a program p, we insert an
additional node labeled halt that has no successors and its
predecessors are all the return nodes from p.

2.2 Semantics

The semantics of an FCL program p is expressed as tran-
sitions on program states ([l:n]; �) where l is the label of a
block in p, n is the index of the statement in block l, and �
is a store mapping variables to values. A series of transitions
gives an execution trace through a program's statement-level
control 
ow graph. For example, Figure 3 gives a trace of the
power program computing 52. Formally, a trace is �nite non-
empty sequence of states written � = s1 ; s2; : : : ; sk. We
write �i for the su�x starting at si, i.e., �

i = si ; si+1; : : : .
1. We omit a formal de�nition of the transition relation for
FCL programs since it is intuitively clear (a formalization
can be found in [19, 20]).

3 Slicing

3.1 Program slices

A program slice consists of the parts of a program p that
(potentially) a�ect the variable values that 
ow into some
program point of interest [31]. A slicing criterion C =
(n; V ) speci�es the program point n (a node in p's CFG)
and a set of variables V of interest.

For example, slicing the power program with respect to
the slicing criterion C = ([loop:2]; fng) yields the program
in Figure 4. Note that the assignments to variables m and
result and the declaration of m as an input parameter have
been sliced away since they do not a�ect the value of n at
line [loop:2]. In addition, block init is now trivial and can
be removed, e.g., in a post-processing phase.

Slicing a program p yields a program ps such that the
traces of ps are projections of corresponding traces of p. For
example, the following trace of ps is a projection of the trace

1Here, we consider only �nite traces (corresponding to terminat-
ing executions). The extended version of the paper treats in�nite
executions, which are best expressed using co-inductive reasoning
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(m n)

(init)

init: result := 1; [1] loop: result := *(result m); [1]

goto test; [2] n := -(n 1); [2]

goto test; [3]

test: if <(n 1) [1]

then end

else loop; end: return; [1]

Figure 1: An FCL program to compute mn

Syntax Domains

p 2 Programs[FCL]
b 2 Blocks[FCL]
l 2 Block-Labels[FCL]
a 2 Assignments[FCL]
al 2 Assignment-Lists[FCL]

x 2 Variables[FCL]
e 2 Expressions[FCL]
c 2 Constants[FCL]
j 2 Jumps[FCL]
o 2 Operations[FCL]

Grammar

p ::= (x�) (l) b+

b ::= l : al j
al ::= a al j �

a ::= x := e; j skip;
e ::= c j x j o(e�)
j ::= goto l; j return; j if e then l1 else l2;

Figure 2: Syntax of the Flowchart Language FCL

([init:1]; [m 7! 5; n 7! 2; result 7! 0])
! ([init:2]; [m 7! 5; n 7! 2; result 7! 1])
! ([test:1]; [m 7! 5; n 7! 2; result 7! 1])
! ([loop:1]; [m 7! 5; n 7! 2; result 7! 1])
! ([loop:2]; [m 7! 5; n 7! 2; result 7! 5])
! ([loop:3]; [m 7! 5; n 7! 1; result 7! 5])
! ([test:1]; [m 7! 5; n 7! 1; result 7! 5]) :::

:::! ([loop:1]; [m 7! 5; n 7! 1; result 7! 5])
! ([loop:2]; [m 7! 5; n 7! 1; result 7! 25])
! ([loop:3]; [m 7! 5; n 7! 0; result 7! 25])
! ([test:1]; [m 7! 5; n 7! 0; result 7! 25])
! ([end:1]; [m 7! 5; n 7! 0; result 7! 25])
! (halt; [m 7! 5; n 7! 0; result 7! 25])

Figure 3: Trace of power program with m = 5 and n = 2

(n)

(init)

init: goto test; [2] loop: n := -(n 1); [2]

goto test; [3]

test: if <(n 1) [1]

then end

else loop; end: return; [1]

Figure 4: Slice of power with respect to criterion C = ([loop:2]; fng)
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in Figure 3.

([init:2]; [n 7! 2])
! ([test:1]; [n 7! 2])
! ([loop:2]; [n 7! 2])
! ([loop:3]; [n 7! 1])
! � � �
! ([end:1]; [n 7! 0])
! (halt; [n 7! 0])

Intuitively, a trace �2 is a projection of a trace �1 if the
sequence of program states in �2 can be embedded into the
sequence of states in �1. To formalize this, let � jV denote
the restriction of the domain of � to the variables in V .
Then, the de�nition of projection is as follows.

De�nition 2 (projection) Let p be a program. A projec-
tion function # [M; �] for p-traces is determined by

� a set of nodes M from p's CFG, and

� a function � that maps each node in M to a set of
variables V

and is de�ned by induction on the length of traces as follows:

# [M; �]((n; �); s2; : : : ; sk)
=�

(n; � j�(n)); # [M; �](s2; : : : ; sk) if n 2M
# [M; �](s2; : : : ; sk) if n 62M

In the classical de�nition [31, 32] of slicing criterion, one
speci�es exactly one point node of interest in the CFG along
with a set of variables of interest at that node. This was the
case with the example slice of the power program above.

For our applications, we may be interested in multiple
program points, and so we generalize the notion of slicing
criterion as follows.

De�nition 3 (slicing criterion) A slicing criterion C for
a program p is a non-empty set of pairs

f(n1; V1); : : : ; (nk; Vk)g

where each ni is a node in p's statement 
ow-graph and Vi
is a subset (possibly empty) of the variables in p. The nodes
ni are required to be pairwise distinct.

Note that a criterion C can be viewed as a function from
fn1; : : : ; nkg to }(Variables[FCL]). In this case, we write
domain(C) to denote fn1; : : : ; nkg. Thus, a slicing criterion
C determines a projection function # [domain(C); C] which
we abbreviate as # [C]. We can now formalize the notion of
program slice.

De�nition 4 (program slice) Given program p with an
associated CFG, let C be a slicing criterion for p. Then
a program ps (also called the residual program) is slice of p
with respect to C if for any p execution trace � = s0; : : : ; sk,

# [C](�) = # [C](�s)

where �s is the execution trace of ps running with initial
state s0.

For example, let C = f([loop:2]; fng)g, and let � and
�s be the execution traces of the power program (Figure 1)
and the slice of the power program (Figure 4), respectively.
Then,

# [C](�)
= # [C](�s)
= ([loop:2]; [n 7! 2]); ([loop:2]; [n 7! 1]):

3.2 Computing slices

Given a program p and slicing criterion C, De�nition 4 ad-
mits many programs ps as slices of p (in fact, p itself is a
(trivial) slice of p). Weiser notes that the problem of �nding
a statement minimal slice of p is incomputable [32]. Below
we give a minor adaptation of Weiser's algorithm for com-
puting conservative slices, i.e., slices that may contain more
statements than necessary.2

3.2.1 Initial approximation of a slice

Computing a slice involves (among other things) identifying
assignments that can a�ect the values of variables given in
the slicing criterion. To do this, one computes information
similar to reaching de�nitions. This requires keeping track
of the variables referenced and the variables de�ned at each
node in the CFG.

De�nition 5 (de�nitions and references)

� Let def(n) be the set of variables de�ned (i.e., assigned
to) at node n (always a singleton or empty set).

� Let ref(n) be the set of variables referenced at node n.

Figure 5 shows the def and ref sets for the power program
of Figure 1.

Next, for each node in the CFG we compute a set of
relevant variables. Relevant variables are those variables
whose values must be known so as to compute the values of
the variables in the slicing criterion.

De�nition 6 (initially relevant variables)
Let C = f(n1; V1); : : : ; (nk; Vk)g be a slicing criterion. Then
R
0
C(n) is the set of all variables v such that either:

1. n = ni and v 2 Vi for some i 2 f1; : : : ; kg, or

2. n is an immediate predecessor of a node m such that
either:

(a) v 2 ref(n) and def(n) \ R
0
C(m) 6= ;, or

(b) v 62 def(n) and v 2 R0
C(m).

Intuitively, a variable v is relevant at node n if (1) we are at
the line of the slicing criterion and we are slicing on v, or (2)
n immediately precedes a node m such that (a) v is used to
de�ne a variable x that is relevant at m (i.e., the value of x
depends on v), or (b) v is relevant at m and it is not \killed
o�" by the de�nition at line n. Figure 5 presents the initial
sets of relevant variables sets for the power program of Fig-
ure 1 with slicing criterion C = ([loop:2]; fng). Intuitively,
n is relevant along all paths leading into node [loop:2]. In
the end block, n is a dead variable and thus it is no longer
relevant.

The classical de�nition of slicing does not require nodes
mentioned in the slice criterion to occur in the computed
slice. To force these nodes to occur, we de�ne a set of oblig-
atory nodes |nodes that must occur in the slice even if they
fail to de�ne variables that are eventually deemed relevant.

De�nition 7 (obligatory nodes) The set OC of obliga-
tory nodes is de�ned as follows:

OC = fn 2 N j (n; V ) 2 Cg

2The algorithm we give actually is based on Tip's corrected version
of Weiser's algorithm [31].
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Node def ref cd R
0
C R

1
C

[init:1] fresultg ; ; fng fng
[init:2] ; ; ; fng fng
[test:1] ; fng f[test:1]g fng fng
[loop:1] fresultg fresult; mg f[test:1]g fng fng
[loop:2] fng fng f[test:1]g fng fng
[loop:3] ; ; f[test:1]g fng fng
[end:1] ; ; ; ; ;

OC = f[loop:2]g
S
0
C = f[loop:2]g

B
0
C = f[test:1]g

S
1
C = f[loop:2]; [test:1]g

B
1
C = f[test:1]g

Figure 5: Results of the slicing algorithm for the power program and slicing criteria C = ([loop:2]; fng)

The initial slice set S0
C is the set of nodes that de�ne vari-

ables that are relevant at a successor.

De�nition 8 (initial slice set) The initial slice set S0
C is

de�ned as follows:

fn 2 N j 9m : (n;m) 2 E ^ R
0
C(m) \ def(n) 6= ;g

Figure 5 presents the initial slice set S0
C for the power pro-

gram of Figure 1. Node [loop:2] is the only node in S0
C since

it is the only node that de�nes a variable that is relevant at
a successor.

Note that S0
C does not include any conditionals since con-

ditionals make no de�nitions. How do we tell what condi-
tionals should be added? Intuitively, a conditional at node n
should be added ifm 2 S0

C [OC andm is control-dependent
on n. This set of conditionals B0

C is called the branch set.

De�nition 9 (branch set) The initial branch set B0
C is

de�ned as follows:

B
0
C =

[
n2(S0

C
[OC)

cd(n)

Figure 5 presents the control-dependence information and
the initial branch set B0

C for the power program of Figure 1.
As explained in Section 2.1, [loop:1], [loop:2], and [loop:3]
are control-dependent on [test:1]. Since [loop:2] is in S0

C [
OC , control-dependency dictates that [test:1] be included
in the B0

C .

3.3 Iterative construction

Now we have to keep iterating this process. That is, we add
the conditionals that in
uence nodes already in the slice.
Then, we must add to the slice nodes that are needed to
compute expressions in the tests of conditionals, and so on
until a �xed point is reached.

De�nition 10 (iterations)

� relevant variables

R
i+1
C (n) = R

i
C(n) [

[
b2Bi

C

R
0

bc(b)(n)

where the branch criterion bc(b) = f(b; ref(b))g That
is, the relevant variables at node n are those that were
relevant in the previous iteration, plus those that are
needed to decide the conditionals that control de�ni-
tions in the previous slice set. Finding such nodes for
a branch b is equivalent to slicing the program with
the criterion f(b; ref(b))g.

� slice set

S
i+1
C = fn 2 N j (n 2 Bi

C) _
(9m : (n;m) 2 E ^

R
i+1
C (m) \ def(n) 6= ;)g

That is, the slice set contains all the conditionals that
controlled nodes in the previous slice set, and all nodes
that de�ne relevant variables.

� branch set

B
i+1
C = fb 2 N j 9n 2 S

i+1
C [ OC : b 2 cd(n)g

That is, the conditionals required are those that con-
trol nodes in the current slice set or obligatory nodes.

Figure 5 presents the sets R1
C , S

1
C , and B

1
C which result from

the second iteration of the algorithm. On the next iteration,
a �xed point is reached since n is the only variable required
to compute the conditional test at [test:1] and it is already
relevant at [test:1].

In the iterations, the size of Ri
C(n) for all nodes n and

S
i
C is increasing, and since Ri

C(n) is bounded above by the
number of variables in the program and SiC is bounded above
by the number of nodes in the CFG, then the iteration even-
tually reaches a �xed points Ri

C(n) and S
i
C .

3.4 Constructing a residual program

Given RC and SC , the following de�nition informally sum-
marizes how a residual program is constructed. The intu-
ition is that if an assignment is in SC , then it must appear in
the residual program. If the assignment is not in SC but in
OC , then the assignment must be to an irrelevant variable.
Since the node must appear in the residual program, the
assignment is replaced with a skip. All goto and return
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jumps must appear in the residual program. However, if an
if is not in SC , then no relevant assignment or obligatory
node is control dependent upon it. Therefore, it doesn't
matter if we take the true branch or the false branch. In
this case, we can simply jump to the point where the two
branches merge.

De�nition 11 (residual program construction) Given
a program p = (x�) (l) b+ and slicing criterion C, let RC,
SC , OC be the sets constructed by the process above. A resid-
ual program ps is constructed as follows.

� For each parameter x in p, x is a parameter in ps only
if x 2 RC([l:1]) where l is the label of the initial block
of p.

� The label of the initial block of ps is the label of the
initial block of p.

� For each block b in p, form a residual block bs as fol-
lows.

{ For each assignment line a (with identi�er [l:i]),
if [l:i] 2 SC then assignment a appears in the
residual program with identi�er [l:i], otherwise if
[l:i] 2 OC then the assignment becomes a skip
with identi�er [l:i] in the residual program, other-
wise the node is left out of the residual program.

{ For jump j in b, if j = goto l0; or j = return;
then j is the jump in bs, otherwise we must have
j = if e then l1 else l2; with some identi�er [l:i].
Now if [l:i] 2 SC then j is the jump in bs, other-
wise the jump in bs is goto l0; with identi�er [l:i]
where l0 is the label of the nearest post-dominating
block for both l1 and l2.

Finally, post-processing removes all blocks that are not tar-
gets of jumps in ps (these have become unreachable).

4 Finite-state Veri�cation

As noted in the introduction, a variety of �nite-state veri�-
cation techniques have been used to verify properties of soft-
ware. To make our presentation more concrete, we consider
a single �nite-state veri�cation technique: model checking of
speci�cations written in linear temporal logic (LTL). LTL
model checking has been used to reason about properties
of a wide range of real software systems; we have used it,
for example, to validate properties of a programming frame-
work that provides parallel scheduling in a variety of systems
(e.g., parallel implementations of �nite-element, computa-
tional 
uid dynamics, and program 
ow analysis problems)
[16, 15].

4.1 Linear temporal logic

Linear temporal logic [27] is a rich formalism for specifying
state and action sequencing properties of systems. An LTL
speci�cation describes the intended behavior of a system on
all possible executions.

The syntax of LTL includes primitive propositions P
with the usual propositional connectives, and three temporal

operators.

(propositional connectives)

 ::= P j : j  1 ^  2 j  1 _  2 j  1 )  2 j

(temporal operators)

2 j 3 j  1 U  2

When specifying properties of software systems, one typ-
ically uses LTL formulas to reason about execution of par-
ticular program points (e.g., entering or exiting a procedure)
as well as values of particular program variables. To capture
the essence of this for FCL, we use the following primitive
propositions.

P ::= [l:i] j [x rop c]

� Intuitively, [l:i] holds when execution reaches
node i in the block labeled l.

� Intuitively, [x rop c] holds when the value of variable x
at the current node is related to [[c]] by the relational
operator rop (e.g., [x=0] where rop is =).

Formally, the semantics of a primitive proposition is de-
�ned with respect to states.

[[[l:i]]](n; �) =

�
true if n = [l:i]
false otherwise

[[[x rop c]]](n; �) =

�
true if �(x) [[rop]] [[c]]
false otherwise

The semantics of a formula is de�ned with respect to a
trace. The temporal operator 2 requires that its argument
be true from the current state onward, the 3 operator re-
quires that its argument become true at some point in the
future, and the U operator requires that its �rst argument
is true up to the point where the second argument becomes
true. Formally [24], let � = s1; : : : ; sk. Then,

� j= [l:i] i� [[[l:i]]]s1 = true

� j= [x rop c] i� [[[x rop c]]]s1 = true

� j=  1 ^  2 i� � j=  1 and � j=  2

� j=  1 _  2 i� � j=  1 or � j=  2

� j=  1 )  2 i� � j=  1 implies � j=  2

� j= 2 i� �
i
j=  for all i

� j= 3 i� �
i
j=  for some i

� j=  1 U  2 i� there exists an i such that

�
i
j=  2; and for all

j = 1; : : : ; i� 1; �j j=  1

Here are some simple speci�cations using the logic:
� 3[l5:1]
eventually block l5 will be executed

� 2([l2:1] ) 3[l3:1])
whenever block l2 is executed, block l3 is
always subsequently executed

� 2([l5:1] ) :x = 0)
whenever block l5 is executed x is non-zero

� 2(x<10)
x is always less than 10
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4.2 Software model construction

To apply �nite-state veri�cation to a software system, one
must construct a �nite-state transition system that safely
abstracts the software semantics. The transition system
should be small enough to make automatic checking tractable,
yet it should be large enough to capture all information rel-
evant to the property being checked. Relevant information
can by extracted by an appropriate abstract interpretation
(AI) [9].

In our approach [12, 20], the user declares for each pro-
gram variable an abstract domain to be used for interpreting
operations on the variable. Using a process that combines
abstract interpretation and partial evaluation (which we call
abstraction-based program specialization (ABPS)), a residual
program is created by propagating abstract values and spe-
cializing each program point with respect to these abstract
values [20, 21]. In the residual program, concrete constants
are replaced with abstract constants. The residual program
is a safely approximating �nite-state program with a �xed
number of variables de�ned over �nite abstract domains.
This program can then be submitted to a toolset [8, 14]
that generates input for existing model checking tools, such
as SMV [28] and SPIN [23]. This approach has been applied
to verify correctness properties of several software systems
written in Ada [12, 13].

In the steps described above, the user's main task is to
pick appropriate AI's, i.e., AI's that extract relevant infor-
mation, but throw away irrelevant information. The general
idea behind our methodology for chosing AI's is to start sim-
ple (use an AI's that throw all information about data
ow
away) and incrementally re�ne the AI's based on informa-
tion from the speci�cation to be veri�ed and from the pro-
gram.

1. Start with the point AI: Initially all variables are
modeled with the point AI (i.e., a domain with a single
value > where all operations return >). In e�ect, this
throws away all information about a variable's value.

2. Identify semantic features in the speci�cation:
The speci�cation formula to be checked includes, in
the form of propositions, di�erent semantic features of
the program (e.g., valuations of speci�c program vari-
ables). These features must be modeled precisely by
an AI to have any hope of checking the property. For
example, if the formula includes a proposition [x=0],
then instead of using the point AI for x, one must use
e.g., an AI with the domain fzero; pos;>g that we refer
to as a zero-pos AI.

3. Select controlling variables: In addition to vari-
ables mentioned explicitly in the speci�cation, we must
also use re�ned AI's for variables on which speci�ca-
tion variables are control dependent. The predicates
in the controlling conditionals suggest semantic fea-
tures that should be modeled by an AI. For example,
if a speci�cation variable x is control-dependent upon a
conditional if even?(y) : : : one should use an even/odd
AI for y.

4. Select variables with broadest impact: When
confronted with multiple controlling variables to model,
select the one that appears most often in a conditional.

To illustrate the methodology, Figure 6 presents an FCL
rendering of an Ada process that controls readers and writ-
ers of a common resource [8]. In the Ada system, this server

process runs concurrently with other client processes, and re-
quests such as start-read, stop-read are entry points (ren-
dezvouz points) in the control process. In the FCL code of
Figure 6, requests are given in the program parameter reqs
{ a list of values in the subrange [1::4]. Figure 7 presents
the block-level control-
ow graph for the FCL program.

Assume we are interested in reasoning about the invari-
ance property

2([start-read:1] ) [WriterPresent=0]):

The key features that are mentioned explicitly in this speci-
�cation are values of variable WriterPresent and execution
of the start-read block. The point AI does not provide
enough precision to determine the states where WriterPresent
has value zero. An e�ective AI for WriterPresent must
be able to distinguish zero values from positive values; we
choose the zero-pos AI.

At this point we could generate an abstracted model
and check the property or consider additional re�nements
of the model; we choose the latter for illustrating our exam-
ple. We now determine the variables upon which the node
[start-read.1] and nodes with assignments to WriterPresent
are control dependent. In our example, there are three such
variables: WriterPresent, ActiveReaders and req. We are
already modeling WriterPresent and req is being used to
model external choice of interactions with the control pro-
gram via input. We could choose to bind ActiveReaders to
a more re�ned AI than point. Given that the conditional ex-
pressions involving that variable are ActiveReaders=0 and
ActiveReaders>0, we might also choose a zero-pos AI. Thus,
only ErrorFlag is abstracted using the point AI.

At this point, we would generate an abstracted model
and check the property. If a true result is obtained then
we are sure that the property holds on the program, even
though the �nite-state system only models two variables
with any precision. If a false result is obtained then we
must examine the counter-example produced by the model
checker. It may reveal a true defect in the program or it may
reveal an infeasible path through the model. In the latter
case, we identify the variables in the conditionals along the
counter-example's path as candidates for binding to more
precise AIs.

This methodology is essentially a heuristic search to �nd
the variables in the program that can in
uence the execution
behavior of the program relative to the property's proposi-
tions. When a variable is determined to be potentially in
u-
ential, its abstraction is re�ned to strengthen the resulting
system model. In the absence of such a determination, the
variable is modeled with a point abstraction which essen-
tially ignores any e�ect it may have; although in the future
it may be determined to have an in
uence in which case its
abstraction will be re�ned.

5 Reducing Models Using Slicing

As illustrated above, picking appropriate abstractions is non-
trivial and could bene�t greatly from some form of auto-
mated assistance. The key aspects of the methodology for
picking abstractions included

1. picking out an initial set of relevant variables V and
relevant statements (i.e., CFG nodes N) mentioned in
the LTL speci�cation,
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(reqs) (init)

init:

req := 0; [1]

ActiveReaders := 0; [2] raise-error:

WriterPresent := 0; [3] ErrorFlag := 1; [1]

ErrorFlag := 0; [4] goto check-reqs; [2]

goto check-reqs; [5]

check-reqs: end:

if (null? reqs) [1] return; [1]

then end

else next-req;

next-req:

req := (car reqs); [1]

reqs := (cdr reqs); [2]

goto attempt-start-read; [3]

attempt-start-read: start-read:

if (req=1 and WriterPresent=0) [1] ActiveReaders := ActiveReaders+1; [1]

then start-read goto check-reqs; [2]

else attempt-stop-read;

attempt-stop-read: stop-read:

if (req=2 and ActiveReaders>0) [1] ActiveReaders := ActiveReaders-1; [1]

then stop-read if (WriterPresent=1) [2]

else attempt-start-write; then raise-error

else attempt-stop-write;

attempt-start-write: start-write:

if (req=3 and ActiveReaders=0 [1] WriterPresent := 1; [1]

and WriterPresent=0) goto check-reqs; [2]

then start-write

else attempt-stop-write;

attempt-stop-write: stop-write:

if (req=4 and WriterPresent=1) [1] WriterPresent := 0; [1]

then stop-write else check-reqs; if (ActiveReaders>0) [2]

then raise-error

else check-reqs;

Figure 6: Read-write control example in FCL

2. identifying appropriate AI's for variables in V ,

3. using control dependence information, picking out an
additional set(s) of variables W that indirectly in
u-
ence V and N , and

4. identifying appropriate AI's for variables in W .

Intuitively, all variables not in V [W are irrelevant and can
be abstracted with the point AI.

Clearly, item (1) can be automated by a simple pass over
the LTL speci�cation. Moreover, the information in item
(3) is exactly the information that would be produced by
slicing the program p based on a criterion generated from
information in (1). Thus, pre-processing a program to be
veri�ed using slicing provides automated support for our
methodology. Speci�cally, slicing can (i) identify relevant
variables (which require AI's other than the point AI), (ii)
eliminate irrelevant program variables from consideration in

the abstraction selection process (they will not be present in
the residual program ps yielded by slicing), and (iii) reduce
the size of the software and thus the size of the transition
system to be analyzed. Other forms of support are needed
for items (2) and (4) above.

For this approach, given a program p and a speci�cation
 , we desire a criterion extraction function extract that ex-
tracts an appropriate slicing criterion C from  . Slicing p
with respect to C should yield a smaller residual program
ps that (a) preserves and re
ects the satisfaction of  , and
(b) has as little irrelevant information as possible.

The following requirement expresses condition (a) above.

Requirement 1 (LTL-preserving extract) Given program
p and a speci�cation  , let C = extract( ), and let ps the re-
sult of slicing p with respect to C. Then for any p execution
trace � = s1; : : : ; sk,

� j=  i� �s j=  
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raise-error

end

init

attempt-stop-write

attempt-start-write

attempt-stop-read

attempt-start-read

next_req

check-reqs

stop-write

start-write

stop-read

start-read

Figure 7: Read-write control 
owchart

where �s is the execution trace of ps running with initial
state s1.

5.1 Proposition-based slicing criterion

We now consider some technical points that will guide us
in de�ning an appropriate extraction function. As stated
above, we want to preserve the satisfaction of the formula  
yet remove as much irrelevant information from the original
trace � as possible. We have already discussed the situation
where certain variables' values can be eliminated from the
states in a trace � because they do not in
uence the satifac-
tion of the formula  under �. What is important in this is
that we have used purely syntactic information (the set of
variables mentioned in  ) to reduce the state space.

Let's explain this reduction in more general terms. Con-
sider a trace

� = s1; s2; : : : ; si�1; si; si+1; : : : ; sn:

Assume that the state transition si; si+1 does not in
uence
the statisfaction of  . Formally, � j=  i� �s j=  where
�s is the compressed trace (the transition si; si+1 has been
compressed)

�s = s1; s2; : : : ; si�1; si+1; : : : ; sn:

Another view of the change from � to �s is that the action �
that causes the change from si�1 to si and the action �

0 that
causes the change from si to si+1 have been combined into
an action �00 that moves from si�1 to si+1. Intuitively, the
formula  \doesn't need to know" about the intermediate
state si. For example, the irrelevant transition might be an
assignment to an irrelevant variable, or a transition between
nodes [l:i] and [l:(i+ 1)] not mentioned in  .

What is the technical justi�cation for identifying com-
pressible transitions using a purely syntactic examination of
only the propositions in a formula  ? The answer lies in

the fact that, for the temporal operators we are treating,
state transitions that don't change the satis�cation of the
primitive propositions of the formula  do not in
uence the
satisfaction of  itself. This means that we can justify many
trace compressions by reasoning about only single transi-
tions and satisfaction of primitive propositions. We will see
below that this property does not hold when one includes
other temporal operators such as the next state operator �.

We now formalize these notions. The following de�nition
gives a notion of proposition invariance with respect to a
particular transition.

De�nition 12 (P-stuttering transition) Let P be a prim-
itive proposition, and let

� = s1; s2; : : : ; si�1; si; si+1; : : : ; sn:

The transition si ! si+1 is said to be P -stuttering when

[[P ]]si = [[P ]]si+1:

If P is a set of primitive propositions and for each proposi-
tion P 2 P the transition si ! si+1 is P -stuttering, then
the transition is said to be P-stuttering.

The following lemma states that the satisfaction of a for-
mula  containing primitive propositions P is invariant with
respect to expansion and compression of P-stuttering steps.

Lemma 1 Let  be a formula and let P be the set of prim-
itive propositions appearing in  . For all traces

� = s1; s2; : : : ; si�1; si; si+1; : : : ; sn;

if si ! si+1 is P-stuttering, then

� j=  i� �s j=  

where

�s = s1; s2; : : : ; si�1; si+1; : : : ; sn:
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This lemma fails when one includes the next state operator
� [23] with the following semantics

s1; s2; ::: j= � i� s2; ::: j=  :

For example, consider the trace

� = ([l:1]; �1); ([l:2]; �2); ([l:3]; �3); ([l:4]; �4):

Let P be the proposition [l:3] and note � j= ��P . Now
([l:1]; �1) ! ([l:2]; �2) is P -stuttering (P is false in both
states), but compressing the transition to obtain

�s = ([l:2]; �2); ([l:3]; �3); ([l:4]; �4):

does not preserve sati�cation of the formula (i.e., �s 6j=
��P ).

Intuitively, the next state operator allows one to count
states, and thus any attempt to optimize by compressing
transitions in this setting is problematic. For this reason,
some systems like SPIN [23] do not guarantee that the se-
mantics of � will be preserved during, e.g., partial-order re-
duction optimizations.

Given a formula  where P is the set of propositions
in  , we now want to de�ne an extraction function that
guarantees that transitions that are not P-stuttering are
preserved in residual program traces.

� For variable propositions P = [x rop c], observe that
only de�nitions of the variable x may cause the vari-
able to change value (i.e., cause a transition to be non-
P -stuttering). This suggests that for each proposition
[x rop c] in a given speci�cation  , each assignment to
x should be included in the residual program. More-
over, x should be considered relevant.

� For a proposition P = [l:i], entering or leaving CFG
node [l:i] can cause the proposition to change value
(i.e., cause the transition to be non-P -stuttering). One
might imagine that we only need the slice to include
the statement [l:i] for each such proposition in the for-
mula. However, it is possible that compression might
remove all intermediate nodes between two occurences
of the node [l:i]. This, as well as similar situations,
do not preserve that state changes associated with en-
tering and exiting the node. Therefore, in addition
to the node [l:i], we must ensure that all immediate
successors and all immediate predecessors of [l:i] are
included in the slice.

Based on these arguments, we de�ne an extraction func-
tion as follows.

De�nition 13 (Proposition-based extraction)
Given a program p and speci�cation  , let V be the set of
all program variables occurring in  , and let fn1; : : : ; nkg
be the set of all nodes that contain assignments to variables
in V unioned with the set NP of all nodes appearing in node
propositions of  together the successors and predecessors of

each node in NP . Then extract( )
def
= f(n1; V ); : : : ; (nk; V )g.

Property 1 The extraction function extract satis�es Re-
quirement 1.

As an example,

extract(2([start-read:1] ) [WriterPresent=0]))

yields the following criterion C1:

8>>>>><
>>>>>:

([start-read:1]; fWriterPresentg);
([attemp-start-read:1]; fWriterPresentg);
([start-read:2]; fWriterPresentg);
([init:3]; fWriterPresentg);
([start-write:1]; fWriterPresentg);
([stop-write:1]; fWriterPresentg)

9>>>>>=
>>>>>;
:

Here, the �rst three lines of the criterion are the [start-read.1]
node mentioned in the formula, along with its predecessor
and successor. The last three lines are the nodes where
WriterPresent is assigned a value.

Figure 8 presents the resulting slice. The slice is identical
to the original program except that the variable ErrorFlag

and the block raise-error disappear from the program.
Thus, slicing automatically detects what our abstracting
methodology yielded in the previous section: for the given
speci�cation, only ErrorFlag is irrelevant. The previous
conditional jumps in stop-read and stop-write to raise-error
are replaced with unconditional jumps to check-req. In this
case, the slicing algorithm has detected that the nodes in the
raise-error block are irrelevant, and the conditional jumps
are replaced with unconditional jumps to the node where the
true and false paths leading out of the conditionals meet.

As a second example, consider the speci�cation  =
3[check-reqs:1] ([check-reqs.1] is eventually executed). In
this case extract( ) yields the criterion C2:

8><
>:

([check-reqs:1]; ;);
([init:5]; ;);
([end:1]; ;);
([next-req:1]; ;)

9>=
>; :

Here, the lines of the criterion are the [check-reqs.1] node
mentioned in the formula, along with its predecessor and
successors. Since there are no variable propositions in the
speci�cation, no variables are speci�ed as relevant in the
criterion.

Figure 9 presents the resulting slice. It is obvious that
the residual program is su�cient for verifying the reach-
ability of [check-req.1] as given in the speci�cation. All
variables are eliminated except reqs which appears in the
test at [check-reqs.1]. Even though it not strictly neces-
sary for verifying the property, this conditional is retained
by the slicing algorithm since it is control-dependent upon
itself. In addition, the slicing criterion dictates that the node
[next-req.1] should be in the slice. However, since the as-
signment at this node does not assign to a relevant variable,
the assignment can be replaced with skip. Finally, the jump
to check-reqs at node [next-req.3] in the residual program
is the result of chaining through a series of trivial goto's
during post-processing.

6 Future Work

The previous criteria have considered individual proposi-
tions. Many property speci�cations, however, describe states
using multiple propositions or state relationships between
states that are characterized by di�erent propositions. In
this section, we give some informal suggestions about how
the structure of these complex speci�cations may be ex-
ploited to produce re�ned slicing criterion.
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(reqs) (init)

init:

req := 0; [1]

ActiveReaders := 0; [2]

WriterPresent := 0; [3]

goto check-reqs; [5]

check-reqs: end:

if (null? reqs) [1] return; [1]

then end

else next-req;

next-req:

req := (car reqs); [1]

reqs := (cdr reqs); [2]

goto attempt-start-read; [3]

attempt-start-read: start-read:

if (req=1 and WriterPresent=0) [1] ActiveReaders := ActiveReaders+1; [1]

then start-read goto check-reqs; [2]

else attempt-stop-read;

attempt-stop-read: stop-read:

if (req=2 and ActiveReaders>0) [1] ActiveReaders := ActiveReaders-1; [1]

then stop-read goto check-reqs; [2]

else attempt-start-write;

attempt-start-write: start-write:

if (req=3 and ActiveReaders=0 [1] WriterPresent := 1; [1]

and WriterPresent=0) goto check-reqs; [2]

then start-write

else attempt-stop-write;

attempt-stop-write: stop-write:

if (req=4 and WriterPresent=1) [1] WriterPresent := 0; [1]

then stop-write else check-reqs; goto check-reqs; [2]

Figure 8: Slice of read-write control program with respect to C1

(reqs) (init)

init:

goto check-reqs; [5]

check-reqs: end:

if (null? reqs) [1] return; [1]

then end

else next-req;

next-req:

skip; [1]

reqs := (cdr reqs); [2]

goto check-reqs; [3]

Figure 9: Slice of read-write control program with respect to C2
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(1) x := 0; x := zero; -- not included in slice

(2) x := x + 1; x := pos; x := pos;

(3) x := -x; x := neg; -- not included in slice

(4) x := x * x; x := pos; x := pos;

Figure 10: Slicing abstracted programs

Consider a simple conjunction of propositions appearing
in an eventuality speci�cation

3([l:1] ^ [x=0]):

Rather than slicing on the propositions separately, we can
use the semantics of ^ to re�ne the slicing criterion. For this
property, we are not interested in all assignments to x but
only those that can in
uence the value at [l:1]. Thus, our

slicing criterion would be: extract( )
def
= f([l:1]; x)g. This

approach generalizes in any setting where the program point
proposition occurs positively with any number of variable
propositions as conjuncts.

Thus far, we have considered slicing as a prelude to
ABPS. Application of ABPS can, however, reveal seman-
tic information about variable values in statement syntax,
thereby making it available for use in slicing.

Figure 10 illustrates a sequence of assignments to x, on
the left, and the abstracted sequence assignments, in the
middle, resulting from binding of the classic signs AI [1]
to x during ABPS. In such a situation we can determine
transitions in the values of propositions related to x (e.g.,
x>0) syntactically.

Consider a response property [15] of the form

2( 1 ) 3 2)

Our proposition slicing criterion would be based on solely
on  1 and  2. As with the conjunctions above, we observe
two facts about the structure of this formula that can be
exploited.

1. Within the 2 is an implication, thus we need only
reason about statements that cause the value of  1

to become true (since false values will guarantee that
the entire formula is true).

2. Since the right-hand side of the ) is a 3, we need
only reason about the �rst statement, in a sequence of
statements, that causes  2 to become true.

The right column of Figure 10 illustrates the e�ect of
applying observation 1 to eliminate assignments that do not
cause a positive transition in  1 = x > 0 from the sliced
program. Note that if a proposition involving x appears in
 2 then the slicing criterion may be expanded to include
additional statements.

In addition, a program point where  1 holds which is
post-dominated by a point at which  2 holds need not be
considered for the purpose of checking response, since the
existence of this relationship implies that the response holds
for this occurrence of  1.

Observation 2 can be exploited using post-domination
information. A program point where  2 holds which is post-
dominated by another point where  2 holds does not need to

be included in the slice. This is because only one program
point at which  2 holds is required on any path for the
3 formula to become true. Thus, any post-dominated  2

nodes may be eliminated.
This re�ned slicing criteria de�ned above requires the

use of auxiliary information, such as post-domination infor-
mation, that needs to be available prior to slicing. While
the cost of gathering this information and processing it to
compute slicing criteria may be non-trivial, it will be dom-
inated by the very high cost of performing model checking
on the sliced system. In most cases, the cost of reducing the
the size of the system presented to the model checker will
be more than o�set by reduced model check time.

We have discussed two re�ned criteria based on struc-
tural properties of the formula being checked. Similar re-
�nements can be de�ned for a number of other classes of
speci�cations including precedence and chain properties [15].
These re�nements use essentially the same information as
described above for response properties; precedence proper-
ties require dominator rather than post-dominator informa-
tion.

We note that the re�ned response criteria is applicable
only when the property to be checked is of a very speci�c
form, even slight variations in the structure of the formula
may render the sliced program unsafe. A recent survey
of property speci�cation for �nite-state veri�cation showed
that response and precedence properties of the form de-
scribed above occur quite frequently in practice [16]; 48% of
555 real-world speci�cations fell into these two categories.
For this reason, we believe that the e�ort to de�ne a se-
ries of special cases for extracting criteria based on formula
structure is justi�ed despite its apparent narrowness.

7 Related Work

Program slicing was developed as a technique for simpli-
fying programs for debugging and for identifying parts of
programs that can execute in parallel [32]. Since its devel-
opment the concept of slicing has been applied to a wide
variety of problems including: program understanding, de-
bugging, di�erencing, integration, and testing [31]. In these
applications, it is crucial that the slice preserve the exact
execution semantics of the original program with respect to
the slicing criterion. In our work, we are interested only
preserving the ability to successfully model check properties
that are correct; this weakening allows for the re�nement of
slicing criteria based on the property being checked.

Slicing has been generalized to other software artifacts
[30] including: attribute grammars, requirements models
[22] and formal speci�cations [4]. Cimitile et. al. [6] use Z
speci�cations to de�ne slicing criteria for identifying reusable
code in legacy systems. In their work, they use a combina-
tion of symbolic execution and theorem proving to process
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the speci�cations and derive the slicing criteria. In con-
trast, we identify necessary conditions for sub-formula of
commonly occurring patterns of speci�cations and use those
conditions to guide safe re�nement of our basic proposition
slicing criteria.

Our work touches on the relationship between program
specialization and slicing. We use slicing as a prelude to spe-
cialization and suggest that abstraction-based specialization
may reveal semantic features in the residual program's syn-
tax that could be used by re�ned slicing criteria. Reps and
Turnidge [29] have studied this relationship from a di�erent
perspective. They show that while similar the techniques
are not equivalent; not all slicing transformations can be
achieved with specialization and vice versa.

While slicing can be viewed as a state-space reduction
technique it has a number of important theoretical and prac-
tical di�erences from other reduction techniques appearing
in the literature. State-space reduction, such as [17], pre-
serve correctness with respect to a speci�c class of correct-
ness properties. In contrast, our approach to slicing based
on criteria extracted from formulae yields compressed traces
that contain the state changes relevant to propositions con-
tained in the temporal logic formula. Our approach yields
programs that remain both sound and complete with respect
to property checking. This is in sharp contrast to the many
abstraction techniques developed in the literature (e.g.[7])
which sacri�ce completeness for tractability. Finally, even
though signi�cant progress has been made on developing
algorithms and data structures to reduce model checking
times, such as OBDDs [2], those techniques should be seen
as a complement to slicing. If slicing removes variables from
the system that do not in
uence the behavior to be checked
then the model checker will run faster regardless of the par-
ticular implementation techniques it employs.

8 Conclusion

We have presented a variation of program slicing for a simple
imperative language. We have shown how slicing criteria can
be de�ned that guarantee the preservation of model check
semantics for LTL speci�cations in the sliced program. We
have implemented a prototype tool that performs this slicing
and experimented with a number of examples. Based on this
work we are scaling up the prototype to handle signi�cantly
more complex features of programs including: structured
data, treatment of procedures, and multi-threaded programs
that communicate through shared data. While these exten-
sions are non-trivial they will build of the solid base laid out
in the work reported in this paper.
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Abstract

Tupling transformation strategy can be applied to
eliminate redundant calls in a program and also to elim-
inate multiple traversals of data structures. While the
former application can produce super-linear speedup in
the transformed program, the e�ectiveness of the latter
has yet to be appreciated. In this paper, we investigate
the pragmatic issues behind elimination of multiple data
traversal in the context of lazy languages, and propose a
framework of tupling tactic called strictness-guided tu-
pling . This tactic is capable of exploiting specialised
strictness contexts where possible to e�ect tupling op-
timisation. Two further enhancements of the tupling
tactic are also proposed. One achieves circular tupling
when multiple traversals from nested recursive calls are
eliminated. The other exploits speculative strictness to
further improve the performance of tupling. Bench-
marks are given throughout the paper to illustrate the
performance gains due to these tactics.

Keywords: Tupling, Multiple Traversals, Strictness,
Circular Programs, Speculation.

1 Introduction

Tupling transformation strategy can be applied to elimi-
nate redundant calls in a program and to eliminate mul-
tiple traversals of data structures. While the speed up
gained from redundant calls elimination is undisputed,
the e�ectiveness of eliminating multiple data-structure
traversals has been largely ignored.

Consider the following function, av , which traverses
a list twice:

av xs = let {u = sum xs; v = len xs} in u / v

sum xs = case xs of

[] -> 0

(y:ys) -> let {u = sum ys} in y + u

len xs = case xs of

[] -> 0

(z:zs) -> let {v = len ys} in 1 + v

Application of tupling to av returns a function that
eliminates double traversal of the input list by sum and
len , as follows:

av xs = let {(u,v) = avtup xs} in u / v

avtup xs = case xs of

[] -> (0,0)

(y:ys) -> let {(u,v) = avtup ys

u' = y + u

v' = 1 + v}

in (u', v')

Even though multiple traversals are eliminated, the tu-
pled program performs signi�cantly worse than the orig-
inal program, particularly under lazy evaluation. This
is shown in the �rst two rows of Tab. 1.

Heap Time(s)

(bytes) INIT MUT GC Total

Before Tup. 24,207,372 0.02 8.58 0.21 8.81

After Tup. 60,209,100 0.04 15.31 2.14 17.49

New Tup. 16,208,668 0.05 5.63 0.07 5.75

Table 1: Measurement for executing 100 times of av
[1..10000] under Glasgow GHC 0.29

In this paper, we propose an enhanced tupling tactic
that yields practical e�ectiveness. The new tactic uses
strictness information of the subject program to guide
the transformation. We call it strictness-guided tupling.
It transforms av function to the following avtup' pro-
gram:

av xs = let! {(u,v) = avtup' xs} in u / v

avtup' xs = case xs of

[] -> (0,0)

(y:ys) -> let! {(u,v) = avtup' ys

u' = y + u

v' = 1 + v}}

in (u', v')

Notice that let! has been used in place of let. This
forces the local declarations of let! to be evaluated
strictly. It can help in two ways. Firstly, tuple compo-
nents, such as u' and v', can be evaluated strictly; alle-
viating the need for their closures to be built. Secondly,
the tuple result itself, e.g. (u',v'), can be strictly eval-
uated and be returned via the stack (or registers), in-
stead of being constructed in the heap. (Some strict lan-
guages, such as Moscow ML, do not presently have this
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capability of returning tupled results via the stack. As
a result, multiple traverals optimisation does not work
properly for them.) With these optimisations, avtup'

runs about 35% faster as shown in the last row of Tab. 1.
Note that this improvement is due solely to elimination
of multiple traversals. To isolate the e�ect of strictness
optimisation, the original code used in the �rst row of
Tab. 1 was also subjected to strictness analysis before
its performance was measured.

Based on this strictness-guided tupling tactic, we in-
vestigate the use of strictness information to further im-
prove the transformed programs, as well as to systemati-
cally generate circular programs. The key contributions
of our paper are as follows:

� We provide the �rst pragmatic evidence on the
usefulness of tupling tactic for eliminating multiple
traversals. This task is particularly hard for lazy
languages, as the extra cost incurred by tupled
programs easily negate the gain from the elimina-
tion of multiple traversals. We show how mean-
ingful gain can be achieved via a strictness-guided
tupling algorithm.

� We advocate the use of an advance but yet practi-
cal strictness analysis (with support for strictness
of recursive types) for our tupling tactic. While
many advanced strictness analysis have been pro-
posed in the literature[Bur91, Wad87], there have
been few practical justi�cations for their adop-
tion. This has led a number of researchers to be-
lieve that simple strictness is su�cient for most
programs[PJP93]. We show how our tupling tac-
tic guided by an advanced strictness analysis can
give new impetus to both techniques - through more
opportunities for optimisation.

� We highlight a novel use of tupling due to [Bir84]
that results in tupled circular programs. A sys-
tematic way to incorporate circular tupling into
our framework is proposed, providing an opportu-
nity for Bird's technique to be automated.

� We propose a new analysis framework for specu-
lative strictness and show how it could be utilised
to enhance tupling.

The rest of the paper is organised as follows: Sec-
tion 2 describes the language syntax; Section 3 gives
an overview of basic tupling transformation. We dis-
cuss the use of strictness information during tupling,
and present strictness-guided tupling in Section 4. In
Section 6, we derive circular programs through tupling.
This is followed by a proposal for speculative strictness
to be used with conventional strictness to support more
aggressive tupling (Section 7). Finally, we raise some
important issues for discussion in Section 8, before con-
cluding the paper.

2 Language

Our subject programs are written in a �rst-order, typed,
lazy functional language (Fig. 1), similar to the in-

termediate languages of practical functional compilers.
let statements are non-recursive. let! statements are
used to introduce strict evaluation of abstracted expres-
sions. letrec statements enable mutual-recursive de�-
nitions.

We also represent an expression e as Che1,: : :,eni to
convey the idea that `somewhere inside expression e lies
the sub-expressions e1, : : :, en'. This allows us to look
into nested sub-expressions without being too bothered
by unnecessary contextual details.

The class of functions which will be subject to tu-
pling transformation are known as SRP functions [Chi93].
These are functions with single recursion parameter . A
recursion parameter has type of a recursive data struc-
ture. Argument bound to such recursion parameter are
guaranteed to reduce in size when the associated func-
tion calls are unfolded. Examples of SRP functions in-
clude len, sum , av , as well as rev and sumseg , which
will be de�ned in due course. For convenience, we place
the recursion parameter at the �rst position of an SRP
function, and write it as xs whenever possible.

3 Basic Tupling Algorithm, an Overview

The basic tupling algorithm proposed in [Chi93] can
be used to eliminate both multiple traversals and re-
dundant calls for strict languages. The algorithm is
constructed based on the fold/unfold rules of [BD77].
Prior to transformation, the system determines a class
of SRP functions, SRPSet, whose calls are to be gath-
ered. In Fig. 2, we highlight the main components of
the algorithm by listing �ve syntax-directed rules, B1,
: : :, B5.

Rules B1 and B2 merely skip over outer let and
case expressions to search inside their sub-expressions
for set of calls which could be tupled. The main rules
of tupling are:

� B3 - To 
oat out inner let abstraction, so that
calls located in the let body with locally-de�ned
variables can be collected for tupling. We forbid

oating of let abstraction which contains calls to
functions in SRPSet, so that the transformer does
not miss the opportunity for collecting those calls.
Implicitly, an expression can only be 
oated within
the the binding scope of all of its free variables,
and variables are renamed whenever necessary to
avoid name clash.

We allow liberal application of 
oating. Arbitrary

oating of let abstraction may lead to unneces-
sary closures being built. Although we do not do
it for the code presented in this paper, we can
apply the let \
oat-in" technique of [PJPS96] to
post-process the code after tupling.

� B4 - To gather multiple calls with common re-
cursion arguments together to form a new tuple
function, followed by unfolding of the calls. Gath-
ering of calls provides an opportunity for redun-
dant calls to be shared, and also facilitates rule B5.
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e ::= k j v j f (v1; : : : ; vn) j op (v1; : : : ; vn) j c (v1; : : : ; vn) j case e0 of fci vi1 : : : vin! eigi
j let f(v1i; : : : ; vni) = eigi2M in e j let! f(v1i; : : : ; vni) = eigi2M in e
j letrecf(v1i; : : : ; vni) = eigi2M in e

p 2 Program
p ::= f fi (vi1; : : : ; vik) = eigi

Context Notation :

Chi = #m j k j v j f (Chi
1
; : : : ; Chi

n
) j op (Chi

1
; : : : ;Chi

n
)

j c (Chi
1
; : : : ;Chi

n
) j let fvi = Chi

i
gi2M in Chi

j case Chi
0
of fci vi1 : : : vin! Chi

i
gi

where # is a special variable known as a hole, labelled with a number m.

Figure 1: First-order, typed, lazy functional language

B1 (Skip outer let)

TB ds [let f(v1; : : : ; vn) = (t1; : : : ; tn)g in t] ) let f(v1; : : : ; vn) = (t0
1
; : : : ; t0

n
)g in TB ds [t]

where t0
i
= TB ds [ti] 8i 2 1::n

B2 (Skip outer case)

TB ds [case t of f pi -> ti gi2N ] ) case TB ds [ t ] of f pi -> TB ds [ ti ] gi2N
B3 (Float out inner let)

TB ds [ Chlet f v = t g in t1i ] ) let f v = t g in TB ds [ Cht1i ]
where t contains no calls to functions in SRPSet

B4 (Gather calls)

TB ds [ Chf1(xs,~t1), : : :, fn(xs, ~tn)i ] )
if n > 1 then let f(u1,: : :,un) = ftup(xs,~v)g in TB ds0 [ Ch u1, : : :, un i ]

where ds0 = ds [ f (ftup (xs,~v), (f1(xs,~t1), : : :, fn(xs, ~tn))) j ~v = freevar[~t1,: : :, ~tn] g

ftup (xs,~v) = T 0
B

ds0 [(tf1[~t1= ~v1],: : :,tfn[ ~tn= ~vn]) ]
8i 2 1 � � �n . tfi is the RHS of function fi.

B5 (Tuple case)

T 0
B

ds [(case xs of fpi -> t1igi2N , : : :, case xs of fpi -> tnigi2N )] )
case xs of f pi -> TB ds [ (t1i, : : :, tni) ] gi2N

Figure 2: Basic Tupling Algorithm

Calls gathered are recorded in the set ds, which
acts as a pool of memoised points for terminating
tuple transformation.

� B5 - To combine multiple case constructs (testing
on the same recursion argument) into a single case
construct. This eliminates multiple traversals over
the common recursion argument.

Termination of the tupling transformation is facil-
itated by the well-known folding operation. Thus, in-
stead of de�ning a new tuple function at B4, previously-
de�ned tuple function is used whenever each tuple of
calls gathered is identical (modulo variable renaming
and ordering of the calls) to an earlier tuple.

Let us consider the e�ect of basic tupling algorithm
on a typical function with multiple traversals shown in
Fig. 3a. Inside the de�nition of f, there are two func-
tions, g and h that traverse some common recursive
structure. Generally speaking, their recursive calls oc-
cur in nested function applications and so we have to
abstract out these calls by let-expressions. The basic
tupling algorithm will transform the above functions to
the form in Fig. 3b, where closures are made explicit
through the let construct.

Closures built in the programs are identi�ed in Fig. 3.
Those that exist before and after tupling are linked by
a solid line. Notice that more closures are built after
tupling.

With this view of cost allocation, the extra cost in-
curred from tupling are: building one extra closure for
the n-tuple and n extra closures for the tuple compo-
nents. We shall refer to the �rst kind of closure as tuple-
closure, and the second kind as component-closure.

4 Strictness-Guided Tupling

Naive elimination of multiple traversals may cause per-
formance to degrade for lazy programs. This is due
to the extra closures created by our transformation in
an attempt to adhere to the lazy semantics of the sub-
ject language. Fortunately, our programs are often in-
herently stricter. Exploiting such strictness properties
may help avoid some of these extra closures. For ex-
ample, consider the avtup(xs) call in the RHS of av

in Sec. 1. Both components of avtup(xs) are strictly
needed, and so are every recursive call to avtup. The
former requirement can help eliminate closures for the
tuple-components, while the latter suggests that the tu-
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f xs = let gxs = g xs f xs = let t = tup xs

hxs = h xs u = case t of (a,b) ! a

in Cf hgxs, hxsi v = case t of (a,b) ! b

in Cf hu,vi

g xs = case xs of tup xs = case xs of

[] ! Cg;nilhi [] ! let u = Cg;nilhi

y:ys ! let u = g ys v = Ch;nilhi

in Cg;conshui in (u,v)

y:ys !

h xs = case xs of let t = tup xs

[] ! Ch;nilhi u = case t of (a,b) ! a

y:ys ! let v = h ys v = case t of (a,b) ! b

in Ch;conshvi u'= Cg;conshui

v'= Ch;conshvi

in (u',v')

(a) Before tupling (b) After tupling

hhhhhhhhhh
hhhhhhhhhh

H
H
H
H
H
H
H
HH

Figure 3: Closure Allocation ( A box indicates a closure )

ple itself can be strictly evaluated with its result re-
turned via the stack (or registers).

4.1 A Suitable Strictness Analysis

To implement the suggested enhancement, we require
an appropriate strictness analyser. Here, we propose
to use a strictness domain based on the 4-point strict-
ness analysis �rst introduced by Wadler [Wad87] for
recursive list-type objects. The four strictness values
required are:

? Don't Know - Expression may not be evaluated;

! Simple strictness - Expression is evaluated to its
head normal form;

$ Tail-strictness - Recursively evaluates all recursive
components of the expression;

? Total-strictness - All recursive components are eval-
uated to tail-strict form, while the non-recursive
component are evaluated to head normal form.

Note the partial ordering of strictness values based on
information containment: ? v$v!v?.

Given an expression, e, and a strictness value s, we
write e::S s ` � to mean e be used in the strictness con-
text expressed by s to infer strictness environment �

which captures the strictness of all free/bound variables
in e.

The 4-point strictness domain was originally intro-
duced for the list-type but it is straightforward to extend
it to arbitrary recursive types - with $ to denote that
recursive spines of the expression will be evaluated, and

? implies evaluating the non-recursive components to
head normal form, in addition to evaluating the recur-
sive spines. Based on this domain, functions sum and
len of Sec. 1 could be annotated with the following
strictness rules:

sum ::S ? ! !

len ::S $ ! !

These strictness rules state that, when the result of eval-
uation is required in head normal form, len is tail-strict
($) on its list-input, while sum is totally-strict (?) on
its input. Furthermore, for functions which may be in-
voked at di�erent strictness contexts, we associate a set
of strictness rules to it, such as the function rev de�ned
below:

rev ::S f$ � ? ! !, $ � $! $, ? � ?! ?g
rev(xs,ws) = case xs of f[] -> ws ;

x:xs' -> rev(xs',x:ws)g

For example, the �rst rule of rev is applicable under
simple strictness context, while the second and third
rules are applicable under tail-strict and totally-strict
contexts, respectively.1

For accuracy, our chosen strictness domain also in-
corporates disjunctive strictness information, similar to
that proposed by Jensen in [Jen97]. Consider:

f(xs,y,z) = case xs of f[] -> y ; x:xs' -> zg

To capture the strictness of this function f more accu-
rately, we require:

1By default, no argument will get evaluated when the function

result is not needed. That is, f ::S ?! ? for all function f .
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f ::S (!,!,?) _ (!,?,!) ! !

This indicates that the �rst argument will be evaluated
to head normal form, and so will either the second or
the third argument, but not both.

Though rarely used in practice, such strictness anal-
yses are not new. Many papers have been written about
similarly advanced strictness analyses, often more so-
phisticated than the version presented here. Rules for
analysing their strictness properties are also quite stan-
dard, and can be found in [Wad87] and [Jen97].

4.2 Strictness-Guided Tupling

We now look at how the proposed strictness annotations
can help guide our tupling algorithm. Fig. 4 gives the
main rules for our enhanced tupling algorithm.

We �rst show the conditions under which creation
of extra closures may be avoided during tupling. Next,
we look at the propagation of strictness information by
our strictness-guided tupling algorithm.

Consider a tupled-function call below with three com-
ponents which may have been obtained from a call-
gathering step (S5).

let (u1,u2,u3) = (ftup(xs,t) ::S s) in Chu1,u2,u3i

Without strictness information, we can only assume that
all three tuple variables u1, u2, u3 may not be needed
during execution. Hence, the call ftup(xs,t) must be
created as a tuple-closure. However, if strictness infor-
mation s is available we may be able to decide if the
ftup(xs,t) could be evaluated strictly. In fact, we can
evaluate this tuple-call strictly if at least one of u1,u2,u3
is known to be evaluated to head normal form.

In order words, if s v (!,?,?) _ (?,!,?) _ (?,?,!), we can
convert the above lazy let to a strict let!. For conve-
nience, we writeMn as an abbreviation of the strictness
context _n

i=1
f(s1; : : : ; sn) j si = ! ^ sj = ?;8j 6= ig. The

latter implies that at least one component of its associ-
ated tuple will be needed.

Our rule to avoid constructing tuple-closure can now
be expressed as follows, which is an intuitive interpre-
tation of rule S5 in Fig. 4.

if s v Mn ^ ftup(xs,t) ::S s then

let f(u1,..,un) = ftup(xs,t)g in Chu1,u2,u3i )
let! f(u1,..,un) = ftup(xs,t)g in Chu1,u2,u3i.

Furthermore, when a tuple component is expected to
be strictly evaluated, we can avoid building closure for
that component. Consider the tuple (e1 ::S s1, : : :, en
::S sn). If it is determined that si v !, then we can
evaluate ei strictly, provided it is neither a variable nor
a constant. (Variables/constants do not result in new
closures and hence need not be strictly evaluated). A
general rule to avoid building component-closure is as
follows, which corresponds to rule S6 in Fig. 4:

if si v ! ^ ei ::S si then

(e1, : : :, ei, : : :, en) )
let! fvi = eig in (e1, : : : ,vi, : : :, en).

These two strictness optimisations are keys to e�ective
tupling for lazy languages. To enable these two optimi-
sations, our tupling algorithm must aggressively propa-
gate strictness information during tupling. Where pos-
sible, it should also use the best strictness context avail-
able for a given tuple of abstracted calls; and aggres-
sively propagate this strictness context into subexpres-
sions, where feasible. This is expressed in the other rules
of the algorithm, where attempts are made to propagate
the strictness context to the subexpressions during tu-
pling. Rule S1 is similar to rule B1 of the basic tupling
algorithm. Rules S2 reduces case expression when pos-
sible. Rule S3 allows each branch of the lifted case to
be exposed to the propagated strictness context. Lastly,
rules S4 and S7 are similar to rule B3 and B5 in the basic
algorithm.

5 An Example

In this section, we provide a detailed example of tupling
application. Consider the function sumseg :

sumseg(xs,n) =

case xs of

[] -> 0

(y:ys) -> case (n==0) of

True -> 0

False -> let { n' = n - 1 }

in y + sumseg(ys,n')

If we apply tupling to sumseg(xs,n)+sumseg(xs,m) , we
will gather these two calls under strictness context (!�
!). Transformation guided by this strictness context will
be as follows (several arguments of the transformation
are omitted for clarity):

T (!�!) [ sumseg(xs,n)+sumseg(xs,m) ]
(S5)) let! (u,v) = ftup(xs,n,m)::S (!�!) in u+v

De�ne ftup(xs,n,m)::S (!�!) =
T 0 (!�!) [ (case xs of f[] -> 0; (y:ys) -> Chnig,

case xs of f[] -> 0; (y:ys) -> Chmig)]
where Chai = case (a== 0) of

True -> 0 ;

False -> let f n' = a-1g
in y + sumseg(ys,n')

(S7)) case xs of

[] -> (0,0)

y:ys -> T (!�!)[(Chni, Chmi)]

Though the case-test has been lifted from the compo-
nents, there are still two inner case constructs, denoted
by Chni and Chmi, which actually make the recursive
calls to sumseg occur in lazy context (wrt the RHS of
sumseg ). However, as the strictness information (!�!)
is propagated to the subexpressions during transforma-
tion, both Chni and Chmi lie in strict context, and this
enable us to transform (Chni,Chmi) further. We ap-
ply S3 twice to lift two case expressions, and then ap-
ply S4 several times on each of the branches of the
case expressions:

123



S1 (Skip outer let)

T s0 ds [let f(v1; : : : ; vn) = (t1; : : : ; tn)g in t] ) let f(v1; : : : ; vn) = (t0
1
; : : : ; t0n)g in T s ds [t]

where t ::S s0 ` �
t0
i
= T (�[vi]) ds [ti] 8i 2M

S2 (Reduce case)

T s0 ds [ Ch case cj(~t) of f ci(~v) -> ti gi2M i ] ) T s0 ds [ Ch tj [~t=~v] i ]
S3 (Lift case)

T s0 ds [ Chcase t of f pi -> ti gi2M i] )
if (�[u]) v ! then case (T (�[u]) ds [t]) of f pi -> T s0 ds [ Cht0

i
[pi=t]i ] gi2M

where Chcase u of f pi -> ti gi2M i ::S s0 ` � for new variable u
S4 (Float out inner let)

T s0 ds [ Chlet f v = t g in t1i ] ) let f v = t g in T s0 ds [ Cht1i ]
where t contains no calls to functions in SRPSet

S5 (Gather calls)

T s0 ds [ Chf1(xs,~t1), : : :, fn(xs, ~tn)i] )
if svMn ^ n > 1 then let! f(u1; : : : ; un) = ftup(xs,~v)g in T s0 ds0 [Chu1,: : :,uni ]
where Chu1,: : :,uni ::S s0 ` � for new variables u1; : : : ; un

s = �[(u1; : : : ; un)]

ds0 = ds [ f (ftup(xs,~v), s,(f1(xs,~t1), : : :, fn(xs, ~tn))) j ~v = freevar[~t1,: : :, ~tn] g

ftup(xs,~v) = T 0 (suMn) ds
0 [ (tf1[~t1= ~v1],: : :,tfn[ ~tn= ~vn]) ]

8i 2 1 � � �n . tfi is the RHS of function fi.
S6 (Make tuple components strict)

T s0 ds [ (t1 ::S s1, : : :, tn ::S sn)::S s0] ) let! f vi = ti gi2N in T s0 ds (t0
1
,: : :,t0n)

where t0
i
= if i 2 N then vi else ti

N � fj j j 2 1 � � �n; sjv!;not(isVariable?(tj )g; not(isConstant?(tj)g.
S7 (Tuple case)

T 0 s0 ds [(case xs of fpi -> t1igi2M , : : :, case xs of fpi -> tnigi2M ) ] )
case xs of fpi -> T s0 ds [ (t1i,: : :,tni)] gi2M

Figure 4: Strictness-Guided Tupling Algorithm

T (!�!) [ (Chni,Chmi) ] (S3,S4))
case (n==0) of

True -> case (m==0) of

True -> T (!�!) [ (0,0) ]
False -> let fm' = m - 1g

in T (!�!)[(0,y+sumseg(ys,m'))]
False -> case (m==0) of

True -> let fn' = n - 1g
in T (!�!)[(y+sumseg(ys,n'),0)]

False -> let fn' = n - 1

m' = m - 1g
in T (!�!)[(y+sumseg(ys,n'),

y+sumseg(ys,m'))].

Consider the four branches in the code. The �rst
branch does not have any recursive call, while the sec-
ond and third branches have only one recursive call
each. Hence, call-gathering need not be invoked. The
last branch contains two recursive calls which now lie
in strict context for our tupling transformer to gather.
As this specialised context is identical to the previous
tuple de�nition of ftup, the algorithm performs a fold
operation to end the recursive transformation. Finally,
as both the tuple-call and their components lie in their
respective strict contexts, we can apply rules S5 and S6
to yield the following:

T (!�!)[(y+sumseg(ys,n'),y+sumseg(ys,m'))]
(S5,S6)) let! f(u,v) = ftup(ys,n',m')::S (!�!)

u' = y + u

v' = y + v g
in (u', v')

The �nal transformed code is as follows:

ftup(xs,n,m)::S (!�!) =

case xs of

[] -> (0,0)

(y:ys') ->

case (n==0) of

True -> case (m==0) of

True -> (0,0)

False -> let m' = m - 1 in

let! v = y+sumseg(ys,m')

in (0, v)

False -> case (m==0) of

True -> let n' = n - 1 in

let! u = y+sumseg(ys,n')

in (u, 0)

False ->

let fn' = n - 1

m' = m - 1g
in let! f(u,v)=ftup(ys,n',m')::S (!�!)

u' = y + u

v' = y + vg
in (u', v')

Tab. 2 shows the run-time improvement of the trans-
formed program.

At this point, we would like to justify our decision
to allow strictness annotations to guide tupling.

One may wonder if it might be simpler to just apply
strictness optimisation after basic tupling? The follow-
ing is the result of transforming the same expression
with basic tupling tactic:

ftup1(xs,n,m) =

case xs of

[] -> (0,0)

(y:ys) ->
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1000 times of sumseg with xs = [0..10000]

Heap Time(s)

(bytes) INIT MUT GC Total

sumseg(xs,900)+sumseg(xs,900)

No Tupling 72,071,280 0.04 54.66 0.13 54.83

Basic Tupling 140,608,348 0.01 74.09 1.47 75.57

New Tupling 43,283,450 0.01 41.80 0.04 41.85

sumseg(xs,250)+sumseg(xs,750)

No Tupling 40,068,280 0.03 30.29 0.03 30.35

Basic Tupling 117,204,988 0.02 50.23 0.65 50.90

New Tupling 32,088,520 0.01 27.04 0.05 27.10

Table 2: Execution times of sumseg

let fn' = n - 1

m' = m - 1

(u,v) = ftup1(ys,n',m') g in

case (n==0) of

True -> case (m==0) of

True -> (0,0)

False -> (0, y + v)

False -> case (m==0) of

True -> (y + u, 0)

False -> (y + u, y + v)

The above code is less e�cient than the code pro-
duced by strictness-guided tupling: it will invoke calls
to ftup1 throughout, resulting in the creation of un-
necessary tuple-closures as well as component-closures.
Because of the lack of strictness information, the ba-
sic tupling algorithm was not able to delve into various
branches of the case expressions, and can only gather
similar calls at a global level. At that point, strictness
analysis alone is unable to recover our earlier level of
optimisation. Several other steps are also needed, in-
cluding the inverse of tupling. A more sophisticated
strictness analysis over the tupled program would have
to be applied, followed by 
oat-in of tupled-calls into
case branches to exploit better strictness. This may
not be su�cient, as some of the tupled calls (e.g. in sec-
ond and third branches of sumseg ) might have to be \un-
tupled" to achieve better performance. Our proposal
to use strictness-guided tupling is therefore simpler, as
it introduces tupled-functions only when tuple-closures
can be eliminated. This provides some guarantee on the
performance of each such tupled-functions.

One may also wonder if it is better to apply strict-
ness optimisation prior to basic tupling? This approach
may be helpful to the extent that it could help com-
pile away the $- and ?-strictness annotations into our
code. However, strictness propagation for each tuple of
calls gathered is still required during tupling. Without
it, some opportunities for eliminating closures for tuple-
results and their components would be lost. For exam-
ple, when gathering two calls c1 and c2 under strictness
contexts s1 ; s2 , we should propagate the strictness con-
texts s1 ; s2 during tupling. Failure to do so may result
in less closures being eliminated.

6 Circular Tupling

A particularly elegant use of tupling was proposed by
Richard Bird [Bir84] where he showed how circular tu-
pled programs could be used to eliminate multiple traver-
sals of nested function calls. A classic example is the
palindrome function:

pal(xs) = eq(xs,rev(xs,[]))

eq(xs,ys) = case xs of f [] -> (ys==[]);

x:xs' -> case ys of f [] -> False;

y:ys' -> (x==y) and eq(xs',ys')g g
rev(xs,ws) = case xs of f [] -> ws;

x:xs' -> rev(xs',x:ws) g

Here, we have two recursive calls, namely eq(xs, )

and rev(xs,[]). However, rev call is nested within eq

call. These two calls separately traverse the same data
structure xs. Bird showed how such nested expressions
can be manually transformed to tupled circular func-
tions. In this section, we shall examine how circular tu-
pling could be systematically handled by our enhanced
tupling algorithm. A key step is to introduce a recur-
sive letrec construct with a circular variable to unnest
the inner call. For the palindrome example, this step
results in:

pal(xs) = letrec (u0,u1)=re tup(xs,[],u0 ::F?) ::S(!�!)
in u1

De�ne:

re tup(xs,ws,u0)

= (rev(xs,ws),eq(xs,u0 ::F?)) ::S(!�!)

The two recursive calls were found in strict contexts
- motivating our use of strictness annotation (!�!) for
the gathered calls. Also, as the variable u0 is circular, it
must not be evaluated strictly; otherwise our program
will chase after a result that has not been created yet.
Hence, during the introduction of letrec, circular vari-
ables must be placed in lazy context. To achieve this,
we introduce a new annotation e ::F s whose purpose is
to force subterm e to a stated strictness s.

To incorporate this step into our tupling method,
we require a special rule, S9, shown in Fig. 5. Note that
a nested inner call f0(xs,~t0) is abstracted via a circular
variable. Applying our enhanced tupling algorithm to
the above example yields:

re tup(xs,ws,u0) ::S(!�!)
= case xs of f [] -> (ws,u0 ::F?==[]);

x:xs' -> let! (u,v)=re tup(xs',x:ws,tl(u0)) ::S(!�?)
in (u, case u0 ::F? of f [] -> False;

y:ys' -> (x==y) and vg g
re tup(xs,ws,u0) ::S(!�?)
= case xs of f [] -> (ws,u0 ::F?==[]);

x:xs' -> let! (u,v)=re tup(xs',x:ws,tl(u0)) ::S(!�?)
in (u, case u0 ::F? of f [] -> False;

y:ys' -> (x==y) and vg g
tl(xs) = case xs of fx:xs' -> xs'g
hd(xs) = case xs of fx:xs' -> xg
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S8 (Lift case - Speculative)

T s0 ds [ Chcase t of f pi -> ti gi2M i] )
if s v ! then case (T s ds [t]) of f pi -> T s0 ds [ Cht0

i
[pi=t]i ] gi2M

where �0 ` t ::O s (NB: �0 is the strictness environment of its current context.)
S9 (Circular Tupling)

T s0 ds [ Chf1(xs,f0(xs,~t0),~t1), : : :, fn(xs, ~tn)i] )
letrec f(u0; : : : ; un) = ftup(xs,u0 ::F?; ~v)g in T s0 ds0 [Chu1,: : :,uni ]

where (let u1=f1(xs,u0,~t1) in Chu1,: : :,uni) ::S s0 ` � for new variables u0; : : : ; un
s = �[(u0; : : : ; un)]

ds0 = ds [ f (ftup(xs,u0,~v), s,(f0(xs,~t0), f1(xs,u0,~t1), : : :, fn(xs, ~tn))) j ~v = freevar[~t0,: : :, ~tn] g

ftup(xs,~v) = T 0 (suMn) ds
0 [ (tf0 [~t0= ~v0],tf1[u0=v0; ~t1= ~v1],: : :,tfn[ ~tn= ~vn]) ]

8i 2 0 � � �n. tfi is the RHS of function fi.
S10 (Make tuple components strict - Speculative)

T s0 ds [ (t1 ::O s1, : : :, tn ::O sn)] ) let! f vi = ti gi2N in T s0 ds [ (t0
1
,: : :,t0

n
) ]

where t0
i
= if i 2 N then vi else ti

N � fj j j 2 1 � � �n; sjv!;not(isVariable?(tj );not(isConstant?(tj )g.

Figure 5: Extra Rules for Enhanced Tupling Algorithm

Two re tup de�nitions were introduced under strict-
ness contexts (!�!) and (!�?), respectively. However,
as both de�nitions are syntactically identical we could
combine them into a single de�nition to reduce code du-
plication. Also, as our tupling algorithm is strictness-
guided, it is able to detect that tuple-closures were un-
necessary for the recursive re tup calls. In addition, the
�rst component of re tup calls can be strictly evaluated,
but not the second component. The lazy annotation on
u0 forces closures to be built for the second component,
despite the fact that the original eq call was lying in
a strict context. This is in contrast to [Bir84] which
requires a manual intervention (before tupling) to re-
de�ne eq to make its second parameter `lazy'.

Another interesting example is the program to re-
place all tips of a given tree by its minimum value.

data Tree(a) = Leaf(a) j Node(Tree(a),Tree(a))
mintip(t) = repl(t,mint(t))

repl(t,m) = case t of f Leaf(a) -> Leaf(m);

Node(l,r) -> Node(repl(l,m),repl(r,m)) g
mint(t) = case t of f Leaf(a) -> a;

Node(l,r) -> min2(mint(l),mint(r)) g
min2(x,y) = case (x < y) of f True -> x; False -> y g

As mintip returns a tree structure, it may be eval-
uated under di�erent strictness contexts. If we use a
head-strict ! context for mintip and apply basic tupling
algorithm, we obtain:

mintip(t) ::S!= letrec (u,v)=rm tup(t,v) ::S(!�?) in u

rm tup(t,m) ::S(!�?)
= case t of f Leaf(a) -> (Leaf(m),a);

Node(l,r) -> let (u,v)=rm tup(l,m) ::S(?�?) in

let (y,z)=rm tup(r,m) ::S(?�?) in

(Node(u,y),min2(v,z)) g g
rm tup(t,m) ::S(?�?)

= case t of f Leaf(a) -> (Leaf(m),a);

Node(l,r) -> let (u,v)=rm tup(l,m) ::S(?�?) in

let (y,z)=rm tup(r,m) ::S(?�?) in

(Node(u,y),min2(v,z)) g

Such functions are less e�cient than their untupled
equivalent. Fortunately, our enhanced tupling algorithm

avoids such functions, since Step S5 only introduces each
tupled function when its corresponding tuple-closure can
be eliminated.

If mintip is used under a tail-strict $ context, we can
obtain a more e�cient tupled program:

mintip(t) ::S$= letrec (u,v)=rm tup(t,v) ::S($�?) in u

rm tup(t,m) ::S($�?)
= case t of f Leaf(a) -> let! r=Leaf(m) in (r,a);

Node(l,r) -> let! (u,v)=rm tup(l,m) ::S($�?) in

let! (y,z)=rm tup(r,m) ::S($�?) in

let! r=Node(u,y) in (r,min2(v,z)) g

No tuple-closures will be built on the heap. However,
the second component, involving min2 calls, will still be
built as thunks.

An even better result can be obtained if mintip is
transformed under a totally-strict ? context. Under this
scenario, our tupling algorithm obtains:

mintip(t) ::S? = letrec (u,v)=rm tup(t,v) ::S(?�!) in u

rm tup(t,m) ::S(?�!)
= case t of f Leaf(a) -> let! r=Leaf(m) in (r,a);

Node(l,r) -> let! (u,v)=rm tup(l,m) ::S(?�!) in

let! (y,z)=rm tup(r,m) ::S(?�!) in

let! r=Node(u,y) in

let! n=min2(v,z) in (r,n) g

Performance for all three tupled programs, under
their respective strictness contexts, are shown in Ta-
ble 3. Naive-tupling under !-context ends up being
worse than no tupling. However, both $-strict and ?-
strict tuplings are better by about 16% and 18%, re-
spectively, when compared to the corresponding untu-
pled programs with the same level of strictness. This
gain is due solely to the elimination of multiple traver-
sals. The tupled function of mintip under ?-strictness is
itself about 18% better than the corresponding tupled
function under $-strictness. This gain is due to the elim-
ination of closures for the second component of rm tup

calls.
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100 times of mintip on a tree of depth 12

Heap Time(s)

(bytes) INIT MUT GC Total

No Tupling (!) 29,679,824 0.02 19.49 0.57 20.08

Tupling with (!) 52,620,228 0.01 27.81 4.14 31.96

No Tupling ($) 28,039,728 0.03 17.28 0.85 18.16

Tupling with ($) 23,126,952 0.02 14.51 0.80 15.33

No Tupling (?) 24,762,928 0.03 14.51 0.57 15.11

Tupling with (?) 18,211,728 0.02 11.95 0.34 12.31

Table 3: Execution times of mintip

7 Speculative Strictness

The optimisation achieved by our tupling algorithm is
to a large extent determined by the level of strictness de-
tected. Better strictness can often be found if more spe-
cialised strictness contexts are considered. However, a
drawback is that more specialised contexts often meant
more code duplication. For example, if we decide to
keep all three strictness contexts for mintip, we will need
to keep three variants of its tupled functions.

An alternative strategy is to make use of specula-
tive strictness. Conventional strictness analysis is used
to detect expressions which are de�nitely needed, and
could therefore be evaluated safely in advance. Spec-
ulative strictness, on the other hand, is used to detect
expressions which may not be needed but are neverthe-
less safe to evaluate because their (advance) evaluations
do not contribute to new sources of non-termination.

De�nition 1: Speculative Strictness
Given an expression e, under non-strict context ?,
and strictness environment �, we could safely evalu-
ate e under speculative strictness s if its evaluation
does not result in non-termination, i.e. � ` evalse 6= ?.
Note that evalse denotes the evaluation of e to the
strictness extent s.

To support speculative strictness, we propose a new
set of analysis rules in Fig. 6 which could determine
the extent an expression e can be safely over-evaluated,
under strictness environment �. This forward analy-
sis is written as � ` e ::Os, where s is the speculative
strictness of e under �. Note that data construction
is written in the �gure as c(e1; : : : ; em j em+1; : : : ; en),

where e1 ; : : : ; em are the non-recursive components of
the constructor, and em+1 ; : : : ; en are the recursive com-
ponents. For example, the list constructor can be writ-
ten as cons(xjxs) .

Some simple examples of speculative strictness are
given below:

fx ::S!,p ::S!g ` (x>p) ::O!

fx ::S!g ` (x<p) ::O?

fx ::S!,p ::S!g ` (x/p) ::O!

fx ::S!,p ::S!g ` (x+p) ::O!

The strictness environment fx ::S!,p ::S!g indicates
that both x and p are assumed to have been evaluated.

Under this assumption, the expression (x>p) can be
speculatively evaluated with strictness !, even though
it may not be required. This is possible since such an
evaluation will not cause non-termination, under the as-
sumption that x and p are already evaluated. In the sec-
ond example, (x<p) cannot be speculatively evaluated
since its argument p (which may be ?) has not been
evaluated yet.

Some operators such as / and + may cause run-
time errors, e.g. divide-by-zero or over
ow exceptions,
even when their inputs have already been evaluated.
Such exceptions may alter their programs' semantics,
making them unsuitable for speculation. Fortunately,
modern architectures provide a solution to this problem
[MCH+92] by suppressing these exceptions initially, and
re-asserting them later when it is determined that they
occur in the original program. Our formulation of spec-
ulative strictness aggressively assumes this capability.

To illustrate the usefulness of speculative strictness,
consider the quicksort function.

qsort(xs) = case xs of f [] -> [];

x:xs' -> qsort(lower(xs',x))++[x]

++qsort(higher(xs',x)) g
lower(xs,p) = case xs of f [] -> [];

x:xs' -> case (x < p) of fTrue -> x:lower(xs',p)

False -> lower(xs',p)g g
higher(xs,p) = case xs of f [] -> [];

x:xs' -> case (x � p) of fTrue -> x:higher(xs',p)

False -> higher(xs',p)g g

The qsort function has strictness signature
qsort ::Sf$ -> !, $ -> $, ? -> ?g

If we apply our tupling algorithm under strictness
context ! (but without speculative strictness), we could
gather its two calls (lower(xs,x),higher(xs,x)) under
strictness ($�?), followed by transformation to:

qsort(xs) ::S!

= case xs of f [] -> [];

x:xs' -> let! (u,v)=lh tup(xs',x) ::S($�?)
in qsort(u)++[x]++qsort(v) g

lh tup(xs,p) ::S($�?)
= case xs of f [] -> ([],[]);

x:xs' -> let! (u,v)=lh tup(xs',p) ::S($�?) in

case (x < p) of f
True -> let! a=x:u in

(a,case (x � p) of f True -> x:v;

False -> vg);
False -> (u,case (x � p) of f True -> x:v;

False -> vg)g

This tupled program is already quite e�cient2, hav-
ing avoided the need for tuple-closures, and also closures
for the �rst components. However, closures for the sec-
ond components, involving higher calls, are still created.
To avoid these closures, there is no need to resort to a

2It is possible to improve the tupled version of qsort further

by exploiting the fact that (x�p)=not(x<p). This would then

allow two common tests to be combined, with two dead branches

of inner case eliminated. Though we do not show it here, it is

a side-bene�t make possible by tupling tactic.
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� ` v ::O�[v]

� ` e ::Os

� ` e ::Os
0

(svs0)

f ::Os1! s2 ^ � ` a ::Os1

� ` (f a) ::Os2

8i 2 1::n; � ` ti ::Osi

� ` (t1; : : : ; tn) ::O(s1 � � � � � sn)

8i 2M: � ` ei ::Osi ^ f(vi; si)gi2M [ � ` e ::Os

� ` (let fvi = eigi2Min e) ::Os

� ` e0 ::Os ^ 8i 2 N: � [ f(pi; s)g ` ei ::Osi

� ` (case e0 of fpi! eigi2N ) ::O
W
i2N

si

(sv!)

(8i 2 1::m: � ` ei ::Of?; ?; !g) ^ (8j 2 m+1::n: � ` ej ::Of?; $; ?g)

� ` c(e1; : : : ; em j em+1; : : : ; en) ::Of!; $; ?g

Figure 6: Rules for Speculative Strictness

$-strict context for qsort. Instead, we could use spec-
ulative strictness on the second component, under its
strictness environment �=fx ::S!,xs ::S$,p ::S!g. The two
inner case constructs has a common test, (x � p) ::O!,
that can be speculatively strict, and so are the cons-cell
of (x:v) ::O!. Applying rules S8 (to lift case specula-
tively) and S10 (to make tuple-component speculatively
strict), we obtain the following optimised code where
closures for the second components have now been elim-
inated.

lh tup(xs,p) ::S($�?)
= case xs of f [] -> ([],[]);

x:xs' -> let! (u,v)=lh tup(xs',p) ::S($�?) in

case (x < p) of f
True -> let! fa=x:u; b=x:vg in

case (x � p) of f True -> (a,b);

False -> (a,v)g);
False -> let! b=x:v in

case (x � p) of fTrue -> (u,b);

False -> (u,v)gg

Speculative strictness can help reduce the amount
of thunks created. However, there is still a trade-o�
involved, namely that if a speculatively strict expression
e is not used, its over-evaluation becomes an overhead.

To highlight the usefulness of speculation, we mea-
sured the average time taken for take(sort(xs),r) with
r ranging from 1 to j xs j . The performance of three
versions of qsort are shown in Table 4. The tupled ver-
sion of qsort under !-strict context has about the same
speed as the untupled version. The gain from multiple
traversals has been eroded by the need to build tuples
for the second components of tuple-call. With the aid
of speculative strictness, our tupled program now runs
about 16% faster, despite the fact that some of the spec-
ulative evaluations may be redundant. This gain comes
from the elimination of closures via safe over-evaluation.

1000 times of qsort on 1000 integers

The n-th time taking the �rst n integers

Heap Time(s)

(bytes) INIT MUT GC Total

No Tupling 146,336,536 0.02 146.44 0.44 146.90

Tupling with (!) 186,535,224 0.03 148.89 0.63 149.55

+ Speculation 134,184,556 0.00 125.68 0.23 125.91

Table 4: Execution times of qsort

8 Discussion

It is relatively easy to show that our tupling transfor-
mation terminates. First, we observe that the applica-
tion of T either advances towards the subexpressions, or
reduces the complexity of the expression at hand. Sec-
ond, it is likely that there be an increase in the number
of possible tuple functions created during transforma-
tion, compared to the conventional (basic) tupling tac-
tic. Such increment is due to the specialisation of calls
with respect to strictness information, in addition to the
usual symbolic arguments. Since there are only �nitely
many distinct strictness information associated with a
function, the increment in the number of tuple functions
created will be bounded. Thus, the termination proof
of our new tupling tactic can be reduced to that of the
conventional tupling [Chi93].

Due to space constraint, we do not provide any cor-
rectness proof to our tupling tactics. Nevertheless, we
note that such correctness proof depends on the correct-
ness of each transformation rules as well as the sound-
ness of the strictness analysis. The former can be mir-
rored from the relevant work in program transforma-
tion, such as the work by Runciman for ensuring adher-
ence to lazy semantics [RFJ89] and that by Sands to en-
sure total correctness of transformed programs [San95].
Our strictness analysis can be considered as a simpli�ed
variant of disjunctive program analysis [Jen97], and its
soundness can be proven in a similar spirit.
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We have so far described the mechanism for tupling
functions with single recursion arguments. More work
needs to be done for devising e�ective tupling algorithm
for functions with multiple recursion arguments in lazy
programs. Here, it is necessary to consider synchroni-
sation of changes of multiple arguments between two
calls, in addition to the strictness information of the
individual arguments. Handling of functions with mul-
tiple recursion arguments in strict languages has been
described in [CKL98].

9 Conclusion

Most past work on tupling/tabulation techniques, such
as those in [Coh83, Pet84, Chi93, HITT97], have fo-
cused mainly on the mechanics for realising big gains
from the elimination of redundant calls. While impres-
sive, there are still some doubts over how often redun-
dant calls occur in practice. Functions which perform
multiple traversals are likely to be more common. How-
ever, to the best of our knowledge, there have been no
systematic investigation into the use of tupling for the
elimination of multiple traversals. This work is useful as
it could meaningfully complement the pool of existing
optimising techniques for functional programs.

Applying this optimisation to lazy functional lan-
guages poses a particularly di�cult challenge since naive
elimination of multiple traversals could cause perfor-
mance to degrade, rather than improve. We have demon-
strated that due to laziness, such tupling results in the
building of unnecessary closures. This is the bane of
tupling and manifests itself in the penalty of both heap
usage and execution time. To rectify this condition,
we have proposed a range of solutions to minimise the
building of these closures by forcing their evaluations
when it is safe to do so, guided by strictness analysis.
By using specialised strictness contexts where possible,
we could guide our transformer to uncover more oppor-
tunites for e�ective tupling. Our tupling transformer
could also exploit a more aggressive form of strictness,
known as speculative strictness. As demonstrated, sig-
ni�cant savings are possible, despite the potential for
redundant over-evaluation.

It is important to note that the e�ect of strictness-
guided tupling cannot be achieved by naive tupling, fol-
lowed by (advanced) strictness analysis. Without the
guidance of strictness contexts, blind introduction of
tuple-functions could cause ine�cient tupling to occur,
from which strictness analysis alone could not recover.

There is little doubt that tupled functions are very
useful. Apart from the elimination of redundant calls
and multiple traversals, tupled function are often linear
with respect to the common arguments (i.e. each now
occurs only once in the RHS of the equation). This lin-
earity property has a number of advantages, including:

� It can help avoid space leaks that are due to unsyn-
chronised multiple traversals of large data struc-
tures, via a compilation technique described in
[Spa93].

� It can facilitate deforestation (and other transfor-
mations) that impose a linearity restriction [Wad88],
used for e�ciency and/or termination reasons.

� It can improve opportunity for uniqueness typing
[BS93], which is good for storage overwriting and
other optimisations.

Because of these nice performance attributes, func-
tional programmers often go out of their way to write
such tupled functions, despite them being more awk-
ward, error-prone and harder to write and read. It is
hoped that this burden on programmers could be re-
lieved in the near future. We have a prototype imple-
mentation of our strictness-guided tupling algorithm for
a restricted �rst-order language. At the current mo-
ment, it requires strictness signatures of user-de�ned
functions to be given. For future work, we plan to ex-
tend our proposal to the full higher-order language, and
provide for a type-based strictness inference analyser.
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Abstract

Aspect-oriented programming addresses the problem that
the implementation of some properties such as error han-
dling and optimization tends to cross-cut the basic func-
tionality. To overcome that problem special languages are
used to specify such properties|the so-called aspects|in
isolation. The software application is obtained by weav-
ing the aspect code and the implementation of properties
corresponding to basic functionality|the so-called compo-
nents. This paper investigates the suitability of functional
meta-programs to specify aspects and to perform weaving.
The proposal focuses on the declarative paradigm (logic
programming, attribute grammars, natural semantics, con-
structive algebraic speci�cation etc.) as far as components
are concerned, whereas aspects are represented by program
transformations. Weaving is regarded as a program compo-
sition returning a combination of the components satisfying
all the aspects. The computational behaviour of the compo-
nents is preserved during weaving. The proposal improves
reusability of declarative programs. The approach is generic
in the sense that it is applicable to several representatives of
the declarative paradigm. Several roles of aspect code are
de�ned and analysed.

1 Introduction

1.1 Aspect-oriented programming

Kiczales et al. recently proposed aspect-oriented program-
ming (AOP) [KLM+97, AOP97, AOP98] as an extension of
the traditional approach to programming coping well with
functional decomposition. Procedures, functions, methods,
modules, APIs, classes etc. are used in the traditional ap-
proach to implement all kind of properties. However, certain
properties such as error handling and optimization tend to
cross-cut the functionality resulting in tangled code which is
then unclear and hard to modify and adapt. AOP attempts
to close this well-known gap between requirements / design
and implementation.

AOP is based on the following assumptions. Properties
which must be implemented are subdivided into components
corresponding to basic functionality and aspects correspond-
ing to non-functional properties. A property is a component
if it can be cleanly encapsulated in a procedure, a method
etc. Otherwise it is an aspect. Components tend to be units

�This work was supported, in part, by Deutsche Forschungsge-

meinschaft, in the project KOKS.

of the system's functional decomposition, whereas aspects
cross-cut the system's functionality and they usually a�ect
the performance or semantics of the components in systemic
ways. Thus, components are usually developed in an imper-
ative / object-oriented language, whereas special language
support is needed for the development of aspect code. The
application is obtained by weaving the components and the
aspects. Note that without AOP the properties correspond-
ing to aspects have to be scattered throughout the code
representing the basic functionality.

Example 1 Suppose persistency must be added to an object-
oriented program. The implementation of the property \persis-
tency" cross-cuts the classes implementing the basic functionality
because the classes need to be adapted in a systemic way to \ex-
ternalize" their state and to support \population" when objects
are re-created.

Let us consider a very speci�c aspect in the context of per-
sistency, that is to say e�cient persistency where a persistency
manager should keep track of the objects which have changed
their state. Thereby, the update of the persistent storage can be
done more e�ciently.

Given a class foo, for example, the instances of which should
be persistent, a method call like the one in the box below must
be inserted for every change of the internal state.

class foo extends � � � f
// attributes
type1 attr1 ;
� � �

// methods
public result type1 operation1 (� � �) f
� � �
attr1 = � � �; // changing the state

this.keep persistency manager informed();

� � �
g
� � �

g

Thus, an aspect language is needed to specify this kind of

systematic adaptation. Somehow it must be possible to specify

the join point (i.e. the point where the aspect is woven into the

component) \the statement after an assignment to an attribute".

Weaving means to take some class de�nitions and the aspect code

and to emit class de�nitions with the e�cient persistency imple-

mented. }

The original proposal of AOP [KLM+97] leaves open the
question what actual languages for developing aspect code
and what actual forms of weaving are appropriate. Since
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then, several researchers have proposed potential aspect lan-
guages and forms of weaving, from readily available but
dedicated weavers to sophisticated program transformations
still to be implemented. One example in [KLM+97] deals
with loop fusion (that is a kind of optimization), where the
aspect code can be regarded as a set of rewrite rules acting
on data 
ow diagrams derived from the component code.
Weaving means here to build the data 
ow diagrams, to
apply the rewrite rules and to emit C-code from the \opti-
mized" data 
ow diagrams.

Thus, the fundamental question in AOP is what are the
aspects, how to represent them and how to weave compo-
nents and aspects. This paper attempts to answer these
questions in a certain way.

1.2 Another instance of AOP

Our paper provides a general but still e�ective proposal for
aspect code and weaving based on functional meta-programs.
Components are declarative programs, whereas aspects are
implemented by program transformations. Weaving is con-
sidered as a program composition combining components
and aspects by essentially applying the transformations mod-
elling aspects to components. Note that the original pro-
posal of AOP and most work in the �eld focus on proce-
dural (object-oriented) languages as far as components are
concerned, whereas our concrete instance of AOP relies on
declarative languages.

Typical examples of aspects in declarative programming
are concerned with

� optimization, e.g. based on fold/unfold-strategies,

� failure handling, error recovery, exception handling,

� propagation, accumulation, synthesis of data,

� stylistic properties, e.g. CPS based on conversion, and

� re�nements of the computational behaviour.

Our proposal for AOP improves reusability of declara-
tive programs because aspects can be described in isola-
tion. Thus, declarative programs can be programmed in
a more modular fashion because they may abstract from
the aspects. Our approach illustrates an amalgamation of
program synthesis, program transformation, program analy-
sis and program composition based on a generic framework
for meta-programming in the declarative paradigm. The
approach is generic in the sense that is applicable to sev-
eral representatives of the declarative paradigm, e.g. natu-
ral semantics, attribute grammars, (constructive) algebraic
speci�cations and logic programs. The framework for meta-
programming is described in Section 2.

Some meta-programming operators modelling roles of as-
pect code are studied in Section 3. One particular form of
weaving is presented in detail in Section 4. A general chal-
lenge in AOP is to ensure correctness of weaving, e.g. in the
sense that the meaning of the components is preserved by
the weaver. Otherwise, AOP would be unnerving because
the person writing the aspects could foul the weaver and
introduce unintended behaviour into the woven program.
Most other works in the �eld of AOP focus on identi�cation
and characterization of aspects, aspect languages and pos-
sible forms of weaving. In contrast, this paper attempts to
provide some theoretical grounds in the context of correct-
ness. Reasoning is based on certain preservation properties
of program transformations. The suggested form of weav-
ing and the properties of the suggested roles of aspect code

su�ce to guarantee the preservation of the computational
behaviour of the components by the weaver.

1.3 The running example

The discussion is rooted by small interpreter examples spec-
i�ed in the style of natural semantics1. Figure 1 shows an
interpreter de�nition for a simple imperative language core.
The natural semantics consists of two relations do : C�ST!
ST describing how the execution of statements a�ects the
store and eval : E � ST ! VAL modelling expression eval-
uation free of side-e�ects. In the sense of AOP Figure 1 is
a program implementing various properties related to the
interpretation of basic language constructs. Note that it is
not the intention of this paper to propose a certain style of
developing interpreters for (simple) languages. The domain
was rather chosen because the properties involved in simple
interpreters are well-understood.

do(skip; ST)! (ST) [skip]

do(C1; ST)! (ST0)
^ do(C2; ST

0)! (ST00)

do(concat(C1;C2); ST)! (ST00)
[concat]

eval(E; ST)! (VAL)
^ update(ST; ID;VAL)! (ST0)

do(assign(ID;E); ST)! (ST0)
[assign]

: : :

apply(ST; ID)! (VAL)

eval(var(ID); ST)! (VAL)
[var]

: : :

Figure 1: An interpreter of a simple language

Now let us assume that we want to derive an interpreter
coping with I/O as well. Figure 2 contains the correspond-
ing interpreter rules. It is assumed that the input and the
output are modelled by sequences (lists) of values. An ex-
pression of the form read is assumed to be evaluated to the
head of the sequence of the current input; refer to the rule
[read]. A statement of the form write(E) is assumed to out-
put the value of the expression E; refer to the rule [write].
The rule [main] should be regarded as a kind of axiom for in-
terpreting programs consuming an input and producing an
output. The problem with the initial program in Figure 1
and the additional component in Figure 2 is that they are
not compatible with each other. Figure 1 does not meet the
properties \input propagation" and \output accumulation"
which are obviously needed for the implementation of I/O in
Figure 2. What is needed is an adaptation of Figure 1; refer
to Figure 3. Meta-programs can be used to perform such
adaptations, where the speci�cations in the style of natu-
ral semantics are regarded as target programs. Informally,
the required adaptation can be performed in the following
steps. Input and output positions of sort IN are added and
the resulting parameters of sort IN are connected to code
an accumulator. Output positions of sort OUT are added.
Multiple parameters of sort OUT in a rule are combined in
premises with the symbol append . For some rules the empty
output is returned.

1The following conventions for natural semantics rules are assumed
in this paper: ! is used to separate inputs and outputs in proposi-
tions. Sort identi�ers are used to derive variables of the sort by adding
possibly quotes and indices, e.g. C1 is a variable of sort C.
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The key idea here is that \input propagation" and \out-
put accumulation" are regarded as aspects modelled by pro-
gram transformations. Weaving would be an elaboration
of such a scenario, where several modules are adapted ac-
cording to some aspects. All these issues are made clear in
Section 4.

head(IN)! (VAL)
^ tail(IN)! (IN0)

eval(read; ST; IN)! (VAL; IN0)
[read]

eval(E; ST; IN)! (VAL; IN0)
^ list(VAL)! (OUT)

do(write(E); ST; IN)! (ST; IN0;OUT)
[write]

init ! (ST)
^ do(C; ST; IN)! (ST0; IN0;OUT)

prog(C; IN)! (OUT)
[main]

Figure 2: I/O constructs

nil ! OUT

do(skip; ST; IN )! (ST; IN ; OUT )
[skip]

do(C1; ST; IN )! (ST0; IN0 ; OUT1 )

^ do(C2; ST
0; IN0 )! (ST00; IN00 ; OUT2 )

^ append(OUT1;OUT2)! (OUT)

do(concat(C1;C2); ST; IN )! (ST00; IN00 ; OUT )
[concat]

eval(E; ST; IN )! (VAL; IN0 )

^ update(ST; ID;VAL)! (ST0)

^ nil ! OUT

do(assign(ID;E); ST; IN )! (ST0; IN0 ; OUT )
[assign]

: : :

apply(ST; ID)! (VAL)

eval(var(ID); ST; IN )! (VAL; IN )
[var]

: : :

Figure 3: An adaptation to cope with input/output

The remaining paper is structured as follows. First, a
formal, generic framework for functional meta-programs is
developed. Afterwards, certain operators facilitating pro-
gram manipulation are outlined. These operators will be
useful to implement aspects by means of meta-programs.
We carry on by de�ning our instance of AOP. Finally, we
comment on results, related work and future work.

2 The meta-programming framework

Our approach to the development of aspect code and to
weaving is based on a meta-programming framework which
is developed in the following steps. First, a representation
for declarative target programs such as natural semantics,
attribute grammars, logic programs and (constructive) alge-
braic speci�cations is declared. Second, the corresponding
structural de�nitions are restricted to obtain the domains
of proper target program fragments. These domains are
embedded into a typed �-calculus, where some further spec-
i�cation constructs are added as well. Finally, properties of
meta-programs, e.g. preservation properties, are de�ned.

2.1 The representation of target programs

The representation of target programs (such as the rules in
Figure 1 etc.) and fragments of them is given by certain do-
mains which are intended to capture the common constructs
in (�rst-order) declarative languages such as rules, proposi-
tions and parameters. There is, for example, a domain Rule
which can be regarded as an abstraction from inference rules
in natural semantics or syntactical rules together with the
attributes + semantic rules in attribute grammars.

We assume the following domains:

Rules compatible collections of rules

Rule tagged rules

Conclusion conclusions

Premise premises

Element parameterized names (propositions)

Parameter annotated parameters such as variables

Tag countable set of tags

Name countable set of names

Variable countable set of variable identi�ers

Sort countable set of sort identi�ers

Example 2 The rules shown in Figure 1 form an element of

Rules. There are rules (elements of Rule) tagged by [skip], [concat],

[assign] and [var]. The conclusion of the rule [concat] is do(

concat( C1;C2);ST) ! (ST00), whereas the premises of the rule

are do(C1; ST) ! (ST0) and do(C2;ST
0) ! (ST00). The conclu-

sion and the premises are parameterized names, i.e. elements of

Element. Parameters are variables, e.g. ST with several occur-

rences in [concat], or proper terms, e.g. concat(C1;C2). }

Refer to Figure 4 for the corresponding structural de�nition2.
Note that barred names are used to point out that the struc-
tural de�nition needs to be restricted further to de�ne the
corresponding domain of proper fragments. Proper collec-
tions of rules, for example, are modelled by the domain Rules
obtained as a restriction of the structural de�nition Rules,
where the restriction is concerned, for example, with com-
patibility of the types of all the single rules.

Rules = Rule
?

Rule = Tag � Conclusion � Premise
?

Conclusion = Element

Premise = Element + � � �

Element = Name� Parameter
?

� Parameter
?

Parameter = (Variable + � � �)� Sort

Re�nement assumed in this paper

Rules = P(Rule)

Parameter = (Variable + Term)� Sort

Term = Functor � Parameter
?

Figure 4: Structural de�nition of representations

The structural de�nition has possibly to be re�ned and
extended for particular instances. The domain Parameter
for example needs to be extended for compound parame-
ters in contrast to variables in the sense of terms in natural
semantics. Another possible extension concerns the domain
Premise which must be extended to cope with semantic rules

2P denotes the power set constructor. We are mainly concerned
with �nite subsets in this paper.
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in attribute grammars. In this paper a re�nement of the
domains is assumed which copes with terms based on the
following additional domains:

Term compound parameters (terms)

Functor countable set of functors for terms

Furthermore, we abstract from the order of rules in Rules.
Thus, collections of rules are rather subsets of Rule than
sequences. Refer to Figure 4 for the corresponding domain
equations.

2.2 Properties of target programs

The structural de�nition from Figure 4 is restricted to obtain
domains of proper fragments. Thereby, it can be guaranteed
that meta-programs deal with rather proper fragments than
arbitrary representations. Technically, inference rules are
given to obtain the domains Rules � Rules, : : :, Parameter �
Parameter; refer to Figure 53. Proper fragments are expected
to satisfy

� well-formedness (WF) in the sense of basic require-
ments, e.g. that the tags of a collection of rules are
pairwise distinct or|more generally|that proper com-
pound fragments are built only from proper fragments
and

� well-typedness (WT ) in the sense of a type system
with sorts and modes as used for example in logic pro-
gramming [Boy96], i.e. it must be possible to associate
pro�les with all the symbols used in a target program
fragment.

For complete target programs further properties can be
relevant, e.g. certain completeness properties such as re-
ducedness in the sense of context-free grammars (CFG) or
non-circularity in the sense of attribute grammars. A partic-
ular property dealing with some minimal requirement con-
cerning the data 
ow will be considered below.

ri 2 Rule for i = 1; : : : ; n
^ �Tag(ri) 6= �Tag(rj) for i; j = 1; : : : ; n; i 6= j

^ 9 � : (WTRule(�; ri) for i; : : : ; n)

fr1; : : : ; rng 2 Rules
[Rules]

r 2 Rule

^ �2(r) 2 Element
^ �i(�3(r)) 2 Element for i = 1; : : : ;#�3(r)
^ 9 � :WTRule(�; r)

r 2 Rule
[Rule]

e 2 Element is of the form hn; in; outi
^ �i(in) 2 Parameter for i = 1; : : : ;#in
^ �i(out) 2 Parameter for i = 1; : : : ;#out
^ 9 �;� :WTElement(�;�; e)

e 2 Element
[Element]

p 2 Parameter
^ 9 �;� : T YPEParameter(�;�; p) = �Sort(p)

p 2 Parameter
[Parameter]

Figure 5: Properties of target program fragments

3�i denotes the i-th projection for tuples and sequences. For a
product D = D1 � � � � � Dn the notation �Di is also used for �i if
the D is obvious from the context and the i is uniquely de�ned by
the Di. #s denotes the length of the sequence s.

WF is encoded directly in the inference rules in Figure 5,
whereas most details of WT are de�ned by auxiliary rela-
tions shown in Figure 6.4 Consider for example the inference
rule [Rules] de�ning proper collections of rules. Its premises
state the following properties:

� The single rules must be proper rules themselves (WF).

� The tags must be pairwise distinct (WF).

� The types of the rules must be compatible (WT ).

WTRules(�; rs))

^ � is minimal, i.e. 8 �0 6= � :

WTRules(�
0; rs))) j�j �

�
��0

�
�

T YPERules(rs)! �
[WT :1]

WTRule(�; ri) for i = 1; : : : ; n

WTRules(�; fr1; : : : ; rng)
[WT :2]

9 � : (WTElement(�;�; ei) for i = 0; : : : ; n)

WTRule(�; ht; e0; he1; : : : ; enii)
[WT :3]

s : �1 � � � � � �m ! �m+1 � � � � � �k 2 �
^ inName(n) = s

^ T YPEParameter(�;�; pi)! �i
for i = 1; : : : ; k

WTElement(�;�; hn; hp1; : : : ; pmi; hpm+1; : : : ; pkii)
[WT :4]

9 v : inVariable(v) = �1(p)
^ �Sort(p) = �

^ (v : �) 2 �

T YPEParameter(�;�; p)! �
[WT :5]

Figure 6: The type system based on sorts and modes

Let us consider WT slightly more in detail. Symbols
such as names used in elements (that is to say propositions)
or functors used in terms get associated pro�les based on
sorts and modes, i.e. there are some input and some output
positions each of a certain sort. We assume the following
domains:

Sigma � Sigma = P(Pro�le)
Pro�le � Pro�le = Symbol� Sort? � Sort?

Symbol = Name+ Functor + � � �

In certain instances, proper pro�les have to be restricted.
The pro�le of a functor, for example, has a simple target
in contrast to a proper Cartesian product. Signatures �
are (�nite) subsets of Pro�le. Again restrictions might be
appropriate in certain instances. In the paper it is assumed
for example that overloading is prohibited, i.e. a signature
� 2 Sigma must satisfy that 8p; p0 2 �:

�Symbol(p) = �Symbol(p
0)) p = p0.

The initial type system (without terms) is presented in Fig-
ure 6. T YPERules(rs), for example, denotes the type (i.e.
the signature) of some rules rs . The type system can be
re�ned to cope with speci�c constructs and properties in
particular instances, e.g. terms.

4As far as coalesced sums D = D1 + � � � + Dn are concerned,
inDi (d) denotes the injection of d 2 Di into D. Note that the D

should be obvious from the context.
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Example 3 T YPERules(Figure 1) corresponds to the following
set of pro�les:

do : C� ST ! ST
eval : E� ST ! VAL

update : ST� ID� VAL ! ST
apply : ST� ID ! VAL

skip : ! C
concat : C� C ! C
assign : ID� E ! C

var : ID! E
. . .

}

Note that all target program fragments shown in the pa-
per are proper fragments what implies that they are well-
typed. Constructor operations according to the notation for
axioms, inference rules and propositions used in Figure 1
etc. are assumed. These constructors must be regarded as
partial in the sense that applications of them are de�ned i�
the resulting fragment is a proper fragment.

As it was mentioned above complete target programs
must probably satisfy further speci�c properties. The fol-
lowing de�nition provides some terms regarding a minimum
requirement for the completeness of the data 
ow.

De�nition 1 Given a rule r 2 Rule, the output (resp. in-
put) positions of the conclusion and the input (resp. out-
put) positions of the premises in r are called applied (resp.
de�ning) positions in r. Applied resp. de�ning variable oc-
currences are variables on applied resp. de�ning positions.
The set of applied resp. de�ning variable occurrences in r is
denoted by AO(r) resp. DO(r).

The data 
ow in a collection of rules rs 2 Rules is called
complete if DFC(rs) holds.

AO(ri) � DO(ri) for i = 1; : : : ; n

DFC(fr1; : : : ; rng)
[DFC]

}

Thus, completeness of the data 
ow in a collection of
rules means that for each rule r the applied variable occur-
rences (AO(r)) are contained in the de�ning variable oc-
currences (DO(r)). The idea behind the terms applied and
de�ning positions is that the variables with occurrences on
applied positions are expected to be \computed" in terms of
variables with occurrences on the de�ning positions. These
terms are used in much the same way in, for example, ex-
tended attribute grammars [WM77]. Thereby, we may speak
of unde�ned and unused variables, where a variable v is un-
de�ned in the rule r if v 2 AO(r)nDO(r); dually for unused
variables.

Example 4 All the variables in Figure 1 have a de�ning occur-

rence. Thus, DFC(Figure 1) holds and there are no unde�ned

variables. Actually, there are no unused variables either because

all variables with a de�ning occurrence have an applied occur-

rence. }

DFC should not be required for intermediate results of
program transformations but only for �nal results, that is
to say complete programs (modules). To transform Figure 1
into Figure 3, for example, it is very suitable to insert �rst
the additional parameter positions resulting in an interme-
diate result which does not satisfy DFC. The additional
premises are inserted and the data 
ow is established after-
wards. Refer to Figure 8 for the intermediate result devel-
oped in the next section.

Instantiating and re�ning the framework probably other
or more re�ned properties than just DFC will be relevant for
complete programs, e.g. non-circularity in attribute gram-
mars, call-correctness in logic programs [Boy96], unknowns
in natural semantics, reducedness or interface conformance
properties in the sense of module systems.

Another notion is needed to reason about target pro-
grams. The notion of a skeleton is similar in intent to
the notion of the underlying CFG of an attribute grammar.
Roughly, the skeleton of some rules is obtained by consider-
ing only the shapes of the rules, where the shape of a rule is
a triple consisting of its tag, the name of the conclusion and
the sequence of names of those premises which are meant to
contribute to the skeleton. The \contributing" symbols are
at least the de�ned symbols, i.e. symbols with an occurrence
in a conclusion. Thus, in a sense a skeleton is degenerated
collection of rules, without parameterization. Skeletons are
a useful tool in meta-programs to abstract from the struc-
ture of target programs (components). Moreover, the notion
facilitates pairing of rules. These applications will be clari-
�ed later on.

De�nition 2 Let be rs = fr1; : : : ; rng 2 Rules and ss 2
P(Name). The de�ned symbols in rs are denoted by DS(rs).

DS(rs) =
Sn

i=1
�Name(�Conclusion(ri))

The skeleton of rs w.r.t. ss is the set fsh1; : : : ; shng 2

P(Tag� Name� Name?) such that

�Tag(shi) = �Tag(ri)

�Name(shi) = �Name(�Conclusion(ri))
�Name?(shi) = hs1; : : : ; smi

with s1; : : : ; sm 2 DS(rs) [ ss and there are natural num-
bers q1; : : : ; qm such that 1 � q1 < � � � < qm � premises ,
sj = nameqj for j = 1; : : : ;m and 8k 2 f1; : : : ; premisesg n
fq1; : : : ; qmg: namek 62 DS(rs) [ ss , where

premises = #�Premise?(ri)
namex = �Name(�x(�Premise?(ri)))

for i = 1; : : : ; n.

The skeleton of rs w.r.t. ss is denoted by

SKELET ON (rs ; ss).
}

The role of the names ss in the above de�nition is to
specify more skeleton symbols, i.e. symbols contributing to
the skeleton, than just the de�ned symbols. That is nec-
essary if incomplete target programs, e.g. modules in the
sense of components, are taken into consideration. Note
that if SKELET ON (rs1; ss) = SKELET ON (rs2; ss), then
SKELET ON (rs1; ss

0) = SKELET ON (rs2; ss
0) for ss 0 �

ss . Figure 7 provides the corresponding structural de�nition
and the restriction of it to characterize proper skeletons. For
proper collections of shapes it must hold that the tags are
pairwise distinct, similarly to proper collections of rules.

Example 5 Using a CFG notation SKELET ON (Figure 1; ;)
can be represented as follows:

[skip] do : :

[concat] do : do; do:

[assign] do : eval:

. . .
[var] eval : :

. . .
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Structure

Skeleton = P(Shape) skeletons
Shape = Tag� Name� Name? shapes of rules

Proper skeletons
shi 2 Shape for i = 1; : : : ; n

^ �Tag(shi) 6= �Tag(shj)

for i; j = 1; : : : ; n; i 6= j

fsh1; : : : ; shng 2 Skeleton
[Skeleton]

Figure 7: Skeletons

Note that Figure 3 has the same skeleton. In both cases all

the auxiliary computations accessing the store, producing and

combining outputs etc. do not contribute to the skeleton. }

Finally, a few remarks on equality on Rules are in place.
Structural equality modulo renaming of variables is denoted
by ( = ). Furthermore, equivalence classes in Rules are
considered in order to abstract from the order of parame-
ter positions. rs 0 2 [rs ]ss � Rules means that rs 0 can be
transformed into some rs 00 = rs by only changing consis-
tently the order of parameter positions of elements e with
�Name(e) 2 ss all over rs 0. Note that changing the order of
parameter positions does not introduce technical problems
as long as uniqueness for sorts on input and output positions
is assumed.5

2.3 Functional meta-programs

To obtain a meta-programming language, it is proposed to
embed the data types for meta-programming into a typed
�-calculus. Functional meta-programs are preferred because
of the applicability of equational reasoning for proving prop-
erties and the suitability of higher-order functional program-
ming to write abstract program manipulations.

Furthermore, the following speci�cation language con-
structs are assumed in the resulting calculus:

� foldl / foldr, non-recursive / recursive let,

� the Boolean data type and the conditional b! e1; e2,

� products (�), sequences (?), sets (P),

� maybe types (D? = D + f?g),

� an error element > for strict error propagation,

� impure constructs to generate fresh variables etc.

The error element > is regarded as an element of any type.
Embedding the data types for meta-programming the ap-
plication of a basic operation, e.g. for the construction of a
fragment, returns > whenever the underlying operation is
not de�ned. Evaluating a term is strict w.r.t. > with the
common exception of the conditional.

To reason about (un)de�nedness it is assumed in the se-
quel that DEF(t) means that neither the term t is evaluated
to > nor the evaluation of t diverges.

2.4 Properties of meta-programs

Certain properties of meta-programs which are useful to
characterize operators and to facilitate well-founded pro-
gram manipulation are considered. In the sequel the term

5Thinking of an instance of the framework for attribute grammars,
for example, uniqueness for positions of grammar symbols is a natural
assumption if attributes are modelled by sorts.

transformation refers to functions on Rules. The type de�-
nition Trafo = Rules! Rules is assumed.

The �rst de�nition concerns (�6-) total transformations.
In general, a transformation does not need to be total be-
cause of partial fragment constructors and >. However, for
many operators, we can show that they are total.

De�nition 3 A transformation f 2 Trafo is �-total if 8rs 2
� � Rules: DEF(f(rs)). }

Let us consider now a very simple preservation property,
that is to say type preservation. It is often desirable to keep
the output of a transformation compatible (i.e. interchange-
able as far as the pro�les of the symbols are concerned) with
the input.

De�nition 4 A transformation f 2 Trafo is �-type-pre-
serving if 8rs 2 � � Rules:

DEF(f(rs)))
DEF(T YPERules(rs) t T YPERules(f(rs))).

}

Another simple preservation property is skeleton preser-
vation. Skeleton-preservation is a valuable property in sev-
eral ways. Consider for example transformations on at-
tribute grammars, where the term skeleton corresponds (al-
most) to the term underlying CFG. Obviously, it is a desir-
able property for transformations focusing on attributes and
semantic rules that they do not modify the skeleton. More-
over, the property facilitates composition based on superim-
posing rules with the same shape; refer to Subsection 3.3.
Furthermore, skeleton preservation is necessary to be able
to abstract from the structure of target programs as far as
their skeletons are concerned. Our instance of weaving, for
example, �rst accumulates a skeleton from all the compo-
nents. Transformations modelling aspects may depend on
the skeleton. To make sense the skeleton must be preserved
during weaving.

De�nition 5 A transformation f 2 Trafo is �-skeleton-
preserving w.r.t. ss 2 P(Name) if 8rs 2 � � Rules:

DEF(f(rs)))
SKELET ON (rs ; ss) = SKELET ON (f(rs); ss).

}

Note that if f is �-skeleton-preserving w.r.t. ss then f is
also �-skeleton-preserving w.r.t. ss 0 � ss .

Let us consider a more advanced preservation property.
If a given declarative program is adapted, for example, to
cope with some additional computational aspects, the origi-
nal computational behaviour mostly must be preserved. The
semantics of the original interpreter from Figure 1, for ex-
ample, is preserved by the adapted version in Figure 3 cop-
ing with I/O because a \syntactical" preservation property
holds, that is to say the original interpreter can be regarded
as a projection of the adapted interpreter where projection
means that some premises and parameter positions can be
removed and some occurrences of variables can be replaced
by fresh variables.

De�nition 6 Let be rs ; rs 0 2 Rules. rs is a projection of
rs 0 (rs 0 is an extension of rs) if

6If some property holds only for some inputs � � Rules, the prop-
erty is quali�ed with �.
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1. 8� 2 T YPERules(rs) : 9�
0 2 T YPERules(rs

0) : � is a

projection of � 0, i.e.

if � 0 = s �
#
1 � � � � � �

#

n0
! �

"
1 � � � ��

"

m0

then 9in1; : : : ; inn; out1; : : : ; outm such that

� the ini are pairwise distinct,
� the out j are pairwise distinct,
� each ini 2 f1; : : : ; n

0g,
� each out j 2 f1; : : : ;m

0g and

� � = s �
#

in1

� � � � � �
#

inn
! �

"

out1
� � � � � �

"

outm

for i = 1; : : : ; n, j = 1; : : : ;m.

2. jrs j = jrs 0j,

3. For every rule r in rs , there must be a rule r0 in rs 0

as follows: �Tag(r) = �Tag(r
0) and there is a type-

consistent substitution � such that �(c) = �(c0) and
�(p1) = �(p0w1), : : :, �(pl) = �(p0wl), where

c = �Conclusion(r)
c0 = �Conclusion(r

0)
hp1; : : : ; pli = �Premise?(r)
hp01; : : : ; p

0
l0i = �Premise?(r

0)

and w1, : : :, wl are some natural numbers with 1 �
w1 < � � � < wl � l0 and � : Element ! Element
projects parameters in elements according to (1.).

}

De�nition 7 A transformation f 2 Trafo is �-projection-
preserving if 8rs 2 � � Rules:

DEF(f(rs))) rs is a projection of f(rs).
}

The term projection preservation makes sense here be-
cause if rs is a projection of f(rs) all the projections of rs
will be projections of f(rs) as well. For several \sensible"
instances of the framework projection-preserving transfor-
mations preserve computational behaviour because in some
sense the given behaviour is extended and possibly further
constrained but not adapted in any more speci�c sense.
Kirschbaum, Sterling et al. have shown in [KSJ93], for ex-
ample, that program maps|a tool similar to our projection-
preserving transformations|preserve the computational be-
haviour of a Prolog program, if we assume that behaviour
is manifested by the SLD computations of the program. It
is also easy to observe that the notion is applicable to at-
tribute grammars and natural semantics. In more general
terms projections can be considered as one kind of data re-
�nement (data transformation) [Heh93]. Obviously, not all
interesting transformations are projection-preserving.

Finally, some properties concerning DFC are in place.
Consider a transformation which preserves DFC in the sense
that 8rs 2 Rules : DFC(rs) ) DFC(f(rs)) provided the re-
sult is de�ned. Such a preservation property is too weak
to characterize transformations w.r.t. DFC because it does
not apply to situations where DFC(rs) is not satis�ed in in-
termediate results within a compound transformation. The
following de�nition is useful to characterize transformations
w.r.t. DFC in a more general sense.

De�nition 8 Let be f; f 0 2 Trafo, � � Rules, F a family
ffi 2 Trafogi2I of transformations.

� The transformation f is �-DFC-preserving w.r.t. F if
8rs 2 �: 8i1; : : : ; in 2 I:

(DEF(f?(rs)) ^ DEF(f?(f(rs)))))
(DFC(f?(rs))) DFC(f?(f(rs)))),

where f? denotes fin � � � � � fi1 .

� The �-DFC-preservation w.r.t. F for f is recovered by
f 0 if 8rs 2 �: 8i1; : : : ; in 2 I:8k : 1 � k � n:

(DEF(f?(rs)) ^ DEF(f 0?(f(rs)))))
(DFC(f?(rs))) DFC(f 0?(f(rs)))),

where f? denotes fin � � � � � fi1 , whereas f 0? denotes
fin � � � � � fik+1 � f

0 � fik � � � � fi1 .

}

Note that the above weak characterization is captured
by DFC-preservation w.r.t. ;. Recoverability of �-DFC-
preservation for f by f 0 means that f and f 0 can be com-
posed in a sense to construct an �-DFC-preserving trans-
formation. This property is useful for non-DFC-preserving
transformations because it tells that f 0 compensates for the
unde�ned variables introduced by f . Note that it is slightly
more general to say that the �-DFC-preservation w.r.t. F
for f is recovered by f 0 than to say that f 0 � f is �-DFC-
preserving. In the paper we assume that F in De�nition 8
corresponds to the set of transformations derivable as in-
stances from the operators introduced in the paper.

3 An operator suite

A few operators for program manipulation are introduced
below. The actual selection is example-driven, i.e. the de-
scribed operators su�ce to describe some semantic aspects
in our running interpreter example and a certain weaver.
The emphasis is on the properties of the operators facili-
tating semantics-preserving transformation. In [L�am98] we
have investigated a more expressive operator suite including
the actual de�nition of the operators by means of meta-
programs. In fact, all the operators presented in this paper
can be rigorously de�ned by meta-programs in the frame-
work from the previous section.

To approach to a classi�cation, the operators are grouped
to facilitate either program transformation, program analy-
sis or program composition.

3.1 Program transformation

Four simple operators for program transformation are intro-
duced in the sequel. To illustrate the e�ect of the transfor-
mations the adaptation which is necessary to transform the
simple interpreter in Figure 1 into Figure 3 coping with I/O
is performed in various small steps.

3.1.1 Adding positions

The operator Add : Position ! Trafo with Position =
Io � Name � Sort, Io = fInput;Outputg is used to add
parameter positions to symbols. Consider for example the
transformationAdd hInput; s; �i applied to some rules rs 2
Rules. All the conclusions and premises in rs are trans-
formed systematically as follows. An element s0(p1; : : : ; pn)
! (p01; : : : ; p

0
m) keeps unchanged if s 6= s0 _ �Sort(p1) =

� _ � � � _ �Sort(pn) = �. Otherwise it is transformed to
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s(p1; : : : ; pn; v) ! (p01; : : : ; p
0
m), where v is a fresh variable

of sort �.

Example 6 One trivial step in the derivation of Figure 3 is

to add the parameter position of sort OUT for the symbol do.

Recall that the corresponding parameters are used to accumulate

the output. The corresponding transformation is represented by

Add hOutput, do, OUTi. }

An application of Add is always de�ned. The operator
preserves computational behaviour and it does not change
the skeleton of the input rules. The other preservation
properties from Subsection 2.4 do not hold, i.e. the type
is changed, since a position is added, and DFC is not pre-
served. Because of the latter we have to look for a way to
compensate for the violation of DFC which traces back to
an application of Add.

Proposition 1 Let be io 2 Io, s 2 Name, � 2 Sort. The
transformation Add hio; s; �i is total, projection-preserving
and skeleton-preserving w.r.t. Name. It is neither type- nor
DFC-preserving. }

The operator Add is overloaded to add several positions
at once, i.e.:

Add hhio1; s1; �1i; : : : ; hion; sn; �nii = Add hion; sn; �ni
� � � �
� Add hio1; s1; �1i

Moreover, an auxiliary operatorPositions For Of Sort

: Io � P(Name) � Sort ! Position? for the construction of
positions all with the same Io and Sort component, i.e.:

Positions io For fs1; : : : ; sng Of Sort � =
hhio; s1; �i; : : : ; hio; sn; �ii

Example 7 We continue Example 6 by adding the auxiliary

positions of sort IN, which are used in Figure 3 to propagate

the remaining input. The following transformation adds these

positions:

Add Positions Output For fdo; evalg Of Sort IN
� Add Positions Input For fdo; evalg Of Sort IN

The intermediate result re
ecting the inserted fresh parameters is

shown in Figure 8. Note the di�erence between the intermediate

result and the �nal form in Figure 3. All the computations dealing

with appending outputs and computing the empty output still

have to be inserted. Moreover, the inserted positions of sort IN

are not yet connected to encode the propagation of the input. }

3.1.2 Inserting constant computations

The operator Default For By : Sort � Name ! Trafo
facilitates the elimination of unde�ned variables by the inser-
tion of \constant computations", i.e. premises with no inputs
and one output. Consider the transformation Default For
� By s applied to the rule r. Let be v1; : : : ; vn all the un-
de�ned variables of sort � in r. The premises s! (v1), : : :,
s! (vn) are inserted into r.

Example 8 The transformation Default For VUSES By nil

is useful to add the computations for the inserted parameter of

sort OUT in the rules [skip] and [assign]. The intermediate result

looks as follows:

do(skip; ST; IN1 )! (ST; IN2 ; OUT1 ) [skip]

do(C1; ST; IN2 )! (ST0; IN3 ; OUT1 )

^ do(C2; ST
0; IN4 )! (ST00; IN5 ; OUT2 )

do(concat(C1;C2); ST; IN1 )! (ST00; IN6 ; OUT3 )
[concat]

eval(E; ST; IN2 )! (VAL; IN3 )

^ update(ST; ID;VAL)! (ST0)

do(assign(ID;E); ST; IN1 )! (ST0; IN4 ; OUT1 )
[assign]

: : :

apply(ST; ID)! (VAL)

eval(var(ID); ST; IN1 )! (VAL; IN2 )
[var]

: : :

Figure 8: An intermediate step from Figure 1 to Figure 3

nil ! OUT

do(skip; ST; IN1)! (ST; IN2;OUT)
[skip]

eval(E; ST; IN2)! (VAL; IN3)

^ update(ST; ID;VAL)! (ST0)

^ nil ! OUT

do(assign(ID;E); ST; IN1)! (ST0; IN4;OUT)
[assign]

Note the di�erence to the �nal form in Figure 3. The data 
ow

concerning the parameter positions of sort IN still needs to be

established. That is the topic of Example 9. }

Proposition 2 Let be � 2 Sort, s 2 Name. The transfor-
mation Default For � By s is �-total, type-preserving, �0-
skeleton-preserving w.r.t. Namenfsg, projection- and DFC-
preserving, where 8rs 2 � � Rules : DEF(T YPERules(rs)t

fs :! �g) and 8rs 2 �0 � Rules : s 62 DS(rs). }

Proposition 3 Let be io 2 Io, add ; by 2 Name, � 2 Sort.
The DFC-preservation for Add hio; add ; �i is recovered by
Default For � By by . }

3.1.3 Inserting copy rules

The operator From The Left : Sort ! Trafo facilitates
propagation by copying systematically de�ning occurrences
of a certain sort to unde�ned variables from left to right. In
attribute grammar jargon we would say that copy rules are
established. Note that an application of the operator cor-
responds to the insertion of a potentially unknown number
of copy rules. The schema is su�cient to establish certain
patterns of propagation, e.g. a bucket brigade, provided the
necessary positions have been added in advance. Consider
the transformation From The Left � applied to the rule r.
Any unde�ned variable v of sort � in r is replaced by the
�rst de�ning variable occurrence v0 of sort � to the left of v.

Example 9 Example 8 is continued. To establish a propaga-

tion of the input from left to right (in the sense of a proof tree)

the transformation From The Left IN is useful. As far as the

rules [skip], [assign], [var] are concerned, for example, the above

transformation exactly corresponds to the missing step to arrive

at the �nal form shown in Figure 3. The rule [concat] needs some

further e�ort concerning the combination of the outputs returned

by the premises. The corresponding adaptation is discussed in

Example 10. }
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Proposition 4 Let be � 2 Sort. The transformation From
The Left � is total, type-preserving, skeleton-preserving
w.r.t. Name, projection- and DFC-preserving. }

3.1.4 Pairing unused variables

The operator Reduce By : Sort�Name! Trafo is used
to pair unused variables of a certain sort � in a dyadic com-
putation deriving a new de�ning position of sort �. The pur-
pose of these computations is to reduce any number > 1 of
unused variables of sort � to 1. Consider the transformation
Reduce � By s applied to the rule r. Let be v1; : : : ; vn all
the unused variables of sort � in r (in the order of their de�n-
ing occurrence in r). The computations s(v1; v2)! (vn+1),
s(vn+1; v3)! (vn+2), : : :, s(vn+n�2; vn)! (vn+n�1), are in-
serted into r, where the variables vn+1; : : : ; vn+n�1 are fresh
variables of sort �. Thus, vn+n�1 will be the only unused
variable of sort � in the output of the transformation.

Example 10 Example 9 is continued. The de�ning occurrences

of sort OUT in rule [concat] can be combined by the transforma-

tion Reduce OUT By append . Thereby, the following interme-

diate form of the rule is obtained:

do(C1; ST; IN0)! (ST0; IN1;OUT1)
^ do(C2; ST

0; IN1)! (ST00; IN2;OUT2)

^ append(OUT1;OUT2)! (OUT3)

do(concat(C1;C2); ST0; IN0)! (ST00; IN2;OUT4)
[concat]

Note that the above rule is still not yet in the �nal form shown

in Figure 3 because the variables OUT3 and OUT4 must be iden-

ti�ed. This can be modelled by the transformation From The

Left OUT. }

Proposition 5 Let be � 2 Sort, s 2 Name. The trans-
formation Reduce � By s is �-total, type-preserving, �0-
skeleton-preserving w.r.t. Namenfsg, projection- and DFC-
preserving, where 8rs 2 � � Rules : DEF(T YPERules(rs)t

fs : � � � ! �g) and 8rs 2 �0 � Rules : s 62 DS(rs). }

3.2 Program analysis

Program analysis obviously seems to be useful in AOP, since
weaving of component and aspect code usually has to be con-
trolled by properties of the components. The e�ect of the
operator Default, for example, depends on the set AO(r) n
DO(r) for a given rule r (i.e. the unde�ned variables in r),
where the relations AO and DO to compute applied resp.
de�ning occurrences should be considered as analyses here.
As far as the paper is concerned a further simple analysis
From To In : P(Name) � P(Name) � Skeleton !

P(Name) is needed. The auxiliary operator is concerned
with taking the transitive closure of symbols in a skeleton
based on reachability in the context-free sense. Taking such
closures is an important tool because thereby program ma-
nipulations may abstract from the underlying skeleton of a
target program.

Obviously, a skeleton sk 2 Skeleton can be regarded as a
CFG. Thus, it makes sense to consider the transitive closure
)

+

sk
of the context-free direct derivation relation w.r.t. the

grammar sk . From from To to In sk is assumed to compute
the set of all symbols s 2 Name satisfying the property 9f 2
from; 9t 2 to : f )+

sk
s)+

sk
t.

Example 11 Recall Example 6 and Example 7 which are meant

to add the parameter positions for propagation and accumulation

of inputs and outputs respectively. The positions used in the

applications of Add are tuned towards the interpreter fragment

in Figure 1. Now consider Figure 9 with the interpreter rules for

if - and while-statements. The transformations from Example 6

and Example 7 cannot be adopted for this extension because the

symbol cond must also contribute to propagation of the input and

accumulation of the output. Let us paraphrase the applications

of Add from Example 6 and Example 7 so that they are more

generic:

�rs : Rules:
Let sk = SKELET ON (rs; ;) In
Let ssout = (From fdog To fdog In sk) [ fdog In
Let ssin = (From fdog To fevalg In sk) [ fdo; evalg In
( Add Positions Output For ssout Of Sort OUT

� Add Positions Output For ssin Of Sort IN
� Add Positions Input For ssin Of Sort IN

) (rs)

Thus, it is only stated where propagation/accumulation starts

and at which points access is needed. All the auxiliary symbols

are derived from the skeleton of the input. }

eval(E; ST)! (VAL)
^ cond(VAL;C1;C2; ST)! (ST0)

do(if(E;C1;C2); ST)! (ST0)
[if]

do(if(E; concat(C;while(E;C)); skip); ST)! (ST0)

do(while(E;C); ST)! (ST0)
[while]

do(C1; ST)! (ST0)

cond(boolval(true);C1;C2; ST)! (ST0)
[true]

do(C2; ST)! (ST0)

cond(boolval(false);C1;C2; ST)! (ST0)
[false]

Figure 9: if - and while-statements

3.3 Program composition

Two simple program compositions are adopted. � cor-
responds to a kind of union operator used in many frame-
works, e.g. in [BMPT94, Bro93], whereas 
 models some
kind of pairing (or tupling [Chi93, HITT97]) based on su-
perimposing skeletons of the operands. Another auxiliary
operator � � for squeezing target programs in the sense of
the identi�cation of positions of the same sort and mode is
discussed. Squeezing is a useful companion for pairing.

The following notation is needed. rs jts selects the rules
from rs 2 Rules with tags in ts 2 P(Tag). T AGS(rs) de-
notes the tags of the rules rs .

Let us consider the operators in detail. rs1 � rs2 com-
poses rs1, rs2 2 Rules in the sense of textual juxtaposition
provided the process results in a proper fragment in the sense
of Figure 5, i.e. the tags must be pairwise distinct and the
types of the operands rs1 and rs2 must be compatible. The
following slightly more 
exible form is needed. rs1 �ss rs2
with ss 2 P(Name) denotes rs1 � rs 02, where rs 02 2 [rs2]ss
such that DEF(T YPERules(rs1)tT YPERules(rs

0
2)) holds.

Example 12 The simple interpreter in Figure 1 is obviously

not compatible with the interpreter rules for I/O constructs shown

in Figure 2. However, the adapted version shown in Figure 3 is

139



compatible with Figure 2. The interpreter rules for if -and while-

constructs shown in Figure 9 are compatible with the simple in-

terpreter in Figure 1. Thus, the following properties hold:

� :DEF(Figure 1� Figure 2)

� DEF(Figure 3� Figure 2)

� DEF(Figure 1� Figure 9)

}

Proposition 6 Let be rs1; rs2; rs3 2 Rules and ss ; ss 0 2
P(Name). In (1.)|(3.) it is assumed thatDEF(rs1 �ss rs2)
holds.

1. SKELET ON (rsi; ss
0) = SKELET ON (yjts i ; ss

0)

2. rs i is a projection of yjts i
where y = rs1 �ss rs2 ts i = T AGS(rsi), for i = 1; 2
3. DFC(rs1) ^ DFC(rs2)) DFC(rs1 �ss rs2)
4. rs1 �ss (rs2 �ss rs3) = (rs1 �ss rs2)�ss rs3
5. [rs1 �ss rs2]ss = [rs2 �ss rs1]ss

}

Now let us consider pairing. rs1 
 rs2 composes rs1,
rs2 2 Rules by superimposing conclusions and premises of
rs1 and rs2. The parameters of superimposed elements are
concatenated. This simple form of pairing is de�ned if the
skeletons of the operands w.r.t. Name are equal. To avoid
a confusion of variables from the di�erent operands it is
assumed that at least one operand is \refreshed" by means of
a renaming substitution. The following more 
exible variant
is needed. rs1 
ss rs2 with ss 2 P(Name) � DS(rs1) [
DS(rs2) superimposes all elements e with �Name(e) 2 ss .
All the other premises are adopted preserving their relative
order in rs1 and rs2. Note that rs1 
ss rs2 is de�ned if:

� SKELET ON (rs1; ss) = SKELET ON (rs2; ss) and

� 8p1 2 T YPERules(rs1), 8p2 2 T YPERules(rs2):

�Name(p1) = �Name(p2))
(�Name(p1) 2 ss _ p1 = p2),

i.e. the types of rs1 and rs2 must be compatible as far
as symbols which are not superimposed are concerned.

Proposition 7 Let be rs1; rs2; rs3 2 Rules, ss 2 P(Name).
In (1.)|(3.) it is assumed that DEF(rs1 
ss rs2) holds.

1. SKELET ON (rsi; ss) = SKELET ON (y; ss)
2. rs i is a projection of y
where y = rs1 
ss rs2 for i = 1; 2.
3. DFC(rs1) ^ DFC(rs2)) DFC(rs1 
ss rs2)
4. rs1 
ss (rs2 
ss rs3) = (rs1 
ss rs2)
ss rs3
5. [rs1 
ss rs2]ss = [rs2 
ss rs1]ss

}

The �rst statement is trivial. The second statement
holds because to project rs1 
ss rs2 to rs1 (resp. rs2) it is
su�cient to discard the parameter positions and premises
arising from rs2 (resp. rs1). Thereby, pairing with one
operand position �xed can be regarded as a projection-pre-
serving transformation. The third statement holds because
the set of de�ning and applied occurrences in rs1 
ss rs2 is
just a kind of disjoint union of the corresponding sets in rs1
and rs2.

Finally, the operator� � for squeezing is regarded, where
squeezing means to identify parameter positions of elements
of the same sort and mode. Squeezing is performed for all

the conclusions and the premises in a rule. The parameters
on positions of the same sort and mode (input versus out-
put) are used to build equations. Consider for example the
input positions in s(p1; : : : ; pn)! (: : :). Suppose that there
are some positions 1 � i1 < � � � < im � n of the same sort �,
i.e. �Sort(pi1) = �, : : :, �Sort(pim) = �. Then the following
equations are derived: pi1 = pi2 , : : :, pi1 = pim . In the same
manner equations are derived for all elements for the two
modes. Thus, for a given rule we get a set of equations on
parameters. The solved form of the equations is computed7,
where the resulting substitution (i.e. a most general uni�er
is applied to the rule. Finally, all but the �rst position of the
same sort and mode are eliminated. The following slightly
more general variant is needed. �rs�ss with ss 2 P(Name)
squeezes only those elements e in rs with �Name(e) 2 ss.

Proposition 8 The operator� � is idempotent, skeleton-
preserving w.r.t. Name, projection- and DFC-preserving. It
is not type-preserving. }

emptyset ! (VS)

do(skip)! (VS)
[skip]

do(C1)! (VS1)
^ do(C2)! (VS2)
^ union(VS1;VS2)! (VS)

do(concat(C1;C2))! (VS)
[concat]

eval(E)! (VS1)
^ lhs(ID)! (VS2)
^ union(VS1;VS2)! (VS)

do(assign(ID;E))! (VS)
[assign]

: : :

rhs(ID)! (VS)

eval(var(ID))! (VS)
[var]

: : :

Figure 10: Accumulating variable accesses

Example 13 Consider the rules in Figure 10 covering the same

skeleton as the simple interpreter in Figure 1. These rules are

concerned with a kind of re
ection property, that is to say with

recording variable accesses. It should be assumed that the data

structure used for parameters of sort VS is a pair of two lists (or

multisets), where one list is used to record LHS accesses, whereas

the other list is used to record RHS accesses. The accumulation of

accesses is similar to the accumulation of the output. To combine

Figure 1, i.e. the simple interpreter with the new functionality

in Figure 10, pairing with subsequent squeezing is appropriate.

Refer to Figure 11 for the result of the following composition:

�Figure 1
fdo;evalg Figure 10�fdo;evalg

Note that squeezing is necessary to identify the positions related

to the traversal of abstract syntactical terms. Without squeezing

the rule [skip], for example, takes the following form which is in

contrast to Figure 11:

emptyset ! (VS)

do( skip; skip ; ST)! (ST;VS)
[skip]

}

7That is meant in the sense of computing most general uni�ers in
logic programming; refer e.g. to [NM95].
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emptyset ! (VS)

do(skip; ST)! (ST;VS)
[skip]

do(C1; ST)! (ST0;VS1)
^ do(C2; ST

0)! (ST00;VS2)
^ union(VS1;VS2)! (VS)

do(concat(C1;C2); ST)! (ST00;VS)
[concat]

eval(E; ST)! (VAL;VS1)
^ update(ST; ID;VAL)! (ST0)
^ lhs(ID)! (VS2)
^ union(VS1;VS2)! (VS)

do(assign(ID;E); ST)! (ST0;VS)
[assign]

apply(ST; ID)! (VAL)
^ rhs(ID)! (VS)

eval(var(ID); ST)! (VAL;VS)
[var]

: : :

Figure 11: Squeezing and pairing Figure 1 and Figure 10

4 Aspect-oriented programming

We instantiate all the central notions of AOP. Components
are open declarative programs. Aspects are implemented
by program transformations. One form of weaving is repre-
sented as a certain program composition.

4.1 Properties

According to the AOP terminology properties are certain
decisions a program must implement. It is hard to make
that term more concrete. In terms of declarative programs
covered by our framework we might think of parts of the
computational behaviour, certain non-functional properties
such as e�ciency in some sense etc.

Example 14 For the interpreter in our running example, the
following properties can be isolated:

AXIOM starting interpretation
SEQUENCE sequencing statements
SELECTION if-then-else for statements
ITERATION iterating statements
VARIABLE assignments and variable expressions
DATA basic operations
READ reading values from the input
WRITE writing values to the output
RECORD recording LHS/RHS variable accesses
AST traversal of abstract syntax
EVAL evaluation of expressions
STORE propagation of stores
INPUT input propagation
OUTPUT output accumulation
ACCESS accumulation of variable accesses

}

A list of properties should be a proper partitioning of design
decisions. However, there is no need for the properties to be
atomic in some sense. It may, for example, increase mod-
ularity to subdivide STORE in the above example further
into initialization (like in the rule [main] in Figure 2), store
transformation (like in the relation do) and store inspection
(like in the relation eval).

do(C)

prog(C)
[main]

Implementation of AXIOM meeting AST

do(skip) [skip]

do(C1)
^ do(C2)

do(concat(C1;C2))
[concat]

Implementation of SEQUENCE meeting AST

eval(E)! (VAL)
^ cond(VAL;C1;C2)

do(if(E;C1;C2))
[if]

do(C1)

cond(boolval(true);C1;C2)
[true]

do(C2)

cond(boolval(false);C1;C2)
[false]

Implementation of SELECTION meeting AST , EVAL

do(if(E; concat(C;while(E;C)); skip))

do(while(E;C))
[while]

Implementation of ITERATION meeting AST

eval(E; ST)! (VAL)
^ update(ST; ID;VAL)! (ST0)

do(assign(ID; E); ST)! (ST0)
[assign]

apply(ST; ID)! (VAL)

eval(var(ID); ST)! (VAL)
[var]

Implementation of VARIABLE meeting AST , EVAL, STORE

head(IN)! (VAL)
^ tail(IN)! (IN0)

eval(read; IN)! (VAL; IN0)
[read]

Implementation of READ meeting AST , EVAL, INPUT

eval(E)! (VAL)
^ list(VAL)! (OUT)

do(write(E))! (OUT)
[write]

Implementation of WRITE meeting AST , EVAL, OUTPUT

eval(E)! (VS1)
^ lhs(ID)! (VS2)
^ union(VS1;VS2)! (VS)

do(assign(ID;E))! (VS)
[assign]

rhs(ID)! (VS)

eval(var(ID))! (VS)
[var]

Implementation of RECORD meeting AST , ACCESS

Figure 12: Components for an interpreter

4.2 Components

Properties which can be implemented by open declarative
programs, i.e. as collections of rules in the sense of the
data type Rules, are regarded as components. In our run-
ning example it is obvious that all the properties AXIOM ,
SEQUENCE , SELECTION , ITERATION , VARIABLE , DATA,
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READ, WRITE and RECORD are concerned directly with
language constructs and thus they can be modelled by the
corresponding interpreter rules. That is not possible for the
properties STORE , INPUT , OUTPUT and ACCESS . How-
ever, components implementing a certain property might
additionally meet some other properties. The component
VARIABLE , for example, obviously has to meet the prop-
erty STORE . To achieve modularity and thereby reusability
it is necessary to minimize the properties met by compo-
nents. In our running example, the rules dealing with a
certain language construct should abstract from other prop-
erties, especially STORE , INPUT , OUTPUT and ACCESS

whenever possible. All components but VARIABLE , for ex-
ample, are not concerned with propagation of the store at
all. Much better modularity is achieved if such components
do not meet STORE . Thus, changing the property STORE

(e.g. the migration to the two-level model based on envi-
ronments and stores) will not a�ect most components. Fig-
ure 12 shows the components for our running interpreter
example.8

4.3 Aspects

Properties which are not components are regarded as as-
pects. Aspects are modelled by suitable functional meta-
programs the performance of which is intended to add or to
adapt the computational behaviour or to modify the struc-
ture or \style" of components. Taking a component which
does not yet meet a given aspect, the corresponding trans-
formation should be su�cient to qualify the component so
that the aspect is met. Note that if all components meet a
certain aspect, there will be no need to specify the aspect at
all. According to the simple form of weaving to be proposed
below we restrict ourselves to a certain kind of transforma-
tions modelling aspects. They are of type Skeleton! Trafo
and they are expected to be skeleton-preserving w.r.t. the
symbols de�ned by the components. Furthermore, they
should preserve computational behaviour, e.g. in the sense of
projection-preserving transformations. The skeleton which
can be accumulated from a given set components is useful
to control the performance of some transformations, e.g. if
closures of symbols must be computed based on the operator
From : : : To : : : In : : :. Thus, a function implementing
an aspect observes a skeleton.

Figure 13 shows the transformations associated with the
aspects for our running interpreter example. Note that the
aspects AST and EVAL are not associated with a transfor-
mation because these are such basic aspect that all compo-
nents should meet them anyway.

4.4 Weaving

A program composition to be regarded as a kind of weaving
is outlined in the sequel. There are probably several ap-
proaches to weaving based on open declarative programs as
components and transformations as aspects. The most re-
strictive assumption about the instance of weaving described
in this paper is that the transformations corresponding to
the aspects are skeleton-preserving. The program composi-
tion modelling weaving is described as the operator weaver :

8The implementation of DATA dealing with the evaluation of ba-
sic operations (arithmetics, comparisons, etc.) is omitted.

�sk : Skeleton:
Let read = (From fprogg To fevalg In sk) [ fevalg In
Let write = (From fprogg To fdog In sk) [ fdog In

Default For ST By init

� From The Left ST
�Add (Positions Input For read [ write Of Sort ST)
�Add (Positions Output For write Of Sort ST)

Aspect STORE

�sk : Skeleton:
Let ss = (From fprogg To fevalg In sk) [ fevalg In

From The Left IN

�Add (Positions Input For ss [ fprogg Of Sort IN)
�Add (Positions Output For ss Of Sort IN)

Aspect INPUT

�sk : Skeleton:
Let ss = (From fprogg To fdog In sk) [ fprog; dog In

Default For OUT By nil

� From The Left OUT

�Reduce OUT By append

�Add (Positions Output For ss Of Sort OUT)

Aspect OUTPUT

�sk : Skeleton:
Let ss = (From fprogg To fevalg In sk) [ fprog; evalg In

Default For VS By emptyset

� From The Left VS

�Reduce VS By union

�Add (Positions Output For ss Of Sort VS)

Aspect ACCESS

Figure 13: Aspect code for an interpreter

weaver : Aspect
?
�P(Component)! Rules

Aspect = (Skeleton! Trafo)?

Component = P(N )
| {z }
aspects
met

� P(N )
| {z }

irrelevant
aspects

� Rules

Thus, the operator weaver expects two parameters, that is
to say a list of aspects and a set of components. Aspects
are implemented by transformations, where a maybe-type is
used here for the case that no implementation can or should
be provided, e.g. AST and EVAL in the running example.
A component consists of some rules, the aspects met by
the component and the aspects which are irrelevant for the
actual component. Natural numbers are used to index the
aspects. The purpose of weaver is to compute a combination
of all the components so that all the aspects are satis�ed by
the result.
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De�nition 9 Let be a1; : : : ; an 2 Aspect, c1; : : :, cm 2

Component. It is assumed that �1(ci) \ �2(ci) = ; and
(�1(ci) [ �2(ci)) � f1; : : : ; ng for i = 1; : : : ;m. Weaving de-
noted by weaver (ha1; : : : ; ani; fc1; : : :, cmg) is performed as
follows:

1. The de�ned symbols ds and the skeleton sk are accu-
mulated from the components as follows:

ds =
Sm

i=1
DS(�Rules(ci))

sk =
Sm

i=1
SKELET ON (�Rules(ci); ds)

2. For each skeleton rule sh i from sk a corresponding rule
Ri 2 Rule covering all aspects is derived as follows:

(a) The components are �ltered to obtain all the rules
ri;1, : : :, ri;qi with the shape sh i. The component
which contains ri;j is denoted by coi;j for j =
1; : : : ; qi.

(b) All the above rules ri;1, : : :, ri;qi are paired and
squeezed:

�ri;1 
ds � � � 
ds ri;qi�ds

(c) The intermediate result from the previous step is
transformed by fi denoting the functional com-
position

(ati;wi (sk)) � � � � � (ati;1(sk)),

where the ti;1, : : :, ti;wi are the indices of aspects
not covered by the components, i.e. f1; : : : ; ng nSqi

j=1
(�1(coi;j ) [ �2(coi;j )).

3. The derived rules are composed:

fR1g �ds � � � �ds fRjsk jg

}

Note that the above composition fails if the union in
step (1.) does not de�ne a proper skeleton or if the aspects
needed in step (2. (c)) are not proper transformations, i.e.
ati;1 =? _ � � � _ ati;wi =?. Step (3.) might also fail because

of incompatible types. Note also that the aspects should be
skeleton-preserving w.r.t. ss . Otherwise it does not make
sense to accumulate a skeleton from the components and to
observe this skeleton in step (2. (c)).

It is straightforward to represent the function weaver in
our functional meta-programming framework.

Example 15 An interpreter covering the constructs from the
components in Figure 12 and meeting the aspects in Figure 13 is
derived by weaving as follows:

weaver ( h?; ?;STORE ; INPUT ;OUTPUT ;ACCESS i;
fhf1g; f2g;AXIOM i;
hf1g; f2g;SEQUENCE i;
hf1; 2g; fg;SELECTION i;
hf1g; f2g; ITERATION i
hf1; 2; 3g; fg;VARIABLEi;
hf1; 2; 4g; fg;READi;
hf1; 2; 5g; fg;WRITE i;
hf1; 6g; fg;RECORDi
g

)

The resulting \tangled" code is shown in Figure 14. The two

question marks in the above application correspond to the aspects

AST and EVAL. Note also that the aspect EVAL is irrelevant for

the components AXIOM , SEQUENCE and ITERATION since

they are not concerned with expression evaluation. The indices

correspond otherwise to the captions in Figure 12. }

init ! (ST)
^ do(C; ST; IN)! (ST0; IN0;OUT;VS)

prog(C; IN)! (OUT;VS)
[main]

nil ! (OUT)
^ emptyset ! (VS)

do(skip; ST; IN)! (ST; IN;OUT;VS)
[skip]

do(C1; ST; IN)! (ST0; IN0;OUT1;VS1)
^ do(C2; ST

0; IN0)! (ST00; IN00;OUT2;VS2)
^ append(OUT1;OUT2)! (OUT)
^ union(VS1;VS2)! (VS)

do(concat(C1;C2); ST; IN)! (ST00; IN00;OUT;VS)
[concat]

eval(E; ST; IN)! (VAL; IN0;VS1)
^ cond(VAL;C1;C2; ST; IN

0)! (ST0; IN00;OUT;VS2)
^ union(VS1;VS2)! (VS)

do(if(E;C1;C2); ST; IN)! (ST0; IN00;OUT;VS)
[if]

do(if(E; concat(C;while(E;C)); skip); ST; IN)
! (ST0; IN0;OUT;VS)

do(while(E;C); ST; IN)! (ST0; IN0;OUT;VS)
[while]

eval(E; ST; IN)! (VAL; IN0;VS1)

^ update(ST; ID;VAL)! (ST0)
^ lhs(ID)! (VS2)
^ union(VS1;VS2)! (VS)

do(assign(ID;E); ST; IN)! (ST0; IN0;OUT;VS)
[assign]

eval(E; ST; IN)! (VAL; IN0;VS)
^ list(VAL)! (OUT)

do(write(E); ST; IN)! (ST; IN0;OUT;VS)
[write]

do(C1; ST; IN)! (ST0; IN0;OUT;VS)

cond(boolval(true);C1;C2; ST; IN)! (ST0; IN0;OUT;VS)
[true]

do(C2; ST; IN)! (ST0; IN0;OUT;VS)

cond(boolval(false);C1;C2; ST; IN)! (ST0; IN0;OUT;VS)
[false]

apply(ST; ID)! (VAL)
^ rhs(ID)! (VS)

eval(var(ID); ST; IN)! (VAL; IN;VS)
[var]

head(IN)! (VAL)
^ tail(IN)! (IN0)
^ emptyset ! (VS)

eval(read; ST; IN)! (VAL; IN0;VS)
[read]

Figure 14: Weaving Figure 12 and Figure 13

Finally, let us state an important property of the pro-
gram composition weaver saying that it preserves the com-
putational behaviour of the components because each com-
ponent is a projection of some rules in the result of weaving.
Furthermore, a su�cient condition for the data-
ow com-
pleteness of the result of weaving is given.

Proposition 9 Let be a1; : : : ; an, c1; : : : ; cm, ds , sk as in
De�nition 9. y denotes weaver (ha1; : : : ; ani; fc1; : : : ; cmg).

1. If ai 6= ? implies ai(sk) is projection-preserving for i =
1; : : : ; n, and DEF(y), then yjT AGS(cj) is a projection
of cj for j = 1; : : : ;m;

2. If ai 6= ? implies ai(sk) is DFC-preserving for i =
1; : : : ; n and DFC(cj) for j = 1; : : : ;m and DEF(y),
then DFC(y),

}

Proof It is assumed that DEF(y) holds.

1. It is easier to observe �rst that every single r from some
component ck is a projection of yjT AGS(frg). Since sk
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is computed as the union of all skeletons of all compo-
nents, there must be an i such that r will contribute to
Ri according to the steps (a)|(c) in De�nition 9, i.e.
r will be among the ri;1, : : :, ri;qi retrieved in step (a).
r is a projection of Ri computed in step (b) and (c)
because the expression fi (�ri;1 
ds � � � 
ds ri;qi�ds )
can be regarded as an application of a projection-pre-
serving transformation to r. Refer to Proposition 7
and Proposition 8 as far as pairing and squeezing are
concerned. fi is projection-preserving because it is a
functional composition of projection-preserving trans-
formations; refer to the assumption for the a1, : : :, an.

It remains to show that y restricted to the tags from
some component ck can be projected to the entire com-
ponent ck at once according to the requirements (1.)|
(3.) in De�nition 6. The relationship for the pro�les
stated in (1.) exists because it carries over from pro-
jecting the rules in isolation since the signature of the
entire component is just the union of the signatures of
all component rules and the signature of y is just the
union of the signatures of all the Ri. The 1-1 corre-
spondence of rules stated in (2.) (concerning cardinal-
ity) and (3.) (concerning tags) holds for each compo-
nent rule because there is an Ri in y with the same
tag as the underlying component rules because Ri is
the result of applying projection-preserving transfor-
mations to the underlying rules. The substitution �
needed in (3.) carries over from projecting the rules in
isolation.

2. It su�ces to show that DFC holds for all the single
rules combined in step (3.); refer to Proposition 6.
Consider again the steps (a)|(c) in De�nition 9 to
compute each Ri. DFC holds for �ri;1 
 � � � 
 ri;qi�;
refer to the assumption for the c1; : : : ; cm and to Propo-
sition 7 and Proposition 8 as far as pairing and squeez-
ing are concerned. fi is DFC-preserving because it is
a functional composition of DFC-preserving transfor-
mations; refer to the assumption for the a1, : : :, an.

}

5 Concluding remarks

First, the results of this paper are concluded. Afterwards,
related work is considered in some depth. Finally, a few
remarks on future work are provided.

5.1 Results

We have described an instance of aspect-oriented program-
ming. It focuses on declarative languages as far as the com-
ponents are concerned. Functional meta-programs are used
to implement aspects as program transformations and to
perform weaving of aspects and components in the sense of
a program composition. We have developed a formal frame-
work for functional meta-programs. It is not clear at the mo-
ment how much e�ort is necessary for an adaptation of the
approach in order to cope with non-declarative languages.

One of the primary goals of introducing aspects and con-
sidering aspect languages is to abstract away the aspects
from the components. Aspect code should be independent
from components and from other aspects. This goal was

addressed in several respects. First, some operators such
as Default, From The Left and Reduce abstract from
concrete symbols and concrete parameter positions. The
operators only deal with occurrences of variables of certain
sorts. Second, in dealing with propagation, accumulation
etc. the symbols contributing to the corresponding process
need not to be �xed in the aspect code but they can be de-
rived from the skeleton of all components accumulated at
weaving time. On the other hand, our aspect code still con-
tains some details about components. Dealing with prop-
agation, for example, the nodes which need access to the
propagated data must be speci�ed. It should be possible to
abstract further in that respect by accumulating more infor-
mation than just the skeleton from the components. It is a
subject for further research to abstract further. Di�erent as-
pects can be speci�ed by separate program transformations.
That does not mean, of course, that they are independent.
Our current framework does not provide any support to de-
tect dependencies. If there is some order on the aspects it
would be easy to adapt our weaving process in such a way
that this order is preserved.

Another serious problem with our instance of AOP is
that there is no e�ective means to typecheck components
w.r.t. the assertions about properties implemented and met
by them (refer e.g. to the captions in Figure 12). We could
try to associate a kind of type constructor with each aspect.
The type constructors should be derivable from the aspect
code and they could be used for typechecking components.

A very attractive property of our instance of AOP is
that our weaver preserves computational behaviour of the
components provided that the transformations implement-
ing aspects preserve computational behaviour.

The framework, the operator suite for program transfor-
mation, program analysis and program composition and the
operator weaver have been implemented in ��� [HLR97,
L�am98] with applications in formal language de�nition sim-
ilar to the running interpreter example.

5.2 Related work

Fradet and S�udholt suggest in their recent position paper
[FS98] to describe aspects as static source-to-source pro-
gram transformations. Before, aspects have been usually de-
scribed and implemented in an ad hoc way. Our work can be
seen as an instance and re�nement of this proposal because
we o�er a detailed framework for functional meta-programs
and an operator suite facilitating the well-founded derivation
of transformations implementing aspects. The proposal in
[FS98] does not focus on the declarative paradigm. Their
is no correspondence to using e�ectively sorts and modes
as in our proposal. Their approach to weaving is based on
�xpoint computation using program transformations as a
rewriting system.

The Demeter Research Group (Karl J. Lieberherr et al.)
has developed an extension of object-oriented programming,
that is to say adaptive (object-oriented) programming (AP)
[Lie95, PPSL96]. The Demeter method proposes class dic-
tionaries for de�ning the structure of objects and propaga-
tion patterns for implementing the behaviour of the objects.
Our approach is similar to AP in that transformations are in-
dependent from the actual skeleton and a reachability notion
is used to establish computational behaviour schematically
in concrete target programs.

Monads and monad transformers are a popular tool in
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functional programming and denotational semantics [Wad92,
Mog89, Esp95] to achieve extensibility. Monads rely on
higher-order functions. Thus, the approach is not appli-
cable to the representatives of the declarative paradigm ad-
dressed by our framework for functional meta-programs. A
more general restriction of the monadic style which it has
in common with many other concepts is that monadic pro-
gramming relies on a suitable parameterization. In the ter-
minology of AOP we had somehow to anticipate some prop-
erties to �nd a suitable parameterization. Note that one
set of monad parameters would be in general not su�cient.
Furthermore, the kind of aspects implementable by monads
are restricted by the monad laws. Meuter suggests in his
recent position paper to consider monads as a theoretical
foundation of AOP [Meu98]. Mosses' and Watt's Action se-
mantics [Mos96] is another approach to extensible semantics
descriptions. They do not resort to higher-order features,
but they rather build support for many semantic concepts
such as transient, scoped, stable and permanent information
into the notation; refer to [L�am98] for a detailed comparison.
Thereby, such concepts need not to be coded in low-level �-
and domain-notation.

Sterling's et al. stepwise enhancement [Lak89, KMS96]
advocates developing logic programs from skeletons and tech-
niques. Skeletons are (in contrast to our terminology) simple
logic programs with a well-understood control 
ow, whereas
techniques are common programming practices. Applying
a technique to a program yields a so-called enhancement.
Our framework for functional meta-programs and our pro-
gram manipulations are e�ective means to develop and to
reason about techniques. Kirschbaum, Sterling et al. have
shown in [KSJ93] that program maps|a tool similar to our
projection-preserving transformations|preserve the compu-
tational behaviour of a logic program, if we assume that be-
haviour is manifested by the SLD computations of the pro-
gram. Note that our approach is generic and that we make
vital use of modes and sorts. Skeletons in the sense of our
framework are not used in stepwise enhancement. Finally,
there is no concept corresponding to weaving. The com-
position of separate enhancements of the same skeleton is
considered [Jai95, KSJ93] in similarity to pairing+squeezing
required for weaving components with overlapping skeletons.

De�nite clause grammars (DCGs) [PW80] and some vari-
ants and extensions (e.g. the extended DCG notation in
[Roy90]) support an important (Prolog) programming tech-
nique, that is to say the accumulator [SS94]. Only the ac-
cess to the accumulator is speci�ed. Otherwise, programs
had to be written in a way that accumulators are modelled
by means of auxiliary arguments to be chained. Such an ex-
pressive power does not provide, however, a means to adapt
programs in systemic ways. The schematic adaptations, for
example, according to the operators Default, Reduce and
� � are not concerned with adding and chaining arguments.

In the attribute grammar (AG) community quite a few
related concepts to improve modularity have been suggested.
Watt's Partitioned AGs [Wat75], for example, support de-
composition and a corresponding kind of composition of AG
modules which is similar to our kind of composition based
on pairing and squeezing.9 Dueck and Cormack suggest a
kind of AG templates [DC90]. An instance of a template
w.r.t. a CFG is obtained by a matching algorithm. One se-
rious problem of the approach is that it is impossible to ab-

9Actually, the term superposition is used in several frameworks
(not only in AGs) for a similar purpose.

stract su�ciently from the underlying CFG (skeleton). The
AG speci�cation language Lido [KW94] o�ers a number of
concepts to describe computations abstracting from the un-
derlying CFG. In [L�am98] we show how to simulate and to
improve the above mentioned and some other approaches
including object-oriented concepts by meta-programming.

5.3 Future work

The class of program transformations considered in the pa-
per focuses on data-
ow aspects. We should consider aspects
and corresponding operators dealing with control 
ow.

A projection-preserving transformation can be consid-
ered as an e�ective means to re�ne10 a target program. Ob-
viously, one could try to adopt a more general notion of
preservation of computational behaviour. In [L�am98] we il-
lustrate, for example, non-projection-preserving transforma-
tions to interleave premises, to reschedule some data 
ow
and to install a new sum domain. In that case reasoning
about the preservation of computational behaviour must be
based on speci�c arguments. Note that our weaver does not
rely on projection-preserving transformations.

A rather severe assumption of our weaver is that weaving
is performed rule-wise and the only non-local information
used in the loop body of the weaver is the skeleton to deal
with reachability. Other non-local information such as com-
ponent type information could be taken into consideration.

Another approach to make components compatible to
each other and to allow us to implement further properties
is based on \structural" transformations. A simple example
concerns the implementation of optimization aspects based
on folding/unfolding strategies; refer e.g. to [PP94] in the
context of logic programming. Other examples are con-
cerned with the elimination of certain forms of recursion,
CPS conversion and transmutation from big-step to small-
step (semantics). The relationship between such adapta-
tions and AOP has not been investigated so far. One speci�c
question regarding these adaptations is what are the basic
roles to derive the corresponding transformations.

The scope of the framework should be extended to fur-
ther representatives of the declarative paradigm, e.g. higher-
order functional programming. It should also be consid-
ered if the approach can be adopted for procedural (object-
oriented) programming languages.

Another issue concerns the correctness of the operator
implementations. Although we represent our transforma-
tions as functional programs, it is apparently not trivial to
provide rigorous proofs for all the propositions we are in-
terested in. We want to investigate what properties can be
proved automatically, e.g. by using a theorem prover. In-
stead of considering just functions on Rules, the derivable
properties can be possibly used to establish a more powerful
type system for the framework. The properties might be
useful to control the weaving process.
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Abstract

FISh is an array-based programming language that com-
bines imperative and functional programming styles. Static
shape analysis uses partial evaluation to convert higher-
order polymorphic programs into simple, e�cient impera-
tive programs. This paper explains how to compute shapes
statically, and uses concrete examples to illustrate its several
e�ects on performance.

1 Introduction

Partial evaluation uses limited information about inputs to
optimise a program. Common instances are datum values,
e.g. integers and booleans, and the shapes of data structures,
e.g. the length of a list or the number of rows and columns
of a matrix. Datum values can be used to unwind a re-
cursion or evaluate a conditional, while shape information
can be used to simplify data layout and memory manage-
ment, e.g. by unboxing data. Shape information may be
provided explicitly in a program, e.g. using types such as
int[2][3], but this approach severely limits program re-
use. Conversely, polymorphic programming languages, such
as ML and Haskell, tend to focus on inductive types, e.g.
lists and trees, but do not provide any support for inferring
shapes. Shape theory [Jay95] provides a formal account of
data types as shaped entities, which supports programming
with shapes. It has been used to guide the types, terms and
compilation strategy of the FISh programming language
[FISh] [JS98].

The explicit use of shapes in FISh supports several ad-
vantages not currently possible in other languages, namely:
new forms of polymorphism, especially polydimensionality
(the ability to apply a program to an array with an arbitrary
number of dimensions) [Jay98b]; static detection of shape
errors e.g. many array-bound errors [Sek98]; and, program
optimisations. All of these advantages are achieved using
(static) shape analysis of programs during o�-line partial
evaluation. This paper will focus on its use in optimisation.

The most obvious bene�t of shape information is in im-
proved memory management. This is of crucial importance
in parallel and distributed programming, but is also a signif-
icant issue in sequential implementations. For example, un-
boxing eliminates a level of indirection in accessing data, e.g.
replacing an array of pointers to 
oats by an array of 
oats,
but then access to entries requires that their size be known
in order to compute o�sets. When the entries are of datum
type then this can be inferred from the type [HM95, Ler97]

but in general, if the entries are themselves structured, e.g.
arrays, then type inference is insu�cient, and a proper shape
analysis is required. FISh is already able to handle poly-
dimensional arrays, and is being extended to cope with in-
ductive types, such as lists.

A more subtle bene�t of shapes arises from improved
separation of denotational and operational issues. This can
be seen most clearly by comparing lists and vectors (one-
dimensional arrays). It is common to distinguish these op-
erationally: a vector typically indicates some combination of
a named block of storage, constant access time to all entries
and in-place update; while a list typically indicates a pointer
to the heap, linear access time and referential transparency.
Shape theory distinguishes vectors and lists denotationally:
a vector is a list whose entries all have the same shape. For
example, the entries in a vector of vectors must all have
the same length, so that the whole corresponds to a matrix
rather than an arbitrary list of lists. This regularity of vec-
tors (and arrays generally) supports the operational features
mentioned above, but they are not inherent.

FISh exploits this by allowing both assignable arrays of
type var � and array expressions of type exp �. The for-
mer support assignment, and hence in-place update, while
the latter can only be used once, and so may be re-used
for other purposes. Conversely, one can envisage assignable
lists, where each entry has di�erent, but �xed, memory re-
quirements. This distinction between var and exp types is
inherited from Reynolds' Algol-like languages [Rey81] but
the use of shape analysis means that it can be applied to
structured data types as well as datum types. The relation-
ship can be captured by the following slogan, from which
the name \FISh" is derived:

Functional = Imperative + Shape

That is, higher-order, referentially transparent, function-
al programs can be constructed from e�cient imperative
procedures combined with shape information. The latter is
used to control creation of local variables to which the pro-
cedure can be applied. Partial evaluation computes all of
the shape information, reducing the higher-order functions
to imperative procedures. Without further e�ort, this ap-
proach generates too many duplicate data structures, and
pointless copying. Further optimisations, based on shape
and free-variable analysis, eliminate most unnecessary struc-
tures.

A third source of e�ciency is that shapes can be used by
the programmer to optimise some algorithms. We will use
folding (or reduction) over arrays as our example.
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These bene�ts are augmented by an aggressive approach
to function in-lining, which is the default choice for all (non-
recursive) functions. This works well with the data-centric
approach, and its support for while- and for-loops, where
code copying is not a problem. Future versions are likely to
pass some control over in-lining back to the programmer.

Aspects of these techniques are already familiar in par-
tial evaluation. Shape theory provides a uni�ed framework
which selects these techniques from the range currently avail-
able, and presents them in a more general form than was
previously possible. In combination they allow higher-order,
polymorphic programs to be converted into simple, e�cient
imperative programs. A variety of small-to-medium sized
programs have been written in FISh. Typical performance
of polymorphic FISh programs is many times faster than
equivalent programs in other polymorphic functional lan-
guages, and comparable to corresponding monomorphic pro-
grams in C (the target language of the current implemen-
tation). Even where C is polymorphic, FISh is typically
faster. For example, polymorphic quicksort (qsort in C) is
twice as fast in FISh on large arrays of 
oats.

The sections of the paper address the following topics:
introduction; review of the FISh language; partial evalua-
tion in FISh; examples of optimisation; and, conclusions.

2 The FISh language

This section reviews the types and terms of the FISh lan-
guage. A large amount of background material can be found
at the FISh web-site [FISh] including an introduction to
shape theory [Jay95], introductory articles on FISh [JS98,
Jay98b] a formal de�nition of the language, including partial
evaluation and execution rules, a tutorial, sample programs
and benchmarks.

2.1 Types

The raw syntax for the FISh types is given by

� : D ::= int j bool j 
oat j char j : : :

� : A ::= X j � j [�]

� : Sh ::= ~� j #�

� : T ::= � j �

� : P ::= U j #U j comm j var � j exp � j �! �

� : S ::= � j 8X : A: � j 8U : P: �

Following after Reynold's account of Algol-like languages
[Rey81, OT97] FISh distinguishes the data types (meta-
variable �), which represent storable values, from the phrase
types (meta-variable �), which represent meaningful pro-
gram fragments. The data types are further divided into
the array types (meta-variable �) which are used to store
arrays of data, and the shape types or static types (meta-
variable �) whose values are computed during compilation.
These are used for static constants, and for describing the
shape or structure of arrays, e.g. how many atoms of data
an array will hold.

The array types are either array types variables (meta-
variables X;Y : A), datum types (meta-variable �) or arrays
[�] of �. Datum types represent atoms of data; currently,
FISh supports datum types for integers int, booleans bool,
reals or 
oats, 
oat, and characters, char. The array type [�]

represents regular arrays of �'s. Here regular means that the
arrays are �nite-dimensional, rectangular, and their entries
all have the same shape. For example the entries in an array
of type [[
oat]] must all be arrays that have the same number
of dimensions, i.e. the same rank, and size in each dimension.
This means that array programs are able to act on arrays of
arbitrary rank and size, i.e. are polydimensional programs.

Every datum type � has a corresponding shape type,
called ~�, whose values are computed statically, as compile-
time constants. This distinction is similar to that in two-
level languages, as in [NN92, BM97]. Here are some typical
uses. The type size = ~int of sizes is used to represent the
length, or size, of an array in a given dimension. The type
fact = ~bool is used for static booleans, or facts, which are
useful for expressing properties of shapes required during
compilation. The type cost = ~
oat is used for static 
oats,
useful for static cost analysis. The type mark = ~char may
be used for labels.

The other shape types are of the form #� which rep-
resents the shapes of arrays of type �. The values of such
a type correspond to lists of sizes (one for each dimension,
outermost �rst) paired with the common shape of the array
entries. These types of array shapes are a new idea. Partial
evaluation of an array of type � will include the complete
evaluation of its shape of type #� without any explicit sep-
aration of inputs into static and dynamic parts.

Take care not to confuse ~� and #�. The former type
has many values, one for each value of type �, representing
sizes, facts, etc. The latter has only one value, representing
the common shape of all �-values. For example, ~3 : size
compared to int shape : #[int].

Many of the type distinctions above originate in the se-
mantics of arrays introduced in [Jay94] and further devel-
oped in [Jay99]. However, their motivation from a program-
ming perspective is not so compelling. Future versions of
FISh may simplify the type system, and hence the term
structure, but this will produce fresh semantic challenges.

Now let us consider the phrase types. Phrase type vari-
ables (meta-variable U : P) are used to express polymor-
phism. Each such has a shape #U (see below).

The type comm of commands represents operations that
modify the store, such as assignments.

Data types are used to construct phrase types in two
distinct ways. Each array type � yields a type var � of array
variables of type �. Terms of this type have mutable values.
Each data type � yields a type exp � of expressions of type
� whose values are immutable. Array variables represent
stored quantities, much as reference types do in ML.

Unlike earlier Algol-like languages, which could only store
atomic data, FISh also supports storable arrays. Conse-
quently, one is able to de�ne polymorphic array operations,
such as mapping and reducing, which work for arrays of ar-
bitrary shape, without having to �x the shape in advance.
This appears to be in con
ict with the well-known incom-
patibility of references and polymorphism ([Tof88] and also
[OK93]) but in FISh all polymorphism is instantiated stat-
ically, before execution.

The function type �1 ! �2 represents functions from �1
to �2. When �2 = comm the result is a procedure. A ground
type is a phrase type which is not a function type.

Note that although FISh supports functions of arbitrar-
ily high type, and that functions are �rst-class citizens as
phrases (i.e. they can be passed as arguments to functions,
and returned as results) they are not storable values because
their shape, and hence their storage requirements, are un-
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known. In particular, the shape of a function is a function
(of shapes) for which no equality test is available. Hence the
regularity condition for array entries cannot be established.

Every phrase type � has an associated phrase type shp �
(or #�) which is its shape (see the language de�nition for
details). The key point for our discussion is that the shape
of a function is a function of shapes, i.e.

#(�0 ! �1) = #�0 ! #�1

This property of the types re
ects the idea that the shapes
of all data structures can be computed statically, e.g. if f :
exp [int] ! exp [�] is a function on arrays of integers and a
is such an array then the shape of f a is #(f a) = #f #a
which can be computed from the knowledge of f and the
shape of a.

Also, commands are not allowed to change the shape
of the store, and hence all well-shaped commands have the
same shape which is, by convention, the true fact ~true.

FISh supports Hindley-Milner style polymorphism us-
ing type schemes (meta-variable �) obtained by quantifying
over array and phrase type variables. The scheme 8X : A:�
represents quanti�cation by an array type variable X and
8U : P:� represents quanti�cation by a phrase type variable
U .

2.2 Terms

The raw syntax for FISh terms is the same as that for the
Hindley-Milner type system:

t ::= x j c j �x:t j t t j t where x = t

except that where-expressions are preferred over let-express-
ions as evaluation will be call-by-name, not by value. x
and y range over term variables. c ranges over constants.
Type inference follows a modi�ed version of the standard
algorithm W [Mil78].

The FISh constants are given in Figure 1. They are
arranged in the families, according to the kind of their result
type. Binary datum operations are written in�x.

Commands skip is the command that does nothing.
abort terminates computation. assign x t or x := t updates
the value of the array variable x to be t. The command
seq C0 C1 or C0;C1 performs the command C0 and then
C1. The command cond b C0 C1 or

if b then C0 else C1

is a conditional, branching according to the value of the
boolean expression b. The for-loop forall m n f or

for m � i < n do f i done

iterates the command f i as i ranges over the integers from
m to n � 1. Similarly, whiletrue b C or

while b do C done

is a while loop. �x is a �xpoint constructor for the command
type. The command block newvar sh f or

new #x = sh in f x end

introduces a local variable x of shape sh, executes the com-
mand f x and then de-allocates x. Note that while it is

necessary to supply the shape of a newly declared variable,
it is not necessary to initialise its entries. output takes an
array expression and returns a command. Its intended ac-
tion is to compute the value of the expression, and output
the result as a side e�ect.

Figure 1: FISh Constants

Commands

skip : comm
abort : comm
assign : 8X : A: var X ! exp X ! comm

seq : comm! comm! comm
cond : exp bool! comm! comm! comm
forall : exp int! exp int! (exp int! comm)!

comm
whiletrue : exp bool! comm! comm

�x : (comm! comm)! comm
newvar : 8X : A: exp #X ! (var X ! comm)!

comm
output : 8X : A: exp X ! comm

Array variables

get : 8X : A: var [X]! var X
sub : 8X : A: var [X]! exp int! var [X]

Essential datum constants

nfintg : exp int for every integer n
+fint; int; intg : exp int! exp int! exp int
=fint; int; intg : exp int! exp int! exp bool

truefboolg; falsefboolg : exp bool

Array expressions

var2exp : 8X : A: var X ! exp X
df�0; : : : ; �kg : exp �0 ! : : :! exp �k�1 ! exp �k

getexp : 8X : A: exp [X]! exp X
subexp : 8X : A: exp int! exp [X]! exp [X]

condexp : 8X : A: exp bool! exp X ! exp X !
exp X

newexp : 8X : A: exp #X ! (var X ! comm)
! exp X

dynf�g : exp ~� ! exp �

Shape expressions

~df�0; : : : ; �kg : exp ~�0 ! : : :! exp ~�k�1 ! exp ~�k
� shape : exp #�
zerodim : 8X : A: #X ! #[X]
succdim : 8X : A: exp size! #[X]! #[X]
undim : 8X : A: #[X]! #X
lendim : 8X : A: #[X]! exp size

preddim : 8X : A: #[X]! #[X]
numdim : 8X : A: #[X]! exp size

equal : 8X : A: #X ! #X ! exp fact

Phrase polymorphic constants

condsh : 8U : P: exp fact! U ! U ! U
primrec : 8U : P: (exp size! U ! U)! U ! exp size

! U
error : 8U : P: U
shape : 8U : P: U ! #U

Array variables The unique entry of a zero-dimen-
sional array is named by get. Similarly, sub x i names the
variable which is the ith subarray of x (i is the index). For
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example, if x is a matrix then the variable y given by sub x i
is a vector, and sub y j is a zero-dimensional array, whose
unique entry is named by applying get. We write

A[i0; i1; : : : ; ik]

for get (sub (: : : (sub A i0) : : : ik)).
The primitive array variables are those whose construc-

tion only uses primitive expressions of integer type (see next
paragraph) as indices. All others are civilised array vari-
ables.

Let x be an occurrence of an array variable in a term. It is
assigned if its immediate context is assign x t and is evaluated
if its immediate context is var2exp x (see next paragraph).

Datum constants Datum constants are expressions
df�g : exp � and datum operations df�0; : : : ; �kg : exp �0 !
: : :! exp �k�1 ! exp �k used to represent datum values and
operations . We will often write d for df�0; : : : ; �kg when the
choice of datum types is clear. Also binary operations may
be written in�x, e.g. t1 + t2 for + t1 t2. The precise choice
of operations does not materially a�ect the language design.
Only those speci�cally required below are included in the
�gure.

Array expressions Each array variable x has a value
given by the expression var2exp x also written as !x. Da-
tum constants may be used to construct array expressions.
getexp and subexp are expression analogues of get and sub.
The conditional expression condexp b t1 t2 or

ife b then t1 else t2

evaluates t1 if b is true, and t2 if b is false. The needs of
shape analysis impose a side-condition on the formation of
such terms: both ti must have the same shape, which is then
the inferred shape of the whole expression. The expression
block newexp sh f or

new #x = sh in f x return x

is like a command block except that the value of the local
variable x is returned before x is de-allocated.

The constants var2exp and datum constants (both ex-
pressions and functions) are called primitive data constants.
Expressions built from these terms, term variables of type
exp � and primitive array variables are called primitive ex-
pressions. The constants getexp, subexp, newexp and cond-
exp are the civilised expression constants.

For each datum type � there is a coercion from static to
dynamic values:

dynf�g : exp ~� ! exp �:

Shape expressions Every datum constant d has a
corresponding shape constant ~d. For example ~+ is ad-
dition on sizes. Every value of datum type � has the same
shape, given by � shape : exp #�. For example, every integer
n has shape int shape. Note that, by contrast, the shape of
~n is ~n. That is, values of shape type are their own shape.

There are six constants which manipulate array shapes.
zerodim sh is a constructor that takes an array shape sh as
argument, and returns the shape of a 0-dimensional array
whose sole entry has shape sh. succdim is a constructor
that takes a size ~n and an array shape sh, and returns

another array shape, of one higher dimension, whose size in
that dimension is ~n and whose subarrays all have shape sh.
For example, succdim ~3 int shape is the shape of a vector
of integers of length three. A more convenient syntax for
array shapes represents zerodim by a colon and succdim's by
a comma separated list of integers, enclosed in braces. For
example, f2; 3 : int shapeg denotes

succdim ~2 (succdim ~3 (zerodim int shape))

which is the shape of a 2�3 matrix of integers.
undim is a selector corresponding to zerodim. Similarly,

lendim and preddim are selectors corresponding to succdim.
Finally, the selector numdim determines the number of di-
mensions of an array, e.g. numdim f~2; ~3 : int shapeg re-
duces to ~2. The remaining constant in this group is equal
which checks for equality of shapes, returning a fact. We
may write equal x y as x #= y.

It will be useful below to distinguish the shape construc-
tors ~df�g; zerodim and succdim from the shape destructors,
~df�0; : : : ; �kg undim, lendim, preddim and equal. Terms con-
structed solely from shape constructors are called shape val-
ues.

Phrase polymorphic terms The shape conditional
condsh b t0 t1 or

ifsh b then t0 else t1

branches according to the value of the fact b. As the value
of b will be known during shape analysis, there is no require-
ment for the branches to have the same shape, as occurs in
a shape conditional. The syntactic sugar

check b t

stands for condsh b t error. It is used extensively during
shape analysis to check for errors.

primrec f x t

represents primitive recursion. If t is ~n then this primitive
recursion unwinds to

f ~n (f ~(n� 1)( : : : (f ~0 x) : : :)) :

The term error represents shape errors, which result from,
say, attempting to multiply matrices whose shapes don't
match. The constant shape or # returns the shape of its
argument.

We will abuse notation and allow a data type to stand
for the corresponding expression type whenever the context
makes this clear. Thus, we have 3 : int for 3 : exp int.
Also, references to polymorphic constants will always refer
to phrase polymorphic constants rather than data polymor-
phic ones.

3 Partial Evaluation

A FISh program is a closed term of type comm. (Ar-
ray expressions can be converted to commands by apply-
ing output : exp � ! comm.) Static shape analysis reduces
FISh programs to programs constructed in a simple sub-
language, called Turbot, whose raw syntax of terms is given
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by

t ::= x j skip j abort j assign t0 t1 j seq t0 t1 j

cond t0 t1 t2 j forall t0 t1 �x:t2 j whiletrue t0 t1 j

�x �x:t j newvar t0 �x:t1 j output t j

get t j sub t0 t1 j !t j df�0 : : : �kg t0 t1 : : : tk�1 j

~df�g j � shape j zerodim t j succdim t0 t1

where term variables x must be of type exp int; var � or
comm. Turbot evaluation is given by a structured, or big-
step operational semantics in which commands are treated
as store-transformers.

Note that Turbot does not support functions of higher
type or phrase polymorphic constants, and expressions are
limited to shape constructors and primitive data constants.
The other functions and constants must be eliminated by
partial evaluation. This is achieved by the reduction rules
given in Figures 6 { 10. This section will survey the rules
with examples of their application and further optimisations
in the following section. A more detailed account can be
found in the language de�nition.

The key goal is to compute all shapes, which necessarily
involves evaluation of shape functions, i.e. beta-reduction.
Rather than try to separate out the shape functions for spe-
cial treatment, FISh in-lines all non-recursive function calls
statically (Figure 7). Usually, in-lining is a mixed blessing
with the bene�ts of closure elimination o�set by the cost
of code explosion [JW96, Ash97]. FISh avoids most of the
disadvantages by promoting the use of for-and while-loops,
in which code only appears once, the use of local variables
whose initialisation is eager, and optimisations which elimi-
nate unnecessary copying of data structures.

The rules for eliminating phrase polymorphic constants
are given in Figure 6. This includes all explicit shape com-
putations, resolving all shape conditionals and unwinding all
primitive recursion. There is not space here to go discuss all
of the explicit shape computations but let us consider two
of the most interesting. The reduction

#(x := t)!�

#x # = #t

shows that an assignment is well-shaped if both sides have
the same shape. Many array-bound errors are caused by
failures of this condition.

#(ife b then x else y)!�

check (#b # = #b) check (#x # = #y) #x

This rule re
ects the requirement that both branches of an
expression conditional must have the same shape. This con-
straint on conditionals is necessary for e�ective static shape
analysis. Where the branches have di�erent shapes the pro-
grammer is required to supply a condition that can be eval-
uated statically, using a shape conditional.

By unwinding all primitive recursions, we run the risk of
code explosion, but its typical use is for supporting polydi-
mensional programming, where recursion over the number
of array dimensions is required, so that the number of iter-
ations is usually no more than three.

Figure 8 gives rules for computing static quantities of da-
tum type, and elimination rules for array shape destructors.

Figure 9 addresses the issue of shaping local variables.
Their shape is known at creation, and these rules allow this
information to be used when simplifying the body of the
block, even though it contains free variables. That is, the

context is allowed to carry shape information as well as type
information about local variables.

Figure 10 describes reductions for simplifying array ex-
pressions. The �rst eight rules involve auxiliary functions
vtc and vte which are used to handle local variables that
appear within array indices. They are included here for
completeness but will not a�ect the further discussion. The
�nal four rules are used to convert expression conditionals
and blocks to their command forms. Typical is the following
assignment to an array variable x

x := new #y = sh in C return y

If y is of datum type, e.g. is an integer, then the returned
value can be stored in a register, but if it is a proper array
then it is not clear where to put its value. The solution is
to expand the scope of y to contain the assignment, as in

new #y = sh in C ; x:= !y end

Note that there is no return value now, as indicated by the
keyword end. Often there is a more e�cient solution, as
shown in Section 4.2.

After partial evaluation of a FISh program, the shape of
resulting Turbot program is computed to check for shape
errors, e.g. assigning an array of the wrong shape.

Shape analysis has some novel characteristics compared
to standard partial evaluation techniques, e.g. [JGS93], as
its techniques all derive from a single semantic insight. In
this it is more like the parametrized partial evaluation de-
scribed by Consel and Khoo [CK93] but requires even less
intervention by the programmer. A fortiori, it can also be
seen as a form of staged evaluation [ST97]. In FISh, how-
ever, the distinction between static and dynamic is based on
the division between shape and data rather than an analysis
of the properties of the particular program at hand. Also,
it is able to work with partial information about a single
input, e.g. the length of a vector, as well specialising with
respect to total information about some inputs. Thus, shape
analysis can be fully automatic, without requiring selection
of variables to be handled statically, or code re-organisation.
Nevertheless, a signi�cant fraction of variables suitable for
static treatment are either of datum type, or describe shapes
of data structures, and so can be handled in FISh.

4 Examples

Now let us consider the impact of partial evaluation on pro-
gram performance. The examples will illustrate the three
e�ects listed in the introduction, namely, unboxing, array
expressions, and explicit use of shapes.

4.1 Unboxed data: quicksort

Polymorphism is usually handled by boxing the data, i.e. by
using pointers. Shape analysis determines the shape of the
arguments statically, so that all data can be unboxed. Let us
consider quicksort, as it is one of the few standard C library
functions that is polymorphic, so that comparison becomes
possible. A FISh program for polymorphic quicksort, of
type

quicksort : (a -> a -> bool) -> [a] -> [a]
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is given in Figure 3 (the let rec syntax is a sugared form of
�x). The array type a can be instantiated to be any datum
type, or nested array type. Nevertheless, comparisons are
always made directly using the array entries.

By contrast, C's standard polymorphic quicksort func-
tion qsort uses pointers and typecasts to control polymor-
phism. An example comparison function for 
oats is

int cmp(const void *i, const void *j) {

int res ;

if (*(double*)i - *(double*)j > 0.0 )

{res = 1 ;}

else {res = -1 ;}

return res; }

Figure 2 shows user times for quicksort on a random
array of 200,000 FISh 
oats (C doubles). Two kinds of pro-
gram are tested. Monomorphic programs are specialised to
handle 
oats, while polymorphic programs must be able to
work with arbitrary data types and comparison functions.
For C, the standard qsort function was used in the poly-
morphic case. This function achieves polymorphism by us-
ing pointers to locate array entries, and then de-referencing
them to make the comparison. All of this creates longer,
more complex programs, and also slows down execution by a
factor of three. Similar problems are likely with the Ocaml
polymorphic program. FISh avoids pointer manipulations
through shape analysis (and performs function inlining) so
that the polymorphic program is as fast as its monomor-
phic one, twice as fast as qsort, and over six times faster
than Ocaml. This, in turn, is signi�cantly faster than a
corresponding Haskell program. Details of the experimental
technique are given in Section 5.

Ocaml C FISh

poly 9.04 3.59 1.69
mono 2.22 1.29 {

Figure 2: User times (seconds) for quicksort (polymorphic
and monomorphic) on a random array of 200,000 
oats (dou-
bles)

4.2 Array expressions: mapping

FISh supports both array variables (which can be assigned)
and array values. This is counter to the approach in most
programming languages, where all arrays are assignable, this
being their raison d'etre. This added 
exibility allows us to
introduce additional optimisations on array expressions.

Consider an assignment to an array variable x

x := e

If e is the value !y of some other array variable y then a bulk
copy of memory (e.g. memcpy in C) is the simplest approach.
This is safe because shape analysis guarantees that x and y
have the same shape. A more frequent occurrence is that e
is given by an expression block new #y = sh in C return y in
which x does not appear free in C. Then there is no need to
create the local variable y at all, merely to copy its result to
x. Rather we can use x directly. The resulting optimisation

Figure 3: quicksort.fsh

let quicksort pr (cmp: exp a -> exp a -> bool)

(array: var [a]) =

let rec qs m n =

if m>=n then skip

else

new pivot = array[(m + n) div 2]

and i = m

and j = n in

while cmp array[i] pivot do incr i done;

while cmp pivot array[j] do decr j done;

while i < j do

new aux = array[i] in

array[i] := array[j];

array[j] := aux

end;

incr i; decr j;

while cmp array[i] pivot do incr i done;

while cmp pivot array[j] do decr j done

done;

(if i=j then incr i; decr j else skip);

qs m (!j) ; qs (!i) n

end

in qs 0 (lendim #array -1)

;;

let quicksort cmp arg =

new aux = arg in

quicksort pr cmp aux

return aux ;;

is thus

x := newexp sh f > check (#x # = sh) (f x)

if fv(x) \ fv(f) = fg:

In words, if x and the expression block have the same shape,
and x is not free in the body of the block then use it as the
local variable.

Although this optimisation looks fairly trivial, its cor-
rectness is dependent on a number of design features that
are unique to FISh. (Previous Algol-like languages have not
supported array data types.) First, the ability to manipulate
whole arrays in this way, without using pointers into a heap,
depends on shape analysis to ensure that copying occurs be-
tween structures of equal size and shape. Second, the check
that x is not free in C would be inadequate if aliasing were
allowed [Rey78, Rey89].

This optimisation eliminates many of the space leaks
that confront implementers of functional languages, while
maintaining a high degree of referential transparency in the
source code (using newexp). The e�ect can be illustrated by
looking at the action of polymorphic mapping

map : (a -> b) -> [a] -> [b]

on an expression block.
map is de�ned in the standard prelude for FISh and was

explained in detail in [JS98] as a canonical application of
the FISh slogan. It is de�ned as

proc2fun map pr map sh

When applied to a function f and an array expression e a
local variable of shape map sh #f #e is created and then the
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procedure map pr f is used to assign appropriate values to
its entries. Rather than review the details of the construc-
tion let us consider an example, and see the e�ect of the
optimisation on the resulting C code.

Here is a short FISh session. The fill ...with ...

syntax allows one to build an array from its shape and a list
of its entries.

Figure 4: Unoptimised C code generated for mapping

/* translated by fish */

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/stat.h>

#include "fish.h"

int argc;

char ** argv;

int main(int argc,char *argv[]) f
argc = argc;

argv = argv;

f int A[2][3];

f int B[2][3];

f int C[2][3];

C[0][0] = 0; C[0][1] = 1;

C[0][2] = 2; C[1][0] = 3;

C[1][1] = 4; C[1][2] = 5;

memcpy(B,C,sizeof(B));

g
f int i;

for (i = 0; i < 2; i++) f
f int j;

for (j = 0; j < 3; j++) f
A[i][j] = (2*B[i][j]);

ggggg
fish print( argc, argv,INT SHAPE,2,3,

ARRAY BOUNDARY,END OF SHAPE,(char *)A);

g
return 0;

g

let mat = fill {2,3:int_shape} with [0,1,2,3,4,5];;

let f x = 2*x;;

%show - assign_opt;;

let mat2 = map f mat;;

%show + assign_opt;;

let mat3 = map f mat;;

let mat4 = selfmap f mat;;

%run mat2;;

%run mat3;;

%run mat4;;

In each case the output is the same, namely

fill { 2,3 : int_shape }

with [

0,2,4,

6,8,10 ]

However, the �rst program has the assignment optimisa-
tion switched o�, and so uses three local variables. The C
program generated by the FISh compiler for mat2 is given
in Figure 4. The variable C is used to construct mat which is
then copied to B. B holds the input to the mapping, whose
result is stored in the variable A representing mat2. Note
that the program for map has been written to ensure that
the computation of mat is only performed once, outside the
for-loops. Note, too that memcpy is used to copy C to B. This
is perfectly safe as the shape analyser has already checked
that the two variables have the same shape.

Of course, this copying is unnecessary, and is eliminated
by the optimisation applied to the program for mat3. Its C
code only has two local variables A and B representing mat3

and mat respectively, with the central assignment being

A[i][j] = (2*B[i][j]);

Of course, one can object that a single variable should suf-
�ce, since the shapes of mat and mat3 are the same. This
can be achieved by using

selfmap : (�! �)! [�]! [�]

If the result has the same shape as its input then it may
store the result in the same location as the argument. This
is the case in our example, where selfmap is used to de�ne
mat4 whose central assignment is

A[i][j] = (2*A[i][j]);

Unfortunately, the current version of FISh does not allow
the type of selfmap to be generalised to that of map (whose
function argument may produce a result of di�erent type) as
the test for shape equality requires arguments of the same
type. This should be generalised in future.

4.3 Shape-based optimisation: reduction

versus folding

Shape analysis allows us to customise algorithms during
compilation according to the shapes that arise even though
the source code is fully polymorphic. For example, oper-
ations such as summing or taking the product of a list or
array of numbers can be de�ned as a reduction using a prim-
itive binary operations, e.g. addition or multiplication. An
e�cient algorithm uses a single auxiliary variable to hold all
of the intermediate values. This is safe because all of the in-
termediate values have the same shape. Reduction is often
identi�ed with the polymorphic operation of folding of type

(a! b! a)! a! [b]! a

However, for general data types the intermediate values of
type a may have di�erent shapes, e.g. be arrays of di�erent
lengths, so that one is forced to create fresh storage for each
intermediate value. The FISh standard prelude supports
both reduce and fold on arrays. The latter is implemented
as reduce if all of the intermediate values have the same
shape, but will create multiple storage locations on those
rare occasions when it is necessary to do so. Here is a frag-
ment of the code for fold taken from the FISh standard
prelude.

let fold f x y =

if #f #x (zeroShape #y) #= #x

then reduce f x y

else ...
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The shape conditional tests whether the shape of f applied
to the shape of the auxiliary variable and the common shape
of the array entries is the same as that of the auxiliary.

If the array types involved are actually datum types, e.g.
int, then the type determines the shape, and so reduction
(or quicksort) can be specialised without recourse to shape
analysis, as in TIL [HM95]. However, the approach given
here works for all data types, not just the datum types.
For example, to add the columns of a matrix may be given
as fold (zipop plus). Type analysis would not allow any
simpli�cation, but shape analysis allows this to become a
reduction.

5 Benchmarks

This section compares the run-time speed of compiled FISh
programs with a number of other polymorphic languages for
several array-based problems, especially Ocaml which is one
of the best of such other languages. All tests were run on
a Sun SparcStation 4 running Solaris 2.5. C code for FISh
was generated using GNU C 2.7.2 with the lowest optimiza-
tion level using the -O 
ag and all 
oating-point variables
of type double (64 bits). For Ocaml code, we used ocam-
lopt, the native-code compiler, from the 1.07 distribution,
using the 
ag -unsafe (eliminating arrays bounds checks),
and also -inline 100, to enable any in-lining opportunities.
Ocaml also uses 64 bit 
oats.

As in [JS98] the times for FISh are often faster than
Ocaml, usually at least twice as fast, and sometimes sig-
ni�cantly better than that. The results are summarised in
Figure 5. Note, however, that Ocaml requires all arrays to
be initialised, while FISh does not.

We timed four kinds of array computations: mapping
division by a constant across a 
oating-point array, reduc-
tion of addition over a 
oating-point array, multiplication
of 
oating-point matrices, and quicksort of a 
oating-point
array. None of the benchmarks includes I/O, in order to
focus comparison on array computation.

Matrix multiplication used two di�erent algorithms, here
called \loops" and \semi-combinatory" (code omitted). The
loops algorithm uses an assignment within three nested for-
loops. This algorithm is the usual one written in an im-
perative language. The semi-combinatory algorithm closely
follows the usual de�nition of matrix multiplication, with a
double-nested for-loop containing an inner-product.

6 Conclusions

This paper has shown how knowledge of shapes supports a
combination of higher-order polymorphic programming with
e�cient, imperative implementations. In particular, knowl-
edge of shapes during compilation supports a wide range of
program optimisations, such as unboxing of data, re-use of
local variables and explicit uses of shape. These techniques
all constitute a form of partial evaluation, but they emerge
out of a single semantic approach, rather than being adapted
to individual programs.

In particular, it is not necessary for the user to deter-
mine which inputs should be static and which dynamic, as
this is determined from general principles. Where user intu-
ition can yield further bene�ts, this can often be captured
within the programming constructs of the language itself, as

occurs in the conversion of fold into reduce, rather than by
annotations.

All of the work described here has been implemented,
with the source code made publically available, and is sup-
ported by a formal de�nition.

Current work is proceeding in two directions. One is
to combine the ideas of FISh with those of Functorial ML
[JBM98] to create a language that supports both array types
and inductive data types. In developing this, many of the
idiosyncracies of the FISh language appear to be falling
away, leaving a simpler programming language but a more
complicated semantics. If successful, this program may also
reduce the distance between FISh and other, better known,
programming languages, so that shape ideas could be incor-
porated within them.

The other development is that of a portable parallel ver-
sion of FISh called Gold�sh[JCSS97, Jay98a]. It will use
shape analysis to guide data distribution and support a
static cost model.

There are also many opportunities for further partial
evaluation and optimisation based on shape information,
e.g. the further elimination of dynamic array bound checks.

Overall, the FISh language demonstrates in concrete
terms the bene�ts that can be extracted by incorporating
shape ideas into the computational framework.
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Figure 6: FISh reductions: phrase polymorphic constants

condsh ~true > �x; y: x

condsh ~false > �x; y: y

primrec f x ~0 > x

primrec f x

~(n+ 1) > f ~n (primrec f x ~n)

error t > error

c t0 :: tk�1 error > error for any combinator c except

condsh; k 6= 0 or primrec; j 6= 2

#x > sh if �(x) = (sh; �)

#(t t1) > #t #t1

# (�x:t2) > �y:t3 if #t2 !
�

�0 t3 where x 62 fv(t3)

and �0 = �; y : #U; x : (y;U)

#skip > ~true

#abort > ~true

#assign > equal

#seq > ~=

#cond > �x; y; z: check (equal x x) check y z

#forall > �x; y; z: check (equal x y) z int shape

#whiletrue > �x; y: check (equal x x) y

#�x > �x: x ~true

#newvar > �x; y: y x

#output > �x: check (equal x x) ~true

#get > undim

#sub > �x; y: check (equal y y) preddim x

#df�0; : : : ; �kg > �x0: check (equal x0 x0) : : :

�xk�1: check (equal xk�1 xk�1)

�k shape

#getexp > undim

#subexp > �x; y: check (equal y y) preddim x

#condexp > �x; y; z: check (equal x x)

check (equal y z) y

#newexp > �x; y: check (y x) x

#dynf�g > �x: check (equal x x) � shape

#var2exp > �x:x

#shape > �x:x

#succdim > �x: check (x~�~0) succdim x

#c > c otherwise

Figure 7: FISh reductions: Beta and where

(�x:t) a > t[a=x]

t where x = a > t[a=x]

Figure 8: FISh reductions: shape expressions

dynf�g ~df�g > df�g

~df�0; : : : ; �kg ~n0 : : : ~nk�1 > ~pf�kg where

p = d n0::nk�1

undim (zerodim t) > t

undim (succdim s t) > error

lendim (zerodim t) > error

lendim (succdim s t) > s

preddim (zerodim t) > error

preddim (succdim s t) > t

numdim (zerodim t) > ~0

numdim (succdim s t) > numdim t ~+ ~1

equal � shape � shape > ~true

equal (zerodim t0) (zerodim t1) > equal t0 t1

equal (zerodim t0) (succdim s1 t1) > ~false

equal (succdim s0 t0)(zerodim t1) > ~false

equal (succdim s0 t0) (succdim s1 t1) > check (s0~= s1)

equal t0 t1

Figure 9: FISh reductions: shape contexts

newvar sh �x:error > error

forall t2 t3 �x:error > error

�x �x:error > error

newexp sh �x:error > error

Let �0 = �; x : (sh; �) and t0 !�0 t1.

newvar sh �x:t0 >� newvar sh �x:t1

When (sh; �) = (int shape; exp int)

forall t2 t3 �x:t0 >� forall t2 t3 �x:t1

When (sh; �) = (~true; comm)

�x �x:t0 >� �x (�x:t1)

newexp sh �x:t0 >� newexp sh �x:t1
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Figure 10: FISh reductions: data reduction

assign t e > vtc (�x: assign x e) t

if newexp or condexp in t

!t > vte (�x:!x) t if newexp or condexp in t

vtc f y > f y if y is a term variable

vtc f (get t) > vtc (�y: f (get y)) t

vtc f (sub t i) > vtc (�y: newvar int shape �j:

j := i; f (sub y j)) t

vte f y > f y if y is a term variable

vte f (get t) > vte (�y: f (get y)) t

vte f (sub t i) > vte (�y: newexp (#f (preddim #t))

�z: newvar int shape �j:

j := i; z := f (sub y j)) t

getexp !t > !(get t)

subexp !t1 t2 > !(sub t1 t2)

Let g be a term and n be a natural number. If (g; n) is one
of (assign t; 0), (cond; 2), (forall; 2), (forall t; 1) , (whiletrue; 1)
or (output; 0) then

g (newexp sh f) t1 : : : tn > newvar sh �x0:

f x0; g !x0 t1 : : : tn

g (condexp s0 s1 s2) t1 : : : tn > cond s0 (g s1 t1 : : : tn)

(g s2 t1 : : : tn)

Let h be a term and n be a natural number. If (h; n) is one
of (df�0; : : : ; �kg s0 : : : sj ; k� 1� j), (getexp; 0), (subexp; 1)
or (subexp s; 0) then

h (newexp sh f)

t1 : : : tn > newexp (#h sh #t1 : : :#tn)

�x: newvar sh �x0:

f x0;

x := h !x0 t1 : : : tn

h (condexp s0 s1 s2)

t1 : : : tn > condexp s0 (h s1 t1 : : : tn)

(h s2 t1 : : : tn)
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Rehabilitating CPS

Olin Shivers
MIT Artificial Intelligence Laboratory

shivers@ai.mit.edu

In the eighties, if one set out to write a compiler for a lambda-calculus based
language, the odds are one would have chosen an intermediate representation based
on continuation-passing style—“CPS.” Compilers such as Orbit, Kelsey’s trans-
formational compiler, and SML/NJ all traced their heritage back to the seminal
influence of Steele’s Rabbit compiler, which established the CPS-as-intermediate-
representation thesis. While CPS by no means had an exclusive franchise, it staked
out a large niche in the functional-language arena—at many institutions, it was
simply the accepted and expected representational framework.

However, at the turn of the decade, researchers began increasingly to experi-
ment with alternative low-level, lambda-based frameworks. Representations such
as nqCPS and A-normal form allowed compiler writers to factor the features pro-
vided by CPS, such as serialisation of primitive operations, and the naming of all
intermediate results, without having to commit to the explicit machinery of ex-
posed continuations. The new and interesting compilers, such as Morrisett and
Tarditi’s TIL compiler, were written using “direct style” lambda-calculus interme-
diate representations. CPS has faded from view somewhat; I am not aware of a
serious CPS-based compiler being written in the last five to eight years.

Part of the reason academe’s attention turned away from CPS was a series of
influential papers by Felleisen and Sabry establishing some deep formal connec-
tions between the analytic power of the two frameworks. The message of these
papers was that introducing explicit continuations provided no extra theoretical
benefit—so why bother with them?

As another decade prepares to turn over, we have the advantage of ten years
of experience working with these alternative frameworks. I suggest that it is now
time to reexamine the benefits of CPS, in the light of these lessons learned.

In this talk, I will discuss the benefits of CPS from a modern perspective. I’ll
show some interesting examples of recent work on operating-system concurrency
and transducer composition that rely critically on the ability to represent continu-
ations explicitly. I will discuss how we can apply the lessons of the last decade
to CPS, andvice versa. I’ll address the issue of formal equivalences between
continuation-based and direct-style representations, and point out limits in our cur-
rent understanding and use of continuation-based compiler frameworks.
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