
B
R

IC
S

N
S

-98-5
Ḧuttel&

N
estm

ann
(eds.):

S
O

A
P

’98
P

roceedings

BRICS
Basic Research in Computer Science

Proceedings of the Workshop on

Semantics of Objects as Processes

SOAP ’98

Aalborg, Denmark, July 18, 1998

Hans Hüttel
Uwe Nestmann
(editors)

BRICS Notes Series NS-98-5

ISSN 0909-3206 June 1998

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/98/5/

Proceedings of the Workshop on

Semantics of Objects as Processes

SOAP ’98

July 18
Aalborg, Denmark

Hans Hüttel
Uwe Nestmann

(editors)

Preface

One of the most widespread programming paradigms today is that of object-
oriented programming. With the growing popularity of the language C++
and the advent of Java as the language of choice for the World Wide Web,
object-oriented programs have taken centre stage. Consequently, the past
decade has seen a flurry of interest within the programming language research
community for providing a firm semantic basis for object-oriented constructs.

Recently, there has been growing interest in studying the behavioural
properties of object-oriented programs using concepts and ideas from the
world of concurrent process calculi, in particular calculi with some notion of
mobility. Not only do such calculi, as the well-known π-calculus by Milner
and others, have features like references and scoping in common with object-
oriented languages; they also provide one with a rich vocabulary of reasoning
techniques firmly grounded in structural operational semantics.

The process calculus view has therefore proven to be advantageous in
many ways for semantics and verification issues. On the one hand, the use
of encodings of object-oriented languages into existing typed mobile process
calculi enables formal reasoning about the correctness of programs; on the
other hand, using standard techniques from concurrency theory in the setting
of calculi for objects may help in reasoning about objects, e.g. by finding ap-
propriate and mathematically tractable notions of behavioural equivalences.
Encodings may also help clarify the overlap and differences of objects and
processes, and suggest how to integrate them best in languages with both.

The aim of the one-day SOAP workshop, which is a satellite workshop
of ICALP 98, has been to bring together researchers working mainly in this
area, but in related fields as well, where other process models or calculi are
used as a basis for the semantics of objects.

Among the submitted abstracts, six were recommended by the programme
committee (Mart́ın Abadi, Hans Hüttel, Josva Kleist, and Uwe Nestmann)
and are presented in these proceedings. According to the more informal char-
acter of the workshop, there was no formal refereeing process. It is expected
that the abstracts presented in these proceedings will appear elsewhere at
other conferences or in journals.

We would like to thank the organizers of ICALP ’98 for helping us set up
the SOAP workshop and BRICS for the publication of these proceedings.

Hans Hüttel
June 1998 Uwe Nestmann

3

4

Table of Contents

The workshop will be held in Aalborg Congress and Culture Centre on
July 18, 1998, in the order appearing in these proceedings.

Carlos Herrero, Javier Oliver
Object-Oriented Parallel Label-Selective λ-calculus 7

Claudia Balzarotti, Fiorella De Cindio, Lucia Pomello
Observation equivalences for type and implementation inheritances 17

António Ravara, Pedro Resende, Vasco Vasconcelos
Towards an Algebra of Dynamic Object Types 25

Andrew D. Gordon, Paul Hankin
A Concurrent Object Calculus:
Summary of the Operational Semantics 31

Silvano Dal-Zilio
Quiet and Bouncing Objects:
Two Migration Abstractions in a Simple Distributed Blue Calculus 35

Hans Hüttel, Josva Kleist, Uwe Nestmann, Davide Sangiorgi
Surrogates in Øjeblik: Towards Migration in Obliq 43

5

6

�
�

�

�

x x

x

�

�

�

�

�

1 Introduction

name agent name

Abstract

Keywords:

Carlos Herrero Javier Oliver

Object-Oriented Parallel Label-Selective -calculus

DSIC, UPV, Camino de Vera s/n, Apdo. 22012, 46022 Valencia, Spain.

E-mail: cherrero,fjoliver@dsic.upv.es.

This work was partially supported by CICYT, TIC 95-0433-C03-03.

LCEP is a calculus for modelling concurrent systems. The e�orts to use it to represent

object oriented features have been successfully treated in this paper. We present an operational

semantics for a parallel object-oriented programming language by means of a phrase-by-phrase

translation from the language into an extension of LCEP in which only a few changes from

the original LCEP are made.

Concurrency, Extensions of -calculus, Object-Oriented, Process Algebras.

We can �nd many studies in computation to produce an elegant semantics which correctly de�nes

languages with concurrent features. The role played by the -calculus in computation theory

is well-known but while it was adopted by D.S. Scott and C. Strachey as a semantic basis for

programming languages, it cannot be successfully used with concurrence features. In 1980, R.

Milner proposed CCS, [7], which is a calculus for modelling concurrent systems. His contribution

was to view computational entities as agents whose interaction is the basic behavioural unit. This

calculus was the basis for the -calculus [8] which emerged as a re�nement of CCS with two

primitive notions as foundations: the and the . A is used to provide access to

agents. Speci�cally, two agents that share a name can interact by using it. In addition, an agent

can send a name in an interaction, and therefore one agent can transfer its ability to interact with

other agents to the other. On the other hand, with the label-selective -calculus of H. A��t-Kaci

[1] the distinction between terms and channels appears. A term plays the role of an agent of the

-calculus and a channel (numeric or symbolic labels) represents the way through which terms

can send information. With the extension of this calculus to LCEP [6] (Parallel Label-Selective -

calculus) we have a complete calculus for modelling concurrency by using numeric and/or symbolic

labels and parallel operators, and also by representing polyadic functions.

Among the proposed approaches to parallel programming, the disciplines which are character-

istic of parallel object-oriented programming have many desirable features. However, providing

adequate semantics for these languages is very complex. The family of POOL languages is out-

standing among the works in this �eld. This is the starting point for this work. In particular,

the operational semantics of a member of this family of languages appeared in [2] and was later

expanded by the denotacional semantics [3] based on metric spaces. Moreover, there are other

semantics available which are associated to the family of POOL languages using process algebras

[10]. The nature of the language suggests that correct models are complicated. More precisely,

attempts to discern a clear vision of the central concept (i.e. the object) is very complex, although

already important advances have been made in this direction. In this article, we show a semantics

in LCEP of a slightly modi�ed version of POOL, via a phrase-by-phrase translation. Each syn-

tactic entity is represented as a parameterized agent. The representation of composite entities is

constructed by using the operators of the calculus. In particular, we are interested in modelling

�

b

b

b

b

b

b b

P P

EP

P P

P P

P P

P

P P

P P

P P

L

bound

free

free closed

2 The Parallel Label-Selective -calculus

f g f g

L [S

S f g \S ;

M

M j j j j j k j � j j

j

M � k

�

�

k k

� k

2 L

2 L

�

�

� �

V x; y; z; : : : C a; b; c; : : : P

m; n; : : :

p; q; : : :

a x � x:M M M M M M M M M

P

�

; ; ;

� x:

M � x:M M

M N M N N M

M N M N

M N

M N

M

M

M

> > > � x: > >

x M � x:M P

x x M

x M FV M M

� x: M N

P � x: P � x:M

x M

M N P

the communication, the invocation of methods, and the transfer of results between objects. An

object is represented as a composed term which is able to interact with others by asking for the

execution of a certain method.

The remainder of the work is organized as follows. In Section 2, LCEP is briey de�ned. In

Section 3, the POOL language is described. In Section 4, we show the translation function of the

di�erent instructions from POOL into LCEP. In Section 5, we present an example of a POOL

program translation. Finally, Section 6 presents some concluding remarks.

The Parallel Label-Selective -calculus (LCEP) [9] is the calculus that we use for modelling the

LCEPOO language, which originated from a previous proposal by H. A��t-Kaci (the label-selective

-calculus). This calculus is an extension of the -calculus in which function arguments are selected

by labels. Symbolic and numeric labels can be used to name the communication channels. This

has not been possible in other proposals and it allows for the use of currying and the labeled

speci�cation of parameters. It makes the ordering of the actual parameters in a function call

independent of the presentation order of the formal parameters in the de�nition.

Let = be a set of variables, and = be a set of constants.

represents a channel name from a set of labels = IN , where denote numerical labels

taken from IN. = is a set of symbolic labels. IN = . 0 represents the null process.

The language of the formal system is . It is de�ned as follows:

::= 0 (+) !

::= number symbol

Usually, the terms of this signature are called -terms.

In concurrent programming, the terms of represent processes. Operation symbols + !

are considered as process constructors. The communication (abstraction or input) and

(parameter passing or output) are also considered as process constructors, whose e�ect over a

process is to de�ne processes (y , respectively) which are involved in functional

applications under certain given conditions. Constants, variables and the null process form the

atomic symbols of the language.

The interpretation of the process constructors is as follows: sequential composition (): it

de�nes a process from the processes y . The process is executed after ;

parallel composition (): it de�nes a new process from the processes and . Both

processes are executed simultaneously; non-deterministic choice (+): + shows the capability

of or (either one or the other) to take part in a communication. A communication can be

made by one of them and the other disappears; replicator (!): ! de�nes a process which produces

the multiple generation of . It acts as a warehouse, where it is possible to take an in�nite number

of the process .

Operators have the subsequent priority order: ! + .

An occurrence of the variable is in a process i� it is in a term (for all).

In any other case, the occurrence of is . If has, at least one free occurrence in , we say

that is a variable of . We call () the set of free variables of . A process is

if it does not have free variables.

The relations between the processes are described in terms of communications. The constructors

and provide the processes and with the possibility of communicating through a channel

labelled with as follows: constructor of input (): through channel process

can receive a process which replaces the free occurrences of in by the incoming process through

this channel; constructor of output (): process can send a process through channel . It

then becomes inactive.

In addition, a partial order relation is de�ned in the set of labels which we denote as .

It is required as a condition for the relation that the numerical label 0 be the minimum of the

ordered set. We use the partial order relation in the set of labels (among others) to represent the

j j j j j j
j j

j j j j j

n

n

n n

n n

p p

q

r

p

r

n

1

1

1 1

1 1

1 2

1 1

1

1

1

1

1

3 Parallel Object-Oriented Language (POOL)

objects

new(B)

self

expressions declaration of variables sentences

assignment answer expression sequential

composition choice iteration

methods Mdec sequences of method declarations Mdecs declarations of

a class Cdec units Udec

answer

answer + select

�

B

E M E ; : : : ; E

E;E ; : : : ; E E

M

E b new B self X E M E ; : : : ; E M E ; : : : ; E

V decs E S E

V decs var X A ; : : : ; X A

S X E answer E S S E S S E S

Mdec M Y C ; : : : ; Y C C E

Mdecs Mdec ; : : : ;Mdec

Cdec class A is V decs;Mdecs with body S

Udec unit U is Cdec ; : : : ; Cdec with root A

C Y ; : : : ; Y E

A Cdec ; : : : ; Cdec

E M E ; : : : ; E E C

C M

application order of the real parameters to the formal parameters of a function, which is analogous

to how it is done in the -calculus in order to treat the problem of parameterization in function

calls.

For more complete information about the calculus, see [9].

When we work with the object-oriented programming style, we always describe a computational

system as a collection of self-contained entities possessing data and methods. These entities are

called . Objects interact by sending messages. There are two kinds of messages: a request

by the sender for the receiver to execute one of its methods with its parameters (client to server),

and a reply (server to client) in response to such a method invocation. The parameters and

the reply are object references. The system evolution depends on the communications, and the

creation/destruction of objects is made in computing time. In the variant of POOL considered [2],

a program is a sequence of class declarations together with an indicator of which class constitutes

the object root.

The declaration of a class consists of a sequence of variable and method declarations together

with a sentence, the body of the class. Each object is an instance of a class and its creation

executes a copy of the body of the class in parallel with all the other existing objects using its

own copies of the variables and class methods. The sentences are built by means of the sequential,

conditional and iterative operators of the expressions, instructions of assignment and the answer

instruction, which means that an object accepts a request of execution of one of its methods.

Among the expressions, we can �nd , whose evaluation creates a new object of the class

and returns the reference to this object; , whose evaluation returns a reference to the object

in which it happens; and ! (), whose evaluation implies the left to right evaluation

of the , expressions, the sending to the object for which the value of is a request

to execute method with these parameters. The value of the expression is the reference which

has been returned by the object owner of the invoked method. The activity of the transmitter is

interrupted until this value is received.

Therefore, the in POOL, the , and the are:

::= () ! () ()

in ;

::= : :

::= := 1; 2 if then else while do

These sentences are , (an object accepts the request), ,

, , and , respectively. Note that an expression is considered as a sentence.

The declaration of (), (),

(), and () are given by:

::= method (: :) is

::=

::=

::=

where is the resulting method class, are the formal parameters, and is the body.

The language is strongly typed, and several conditions are imposed. For example, in a unit

declaration, must be the name of one of the classes declared in and if an

expression ! () appears in one of the class de�nitions and the type of is , then

it must have a class and a called method of the appropriate type. The classes are only

considered if they ful�ll all the imposed conditions. See [2] for further details.

The language di�ers from POOL in some small syntactic details. The signi�cant di�erences

are that there is a general sentence (any method can be invoked) and not a conditional

one (), which allows the exclusion of certain methods, and that the standard class

0

0

00 0

0

1 1

1 1

0

0 1 0 1

0

0 00

0

0 00

0

0 0 0

0

4 The Translation

b

b

b

b

b b

b b b b

b b

c

b b b c b

�

�

�

� �

�

�

� � �

�

� k � k �

� k �

� k k

� k k

� � � �

EP

P p

EP

EP

l

l

l

l l

k ret l

y r y y u y

y r y u y

k ret i i

i

i i

c m m m ret ret l

integer

output

input

output

output

Value(l,v) Null(l) out-

put Wait(,)

Return(, ,)

Channel

�

�

P

N N � x:M x M

N �

�

V alue l; v v

Null l

Wait l; l � v:V alue l; v

Return l; l ; l � v: v Null l

l l l

l l l

new B l; k � x: x

self l; v V alue l; v

Y l; y � v:V alue l; v v � v:V alue l; v

V ar Y y; v V ar y; v

V ar y; v � x : x � x: v V ar y; v � v : v V ar y; v

Cdec k � x: x c Newobject c

Newobject c S V decs ; Mdecs

Mdecs Mdec m : : : Mdec m

c

m

� M � l; c ;m � � x: x � x: x Wait l; l

does not appear. These di�erences simplify the proposal language and it can be easily

translated to LCEP.

For further details about the operational semantics of POOL and of the current version of

POOL see [2] and [11], respectively.

It is obvious that each syntactic entity is represented as a -term and composite entities are

represented by their components. LCEP cannot use multiple parameters as channels. However, we

can communicate through numeric channels (using currying we can model polyadic functions) or

by sending some processes in parallel. This problem has an easy treatment in -calculus, because

we can send names of channels through the channels.

In LCEP we have a numeric or symbolic label , which represents a channel through which we

send a process from an output into an input , where the occurrences of in are

replaced by the process , i.e. every valid -term (variables, constants, processes, etc. but not

channels). The idea of conversion is to use the name of the channel to substitute the name of the

agent. This channel is then used to send the parameters and a -term, which works as of

the result instead of the name of the method and the associated parameters. Therefore, the sender

process is like an which is waiting for the reply through the same channel. When we need

to send a name or channel, we actually send an process through this channel. Consider an

expression as a variable value or an process which communicates or starts the expression

from the represented channel. In this paper, the process perspective is presented. Therefore, the

de�nition of classes comes from the de�nition of the objects'behaviour. To simplify the notation,

construction blocks are used:

()

() 0

() ()

() ()

represents the evaluation of an expression or variable. is translated as an

through the channel of the null term. is an abstraction (a waiting) and a later

evaluation. is its complement.

Simple POOL expressions are translated into LCEP as follows:

[()]() ()

[]() ()

[]() (0) () + () ()

[]() ()

() ((()) (()))

The creation of a new object is modelled as a call to the class and the later reception of the new

object identi�er (). This is the only exception in which we can see a label as a variable.

Using a variable is equivalent to updating it or to consulting it. In any case, the declaration of a

variable is the parallel composition of two answers.

POOL classes'declaration in LCEP is:

[]() ! (() ())

() ([] [](~y ~v) [](~m))

[](~m) []() []()

In addition, we are going to make the request for the execution of a remote method into LCEP.

First, let us see the translation of an object which requests the execution of a remote method

with only one evaluated parameter.

[! ()]() (()) ()

0

0

0

0

0

�

� �

0

0

� �

n

i i

n

i

n

i i

n

i n

1 1

0

1 1

0 +1

+1

+1

+1

answer

Wait(,)

answer Wait(,)

Wait(,)

b b b

b b b b c

b

b b b b b b

b b b b d

b b c

b

b b b

b b b b

b b b d

b b b

1 1 1

1

0 1 0 1

1 1 1

1

0 1 1 0 1 1

1 +1 +1

1 1

1 1

1 1 1 1

+1 +1

1 1 1

�

� k k

� � � k

� � � � �

� �

�

� k k k k

� � � � � k

� � � � � �

� � � �

� k k k

k k �

� �

� � � �

� � � � � �

� � � k k

k k k

�

� k

� k k

g

m y u y m g

n c m m n m m ret

ret l

n n n g

m y u y m u y m g

i

i

i i n c m m i l i m i g

l n m n m m ret

ret l i g i i

g n n

EP

EP

m m m l

n m m n m m l

i i n m m i l i m i g

l n m n m m l i i

g i i g n n

v v v

l l

l l

Mdec m Mmethod m

Mmethod m Mhandle m V ar Y y ; v � x: E m

Mhandle m � x: x � x: � x: x

Y

� M � ; : : : ; � l; c ;m � : : : � � x: x

� x: x Wait l; l

Mdec m Mmethod m

Mmethod m Mhandle m V ar Y y ; v : : : V ar Y y ; v � x E m

Mhandle m � x: x � x: � x: x x: x x

E

E

� M � ; : : : ; � ; E ; : : : ; E l; c ;m � : : : � � � : �

: : : � � : � � x: x

� x: x E l � x: E l

: : : � x: E l Wait l; l

�

l l

�

M � m; l � � x: x

M � ; : : : ; � m; l � : : : � � x: x

M � ; : : : ; � ; E ; : : : ; E m; l � : : : � � � : �

: : : � � : � � x: x E l

� x: E l : : : � x: E l

V decs var

V decs in E l; : : : ; ; E l; : : : V ar ;

V ar ; V ar Y y ; v : : : V ar Y y ; v

In this case, a term is sent to the object (received by an into the object body), and then

the object waits using . The term which has been sent will execute three actions: (1)

send the parameter to the method; (2) send a term which produces the answer of the method; (3)

make a term which stays in the and which really sends the result to the .

The declaration of a one-parameter method is:

[]() ! ()

() () []() []()

() () 0 (0)

As you can see, the receipt of a parameter is translated by updating the variable , joined to

the parallel composition with the answer sender term and with another that synchronizes with the

evaluation of the method body.

Now let us see a similar process, but using multiple parameters:

[! ()]() (())

() ()

The method declaration into the server object is:

[]() ! ()

() () []() []() []()

() () 0 () 0 (0)

If, instead of the evaluated parameters, we have expressions (knowing that a POOL expression

must be left-to-right evaluated), we require that the evaluation of an expression not start, since

the evaluation of the expresion has �nished. This e�ect is successfully represented by:

[! ()]() (0

())

[]() []()

[]() ()

It is easy to see that the treatment of this expression may be similar to the treatment of a local

call to execution of a method. Actually, it only di�ers in one feature. In a remote call, we need

to generate a -term that really executes the sending of the parameters, and makes the answer

to the original object that is waiting in a instruction. In a local call, we do not have an

answer because the purpose of a local invocation is execution, and not reply. This is the reason

why the -term, which results after the evaluation, is the sending of the expression. Therefore,

the translation of a local call of one evaluated parameter method is:

[()]() ()

A multiple evaluated arguments method is as follows:

[()]() ()

If we have not evaluated parameters and what we really have are expressions (as in the remote

call), then the translation into LCEP is:

[()]() (0

() []()

[]() []())

For a local declaration of variables with ~Y into an expression, we can model into

LCEP as:

[](~y ~v) []() [~Y](~y ~v)

where [~Y](~y ~v) []() []().

k

k

k

0

0

0

0

0 0

0

0 0

0

0

0 0

0 0 00

0 0 0

0

0 0

0

0

1 1

0 1

1

1 2 1

3 1

1

2 1

3 1

1 2 1 2 1 2

1 2

1 2

1

1 2 1 2

2

1
1

1
1

1

2 1 1 1 2

2 2 2

3 1 1 1
3

3 3 1

1 1
3 3

3

3 3 3

1 2

1 1 1

1 2

b b

b b b c b

b b b

b b b

c d c d

c c

c c c

c d c d

c c c c

c c c d

c d c d

b c c c

b b

answer

wait null

answer

ret

Wait(l,l')

Bool

Boolean

�

) � k

� k

� k k

�

� k �

� �

� � � �

� �

� �

� k

� k k k k

� k k k

k

�

� k k

� � �

� k k

� � � k �

� k k

k k

� k k k

� � �

� k k

� k

n n

l y u y

a

EP

n

EP m m n m m ret ret l

EP

k b t ret l l

k b f ret l l

k k k

k b t ret true f ret false

k

b

m m m m m

m m m m m

m true m false false m true

m m m m m m true m m

m m m m true m true

false m false false m m false

l l

l b m m m ret

ret true l false l

l

Wait � l; l Wait l; l

E � l; : : : E l ; : : : Return l; l ; l

E; � l; : : : E l; : : : � ;

� ; V ar y ; v : : : V ar y ; v

nil l Null l

Y E l; : : : ; y E l ; : : : � v : v � v:Null l

answer a; l � x:x Null l

�

l

Y

E M E ; : : : ; E

l

� � : : : � n � x: x � x: x

�

true l; b � x: x � x:V alue l; x

false l; b � x: x � x:V alue l; x

Boolean b BoolClass b Bool b; b

BoolClass b � x: x � x: x � x: x

Bool b; b BoolBody b BoolV al m BoolNot m ;m

BoolAnd m ;m

BoolBody b � x:x

BoolV al m � x: x � y: � z: y z

BoolNot m ;m � x: x � x: x

� x: x � y: � y:

BoolAnd m ;m � x: x � x: x � x: x � y: � x: x

� x: x � x: x � y:

� y: � y: � z:

if E then S else S l BoolEval l ; l ; l E l � x: S l � x: S l

BoolEval l ; l ; l � x: x � x: x

� x:x � x: � x:

S S

S

S S l; : : : S l ; : : : � v: S l; : : :

v S

Now, let us see the translation into LCEP of the auxiliary expressions whose de�nitions were

postponed:

[()]() ()

[]() []() ()

[]() []() [](~y ~v)

[](~y ~v) () ()

[]() ()

[:=]() []() (() ())

[]() ()

We express the assignment as the parallel composition of two -terms: one which evaluates

the expression and sends the result through the auxiliary channel , and the other which receives

the result of the expression from this channel and updates the variable by assigning the value

of the expression.

With regard to the which replies to the request of remote invocation of methods,

[! ()], we can see that it accepts any request of any ready method, allowing to

the replicator of the method to execute a copy of itself. It returns the result (to activate the client

process which is in a instruction) and later returns a through its own channel to �nish.

Although only the last channel is really de�ned in the , all the others are sent from the

client, as a -term like () if there is no unevaluated

expression.

The fundamental part of the -term are the last two terms of the sequence. The second to

the last term is a sender through the channel of the reply in a method execution. The last

one takes that answer and re-sends it to the in the other process and it then becomes

inactive.

The basic expression of the standard class is as follows:

[]() (() ())

[]() (() ())

And the standard class is:

[]() (() ())

() ! (((0) (0)))

() (! () ! () ! ()

! ())

()

() ((()))

() (())

(0 0)

() (()) (((

()) ((0)

(0)) (0))

To model the conditional instruction we have:

[]() () []() []() []()

() ((()))

(0 0)

With regard to the sequence of sentences, if we have the sentence [;], and we suppose that

the sentence is an expression, then:

[;]() []() []()

where is a variable which appears in and is a bound variable.

c

c

0

0 0

1 2

1 2

1 2

1 2

1 1

0 0

0 0

0 00 00 0

0 00 00 0

0

5 Example of translation

�

� k

� k k k

� k k k

� k �

� k k

k

� k � k

k �

Bool BoolEval

philosopher

chop

units

l

l l

l l

phils ret i i

i i

b eat r eat b b

u eat b b

S v S

S l ; : : : S l; : : : l Null

while E do S l; : : : Loop l; l ; : : : � v:Loop l; l ; : : :

S c

Loop l; l ; : : : BoolEval l ; l ; l E l � x: S l ; : : : � x:V alue l; v

S v S

Loop l; l ; : : : BoolEval l ; l ; l E l � x: S l ; : : : � x:Null l

Cphils � x: x phil Newobject phil

Newobject phil BODY phil phil V decs eat; sig; chopl; chopr

Mdecs toeat; tothink

V ar eat; v � x : x � x: v V ar eat; v

� v : � v V ar eat; v

CLASS PHILOSOPHERS

VAR

eat : boolean

sig : boolean

chopl : CHOPS

chopr : CHOPS

METHOD ToEat() : PHILOSOPHERS

BEGIN

WHILE not Eat DO

sig := true;

WHILE sig DO

sig := chopl!Takechop()

OD;

sig := chopr!Takechop();

IF sig

THEN eat := false;

chopl!Leavechop()

ELSE eat := true

FI

OD

RESULT SELF

END;

METHOD Tothink() : PHILOSOPHERS

BEGIN

chopl!Leavechop();

chopr!Leavechop();

eat := false;

RESULT SELF

END;

BODY

eat := false;

WHILE true DO

Toeat()

Tothink()

OD

YDOB

CLASS CHOPS

VAR

freechop : boolean

METHOD Takechop () : boolean

BEGIN

IF freechop

THEN

freechop := false;

RETURN false

ELSE RETURN true;

FI

END;

METHOD Leavechop () : CHOP

BEGIN

freechop := true;

RESULT nil

END;

BODY

freechop := true;

WHILE true DO

answer

OD

YDOB

1 2

1 2

Figure 1: The POOL philosophers problem.

On the contrary, if the sentence is not an expression, therefore, is not bound in , and the

behaviour of the process is like []() [](), with : . Knowing this and using the

dual behaviour of expressions and non-expression sentences in the translation to LCEP of iterative

instructions, we can �nd a new example of the use of the standard class by .

[]() () ! ()

If is an expression then is a bound variable and therefore:

() (() []() []() ())

If is not an expression, then is a free variable in and then:

() (() []() []() ())

To reect the translation of a POOL program into LCEP, we use an easy variant of the well-known

philosophers problem [5], in which we pay attention to the communication between the di�erent

objects. To model that behaviour in POOL, we consider two object classes: the class

and the class.

We are basically interested in communication and method invocation. Therefore, we center our

attention on the implementation of the classes, and we do not show or speci�cations in our

solution. We are not looking for an e�cient solution to the concurrence problem. Therefore, we

do not pay attention to aspects such as the non-deterministic choice between left and right chop

(we necessarily take the left one before the right one). We can see the POOL example in Fig. 1.

From lack of space, we only show some parts of the translation following a similar scheme as

in Section 4.

The translation of the philosophers'class declaration to LCEP is as follows:

[] ! (() ())

() (()) []()

[]())

An example of variable declaration is:

() ((())

(()))

1 2

1 2

0

0

0

0

0

0

0

0

0

0

0 0

0 0

0 00 00 0

0 0

0

1 2 1 2

1 2

0 3 0 0

0 1 2 3

3

3

d d c b

d d c b

b

d b

b

c b

d b

d b

IF

THEN

ELSE

FI

WHILE

DO

OD

� � �

� � �

�

� k

� k

�

�

� k

� k

� k � k

k k

� � k

� k k k

� k

�

�

sig

eat := false;

chopl ! Leavechop()

eat := true

true

Toeat()

Tothink()

takechop chop philosopher

takechop()

toeat()

toeat()

toeat() chop

philosopher

Toeat() Tothink()

chopl tchop tchop ret ret l

chopr tchop tchop ret ret l

g

tchop g

toeat toeat l

g

toeat g

sig r sig

l l

l

k l l

l

toeat toeat l

tothink tothink l

chopl takechop l; chopl; tchop � x: x � x: x Wait l; l

chopr takechop l; chopr; tchop � x: x � x: x Wait l; l

Mtakechopdec tchop Mtakechop tchop

Mtakechop tchop Mhtakechop tchop � x: E takechop tchop

Mhtakechop tchop � x: x

toeat toeat; l � x: x

Mtoeatdec toeat Mtoeat toeat

Mtoeat toeat Mhtoeat toeat � x: E toeat toeat

Mhtoeat toeat � x: x

if SIG then S else S l BoolEval l ; l ; l � v:V alue l ; v

� x: S l � x: S l

While l while true do S l Loop l; l � c:Loop l; l

Loop l; l BoolEval l ; l ; l true l ; b � x: S l � x:null l

S

S l toeat toeat; l � v: tothink tothink; l

toeat toeat; l � x: x

tothink tothink; l � x: x

v tothink tothink; l

The invocation of the method of an object from a is modelled in LCEP

as:

[! ()]() (()) ()

[! ()]() (()) ()

Furthermore, the de�nition of the method is:

[]() ! ()

() () []()

() (0)

An example of a local call appears at the method in a philosopher body:

[()]() ()

And the declaration of method is:

[]() ! ()

() () []()

() (0)

Our example contains a conditional instruction into the body of method in the class :

Therefore:

[]() (() ((0) ())

[]() []()

The following is a practical example of the translation of the loop into the body of object class

:

Therefore:

() []() () ! ()

() (() []() []() ())

is the sequential composition of procedures and , which can be translated as:

[]() [()]() [()]()

[()]())

[()]())

where is a free variable in [()]().

th

�

�

�

�

�

6 Conclusions and future work

References

Proc. of the

13th Int. Conf. on Foundations of Software Technology and Theoretical Computer Science

Lecture Notes in Computer Science

In Proc. of the 13 Symposium on Principles of Programming Languages

Information and Computation

Programming Languages

Proc. of 1994 Joint Conference on Declarative Programming GULP-PRODE'94

Lecture Notes in Computer Science

Logic and Algebra of Speci�cations

Extensions of the -calculus for Modelling Concurrent Processes

Applications of Process Algebra, Tracts in

Theoretical Computer Science

Information and Computation

An extension of LCEP has been presented. Under a process perspective, this extension can model a

simple version of a parallel object-oriented language, LCEPOO. The phrase-by-phrase translation

process has been made by modelling object de�nition, management, communication, and evolution

features. The object activities are synchronized by sending messages which contain references

to other system objects. Among the characteristics of LCEP, we can not �nd the sending of

communicating channels. The absence of this feature has not been an obstacle for the modelling

of the behaviour of the chosen POOL variant. We have incorporated the possibility of sending

variables (channels) only for the modelling of the object generation.

As we have shown, LCEP is an e�ective tool which has sucessfully been used to model parallel

and concurrent processes as well as to model object-oriented language features. A translator

system from a high level language (ALEPH) into LCEP is already available [4]. By transferring

the proposal extension to that system, we can obtain an explicitly parallel high-level language with

object-oriented features.

1. H. A��t-Kaci and J. Garrigue. Label-Selective -Calculus: Syntax and Conuence. In
, volume

761 of . Springer-Verlag, Berlin, 1993.
2. P. America, J. de Bakker, J. Kok, and J. Rutten. Operational Semantics of a Parallel Object-

Oriented language. , pages
194{208, 1986.

3. P. America, J. de Bakker, J. Kok, and J. Rutten. Denotational semantics of a parallel object-oriented
language. In , volume 83, pages 152{205. 1989.

4. L. Climent, M.L. Llorens, and J. Oliver. LCEP as an Abstract Machine. Technical Report DSIC-
II/38/97, UPV, 1997.

5. E.W. Dijkstra. Cooperating Sequential Processes. In F. Genus, editor, ,
pages 43{112. Academic Press, London, 1968.

6. S. Lucas and J. Oliver. Parallel label-selective -calculus (LCEP). In M. Alpuente, R. Barbuti, and
I. Ramos, editors, ,
pages 125{139, 1994.

7. R. Milner. A Calculus of Communicating Systems. volume 92 of .
Springer-Verlag, Berlin, 1980.

8. R. Milner. The polyadic -calculus: A tutorial. In F.L. Brauer, W. Bauer, and H. Schwichtenberg,
editors, . Springer-Verlag, Berlin, 1993.

9. J. Oliver. . PhD thesis, DSIC
(UPV), 1996.

10. F. Vaandrager. A process algebra semantics in POOL.
, 17:173{236, 1990.

11. D. Walker. Objects in the -calculus. In , volume 116, pages 253{271.
1995.

Observation equivalences for
type and implementation inheritances

Claudia Balzarotti, Fiorella De Cindio, Lucia Pomello

Dipartimento di Scienze dell'Informazione, Universit� di Milano
via Comelico 39 - 20135 Milano (Italy)

e-mail: decindio@dsi.unimi.it, pomello@dsi.unimi.it

EXTENDED ABSTRACT

The main entity of the object-oriented languages is the object, which is generally
defined by a class. A fundamental relation between classes is inheritance, that originally
indicated a relation is-a among classes. On the other hand, the success of object-oriented
programming languages is due to the use of inheritance for code-reuse. As shown in
[Ame89], inheritance is often used in these two different ways. Our aim is studying the
inheritance relation in concurrent object-oriented languages, formalising these aspects.

The integration of object-orientation with concurrency, yielding systems of active
objects modelled as concurrent processes, has given the possibility of using theoretical
tools, such as the notions of observation equivalences, for the study of inheritance and
subtype relations. In particular, the place-transition duality in Petri nets [BRR87] allows the
definition of two types of equivalences between nets, based on action observation and on
state observation [PRS92]. They have been used for defining the semantics of inheritance
relations. Among the various proposals in the literature (see for example [NP92],
[AD95,96]), we take into consideration those proposed by Nierstrasz [Nie93] and van der
Aalst and Basten [AB97] for what concerns action observability, while we consider the
approach of CLOWN [BCD97] for what concerns the state observability.

NierstraszÕs hypothesis is that the sequences of requests that an object can accept
constitute a regular language. Moreover, Nierstrasz defines a preorder based on failures, the
Request Substitutability preorder (RS-preorder, ≤RS), and considers this preorder as the
semantics of the subtyping relation according to the Wegner and ZdonikÕs substitutability
principle [WZ88]. Van der Aalst and Basten introduce preorders too, based on the
branching bisimulation equivalence and two operators, the encapsulation operator dH and
the abstraction operator tI, that, respectively, remove and label as not observable the
transitions corresponding to the methods of the subclass not inherited from the superclass.
CLOWN uses an inheritance relation based on the State Transformation preorder (ST-
preorder, £ST) [PS91], that compares systems with respect to their state space. Preorders
are better suited than equivalence notions for modelling the behaviour extension.

We consider Elementary Net (EN) systems [BRR87], the basic class of Petri Nets.
We denote as LEN systems the labelled EN systems in which the actions are observable. In
the following, we discuss through examples the previous approaches.

Example 1
This example is taken from NierstraszÕs paper [Nie93]. In figure 1, the class VAR,

that represents a variable, is subclass of the class BUF, that represents a one place buffer.
Rephrasing Nierstrasz from CCS to Petri nets, the RS-preorder between the LEN system
associated to the class VAR and the LEN system associated to the class BUF is satisfied, i.e.
åVAR £RS åBUF.

However, we believe that this example is somehow misleading: in fact a variable is
not a buffer, but a buffer can be implemented through a variable.

CLASS BUF

p1 p2

put

get

CLASS VAR

q1 q2

put

get

put

Figure 1

Example 2
This example is taken from [BCD97]. Figure 2 shows a multiple inheritance

hierarchy between printers. In CLOWN, this hierarchy is studied through the ST-preorder,
which considers the state (place) observation. however, the exhibited behaviour of objects
that are instances of these classes, is better captured by observation of actions, i.e. of
transitions. Therefore we would like to build the same hierarchy by using notions based on
action observation.

Therefore our work aims at giving the semantic characterisation of two forms of
inheritance in concurrent context. According to the terminology used in [CHC90], we use
the term type inheritance to indicate the subtyping, i.e. the is-a relation between classes,
and the term implementation inheritance to denote the code-reuse. In the first case, we study
the external observable behaviour of an object, while in the second case we study the
internal structure of an object. Therefore, we base the first preorder on failure, since
bisimulation distinguishes systems also with respect to some aspect of internal structure,
while in the second case we consider ST-preorder.

While this latter does not require modifications w.r.t. the original definition, we
need to integrate the two approaches by Nierstrasz and van der Aalst and Basten, since the
notions defined by them doesnÕt deal with all cases where there exists the relation is-a

between a subclass and a superclass. To this purpose we define a further operator, namely
the renaming operator rR,S, and new preorders based on action observation.

unborn 1
create leave

CLASS ROOT

alive dead

1
create

leave

CLASS MONO PRINTER

idle

load

reset

1

1

ready

done

print

unborn

dead CLASS LOCKER

lock

unlock

1
create

leave

1

1

unborn

dead

frozenfree
CLASS PRINTER

ready print

1

create

leave

idle

load

reset

1

1

unborn

dead

CLASS LOCK PRINTER

print

suspend

resume

1

1

stopready

1
create

leave

idle

load

reset

1

1

unborn

dead

Figure 2

Formally, we associate to a class a LEN system å = (B,E,F,cin,h), where (B,E,F)
is an Elementary Net, cin Ê B is the initial case, h: E ® L is the labelling function that
associates to each event a class method belonging to L. For each R Ê L and for each set of
labels S such that SÇL=Æ and |S| = |R|, we define a bijective function s : R ® S, that
maps each element of R into a new label. Let L' be a superset of S containing L - R, i.e.
S Ê L' and L - R Ê L'. On the basis of the function s we define the renaming function:
r : L ® L' that maps each label into a new label in the following way:

(1) r(x) = x if x Ï R
(2) r(x) = y if x Î R, y Î S and s(x) = y.
This function r is injective, since the function s is bijective.

We define the renaming operator rR,S in the following way:
rR,S(å) = å' such that å'= (B,E,F,cin,h'), where h'= r ° h.

Now we can give the definitions of four preorders based on the NierstraszÕs RS-
preorder and on the encapsulation, abstraction and renaming operators. In the following,
åA and åB are LEN systems associated to a class A and a class B, while LA and LB are the
sets of event labels associated respectively to åA and åB and corresponding to the methods
of the classes A and B.

The first preorder, the strong substitutability, is equivalent to the RS-preoder.

Definition 1
åB is less or equal to åA w.r.t. strong substitutability, denoted åB £SF åA, if and

only if there exists a set H Ê LB such that: dH(åB) £RS åA.

 If åB £SF åA then an object of class A can be substituted for an object of class B
and the environment will not be able to notice the difference, i.e.: if an object of class A may
accept after a request sequence w another request a, then an object of class B must accept
the request a after the request sequence w, whatever is the reached state.

The new methods added in class B are considered as not available through the
encapsulation operator dH.

The second preorder, the strong substitutability with renaming, is less restrictive
than strong substitutability.

Definition 2
åB is less or equal to åA w.r.t. strong substitutability with renaming, denoted

åB £SFR åA, if and only if there exist a set H Ê LB, a set R Ê LA and a set S Ê LB such
that: S Ç LA = Æ and dH(åB) £RS rR,S(åA).

If åB £SFR åA, then an object of class A can be substituted for an object of class B
but the environment must make allowance for class A methods that are renamed in class B
by the renaming operator rR,S.

The third preorder, the weak substitutability, is another extension of the strong
substitutability.

Definition 3
åB is less or equal to åA w.r.t. weak substitutability, denoted åB £SDåA, if and

only if there exist a set H Ê LB and a set I Ê LB such that :
 I Ç H = Æ and tI ° dH(åB) £RS åA.

 If åB £SD åA, then an object of class A can be substituted for an object of class B
and the environment will not be able to notice the difference since the new methods added in
class B are either considered unobservable, through the abstraction operator tI , or
considered unavailable, through the encapsulation operator dH.

The fourth and last preorder, the weak substitutability with renaming, is the weaker
preorder.

Definition 4
åB is less or equal to åA w.r.t. weak substitutability with renaming, denoted

åB £SDR åA, if and only if there exist a set H Ê LB, a set I Ê LB, a set R Ê LA and a set
S Ê LB such that: I Ç H = Æ, S Ç LA = Æ and tI ° dH(åB) £RS rR,S(åA).

If åB £SDR åA, then an object of class A can be substituted for an object of class B
and the environment must consider the renamed methods, while the new methods are either
considered unobservable, through the abstraction operator tI , or considered unavailable,
through the encapsulation operator dH.

The formal proofs that these definitions are sound, i.e.: that the relationships so
defined are indeed preorders, are in [Bal98].

Figure 3 shows the relations between preorders.

weak substitutability (£)SD

strong substitutability (£)SF

strong substitutability
with renaming (£)SFR

weak substitutability
with renaming (£)SDR

Figure 3

Now we can formalise the notion of type inheritance and implementation inheritance.

Definition 5
Let åA and åB be LEN systems associated to a class A and a class B.

Then B is subclass of A with respect to type inheritance if and only if åB £SDR åA.

The notion of implementation inheritance is based on the State Transformation
preorder (£ST) [PS91], which compares systems by observing local states and is such that
åA £ST åB if and only if the state space of åA is a substructure of the state space of åB
such that for any observable local state transformation in åA there is a corresponding
observable local state transformation in åB.

Definition 6
Let åA and åB be EN systems, associated to a class A and a class B, in which some

appropriate places are observable.
Then B is subclass of A with respect to implementation inheritance if and only if
åA £ST åB.

These definitions solve Example 1 and 2 above, as discussed in the following.

Example 3
 In figure 4, the class BUF represents a one place buffer, while the class VAR

represents a variable. The class V-BUF represents a one place buffer implemented through a
variable, which inherits from both classes BUF and VAR. The class V-BUF is subclass of
BUF with respect to type inheritance, as it preserves the requests that can be accepted from
clients: åV-BUF £SDR åBUF. It is subclass of VAR with respect to implementation
inheritance: åBUF £ST åV-BUF, as the VAR methods "assign" and "get_item" are used for
implementing the buffer's "put" and "get" methods. This captures the intuition that one cell
buffer can be implemented with variables.

CLASS VARCLASS BUF

deallocate

alive

allocate initialize

idle

dead

assign

get_itemleave

create

empty

dead

put

get

full

unborn unborn

CLASS V-BUF

leave

full dead

get

put

emptyalive

create put
unborn

leave

is-a uses
(implementation inheritance)(type inheritance)

Figure 4

Example 4
The classes of the printer hierarchy in figure 2 satisfy the type inheritance. That is,

the hierarchy is now captured observing methods instead of states, as it was in Example 2.

The open problem is now to remove Nierstrasz's constraint, i.e.: to admit that
sequences of requests, that an object can accept, constitute a non-regular language. In this
case, the object behaviour would be described by an high-level net, with guards associated
to transitions. (In CLOWN, e.g., the class semantics is described by a modular algebraic
high level net, which integrates the Superposed Automata nets with the OBJ language). The
problem is not easy since the notions of equivalence and preorder between nets are defined
in terms of EN or PT systems, i.e. low level systems, while there arenÕt equivalences
defined for high level models like OBJSA nets.

References

[AB97] W.M.P. van der Aalst, T. Basten, Life-Cycle Inheritance. A Petri-Net-Based
Approach, in P. Az�ma G. Balbo (eds.), Proc. 18th Int. Conf. on Applications and Theory
of Petri Nets, LNCS 1248, Springer Verlag, 1997.

[AD95,96] G. Agha, F. De Cindio, eds., Proc. of the Workshop on Object-Oriented
Programming and Models of Concurrency, 1995 and 1996.

[Ame89] P. America, Issues in the Design of a Parallel Object-Oriented Language, in
ÒFormal Aspects of ComputingÓ, vol. 1, pp. 336-411, 1989.

[Bal98] C. Balzarotti, Equivalenze all'osservazione per la caratterizzazione semantica
della ereditariet� in linguaggi a oggetti concorrenti, Tesi di laurea, Universit� degli Studi di
Milano, 1998.

[BCD97] E. Battiston, A. Chizzoni, F. De Cindio, CLOWN as a Testbed for Concurrent
Object-Oriented Concepts, G. Agha, F. De Cindio, G. Rozenberg (eds.), Advences in Petri
Nets, Springer Verlag (to appear).

[BRR87] W. Brauer, W. Reisig, G. Rozenberg, Petri Nets. Central Models and their
Properties. Advances in Petri Nets 1986, part 1. Proceedings of an Advanced Course.
LNCS 254, Berlin, Springer Verlag, 1987.

[CHC90] W.R. Cook, W.L. Hill, P.S. Canning, Inheritance Is Not Subtyping, in Proc.
of the ACM Symp. on Principles of Programming Languages, pp. 125-135, 1990.

[Nie93] O. Nierstrasz, Regular Types for Active Objects, in ACM Sigplan Notices,
28(10), Proceedings of the 8th annual conference on Object-Oriented Programming
Systems, Languages and Applications, OOPSLAÕ93, Washington DC, pp. 1-15, 1993.

[NP92] O. Nierstrasz, M. Papathomas, eds., Object based Concurrency and Reuse,
Workshop W6, in Proc. 6th European Conf. on Object-Oriented Programming, Springer
Verlag, 1992.

[PRS92] L. Pomello, G. Rosenberg, C. Simone, A Survey of Equivalence Notions for
Net Based Systems, in G. Rosenberg (ed.), ÒAdvanced in Petri NetsÓ, LNCS 609,
Springer-Verlag, pp. 410-472, 1992.

[PS91] L. Pomello, C. Simone, A State Transformation Preorder over a class of EN
Systems, in G. Rozenberg (ed.) APN'90, LNCS 483, pp.436-456, 1991.

[WZ88] P. Wegner, S. B. Zdonik, Inheritance as an Incremental Modification
Mechanism or What Like Is and IsnÕt Like, in S. Gjessing and K. Nygaard (eds.),
Proc.ECOOP Õ88, LNCS 322, Springer Verlag, pp.55-77, 1988.

--
This research has been supported by MURST.

Towards an Algebra of Dynamic Object Types

Ant�onio Ravara � Pedro Resende � Vasco T. Vasconcelos y

Abstract

We propose an algebra of object types that characterises the semantics of concurrent

objects in a process calculus setting where the communication is asynchronous. The types

are non-uniform, and provide an internal (and synchronous) view of the objects that inhabit

them. These ideas, along with the algebraic laws, are based on a notion of bisimulation that

is unlike other notions in the literature.

1 Introduction

Non-uniform types for concurrent objects constitute the object of study of several authors [7, 2, 3,
6, 8]. The aim is to build type systems capable of ensuring more than the usual safety properties
(such as subject-reduction); for instance, the absence of some deadlocks. These types reect a
dependency of the interface of an object upon its internal state, conveying information about some
dynamic properties of objects.

In a process calculus setting such as TyCO [10], processes denote the behaviour of a commu-
nity of interacting objects, where each object has a location identi�ed by a name. Each process
determines an assignment of types to names reecting a discipline for communication. The usual
types-as-records paradigm [11] gives each name a static type that contains information about all
the methods of the object, regardless of whether they are enabled or not. Hereby we propose
an algebra of object types, where each type is essentially a collection of enabled methods, and it
is dynamic in the sense that the execution of a method can change this collection, i.e. the type.
Therefore, the type of an object can also be seen as a partial representation of its behaviour.

We assume that objects communicate via asynchronous message-passing; nevertheless, types,
as de�ned in this paper, essentially correspond to a notion of object behaviour as it would be
perceived by an internal observer located within an object (the object's private gnome). This
observer can see methods being invoked and it can detect whether the object is blocked, even
though its methods may be internally enabled. Hence, this notion of behaviour is synchronous, as
essentially the gnome can detect refusals of methods. The action of unblocking an object, denoted
by �, cannot be observed by the gnome because it corresponds to an invocation of some method
in another object. Thus, this action is similar to Milner's � [4], because it is hidden, but it is
external, rather than an internal action.

In this paper we de�ne a structural operational semantics for the algebra of object types, both
for �nite and in�nite types. We also introduce two behavioural equivalences based on notions of
bisimulation that characterise the referred aspects of an object, and show that the two coincide,
at least in the case of �nite types.

�
Computer Science Section, Department of Mathematics, Instituto Superior T�ecnico. Lisbon, Portugal.

Email: famar,pmrg@math.ist.utl.pt
y
Department of Computer Science, Faculty of Sciences, University of Lisbon, Portugal. Email: vv@di.fc.ul.pt

1

2 Algebra of Finite Object Types

We start by presenting the algebra of �nite object types. Objects are records of methods, and we
can represent unavailable (blocked) objects.

Assume a countable set of method names l ;m;n, possibly subscripted or primed.

Definition 2.1. The set O of �nite types of objects is given by the following grammar.

� ::= 0 j
X

i2I

li(e�i):�i j
]

j2J

�j

where I and J are non-empty �nite indexing sets, with 8i;j2I i 6= j) li 6= lj , and, e� is a �nite
sequence of types.

We call a term such as l(e�):� a method type. It corresponds to a method with name l and
parameters of type e�, which behaves as prescribed by �. The type composition operator sum
(\
P
") puts various method types together to form a type of an object that o�ers the corresponding

methods. The term 0 is the empty type. The disjoint union
U

j2J
�j is the type of a blocked object

that will behave later according to one of the types �j , after being released.

Notation 2.2. 1. We abbreviate the type l(e�):0 to l(e�), and l() to l.

2. We assume the following abbreviations:

(a) l(e�):� is
P

i2f1g li(e�i):�i;
(b)]� is

U
i2f1g �i;

(c) l1(e�1):�1 + l2(e�2):�2 is
P

i2f1;2g li(e�i):�i;
(d) �1] �2 is

U
i2f1;2g �i.

We de�ne a structural operational semantics for the �nite types of objects via a labelled
transition relation.

Definition 2.3. The set of labels is given by the following grammar.

� ::= � j l(e�)

The label � denotes a silent transition that releasees a blocked object; a label l(e�) denotes a
method invocation.

Definition 2.4. The labelled transition relation is inductively de�ned by the following rules.

Act
P

i2I
li(e�i):�i

lj(e�j)
����! �j (j 2 I) Union

U
i2I

�i
�

�! �j (j 2 I)

The axiom Act gives the basic transition: the invocation of a method with name l and
parameters of type e� results in the type of the body of that method. The axiom Union captures
a side e�ect:

U
i2I

�i is blocked, and one of its behaviours can only become available after an
unblocking action occurs.

Notation 2.5. Let =) denote
�

�!�, and
�

=) denote
�

�!+; furthermore, we write � 6
�

�! when �
�

�!

does not hold.

2

We want two object types to be equivalent if they have equivalent method types and if after
each transition they continue to be equivalent, in a bisimulation style. Furthermore, from the point
of view of each object type, transitions of other object types can be regarded as hidden transitions,
which would suggest weak bisimulation as the right notion of equivalence for our object types,
with � playing the role of Milner's � . However, we want our types to distinguish an object that
immediately makes available a method from one that makes it available only after being unblocked
by another object. This is because, although � is supposed to be unobservable, we assume that
from the point of view of an internal observer (the object's gnome) it is detectable that the object
is blocked. Hence, we would expect]l to be di�erent from l , but]l and]] l to be equivalent;
in both, all the internal observer can see is that the object is blocked, and after being released it
can eventually execute the method l . We also want to distinguish l :]m from l :m, on the grounds
that for the latter a blocking after l cannot be observed. This also discards Milner's observational
congruence [4] and rooted bisimulation [1] as possible candidates for object equivalence. A notion
such as progressing bisimulation [5] is however too strong because it would distinguish]� from
]] �.

These considerations lead to the choice of a notion of equivalence that essentially strengthens
weak bisimulation by requiring that if � and � are bisimilar and � o�ers a particular method then
also � o�ers that method.

Definition 2.6. Bisimilarity on object types.

1. A symmetric binary relation R � O �O is an object bisimulation if whenever �R� then

(a) �
l(e�)
��! �

0 implies 9�0; e�; (�
l(e�)
��! =) �

0 and �
0R�

0 and e�Re�)1;
(b) �

�

�! �
0 implies 9�0 (� =) �

0 and �
0R�

0);

2. Two types � and � are object-bisimilar, or simply bisimilar, and we write � �o �, if there is
an object bisimulation R such that �R�.

The usual properties of bisimilarities hold, namely �o is an equivalence relation, and � �o �

holds if and only if

1. �
l(e�)
��! �

0 implies 9�0; e�; (�
l(e�)
��! =) �

0 and �
0 �o �

0 and e� �o
e�);

2. �
�

�! �
0 implies 9�0 (� =) �

0 and �
0 �o �

0);

We can strengthen this notion of equivalence even more by dropping another double arrow, as
follows.

Definition 2.7. Strict bisimilarity on object types.

1. A symmetric binary relation R � O�O is a strict object bisimulation if whenever �R� then

(a) �
l(e�)
��! �

0 implies 9�0; e� (�
l(e�)
��! �

0 and �
0R�

0 and e�Re�);
(b) �

�

�! �
0 implies 9�0 (� =) �

0 and �
0R�

0);

2. Two types � and � are strictly bisimilar, and we write � �s �, if there is a strict object
bisimulation R such that �R�.

Again, �s is an equivalence relation and � �s � holds if and only if conditions 1(a) and 1(b)
of the above de�nition hold with R replaced by �s. Although for an arbitrary labelled transition
system the two bisimilarity relations do not coincide, on our particular system they do, as the
following result shows. This provides a sense in which our de�nition of object type equivalence is
robust.

1
Let (�1 � � ��k)R(�1 � � ��k)

def
= �1R�1 ^ � � � ^ �kR�k.

3

Theorem 2.8. Let �; � 2 O. Then � �o � if and only if � �s �.

Proof. The right to left implication is immediate. For the other implication we �rst remark that
our labelled transition system satis�es the following conditions:

1. if �
l(e�1)
���! �1 and �

l(e�2)
���! �2 then �1 = �2 (label determinism);

2. no � can have both an � and an l transition, i.e., for all � either � 6
�

�! or � 6
l(e�)
��!.

Let � �o �. We will show that

1. �
l(e�)
��! �

0 implies 9�0; e� (�
l(e�)
��! �

0 and �
0 �o �

0 and e� �o
e�),

2. �
�

�! �
0 implies 9�0 (� =) �

0 and �
0 �o �

0);

that is, we will prove that �o is a strict object bisimulation, which will conclude the proof. The

second condition is trivial, so let �
l(e�)
��! �

0. There exist e�; �0; �00 such that �
l(e�)
��! �

0 =) �
00, with

e� �o
e� and �

0 �o �
00. The condition �

l(e�)
��! �

0 in turn implies, together with label determinism,
that �

0 =) �
00 with �

00 �o �
0, for some �

00. All we have to do now is prove that �
0 �o �

0. If
�
0 = �

00 or �0 = �
00 this is immediate. Otherwise we have the following situation:

�
0

�

��

�o �
00

�
00 �o �

0

�

KS

In this case all the transitions from �
0 must be labelled with �; let then �

0 �

�! �
000; it follows that

�
00 =) �

000 for some �
000 such that �

000 �o �
000, hence also �

0 =) �
000. Similarly, �0 can only do

�, and if �0
�

�! �
000 we can �nd �

000 such that �
0 =) �

000 and �
000 �o �

000, which concludes the
proof.

Therefore, in our type algebra the two equivalences coincide; henceforth we refer to both �o and
�s as object equivalence, and write �o.

The proof of the theorem relies on the fact that our transition system is deterministic on labels,
and no state can have a transition labelled with l and another with �. If either of these conditions
is violated the theorem no longer holds, as the following examples show:

Example 2.9.

�

l ��
�

� ��
�

l ��
�

�o

6�s

�

l ��
l

��?
???

�

� ��

�

l��
�

l ��

�

�

�

l ��
�

� ��
�

l ��

�

XX

�

�o

6�s

�

l ��
�

� ��

l // �

�

�

XX

Naturally, the counterexamples above are not expressible in our language.

Proposition 2.10. Object equivalence is a congruence relation.

Proof. Straightforward, since the sum is guarded.

4

Proposition 2.11 (Algebraic laws). 1. The operators \+" and \]" are commutative; that
is, for any permutation � : I ! I we have

P
i2I

li(e�i):�i �o

P
i2I

l�(i)(e��(i)):��(i), and
]i2I�i �o]i2I��(i);

2. the operator \]" enjoys a weak form of associativity,](]i2I�i) �o]i2I�i;

3. if �1] � � �] �n
�

�!+
� then �] �1] � � �] �n �o �1] � � �] �n.

Proof. The respective bisimulations are straightforward.

Notice that law 3 is not really algebraic, but rather it gives us an in�nity of laws that express a
form of idempotence. For instance, we have

�1] (�1] � � �] �n) �o �1] � � �] �n

�1] ((�1] � � �] �n)] �1] � � �] �m) �o (�1] � � �] �n)] �1] � � �] �m

...

A more thorough discussion of the algebraic laws will appear in the full version of this report.

Remark 2.12. One can easily recognise that what corresponds to the law �:�:� = �:� of process
algebra, namely]]� �o]�, holds in this setting, since it is an instance of the weak associativity
law presented above. Notice however that other laws like �:� = � and a:�:� = a:� do not hold.
Also,] is not associative; e.g., l](m]n) 6�o l]m]n, which means that although � is unobservable,
sometimes it can be indirectly counted.

3 The Algebra of Object Types

Now we briey discuss how the algebra of object types can be extended to deal with multiple
objects located at the same name (with a parallel composition operator) and in�nite types (with
recursion).

Definition 3.1. Assume a countable set of variables, denoted by t, disjoint from the set of labels.
The set O of types of objects is de�ned by the following grammar.

� ::= 0 j
X

i2I

li(e�i):�i j
]

j2J

�j j � k � j t j �t:�

where I and J are non-empty �nite index sets, with 8i;j2I i 6= j) li 6= lj , and e� is a �nite
sequence of types.

The parallel composition (\k") of types denotes the existence of several objects located at
the same name in parallel (interpreted as di�erent copies of the same object, possibly several in
di�erent states).

Definition 3.2. The labelled transition relation is de�ned by the rules of De�nition 2.4 together
with the following rules.

Rpar �
�

�! �
0

� k �
�

�! �
0
k �

Lpar
�

�

�! �
0

� k �
�

�! � k �
0

Rec
�[�t:�=t]

�

�! �
0

�t:�
�

�! �
0

This transition system does not satisfy the two conditions that were used in proving the
equality of the two notions of bisimilarity in the previous section, as the types lkl and lk] l show.
However, the counterexamples of Example 2.9 are still not expressible in our language; we are
currently checking whether the two bisimilarities coincide in the presence of parallel composition
and recursion. Apart from this, it is simple to verify that both �o and �s are congruences, and
that standard algebraic laws hold. For instance, hO=�fo;sg; k;0i is a commutative monoid, and
�t:� �fo;sg �[�t:�=t].

5

4 Concluding remarks

We propose an algebraic treatment of non-uniform types for concurrent objects, with an opera-
tional semantics and a behavioural equivalence. A type characterises the semantics of an object
in a concurrent setting with asynchronous message passing. It is an internal view of the object
behaviour. Operationally, a type is a state transition system, where the basic transition is an
object method execution. A silent (hidden) transition corresponds to the execution of a method
of another object, and is not directly observable.

Further work includes the study of in�nite processes and the search for a complete axiomatiza-
tion of the algebra of object types. So far, candidate axiomatic systems tend to be cumbersome;
we view this essentially as a consequence of the lack of associativity of]. We also expect to apply
the ideas described in this paper to the TyCO type system proposed in [9], and to relate the type
algebra to a process calculus, for instance relating type equivalence to a process equivalence.

Acknowledgements

This work is partially supported by FCT, as well as by PRAXIS XXI Projects 2/2.1/MAT/262/94
SitCalc, 2/2.1/MAT/46/94 Escola, PCEX/P/MAT/46/96 ACL plus 2/2.1/TIT/1658/95 Log-
Comp, and ESPRIT IV Working Groups 22704 ASPIRE and 23531 FIREworks.

References

[1] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. On the consistency of Koomen's fair abstraction

rule. Theoretical Computer Science, 51:129{176, 1987.
[2] G. Boudol. Typing the use of resources in a concurrent calculus. In Asian Computing Science

Conference, volume LNCS 1345, pages 239{253. Springer-Verlag, 1997.
[3] J.-L. Cola�co, M. Pantel, and P. Sall�e. A set constraint-based analyses of actors. In 2nd IFIP

conference on Formal Methods for Open Object-based Distributed Systems, 1997.
[4] R. Milner. Communication and Concurrency. C. A. R. Hoare Series Editor { Prentice-Hall Int.,

1989.
[5] U. Montanari and V. Sassone. Dynamic congruence vs. progressing bisimulation for CCS. Fundamenta

Informaticae, 16 (2):171{199, 1992.
[6] E. Najm and A. Nimour. A calculus of object bindings. In 2nd IFIP conference on Formal Methods

for Open Object-based Distributed Systems, 1997.
[7] O. Nierstrasz. Regular types for active objects. In O. Nierstrasz and D. Tsichritzis, editors, Object-

Oriented Software Composition, pages 99{121. Prentice Hall, 1995.
[8] A. Ravara and V. Vasconcelos. Behavioural types for a calculus of concurrent objects. In 3rd

International Euro-Par Conference, volume LNCS 1300, pages 554{561. Springer-Verlag, 1997.
[9] A. Ravara and V. Vasconcelos. A type algebra for concurrent objects. Research report, Department

of Mathematics, Instituto Superior T�ecnico, Av. Rovisco Pais 1096 Lisboa, Portugal, 1998.
[10] V. Vasconcelos. A Process-Calculus Approach to Typed Concurrent Objects. PhD thesis, Departament

of Computer Science, Keio University, Japan, 1994.

[11] V. Vasconcelos and M. Tokoro. A typing system for a calculus of objects. In 1st International Sym-

posium on Object Technologies for Advanced Software, volume LNCS 742, pages 460{474. Springer-

Verlag, 1993.

6

A Concurrent Object Calculus:
Summary of the Operational Semantics.

Extended Abstract

Andrew D. Gordon
Microsoft Research

Paul D. Hankin
University of Cambridge

A great deal of software is coded in terms of concurrent processes and objects.
The purpose of our work is to develop a new formalism for expressing, typing, and
reasoning about computations based on concurrent processes and objects.

Our concurrent object calculusconcς consists of Abadi and Cardelli’s im-
perative object calculusimpς extended with primitives for parallel composition.
Our work extends the analysis by Abadi and Cardelli of object-oriented features to
concurrent languages. At the heart of their work is a series of type systems able to
express a great variety of object-oriented idioms. Givenconcς, we may smoothly
and soundly extend these type systems to accommodate concurrency.

There are by now many formalisms capable of encoding objects and concur-
rency. Our calculus supports Abadi and Cardelli’s type systems, includes sequen-
tial composition of expressions. We describe the semantics ofconcς directly with-
out introducing auxiliary notions of stores, configurations or labelled transitions by
means of a reduction relation and a structural congruence relation in the style of
Milner’s reduction semantics for the�-calculus.

This is an extended abstract of a full paper, available from the authors. The full
paper includes examples, an extension of the calculus to include synchronisation,
a collection of type systems, an alternative semantics for the calculus in terms of
configurations as well as full definitions and proofs.

Concurrent Objects

We extend the imperative object calculus by adding names to objects, and adding
parallel composition and name scoping operators from the�-calculus.

Syntax We assume there are disjoint infinite sets ofnames, variables, andlabels.
We letp, q, andr range over names. We letx, y, andz range over variables. We

1

let ` range over labels. We define the sets ofresults, denotations, andtermsby the
grammars:

Syntax of theconcς-calculus

u; v ::= results
x j p

d ::= denotations
[`i = ς(xi)bi

i21::n]

a; b; c ::= terms
u j p 7! d j u:` j u:`(ς(x)b
clone(u) j let x=a in b j a � b j (�p)a

Semantics We may interpret a term of our object calculus either as aprocessor
as anexpression. A process is simply a concurrent computation. An expression is
a concurrent computation that is expected to return a result. In fact, an expression
may be regarded as a process, since we may always ignore any result that it returns.

A resultu is an expression that immediately returns itself.
A denominationp 7! [`i = ς(xi)bi

i21::n] is a process that confers the namep

on the object[`i = ς(xi)bi
i21::n]. We say that the object[`i = ς(xi)bi

i21::n] is the
denotation of the namep. Intuitively, the process represents an object stored at a
memory location and the namep represents the address of the object.

A method selectp:` is an expression that invokes the method labelled` of the
object denoted byp. In the presence of a denominationp 7! [`i = ς(xi)bi

i21::n],
where` = `j for somej 2 1::n, the effect ofp:` is to run the expressionbjffxj

pgg, that is, to run the bodybj of the method labelled̀, with the variablexj bound
to the name of the object itself.

A method updatep:` (ς(x)b is an expression that updates the method la-
belled` of the object denoted byp. In the presence of a denominationp 7! [`i =

ς(xi)bi
i21::n], where` = `j for somej 2 1::n, the effect ofp:` (ς(x)b is to

update the denomination to bep 7! [`j = ς(x)b; `i = ς(xi)bi
i2(1::n)�fjg], and to

returnp as its result.
A cloneclone(p) is an expression that makes a shallow copy of the object de-

noted byp. In the presence of a denominationp 7! [`i = ς(xi)bi
i21::n], the effect of

clone(p) is to generate a fresh nameq with denominationq 7! [`i = ς(xi)bi
i21::n]

and to returnq as its result. After a clone, the namesp andq denote two copies of
the same denotation[`i = ς(xi)bi

i21::n]; updates to one will not affect the other.
A let let x=a in b is an expression that first runs the expressiona, and if it

returns a result, calls itx, and then runs the expressionb.

2

A parallel compositiona � b is either an expression or a process, depending on
whetherb is an expression or a process. Ina � b the termsa andb are running in
parallel. If b is an expression thena � b is an expression, whose result, if any, is
the result returned byb. Any result returned bya is ignored.

A restriction(�p)a is either an expression or a process, depending on whether
a is an expression or a process. A restriction(�p)a generates a fresh namep whose
scope isa.

Structural congruencea � b is the least congruence on terms to satisfy:

(a � b) � c � a � (b � c)

(a � b) � c � (b � a) � c

(�p)(�q)a � (�q)(�p)a

(�p)(a � b) � a � (�p)b if p =2 fn(a)

(�p)(a � b) � ((�p)a) � b if p =2 fn(b)

let x=(let y=a in b) in c � let y=a in (let x=b in c) if y =2 fv(c)

(�p)let x=a in b � let x=(�p)a in b if p =2 fn(b)

a � let x=b in c � let x=(a � b) in c

Reductiona! b is the least relation on terms to satisfy:

For the first three rules, letd = [`i = ς(xi)bi
i21::n].

(p 7! d) � p:`j ! (p 7! d) � bjffxj pgg if j 2 1::n

(p 7! d) � (p:`j (ς(x)b)! (p 7! d0) � p if j 2 1::n, d0 = [`j = ς(x)b;
`i = ς(xi)bi

i2(1::n)�fjg]

(p 7! d) � clone(p)! (p 7! d) � (�q)(q 7! d � q)if q =2 fn(d)

let x=p in b! bffx pgg

(�p)a! (�p)a0 if a! a0

a � b! a0 � b if a! a0

b � a! b � a0 if a! a0

let x=a in b! let x=a0 in b if a! a0

a! b if a � a0, a0 ! b0, b0 � b

In the full paper, we show that this chemical semantics is equivalent to a more
conventional structural operational semantics. Moreover, we identify a determin-
istic fragment that is closed under reduction and show that it includes Abadi and
Cardelli’s imperative object calculus.

3

Quiet and Bouncing Objects: Two Migration Abstractions
in a Simple Distributed Blue Calculus

Silvano Dal-Zilio?

INRIA Sophia-Antipolis

Abstract. In this paper, we study a model of migrating objects based on the blue calculus extended
with a very simple system of localities and we show how two migration behaviors can be defined,
namely those of bouncing and quiet objects. These “migration control abstractions” are defined sep-
arately from other aspects of the object definition and can be easily reused, thus providing more
flexibility in the definition of “migration constraints”.

1 Introduction

The purpose of this extended abstract is to study how the behavior of concurrent objects
with respect to migration, can be defined orthogonally from other aspects of the object defi-
nition, such as synchronization constraint for example. To give the reader an intuition: many
researches have been conducted on the problem of defining synchronization abstractions for
concurrent objects [10, 7], likewise, we are interested here in the definition of migration ab-
stractions that can be reused to implement distributed objects. To this end, we give two ex-
amples of objects that act, respectively, according to the well-known client/server and agent
paradigms.

We first present the calculus used to define objects, namely a version of the blue calcu-
lus [4] enriched with a simple model of localities so that we can deal with migration. In this
distributed blue-calculus (D�?), objects can be represented “as processes” [8]. In particular,
we study in Sect. 3, the canonical example of the mutable cell. Then we show, using a slight
modification in the process definition, how one can mimic two migration behaviors: the ob-
ject that always resides at the same location and the object that migrates to the location of its
clients.

2 The Calculus

The blue calculus (�?) is a direct extension of both the � and the � calculi. In this paper,
we consider a very simple distributed version of the original calculus introduced in [4] (see
Table 1) obtained by adding locations, located processes ([a :: P]) and a primitive for code
transfer (go a:P).

In D�?, terms are defined using three disjoint kinds of names: references: u; v; w � � � 2 R,
labels: k; l;m � � � 2 L and localities (or places) a; b; c � � � 2 P . The definition def D inP (where
D is a sequence of mutually recursive definitions u1 = P1; : : : ; un = Pn, with the ui’s pairwise
distinct) is a restricted an replicated version of the declaration hu (P i, that can be under-
stood as a resource, located at u, accessible only once. Indeed, the declaration hu ((�x)P i

? Email: Silvano.Dal_Zilio@sophia.inria.fr. Address: INRIA Sophia-Antipolis, BP 93, 2004 route des Lucioles.
F-06902 Sophia Antipolis cedex. Fax: (+33) 492:38:79:98

is the equivalent of the �-calculus input guard u(x):P . This construct is useful to model pro-
cesses with a mutable state.

An important restriction imposed over terms is that no declaration can be defined on an
abstracted reference (e.g., (�u)hu (P i is not a valid process). This restriction, equivalent in
� to the one that forbids reception on received names, ensures that no new declaration on a
given reference can be dynamically created.

Table 1 Syntax of the Blue Calculus with Simple Location System: D�?

x ::= u
�� a values

P ::= O

�� (P j P)
�� (�u)P �� go a:P

�� processes
u
�� (�x)P �� (P x)

�� agents
hu (P i

�� def u1 = P1; : : : ; un = Pn inP
�� declarations

[li = Pi
1�i�n]

�� (P �l) records

S ::= [a :: P]
�� (S j S) �� (�u)S locations

The model chosen to deal with distribution is very simple. A site is a named box, [a ::

P], containing a running threads P . For the sake of simplicity, we consider a flat system of
locations (that is located processes are not nested) as in [9, 2]. We consider also the operation:
go a:P , that spawns a thread P in the location a and we denote u@a the process go a:u

that sends a message at location a. The reduction semantics of D�? is given in a chemical
style [3] and uses a structural equivalence (�). The definition of the reduction relation (!)
uses the standard notion of evaluation context (E []), i.e. contexts such that the hole does not
occur under a guard1. The definition includes three general rules:

Q � P P ! P 0

Q ! P 0

P ! P 0

E [P] ! E [P 0]

P ! P 0

[a :: P] ! [a :: P 0]

We refer the reader to [4, 8] for a full presentation of the reduction semantics for the calcu-
lus without localities. Axioms for structural equivalences, see Table 2, are the usual axioms
for the �-calculus (including scope extrusion) extended with rules to manage application.
We have omitted the rules for record selection, (P �l), that acts like application and we refer
the reader to [5] for details. We also add two new axioms in the distributed calculus to allow
spawning of restricted names over locations: ({) to distribute references restricted by a (�u)P

statement, and (|) to distribute definition over parallel composition. Note that the equiva-
lent of relation (|) in the �-calculus, is obtained by using a behavioral equivalence. This is
the the well-known replication theorem of [11, 12] in the case of channels with output-only
capabilities. The reduction relation embeds different mechanisms. “Small” � reduction (r1),

1 E [] ::= [:]
�
� (E [] x)

�
� (E [] j P)

�
� (P j E [])

�
� (�u)(E [])

�
� def D inE []

�
� (E [] �l)

Table 2 Structural Equivalence

def D in (def D0 inP) � def D;D0 inP

(def D inP) x � def D in (P x)

(P j Q) x � (P x) j (Q x)

(hv (P i x) � hu (P i

(go a:P) x � go a:(P x)

def D in (go a:P) � go a:(def D inP)

({) [a :: (�u)P] � (�u)([a :: P])

(|) def D in (P j Q) � (def D inP j def D inQ)

definition folding (r2), resource fetching (r3) and record selection (r4):

(r1) (�x)P y ! Pfy=xg

(r2)

�
def D;u = R;D0

inE [u x1 : : : xn]

�
!

�
def D;u = R;D0

inE [R x1 : : : xn]

�
(u 62 bn(E))

(r3) hu (P i j u x1 : : : xn ! P x1 : : : xn

(r4) [l = P ; Q] �l ! P and [l = P ; Q] �k ! Q �k (k 6= l)

We also add the reduction rule for the go statement (note that process P cannot execute
under the guard go a:P)

(r5) [b :: (go a:P j Q)] j [a :: R] ! [b :: Q] j [a :: (P j R)]

Example 1. A typical reduction sequence in D�? is the one such that a message carrying a
private reference is send remotely.�

[b :: def u = R in (v@a u j P)]

j [a :: hv (Qi]

�
�

�
[b :: go a:(def u = R in v u) j def u = R inP]

j [a :: hv (Qi]

�

!�

�
[b :: def u = R inP]

j [a :: def u = R in (Q u)]

�
(if u 62 fn(Q))

To conclude, let us just state that, while the blue calculus is a name passing calculus (that
is a process can only be applied to a name and not to another process), the “high-order”
�-calculus application can be recovered using the definition:

(P Q) =def def u = Q in (P u) (u 62 fn(P) [fn(Q))

Moreover this definition of application is coherent with our model of distribution since we
can prove that (go a:P) Q � go a:(P Q).

3 Modeling Objects in the Blue Calculus

In this extended abstract, we will concentrate on a single example of object, namely the
“mutable cell”. Although it is only an example, it is a representative one, since in [8] we

show how to derived a “complete” calculus of concurrent objects using cells and extensible
records. Thus, the result given for the cell example can be derived for more general objects.
The constructs of this object calculus, together with its derived operational rules, are given
for information in Sect. 3 (consideration on types are omitted). Let Ro(b) denotes the record:

Ro(b) =def

�
get = (�x)(o b j x b); put = (�x)(o x)

�
The cell process with “name “ O is defined by:

CELL(O) =def def o = (�b)hO (Ro(b)i in o

and the application: (CELL(O) a0), initializes the cell to the value a0. It is easy to see that2

(CELL a0 j O �get r) and (CELL a0 j O �put a) evaluate in a deterministic way:

(CELL a0) j (O �get r) ! def o = (�b)hO (Ro(b)i in (hO (Ro(a0)i j O �get r)

! def o = (�b)hO (Ro(b)i in (Ro(a0) �get r)

!� def o = (�b)hO (Ro(b)i in (o a0 j r a0) � (CELL a0) j r a0

(CELL a0) j (O �put a) !� def o = (�b)hO (Ro(b)i in (o a) � (CELL a)

It is interesting to notice the linear use of the reference O in (CELL(O) a). If the cell is
invoked, we consume the unique declaration hO (Ro(a)i. Thus, a unique message (o a0),
acting like a lock, is freed in the evaluation process, which, in turn, frees a single declaration
hO (Ro(a

0)i. Thus, we have the invariant that there is exactly one resource available at
address O, and that this resource keeps the last value passed in a (O �put) call.

4 A Concurrent Calculus of Objects

More elaborate objects than the (canonical) example of the mutable cell can be defined. In
this section, we introduce a calculus of concurrent objects by specifying a set of operators and
their operational semantics, and we define these operators (and their associated reduction
rules) with an encoding in �?. In the specification of this calculus (Table 3), we distinguish
a subset O of references (which we call objects names, O;A;B; � � � 2 O) and we use L to
denote an “object body”: L = l1 = &(x1)P1; : : : ; ln = &(xn)Pn. An example of object is the one
that produces an infinite copy of itself. Let L be the body: l = &(x)(clone(x) j x(\ l), then:

objO = fLg in O(\ l !
�
�?
&

objO = fLg in (objA = fLg in (A j O(\ l)) !
�
�?
&

: : :

another example, using method overriding, is:

objO = fLg in (O l = &(x)x)(\ l !�?
&
objO = fl = &(x)xg in O(\ l

!�?
&
objO = fl = &(x)xg in O

4.1 Interpretation of the Derived Object Constructs

Processes modeling objects are inspired from the encoding of the mutable cell. In the def-
inition given in Table 4, an object (objO = fli = &(xi)Pi

1�i�n
gin P), is a cell with an ad-

ditional field clone to allow object cloning. In this definition, a method &(x)P is an abstrac-
tion (�x)P . This function, also called premethod, has one argument: the name of the cur-
rent object (also called the self-parameter). The cell “memorizes” a record of premethods:

2 to simplify the examples, we use CELL to denote CELL(O)

Table 3 Specification of Operators and Reduction Rules for Objects in �?

&(x)P method with self parameter x and body P

objO =
n
li = &(xi)Pi

1�i�n
o
in P object with n methods l1; : : : ; ln

P(\ l invocation of method l

O l = &(x)Q update of method l with body &(x)P

clone(O) cloning of object O

Let L =def l1 = &(x1)P1; : : : ; ln = &(xn)Pn

objO = fLgin E [O(\ lj] !�?
&

objO = fLgin E [PjfO=xjg]

objO = fLgin E [O lj = &(x)P] !�?
&
objO = flj = &(x)P; li = &(xi)Pi

i6=j
gin E [O]

objO = fLg in E [clone(O)] !�?
&
objO = fLg in (objA = fLg in E [A]) (A 62 bn(E))

[li = (�xi)Pi
1�i�n], as in the classical recursive records semantics [6]. Note that we restrict

the scope of an object name to the definition of the object it refers to. Thus we have the in-
variant that there is a unique declaration for each object names. Moreover, method update
returns “a reference” to the modified object. This is almost the behaviour of (sequential)
objects in the & calculus of Abadi and Cardelli [1].

So(b) =def

2
4get = (�x)(o b j x b O);

modify = (�x)(x o b j O);

clone = (o b j xclone b)

3
5

OBJ(O) =def def o = (�b)hO (So(b)i in o

Table 4 Definition of the Derived Operators for Objects

P(\ l =def (P �get (�x)(x �l)) clone(O) =def (O �clone)

O l = &(x)Q =def (O �modify (�ob)(o [l = (�x)Q ; b]))

objO =
n
li = &(xi)Pi

1�i�n
o
in P =def

�
def xclone = (�b)(�A)(OBJ(A) b j A)

in (�O)((OBJ(O) [li = (�xi)Pi
1�i�n]) j P)

Another remark is that we use only field selection and application in the definition of
cloning, method invocation and method update. Thus the definition of structural equiva-
lence allows us, for example, to derive the following laws, showing that these (derived)
operators acts like application:

(def D inP j Q)(\ l � def D in (P(\ l j Q(\ l) (hu (P i(\ l) � hu (P i

The next result states that there is an operational correspondence between !�?
&

(defined in
Table 3) and ! . These properties are proved using a simple induction.

Theorem 1 (Operational Equivalence). The specification of the object reduction rules is com-
plete with respect to the encoding of objects in �?: P !�?

&
P 0) P !� P 0. It is also sound: P ! Q

implies that Q !� Q0 with P !�?
&
Q0.

5 Quiet Versus Bouncing Cells

In our model of distribution, synchronization (rule (r3)) does not extend over location bound-
aries. Thus communication is local, and, to interact with a remote declaration at location a,
one has to first spawn a message at a. For example, the process ([b :: u] j [a :: hu (P i])

is inert while ([b :: u@a] j [a :: hu (P i]) reduces to ([b :: O] j [a :: P]). Another remark
is that the result of the communication is always executed at the location of the declaration.
This is reminiscent of the client-server paradigm of computation such that clients “controls”
the computation, that takes place at the server location, by sending remote messages.

The “migration behavior” of the mutable cell object and of the declaration hO (Ro(b)i

are equal. For example, to read the content of the mutable cell from a remote location, one
has to (1) move to the location of the cell, then (2) invoke the method read and finally (3)
fetch the result back. After completion, the cell is still at the same location.

[a :: (CELL a0) j P] j

[b :: (O@a �get r@b) j Q]

!
!� [a :: (CELL a0) j (r@b a0) j P] j [b :: Q]

!� [a :: (CELL a0) j P] j [b :: (r a0) j Q]

Likewise, objects created using the cell also share the same “migration behavior”, i.e. they
are quiet objects since they never leave the location of their creation.

In this section, we define a new migration abstraction, namely the agent behavior, based
on a new declaration statement: hu (P i

agt
(see Table 6), that can be derived in D�?.

Roughly speaking, the result of a remote communication involving hu (P i
agt

takes place
at the client location instead of the declaration one.

Table 5 Two Distributed Cells

CELLc=s(O) =def def o = (�b)hO (Ro(b)ic=s in o

CELLagt(O) =def def o = (�b)hO (Ro(b)iagt in o

The operational semantics of an agent declaration strongly depends on the distribution
of the processes. Indeed in �? (and in �) there are no explicit locations and (therefore) where
a communication comes from is not observable. But this information does count in a dis-
tributed setting. If we redefine the cell object using hO ([: : :]i

agt
instead of hO ([: : :]i,

denoting it CELLagt, we obtain a mutable cell bouncing from locations to locations according
to communications with the client.

[a :: (CELLagt a0) j P] j

[b :: (O@a �get r) j Q]

!
!

�

[a :: P] j

[b :: (CELLagt a0) j (r a0) j Q]

!

to sketch the encoding of this new construct, let us just say that remote messages [b :: u@a]

are translated to [b :: go a:(u b)] (that is the same message with, as extra argument, the
“departure location”), and that the declaration hu (P i

agt
and hu (P i

c=s are defined by:

hu (P i
agt

=def hu ((�a)(go a:P)i

hu (P i
c=s =def hu ((�a)P i (with a 62 fn(P))

Other object migration abstractions can be uniformly defined by first defining a new
kind of declaration. For example, an applet object can be interpreted as an object that does
not change location but that spawn a copy (or clone) of itself at the location of its client.
We can give this behavior to an object using, for its definition, a new declaration construct,
hu (P i

applet
(see Table 6), that can also be derived in D�?. For example hu (P i

applet
can

be translated to:

hu (P i
applet

=def def x = hu ((�a)(go a:P j x)i inx

Table 6 Client/Server, Agent and Applet Communications

0
@ [a :: hu (P i

c=s j R] j

[b :: (def D inu@a v1 : : : vn) j Q]

1
A !�

[a :: (def D inP v1 : : : vn) j R] j

[b :: Q]

!

[a :: hu (P i

agt
j R] j

[b :: (def D inu@a v1 : : : vn)) j Q]

!
!�

[a :: R] j

[b :: (def D inP v1 : : : vn) j Q]

!

[a :: hu (P i

applet
j R] j

[b :: (def D inu@a v1 : : : vn)) j Q]

!
!�

[a :: hu (P i

applet
j R] j

[b :: (def D inP v1 : : : vn) j Q]

!

6 Conclusions and Future Work

A challenging problem encountered in the design of programming languages with concur-
rent objects, is to be able to express the synchronization control of objects in a compositional
and reusable way. Now that “network-oriented” languages have added functionalities to re-
motely download code and to migrate objects, a similar problem arises in the description of

the migration behavior.

In the present paper, we have presented how two abstractions for the definition of the
migration behavior can be applied to define mutable cell objects that react differently when
invoked by a remote client. Using a translation of a calculus of concurrent objects in �?

defined in [8], we claim that those abstractions can be uniformly applied to every object
creation. Moreover, These abstractions can be transposed to other process calculi, and in
particular to distributed versions of the �-calculus [14, 9, 2], and to other interpretation of
objects [13].

The principal advantage of defining “standardized behaviors of migration”, is that we
can define migrating objects from objects designed in an non-distributed language without
adding any explicit thread of control, thus providing a flexible and simple way to auto-
matically add migration features to objects. But further works must be done to define more
elaborated behaviors than those presented in this abstract. For example it will be interesting
to give an accurate model of the mobile agents behavior as defined in TELESCRIPT [15].

References

1. Martín Abadi and Luca Cardelli. A theory of primitive objects: Untyped and first-order systems. Information
and Computation, 2(125):78–102, March 1996.

2. Roberto Amadio. An asynchronous model of locality, failure and process mobility. In COORDINATION 97,
volume 1282 of Lecture Notes in Computer Science, 1997.

3. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer Science, 96:217–248, 1992.
4. Gérard Boudol. The �-calculus in direct style. In Conference Record of POPL ’97: The 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 228–241, Paris, France, 15–17 January 1997.
5. Gérard Boudol. Typing the use of resources in a concurrent calculus. In ASIAN’97, the Asian Computing

Science Conference, Lecture Notes in Computer Science, Kathmandu, December 1997.
6. L. Cardelli and J. C. Mitchell. Operations on records. Math. Structures in Computer Science, 1(1):3–48, 1991.
7. Denis Caromel. Programming abstractions for concurrent programming. In Technology of Object-Oriented

Languages and Systems (TOOLS Pacific’90), pages 245–253, Sydney, November 1990.
8. Silvano Dal-Zilio. Concurrent objects in the blue calculus. (draft)

http://www.inria.fr/meije/personnel/Silvano.Dal_Zilio/ .
9. Matthew Hennessy and James Riely. Ressource access control in systems of mobile agents. Technical Report

2/98, University of Sussex, February 1998.
10. Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly in object-oriented concurrent

programming languages. In Gul Agha, Peter Wegner, and Akinori Yonezawa, editors, Research Directions in
Concurrent Object-Oriented Programming, chapter 4, pages 107–150. The MIT Press, 1993.

11. Robin Milner. The polyadic �-calculus: a tutorial. Technical Report ECS-LFCS-91-180, Laboratory for Foun-
dations of Computer Science, University of Edinburgh, 1991.

12. Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Mathematical Structures
in Computer Science, 11, 1995.

13. Davide Sangiorgi. An interpretation of typed objects into typed �-calculus. Technical Report 3000, INRIA,
1996.

14. Peter Sewell. Global/local subtyping for a distributed pi-calculus. Technical Report 435, University of
Cambridge, 1997.

15. Jim White. Mobile agent white paper. Technical report, General Magic, 1996.

Surrogates in �jeblik:

Towards Migration in Obliq

Hans H�uttel, Josva Kleist, Uwe Nestmann, Davide Sangiorgi

BRICS�Aalborg University INRIA Sophia-Antipolis

June 15, 1998

Abstract

In Cardelli's lexically scoped, distributed, object-based programming language

Obliq, object migration was suggested as creating a (remote) copy of an objects'

state at the target site, followed by turning the (local) object itself into a surro-

gate, i.e. a pointer to the just created remote copy. This kind of migration is only

safe|migrated objects shall behave the same before and after migration|if it is pro-

tected and serialized. Protected objects can only be accessed by clients via selection,

and within a serialized object at most one method can be active at any time. Yet,

since Obliq does not have a formal semantics, there is no proof of this claim.

In this abstract, we consider the act of creating object surrogates as an abstraction

of the above-mentioned style of migration. We introduce the language �jeblik, a

simpli�ed distribution-free subset of Obliq, and give its formal semantics in terms of

an encoding into the �-calculus. This semantics shall provide the ground for proving

that surrogation is safe, thus suggesting that migration in Obliq is safe, accordingly.

1 Motivation

Our language �jeblik for studying surrogation, is an object-based language which is not

only inspired by Obliq [Car95], but rather represents its concurrent core. Obliq is a lexically

scoped, distributed, object-based programming language. Lexical scoping in distributed

settings makes program analysis easier since the binding of variables is only determined by

their location in the program text and not by the site at which execution takes place.

It can be advantageous to migrate an object from one site to another, which is also called

for in Obliq. Here, however, mutable values in general are never sent over the network;

instead, only network references are transmitted. Accordingly, migration of objects is

carried out in Obliq by creating a copy of the object at the target site and then modify the

original (local) object such that it forwards all future requests to the new (remote) object.

In �jeblik, we ignore all distributed aspects of migration|they are not essential for the

results of Obliq computations anyway|and concentrate on just the concurrent aspects:

surrogation of an object, say: a, can be described as creating a copy b of a and then turn a

itself into a `pointer' to b, i.e., which forwards all future request for methods of a to b.

�Basic Research in Computer Science, Centre of the Danish National Research Foundation.

1

2 Surrogation in �jeblik

In this section, we present �jeblik as an untyped language1, although we sometimes refer

to types when we think it helps us in explaining our design decisions or it eases the

understanding. �jeblik-expressions are given by the following grammar:

a; b; c; : : : ::= fP; S; r; [lj=mj]j2Jg object construction

j a:lh a1: : :an i method invocation

j a:l(m method update

j a:alias(b) object aliasing

j a:clone shallow copy

j a:surrogate object surrogation

j let x= a in b local de�nition

j s; x; y; z variables

j fork(a) thread creation

j join(a) thread destruction

m ::= &(s; ~x)b method

where method labels l and (run-time) object references r are taken from disjoint sets.

An object fP; S; r; [lj=mj]j2Jg consists of a �nite collection of named methods lj=mj,

more generally called �elds, for pairwise distinct labels lj; the P and S keywords are optional

and re�ne how an object reacts to external messages, while the aliasing reference r can be

used to forward most requests to another object, so a non-aliased object has just no entry.

Note that we introduce object references, actual run-time entities, explicitly in the syntax

of �jeblik only in order to clarify the semantics of aliasing; an actual user-level language

would not need any entry at all. In a method &(s; ~x)b the letter & is a binder for the self

variable s and argument variables ~x within the method body b.

Let a be a non-aliased object. Methods can only be activated, when also supplying

the required actual parameters: a:lh a1: : :an i with l denoting the method &(s; ~x)b results

in the body b with the enclosing object a bound to the self variable s, and the actual

parameters a1 : : : an of the invocation bound to the formal parameters ~x. The expression

a:l(m updates the content of the named �eld l in a with method m and evaluates to the

modi�ed object. On aliased objects, by constrast, invocations and updates are forwarded

to the aliasing target instead of operating on the aliasing source.

Every object in �jeblik comes equipped with three special methods for aliasing, cloning,

and surrogation, none of which can be overwritten by the update operation, and only one

of which is subject to aliasing. In contrast to Obliq, we do not allow aliasing of individual

�elds, but only aliasing of objects themselves2: a:alias(b) with a = fP; S; r; [lj=mj]j2Jg re-

sults in fP; S; [b]; [lj=mj]j2Jg, overriding the current alias r with the value [b] of b, assuming

1Obliq also is an untyped language, although types can be added in a rather straightforward manner.
2In Obliq, object aliasing (called redirection) is derived from �eld aliasing.

2

that b evaluates to an object reference with `type' matching that of a. Thus, as a special

case the aliasing method itself (like cloning) is not captured by aliasing3. Consequently,

the behavior of an �jeblik-object can only be changed directly via method update or else

indirectly by aliasing.

The operation a:clone creates an object with the same (named and optional) �elds as

the original object and initializes the �elds to the same values as in the original object.

The operation a:surrogate shall behave as let x= a:clone in a:alias(x); x. Here, as usual,

the expression let x= a in b �rst evaluates a, binding the result to x, and then evaluates b

within the scope of the new binding. Moreover, a; b abbreviates let x= a in b for x 62 fv(b).

Since surrogation is meant to be an abstraction of migration, the correct interpretation

of double-surrogation|a:surrogate; a:surrogate equivalent to a:surrogate:surrogate|requires

that surrogate methods are, in general, subject to aliasing, otherwise the migration of an

already migrated object would mistakenly migrate the surrogate.

To create a new concurrent thread we use the fork command. The expression fork(a)

returns a thread identi�er to denote a new thread evaluating a. To get the result of

a computation in fork'ed thread the join command is used. If a evaluates to a thread

identi�er, then join(a) either returns the value that the thread denoted by a has evaluated

to, blocks until the thread �nishes and then returning the resulting value, or blocks forever

if a join on the a thread has already been performed4.

Serialization and Protection based on Self-Iniction

The three basic kinds of operation on �jeblik-objects|invocation, update, and the special

operations|can be performed as either external operations on an object or through self

as internal operations. A self-inicted operation is an operation, that is performed on the

current self, i.e., the self of the last method invoked in the current thread that has not

completed; an operation is external if it is not self-inicted.

In concurrent object-based settings, the invariant that at most one thread at a time may

be active within an object is called serialization. The simplest way to ensure serialization

is to associate with an object a mutex that is locked when a tread enters the object and

released when the thread exits the object. However, this approach is too restrictive|it

is not possible for a method to call one of its siblings. Instead, self-serialization requires

that the mutex is only acquired for external operations. This allows a method to call its

siblings through self, but excludes mutual recursion, where a method in an object a calls

a method in another object b, which then tries to \call back" to activate a method in a.

With self-iniction, it is also easy to de�ne a sensible method for the protection of

objects against external modi�cations: for protected objects, updates and the special op-

erations are only allowed, if these operations are self-inicted. Both, protection and self-

serialization are used Obliq and also in �jeblik: we use the keyword S for self-serialized

and the keyword P for protected �jeblik-objects.

3Note that this is consistent with re-aliasing in Obliq.
4In Obliq, an exception will be raised.

3

PP

�

�

	
ProtectP

sl

##F
FF

FF
FF

FF
FF

F

OB

�

�

	
[[b1]]

se
//

�

�

	
Entry

pt

;;wwwwwwwwwwww
sl

//
�

�

	
Serial S

m
oo

si
//

�

�

	
MG

t1

=={{{{{{{{{{

tn
//

�

�

	
[[bn]]

...

Figure 1: Structure of �jeblik-objects

3 A formalization using the �-Calculus

We give the semantics of �jeblik as a translation into the local asynchronous �-calculus L�

of Merro and Sangiorgi [MS98], equipped with matching. This gives us the possibility of

using process-algebraic proof techniques to reason about surrogation.

Based on previous work (e.g. by Kleist and Sangiorgi on the imperative object calculus

IOC [KS98]), the main new idea of the translation is the distinction between two di�erent

self identi�ers: se to serve external requests, and si to serve internal requests. By this

distinction, the requirements of protection and serialization can be decided solely based

on the access to the self identi�ers. With O := [lj=&(s; ~x)bj]j2J , a (non-aliased) object is

translated into the composition of an object module OB and a pre-processing module PP:

[[fP; S;�;Og]]scp
def
= (�se; si)

�
phsei j PP

P;S
O

h se; si i j OBOh se; si i
�

where sc represents the current self of the execution. The OB-module is similar to the

encoding of imperative objects: it consists of processes representing the method bodies,

and an object manager process MG that deals with the di�erent kinds of requests. The

PP-module models the re�ned functionality for distinguishing and handling requests based

on an object's protection and serialization. The structure of the encoding and its code are

shown in Figures 1, 2, 3, 4, and 5. In the following paragraphs, we comment on the details.

Pre-processing The Entry serves as receptor for external requests; only method invoca-

tions are passed on to Serial, all other request are forwarded to Protect. Note that external

requests can be grabbed only after some signal has arrived on channel m. This guarantees

mutual exclusion (not by itself, but in cooperation with Serial, which is to release signals

on m) concerning the activities between the external and internal interfaces.

Protect has a very simple de�nition. Note that all incoming requests on channel pt

are necessarily external and, due to the behavior of Entry, they can only be requests for

updating or one of the special operations. If protection is turned on (P=T), all of theses

requests lead to a run-time error according to Obliq's informal semantics. Otherwise,

incoming requests are simply forwarded to the serialization module.

4

PP
P;S
O

h se; si i
def
= (�m; sl; pt)

�
mhi j EntryOh se; pt; sl;m i

j ProtectP
O
h pt; sl i

j Serial S
O
h sl;m; si i

�

EntryOh se; pt; sl;m i
def
= !m():se(x):case x of l inv (: : :) : slhxi

else : pthxi

ProtectP=T
O

h pt; sl i
def
= ! pt(x):wrong

ProtectP=F
O

h pt; sl i
def
= ! pt(x):slhxi

Serial S=F
O

h sl;m; si i

Serial S=T
O

h sl;m; si i

def
=

def
=

! sl(h (p; s; ~x)):
�
sihh hp; si; ~xii j mhi

�

! sl(h (p; s; ~x)):(�r)
�
sihh hr; si; ~xii j r(y):(phyi jmhi)

�

Figure 2: Encoding of �jeblik-objects: Pre-processing

Serial is not so complicated either. In Figure 2, we use enhanced pattern matching to

unify single- and double-selections on records, which helps us to emphasize the essential

idea: the label h may range over requests of the form lj inv, lj upd, as well as ali, cln, and

sur, each carrying as parameters at least a result channel r and a current-self identi�er s

(~x may be empty; Figure 4 shows the generation of such requests by objects' clients).

The main task of Serial|mutual exclusion|is performed by the rather simple and

standard technique of using a lock, i.e. a message on some local channel m which obeys

the invariant that at any time there is at most one message on it available in the system.

If serialization is turned on (S=T), we need to extract the return channel p on which the

�nal result of the invocation is expected at the invoker's side. Here, we create a fresh

return channel r, before we pass on the whole request|where the result channel p is

replaced with r|to the internal self. Thus, with respect to external requests, which need

to serialize, we have now obtained complete local control on the internal self, until some

result y of the current externally invoked method is coming back on r. Only then, we

are allowed to proceed by forwarding the result y to the intended result channel p and by

releasing a signal on the mutex channel m in order to let the next (external) request enter

the object's implementation. If serialization is turned o� (S=F), then the only obligations

are to forward requests to the internal self and, which is important, to immediately signal

back (on m) to the entry module that the next (external) request shall be allowed to enter.

Apart from mutually exclusive access to the internal self si, the serialization module

also serves the purpose of authorization: every external request (received on se) that will

be passed on to the object manager (on si), gets implanted the new identity si as its

self parameter|the former `current self' is discarded. By this mechanism, we will be

able to distinguish between authorized external requests, which went through the o�cial

entrance se, from invalid external ones that somehow (see below) might have gotten direct

access to the internal entrance si.

5

OBOh se; si i
def
= (�~t) (MGOh se; si; ~t i j

Q

j2J

! tj(r; s; ~x):[[bj]]
s
r)

MGOh se; si; ~t i
def
= si(x):case x of

� (�; s6=si; �) : MGOh se; si; ~t i j sehxi

lj inv (r; s=si; ~x) : MGOh se; si; ~t i j tjhr; si; ~xi

lj upd (r; s=si; t
0) : MGOh se; si; t1 : : : tj�1; t

0

; tj+1 : : : tn i j rhsei

ali (r; s=si; y) : MGA
O
h se; si; y i j rhsei

cln (r; s=si) : MGOh se; si; ~t i
�
� (�s0es

0

i)
�
rhs0ei j PP

P;S
O

h s0e; s
0

i i j MGOh s
0

e; s
0

i;
~t i

�

sur (r; s=si) : MGOh se; si; ~t i j [[let n= si:clone in si:alias(n);n]]sir

MGA
O
h se; si; sa i

def
= si(x):case x of

� (�; s6=si; �) : MGA
O
h se; si; sa i j sehxi

lj inv (r; s=si; ~x) : MGA
O
h se; si; sa i j sahxi

lj upd (r; s=si; t
0) : MGA

O
h se; si; sa i j sahxi

ali (r; s=si; y) : MGA
O
h se; si; y i j rhsei

cln (r; s=si) : MGA
O
h se; si; sa i

�
� (�s0es

0

i)
�
rhs0ei j PP

P;S
O

h s0e; s
0

i i j MGA
O
h s0e; s

0

i; sa i
�

sur (r; s=si) : MGA
O
h se; si; sa i j sahxi

Figure 3: Encoding of �jeblik-objects: Object manager

Managing The object manager, receiving on the internal self, is the core administra-

tor of an object's functionality, which is either invoked after successful pre-processing for

external requests or directly due to internal requests of the aforementioned forms. So,

object managers in particular need to deal correctly with self-iniction. To this end, we

use an abbreviation that combines the case-construct with a built-in �-calculus matching

operator for names. The crux for handling self-iniction resides in the matching for the

self parameter: if a request reaches the object on the internal self channel si carrying a

self parameter di�erent from si, then the request is regarded as originating from a di�erent

thread of control and, thus, is forwarded to the external self se in order to run through the

serialization and protection mechanisms. Note that this is necessary for the case `forked

extrusion' of the internal self si, which is explicitly allowed, but needs special treatment:

blocking if the extruder waits on the forked results involving invocation of si (cf. [Car95]).

Remember also that external requests that have successfully passed the pre-processing, are

explicitly authorized such that they are not mistakenly re-forwarded to the external self.

The basic purpose of object managers is to invoke the appropriate instances of method

bodies (case lj inv: activate the method body bj bound to lj along trigger name tj; Figure 3

6

[[a:ljh a1: : :an i]]
sc
p

def
= (�q) (�q1� � �qn)

�
[[a]]scq

�
� Q

i=1���n

[[vi]]
sc
qi

�
� q(y):q1(x1): � � � :qn(xn):

y lj inv hp; sc; x1: : :xni
�

[[a:lj(&(s; ~x)b]]scp
def
= (�q)

�
[[a]]scq

j q(y) : (�t) (! t(r; s; ~x):[[b]]sr
j y lj upd hp; sc; ti)

�

[[a:alias(b)]]scp
def
= (�qx; qy)

�
[[a]]scqy j [[b]]

sc
qx
j qy(y) : qx(x) : y ali hp; sc; xi

�

[[a:clone]]scp
def
= (�q)

�
[[a]]scq j q(y) : y cln hp; sci

�

[[a:surrogate]]scp
def
= (�q)

�
[[a]]scq j q(y) : y sur hp; sci

�

Figure 4: Encoding of �jeblik-clients

shows that method bodies are run in the context of the current self s and the result chan-

nel r), and to carefully administrate updating (case lj upd: install a new trigger name t
0)

and aliasing (case ali) such that respective future invocations will be dealt with correctly.

We distinguish between aliased (MGA) and non-aliased (MG) object managers: aliasing

is encoded by starting an aliased object manager instead of re-starting the non-aliased one.

The aliased manager makes explicit the forwarding of requests to the aliasing target sa in

all cases of invocation, updating, and surrogation, as required. Note that invalid requests

(those where s6=si) are still forwarded to the external self se.
5

Cloning results in the restart of the current object manager in parallel with a freshly

created copy that uses the same method bodies, i.e. the same access names ~t to them, so

only the MG/MGA-part of a new OB-module is installed with the new self parameters.

Surrogation is translated as we speci�ed earlier as a combined cloning and aliasing, so

we have embedded the setting for our main problem in the encoding of �jeblik.

Clients It is here that the encodings current-self parameter sc is actually used, when

clients pass it on together with their requests. In each case, the responsibility for returning

a result on channel p is forwarded to the respective object manager. Furthermore, each of

the following translations obeys the same idea: the involved expressions are evaluated at

private locations, their results are grabbed and then used to forward low-level request to

the corresponding object managers. We chose a parallel evaluation order for object and

parameters, but the results are grabbed corresponding to CBV-order (leftmost-innermost).

5This could be changed to forward the request x to the aliasing target sa instead of the external self se.

It would be correct as long as we assume that we never create aliases between objects with di�erent

protection/serialization settings; the required pre-processing is then carried out by the aliasing target.

This is always the case for surrogation; for other cases, it can be guaranteed by imposing it in a type

system, as we do in the forthcoming long version of the current document. Obliq leaves this rather open.

7

[[let x= a in b]]scp
def
= (�q)

�
[[a]]scq j q(x) : [[b]]scp

�

[[x]]scp
def
= phxi

[[fork(a)]]scp
def
= (�r) (phri j [[a]]�sr)

[[join(b)]]scp
def
= (�q) ([[b]]scq j q(r):r(y):phyi)

Figure 5: Encoding of miscellaneous �jeblik-expressions

Miscellaneous Variables and the let-construct is encoded as usual (see [KS98]).

Fork-and-join To fork a thread means to create a new activity running in parallel with

the current one(s). Since Obliq is making some subtle assumptions about the interplay

between the current thread and the other threads, we need to express the concept of threads

to some extent. It su�ces to create a new unrelated self identi�er upon thread creation and

to implant it as the forked threads' current self. We use [[a]]�sq to abbreviate (�s) ([[a]]sq).

Note that a fork is never blocking: we immediately return a (linear) private name r, which in

turn might eventually be used to get some result (the evaluation of the forked expression a)

back from the forked thread. This is achieved by waiting on this implicit return channel,

when executing the translation of join. Here, b is an expression that evaluates to some

thread identi�er|in the translation, the thread is identi�ed by the private channel r that

has been returned from the corresponding fork-expression. Consequently, we block the

(continuation of the) join-statement until some result is coming back along r from the

forked thread and use this result also as the result of the join-expression itself.

4 Current and future work

We are on the verge of proving that

� Our �-calculus semantics preserves typing.

� Our �-calculus semantics implements self-serialization.

� Surrogation in �jeblik is safe ([[a:surrogate]] � [[a]]) for a suitable �.

References

[Car95] L. Cardelli. A Language with Distributed Scope. Computing Systems, 8(1):27{59, 1995.

[KS98] J. Kleist and D. Sangiorgi. Imperative Objects and Mobile Processes. In Proceedings of PRO-

COMET '98. IFIP, 1998. To appear.

[MS98] M. Merro and D. Sangiorgi. On Asynchrony in Name-Passing Calculi. In K. G. Larsen, ed,

Proceedings of ICALP '98, volume 1443 of LNCS. Springer, July 1998. To appear.

8

Recent BRICS Notes Series Publications

NS-98-5 Hans Ḧuttel and Uwe Nestmann, editors. Proceedings of the
Workshop on Semantics of Objects as Processes, SOAP ’98,(Aal-
borg, Denmark, July 18, 1998), June 1998. 50 pp.

NS-98-4 Tiziana Margaria and Bernhard Steffen, editors.Proceedings
of the International Workshop on Software Tools for Technol-
ogy Transfer, STTT ’98,(Aalborg, Denmark, July 12–13, 1998),
June 1998. 86 pp.

NS-98-3 Nils Klarlund and Anders Møller. MONA Version 1.2 — User
Manual. June 1998. 60 pp.

NS-98-2 Peter D. Mosses and Uffe H. Engberg, editors.Proceedings
of the Workshop on Applicability of Formal Methods, AFM ’98,
(Aarhus, Denmark, June 2, 1998), June 1998. 94 pp.

NS-98-1 Olivier Danvy and Peter Dybjer, editors.Preliminary Proceed-
ings of the 1998 APPSEM Workshop on Normalization by Eval-
uation, NBE ’98, (Gothenburg, Sweden, May 8–9, 1998), May
1998.

NS-97-1 Mogens Nielsen and Wolfgang Thomas, editors.Preliminary
Proceedings of the Annual Conference of the European Associ-
ation for Computer Science Logic, CSL ’97(Aarhus, Denmark,
August 23–29, 1997), August 1997. vi+432 pp.

NS-96-15 CoFI. CASL – The CoFI Algebraic Specification Language;
Tentative Design: Language Summary. December 1996. 34 pp.

NS-96-14 Peter D. Mosses.A Tutorial on Action Semantics. December
1996. 46 pp. Tutorial notes for FME ’94 (Formal Methods Eu-
rope, Barcelona, 1994) and FME ’96 (Formal Methods Europe,
Oxford, 1996).

NS-96-13 Olivier Danvy, editor. Proceedings of the Second ACM
SIGPLAN Workshop on Continuations, CW ’97(ENS, Paris,
France, 14 January, 1997), December 1996. 166 pp.

NS-96-12 Mandayam K. Srivas.A Combined Approach to Hardware Ver-
ification: Proof-Checking, Rewriting with Decision Procedures
and Model-Checking; Part II: Articles. BRICS Autumn School
on Verification. October 1996. 56 pp.

	7: 7
	8: 8
	9: 9
	10: 10
	11: 11
	12: 12
	13: 13
	14: 14
	15: 15
	16: 16
	17: 17
	18: 18
	19: 19
	20: 20
	21: 21
	22: 22
	23: 23
	24: 24
	25: 25
	26: 26
	27: 27
	28: 28
	29: 29
	30: 30
	31: 31
	32: 32
	33: 33
	34: 34
	35: 35
	36: 36
	37: 37
	38: 38
	39: 39
	40: 40
	41: 41
	42: 42
	43: 43
	44: 44
	45: 45
	46: 46
	47: 47
	48: 48
	49: 49
	50: 50

