
B
R

IC
S

N
S

-98-4
M

argaria
&

S
teffen

(eds.):
S

T
T

T
’98

P
roceedings

BRICS
Basic Research in Computer Science

Proceedings of the International Workshop on

Software Tools for Technology Transfer

STTT ’98

Aalborg, Denmark, July 12–13, 1998

Tiziana Margaria
Bernhard Steffen
(editors)

BRICS Notes Series NS-98-4

ISSN 0909-3206 June 1998



Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/98/4/



STTT’98
International Workshop on
Software Tools for Technology Transfer

Organizers
Volker Braun, University of Dortmund (D)
W. Rance Cleaveland, NC State University (USA)
Tiziana Margaria, University of Passau (D)
Bernhard Steffen, University of Dortmund (D), (Chair)





Preface
This volume contains the proceedings of the International Workshop on
Software Tools for Technology Transfer, STTT’98, which took place in Aal-
borg (Denmark) on July 12–13 1998, as a satellite of ICALP’98, the 25th

International Colloquium on Automata, Languages, and Programming.

Tool support for the development of reliable and correct computer systems is
in fact of growing importance: a wealth of design methodologies, algorithms,
and associated tools have been developed in different areas of computer sci-
ence. However, each area has its own culture and terminology, preventing
researchers from taking advantage of the results obtained by colleagues in
other fields: tool builders often are unaware of, and thus unable to use, work
done by others. The situation is even more critical when considering the
transfer of technology into industrial practice.
STTT’98 addressed this situation by providing a forum for discussion of all
aspects of tools that aid in the development of computer systems in the light
of a possible tool-oriented link between academic research and industrial
practice. Accordingly, the event comprised

• a one-day Workshop, on July 12th, whose eight talks were organized
in three sessions:

– Verification of Code Generation: compiler-specific and program-
specific verification.

– Model Checking: variants, also comprising real time aspects.

– Technology Transfer: initiatives and projects.

• a two-days Tool Exhibition, on July 12th and 13rd, which, in addi-
tion to the tools presented at the workshop, comprised a demonstration
of the three tools described at the end of the proceedings.

We want to thank the local organization team for handling all the practical
matters concerning the workshop, and in particular Josva Kleist who took
care of all the technical frame conditions required for the demonstrations.
Warm thanks are due also to Uffe Engberg for making the realization of this
volume possible in record time, and to Claudia Herbers for her assistance in
the coordination of the review process.

July 1998 Tiziana Margaria
Bernhard Steffen





Contents

Regular Sessions

Verification of Code Generation

The Code Validation Tool (CVT) - Automatic Verification of Code
Generated from Synchronous Languages
A. Pnueli, O. Shtrichman, M. Siegel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Mechanized Verification of Compiler Backends
A. Dold, T. Gaul, W. Zimmermann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Model Checking

NUSMV: A Reimplementation of SMV
A. Cimatti, E. Clarke, F. Giunchiglia, M. Roveri . . . . . . . . . . . . . . . . . . . . . . . .25

XTL: A Meta-Language and Tool for Temporal Logic Model-Checking
R. Mateescu, H. Garavel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

New Generation of UPPAAL
J. Bengtsson, K. Larsen, F. Larsson, P. Petterson, Yi Wang, C. Weise . . 43

Technical Transfer

The Electronic Tool Integration Platform
B. Steffen, T. Margaria, V. Braun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

The LINK Experiment - A new Swedish Technology Transfer
Concept for SMEs
H. Malmkvist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Tool-supported Improvement of the Software Design and Execution
Process Using Modular Software Components
B. Sick, A. Bender, E. Fuchs, R. Mandl, M. Mendler, A. Sicheneder . . . . .61

Tool Exhibition

C-Mix: Making Easily Maintainable C-Programs run FAST
The C-Mix Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Rapid Prototyping with APICES
Ansgar Bredenfeld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5



Performance Evaluation Methodology-and-Tool for Computer
Systems with Migrating Applied Software
S.L. Frenkel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6



The Code Validation Tool  (CVT)Ð

Automatic verification of code generated from synchronous languages*

A. Pnueli, O. Shtrichman and M. Siegel

Contact author: amir@wisdom.weizmann.ac.il

The Weizmann Institute of Science,
Department of Applied Mathematics and Computer Science

Rehovot, Israel

Abstract

We describe CVT - a fully automatic tool for Code-Validation, i.e. verifying that the target code produced
by a code-generator (equivalently, a compiler or a translator) is a correct implementation of the source
specification. This approach is a viable alternative to a full formal verification of the code-generator
program, and has the advantage of not 'freezing' the code generator design after verification.

The CVT tool has been developed in the context of the ESPRIT project SACRES, and validates the
translation from StateMate/Sildex mixed specification into C. The use of novel techniques based on
uninterpreted functions and their analysis over a BDD-represented small model enables us to validate source
specifications of several thousands lines, which represents a typical industrial size safety-critical
application.

 1 Introduction
A significant number of embedded systems contain safety-critical aspects. There is an increasing industrial awareness
of the fact that the application of formal specification languages and their corresponding verification/validation
techniques may significantly reduce the risk of design errors in the development of such systems. However, if the
validation efforts are focused on the specification level, the question arises how can we ensure that the quality and
integrity achieved at the specification level is safely transferred to the implementation level. Today's process of the
development of such systems consists of hand-coding followed by extensive unit and integration-testing.

The highly desirable alternative -- both from a safety and a productivity point of view -- to automatically generate
code from verified/validated specifications, has failed in the past due to the lack of technology which could
convincingly demonstrate to certification authorities the correctness of the generated code. Although there are many
examples of compiler verification in the literature (See, for-example, [1][2][3] and [4]), the formal verification of
industrial code-generators is generally prohibitive due to their size. Another problem with compiler verification is that
the formal verification freezes their designs, as each change to the code generators nullifies their previous correctness
proof.

Alternately, code-validation suggests to construct a fully automatic tool which establishes the correctness of the
generated code individually for each run of the code generator. In general, code-validation is the key enabling
technology to allow the usage of code generators in the development cycle of safety-critical and high quality systems.
Remarkably, the combination of automatic code generation and validation improves the design flow of embedded
systems in both safety and productivity by eliminating the need for hand-coding of the target code (and consequently
coding-errors are less probable) and by considerably reducing unit/integration test efforts.

The work carried out in the SACRES project proves the feasibility of code-validation for the industrial code
generators used in the project, and demonstrates that industrial-size programs can be verified fully automatically in a
reasonable amount of time. In the next section we describe the SACRES project and the role of code validation in this
context. In section 3 we briefly describe the logical basis of the correctness proof. In section 4 we describe the
architecture of CVT and the role of each of its modules, and we summarize in section 5 by presenting preliminary
results from an industrial case study that we are currently working on.

                                                            
* This research was done as part of the ESPRIT project SACRES, and was supported in part by a grant from the
Deutsche Forschungs Gemeinschaft, the Minerva Foundation, and an infra-structure grant from the Israeli
Ministry of Science and Art.



 2 Code validation in the context of the SACRES project

The Code Validation Tool (CVT) is developed as part of the ESPRIT-supported project SACRES (which stands for
Safety Critical Real-time Embedded Systems)[7]. The objective of this project is to provide designers of safety-critical
systems with an enhanced design methodology supported by a toolset, significantly reducing the risk of design errors
and shortening the overall design time. The emphasis within the project is on formal development of systems,
providing formal specification, model checking technology and validated code-generation.
The architecture of the SACRES toolset is shown in Figure 1.

Following is a typical scenario of usage of the toolset: After completing the design in her favorite design tool
(currently the ÔStateMateÕ and ÔSildexÕ tools are supported), the user invokes the automatic translation of designs into
DC+, the common format for synchronous languages. The design can be mixed: different components can be designed
in different tools, as long as these tools are supported in the toolset. In the next step the user invokes the Proof-
Manager, and performs component and system verification. In this stage the user verifies that the design satisfies
various properties, which she expresses in the requirement specification language of Timing Diagrams, using the
Timing-Diagrams Editor (TDE). These properties typically correspond to the requirements listed in a requirement
document, or to general safety and liveness properties of the system, such as the absence of deadlocks.

The Proof-Manager combines BDD-based automatic verification tool and a theorem-prover, which is invoked when
the automatic verification fails (typically due to the size of the model). The various components thus can be verified by
different means, while the proof-manager guarantees that the necessary compositionality requirements are maintained.
If the system finds a design error, it presents a counter example by means of simulation (either in StateMate or in
TDE).

After the design is verified, the user invokes the code generator (produced by the SACRES partner TNI) to
automatically generate executable code (C or ADA). This is where the code validation tool is invoked: The validation
of the generated code via CVT establishes that the code generator worked as expected and thus the properties which
were verified at the specification level are preserved at the implementation level. We expect that the process of code
validation will provide the convincing evidence required by the certification authorities in order to allow the use of
automatic code generators for the development of safety-critical systems.

 3 The Verification Condition
The theoretical background behind the construction of the verification condition is elaborated in [5]. Following is a
brief description of the structure of the verification condition, which, if proven correct, guarantees the correctness of the
translation.

In the following, we refer to the DC+ program as the abstract system, as it represents the specification, and to the C
program as the concrete system, as it represents the concrete implementation. We denote the variables, initial condition
and transition relation of these systems by VA, θA and ρA (abstract) and VC, θC and ρC (concrete), respectively. In order
to establish that the concrete system correctly implements (refines) the abstract system, we use two premises
(verification conditions), R1 Ð the base case, and R2 Ð the induction step.



The base case requires that θC implies θA, after performing an appropriate substitution α of each (observable)
variable v∈ VA by an expression ε over VC. Such a substitution induces an (abstraction) mapping between the states of
the two systems.

The induction step requires that ρC implies ρA, once again, after an appropriate substitution α.
Taken all together, the refinement rule has the following structure:

Let α: VA à ε(Vc)  be a substitution
R1: θc à θA [α] The base step
R2: ρc à ρA [α] The induction step

____________
C imp A

The Verification Condition Generator, which is the first module invoked in CVT, generates these implications from
the C and DC+ source codes. ρA and ρc are both large conjunctions of atomic sub-formulas, where typically (but not
always) each sub-formula corresponds to an assignment line in the code or a constraint imposed by the abstraction (see
section 4 for more details). These sub-formulas reflect the semantics of the source languages and the mapping between
their variables.

 4 The CVT - Architecture
The code-validation package offers a fully automatic routine which establishes the correctness of the generated code
individually for each run of the code generator. Therefore, there is no user-interface to this tool Ð just configuration
parameters and a command line.

The overall architecture of CVT can be seen in Figure 2. We will not focus in this (short) paper on the underlying
theory behind the verification condition. As mentioned before, a detailed explanation of this can be found in [5]. Rather
we explain what is the role of each module and what are its inputs and outputs.

Fig. 2 : CVT Architecture (The 'Range Minimizer' module is not yet part of CVT)

DC+

Verification
Condition
Generator

Code generation

Abstraction

Level ++

CVT

Auto-
Decomposition

Abstraction

Range

Minimizer

TLV
(Verifier)

C



 4.1 The Verification Condition Generator module

CVT receives as input the DC+ and C source codes. These are the source and target code for the code generator. Two
separate sub-modules (appearing united in Figure 1 as the Verification Condition Generator module) generate the
verification conditions (which are actually a large logical implication) by means of various translations and
transformations. The validity of this logical implication implies the correctness of the generated code w.r.t. the source
code while its invalidity indicates a potential mistake in the code generation process. Each of the conditions is
separated into two files representing the left and right hand side of the implication (in R2 these are ρc and ρA) . Since at
the end of this process we use TLV [6] as a decision procedure, the verification condition is generated in the
appropriate format (the models TLV expects are compatible with the more broadly used SMV model-checker).

 4.2 The Auto-Decomposition module

The next step is Auto-Decomposition. We are interested in handling industrial-size programs, and therefore
decomposition is essential. As will be demonstrated in section 5, the auto-decomposition is one of the key enabling
steps for scalability. The Auto-Decomposition module takes advantage of the fact that the right hand side of the
premises are in the form of a conjunction (typically of hundreds of  expressions), and simply breaks it into smaller
conjuncts which can be verified independently.

The size of the decomposed conjuncts is set by a configuration parameter (called the Ôchunk sizeÕ), and can range
from 1 (a single conjunct) to the total number of conjuncts. In the later case the entire formula will be verified at once,
which is only possible for relatively small files. After breaking the right hand side, the Auto-Decomposition module
returns to the left hand side of the implication, and calculates the cone of influence, i.e. the portion of the formula in the
left hand side that is needed for proving the selected conjuncts on the right-hand side. After repeating this process until
all conjuncts are covered, we are left with (possibly hundreds) pairs of files, each significantly smaller than the original
ones. There is an obvious tradeoff between having files with very small right hand side, which leads to significantly
shorter verification time, and the number of these files which incurs an additional invocation overhead cost associated
with each file. It is therefore left to the user to decide on the chunk size which may be optimal for her case.

Another configuration option in the Auto-Decomposition module is called Ôback calculationÕ. When this flag is set,
after calculating the cone of influence, the program returns to the right hand side and looks for additional conjuncts that
can be proven with the same cone that was just calculated. This option is useful for reducing the number of files and
reducing the over-all time for performing the proof (the time TLV takes mainly depends on the transition relation of the
model, i.e. the left hand side. Thus if we use the same model for proving more conjuncts, we save time). When setting
this option, the Ôchunk sizeÕ is no longer an exact number of conjuncts taken each time, rather it is the size of the initial
set of conjuncts, which possibly grows after the back calculation. The efficiency of the back calculation obviously
depends on the ordering of conjuncts we are investigating. An optimal ordering would be such that if cone(Ci) ⊆
cone (Cj) then Ci and Cj are verified together (with simple sequential ordering this will happen only if Cj appears
first or if cone(Ci) = cone (Cj)). This ordering can be achieved, for example, by calculating all the cones and
then partitioning the files accordingly. We did not implement this because we suspect that the overhead of this
calculation will be larger than the saving resulting from the better ordering.

 4.3 The Abstraction Module and the Range-Minimizer module

After decomposing the files, CVT invokes the Abstraction module. Once again, the underlying theory of the abstraction
is detailed in [5]. Basically, abstraction is needed since we are trying to verify a model which contains integer and float
variables, as well as functions over these variables using a BDD-Based decision procedure for finite-state models. The
abstraction module treats these functions as uninterpreted functions, replacing them by new symbols. The faithfulness
of this technique depends on the way that the compiler manipulates these functions and the kind of functions we leave
interpreted. The more we interpret, the more faithful the model is. On the other hand, the less we interpret, the smaller
the model is.

The abstraction module works in an incremental manner, following an abstraction hierarchy designed according to
the specific optimizations the compiler performs. We begin with maximum abstraction (called Level-0 abstraction)
where all functions except equalities, Boolean operators and if-then-else are uninterpreted. If the proof fails, CVT
invokes the abstraction module again, asking for Level-1 abstraction, where additionally comparisons operators on
integers (Ô>Õ, Ô<Õ, etc) are left interpreted.

If, for example, the compiler reads Ôa < bÕ in the abstract system and transforms it to Ôb > aÕ in the concrete system
(which are obviously semantically equivalent) , Level-0 abstraction will result in a false negative where as level-1 will
succeed.

The reason we first interpreted the comparison operators on moving from level-0 to level-1 is that the compiler we
are considering employs these kinds of optimizations frequently. To handle comutativity of the Ô+Õ function, for



example, we need another abstraction level. However, so-far Level-0 and Level-1 abstractions proved to be sufficient
for the purposes of code-validation of the examples we have considered.

After we replace the appropriate terms by new variables, we impose additional constraints on the verification
conditions to ensure functionality. This leaves us with a quantifier-free first-order logic formula which enjoys the small
model property (i.e. it is satisfiable iff it is satisfiable over a finite domain). Therefore the next issue the abstraction
module handles is the calculation of a finite domain, such that the formula is valid iff it is valid over all interpretations
into these domains.  The latter can be checked algorithmically, using BDD techniques. The domain that is currently
taken is simply a finite set of integers whose size is the number of (originally) integer/float variables, although smaller
domains can be achieved by analyzing the structure of the formula considered. This analysis is performed by the
ÔRange MinimizerÕ module, not yet implemented, which we expect to significantly reduce the range of each of these
(now enumerated type) variables, and thus increase the size of programs we can handle. Preliminary results from this
approach show that most models can be verified by using a state-space which is orders of magnitude smaller than the
state-space resulting from using our current method.

 4.4 The Verifier module (TLV)

The validity of the verification conditions is checked in TLV [6], an SMV-based tool which provides the capability of
BDD-programming and has been developed mainly for finite-state deductive proofs (and thus convenient in our case
for expressing the refinement rule). In the case that the equivalence proof fails, a counter example is displayed. Since it
is possible to isolate the conjunct(s) that failed the proof, this information can be used by the compiler developer to
check what went wrong. CVT invokes TLV for each pair of files generated by the Auto-Composition module. A proof
log is generated as part of this process, indicating which files were proved, at what level of abstraction and when.

 5 A case study
Currently we are working on the validation of an industrial size program, a code generated for the case study of a
turbine developed by SNECMA, which is one of the industrial case studies in the SACRES project. The program was
partitioned manually (by SNECMA) into 5 units which were separately compiled. Altogether the DC+ specification is a
few thousand lines long and contains more than 1000 variables. After the abstraction we had about 2000 variables (as
explained in subsection 4.3, the abstraction module replaces function symbols with new variables). Following is a
summary of the results achieved so far:

Module Conjuncts Verified Time (min.)
M1 530 100% 4:14
M2 533 100% 1:30
M3 124 92% ?
M4 308 99.3% 3:32 + ?
M5 860 80% ?

Total : 2355 93.9% 9:16 + ?

As can be seen, about 6.1% of the conjuncts in our case could not be verified in reasonable time using the current
implementation of CVT. We hope that after installing the Range-Minimizer this problem will be solved.

References

[1] B. Buth, K. Buth, M. Franzle, B. Karger, Y. Lakhneche, H. Langmaack, and M. Muller-Olm. Provably correct
compiler development and implementation. In Compiler Construction Õ92, 1992.

[2] D.L. clutterbuck and B.A. Carre. The verification of low-level code. Software Engineering Journal, pages 97-111,
1998.

[3] P. Curzon. A verified compiler for a structured assembly language. In proceedings of the 1991 international
workshop on the HOL theorem Proving System and its applications. IEEE Computer Society Press, 1992.

[4] I. M. OÕNeill, D. L. Clutterbuck, P.F. Farrow. The formal verification of safety-critical assembly code. In
proceedings of the IFAC Symposium on safety of computer control systems 1988.

[5] A. Pnueli, O. Shtrichman and M. Siegel. Translation Validation for Synchronous Languages. To appear in ICALPÕ
98.

[6] A. Pnueli and E. Shahar, A Platform for Combining Deductive with Algorithmic Verification. 8th Conference on
Computer Aided Verification, Springer-Verlag, 1996

[7] The SACRES web page: http://www.ilogix.co.uk/ilogix/technica.html





Mechanized Veri�cation of Compiler Backends

Axel Dold1, Thilo Gaul2, and Wolf Zimmermann2

1
University of Ulm, Oberer Eselsberg, D-89069 Ulm,

fdoldg@ki.informatik.uni-ulm.de
2
University of Karlsruhe, Zirkel 2, D-76131 Karlsruhe,

fgaul;zimmerg@ipd.info.uni-karlsruhe.de

Abstract We describe an approach to mechanically prove the correctness of BURS

speci�cations and show how such a tool can be connected with BURS based back-end

generators [9]. The proofs are based on the operational semantics of both source and

target system languages speci�ed by means of Abstract State Machines [15]. In [31] we

decomposed the correctness condition based on these operational semantics into local

correctness conditions for each BURS rule and showed that these local correctness

conditions can be proven independently. The speci�cation and veri�cation system PVS

is used to mechanicalyy verify BURS-rules based on formal representations of the

languages involved. In particular, we have de�ned PVS proof strategies which enable

an automatic veri�cation of the rules. Using PVS, several erroneous rules have been

found. Moreover, from failed proof attempts we were able to correct them.

1 Introduction

There exist a variety of techniques to construct e�cient code producing compiler back-ends

with su�cient tool support. There do also exist approaches on the construction of veri�ed

code generators but they do not full�ll at least one of the following requirements that are

essential to the code generation part of pratical compiler environments: (i) compilation to

native machine code, (ii) ability to deal with complex real-life programming languages, (iii)

to produce e�cient machine code, comparable to non-veri�ed compilers and (iv) tool support

for the compiler writer.

Usually the correctness proofs of programs or program derivations assume that the programs

are written in higher-level languages. However, the program is compiled into binary code and

it is this code, that is executed. Therefore the correctness of programs depends also on the

correctness of the compiler which compiles the higher-level language into the machine language

of the processor, and on the correctness of the processor. This paper discusses aspects for the

construction of realistic correct compilers.

Realistic correct compilers should produce machine code whose performance is comparable

to machine code produced by usual compilers. Practical experiences show that the main

performance gains and losses result from the back-end of compilers. Therefore, we focus

on the construction of correct compiler back-ends. Compiler back-ends transform low-level

intermediate language programs into machine programs.

One of the well known techniques to produce e�cient machine code are bottom up rewrite

systems (BURS). This speci�cation technique [9, 10, 22, 23, 27] has two advantages: (i) the

back-end can be generated from such a speci�cation, (ii) it is possible to specify back-ends

which produce e�cient code.

We show in this paper how rewrite rules for code generation can be pratically proven correct,

thus the BURS technology becomes applicable to the construction of veri�ed compilers.

In [31] we decomposed the correctness of BURS-based compiler back-ends into the local

correctness of single term-rewrite rules, and the global correctness. Furthermore we proved

the global correctness under the same constraints as the applicability of the BURS-technology,

i.e. no speci�c assumptions on the term-rewrite system are required. In this paper we put the

main stress on the local correctness of single rewrite rules.



In practice BURS speci�cations have a large number of TRS rules. Therefore a mechanical

veri�cation of the local correctness is necessary. This paper shows proof strategies su�cient

to prove local correctness of TRS rules and its mechanization using PVS [24]. Our approach

is to give operational semantic speci�cations for source and target language, and to prove

the correctness of single transformations by symbolic execution of the program pieces. The

semantic and transformation rule speci�cations have been formalized into PVS. Together with

PVS proof strategies we are able to automatically veri�y the rules. Using these strategies,

errorneous rules have been found, and, moreover, from failed proof attempts these errors could

be corrected by a careful inspection of the proof state.

We demonstrate our approach with a typical basic block oriented intermediate language with

expressions (MIS) and the translation to the DEC-Alpha processor family. The operational

semantics is formalized by abstract state machines (Section 2). In this paper, the mapping of

composite datatypes such as records, arrays etc. is considered as a front-end task.

The �rst work on correct compilers is [17]. Most of the following work on correct compilation

is based on denotational semantics (e.g.[4, 18, 19, 25, 26, 30]) or on re�nement calculi (e.g.[5,

6, 16, 20, 21]). Other work on compiler correctness based on re�nement use abstract state

machine (e.g.[1{3]). Most of these works do not compile high-level programming languages

into assembler languages. To our knowledge, only [2, 3, 20, 21] and ProCos [16] discus trans-

formations into machine code. The performance of code generated by semantics driven code

generation is poor and by one or more orders of magnitude slower than the code generated

by compilers used in practice [25]. [2, 3, 20, 21] consider the compilation into transputer code.

We compare our measerument results with those from [7]. To our knowledge the only work

on \correct compilers" which provides performance measurements.

This article is organized as follows: First we give the basic de�nitions of abstract state ma-

chines and correctness notion in Section 2.

Our de�nition of BURS speci�cations (Section 3) de�ne the local correctness conditions and

central theorem of [31]. Section 4 gives the general proof strategy for proving local correctness

and demonstrates it by some examples. Section 5 describes the formalization of the inter-

mediate and target language ASM's, the formal representation of the TRS rules and their

veri�cation using proof strategies. In particular, the detection and correction of an erroneous

rule using PVS is presented.

2 Basic De�nitions

The semantics of our languages are de�ned operationally by abstract state machines [14]. The

notation is oriented on [15], and can be found in following subsection.

In Appendix A we de�ne a typical intermediate language with expressions (MIS), which

is based on basic block graphs (see e.g. [29]). Our example target language is the machine

language of the DEC-Alpha processor family (Appendix B). The complete de�nitions can be

found in [12] and [13].

2.1 Abstract State Machines

An abstract state machine is a tuple A = (�;Q; S;!; I), where

(i) � is a signature, i.e. a �nite collection of function names, each of a �xed arity.

(ii) the set of states Q is a set of �-algebras,

(iii) a superuniverse S representing the sorts,

(iv) !� Q�Q is the transition relation, and

(v) I � Q is the set of initial states.

fq denotes the interpretation of f 2 � in state q 2 Q. Interpretations on S of function

names in � are called basic functions. The superuniverse does not change when the state of



A changes, the basic functions may. The superuniverse contains distinct elements true, false

and undef (?) that allow to deal with binary relations and partial functions. They do not

appear in the signature.

A universe U is a special type of basic function: a unary relation identi�ed with the set

fx : U(x)g. Any sort U 2 S denotes a universe. The universe BOOL is de�ned as BOOL =

ftrue; falseg. A function f : U ! V from an universe U to an universe V is an unary operation

on the superuniverse such that f(a) 2 V for all a 2 U and f(a) = ? otherwise. The type

INT is also used to denote the 64-bit integer arithmetic of the DEC-Alpha Processor. INT [k]

denotes the integer represented by k Bits, i.e. the range �2k; : : : ; 2k� 1. Floating point types

are not used in this article.

A term over the signatur � is de�ned as usual. T (�) denotes the set of terms over the

signature �. The interpretation of a term t 2 T (�) in state q is denoted by [[t]]q . Sometimes

we need a set of variables V . T (�; V ) denotes the set of term over signatur � and variables

V . As usual,
�

! denotes the reexive, transitive closure and
+
! denotes the transitive closure

of!. A state q 2 Q is reachable i� there is an initial state i 2 I such that i
�

! q. The relation

! is de�ned by a �nite collection of transition rules of the form:

if Condition then Updates endif

For example

if t0 then f(t1; : : : ; tn) := tn+1 endif

where t0; t1; : : : tn+1 2 T (�) is a transition rule. Let q be a state before and q0 be a state after

applying the rule. The meaning of the rule is:If [[t0]]q = true then for all g 2 � n f gq0 = gq,

and fq0 is de�ned as follows:

fq0(x1; : : : ; xn) =

�
[[tn+1]]q if for all i, 1 � i � n, [[ti]]q = xi
fq(x1; : : : ; xn) otherwise

If [[t0]]q = false then fq = fq0 for any f 2 �. Thus the interpretation changes the value of

the basic function f at the value of the tuple (t1; : : : ; tn) to the value tn+1, provided that

[[t0]]q = true. If several updates contradict then one update is chosen nondeterministically.

We distinguish the following classes of functions:

{ dynamic functions: the interpretation of a dynamic function is changed by transition rules,

i.e. f is called a dynamic function if an assignment of the form f(t1; : : : ; tn) := tn+1
appears anywhere in a transition rule.

{ static functions: the interpretation of a static function is never changed by a transition

rule.

Macros are abbreviations and denoted by macro =̂ expr . Whenever macro is used, it is

replaced by expr . We assume that macro de�nitions de�ne a noetherian and conuent rewrite

system.

2.2 Correctness Notion

The de�nition of compiler correctness is based on the operational semantics of the source and

target languages, respectively. An operational semantics for a language L de�nes a family of

abstract state machines A� for every program � 2 L. The state transitions are based on the

instruction set of L (cf. Appendix A). Not all state transitions are relevant. State transitions

that correspond to jumps, memory access, procedure calls etc. must be distinguished from

state transitions that read an input and write an output. The former are not observable

while the latter are observable. We therefore distinguish observable behaviour. Formally, a

behaviour of program � is a set of �nite or in�nite sequences of states q0 ! q1 ! � � � ! qn,

where qi ! qi+1 is the transition from state qi into state qi+1 by the ASM of the program.

The observable behaviour focuses on the input/output. Figure 1 illustrates the observable



behaviour by merging all states where the following state transition does not change input or

output. [31] de�nes these de�nitions formally.

A compiler which compiles a program �1 2 L1 into a program �2 2 L2 implements a relation

C : L1 � L2. Intuitively, C is correct if �1 and �2 have the same observable behavior. We

base the correctness de�nition on simulations, i.e. A�2 simulates A�1 in a sense similar to the

notion of simulations used in complexity and computability theory. Figure 1 illustrates these

ideas. Full de�nitions can be found in [31].

The relation ��maps injectively the ob-

ρ ρ

i q q q
21 3I/O I/O

I/O I/O

i’ 1q’ 2q’ 3
q’

ρ

ρ ρ ρ

q
4

4

ρ

q’

Figure1. Compiler Correctness

servable part of the states of the target

program to the observable part of the

states of the source program. For ev-

ery observable behaviour of the target

program, there must be a correspond-

ing observable behaviour of the source

program. �� can be implemented by a

relation � which is compatible with

��, i.e., any states can be related by

� whose observable part is related by

��. � is usually implemented by a com-

piler. The freedom of choice of � allows

optimizations. In particular, the order

of instructions can be changed as long

as the observable behaviour is preserved.

2.3 Code Generation by Term Rewriting

Term rewriting is commonly used in compiler back-end generators for the speci�cation of the

transformation to be performed by the code selection, i.e. the mapping CS : IL ) IL0. Any

intermediate language command can be viewed as a term. The basic idea is to reduce this

term to a constant and to generate code for each applied reduction step. The sub-class of

rewrite systems used in this article are the Bottom-Up-Rewrite-Systems, the commonly used

technique for code generators.

A term-rewrite rule t ) X ; fm1; : : : ;mng speci�es a compilation in the sense that sequence

m1; : : : ;mn is the sequence of machine instructions that implement t. The machine instruc-

tions m1; : : : ;mn may contain non-terminals as well as registers.

This application is more special than for general term rewriting systems. A BE-substitution

� is just a renaming of non-terminals to registers. A term t1 BE-matches a term t2 if there

is a BE-substitution � such that �(t1) = t2, i.e. t1 and t2 are equal up to renaming of non-

terminals. This allows to use any optimizing register allocation algorithm that full�lls the

constraint, that no value containing register is reassigned. A full formal de�nition can again

be found in [31].

3 Correctness of TRS-based code generation

In [31], we reduced the correctness condition for BURS-based compiler back-ends to the

following two local correctness conditions:

(i) A term-rewrite rule t ) X ; fm1; : : : ;mng is locally correct i� for every state q there are

states q1; : : : ; qn such that

q
m1! q1

m2! q2 � � �
mn! qn

and [[eval (t)]]q = [[content(�(X))]]qn where �(X) is the register assigned to X .



(ii) A term-rewrite rule t ) �; fm1; : : : ;mng is locally correct i� for every state q there are

states q1; : : : ; qn such that

q
m1! q1

m2! q2 � � �
m1! qn

and contentqn = contentq0 , contentqn(R) = contentq(R) for all locked registers, and

PC qn = PC q0 where q
0 is the state such that q

t
! q0.

Remark 1. In [31] we showed that it is possible to express the operational semantics of the

intermediate language with the state space of the processor (except instruction pointers). This

includes the memory mapping of the intermediate language onto the machine memory and

storing environment pointers in certain registers. These registers are locked. Clever register

assignment algorithms may lock more registers. The set of locked registers may be di�erent

for di�erent program points. The operational semantics of the intermediate language using

the state space of the processors allows to use machine-instructions as well as intermediate

language instructions. Therefore, the state space of the states used in the local correctness

conditions (i) and (ii) is equal. For the rest of this paper, we always assume this equality of

state spaces.

The basic result we use in this paper is the

Theorem 1. Let S be a BURS-speci�cation that speci�es the transformation of basic-

block graphs into machine code of a register machine. If every term-rewrite rule r : t )
X ; fm1; : : : ;mng 2 S is applied to expression trees only if no register occuring outside of t is

assigned to the free non-terminals of r, no locked register is assigned to the free non-terminals

of r and every term-rewrite rule satis�es (i) and (ii), then the BURS-speci�cation speci�es a

correct compilation.

Thus, if a correct back-end generator applies the TR-rules conditionally (with the require-

ments on register assignment), and (i) and (ii) is satis�ed for each TR-rule of a BURS-

speci�cation, then a correct compiler back-end is generated.

ASM 2

ASM 1Intermediate Program

Spec

BURS
ProtocolBack End Generator Verifier

Semantics

Semantics

Machine Program

Figure2. Veri�ed Back-End Generator Architecture

4 Proof Strategies for Local Correctness

This section consists of three parts. First we give two proof strategies related to local correct-

ness conditions (i), and (ii). Then we show two examples applying these two proof strategies,

respectively. Finally, we show that the application of these proof strategies to an erroneous

term-rewrite rule.

Consider a term-rewrite rule r : t ) X ; fm1; : : : ;mng the local correctness condition (i).

It speci�es a �nite execution of ASM-transition rules and the application of an eval-macro.

Since the latter must de�ne a noetherian and conuent rewrite system, the number of macro

applications is also �nite. Therefore the proof strategy for (i) is



1. Apply symbolically (using the non-terminals occuring in t) the eval -macro,
2. Apply symbolically (using the non-terminals occuring in t and fm1; : : : ;mng) the state

transitions of the ASM for the target machine
3. If content(X) = eval(t) then (i) is satis�ed. Otherwise, output both terms.

Theorem 2. The above proof strategy is correct for term-rewrite rules r : t )
X ; fm1; : : : ;mng where X 6= �.

Proof. In any program, if r is applied onto a term t0, then there is a register substitu-

tion � such that �(t) = t0 (i.e. � substitutes non-terminals by registers). Consider a sym-

bolic update f(X1; : : : ; Xn) := g(Y1; : : : ; Yn) performed in a state transition of the sec-

ond step. Then the execution of the program performs the update f(�(X1); : : : ; �(Xn)) :=

g(�(Y1); : : : ; �(Yn)). A similar argument applies to the application of the eval-macro. Thus,

it holds [[content(�(X))]]qn = [[eval (�(t))]]q . Therefore, the symbolic equality in the third step

implies [[content(�(X))]]qn = [[eval (�(t))]]q , i.e. (i) holds.

Example 1. Consider the term-rewrite rule add : intadd (X;Y )) Z; fADD X;Y; Zg where
ADD is a DEC-Alpha instruction. The �rst step yields

eval (intadd (X;Y )) = eval(X)�I eval(Y )

= content(X)�I content(Y )

The second step applies the state transition content(Z) := content(X) �I content(Y ) of the

ADD-instruction. Thus, after the symbolic execution of ADD X;Y; Z, it is content(Z) =

content(X)�I content(Y ). Thus, the two terms to be compared in the third step are equal and

the term-rewrite rule add is locally correct.

Thus, if the symbolic equality cannot be proven, the strategy postulates an equality that

must always be satis�ed in order to ensure (i). Thus, without algebraic identities such as the

commutativity of �I , the proof strategy would also be complete: Suppose, that the strategy

outputs that (i) is not satis�ed. Then, we have to show that there is a state q, a term

t0 where r can be applied, and a valid register assignment such that (i) is violated, i.e.

[[eval (t0)]]q 6= [[content(�(X))]]q . Suppose steps 1 and 2 show that eval(t) 6= content(X). Observe

that content(X) = s using the non-terminals occuring in t. Let � be the substitution used

when applying r such that �t 6= �s. Then it is easy that there are values of the registers

such that these two expressions yield di�erent results, i.e. (i) is violated. If �t = �s for all

substitutions, then it is must be s = t, contradicting our assumption s 6= t.

Consider now the term-rewrite rules of the form t ) �; fm1; : : : ;mng. Then, the following

proof strategy is used:

1. Execute symbolically (using the non-terminals in t) the state transitions for t in the

intermediate language ASM.
2. Execute symbolically fm1; : : : ;mng in the machine language ASM.
3. For all non-terminals of t, compare symbolically content(X) after the �rst and the second

step. Also compare content(R) for locked registers. If all of them are equal, then (ii) is

satis�ed. Otherwise, output the inequalities.

Theorem 3. The above proof strategy is correct for term-rewrite rules r : t )
�; fm1; : : : ;mng.

Proof. (Sketch) The proof is analogous to the proof of Theorem 2. The only di�erence is that

more comparisons have to be done, and that for every states q, qn, and q0 as de�ned by local

correctness condition (ii) the instruction pointers point to the same instruction if just r is

applied. Let � be a program and �0 be the program where r is applied onto a term t0. Since

r de�nes a local replacement, the instruction after t0 in � and the instruction after mn in �0

is the same.



To show a more complex proof, we give an example with a bit more complicated bit manip-

ulation. Consider the generation of a 32 bit constant:

Example 2.

intconst(i32) �! X ; f LDA (T1; i32:L;R31; \L\)

ZBI (T1;#111111002; T1)

LDA (X; i32:H; T1; \H\) g

The coding of 32 bit integer constants uses the machine instructions \load-address" (LDA)

and \zero-bytes-immediate" (ZBI). LDA loads the integer value that results from the addition

of the second operand and the immediate value, which is shifted by 16 according to the type

parameter, into the �rst operand. \zero-bytes" sets some bit patterns to zero according to

the immediate value.

For the purposes of the simulation proof we need some de�nitions for the integer constant:

i32 = hhll256
sl = (i32 )h15 i
sh = (i32 )h31 i
i32.L = (i32 )h0 : 15 i
i32.H = (i32 )h16 : 31 i

That means we have:

i32.L = 00ll256
i32.H = 00hh256
Sext16 (i32.L) = slslslslslslslll256
Sext16 (i32.H) = shshshshshshshhh256

\i32.L" denotes the lower 16 bit of the lower word (value \ll"), \i32.H" denotes the upper 16

bit of the lower word (value \hh"). Sextk(Y) extends the kth bit of Y to 64 bit. Xhii addresses
the ith bit of X .

The proof obligations can be formulated in the same way like before. The proof itself is more

tedious but is nevertheless a straightforward simulation:

rule application T1 X state

LDA T1, i32.L, R31, \L"

content(T1) := content(R31) �I Sext16 (i32.L)

content(T1) := 0 �I Sext16 (i32.L)

content(T1) := Sext16 (i32.L) slslslslslslll256 q01
ZBI T1, #111111002 , T1

content(T1) := ByteZap (content(T1), #111111002)

content(T1)hii :=

�
content(T1)hii case 0 � i � 15

02 otherwise
000000ll256 q03

LDA X, i32.H, T1, \H"

content(X) := content(T1) �I LogShiftL( Sext16 (i32.H), 16)

content(X) := content(T1) �I shshshshhh00256

content(X) shshshshhhll256 q03

The last line of the simulation table proves our assumption correct. T1 and X can contain

any preassigned value.

5 Implementation of Proof Strategies and Error Detection in PVS

Beneath careless mistakes in combining instructions or operand ordering, bit-manipulations

in sequences of instructions are the most erroneous kind of code. An example taken from

our own speci�cation development cycle is the rewrite rule for large integer constants, where

happened to be some nontrivial bit-manipulation errors.

As an example, how PVS can help detecting errors we present the incorrect rule for large

integer constants which has been used in a �rst attempt:



intconst(i32) �! X ; f LDA (T1; i32:L;R31; \L\)

LDA (X; i32:H; T1; \H\) g

The formalization in PVS looks like:

medium_int_const : LEMMA (r0 /= r3) IMPLIES

bv2int[32](eval(intconstS(val32), rho(ms))) =

LET final = bb_interp(

cons(store(LDA(0), r3, 31, val32^(15,0)),

cons(store(LDA(1), r0, r3, val32^(31,16)), null))), ms)

IN bv2int[64](IntReg(final)(r0))

This rule does incorrectly treat sign extensions if the most-signi�cant-bit (MSB) of the lower

word is set. Invoking strategy (simul), the prover stops in the following situation:

(val!1 =

plus_Q((bitcopy((val!1 ^ (31, 16))(15))(32)

o val!1 ^ (31, 16))

o bvec0[16],

(bitcopy((val!1 ^ (15, 0))(15))(48)

o val!1 ^ (15, 0))))

A more compact notation for this equality is

val = val(31; 16) � 016 �I (s15)16 � val(15; 0)

(\�" denotes bit sequence concatenation). Obviously, this equality holds only if the MSB of

the lower word is 0, i.e.

s15 = 0:

The example given in the previous section contains the correct implementation where this

erroneous sign extension is corrected with an ZBI (Zero Bytes) instruction.

In addition, some more proof obligations have to be discharged. For example, one has to prove

that the instruction sequences above are valid basic blocks. When type-checking the theory,

PVS automatically generates such a type correctness condition (TCC). The proof is easily

established using the built-in (grind) strategy.

Sometimes, it is useful to have the possibility to step through each machine instruction in-

teractively. If one likes to see the e�ect of each instruction separately, one may use strategy

(one-stp). First, the necessary rewrite rules have to be established using (init), then each

execution of an instruction is invoked using (one-stp) which expands the de�nition of the

basic block interpreter and then applies the rewrite rules and decision procedures.

6 Conclusions

In this article we showed how to prove the local rewrite rules for language transformations

correct with a symbolic simulation proof technique. The task is no longer to �nd a proof

magically but we gave an constructive approach for proving rewrite rules. The correctness

is proved w.r.t. operational semantics of both, intermediate and target language. The tool

performs the proofs strategies mechanically using the proof checker PVS. Thus, the integration

of such a prover with BURS back-end generators can guarantee { together with the correctness

of a generator { the correctness of a compiler back-end. Moreover we showed that useful

hints to errors in TRS-rules can be given. First results indicate that the quality of the binary

machine code generated by correct compiler back-ends described in this paper is comparable to



DEC-Alpha Intel-Pentium SIMP

Veri�x C-Compiler C-Compiler AM in C

Iterations non-opt opt non-opt opt non-opt opt min

Loop 10000 0.57ms 0.57ms 0.35ms 0.31ms 0.62ms 0.50ms 5.0s

100M 5.72s 5.70s 3.49s 3.05s 6.12s 5.04s 13h53m
�

Sieve 1 1.63ms 1.23ms 0.82ms 0.56ms 1.02ms 0.89ms 4.00s

10000 16.35s 12.26s 8.25s 5.65s 10.23s 8.94s 11h6m
�

DEC-Alpha: DEC-AXP(233MHz), OSF1, CC: DEC(V4.2)

Intel-Pentium: Pentium(133MHz), Linux, CC: GNU(V2.7.0)

SIMP: Pentium, execution times taken from [7], abstract machine implemented in C

Iterations: Loop: loop iterations, Sieve: searching the primes less than thousand, n times repeated

SIMP: line 1 from [7], line 2 extrapolotion(� ) on repeated iterations

Optimization (opt):Verifix: Peephole, C: Option -O4, SIMP: minimal execution times

Table1. Comparison of the Performance of the Machine Code generated by Correct Compilers

standard compilers and therefore orders of magnitudes faster than code generated by correct

compilers constructed by other approaches [25, 7]. Table 1 shows the comparison between

our approach, the approach in [7] (SIMP), and a standard unveri�ed C-compiler. Loop is a

program that initializes a variable with a positive integer and decrements this integer by one

until the content of this variable is zero, Sieve implements the sieve of Erastothenes. The

complete test scenario can be found in [11].

Our aim is to integrate more and more established compilation techniques. If a library of

correct data structures, algorithms, and generators is provided, then for the correctness of

any transformation of one intermediate language to another, it will be su�cient to prove local

correctness properties of transformation rules similar to those of term-rewrite rules.

The above performance results show that this approach seems feasible to construct realistic

correct compilers compiling programs of real-life programming languages into binary machine

code of real processors, and produce e�cient code.

Acknowledgements: This work is supported by the Deutsche Forschungsgemeinschaft project Go

323/3-1 Veri�x (Construction of Correct Compilers). We are grateful to our collegues in Veri�x.

References

1. E. B�orger and D. Rosenzweig. The WAM-de�nition and Compiler Correctness. Technical Report

TR-14/92, Dip. di informatica, Univ. Pisa, Italy, 1992.

2. Egon B�orger, Igor Durdanovic, and Dean Rosenzweig. Occam: Speci�cation and Compiler Cor-

rectness.Part I: The Primary Model. In U. Montanari and E.-R. Olderog, editors, Proc. Pro-

comet'94 (IFIP TC2 Working Conference on Programming Concepts, Methods and Calculi).

North-Holland, 1994.

3. E. Brger and I. Durdanovic. Correctness of compiling occam to transputer. The Computer

Journal, 39(1):52{92, 1996.
4. D. F. Brown, H. Moura, and D. A. Watt. Actress: an action semantics directed compiler generator.

In Compiler Compilers 92, volume 641 of Lecture Notes in Computer Science, 1992.
5. B. Buth, K.-H. Buth, M. Fr�anzle, B. v. Karger, Y. Lakhneche, H. Langmaack, and M. M�uller-

Olm. Provably correct compiler development and implementation. In U. Kastens and P. Pfahler,

editors, Compiler Construction, volume 641 of Lecture Notes in Computer Science. Springer-

Verlag, 1992.

6. Bettina Buth and Markus M�uller-Olm. Provably Correct Compiler Implementation. In Tutorial

Material { Formal Methods Europe '93, pages 451{465, Denmark, April 1993. IFAD Odense

Teknikum.

7. S. Diehl. Semantics-Directed Generation of Compilers and Abstract Machines. PhD thesis,

Universit�at Saarbr�ucken, 1996.

8. Axel Dold. Representing the Alpha Processor Family using PVS. Veri�x Working Paper [Veri�x

/ Uni Ulm / 4.1], Universit�at Ulm, November 1995.

9. H. Emmelmann. Code selection by regularly controled term rewriting. In R. Giegerich and S.L.

Graham, editors, Code Generation - Concepts, Tools, Techniques, Workshops in Computing.

Springer-Verlag, 1992.



10. H. Emmelmann, F.-W. Schr�oer, and R. Landwehr. Beg - a generator for e�cient back ends. In

ACM Proceedings of the Sigplan Conference on Programming Language Design and Implemen-

tation, June 1989.

11. T.S. Gaul. Bechmarking code-generation for IS to DEC-Alpha. Veri�x Working Paper [Veri-

�x/UKA/11], University of Karlsruhe, 1996.

12. T.S. Gaul, A. Heberle, and W. Zimmermann. An Evolving Algebra Speci�cation of the Op-

erational Semantics of MIS. Veri�x Working Paper [Veri�x/UKA/3], University of Karlsruhe,

1995.

13. T.S. Gaul and W. Zimmermann. An Evolving Algebra for the Alpha Processor Family. Veri�x

Working Paper [Veri�x/UKA/4], University of Karlsruhe, 1995.

14. Y. Gurevich. Evolving Algebras; A Tutorial Introduction. Bulletin EATCS, 43:264{284, 1991.

15. Y. Gurevich. Evolving Algebras: Lipari Guide. In E. B�orger, editor, Speci�cation and Validation

Methods. Oxford University Press, 1995.

16. C.A.R. Hoare, He Jifeng, and A. Sampaio. Normal Form Approach to Compiler Design. Acta

Informatica, 30:701{739, 1993.

17. J. McCarthy and J.A. Painter. Correctness of a compiler for arithmetical expressions. In J.T.

Schwartz, editor, Proceedings of a Symposium in Applied Mathematics, 19, Mathematical Aspects

of Computer Science. American Mathematical Society, 1967.

18. P. D. Mosses. Abstract semantic algebras. In D. Bj�rner, editor, Formal description of program-

ming concepts II, pages 63{88. IFIP IC-2 Working Conference, North Holland, 1982.

19. P. D. Mosses. Action Semantics. Cambridge University Press, 1992.

20. Markus M�uller-Olm. An Exercise in Compiler Veri�cation. Internal report, CS Department,

University of Kiel, 1995.

21. Markus M�uller-Olm. Modular Compiler Veri�cation. PhD thesis, Techn. Fakult�at der Christian-

Albrechts-Universit�at, Kiel, June 1996. Erscheint als LNCS Band im Springer-Verlag.

22. Albert Nymeyer and Joost-Pieter Katoen. Code Generation based on formal BURS theory and

heuristic search. Technical report inf 95-42, University of Twente, 1996.

23. Albert Nymeyer, Joost-Pieter Katoen, Ymte Westra, and Henk Alblas. Code Generation = A* +

BURS. In Tibor Gyimothy, editor, Compiler Construction (CC), volume 1060 of Lecture Notes

in Computer Science, pages 160{176, Heidelberg, April 1996. Springer-Verlag.

24. S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Veri�cation System. In Deepak

Kapur, editor, Proceedings 11th International Conference on Automated Deduction CADE, vol-

ume 607 of Lecture Notes in Arti�cial Intelligence, pages 748{752, Saratoga, NY, October 1992.

Springer-Verlag.

25. J. Palsberg. An automatically generated and provably correct compiler for a subset of ada. In

IEEE International Conference on Computer Languages, 1992.

26. L. Paulson. A compiler generator for semantic grammars. PhD thesis, Stanford University, 1981.

27. Todd A. Proebsting. BURS automata generation. ACM Transactions on Programming Languages

and Systems, 17(3):461{486, May 1995.

28. Richard L. Sites. Alpha Architecture Reference Manual. Digital Equipment Corporation, 1992.

29. W. Waite and G. Goos. Compiler Construction. Texts and Monographs in Computer Science.

Springer, 1985.

30. M. Wand. A semantic prototyping system. SIGPLAN Notices, 19(6):213{221, June 1984. SIG-

PLAN 84 Symp. On Compiler Construction.

31. W. Zimmermann and T. Gaul. On the Construction of Correct Compiler Back-Ends: An ASM

Approach. Journal of Universal Computer Science, 3(5):504{567, 1997.



A Basic Block Graphs

A BB-program is given by a set of basic blocks

T
ar

ge
t M

ac
hi

ne

loc

glob

PC

BP

Figure3. Basic block graphs

where each block consists of a sequence of instruc-

tions where the last one in a block is a jump or

stop. INSTR denotes the universe of instructions.

The data types used in this article are the type

of 64-bit integers INT and the addresses ADDR

on the target machine. VALUE denotes the union

of all universes. Expressions are de�ned on these

types and include only integer expressions and ad-

dress expressions for simplicity. The universe EXPR

denotes all expressions. The complete abstract state

machine speci�cation can be found in [12]. Expres-

sions are evaluated by eval : EXPR ! VALUE de-

�ned recursively over its structure (see ASM1). �A

is the add operation on addresses of the machine,

which is in our case equivalent to �I . Instructions

consist of assignment instructions for di�erent kind

of expressions, jumps and procedure calls (ASM2).

ASM1

eval(local(a)) =̂ content(eval(a))

eval(intconst i) =̂ i

eval(intadd(e1; e2)) =̂ eval(e1)�I eval(e2)

.

.

.

eval(local(i)) =̂ local �A i

eval(global(i)) =̂ global �A i

ASM2
if IP = intassign(a; e) then

content(eval(a)) := eval(e);

IP := NextInstr(IP)

endif

ASM3
if IP = condjump(e; b1; b2) then

if eval(e) then BP := b1;

IP := �rst(b1)

else BP := b2;

IP := �rst(b2)

endif

endif

B The Dec-Alpha Processor Family

In this section we sketch the formal represenation of the DEC-Alpha based on the more or less

informal speci�cation in the manufacturer manual [28].

The formalization shows parts of the

R0 - R31

Integer Registers

content

PC

Floating Point Registers

F0 - F31

Figure4. State target machine

derived abstract state machine spec-

i�cation. It includes the instruction

set, addressing modes, register �les

and the memory, i.e. it models the

programmer's view. More details can

be found in [13] and [8]. The se-

mantics of DEC-Alpha instructions

are given by state transition func-

tions. Dynamic functions of the ab-

stract state machine constitute the

state which consists of

{ the memory represented as a function mem : QUAD ! BYTE ,

{ two register �les, IntReg : REG for the available 32 integer registers and FloatReg : REG for 32

oating-point registers, and

{ the program counter PC : QUAD .



ASM4
LOAD-ADDRESS

if cmd is LDA (ra, disp, rb, high)

then

if high="L"

then Content (ra) := Content (rb) �I Sext16 (disp)

else Content (ra) := Content (rb) �I LogShiftL (Sext16 (disp), 16)

endif

CurInstr := NextInstr (CurInstr)

endif

ASM5
STORE

if cmd is ST (ra, disp, rb, type)

then

Content (Content (rb) �I Sext16 (disp) ) := Content (ra)

CurInstr := NextInstr (CurInstr)

endif

ASM6
ADD-REGISTER

if cmd is ADD (ra, rb, rc, type)

then

Content (rc) := Content (ra) �I Content (rb)

CurInstr := NextInstr (CurInstr)

endif

ASM7
ZERO-BYTES-IMMEDIATE

if cmd is ZBI (ra, immed, rc)

then

Content (rc) := ByteZap (Content (ra), Zext8 (immed))

CurInstr := NextInstr (CurInstr)

endif

The addressable memory unit is a byte. In order to load and store quadwords { the usual integer type

for DEC-Alpha architectures { or oats we introduce the function Content : QUAD[REG ! VALUE

which loads and stores 8 bytes from/into memory. For example, fetching a quadword or oat from

memory is carried out by concatenating 8 subsequent bytes starting at the given address.

The DEC-Alpha is a typical \load-store" architecture, what means that the only memory accessing

functions are load and store instructions, addresses are given register relative. Some examples are

given in ASM4-7, auxiliary functions have the following de�nition:

ByteZap results operand op1 with byte n set to zero, if bit n of operand op2 is set:

(ByteZap(op1 ; op2 ))h8 � n + 7 : 8 � ni =

�
(op1 )h8 � n + 7 : 8 � ni: (op2 )hni = 02

0
8

2: otherwise

Sextk(X) returns operand X sign extended from bit k to 64 bits. Zextk(X) returns operand X zero

extended from bit k to 64 bits.



NuSmv: a reimplementation of Smv

Alessandro Cimatti1 Ed Clarke2 Fausto Giunchiglia1 Marco Roveri1,3

{cimatti,fausto,roveri}@irst.itc.it Edmund.Clarke@cs.cmu.edu
1IRST, 38050 Povo, Trento, Italy

2Carnegie Mellon University, Pittsburgh, Pennsylvania
3DSI, University of Milano, Via Comelico 39, 20135 Milano, Italy

Abstract

This paper describes the first results of a joint project between CMU
and IRST whose goal is to produce a reimplementation of Smv. The idea is
that this new model checker, called NuSmv, should be usable, customizable
and extensible, with as little effort as possible, also by people different from
the developers. A further goal is to produce a system which is very robust,
and close to the standards required by industry.

1 Introduction

This paper describes the first results of a joint project between CMU and IRST
whose goal is to produce a reimplementation of Smv [11]. The new model checker,
called NuSmv, is designed to be a well structured, flexible and documented
platform, and should be usable, customizable and extensible with as little effort
as possible also from people different from the developers. Furthermore, in order
to make NuSmv applicable in technology transfer projects, it was designed to
be very robust, close to the standards required by industry, and to allow for
expressive specification languages.

With respect to Smv, NuSmv is being upgraded along three dimensions,
namely:

• quality of the implementation. This will allow us to have a system
which is very robust, and whose code is well documented, easy to under-
stand and modify.

• system architecture. This will allow us to have a system whose archi-
tecture is very modular (thus allowing the substitution or elimination of
certain modules) and open (thus allowing the addition of new modules). A
further feature is that in NuSmv the user can control, and possibly change,
the order of execution of some of the system modules.



• system functionalities. This will allow us to have a system with more
user functionalities (e.g., multiple interfaces, a simulation mode) and more
heuristics for, e.g., achieving efficiency or partially controlling the state
explosion.

The first two dimensions involve a lot of software engineering and are instru-
mental to the third. NuSmv is currently being beta-tested, and will be shortly
distributed publicly in the Web. Our work will then concentrate on adding new
functionalities, possibly developed by other groups. We briefly describe the im-
plementation, architecture and functionalities of NuSmv in Sections 2, 3, and 4,
respectively.

2 Implementation

The implementation of NuSmv has the following features:

1. NuSmv is written in ANSI C and is POSIX compliant. This makes the
system portable to any platform compliant with these standards. NuSmv

has been throughly debugged with Purify1 to detect memory leaks and
runtime memory corruption errors.

2. The code of NuSmv has been documented following the standards of the
ext system2. This allows for the automatic extraction of the documentation
from the comments in the system code. The documentation (e.g. the
User Manual, the Tutorial, the Programmer Manual) will be available in
different formats (for instance postscript, dvi, pdf, info, html and
txt), directly from the NuSmv interaction shell (see below), via an html

viewer or in hardcopy.

3. A kernel has been isolated which provides the low level functionalities such
as dynamic memory allocation, and manipulation of basic data structures
(e.g. cons cells, hash tables). The kernel also encapsulates the state of the
art CUDD binary decision diagrams (bdd) package developed at Colorado
University [13]. This kernel can be used as a black box, following coding
standards which have been precisely defined.

1Purify is a commercial product for run-time error detection. More information on this tool
can be found at the url “http://www.pureatria.com”.

2The ext system is a set of programs that generate documentation for the World-
Wide Web from specially-formatted C programs. These are being used in a va-
riety of large software projects and have been shown to simplify the programmer’s
task. More information about this documentation tool can be found at the url
“http://www.alumni.caltech.edu/~sedwards/ext”



4. In order to implement a top level interaction shell, the code of NuSmv

was separated in different packages, each implementing a set of related
functionalities. Each package is associated with a set of commands which
can be interpreted by the NuSmv interaction shell. The implementation of
the interaction shell required the definition and implementation of an error
trapping mechanism (Smv exits if any kind of error occurs).

3 Architecture

The architecture of NuSmv is organized in the following modules:

1. The parsing routines, which process a file written in Smv language, build a
parse tree representing the internal format of the input language, and check
its syntactic correctness.

2. The routines for the encoding of data types and finite ranges into boolean
domains. Different encoding policies can be more appropriate for different
kinds of variables (e.g. control path, data path). Currently only the stan-
dard Smv encoding is possible. The separation of the encoding procedures
will allow for the integration in the same architecture of other forms of
encoding, e.g. those used in Word-Level Smv ([5]).

3. The model compiler, which from the parse tree builds the finite state ma-
chine (FSM) representing the model (e.g. the transition relation, the initial
states, the fairness conditions).

4. The routines for constructing and manipulating FSM’s. FSM’s can be rep-
resented in monolithic or partitioned form [10]. The interface to other mod-
ules is given by the primitives for the computation of image and counter-
image of sets of states.

5. The reachability and model checking routines. These are independent of the
particular method used for representing the FSM. They use the routines for
computing image and counter-image which are independent of the actual
partitioning method used.

6. The routines for counterexample and witness generation and inspection.
Counterexamples and witnesses can be produced with different levels of
verbosity, in the form of reusable data structures, and can subsequently be
inspected and navigated.

7. The interaction with the user, which has two modes. The first is the usual
Smv batch mode, where the different computation steps (e.g. parsing,
model construction, reachability, model checking) are activated according



to a fixed, predefined algorithm. The other (new) mode is a top level inter-
action shell. Through the shell the user can activate, as system commands
with different options, various NuSmv computation steps, which can there-
fore be invoked separately, possibly undone, and repeated under different
modalities. These steps include the definition of a FSM, the parsing and
model checking of CTL formulae, and the configuration of the bdd package.
For instance, several automatic variable ordering methods and cache con-
figuration mechanisms can be suitably tuned according to the application.

Most of the features described above were already present in Smv. In NuSmv,
however, all the code has been restructured to be organized according to the
system architecture described in this section. Substantial recoding has been done
in order to achieve the architectural separation of the modules, in particular of the
kernel and the model compiler. New code has been added for the implementation
of the user interface.

4 Functionalities

With respect to Smv, the following functionalities have been added:

1. NuSmv can perform enhanced reachability analysis. Specialized routines
allow for checking invariants, i.e., formulae which must hold uniformly on
the model, on the fly.

2. NuSmv allows for the conjunctive and disjunctive partitioning of the model [10],
and inspection and definition of a suitable order of partitions according to
the heuristics defined in [7] and in [12].

3. NuSmv integrates LTL model checking primitives which are obtained ac-
cording to the algorithm proposed in [6]. LTL can be very important for
selective analysis, as it allows the user to limit the paths of interest with
an expressive language. An LTL formula is automatically converted into a
tableau, which is then used to extend the model in synchronous product.
The result is provided by checking the truth of a CTL formula in the ex-
tended model. The loose integration suggested in [6] allows for using Smv as
a black box by generating an additional module to the source file. However,
for each LTL formula to be verified, the verification process must restart
from scratch from the parsing of the new file. In NuSmv the verification
of LTL formulae is tightly integrated, and only requires the generation of
the corresponding tableau, but not the reconstruction of the whole model.

The following further functionalities are currently under development:



1. A graphical interface (based on TCL/TK), for a more user friendly inter-
action. This interface will allow the user to activate the functionalities of
the system and present graphically the defined model and the results of the
analysis.

2. A sequential input language. The problem with the Smv language is that
it is most amenable for hardware and hardware-like systems. However, the
ability to model software systems is left to the user, and requires the burden
of a complex model generation activity (e.g. the explicit introduction of
program counters). In general this can be hardly acceptable, as many
specification languages (e.g., SDL) are intrinsically sequential. A possible
new input language for NuSmv is VERUS [3].

3. A simulation functionality, which allows the user to acquire confidence with
the correctness of the model before the actual verification of properties.

Some lines of research which are currently under study and whose results we
plan to integrate inside NuSmv are specific reduction techniques for sequential
systems, a set of abstraction techniques which implement certain heuristics de-
veloped in the theorem proving community [9] and that we believe will be very
effective, the extension of CTL model checking to multi-agent systems and secu-
rity applications [1], and the integration of model checking and theorem proving
(SAT in particular) following on the ideas reported in [8].

5 Conclusion

In this paper we describe the first result of a project aiming at the development
of NuSmv, a robust, well designed and flexible model checker that could be
applicable in technology transfer projects. NuSmv has already been used as the
kernel of mbp, a planner based on model checking, able to synthesize reactive
controllers for achieving goals in nondeterministic domains [4]. The development
of mbp was greatly simplified by the architecture and features of NuSmv. Many
ideas about the architecture of NuSmv have been taken from a close analysis of
the implementation and architecture of the VIS system [2]. NuSmv should soon
be available public domain in the Web.

References

[1] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model Checking Multiagent
Systems. To appear in Computational & Logical Aspects of Multi-Agent
Systems. A special Issue of the Journal of Logic and Computation, 1997.
Also IRST-Technical Report 9708-07, IRST, Trento, Italy.



[2] R. K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,
A. Aziz S., Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer,
R.K. Ranjan, S. Sarwary, T.R. Shiple, G. Swamy, and T. Villa. VIS: A
system for Verification and Synthesis. In Rajeev Alur and Thomas A. Hen-
zinger, editors, Proc. Computer Aided Verification (CAV’96), number 1102
in LNCS, New Brunswick, New Jersey, USA, July/August 1996. Springer-
Verlag.

[3] S. Campos, E. Clarke, and M. Minea. The Verus Tool: A quantitative
approach to the formal verification of real-time systems. In Orna Grumberg,
editor, Proc. Computer Aided Verification (CAV’97), number 1254 in LNCS,
Haifa, Israel, June 1997. Springer-Verlag.

[4] A. Cimatti, M. Roveri, and P. Traverso. Strong Planning in Non-
Deterministic Domains via Model Checking. In Proceeding of the Fourth
International Conference on Artificial Intelligence Planning Systems (AIPS-
98), Carnegie Mellon University, Pittsburgh, USA, June 1998. AAAI-Press.

[5] E. Clarke and X. Zhao. Word Level Symbolic Model Check-
ing: A New Approach for Verifying Arithmetic Circuits. Techni-
cal Report CMU-CS-95-161, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213-3891, USA, May 1995.
ftp://reports.adm.cs.cmu.edu/usr/anon/1995/CMU-CS-95-161.ps.

[6] O. Grumberg E. Clarke and K. Hamaguchi. Another Look at LTL Model
Checking. Formal Methods in System Design, 10(1):57–71, February 1997.

[7] D. Geist and I. Beer. Efficient model checking by automated ordering of
transition relation partitions. In D. L. Dill, editor, Proc. Computer Aided
Verification (CAV’94), number 818 in LNCS, Stanford, California, USA,
June 1994. Springer-Verlag.

[8] F. Giunchiglia and R. Sebastiani. Building decision procedures for modal
logics from propositional decision procedures - the case study of modal K.
In Proc. of the 13th Conference on Automated Deduction, Lecture Notes
in Artificial Intelligence, New Brunswick, NJ, USA, August 1996. Springer
Verlag. Also DIST-Technical Report 96-0037 and IRST-Technical Report
9601-02.

[9] F. Giunchiglia and T. Walsh. A Theory of Abstraction. Artificial Intelli-
gence, 57(2-3):323–390, 1992. Also IRST-Technical Report 9001-14, IRST,
Trento, Italy.

[10] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and D.L. Dill. Symbolic
Model Checking for Sequential Circuit Verification. IEEE Transactions on



Computer-Aided Design of Integrated Circuits and Systems, 13(4):401–424,
April 1994.

[11] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

[12] R. K. Ranjan, A. Aziz, B. Plessier, C. Pixley, and R. K. Brayton. Effi-
cient BDD algorithms for FSM synthesis and verification. In IEEE/ACM
Proceedings International Workshop on Logic Synthesis, Lake Tahoe (NV),
May 1995.

[13] F. Somenzi. CUDD: CU Decision Diagram package — release 2.1.2. Depart-
ment of Electrical and Computer Engineering — University of Colorado at
Boulder, April 1997.





XTL: A Meta-Language and Tool

for Temporal Logic Model-Checking

R. Mateescu
?
and H. Garavel

z

?CWI / SEN2 group zINRIA Rhône-Alpes / VASY group

413, Kruislaan 655, avenue de l'Europe

NL-1098 SJ Amsterdam, The Netherlands F-38330 Montbonnot St. Martin, France

Radu.Mateescu@cwi.nl Hubert.Garavel@inria.fr

Abstract

We present a temporal logic model-checking environment based on a new language

called Xtl (eXecutable Temporal Language). Xtl is a functional programming

language designed to allow a compact description of various temporal logic oper-

ators, which are evaluated over a Labelled Transition System (Lts). Xtl o�ers

primitives to access the data values (possibly) contained in the states and labels of

the Lts, as well as to explore the transition relation. The temporal logic operators

are implemented by means of iteration expressions computing sets of states and

sets of transitions. Various useful modal and temporal logics like Hml, Ctl, Ltac

and Actl, have been implemented in Xtl, and several industrial case-studies, such

as the Brp protocol designed by Philips, the Ieee-1394 serial bus standardized by

Ieee, and the Cfs protocol developed by Bull and Inria, have been successfully

validated using the Xtl model-checker.

1 Introduction

The last years have witnessed an increasing application of formal methods in the design

and validation of complex applications, such as communication protocols and distributed

systems. One of the most popular techniques of program veri�cation is the so-called

model-checking. In this approach, the application is �rst described using an appropriate

high-level language, such as Lotos1 [17] or �Crl2 [12]. Next, the program is trans-

lated into a Labelled Transition System model (Lts for short), over which the desired

correctness properties, expressed as temporal logic formulas, are veri�ed by means of

specialized tools called model-checkers.

The literature concerning this area is very rich in results: a large variety of temporal

logics have been de�ned, allowing to capture di�erent kinds of correctness properties, and

several corresponding model-checking algorithms have been proposed. Also, numerous

tool environments allowing veri�cation by model-checking have been developed, such as

Emc [4], Cwb [6], Spin [15], Tav [19], Mec [1], Jack [3], and Concurrency Factory [5],

to mention only a few of them.

However, many of the currently available tools are either dedicated to a particular

description language and/or temporal logic (e.g., the language Promela [15] used in

1Language of Temporal Ordering Speci�cation
2
micro Common Representation Language



Spin, the logic Actl [23] used in Jack, etc.), or they are based on a particular model-

checking algorithm (e.g., the boolean resolution algorithm [2] used in Mec). Therefore,
most of these tools have limited applicability in di�erent contexts, and their adaptation

to another setting may be overwhelming in terms of time and implementation e�ort.

Another important issue is the handling of data values, both at the level of the

description language and of the temporal logic. For instance, the Lts models corre-

sponding to value-passing description languages as Lotos or �Crl contain data values

in the states and/or transition labels. This requires the ability to express and verify tem-

poral properties involving data, e.g., \after a message m has been sent, the same message

m will be eventually received." Although studied in the theorem-proving approach [26],

this issue has received little attention in the setting of automated model-checking.

In this paper, we present an approach to temporal logic model-checking that attempts

to reduce the shortcomings mentioned above. Our method is based on a meta-language

called Xtl (eXecutable Temporal Language), which is a functional programming lan-

guage designed to allow a compact description of temporal logic operators. We use the

term \meta-language" to emphasize that Xtl allows not only to handle, in a uniform

way, the data objects (i.e., types and functions) de�ned in the program to be veri�ed,

but also the states, transitions, and labels of the corresponding Ltsmodel. Furthermore,

since Xtl is a programming language, it can be used to de�ne non-standard temporal

operators and, more generally, to perform any computation on an Lts model (e.g., to

calculate the branching factor, print the list of labels, etc.).

The Xtl model-checker has been developed as part of the Cadp
(C�sar/Ald�ebaran Development Package) protocol engineering toolset [9]. We

describe here the version 1.1 of the Xtl tool, which is currently integrated in Cadp3.
The paper is organized as follows. Section 2 gives an overview of the Xtl language

and shows various examples of temporal logic operators implemented in Xtl. Section 3

briey describes the architecture of the Xtl model-checker. Section 4 presents sev-

eral applications to industrial case-studies. Finally, Section 5 contains some concluding

remarks and directions for future work.

2 Overview of the XTL language

In this section, we �rst describe the (extended) Lts models over which Xtl programs

are interpreted, and next we present the basic Xtl constructs, illustrating their use by

means of various examples. Due to space limitations, we cannot describe here in full

detail the whole Xtl language. A more detailed presentation can be found in [22] and

in the technical documentation of the Cadp toolset.

2.1 Labelled Transition Systems

In order to verify temporal properties of programs written in value-passing description

languages as Lotos and �Crl, we must naturally use an adequate representation of

the corresponding Lts models, the states and labels of which may contain data values.

Such a representation is available within the Cadp toolset as a special �le format called

Bcg (Binary Coded Graphs) [10]. A Bcg �le representing the Lts model of a program

to be veri�ed (denoted by \source program" in the remainder of the paper) contains

essentially the following informations:

3The Cadp toolset can be obtained at the Url http://www.inrialpes.fr/vasy/cadp.html.



� A set of states, each of them being represented as a tuple containing the values of

all the program variables (the so-called state-vector). An initial state is identi�ed.

� A set of actions (also called labels), each of them being represented as a list of

typed values. In Bcg �les generated from Lotos programs, the labels have the

form \G v1 : : : vn," where G is a gate name.

� A transition relation, represented as a list of transitions encoded as tuples of the

form (s1; a; s2), each of them indicating that the program can move from state s1
to state s2 by performing action a.

Besides the above elements, a Bcg �le generated from a source program contains also a

type area and a function area that give access to the types and functions de�ned in the

source program, respectively. Throughout this section, we implicitly consider an Lts
model represented in Bcg format, over which the Xtl constructs will be interpreted.

2.2 Types, expressions, and functions

As we mentioned earlier, Xtl allows to handle, in a uniform way, the data values used in

the source program, as well as the elements of the corresponding Lts model. To achieve

this, the Xtl language allows to de�ne and use objects belonging to the following types.

external types: These are the types de�ned in the source program; they are exported

by the type area of the Bcg �le encoding the Lts. The data values belonging

to these types can be handled using the functions de�ned in the source program,

which are exported by the function area of the Bcg �le.

internal types: These are the types prede�ned in Xtl. The standard prede�ned types

(boolean, integer, character, etc.) are provided, together with their usual op-

erators. Beside these types, there are also the so-called meta-types stateset,

state, edgeset, edge, labelset, and label, denoting the (sets of) states, tran-

sitions, and labels of the Lts, respectively. These types are equipped with the

meta-operators given in Table 1, which allow to access the initial state of the Lts
and to explore the transition relation (some of these operators are inspired from

Dicky's calculus [8]).

Operator Meaning

init : -> state initial state

succ, pred : state -> stateset successors and predecessors of a state

in, out : state -> edgeset incoming and outgoing transitions of a state

source, target : edge -> state origin and destination states of a transition

Table 1: Basic Xtl meta-operators

The basic Xtl expressions are shown in Table 2. Function calls may be either in

pre�x, or in�x notation (in the case of binary operators, such as the prede�ned operations

\+", \*", \<=", etc.). The label-matching expression returns a result of type boolean.

The construct enclosed in its brackets (called action pattern) allows to examine the

structure of a transition label of the Lts and (possibly) to extract the values of its

�elds and bind them to variables. Quanti�ers over �nite domains and comprehensive

set de�nitions have a syntax close to their usual mathematical notation.



The most simple way to implement in Xtl temporal operators expressing action or
state properties is to compute their denotational semantics, i.e., the sets of Lts labels or
states satisfying them. For example, the following expression computes the set of labels
corresponding to the emission of a signal with di�erent source and destination addresses
(identi�ers are in upper-case letters and keywords in lower-case):

{ L:label where L -> [ SIGNAL ?S:Addr ?D:Addr where S <> D ] }

The variables S and D, initialized by pattern-matching with the corresponding values

contained in the label, are used in the \where" clause, which allows additional �ltering

using a boolean condition.

Expression Meaning

F (E1; :::; En) pre�x function call

E1 F E2 in�x function call

E -> [ G ?x:T !E1 [where E2] ] label matching

exists x:T in E end exists existential quanti�er

forall x:T in E end forall universal quanti�er

f x:T where E g set in comprehension

let x:T:=E in

E1 variable de�nition

end let

if E then E1

else E2 conditional

end if

for [x0:T0] [in x1:T1] [while E1]

apply F

from E2 iteration

to E3

end for

Table 2: Summary of the basic Xtl expressions

Used together with the quanti�ers, the set de�nition construct allows to easily express
modal operators. For instance, the h�i' modality of the Hennessy-Milner logicHml [14]
can be implemented by the Xtl function below:

def Dia (A:labelset, F:stateset) : stateset =

{ S:state where

exists T:edge among out (S) in

(label (T) among A) and (target (T) among F)

end_exists

}

end_def

The parameters A and F denote the sets of labels and states satisfying � and ', respec-

tively. The function call \Dia (A, F)" returns the states satisfying h�i', i.e., the states

having an outgoing transition whose label satis�es � and whose target state satis�es '.
The \let" and \if" constructs shown in Table 2 have their usual meaning (e.g., as in

Ml). The evaluation of the iteration construct \for", which allows to perform repeated
computations, proceeds as follows. We �rst assume that the declaration x0:T0 is present,
but the \in" and \while" clauses are absent. The semantics of \for" uses an implicit
variable vacc (called accumulator) initialized with the value of E2. For each value of x0
(called iteration variable) in the �nite domain T0, an iteration is performed, that consist



in evaluating the expression F (vacc ; E3) and assigning it to vacc (note that F must be
a binary function). The result of the \for" expression is the value of vacc after the last
iteration. For example, the following Xtl expression computes the maximal branching
factor (i.e., the maximal number of transitions going out of a state in the Lts):

for S:state

apply max

from 0

to card (out (S))

end_for

where max denotes the maximum of two integer numbers and card gives the number of

elements of a transition set.

Optionally, the \in x1:T1" clause allows to give a name x1 to the accumulator vacc
so that it can be referenced in E1 and/or E3. If present, the \while E1" clause allows to

control the execution of the \for" expression: the iterations are performed as long as the

boolean expression E1 (re-evaluated before each iteration) remains true. An absence of

the iteration variable x0 means a \forever" loop: in this case, the iterations are stopped

using the \while E1" clause (which must be present in order to ensure termination).
Using the \for" construct, temporal operators can be de�ned in a compact form.

Thus, the following Xtl function implements the operator EF�', which is a derived
modality of Actl [23]:

def EF_A (A:labelset, F:stateset) =

for in X:stateset

while X <> (F or Dia (A, X))

apply or

from false

to F or Dia (A, X)

end_for

end_def

A state satis�es EF�' if it is the origin of a path leading, via zero or more actions

satisfying �, to a state satisfying '. This can be characterized as the least solution

of the �xed point equation X = ' _ h�iX , that is iteratively computed by the \for"

expression above. Note the overloading of the boolean operators or and false, that

denote the union and the empty set of states, respectively. Alternately, the EF�'

operator could be de�ned using a recursive Xtl function.

2.3 Macros, libraries, and programs

In order to express temporal properties involving data conveniently, a higher-order mech-
anism for handling predicates containing free variables is needed. For this purpose, we
incorporated in Xtl a macro-expansion mechanism, which covers most practical user
needs and can be implemented simply and e�ciently. The following example of Xtl
macro-de�nition implements the [�]' modality of Hml, characterizing the states from
which all outgoing actions satisfying � lead to states satisfying ':

macro Box (A, F) =

{ S:state where

forall T:edge among out (S) in

if T -> [ A ] then target (T) among F else true end_if

end_forall

}

end_macro



The A and F parameters above denote (the textual representation of) an action pattern
and an expression of type stateset. A macro call \Box (<textA>, <textF>)" is re-
placed in the Xtl program by the body of the macro, in which the occurrences of A
and F have been textually substituted with <textA> and <textF>. For instance, the
following Xtl macro call evaluates the set of states from which every message M sent on
gate SEND can be potentially received on gate RECV:

Box (SEND ?M:Msg, EF_A (true, Dia (RECV !M, true)))

where Dia is a macro implementing the h�i' modality and EF A is the function de�ned

in Section 2.2. The variable M, which extracts the message contained in the SEND labels,

is visible in the second argument of the Box operator; this is ensured by the static

semantics of the \if" expression used in the body of the Box macro-de�nition above.

Note also that the type Msg is external, i.e., it is de�ned in the source program.

Xtl allows the macro-de�nitions to be overloaded: several macros having the same

name, but di�erent number of parameters, may be used in the same scope. This is

convenient for de�ning derived temporal operators having the same name, for instance

the pot('1; '2) and pot(') operators of Ltac [25], which are similar to the E['1U'2]

and EF' operators of Ctl [4], respectively.
Another useful feature is the possibility to include in an Xtl program other Xtl

�les, typically containing libraries of temporal operators. This allows to reuse existing
Xtl code and also to provide di�erent implementations of the same temporal logic (see
Section 4). For example, the following construct denotes the textual inclusion of an Xtl
source �le implementing the Actl temporal logic:

library actl.xtl end_library

An Xtl program consists of an expression (the program's body) preceded by an optional

list of macro-de�nitions and library inclusions.

3 Implementation

We developed a model-checker for Xtl as part of the Cadp protocol engineering toolset.
The tool takes as input an Xtl program and an Lts model encoded in Bcg format,

evaluates the program over the Lts and produces the results.

The architecture of the model-checker is shown in Figure 1. First, the Xtl program
is processed by an auxiliary tool called expander , that textually expands the macro-

de�nitions and includes the Xtl libraries used in the program. The resulting program

(containing \pure" Xtl code, i.e, without macro calls) is translated into a C program,

which is then compiled and linked with the Bcg libraries. Note that the information

contained in the Bcg �le is used also during the static analysis, since the types and

functions de�ned in the source program (exported by the Bcg �le) can be used in the

Xtl program. The object �le obtained in this way is executed and the results are

obtained on the standard Unix output stream.

The version 1.1 of the Xtl model-checker is available on Sun workstations running

SunOs or Solaris and PCs running Linux. The syntax analyzer has been implemented

using the Syntax4 compiler generator. The semantics analyzer has been written in

Lotos abstract data types, which are translated into C code using the C�sar.adt
compiler of the Cadp toolset. The expander, the code generator, and all the interfacing

4
Syntax is a trademark of Inria.



code with the Bcg environment have been written in C. The overall implementation

consists of about 27,000 lines of code.

XTL
programexpansion

LTS
model

syntax
analysis

abstract
tree

code
generation

C
compilation

object
code

C
code

execution

environment
BCG

semantic
analysis

environment
UNIX

results

environment
XTL

handling
error

Figure 1: Architecture of the Xtl model-checker

Besides developing the model-checker, we also provided Xtl libraries implementing

the operators of Hml [14], Ctl [4], Ltac [25], Actl [23], and the modal �-calculus [18].

All these operators can be naturally used in conjunction with the built-in Xtl data-

handling facilities in order to express temporal properties involving data.

4 Applications

An initial version 1.0 of theXtlmodel-checker has been used to verify several Lotos de-
scriptions of small size, such as the alternating bit protocol, a leader election algorithm,

and various mutual exclusion algorithms. These exercises, together with the experience

of using Xtl for teaching purposes at the University Joseph Fourier of Grenoble, pro-

vided valuable feedback, enabling us to improve the tool from the initial version 1.0 to

the current version 1.1. So far, this version of the Xtl model-checker has been used to

validate three medium-sized industrial case-studies.



Bounded Retransmission Protocol: TheBrp protocol has been designed by Philips
and is currently used in the remote control devices of television sets. It implements

the transmission of (large) data packets over an unreliable communication medium

by splitting them in (small) chunks that are sent sequentially. Whenever a chunk

is lost, it is retransmitted over the communication medium. If a (�xed) maximal

number of retransmissions is reached, the protocol gives up the transmission of

the packet, appropriately informing the sender and the receiver. This protocol

was proposed by Jan Friso Groote (Cwi, Amsterdam) as a veri�cation exercise

intended for the comparison of several formal methods.

Starting from a �Crl description given in [13], we produced a Lotos description
of the Brp protocol, for which we identi�ed a set of 21 safety and liveness prop-

erties, expressed in Xtl using the library of Actl operators combined with data.

These properties have been successfully veri�ed, using the Xtl model-checker,

on di�erent instances of the protocol, obtained by giving di�erent values to the

maximal number of retransmissions and to the packet length [21].

Link Layer of the IEEE-1394 Serial Bus: The Ieee-1394 serial bus (\FireWire")

is a high-speed bus particularly adapted to data transmission for multimedia de-

vices connected to computers. This bus, standardized by Ieee, is currently used by
numerous constructors, such as AT&T, Canon, Compaq, Hewlett-Packard, Ibm,
Kodak, Microsoft, Sony, Texas Instruments, etc.

We carried out the validation of the asynchronous part of the link layer protocol

of Ieee-1394. Based upon a �Crl description provided by Bas Luttik [20] and

upon the Ieee standard [16], we produced an E-Lotos description of this part

of the protocol, which was subsequently translated in Lotos using the Traian
prototype compiler of the Cadp toolset. We translated in Xtl (using the library

of Actl operators extended with data) the 5 correctness properties of the protocol

stated in natural language by Luttik. These properties have been veri�ed, using

the Xtl tool, on several instances of the protocol, obtained for di�erent numbers

of nodes connected to the bus and for various message scenarios. This allowed us

to detect and correct a potential deadlock occurring in the protocol after about 50

transitions from the initial state [27].

Cluster File System: Cfs is a distributed �le system developed by Bull and Inria
on top of the Arias shared memory architecture [7]. Cfs was designed both to

validate the Arias system itself and to experiment with distributed applications

that use shared �les as a programming model.

The validation of the migratory �le coherency protocol of Cfs (referred to as the

Cfs protocol in the sequel) has been recently carried out by Charles Pecheur.

First, he produced a Lotos description modelling both the Cfs protocol and the

Arias service primitives used by it. Next, he speci�ed a set of 15 safety, liveness,

and coherency properties (expressed as Actl formulas with data) of the control

level (i.e., involving only the calls to Cfs synchronization primitives) and of the

data level (i.e., taking into account also the access and modi�cation of the data

�les). Finally, he implemented in Xtl a new library of Actl operators, able to

produce diagnostic sequences explaining the truth value of a formula using theXtl
tool. These properties have been veri�ed on various scenarios of Cfs, obtained for

di�erent application con�gurations on top of the Cfs protocol [24].

These experiments con�rm the usefulness of the Xtl language: temporal properties

involving data can be expressed in a natural way using directly the notations of the



source program. Although the action-based operators ofActl are often enough powerful
to express the safety and liveness properties encountered in practice, there are situations

(e.g., some of the properties of the Brp protocol) that can be handled in an easier way

using more powerful constructs, such as regular expressions. These can be implemented

in Xtl by means of their �xed point characterizations.

5 Conclusion and future work

Formal methods have proved their usefulness in the design of complex, distributed ap-

plications. Among these methods, model-checking veri�cation techniques are simple to

use and completely automated, although limited to �nite-state systems.

We presented in this paper a model-checking environment based on a special language

called Xtl, dedicated to the description of temporal properties involving data. A model-

checker for Xtl has been developed, and several widely-used temporal logics like Hml,
Ctl, Ltac, Actl, and the �-calculus, have been implemented in Xtl. The version 1.1

of the model-checker is available as part of the Cadp protocol engineering toolset, and

has been successfully used to validate several industrial case-studies [21, 27, 24].

These experiments are encouraging, con�rming the advantages of the approach

adopted in designing Xtl, which allows to combine temporal operators and data-

handling constructs. Moreover, since Xtl is a programming language, it allows the

user to implement new temporal logics or to extend existing ones with new operators.

Indeed, Charles Pecheur developed in Xtl a new library of Actl temporal operators,

able to produce diagnostic sequences [24].

The work presented here can be extended in several directions. Firstly, our experience

shows that additional data types (such as sequences and subtrees of the Lts) are needed
in order to facilitate the implementation of temporal operators with diagnostic features.

Secondly, there is still room for improving the performances of the model-checker: Xtl
being a functional language, the code generator should be optimized using appropriate

storage allocation techniques for the variables containing sets of states and transitions

of the Lts. Finally, the implementation of on-the-y model-checking algorithms, which

do not require to generate entirely the Lts before evaluating a temporal formula, can

be envisaged along the lines described in [22], by using the Open/C�sar approach to

on-the-y veri�cation [11].

References

[1] A. Arnold, D. B�egay, and P. Crubill�e. Construction and Analysis of Transition Systems

with MEC. World Scienti�c, 1994.

[2] A. Arnold and P. Crubill�e. A Linear Algorithm to Solve Fixed-Point Equations on Tran-

sition Systems. Information Processing Letters, 29:57{66, 1988.

[3] A. Bouali, S. Gnesi, and S. Larosa. The Integration Project for the JACK Environment.

Bulletin of the EATCS, 54:207{223, 1994.

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic Veri�cation of Finite-State Con-

current Systems using Temporal Logic Speci�cations. ACM Transactions on Programming

Languages and Systems, 8(2):244{263, 1986.

[5] R. Cleaveland, P. M. Lewis, S. A. Smolka, and O. Sokolsky. The Concurrency Factory:

a Development Environment for Concurrent Systems. In R. Alur and T. A. Henzinger,

editors, Proceedings of CAV'96, LNCS 1102, pages 398{401, 1996.



[6] R. Cleaveland, J. Parrow, and B. Ste�en. The Concurrency Workbench. In J. Sifakis,

editor, Automatic Veri�cation of Finite State Systems, pages 24{37. LNCS 407. 1989.

[7] P. Dechamboux, D. Hagimont, J. Mossiere, and X. Rousset de Pina. The Arias Distributed

Shared Memory: an Overview. LNCS 1175, 1996.

[8] A. Dicky. An Algebraic and Algorithmic Method for Analysing Transition Systems. The-

oretical Computer Science, 46(2-3):285{303, 1986.

[9] J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu.

CADP (C�SAR/ALDEBARAN Development Package): A Protocol Validation and Ver-

i�cation Toolbox. In R. Alur and T. A. Henzinger, editors, Proceedings of CAV'96, LNCS

1102, pages 437{440, 1996.

[10] H. Garavel. Binary Coded Graphs |De�nition of the BCG Format (version 1.0). Technical

report, INRIA Rhône-Alpes, 1995.

[11] H. Garavel. OPEN/C�SAR: An Open Software Architecture for Veri�cation, Simulation,

and Testing. In B. Ste�en, editor, Proceedings of TACAS'98, LNCS, 1998. Full version

available as INRIA Research Report RR-3352.

[12] J. F. Groote and A. Ponse. The Syntax and Semantics of �CRL. Technical Report CS-

R9076, CWI, Amsterdam, 1990.

[13] J. F. Groote and J. C. van de Pol. A Bounded Retransmission Protocol for Large Data

Packets. Technical Report Logic Group Preprint Series 100, Utrecht University, 1993.

[14] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency. Journal

of the ACM, 32:137{161, 1985.

[15] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991.

[16] IEEE. Standard for a High Performance Serial Bus. IEEE Standard 1394-1995, Institution

of Electrical and Electronic Engineers, 1995.

[17] ISO/IEC. LOTOS | A Formal Description Technique Based on the Temporal Ordering

of Observational Behaviour. International Standard 8807, ISO | OSI, Gen�eve, 1988.

[18] D. Kozen. Results on the Propositional �-calculus. Theoretical Computer Science, 27:333{

354, 1983.

[19] K. G. Larsen. E�cient Local Correctness Checking. In G. v. Bochmann and D. K. Probst,

editors, Proceedings of CAV'92, LNCS 663, pages 30{43, 1992.

[20] B. Luttik. Description and Formal Speci�cation of the Link Layer of P1394. In I. Lovrek,

editor, Proceedings of the 2nd COST 247 Int. Workshop on Applied Formal Methods in

System Design, 1997. Also available as CWI Report SEN-R9706.

[21] R. Mateescu. Formal Description and Analysis of a Bounded Retransmission Protocol.

In Z. Brezo�cnik and T. Kapus, editors, Proceedings of the COST 247 Int. Workshop on

Applied Formal Methods in System Design, pages 98{113. University of Maribor, Slovenia,

1996. Also available as INRIA Research Report RR-2965.

[22] R. Mateescu. V�eri�cation des propri�et�es temporelles des programmes parall�eles. PhD

Thesis, Institut National Polytechnique de Grenoble, 1998. To appear.

[23] R. De Nicola and F. W. Vaandrager. Action versus State based Logics for Transition

Systems. In Proceedings of Semantics of Concurrency, pages 407{419. LNCS 469. 1990.

[24] C. Pecheur. Advanced Modelling and Veri�cation Techniques Applied to a Cluster File

System. Research Report 3416, INRIA Rhoône-Alpes, 1998.

[25] J-P. Queille and J. Sifakis. Fairness and Related Properties in Transition Systems | A

Temporal Logic to Deal with Fairness. Acta Informatica, 19:195{220, 1983.

[26] J. Rathke and M. Hennessy. Local Model Checking for a Value-Based Modal �-calculus.

Report 5/96, School of Cognitive and Computing Sciences, University of Sussex, 1996.

[27] M. Sighireanu and R. Mateescu. Veri�cation of the Link Layer Protocol of the IEEE-

1394 Serial Bus (\FireWire"): an Experiment with E-LOTOS. Springer Int. Journal on

Software Tools for Technology Transfer (STTT), 1998. To appear.



New Generation of UPPAAL ?

Johan Bengtsson2 Kim Larsen1 Fredrik Larsson2

Paul Pettersson2 Yi Wang 2 Carsten Weise1

1 BRICS, Dept of Computer Science, Aalborg University, Denmark.
2 Department of Computer Systems, Uppsala University, Sweden.

Abstract. Uppaal is a tool-set for the design and analysis of real-time systems.

In [6] a relatively complete description of Uppaal before 1997 has been given.

This paper is focused on the most recent developments and also to complement

the paper of [6].

1 UPPAAL's Past: the History

The �rst prototype of Uppaal, named Tab at the time, was developed at

Uppsala University in 1993 by Wang Yi et al. Its theoretical foundation was

presented in FORTE94 [11] and the initial design was to check safety properties

that can be formalized as simple reachability properties for networks of timed

automata. The restriction to this simple class of properties was in sharp contrast

to other real-time veri�cation tools at that time, which where developed to

check timed bisimularities or formulae of timed modal �-calculi. However, the

ambition of catering for more complicated formulae lead to extremely severe

restrictions in the size of systems that could be veri�ed by those tools.

The essential ideas behind Tab were to represent the state space of timed

systems by simple constraints and to explore the state space by constraint

manipulation. In 1995, Aalborg University joined the development, and shortly

after a C++-version with e�cient operations on constraints and checks for inclu-

sion between constraints was �nalized. Tab was subsequently renamed Uppaal

with Upp standing for Uppsala and aal for Aalborg.

Since its �rst release in 1995, Uppaal has in numerous case-studies proved

itself useful in the analysis of safety properties of extremely complicated system

descriptions. To our knowledge, Uppaal has at present over one hundred users

in both academia and industry. However, the number of downloads of Uppaal

binary code from the Uppaal WWW-page is much larger according to the

record of our WWW-server.

?

Uppaal is developed in collaboration between the Department of Computer Systems at

Uppsala University, Sweden and BRICS (Basic Research in Computer Science, Centre of

the Danish National Research Foundation) at Aalborg University, Denmark. The people

involved with the development are Wang Yi, Kim Larsen, Paul Pettersson, Johan Bengts-

son, Fredrik Larsson, K�are J. Kristo�ersen, Carsten Weise, Per S. Jensen, and Thomas M.

S�rensen.



For a detailed description for Uppaal before 1997, we refer to [6]. During

1997, Uppaal has been greatly improved e.g. the veri�cation time for the well

known Philips audio protocol [1] is reduced from 304 seconds to 5.5 seconds

using the same hardware. In Sections 2 and 3 we report on this evolution and on

the most recently added model-checking features such as facilities for checking

time-bounded as well as (ordinary) liveness properties.

Right from the beginning Uppaal has been applied in a number of case

studies including an rapidly increasing number of case-studies with industrial

collaboration. To meet requirements arising from the case studies, Uppaal has

been extended with various features leading to the current distributed version.

In Section 4 we o�er a brief summary of recent case-studies undertaken by

Uppaal.

The success of Uppaal e�ciency-wise has lead to a strong demand of a

reimplementation of the graphical user interface. In particular, the veri�cation

engine of Uppaal now routinely handles models which are too big to be dis-

played in full on a single screen: thus the ability to perform editing as well as

simulation, while focusing only on a selection of relevant components is highly

needed. The present distribution of Uppaal contains two separated graphical

tools: an AutoGraph-based editor and a graphical simulator implemented in

XForms and Motif. From a users perspective one single graphical interface

would be preferable. In Section 5 we report on a new Uppaal graphical user

interface currently under implementation addressing these points.

2 UPPAAL's New Languages

Two major improvements have been made on the modeling and speci�cation

languages. First, we have introduced two new types: bounded integer and array

of such integers, to simplify modeling. Second, the veri�er has been extended

to handle liveness properties in addition to reachability properties.

Bounded integers and arrays of integers Instead of using a default domain

derived from the hardware implementation of integers, we now allow the user to

specify the domains of each variable. However, if no domain is given by the user,

a default domain (currently [�32768; 32767]) will be assigned to the variable.

When assigning a value to a variable, the value is \wrapped" into the correct

domain.

In order to ease the modeling task, the class of integer expressions handled

by the veri�er have been extended. As shown in Figure 1, the new veri�er can

handle general expressions over integer variables and constants. To allow more

condensed models, arrays of integers and arithmetic if-statements have been

added to the language. The syntax used for there constructs is the same as in



the C programming language, i.e. var[5] denotes the sixth element of the array

var and (x<=5:2?3) is 2 if the value of x is at most 5, and 3 otherwise.

IExp ! Id j Id [ IExp ] j Nat j - IExp j ( IExp ) j IExp Op IExp j ( IRel ? IExp : IExp )

IRel ! IExp RelOp IExp

Op ! + j - j * j /

RelOp! <= j >= j == j != j < j >

Fig. 1. Syntax for integer expressions

Specifying liveness properties In addition to the reachability properties

checked by the olderUppaal versions, all versions above 2.12 are also capable of

checking simple liveness properties. The liveness properties that can be checked

are of the form 92P and 83P , where P is a \local" property of the same kind

as the properties handled by the reachability checker.

The actual checking is done by searching for a time divergent path from the

initial state, where P holds in all states (in case of a 92 property), or where

:P holds in all states (in case of a 83 property).

Checking Deadlock-Freedom and Consistency In addition to the updates

in the modeling and speci�cation languages, the new version of Uppaal also

contains some features to simplify debugging. During veri�cation the tool re-

ports all inconsistent states (i.e. states where the location invariant is violated

when the location is entered) and all deadlocked states (i.e. states where no

discrete transition will be possible in the future) encountered.

3 UPPAAL's New Heart

In our previous work, before 1997, we have developed and implemented various

techniques for optimizing the space- and time-performance of the reachability

engine of Uppaal [7]. The two major optimizations are an algorithm for com-

paction of constraints and a control structure analysis technique that identi�es

and discards states that are not necessary to ensure termination of the reacha-

bility algorithm [8]. When combined the two techniques yield signi�cant space

savings1 and (usually) improved time-performance.

During 1997, a large part of the source code of the Uppaal model checker

was rewritten and optimized. Surprisingly, small obvious improvements on the

1 The space saving on the examples in [8] are between 75% and 94%.



0

100

200

300

400

500

600

700

800

2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16

T
im

e 
(s

)

Version

Audio
B&O

Dacapo

Fig. 2. Time benchmark for Uppaal version 2.00{2.17.

source code, often yield huge improvements in e�ciency. The most widely dis-

tributed version of Uppaal is version 2.02, which is also the version presented

in the paper [6]. However, the most e�cient version is the current one 2.17.

In Figure 2 and 3, we illustrate the improvement of time and memory usage

of Uppaal from version 2.002 to 2.173 in terms of three case studies; the Philips

audio control protocol with bus collision [1], the B&O protocol [5] and the Dacpo

protocol [10]. All versions of Uppaal used in the test were compiled using GCC

version 2.7.2.3 and the benchmark was made on a Pentium-II/333 system with

128 MB of main memory, running RedHat Linux 5.0.

In particular, we notice that for both of the time and space usage diagrams,

there is a breaking point in version 2.06 compared with the proceeding version.

This is due to a number of of internal improvements in the source code including

reimplementation of the main data structure i.e. the passed-list.

In the following, we mention a few recent improvements in the implemen-

tation.

2 Version 2.00 is dated Feb 1997.
3 Version 2.17 was released in March 1998.



0

10

20

30

40

50

60

70

80

90

2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16

S
pa

ce
 (

M
B

)

Version

Audio
B&O

Dacapo

Fig. 3. Space benchmark for Uppaal version 2.00{2.17.

Improved hash function The most critical data structure in Uppaal is

the so called passed list. It holds all symbolic states visited during the state

space exploration. It is mainly to guarantee termination and to avoid repeated

searching. It is often the case that a large portion of time usage is spent on

searching through the list.

The passed list is implemented as a hash table with symbolic states as

entries. In the previous version of the veri�er, the hashing was done exclusively

on the control nodes of the automata. Now the hash function also takes the

values of data variables into account. The hash function assigns a unique integer

to every combination of control nodes and the current values of data variables.

This is possible because the number of control nodes is �nite and all variables

have a given domain i.e. a �nite number of di�erent values. This integer can

be very large, much larger than the size of the hash table, which means that

collisions can still occur even though the integer is unique for each combination.

Optimized constraint manipulation Uppaal represents the symbolic states

of a real-time system as constraints over clocks. To keep the constraint manipu-

lation e�cient, Uppaal transforms every constraint system to a canonical form.



This transformation is the most time-consuming of all the operations on the

constraints.

There is no way to check if a given constraint system already has this canon-

ical representation which is less expensive as the transformation itself. In the

previous version of Uppaal it happened quite often that the transformation

was unnecessary, but in the new version no constraint system already on the

canonical form is transformed. This leads to better performance, and is one of

the explanations of the big performance leap between version 2.05 and 2.06.

4 UPPAAL's New Applications

Uppaal is frequently being applied in various case-studies, both in industry

and academia. The two main application areas are real-time controllers and

real-time protocols, and the purpose is often to model and analyze existing

systems. However, the tool has also been applied to support design and analysis

of systems under development. In particular, it has been used to support the

design and synthesis of a gear controller that will operate in a modern vehicle. In

the following we summarize this and some other recent applications of Uppaal.

Recently H. Bowman et. al. applied Uppaal to model and automatically

verify an existing lip synchronization algorithm [2]. Such algorithms are used to

synchronize multiple information streams sent over a communication network,

in this case, audio and video streams of a multimedia application. The pre-

viously published algorithm speci�cation is modeled and veri�ed in Uppaal.

Interestingly, the veri�cation reveals some errors in the synchronize algorithm,

e.g. that deadlock situations may occur before pre-described error states are

reached after an error.

Another application of Uppaal in the context of audio/video protocols is

reported in [5]. In this industrial application, Uppaal is used to model and

prove the correctness of a protocol developed by Bang & Olufsen. The protocol,

which is highly dependent on real-time, is used to transmit messages between

audio/video components over a single bus. Though it was known to be faulty,

the error was not found using conventional testing methods. Using Uppaal, an

error-trace is automatically produced which revealed the error, furthermore, a

correction is suggested and automatically proved using Uppaal.

D'Argenio et. al. applied Uppaal to the bounded retransmission protocol

protocol [3, 4]. The protocol was proposed and studied at COST 247, Interna-

tional Workshop on Applied Formal Methods in System Design. It is based on

the alternating bit protocol, but allows for a bounded number of retransmis-

sions, as it is intended for use over lossy communication channels. It is reported

that a number of properties of the protocol were automatically checked with

Uppaal. In particular, it is shown that the correctness of the protocol is de-

pendent on correctly chosen time-out values.



In [10] Uppaal is used to formally verify the so-called Dacapo protocol, a

time division multiple access (TDMA) based protocol intended for local area

networks that operate in modern vehicles. The study focused on analyzing the

start-up of the protocol and on deriving an upper-time bound for the start-up

to complete. It is proved that a network consisting of three or four nodes is

guaranteed to eventually become operational and the upper time-bounds for

the start-up to complete is also synthesized. Further, the start-up is shown to

eventually complete for networks with a clock drift corresponding to 1/10000

between the nodes.

Another application also within the automotive industry is described in [9].

Here Uppaal is applied to support the development of a system, rather than

to analyze an existing system. The system is a prototype gear controller devel-

oped at Mecel AB in a collaboration project with the Department of Computer

Systems at Uppsala University. The gear controller implements a gear change

algorithm in the control system of a modern vehicle. It is designed to operate

in a given surrounding environment and to satisfy a number of informal re-

quirements prescribed by the engineers at Mecel AB. In the development, the

simulator of Uppaal was frequently used to validate the behavior of the inter-

mediate controller descriptions. The �nal description was veri�ed to satisfy 46

logical properties derived from the informally prescribed requirements.

5 UPPAAL's New Look

Apart from e�ciency, the graphical user interface of Uppaal, which allows

easy editing of speci�cations and visualization of simulation runs, is one of the

strong points ofUppaal. In an upcoming major revision, the graphical interface

will be substantially strengthened. This comes together which an extension of

Uppaal's input format, which will help to ease the job of modeling complex

systems.

The current distribution of Uppaal (see [6]) consists of several programs

like checkta (the syntax checker) and verifyta (the modelchecker) which con-

stitute Uppaal's engine, i.e. the algorithmic side of Uppaal. Further xuppaal

is a graphical interface using XForms, which calls the di�erent programs for

the veri�cation and has a built-in graphical interface for visualization of simu-

lation runs as well as an editor for the requirements speci�cation. AutoGraph

is used as a graphical editor for Uppaal speci�cations, and a special program

called atg2ta is needed to translate AutoGraph's generic format into Up-

paal's more convenient .ta format.

A major disadvantage of this approach is that the look-and-feel of Au-

toGraph as the graphical editor di�ers widely from the visualization in the

simulator. Therefore Uppaal98 (see Fig. 4) will have a completely re-designed



internal protocol

Version Control

Model Checker

Syntax Checker

GUI - graphical user interface Uppaal’98 Engine
(Client) (Server)

Simulator

Graphical Model Editor

Specification Editor

Single Stepper

Fig. 4. Uppaal98.

graphical user interface (GUI) unifying the graphical editor and the simula-

tor. This new version is built as a server/client architecture, with Uppaal's

engine as the server and the GUI as the client. As integral parts of the new

GUI, the graphical editor and the simulator share the same look-and-feel, which

is mainly inspired by the current comfortable, easy-to-use version of xuppaal.

Additionally the GUI will also include a speci�cation editor and support for ver-

sion control and documentation of the models and speci�cations. The heart of

the server, which includes the syntax and the model checker, is a single stepper

which allows to step through the reachability graph of a system. The single step-

per is heavily used by the GUI's simulator. In addition to these improvements,

the new approach also solves some inconsistencies between the three parts of

Uppaal's current distribution, which lead to problems in the maintenance and

even in the usage.

The new GUI is written in JavaTM , making it available for all major plat-

forms. The client/server architecture allows Uppaal98 to be run either com-

pletely locally, client and server residing on the same machine, or to use the

graphical interface and the Internet to access a host running the server. By this

Uppaal98 can be directly used via the world wide web, and it especially can

be used from platforms on which an executable for the server is not available.

The new GUI also extends Uppaal's modeling language, so that generic

processes can be modeled in order to ease re-usability. The new extended for-

mat ofUppaal's language is downward compatible with the current .ta format,

so that existing examples will still work with Uppaal98. The graphical infor-

mation needed by the graphical editor and the simulator are now stored in a

new format internal to the new GUI, so that the .atg �les are no longer be

needed. A translator from .atg to the new format will be available for down-

ward compatibility.



A major feature of the simulator is the possibility to blind out parts of the

system, so that in a simulation of a large system the user can concentrate on

the parts he is really interested in.

At the time being, an internal version of the new GUI is up and running,

which is implemented in a generic way, using design patterns from object ori-

ented programming. This makes the GUI exible to changes and future ex-

tensions. This version has been implemented by Carsten Lindholst and Peter

Lindstr�m, two computer science students, and Carsten Weise. The server side

has been implemented by Frederik Larsson. A public version of Uppaal98 is

anticipated to be available in July.

References

1. Johan Bengtsson, David Gri�oen, K�are Kristo�ersen, Kim G. Larsen, Fredrik Larsson,

Paul Pettersson, and Wang Yi. Veri�cation of an Audio Protocol with Bus Collision Using

Uppaal. In Rajeev Alur and Thomas A. Henzinger, editors, Proc. of 9th Int. Conf. on

Computer Aided Veri�cation, number 1102 in Lecture Notes in Computer Science, pages

244{256. Springer{Verlag, July 1996.
2. H. Bowman, G. Faconti, J.-P. Katoen, D. Latella, and M. Massink. Automatic Veri�cation

of a Lip Synchronisation Algorithm using Uppaal. In In Proc. of the 3rd International

Workshop on Formal Methods for Industrial Critical Systems, 1998.
3. P.R. D'Argenio, J.-P., Katoen, T. Ruys, and J. Tretmans. Modeling and Verifying a

Bounded Retransmission Protocol. In Proc. of COST 247, International Workshop on

Applied Formal Methods in System Design, 1996. Also available as Technical Report CTIT

96-22, University of Twente, July 1996.
4. P.R. D'Argenio, J.-P. Katoen, T.C. Ruys, and J. Tretmans. The bounded retransmission

protocol must be on time! In Proc. of the 3rd Workshop on Tools and Algorithms for

the Construction and Analysis of Systems, number 1217 in Lecture Notes in Computer

Science, pages 416{431. Springer{Verlag, April 1997.
5. Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal Modeling and

Analysis of an Audio/Video Protocol: An Industrial Case Study Using Uppaal. In Proc.

of the 18th IEEE Real-Time Systems Symposium, December 1997.
6. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. International

Journal on Software Tools for Technology Transfer, 1997.
7. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal: Status and developments. Num-

ber 1254 in Lecture Notes in Computer Science, pages 456{459. Springer{Verlag, June

1997.
8. Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. E�cient Veri�cation of

Real-Time Systems: Compact Data Structures and State-Space Reduction. In Proc. of

the 18th IEEE Real-Time Systems Symposium, pages 14{24, December 1997.
9. Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of a Gear-

Box Controller. In Proc. of the 4th Workshop on Tools and Algorithms for the Construc-

tion and Analysis of Systems, Lecture Notes in Computer Science, March 1998.
10. Henrik L�onn and Paul Pettersson. Formal Veri�cation of a TDMA Protocol Startup

Mechanism. In Proc. of the Paci�c Rim International Symposium on Fault-Tolerant

Systems, pages 235{242, December 1997.
11. Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Veri�cation of Real-Time Com-

municating Systems By Constraint-Solving. In Proc. of the 7th International Conference

on Formal Description Techniques, 1994.





The Electronic Tool Integration Platform

Bernhard Steffen∗ Tiziana Margaria† Volker Braun‡

Extended Abstract

The Electronic Tool Integration platform (ETI) associated to STTT is designed
for the interactive experimentation with and coordination of heterogeneous
tools. ETI users are supported by an advanced, personalized Online Service
guiding experimentation, coordination and simple browsing of the available tool
repository according to their degree of experience. In particular, this allows even
newcomers to orient themselves in the wealth of existing tools and to identify
the most appropriate collection of tools to solve their own application-specific
tasks.

The growing complexity of ‘real–life’ industrial software and hardware systems
in fact can no longer be mastered without tool support. Thus many tools have
been developed both in academia and in industry, covering different application
domains and profiles. Unfortunately, understanding a tool’s profile to the point
of deciding whether it can be used for a specific application problem is very
hard. In fact, looking for an adequate tool, one is typically confronted with a
pool of alternatives, none of which matches exactly the expectations, and it is
almost impossible to predict the necessary modifications, let alone estimating
their cost. Thus in the course of

1. searching for candidate tools, which usually results in a rather accidental
collection,

2. installing the tools and getting acquainted with their different interfaces,
and

3. comparing the installed tools in the light of the own application profile
and intended use

software designers all too often decide to start writing their own tool, as this
gives them the reassuring feeling of full control. Consequently, the wheel is
developed over and over again, not necessarily with increasing quality. The
∗Lehrstuhl für Programmiersysteme, Universität Dortmund, Germany
†Fakultät für Mathematik und Informatik, Universität Passau, Germany
‡Lehrstuhl für Programmiersysteme, Universität Dortmund, Germany



main reason for this unsatisfactory situation is the lack of adequate decision
support. In fact, none of the steps above is currently systematized:

1. surfing in the net may sound like a good solution for the first step, but
the required patience is unrealistic under the common time pressure con-
ditions, and also the use of search machines usually delivers too scattered
results,

2. the acquisition and installation effort depends very much on the specific
situation, but, due to the plague of unforeseable problems, it becomes
usually much higher than first expected,

3. and a fair comparison is hardly possible because of strongly differing tool
profiles, hardware/software constellation, etc..

Even if these problems do not strike, finding ready-to-use solutions for many
practical problems would still be out of reach: experience taught for example
that checking safety-critical design criteria typically requires the cooperation of
different analysis and verification techniques, which need to be used in combi-
nation in order to overcome inherent methodological bottlenecks.

The Electronic Tool Integration platform (ETI) addresses all these concerns
by offering a personalized online service providing systematic support for ori-
entation, experimentation, and combination of all the tool functionalities in-
tegrated into the ETI repository. Complex combinations of functionalities
taken from different tools can be (semi-) automatically or interactively con-
structed and tested by online ‘meta-programming’ in a simple, domain-level
specification language tailored for loose specification. In particular, the burden
of data format conversion needed to ensure tool interoperability is automatically
taken care of within the underlying ETI platform and hidden from the users.
Taken together, these features offer an evaluation and coordination support even
for application experts with no programming experience.

A complete descritpion of the Electronic Tool Integration platform can be found
in the first issue of Springer’s International Journal on

Software Tools for Technology Transfer (STTT)

or electronically under:

http://eti.cs.uni-dortmund.de



Hans Malmkvist
Accretia AB

Project manager - LINK

The LINK experiment - A new Swedish technology
transfer concept for SMEs

Background

In 1995 the Swedish National Board for Industrial and Technical Development
(NUTEK), was assigned by the Department of Industry, to initiate and support a
three year programme with the main purpose of establishing new technology transfer
organisations supporting SMEs. Late 1996 three proposals and experiments were
selected and supported by Nutek. The experiments were planned to run in paralell
until June 1998.

One of the experiments - ÓLINKÓ, was proposed jointly by three industry
organisations and the consultancy Accretia AB. These industry organisations, together
representing approximately 3 000 SMEs, are The Association of Swedish Engineering
Industries (VI), The Plastics and Chemistries Federation (PoK), The Swedish Graphic
Companies' Federation (GFF).
Different RTOs in Sweden, including technical universities, industrial research
institutes and Swedish IRC (Innovation Relay Centres) proposed the other
experiments. One experiment was dedicated to establishing a new IT-supported
network of RTOs located in south west of Sweden. Another experiment was focused
on creating a network of technical experts visiting SMEs and developing new methods
for analysing technical needs and linking technical questions to other parts of the
network. The ambition of Nutek is to integrate the results of these experiments to a
new national system for technology transfer to SME.



The LINK project

The following goals were set up for the LINK-project:

•  To establish a new channel to technical experts for companies with little or no
experience of collaborations with RTO«s.

•  To establish a computer supported service organisation for technology transfer to
SMEs.

•  To establish an easily accessible and personalised central helpdesk
•  To practically test the technology transfer service organisation for a limited group

of companies

A number of key issues to be addressed were foreseen:

•  To survey and map the character of the company questions
•  To develop proper functions and features of the call-centre and helpdesk (staff, IT-

support, communication etc.)
•  To establish agreements with the technology resources (accessibility, security,

charge, etc.)
•  To find an efficient way to market the new technology transfer concept

The LINK-concept

LINK is a new concept for a technology transfer service organisation specially
designed for SMEs. The main purpose of LINK is to simplify access to and adoption
of new technology. The purpose of LINK is not primarily to ÓpushÓ and sell RTOs
current ÓproductsÓ and competence. LINK is trying to support firms to identify new
technologies and to give quick access to the relevant competence.

The main features of LINK could be summarised:

•  Market driven service organisation for technology transfer to SME
•  Technology transfer service organisation independent of technology providers
•  Central, personalised helpdesk and call-centre, accessible by phone, fax, e-mail or

online Internet
•  Advanced, scaleable, Internet-based case handling system
•  Helpdesk case preparation supporting organisation
•  Agreements with and access to a network of highly skilled experts and RTO«s



The helpdesk and case preparation support

The concept of LINK is illustrated in the figure below:

SMEs

Questions

Telephone
Fax
E-mail
Internet

Answers

Transfer
Preparation

  support

Call
Center

T
ec

hn
ol

og
y 

re
so

ur
ce

s

IT-platform/Web-technology

THE LINK CONCEPT

E-mail
Internet

Company questions are registered at the personalised helpdesk. Helpdesk is staffed
and could be reached by phone during office hours. Otherwise questions could be
delivered by fax, e-mail or via Internet. In many cases the original question that the
company wants to pose is not properly defined. The company usually needs the
dialogue with a person with a broad technical experience to be able to formulate the
question properly. To support helpdesk a group of technical experts Ð Òpreparation
supportÓ (currently five people) are closely linked to and easily accessible by the
helpdesk.

Case handling and IT-support

LINK is supported by a modern IT-based case handling system, designed to match the
specific needs of the LINK-concept. Key features of the specification were:

•  Central databases for cases, customers and technology resource specifications
•  Internet TCP/IP communication
•  Standard browsers as ÒclientÓ SW applications
•  Full flexibility in location for helpdesk, case preparation support and technical

resources
•  Full scalability (number of resources and people at the helpdesk location etc.)
•  High security (encrypted data) and reliability (web-hotel)
•  Minimum cost for system management



Initially a number of different commercially available cases handling systems were
evaluated. No systems were found that could fully match the LINK specification.
Therefore a new purely web-based system with an Internet/intranet TCP/IP
communication and a central SQL-database was designed.

The figure below illustrates the flowchart and communication handled by the LINK-
concept:

The IT platform

The dedicated IT and case system includes the following features:

- The system is based on NT-technology. Web-server is Microsoft Internet
Information Server 4.0 and database is Microsoft SQL-Server 6.5

- The user-interface is based on HTML. The pages are dynamically generated using
Active Server Pages (ASP). ActiveX-components written in C++ are being used
for features not supported by ASP, such as attachments and e-mails.

- All users categories connected to the same database, but with different access
levels and different user-interfaces.

- Using standard HTML and Internet allows the user to use any browser on any
platform connected to the Internet from anywhere in the world, and still have full
access to LINK.

Helpdesk

CASE HANDLING

SME

Linking
¥ Complementary info
¥ Selection of resources

F�retagen
F�retagen

Technical resourse
¥ Dialogue
¥  Answer

Question

Case preparation
¥ Follow-up-question
¥ Answer
¥ Proposed resources.

Answer

Answer

Telephon (office hours)
Fax, E-mail/Internet

Case registration
¥ Company data
¥ Technical question

C
u
s
t
o
m
e
r

d
a
t
a

C
a
s
e
s

T
e
c
h
n
o
l
o
g
yE-mail

Internet

Internet

Internet

InternetE-mail

R
e
s
o
u
r
c
e
s

Databases



- The information in the database is accessible only from the Web-server and is
secured by a firewall. All information between the browser and the Web-server is
encrypted using SSL.

The pilot project

In November 1997 around 200 companies, all members of the three industry
organisations were invited to participate in a pilot test of the LINK-concept. 150
companies were finally registered for the pilot test.

Initially an inquiry was made to find out the most vital technical areas of the pilot
companies. The technology resources were recruited accordingly. During the pilot test
20 different technology resources were engaged, including three technical universities,
ten research institutes, a few private companies, the Swedish Patent Office and the
Swedish EC/R&D-Council. All these resources are communicating with the helpdesk
via the web.

Nutek founded the pilot test as a part of the technology transfer experiment and the
LINK/helpdesk services were free of charge. The technology providers were also, to a
certain level, able to support the project and the companies free of charge. More
extensive consulting and engagement by the technology resources were paid directly
by the companies.

The experiences of the pilot test have been very positive. The questions and cases
have generally been handled at a high pace and the companies have been satisfied with
the answers and technical feedback. A broad spectrum of technical questions has been
handled by LINK. At the end of March (5 months) approximately 100 cases were
registered at the helpdesk. Over 200 individual technical questions were linked to the
technology resources. There was a mixture of straightforward technical questions as
well as more complex issues related to legislation, standards and development of new
production processes. A fairly large number of questions were related to
environmental issues.

Examples of questions:

The Association of Swedish Engineering Industries

•  Solutions for rapid and contact-free temperature measurement in welders/welding
machines (product development)

•  The EC Environmental Marking - qualification criterias (product marketing -
environmental programme)

•  Parameters controlling the quality of weld joints in polythene foil (criteria for
design of new welders)

•  Smoothing of rough edges in heavy plates after gas cutting (quality enhancement
process / work environment)



•  Energy recovery in hardening plant for a powder lacquering plant (cost savings and
environmental programme)

•  Deformation of heavy stainless steel machinery components while finishing
surfaces  (production problem)

•  Replacing brazing with gluing in hot water pipes (production process
development).

The Plastics and Chemistries Federation

•  Different methods and materials for sealing of electronic microcircuits (product and
process development)

•  Emissions to air in ejection moulding plant (environmental programme)
•  High precision dimensional measurement of plastic parts considering after-mould

shrinkage (process tuning)
•  Cleaning of hydraulic fluids for plastic mould ejectors (improving maintenance)
•  Finding electrically shielding transparent plastics for EMC-proof  displays

(product development)

The Swedish Graphic Companies' Federation

•  Live experiences of fully vegetable print colours in large scale printing (process
development /environmental programme)

•  Laser cutting of perforations for continuous paper path in form printers
(production process development).

•  Using Linux operating systems in Internet servers (corporate system development
for medium-sized printing firm).

•  Methods for direct conversion of medical pictures (magnetic resonance or x-ray)
into printable formats (pre-press process development).

•  Communication system design - searching comparative development prognoses of
server performance and communication rates for different network configurations
(strategic process development/investments).

The goal is that the clients should perceive LINK as a support for:

•  Simple access to external R&D capabilities
•  Quick access to a broad spectrum of technology competence
•  Identifying technical know-how and solutions to certain technology problems

However a lot of marketing and internal client support of the LINK concept is still
needed. Companies need to better understand the ÓproductÓ and to get fully confident
that they will achieve fast access to adequate information. There is an obvious
Óthreshold effectÓ before companies start to frequently use a new channel to technical
information.
The first phase of the pilot experiment will be finalised and evaluated during the
autumn of 1998. A second phase is currently being planned.



Tool-supported Software Design and Program Execution
for Signal Processing Applications

Using Modular Software Components

A. Sicheneder�, A. Bender�, E. Fuchs�, R. Mandl�z, M. Mendler�, B. Sick�

Abstract
One of the most important tasks for the design and the execution of software in en-

gineering applications is to handle the heavily increasing complexity. Especially high-

sophisticated signal processing or control applications like hybrid systems in automated

technical production processes contain software-intensive parts. A very successful soft-

ware engineering solution to master the complexity of the algorithms and the variety of

applications is the use of high-level programming systems in which prede�ned modules are

plugged together to �t a particular application problem. This is referred to as \component-

based software development." In this article, we present such a component-based tool for

the speci�cation and execution of complex signal processing algorithms. In order to opti-

mize the software design process several methods are included to enhance e�ciency and

security, e.g. intuitive graphical composition facilities at an high abstraction level, reuse

of parameterized basic algorithms (software components, i.e. modules), hierarchical soft-

ware development, automatic data-type veri�cation and other validation facilities. The

tool o�ers di�erent module libraries which are easy to use by application engineers and

easy to extend by computer scientists with application-speci�c algorithms. Hence the tool

is a powerful facility for the transfer of knowledge from specialists, who know a lot about

very specialized signal processing and control algorithms, to a broad range of users by pro-

viding interfaces and the algorithms' black box behaviour. In addition, many user-de�ned

data-types can be handled to provide a tool which is as exible as possible without jeop-

ardizing e�ciency and security. The tool has been used successfully in several industrial

applications like controlling and monitoring production processes.

Keywords: signal processing and control applications, graphical software construction, reuse of

software components, software quality improvement.

1 Introduction

The development of complex signal processing applications, e.g. for automated production pro-

cesses, is often di�cult and time consuming [1]. A large number of computer-aided software engi-

neering techniques have been developed to solve this problem and to reduce software development

costs [2]. In particular, the methodology of component-based software development is well known

and the basis for many programming tools. An example of a system in which this idea has been

persued systematically is the METAFrame system [3]. It is a system-level programming environ-

ment for the systematic computer-aided generation, analysis, veri�cation and testing of complex

systems from repositories of prede�ned and reusable components. Examples for coordination tools

like METAFrame are discussed in [4]. Another central software engineering technique to master the

design of complex systems are graphical user interfaces. They are widely used not only in tool

coordination frameworks but also, with increasing dedication, within formal methods CASE tools.

An example is AutoFocus [5] for the design and analysis of distributed systems. Many other

examples can be found, e.g., in [6].

�University of Passau, Faculty for Mathematics and Computer Science, Innstr. 33, 94032 Passau (Germany),

email: fsichened,bender,fuchse,mandl,mendler,sickg@fmi.uni-passau.de
zMicro-Epsilon Messtechnik GmbH & Co. KG, K�onigbacherstr. 15, 94496 Ortenburg



The contribution of the work described in this paper is to implement a new and interesting domain-

speci�c instance of the methodological principles of component-based programming and graphical

interfacing. The tool proposed in this paper is a specialized CASE-tool for specifying and executing

application-speci�c algorithms in the area of signal processing and control at an high abstraction

level using a graphical composition facility. As such, it is di�erent from both general-purpose

CASE frameworks (which are e.g. application-independent) and coordination environments (which

support the development process e.g. by mechanisms of software synthesis). The tool presented

in this paper has been developed in the context of a concrete application domain. It provides for

a very successful transfer of well-known software engineering technology into the area of signal

processing and control.

Figure 1: Graphical user interface of the tool (GUI)

On the one hand, the e�ciency of the design process is enhanced by a graphical speci�cation facility

at an high abstraction level, based (essentially) on dataow graphs. Parameterized modules serve

as reusable basic algorithms such as fast Fourier transforms (FFTs), linear (e.g. PID) controllers, or

�nite impulse response (FIR) �lters. They are encapsulated using an icon-based notation and are

connected by means of a graphical editor (see �gure 1). The result is a signal graph which represents

a complex algorithm. The software components are stored in di�erent application-speci�c dynamic

libraries and can be reused with di�erent instantiations of their parameters in similar applications.

On the other hand, security of the software development process (software correctness) can be

improved using high-level debugging facilities like graphical data visualization modules for the

validation of the program's and modules' functionality. In addition, automatic data-type checking

for connections between modules helps to avoid data incompatibilities in the early design phases.

Besides programming speci�c applications, it is possible to use the tool as an integrated runtime

system to execute the complete algorithm. The proposed tool is applicable not only in the o�ine

analysis of previously recorded data sets but also for online supervision and control. The applica-

tion engineer can introduce graphical instruments like controllers and switches, and visualization

modules to build a graphical front-end which is understandable and usable by an operator. In order

to avoid undesirable usage of the GUI, editing functions and access to modules can be restricted

hierarchically for di�erent user groups.

The tool is implemented in C++ on di�erent plattforms (Sun Solaris and Windows 95/NT). A



commercial version called Iconnect has been developed in cooperation with Micro-Epsilon GmbH

& Co. KG. Up to now, Iconnect has been used in several industrial applications where e.g. vari-

ous physical signals are measured simultanously with di�erent sampling rates, adaptive algorithms

are needed, and actuators have to be controlled. Some examples for applications (which consist

of up to 300 modules) are online measuring of thin metal or synthetic foils, monitoring the chisel

depth of ABS valves, supervision of the thermal conductivity of gas concrete bricks, and control-

ling the thickness of at glass for notebook displays. The tool is also used in di�erent research

projects at the University of Passau (e.g. tool condition monitoring in turning). As an o�ine ap-

plication, the tool is used to build training sets for neural networks by extracting features from

huge data sets. A demo version of the tool can be obtained via anonymous ftp from ftp://ftp.uni-

passau.de/pub/local/iconnect/�les.

2 Description of the tool

2.1 The Components

Figure 2 shows the two main components of the tool. In the upper part of the �gure the development

environment containing the graphical user interface (GUI) and the module libraries are seen. The

lower part depicts the runtime system with the data input and output for the system.

Figure 2: Components of the tool

A software solution for a speci�c application problem is speci�ed interactively by the application

engineer using the GUI. In this process, appropriate modules are selected from the module libraries

and connected using the ports of the modules resulting in a software prototype that can be tested

by means of the runtime control. Examples for modules realized in the current version of the tool

are:

� data inputs and outputs: e.g. drivers for A/D- and D/A-converters, digital interfaces, virtual

instruments (switches etc.), displays for o�ine or online visualization, function generators;

� modules for processing data in the time domain: e.g. linearization of characteristic curves of

sensors, arithmetic operations, digital �lters like FIR or IIR, function approximation;

� modules for signal transformation into other domains: e.g. frequency analysis, cepstral, or

statistical domain;



� controllers: e.g. PID-controllers;

� special modules: e.g. database and �le access, communication via computer networks

(TCP/IP), function interpreter, C-interpreter;

� modules supporting the debugging process.

The runtime control is the central part of the tool with the main task to supervise the actual

execution of the speci�ed complete algorithm. The underlying algorithm is described in section

2.3.

modules signal graph directed edges

connection

module type
(basic algorithms)

algorithm with instantiated
modules and datastreams

communication
media

instantiation & validation

compiled
C++-algorithm

class in C++
for data transfer

(e.g. "datastreams")

execution by means of
the runtime control

call allocation

abstraction level:
signal graph

abstraction level:
algorithm

abstraction level:
implementation

Figure 3: The di�erent abstraction levels

Figure 3 outlines the di�erent abstraction levels of the tool. At the top level is the graphical

representation which abstracts from the modules' implementation and allows for an e�cient fault

detection. The nodes of the signal graph represent modules and the directed edges describe the data

(and partially also control) ow between the modules. Some nodes represent data sources (inputs),

some represent data sinks (outputs) and others correspond to parameterized basic algorithms. The

directed signal graph may contain cycles to implement adaptive algorithms which are typical in

signal processing and control applications.

Upon selecting a module, an instance of the algorithm is created and by connecting two modules a

type-check is performed and an instance of a communication medium, e.g. a datastream is created.

The lower abstraction level in �gure 3 comprises the implementation of the modules and the com-

munication media. Both are implemented in C++. While executing the speci�ed signal graph the

runtime control calls the compiled algorithm if necessary and allocates communication media.

2.2 Data Model

The communication medium transports measured or simulated data as well as parameter data

between the modules. Besides static parameters which are speci�ed in parameter dialogues also

dynamic and synchronized parameter adaptations based on the results of previous computations

are possible. In this case parameter data are not distinguished from signal data and it is a module's

task to ensure the correct interpretation of the data received through a parameter port. Beyond

this, the tool provides a exible data model which allows a variety of data-types to be associated to

the ports of the modules. Data in a signal graph are processed blockwise to achieve the following

objectives:



� Processing a block of data consisting of several single values reduces the communication

costs. The block length is adjustable for each edge to �x the trade-o� between communication

overhead (long block length to maximze throughput) and time (short block length to minimize

reaction time).

� Sometimes input data already are block-oriented, e.g. data from A/D-converters are stored

in a bu�er and transferred as a block for further processing.

� If the data to be processed are coming from a sensor observing di�erent objects (e.g. quality

control in production processes), the data recorded between two objects may be omitted;

therefore the measured data of one object may be gathered in one block, thus leading to a

data reduction on the one hand and to a logical grouping of data on the other.

� Many algorithms like FFT or approximation algorithms are not meaningful on single values;

therefore this kind of algorithm can easily be served with blocks of data having the right

amount of values needed for useful processing, e.g. powers of two for FFTs.

object x-1 object x

signal

blocks

superblock j

basic data type

interpretation data type

e.g. double, arrays, structures

e.g. "signal in time/frequency domain"
"picture in xy-format"

t

including meta-
information

Figure 4: The data model

Blocks are organized in two levels (cf. �gure 4). A superblock contains a set with equidistantly

sampled values of data which belong together semantically (e.g. measured data of a single object).

One superblock consists of several blocks each containing several elementary values. Additional

meta-information (e.g. sample frequency, time stamps, physical units etc.) is valid for all blocks

within a superblock. This meta-information is necessary for some basic algorithms e.g. to process

signals with di�erent sampling rates correctly. Figure 4 shows that the supported data types are

also organized hierarchically in two levels: the basic data type describes the data format of the

elementary values in the blocks and the interpretation data type describes the context of the data

that is associated with the complete block. The type system currently implemented contains basic

types such as int, double, char, etc., static and dynamic array types, records, a \special" type for

user-de�ned strucures, and it distinguishes the types of elementary data, blocks, and superblocks.

It has a form of parametric polymorphism in the sense of [7] and overloading. The type system is

generic and extendable by an arbitrary number of additional primitive types without modi�cation

of the runtime control or the graphical user interface. Interpretation data types inform the user

or modules operating on the block about the context of the signal (e.g. \signal in time domain,"

\picture in xy-format").



2.3 Runtime Control

The runtime control, which is the central component of the tool (see �gure 2), is a special-purpose

real-time operating system that ensures the correct execution order of the basic algorithms in a

block-oriented and data-driven manner in accordance with the modules' prespeci�ed priority [8].

Note that a simple static module processing order based on the graph's structure does not ful�ll this

task, because subgraphs may become disabled, depending on the values of particular control data

(i.e. realizing the branching of control ow) and because modules have priorities, which may even

change dynamically. Another reason is the possible cyclic processing order of subgraphs causing

multiple executions of the same module. Therefore, the processing order has to be dynamic; it

is based on the module status [9]. We call a module ready for execution if all the mandatory

information (i.e. data) for the processing of the underlying basic algorithm is available.

Figure 5: Module states and state transitions

In addition to ready for execution the runtime control distinguishes �ve other module states: in-

stantiated, initialized, not ready for execution, executing and terminated (see the state transitions

caused by the modules or the runtime control in �gure 5). The runtime control algorithm is based

on these module states and consists of four phases (cf. �gure 6): First, instances of modules (from

the module libraries) and communication media are generated in the instantiation phase. In addi-

tion, the values speci�ed in the signal graph are assigned to parameters and macros are replaced

by subgraphs. After that, speci�c initial actions like memory allocation are performed within the

initialization phase. Furthermore, this phase builds a list containing all source modules ordered by

priority. This list is called \source module list" (SL) in �gure 6. External applications (e.g. a �lter

speci�cation tool for FIR or IIR �lters) can be executed for initialization purposes. The execution

phase is divided into two subphases: �rst, all source modules which are ready for execution execute

their corresponding algorithm; after each execution of a module, the successor modules (in the

signal graph) are checked to �nd out if they are ready for execution. Those which are, are inserted

into a waiting list (WL) according to their priority. A module is removed from the SL only if the

module looses the feature of being \source," in which case it does not produce data anymore. In the

second subphase, modules in WL are processed according to their priority. The generated output

is passed to the successor modules and those that become ready for execution are inserted into WL

using their priority. The module that was executed is removed from WL. Then again the next

module is picked from WL and the process repeated. When WL is empty the execution continues

with SL. This alternate processing of SL and WL is repeated until SL is empty. The processing is

also stopped by an explicit request by a module to end the execution, by an external user request,

or after a runtime error. The �nal termination phase which is executed in all cases of termination,

closes data �les, frees memory etc. Again it is possible to call external applications, e.g. tools for

o�ine visualization of processed data.



Figure 6: Algorithm of the runtime control

3 Software Development E�ciency and Security

For ordinary general-purpose programming languages the goals of design e�ciency and design

security are di�cult to achieve, for they require a substantial amount of design restrictions which

contradict the essential idea of a general-purpose language which is to be universally applicable. In

domain-speci�c programming systems, however, the situation is quite di�erent. In such dedicated

systems, like the one considered here, there is su�cient focus to take over from the user a lot of the

di�cult and error-prone programming tasks, that are common for the given application area. This

eliminates unnecessary programming freedom and increases design e�ciency and security. Our

system adopts this strategy stressing the following particular features:

� Graphical User Interface

� Parameterization and Modularity

� Type Checking

� High-level Data-Flow Model

� Integrated Runtime System and Debugging

� Abstraction and Hierarchy

Although these are mostly well-known software engineering methods, they have not as yet fully

found their way into commercial tools for programming signal processing and control applications.

Our tool incorporates these features and demonstrates their bene�t in a speci�c application context.

In the concrete projects that we have run in cooperation with MicroEpsilon we found that more

than 90% reduction in development time | compared to purely C-programmed solutions | can

be achieved by using our tool.

Graphical User Interface As mentioned before the e�ciency of the software design process is

considerably enhanced using the graphical speci�cation feature. The graphical user interface (GUI)

is easy to use and its interactive \push-button-programming" style reduces considerably the coding

e�ort as well as it eliminates annoying syntactic errors. Even more important for this speci�c

engineering context is the bene�t of the GUI for technology transfer: Through the GUI the tool

may be used by application engineers with little or no skills (or interest) in software programming

and algorithm design. Through the GUI a large amount of irrelevant complexity may be hidden

from the user which is very important from the company's point of view.



Parameterization and Modularity Application engineers are most e�cient in developing an

appropriate solution in an explorative and evolutionary fashion by modifying previous solutions

(subgraphs or single modules) in terms of di�erent parameters, or relatively small changes or ex-

tensions to the algorithms (software-reuse). Adjustable parameters support the technology transfer

from the software engineer to the application engineer. In our speci�c application domain param-

eterization may arise in non-trivial form, in the sense that e.g. the �lter coe�cients de�ning a

particular FFT module may themselves be computed, interactively with the user, through spe-

cialised initialisation modules.

Type Checking To identify potential design errors a type checking algorithm is incorporated

into our tool. A static type analysis (see also sec. 2.2) with a simple form of polymorphism [7]

ensures correct typing thoughout the signal graph. In this way runtime errors due to inconsistent

use of data and modules are excluded already at construction time. There is a notion of an

interpretation data type, which is special in that type violations of interpretation data types only

produce warnings but do not stop the construction of the signal graph.

High-level Data-Flow Model The representation of the functionality on an high abstraction

level is based on a simple dataow model. This modelling paradigm is superior in many aspects

to ow charts, Petri nets, or state diagrams [10]. The concept of dataow graphs makes programs

easier to construct while still preserving their natural understandability. This behavioural abstrac-

tion, together with the hierarchical decomposition feature, supports the user in specifying complex

applications which result in very large signal graphs. Some commercial applications developed

with our industrial partner involve signal graphs with up to 300 nodes, each of which representing

a complex module.

Integrated Runtime System and Debugging The integrated runtime system, which is ba-

sically a specialised real-time operating system, provides for rapid prototyping and simulation

facilities. The tool can also be run as an embedded system in on-line control applications, or used

for emulation. The expensive error tracing within the whole graph is dramatically reduced due to

the modular character of the speci�cation. Special modules are available for debugging. Examples

are data visualization modules, monitoring the result at an output port of any basic algorithm,

or the so-called \pause"-module which allows breaks in the algorithm's execution, much like the

breakpoints used in C-debuggers. However, here, debugging is done at the module level rather than

inside the modules at the algorithmic level.

Abstraction and Hierarchy The tool can be used e�ciently on di�erent levels of abstraction

by a broad range of people with di�erent programming skills. Access to modules and editing

functions is hierarchically restricted for these user groups. Users like the application engineers are

not interested in implementation details. They can specify their application on an high abstraction

level focusing on the important aspects of their speci�c signal processing problem. This group

of users needs parameterized basic components within the GUI. Algorithm developers, on the

other hand, are more familiar with the speci�c problems of algorithm and software development.

They want to implement speci�c basic components on a lower abstraction level, but they are

not interested in such aspects as communication between the modules or prioritized real-time

scheduling. A software engineer is only responsible for the algorithms' I/O-behaviour without

integration aspects. In this way the tool supports the technology transfer between the computer

scientists (developing the tool), the software engineers (programming the modules), the application

engineer (using the modules to build an application system), and �nally the operator (using the

application system).



4 Related Tools in the Area of Signal Processing and Control

Graphical speci�cation based on dataow diagrams is a well known technique in the area of control

engineering, measurement technology, signal or image processing and multimedia applications.

Following Schreier [11] we mention the most popular tools in this �eld. LabVIEW from National

Instruments was originally developed as a graphical user interface for instruments [12]. It provides

a powerful graphical programming facility for the de�nition and connection of so-called \virtual

instruments." Other tools that support graphical speci�cation are Hewlett Packard's HP Vee [13],

DASYLab from Datalog Corp. [14] or in multimedia applications the tool MET++ developed at

the University of Z�urich [2]. Most of these tools, as far as they are speci�c to the signal processing

domain, satisfy some but none of them ful�lls all of the following requirements:

� block-oriented data processing with individually adjustable block length for each edge in the

signal graph,

� processing of signals with di�erent sampling rates (e.g. using several sensors),

� synchronisation of di�erent data streams (e.g. from di�erent subgraphs or with di�erent

sampling rates),

� processing of signal graphs containing cycles (e.g. for adaptive algorithms),

� parallel or distributed (over a network) execution of several signal graphs,

� obeying of weak real-time requirements (e.g. actions within the GUI such as moving or resizing

of windows must not stop the continuous signal processing),

� easy extendability of the system by new modules or new data types without compilation of

the main components of the tool,

� clear representation of complex programs by hierarchical decomposition and rectilinear wiring

of the egdes.

The proposed tool ful�lls all of these requirements and therefore, it is a very powerful tool. There

exist other approaches that deal with the (automatic) compilation of graphic dataow speci�ca-

tions into programs (e.g. C-code) [15] but these do not integrate a runtime system. One of the

most popular tools in this area is Ptolemy [16] which was primarily developed for the design and

simulation of multiprocessor systems or DSPs. The kernel of the system is the basis of further work

(e.g. tool for the simulation of optical communication networks or a tool for the rapid prototyping

of special processors [17]) at several international universities and companies.

5 Conclusion and Future Work

The presented modular tool is a good example for technology transfer from academic research

to commercial applications following the component-based programming paradigm. The tool of-

fers a graphical speci�cation facility which leads to considerable economic bene�ts and ful�lls the

requirements of di�erent user pro�les in the following way:vi

� Complex signal processing applications can be implemented and documented in a single work-

ing cycle.

� The software development process is safer; yet solutions can be built faster.

� Even very complex applications are understandable and known solutions can easily be ad-

justed for reuse in new applications.

� Well-tested modules (provided by extendable module libraries) can be reused in speci�c ap-

plications; furthermore new libraries can be created and integrated into the tool on demand

by software experts.

� The editing of signal graphs can be disabled to prevent the system from unauthorized use

e.g. in a control application.



� Interfaces to databases or networks can be used to analyse data o�ine.

� Several mechanisms help to uncover and avoid bugs already at an early stage in the speci�-

cation phase (e.g. type-checking).

In future work we plan to extend the tool in two directions. In one project we aim to replace

the current run-time system by a distributed real-time operating system to support a more �ne-

grained distributed execution of signal graphs. Currently, only complete signal graphs may be run

in a distributed fashion (dynamic scheduling). In another project we plan to extend the automatic

type checking algorithm to a more powerful static validation method. By enriching the type system

in a suitable way, we hope to include the veri�cation of static module parameters as well as of some

aspects of reactive and quantitative real-time behaviour.

References

[1] J. Kodosky, J. MacCrisken, and G. Rymar, \Visual Programming Using Structured Data Flow," in
Proceedings of the 1991 IEEE Workshop on Visual Languages, (Kobe, Japan), pp. 34{39, 1991.

[2] P. Ackermann, Developing Object-Oriented Multimedia Software. Heidelberg: dPunkt (Verlag f�ur digi-
tale Technologie GmbH), 1996.

[3] B. Ste�en, T. Margaria, A. Cla�en, and V. Braun, \The METAFrame'95 environment," in Proceedings

CAV'96 (R. Alur and T. Henzinger, eds.), pp. 450{453, Springer, 1996. LNCS 1102.

[4] A. Cla�en, Component Integration in METAFrame. PhD thesis, University of Passau, Faculty for
Mathematics and Computer Science, 1997.

[5] F. Huber, B. Sch�atz, and G. Einert, \Consistent Graphical Speci�cation of Distributed Systems,"
in Proceedings of FME'97: Industrial Applications and Strengthened Foundations of Formal Methods

(J. Fitzgerald, C. B. Jones, and P. Lucas, eds.), pp. 122{141, September 1997.

[6] B. Ste�en, W. Cleaveland, and T. Margaria, eds., International Journal on Software Tools for Technol-

ogy Transfer, vol. 1. Springer, 1997.

[7] R. Milner, \A theory of type polymorphism in programming," J. Comp. Sys. Sci., vol. 17, no. 3,
pp. 348{375, 1978.

[8] H. N�ommer, \Spezi�kation und Implementierung einer Entwicklungsumgebung f�ur Signalverar-
beitungsalgorithmen mit Ablaufsteuerung zur datenu�getriebenen Bearbeitung auf der Basis
parametrisierter Module," diploma thesis, University of Passau, 1997.

[9] H. N�ommer, E. Fuchs, B. Sick, and R. Mandl, \Entwicklung und Ablauf objekt-orientierter Echtzeit-
software auf der Basis parametrisierter Algorithmenmodule," in Echtzeit 97, (Wiesbaden, Germany),
1997.

[10] A. L. Davis and R. M. Keller, \Data Flow Program Graphs," IEEE Computer, vol. 15, pp. 26{41,
February 1982. (special issue on data ow systems).

[11] P. G. Schreier, \Users adopt new technologies, return to familiar suppliers," Personal Engineering,
pp. 22{25, January 1997.

[12] L. K. Wells and J. Travis, Labview for Everyone: Graphical Programming Made Even Easier. Prentice-
Hall, 1996.

[13] Hewlett Packard, product page of HP Vee, URL: http://www.hp.com/go/hpvee.

[14] N. Trevarthen and S. Leigh, \16 and 32 Bit Data Acquisition Systems with Multiboard Drivers," Adept
Scienti�c, July 1997.

[15] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataow Graphs. Boston
et al: Kluwer Academic Publishers, 1996.

[16] O�cial Web-Site of the Ptolemy Project: http://ptolemy.berkeley.edu, The Almagest: A Manual for

Ptolemy. Vol. I{III.

[17] M. A. Richards, A. J. Gadient, and G. A. Frank, Rapid Prototyping of Application Speci�c Signal

Processors. Boston: Kluwer Academic Publishers, 1997.



C-Mix: Making Easily Maintainable C-Programs run FAST

The C-Mix Group�, DIKU, University of Copenhagen

Abstract

C-Mix is a tool based on state-of-the-art technology that solves the dilemma of whether to write

easy-to-understand but slow programs or e�cient but incomprehensible programs. C-Mix allows you

to get the best of both worlds: you write the easy-to-understand programs, and C-Mix turns them

into equivalent, e�cient ones. As C-Mix is fully automatic, this allows for faster and more reliable

maintenance of software systems: system programmers need not spend hours on �guring out and

altering the complicated, e�cient code.

C-Mix is a program specializer: Given a program written in C for solving a general problem,

C-Mix generates faster programs that solve more speci�c instances of the problem. Application areas

include model simulators, hardware veri�cation tools, scienti�c numerical calculations, ray tracers, in-

terpreters for programming languages (Java bytecode interpreters, task-speci�c interpreters), pattern

matchers and operating system routines.

C-Mix currently runs on Unix systems supporting the GNU C compiler, and treats programs

strictly conforming to the ISO C standard. Future releases of C-Mix are intended to run on a variety

of platforms.

1 Program specialization and partial evaluation

C-Mix performs program specialization by a technique called partial evaluation (Jones, Gomard, & Ses-
toft, 1993). Given a source program and some of its input (the specialization-time data), it produces
a so-called residual or specialized program. Running the residual program on the remaining input (the
residual-time data) yields the same results as running the original program on all of its input; but poten-
tially faster.

We use the word spectime to denote values and variables that are present at specialization time. The
other values and variables in the program are residual.

C-Mix generates specialized versions of functions,

spectime

C-Mix

source

residual

residual

final

inputprogram

input

program

result

unrolls loops, unfolds function calls and pre-computes
expressions and control constructs that does not de-
pend on residual data. These transformations are sim-
ilar to what optimizing compilers do, but since C-Mix
takes some of the program's input into account, it can
potentially do better. In addition, partial evaluation
is based on inter-procedural analyses (including inter-
procedural constant propagation), whereas most opti-
mizing compilers only use intra-procedural analyses.

Generality versus e�ciency and modularity:

One often has a class of similar problems which all
must be solved e�ciently. One solution is to write
many small and e�cient programs, one for each. Two
disadvantages are that much programming is needed,
and maintenance is di�cult: a change in outside spec-
i�cations can require every program to be modi�ed.

Alternatively, one may write a single highly parameterized program able to solve any problem in the
class. This has a di�erent disadvantage: ine�ciency. A highly parameterized program can spend most
of its time testing and interpreting parameters, and relatively little in carrying out the computations it
is intended to do.

�Contact: Arne Glenstrup, Henning Makholm, or Jens Peter Secher: {panic,makholm,jpsecher}@diku.dk



Similar problems arise with highly modular programming. While excellent for documentation, mod-
i�cation, and human usage, inordinately much computation time can be spent passing data back and
forth and converting among various internal representations at module interfaces.

To get the best of both worlds: write only one highly parameterized and perhaps ine�cient program;
and use a partial evaluator to specialize it to each interesting setting of the parameters, automatically
obtaining as many customized versions as desired. All are faithful to the general program, and the
customized versions are often much more e�cient. Similarly, partial evaluation can remove most or all
the interface code from modularly written programs.

C-Mix supports code that is strictly conforming to the ISO C standard. That is, code that depends
on the details of data representation on the target platform (e.g., mixes pointers and integers) will not be
handled by C-Mix. However, in well-designed code these platform dependencies will usually be isolated
in certain source �les which can readily be excluded from the set of �les that C-Mix specializes.

2 A simple example: specializing printf and power

Consider a source program containing a simpli�ed implementation of the C library functions for com-
puting the power function and formatting a string. Specializing the statements v[0] = power(n,x);

printf("Power = %d\n", v); to �xed n=5 will yield the residual statements v[0] = power_5(x);

printf_res(v);, where functions power_5 and printf_res are de�ned in the residual program:

Source Program

void printf(char *fmt, int *values)

{ /* print formatted data */

int i, j;

/* Parse the format string */

for (i = j = 0; fmt[i] != '\0'; i++) {

if (fmt[i] != '%')

putchar(fmt[i]);

else {

i++;

switch (fmt[i]) {

case 'd': /* %d: output int */

sys_printf("%d", values[j]);

j++; break;

case '%':

putchar('%'); break;

default:

putchar(fmt[i]); break;

}}}

}

int power(int n, int x)

{ /* Return the nth power of x */

int pow;

pow = 1;

while (n > 0) {

pow = pow * x; n--;

}

return pow;

}

Residual Program

void printf_res(int *values)

{

putchar('P');

putchar('o');

putchar('w');

putchar('e');

putchar('r');

putchar(' ');

putchar('=');

putchar(' ');

sys_printf("%d", values[0]);

putchar('\n');

}

int power_5(int x)

{

int pow;

pow = 1;

pow = pow * x; pow = pow * x;

pow = pow * x; pow = pow * x;

pow = pow * x;

return pow;

}

Note that the variable n has been specialized away: The calls to the specialized versions of power and
printf now only take the residual variable as argument. The loop in the power function has disappeared
and 5 multiplications remain. The loop in the printf function interpreting the format string has also
been specialized away leaving only the code with side e�ects.

This residual program is much faster than the original general one, since the testing and updating of
the loop variables has been eliminated.



3 A more subtle example: binary search

Binary search is an algorithm for detecting whether a sorted array contains a given element x. The
problem is solved by keeping track of a range within the array in which x must lie, if it is there at all.
Initially the range is the entire array, and in each iteration the range is halved. By comparing the middle
element of the range to x, it is decided whether to continue looking in the upper or lower half. The
process continues until x is found or the range becomes empty. The time to search an array of size n is
O(log(n)).

Instead of representing the range by its lower and upper values as in the �classical� version, the range
is represented by its lower value low and an increment mid, thus separating the computations for the
position of the range and its size. As usual, we ensure that the increment takes only powers of 2 as values.

int bsearch(int x, int *a)

{

int mid = 512;

#pragma residual: bsearch::low

int low = -1;

if (a[511] < x)

low = 1000 - 512;

while (mid != 1) {

mid = mid / 2;

if (a[low + mid] < x)

low += mid;

}

if (low + 1 >= 1000 || a[low+1] != x)

return -1;

return low + 1;

}

Specialization with respect to �no� spectime input may seem useless, but notice that the size of the
array (1000) is �hard-coded� into the program. Thus, some data is present in the function already at
specialization time.

The variable low can take 1000 di�erent values, depending on the value of x and the array contents, so
specialization with respect to this variable is likely to produce an enormous amount of residual code. To
avoid this we can insert the C-Mix directive residual in the source program, which prevents C-Mix from
trying to keep track of low's values at specialization time. Note that this does not make mid residual,
exactly because mid does not depend on low like in the �classical� implementation of the binary search
algorithm.

Running this example through C-Mix we �nd that the residual program is small, and the division
calculations involving mid have all been specialized away:

int bsearch(int x, int *a)

{

int low;

low = -1;

if (a[511] < x) low = 488;

if (a[low + 256] < x) low += 256;

if (a[low + 128] < x) low += 128;

if (a[low + 64] < x) low += 64;

if (a[low + 32] < x) low += 32;

if (a[low + 16] < x) low += 16;

if (a[low + 8] < x) low += 8;

if (a[low + 4] < x) low += 4;

if (a[low + 2] < x) low += 2;

if (a[low + 1] < x) low += 1;

if (low + 1 >= 1000 || a[low + 1] != x) return -1;

else return low + 1;

}



Had we specialized the program without the residual directive, the result would have been a rather
large program (around 114 Kb), because the function is specialized with respect to many di�erent values
of the two spectime variables. The �rst few lines of the residual bsearch function look like this:

int bsearch(int v1, int *(v2))

{

if (((v2)[511]) < (v1)) {

if (((v2)[744]) < (v1)) {

if (((v2)[872]) < (v1)) {

if (((v2)[936]) < (v1)) {

if (((v2)[968]) < (v1)) {

if (((v2)[984]) < (v1)) {

if (((v2)[992]) < (v1)) {

if (((v2)[996]) < (v1)) {

if (((v2)[998]) < (v1)) {

if (((v2)[999]) < (v1)) {

return -1;

} else {

if ((0) || (((v2)[999]) != (v1))) {

return -1;

} else {

return 999;

}

}

} else {

if (((v2)[997]) < (v1)) {

if ((0) || (((v2)[998]) != (v1))) {

return -1;

} else {

return 998;

}

}

The table below shows the run-times of the various versions of binary search we have seen. The
function was called 1000 times. The runtime is shown in CPU user seconds, and the code size is the size
of the object �le measured by size. The speedup is the ratio between the running time for the original
and the specialized program; similar for the code size blowup. The programs were compiled with the
Gnu C-compiler gcc with option -O2, and the programs were executed on an HP9000/735.

Program Runtime (sec) Code size (bytes)
Orig Spec Speedup Orig Spec Blowup

bsearch2 (residual low) 7.7 5.2 1.5 96 200 2
bsearch1 (spectime low) 7.7 4.6 1.7 96 24520 255

The cost of forcing low to be residual is a increase in running time by 0.6 seconds (or 13 percent),
which is acceptable since the specialized program is 100 times smaller! Careful inspection of the programs
and other experiments show that the size of the residual program in the �rst example is proportional to
the size of the array, whereas it is proportional to the logarithm of the size in the second example.

This experiment shows both a strength and a weakness of partial evaluation. It is pleasing that we
can achieve a good speedup despite the modest code blowup, but it requires some insight to discover
that the variable low should be residualized. However, once the residual directive has been added, the
program can be automatically specialized whenever the initial value of mid and the array size changes.

Finally it is worth mentioning that it is also possible to specialize binary search with respect to a
known array. In that case even higher speedups can be expected. Experiments show speedups of 2.8 and
3.7 and code blow-ups of 385 and 363 (Andersen, 1994). Code blowup of this size is quite acceptable, if
it results in such good speedups, and the table is not too big.



4 Tool structure

C-Mix works together with existing C and C++ compilers when producing the residual program. The C-
Mix core system produces from the source program a C++ program text called the generating extension.
When the generating extension is run (after having been compiled with a C++ compiler) it reads in the
specialization-time inputs and emits the �nal C source for the residual program.

There are several advantages of this approach. The

C compiler

program
source

residual

C-Mix

C++ compiler

generating
program

input
spectime

extension

program
residual

input
residual

program

result
final

generating

�rst is that since the spectime actions are performed
by the generating extension, C-Mix does not itself have
do know how to execute them�that is left for the C++
compiler to decide. (Many earlier partial evaluators were
�monolithic� and needed in e�ect to contain an inter-
preter for the source language to be able to perform
specialization-time actions).

Second, the user of C-Mix can link the generating
extension together with object code of his own. That
means that the user can provide functions that can be
called at specialization time, without C-Mix having to
analyse and understand their source code. This is partic-
ularly convenient if the spectime input has a high-level
format that have to be parsed before it can be used.
C-Mix performs rather badly when faced with the out-
put of parser generators such as yacc�but since none of
the parser code is supposed to be present in the residual
program anyway, the parser can be compiled as-is and
linked into the generating extension without confusing
C-Mix.

After having run the generating extension the �n-
ished residual program has to be compiled with a normal
C compiler. Our experience is that the transformations
done by C-Mix works well together with optimizing C
compilers. Rather than performing optimizations which
the compiler would have done in any case, partial eval-
uation seems to open up new possibilities for compiler
optimization. This is mainly because the control struc-
ture of the residual program is often simpler than that of
the source program, and because, generally, the residual
program contains less possibilities of aliasing.

5 Conclusion

C-Mix is a partial evaluator for specializing C programs. It is automatic and handles all C programs
that are strictly conforming to the ISO C standard. Using C-Mix one can obtain e�cient programs from
larger but easy-to-read programs, and in this way reduce the slow and error-prone job of maintaining
highly e�cient but highly unreadable software.

C-Mix is available free of charge from DIKU. The project's home page is http://www.diku.dk/research-

groups/topps/activities/cmix.html

References

Andersen, L. (1994). Program analysis and specialization for the C programming language. Unpublished
doctoral dissertation, DIKU, University of Copenhagen. (DIKU report 94/19)

Jones, N. D., Gomard, C. K., & Sestoft, P. (1993). Partial evaluation and automatic program generation.

Prentice-Hall.





Rapid Prototyping with APICES

Ansgar Bredenfeld
GMD

Institute for System Design Technology
D-53754 Sankt Augustin, Germany

bredenfeld@gmd.de
http://set.gmd.de/APICES

APICES is a tool for very rapid development of software prototypes and
applications. It offers special support for technical applications dealing
with network-like structures. Network-like structures are modelled with
predefined object-oriented building blocks so-calledgraph pattern.
Software development with APICES starts with an object-oriented
model of the application. This application model is the input for our
code generators. They generate a core of the application consisting of
a class library (C++) with an optional interface to an object-oriented
database. This core is automatically embedded in the script language
Tcl and may be extended with application code in C++ or Tcl.

Many technical applications deal with network-like data. Some examples are schematic editors
(block diagrams), simulators (component networks), digital signal processing tools (signal and
data flow graphs), hardware/software co-design tools (process networks, control data flow
graphs), or workflow applications (task graphs). Our tool is tailored to support rapid prototyping
of such applications.
APICES is based on state-of-the-art object-oriented modelling constructs - object types,
inheritance, data encapsulation, typed attributes, different types of relationships (association,
aggregation). Each modelling construct has a set of generic manipulation methods, e.g. each
relationship type has a set of access methods which allows to manipulate, access and navigate
through the elements of a relationship. To this extend, APICES is comparable to off-the-shelf
modelling tools with code generation capability.

1. Graph Pattern

In addition to object-oriented modelling constructs, APICES offers re-usable building blocks to
model complex network-like structures. These building blocks are calledgraph patternand are
the specific strength of our tool. Graph pattern allow very rapid prototyping of technical
applications. We support various variants of graph pattern. They cover simple, flat network
structures as well as more complex hierarchical network structures. Each graph pattern variant has
a set of methods which are usually needed to construct, destruct, access, navigate or transform
network structures. Graph pattern methods offer functionality for composition, for connectivity,
for hierarchy handling, and for simulation.



The basic elements of graph pattern arecomponents. Components have a list of directed ports and
a behaviour.Ports are elements of the interface of a component. Ports may be inputs, outputs or
bidirectional. Ports are connected with each other by(multi-)channels.

• Flat network structures

The most simple graph pattern variant offers components needed to model flat, non hierarchical
network structures. An example is a netlist without hierarchy which is the core structure of many
simulators. Components which describe interfaces are calledcomponent interfaces. They are type
descriptions (prototype components, template components). Component interfaces are terminal
elements, i.e., they can not be further decomposed.Component instances are occurrences of
component interfaces. The component interface determines the structure and the behaviour of a
component instance. All instances of an interface have the same port structure. In addition, the
behaviour of an instance is given by the interface. Component instances are connected at their
ports with channels.

• Hierarchical network structures

A more complex graph pattern variant provides elements to model hierarchical network
structures. Hierarchy is modelled by a macro mechanism.Macros aggregate and encapsulate
several component instances. They contain the component instances with their ports and the
channel connections between them. Macros are associated with two specialized components -
macro interfaces and macro instances -to construct hierarchies. Themacro interface is a
component which describes the external (formal) port structure of the macro. The macro interface
defines the structure and the behaviour of a macro instance.Macro instances are occurrences of
macro interfaces. Hierarchical structures are constructed by recursively creating macro instances
within macros. All macros, which belong to a hierarchy, are aggregated by acontext.
Figure 1 shows an example of graph pattern elements and their contextual relationships. Ports of
component instances and macro instances are omitted to improve legibility.

c

c’c’’

b‘
b

a

a’

A

C

B
A

D

α

β

α‘‘‘‘‘α‘

α‘‘

β‘

α‘‘‘‘

β‘‘

α‘‘‘
β‘‘‘‘

β‘‘‘

α

α‘

context

macro

component instance

component interface

macro interface

macro instance

internal channel

external channel

port

Figure 1: Elements of Graph Pattern



2. APICES tools

The graphical model editor (figure 2) allows to specify and document the core model of an
application. Graph pattern are used to model network-like structures typically needed by a
technical application. Graph pattern are reused by binding template object types of a graph pattern
variant to the object types of the application.
The code generators of APICES are able to generate the following implementations from this
high-level application model.

• C++ class library

The model of the application is compiled to a C++ class library. The class library contains a C++
class hierarchy implementing the model and access methods which are needed to handle objects,
attributes, relationships and the elements of graph pattern. This library is the core of the
application and can directly be linked to existing or new C++ programs. Optionally, an interface
to an object-oriented database is generated.

• Extended script language Tcl

The methods of the generated C++ library are automatically embedded in the script language Tcl.
This embedding offers all generated methods for interactive and interpreted access. This is an
important feature for rapid prototyping and allows to develop algorithms first in Tcl and then
migrate to C++ if necessary.

Figure 2: Application model of a simple tool operating on netlists
including the GUI specification of the tool

GUI-box
specification

view of object
type “module”

graph pattern
to model netlist

object type of
application



• Graphical interface

The model editor not only allows to specify the model of the application but also a graphical user
interface for the modelled application. The user interface is primarily used during rapid
prototyping for test and debug purposes. Nevertheless, it can be used as graphical end-user
interface for an application.
The left part of figure 2 shows a specification of abox. A box is a rectangular part of the canvas
at the user interface. Each box is able to display several objects asobject views. The mapping
between object types and object views is done via the model editor. The visualization of object
views is configurable. If graph pattern variants have to be visualized, a predefined default view
for each element of a graph pattern is generated.

The generated graphical user interface offers context sensitive menus for all displayed objects and
the elements of graph pattern. In addition, it provides a trace mechanism which allows to record
user interactions. This allows to “replay” user interactions and offers convenient support for
debugging even in a very complex object population. We offer a simple mechanism to add
application specific extensions in C++ or Tcl to the rapid prototype.
An example of the default graphical user interface generated from the model in figure 2 is
depicted in figure 3.

Figure 3: Application GUI generated from model in figure 2
showing instances of graph pattern elements.

gate_type

port

net

gate

module



3. APICES application

APICES raises productivity of application development in the technical domain. Originally, it has
been a research prototype to offer automated support for the construction and integration of
electronic CAD tools [1][2] and digital signal processing tools [3]. The following sections sketch
how APICES can be used and what its advantages are.

• Modelling and documentation

The model editor of APICES supports early phases in the application development process, since
it allows to specify the core structure of an application graphically and in an intuitive way. Graph
pattern are powerful generic components which are designed for reusability. The support of
network-like structures makes modelling of technical applications easy.
The HTML-documentation generator allows to browse the application model, its user-defined
comments and the specification of generated methods. The documentation serves as reference in
a development team and allows to track model evolution in a convenient manner.

• Rapid prototyping and application development

APICES supports very rapid prototyping by generating an application core and a corresponding
prototype from the application model. Since the generated prototype consists of a C++ library
embedded in the script language Tcl, all generated methods of the application core are offered at
an interpreted interface. Prototyping of algorithms can be done by accessing the application core
via Tcl-procedures.
The generated graphical user interface of the prototype offers demonstrators after a very short
time. They can be used to discuss design alternatives or model modifications. Changes in the
application model are cheap because the effort to align the prototype is minimal. The generative
approach followed by APICES allows very short re-design cycles and fosters incremental
application design.

APICES is running under Solaris and Linux. Further actual information is available from the web
(http://set.gmd.de/APICES).

4. References

[1] Ansgar Bredenfeld, Raul Camposano, “Tool Integration and Construction Using Generated
Graph-Based Design Representations”, inProceedings of the 32nd ACM/IEEE Design
Automation Conference (DAC’95),pp. 94-99, 1995

[2] Ansgar Bredenfeld, “Automatisierte Integration von Entwurfswerkzeugen für integrierte
Schaltungen”, Dissertation,GMD-Bericht Nr. 273, München-Wien, R. Oldenbourg Verlag,
1996, ISBN 3-486-24087-0 (in German)

[3] Ansgar Bredenfeld, “APICES - Rapid Application Development with Graph Pattern", in
Proceedings of the 9th IEEE International Workshop on Rapid System Prototyping
(RSP'98), Leuven, Belgium, pp. 25-30, June 3-5, 1998





              PERFORMANCE MEASUREMENT METHODOLOGY-AND-TOOL FOR
              COMPUTER SYSTEMS WITH  MIGRATING APPLIED SOFTWARE
                                            

                                                               S.L. Frenkel

                               The Institute of  Informatics  problems, Russian Academy of   
                               Sciences, Moscow,  Russia
                               Fax: (095) 310-70-50 , E-mail: slf@dep34.ipian.msk.ru
                               

1.Introduction
     Software measurements  are essential for any computer system (CS) development projects.  Requirements to
measurement depend on the CS development technique/scenario. One of widespread components of current CS
design philosophy is reuse. In accordance to [Laforme96], reuse activity can be represented in terms ÒdonorsÓ that
build assets with reuse and ÒclientsÓ that integrate those reusable assets.  From this point of view, ÒmigrationÓ of
programs (e.g., of some libraries or applications) from a machine where they were developed, (considered often as
an  instrumental machine (IM) )) into some ÒtargetÓ environment(Òtarget systemÓ  (TS) ) , is a particular instance
of the reuse activity.
    As for current practices in computer systems development and engineering,  both reuse and migration are closely
associated with hardware/software (HW/SW) co-design methodology, where also  Òmigrating softwareÓ exists
copiously.  The main goal of (HW/SW) co-design is to develop a system with an optimum trade-off between
performance and design cost, trying to achieve balance of its software and hardware components. This partition can
be performed basing  on the rigorous synthesis methods [Gupta95], or on the designerÕs experience. HW/SW
codesign methodologies, in fact, today  also are used in the practice of  universal computing system design. For
example, many  different systems include successfully used emulators to run applications on platforms for which
they were not initially targeted [Sites92]. In this case, designers have to look for trade-off  software/hardware
solutions, e.g., whether to provide the performance by the expensive translation techniques or through the cache
memory enhancement. (Note, that today the term ÒmigrationÓ is also concerned with some special  multimedia
issues, that, however, is outside the scope of this paper).    
    In any cases of reuse and HW/SW activity,  a system designer should be able to estimate and predict the
possible performance level at the early steps of the TS design. This means that he should use  a metric to evaluate
both software reused (migrated) and compilers of the TS from the point of view  of the performance.   Such metric
could tell him, for example,  if  one reuse-based technique is more or less effective than another, or  whether to put
a particular block in hardware or software has to be based on the metrics of interest for the entire system as well as
above thirds party software-and- hardware components. As  the analytical approaches to performance evaluation
(based, as a rule, on the Markov chain model)  have high computational complexity, so-called informal
"characterization" [Saavedra89] is used widely for the system optimization. It  measures   the workload of the some
accessible (at the given design stage) system's prototype  to understand the possible impact of  its characteristics on
the performance of  the whole target system.  Usually,  such measures are either some temporal characteristics or
frequencies of some events (e.g., function calling, operations executed, opcode appearance etc.).  
     From the programmer's viewpoint, such "characterization" is a behavioral characterization of a migrated software
simulated on an instrumental environment. In fact, relatively to the instrumental  machine we could interpret this
software as some applications set ( "domain") which must be implemented at the target machine. In this case, the
performance  is defined relatively to a given workload, which is determined by the specified applied software
system. So, among software characteristics it is desirable to have some metrics concerning  the performance-
determining properties of software application domain (AD).  However, as follows from  literature analysis
[Gong95], there are no software metrics which could be used to make accurate predictions concerning behavioral
characteristics of software from the point of view of speed-up of software reused-or-migrated  on the TS. The point
is that, no suitable mathematical models to express the relationships between  structural characteristics of source
codes and some temporal characteristics of  program execution, because of the  ambiguity of  these characteristics
impact   on the  compilers functionality (on the target platform). In  traditional approaches to the machine
characterization [Saavedra89], there is  no  the  unique definition of  ÒperformanceÓ itself.  In fact, performance is a
vector of  temporal parameters, which are set of measurements  giving the utilization either of the major system
resources (and the amount overlap in CPU and I/O utilization) or   other times for the separate  events in the
system ( e.g., duration of  primitive operations of some high-level language [Saavedra89]). Thereby, in spite of
different performance providing  problem definitions[Saavedra89, Gong95, Edward96 ], the sums of products of
program  operations  frequencies values  and expected (or measured) times of  their execution on the TS are used
as a performance metric. As an immediate effect of the lack of the model, the possible increasing of the   CS design
cost may be pointed out, because optimization results obtained with some benchmarks measuring may be not
representative (from the point of view of time execution) for one or other programs from an applied domain
specified or from some programÕs class. As a  first step to overcome this problem, the rigorous model for based on
profiling/tracing performance estimation  should be developed.



    This paper represents  one approach to general mathematical model of  performance,  which integrates some
software characteristics, and some temporal characteristic measured at the TS prototype (physical or virtual), as
well as a performance evaluation tool corresponding to this model. The approach is mostly intended for CSs
designed for  various specific AD, e.g. for example, for DSP image processing programs , or for some  application
software system  migrated (like MS-Office). It was shown that this model is generic for the  well-known
performance characteristics, justifying, in particular, the using  of  so popular software characteristics as operations
frequencies. Also some principal aspects of  the frequencies measurement will be considered as well as the
measurement tool implementation .   

2.Performance Evaluation Model
    As mentioned above, the characterization is performed in terms of the sum of the frequencies-and-times products.
Therefore, in order to model the performance evaluation we should understand whether these sums reflect some
performance measure as a time characteristic  for a class of programs with respect to the some application domain.        
     Let  P= {(P1,ID1), (P2,ID2), É ,(Ps IDs)}  be a sequence of programs Pi ,  i=1,És, with input data suites {IDi )
from some AD,  O1,. Om  are the set of Òbasic operationsÓ in terms of which the program are represented (that is,
in terms of some software specification language, e.g., VHDL, C, or some subroutines mapping the vertices/edges
of corresponding program data/flow graph [Gong95] ), τ 1,.. τm  are  the times of each Oi execution, which are
independent random values relatively to P (but they are constants  during each program  execution). The
randomness of-the times (over set  { Pi }) is due to cache miss, context switching etc.
LetÕs consider the sum  ∑ fi *τ i ,  i=1, M, where M is the number of the basic operations in the sequence  P (that is,
length of the sequence).                                    
Theorem.  Let T be expected time of execution of sequence P.
Then, under above conditions for,  TS we have for T:        
                           M
           T/M=→ P

 ∑  fi *τ i                       (1)        

                          i=1
                                      

     where  →P is the convergence in probability, ( The proof see in [Fr98]).    
     Suppose the programs sequence P is  united program (with the segments Pi) with the corresponding united
input data set {IDi}. Then, the sum of the weighted (by the frequencies) basic operation execution times  is
proportionally with the average time of execution of the some large  program from specific AD, as,  from (1)
follows   T/M ≈  ∑ fi *τ i. Obviously, if this program had some ÒcharacteristicÓ properties relatively to  the
programs from AD, T could be considered as a   natural performance measure definition, if,  at least, P  includes all
semantic elements of AD (e.g., all image processing operation).  
    Furthermore, letÕs consider AD as a general population, and P as a corresponding statistical sample [Pollard77].
Then, to pretend to be a characteristic program,  the size of P  should provide the suitable (from the statistical
point of view) confidence intervals for all measurements (fi  , τi , fi * τi ). In this context, T reflects the expected time
of the program execution  over AD, and, therefore, it is relevant characteristic of the performance. By this means,
there is the explicit monotone dependence between T and both fi  and τ i .  Correspondingly, this monotonous
dependence  on each of fi *τI determines the possibility to use the percentage terms fi *τi/ ∑ fi *τI  as a guide to locate
bottlenecks, knowing the parts of CS hardware/ software system which are responsible for the corresponding
instruction groups. The techniques to use similar data is well-known [Bashr97].  However, to  use well of  above
percentages to variants ordering, we have to provide { fi } estimation with enough accuracy (in a statistical sense),
otherwise it would be wrong results of comparisons of design versions (e.g. because  of  insufficiently narrow
confidence intervals for fi values).
    So, mentioned above model (with its interpretation) demonstrates that  traditional characterization techniques
based  on both  the frequencies and the times of basic operations measurements can represent the real performance of
CS, if  we  take into account the requirements to programs sample, which, in fact, are like to requirements for test
patterns for testing of system specification [ Howden86].

3. Tool  for Windows  NT applications characterization
    Our experience of using of mentioned above performance measurement model regards to RISC system that must
execute the x86 Windows NT applications. The use of (fi ,τ i ) data for the performance evaluation to improve the
applications execution time at this RISC platform has been examined. This goal had to be basically achieved by
the improving of the x86 instructions emulating ways. One of the specific aspects of this investigation was the
studying of the possibility to provide above requirements to software measurement, i.e. to provide suitable
confidence intervals for the frequencies measured  in  so complicated environment as Windows NT.   
    We had to solve some methodological problems to separate  system's and applications calls to provide AD
statistics collection, as well as the problems of various conditional probabilities definition. These problems have
been solved by using of both appropriate  statistics collection techniques and  some mathematical decisions. The
frequencies of all possible x86 instructions types have been measured by the special program (altogether   eleven
types have been extracted, e.g.  vector of addressing forms, vector of prefixes size etc. All these types      can be
related to   AD semantic classes (section 2 )). The measurements have been grouped in the vectors, which represent



the characteristic of applications migrated in accordance with these types. Each  vector includes the number of bits,
corresponding to the number  of  values of the characteristic. For example, the vector Register:
{al,cl,dl,bl,ah,ch,dh,bh,ax,cx,dx,bx,sp,bp,si,di,ea,ec,eb,ed,es,cs,ss,ds,fs,gs}, contains the frequencies of using of
corresponding registers under workload considered.
    LetÕs consider briefly the ways of measurement of these frequencies for AD on the background of systemÕs
programs. There are two types of  systemÕs calls having an  impact on the frequencies estimation. First,  this is
various  dialog boxes, which should not migrate to  target CS. The instructions of this component may be
excluded from the statistics collected by the stopping of corresponding collection (ÒSuspendÓ regime). Secondly,
there is influence of  various ÒinvisibleÓ functions like Winglon. As showed the analysis, the best way to smooth
the such ÒnoiseÓ influence is to combine of statistics, gathered for each of (Pi, IDi) (Section 2) to calculate above
frequencies from the unified sample. In fact, this is the way to achieve result closely approximating  the Bayesian
frequencies estimations procedure.        
   It is easy to see that a natural model for the above frequencies measurement is the polynomial trials [Pollard77].
Correspondingly, the confidence ellipsoid for parameters of the polynomial model  can be used as an accuracy
characteristic:

   (m1-M*p1)
2/ m1+(m2-M*p2)

2/m2+ ..+(m1-M*pN)2/mN  ≤ χ2(N-1,t)   
  p1+p2+...pN=1

    where N is the number of mentioned above characteristic vector bits,  all pi  are the  frequencies of these bits in
P, χ2(N-1,t) is chi-squared criterion with N-1 degrees of freedom, and t is  a given significance level (e.g., 5%)
[Pollard77],  mi  is the measured number each of bit in P  (under given  {IDi}.
    The results of our investigations show the possibility to estimate above frequencies with a good accuracy ( a
huge statistical materials there is in [Fr96]). As mentioned above, one from significant requirements to the data
obtained in the framework of the model is to be  separable to make a decision during variants comparison, that
reduced to the requirement to provide suitable confidence intervals for the  fi *τi/ ∑ fi *τ i  (but not for the frequencies
and times only). As can be seen from figure 1, the distances between  values are very significant for the various x86
Windows NT applications (e.g., between MS-Office and Mathcad ones), that points out the good possibility for
the variants separation (see next page).
    Mentioned above program has been implemented  using of the single-step instruction execution mode (i.e.
using the single-step trap flag). Current mnemonics-or-opcodes diagrams  are  displayed  on  the screen  during  the
statistics collection, and collected values of opcode/mnemonics can be indicated by the mouse click in the
corresponding diagram's point. Besides the frequencies, this program calculates the various  histograms  of  used
memory size as well as  basic blocks length, branches displacement size, and - statistics of using of various
resources (memory area, registers etc.).

4. Some results and conclusions
    Both the mathematical  model  of performance evaluation for CS with a software migrated and tool for such
measurements have been suggested and investigated in this work This model is a generic for   many of recently
suggested software characterization models [Saavedra89, Gong95, Edward96 ] as it is based on the fi *τi product. To
investigate experimentally  the possible ways to the software migrated characterization, the x86 Windows NT
environment has been selected as a prototype of  instrumental machine. Of course, this is a particular  case from the
HS/WS co-designÕs viewpoint, but we relied on it because   on  the one hand, this is the multi-threaded
software(this is very important for the today's high-reliable and high-performance systems), and on the other hand,
because the possibility to use well-known  tools to support the data collection. Then, as there are closed
application classes within the well-known operating systems ( "closed" e.g., in the sense of unified implementation
rules (  Microsoft Office etc.)), it is possible to determine the conditions of  input data and behavior integration.



PERCENTAGE OF INSTRUCTION 
EXECUTION MEAN TIME

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7

AD
C

AN
D

MO
V

SB
B XO
R

MNEMONICS

%

 MATHCAD

MICROSOFT

  Fig. 1  Diagram of f i *τ i/ ∑ f i *τ i data for five upper (in terms of this percentage)   x86 instructions
emulated on the RISC  platform.   

    RISC processor has been used as a hardware prototype. It should be  improved (from the performance viewpoint)
both by the instruction/data cache size choice and by the control software debugging, matching the above Windows
NT application migrated to this RISC platform.
   To solve the above applied software/target hardware optimization problem in terms of  minimization of average
time of migrated software execution ( e.g., instrumental machine instructions emulation time), it is suffice to  have
the tool which allows to combine  both IM and TS characteristics groups, that is, frequencies of IM operations and
times of their executions at the TS prototype. The main requirement to the combining is to provide the ordering of
variants in accordance to this combined value. This ordering  may be based on the  fi *τ i product. To estimate
these values a statistically-justified method to measure of applied programs within the given operational
environment has been suggested and investigated. The conceptual model  of this environment is the "abstract
machine under given workload". The workload is considered as a set of  applied functional tasks (AFT) (e.g.,
"open file", "bitmap  transformation" etc.), which characterize (both statistically and semantically) corresponding
AD. The  choice of the tasks for the test set  can be provided in terms of statistical series, corresponding to
frequencies values of each migrated operation for each of AFT (maximal, minimal, median etc.).

Acknowledgment
    I would like to thank  Dmitry L. Petrov and  Boris E. Prutkovsky, the Institute of Informatics Problems
(IPIRAN) Members, for their efforts to implement software to evaluate above model. Also I am very grateful to
Victor N.Zakharov,  IPIRAN Deputy Directory  for his comments on earlier drafts.   

References
[Pollard77] J.H. Pollard, A Handbook of Numerical and Statistical Techniques, Cambridge University Press, 1977.
[Howden86]  W.E.Howden, Functional Program Testing and Analysis, McGraw-Hill, 1986.
[Saavedra89] R. H.Saavedra-Barrera et al. Machine characterization Based on an Abstract High-Level Language Machine,
IEEE Trans. On Comp. Vol 38, No 12, December  989, pp. 1659-1679.
[Sites92] R L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G. Robinson, ÒBinary TranslationÓ,
Digital Technical Journal, Vol. 4, No. 4, 1992
[[Gupta95] Co-Synthesis of Hardware and Software for Digital Embedded Systems, Kluwer Academic Publisher, 1995.
[Bash97] D.Bash and M. Zagar, ATLAS, IEEE Design & Test, July-September, 1997, pp. 104-112
[Gong95] J. Gong et al, Software Estimation Using of Generic-Processor Model,  Proc. of EDACÕ95, 1995.
[Edwards97] M.D.Edwards et al, Acceleration of software algorithm using hardware/software co-design, Journal o f
Systems Architecture 42 (1996/1997), pp.697-707
[Laforme96] D. Laforme and  M. E. Stropky, Mechnism for Effectively Applying Domain Engeneering in Reuse Activities,
Army Reuse Center    CACI, INC. -USA, 1996.
[Fr96] S.L. Frenkel, D.L.Petrov, x86 Applications Characterization and x86 Interpreter
Optimization, Project report , Contract 795-34-�,  IPIRAN .
[Fr98] S.L.Frenkel, One Model for Simulation-Based Approach to Computer System Performance Evaluation, Proceedings
of 3rd EUOROSIM CONGRESS, Vol.3, pp.599-502, Helsinki,  April  14-15,1998.



Recent BRICS Notes Series Publications

NS-98-4 Tiziana Margaria and Bernhard Steffen, editors.Proceedings
of the International Workshop on Software Tools for Technol-
ogy Transfer, STTT ’98,(Aalborg, Denmark, July 12–13, 1998),
June 1998. 86 pp.

NS-98-3 Nils Klarlund and Anders Møller. MONA Version 1.2 — User
Manual. June 1998. 60 pp.

NS-98-2 Peter D. Mosses and Uffe H. Engberg, editors.Proceedings
of the Workshop on Applicability of Formal Methods, AFM ’98,
(Aarhus, Denmark, June 2, 1998), June 1998. 94 pp.

NS-98-1 Olivier Danvy and Peter Dybjer, editors.Preliminary Proceed-
ings of the 1998 APPSEM Workshop on Normalization by Eval-
uation, NBE ’98, (Gothenburg, Sweden, May 8–9, 1998), May
1998.

NS-97-1 Mogens Nielsen and Wolfgang Thomas, editors.Preliminary
Proceedings of the Annual Conference of the European Associ-
ation for Computer Science Logic, CSL ’97(Aarhus, Denmark,
August 23–29, 1997), August 1997. vi+432 pp.

NS-96-15 CoFI. CASL – The CoFI Algebraic Specification Language;
Tentative Design: Language Summary. December 1996. 34 pp.

NS-96-14 Peter D. Mosses.A Tutorial on Action Semantics. December
1996. 46 pp. Tutorial notes for FME ’94 (Formal Methods Eu-
rope, Barcelona, 1994) and FME ’96 (Formal Methods Europe,
Oxford, 1996).

NS-96-13 Olivier Danvy, editor. Proceedings of the Second ACM
SIGPLAN Workshop on Continuations, CW ’97(ENS, Paris,
France, 14 January, 1997), December 1996. 166 pp.

NS-96-12 Mandayam K. Srivas.A Combined Approach to Hardware Ver-
ification: Proof-Checking, Rewriting with Decision Procedures
and Model-Checking; Part II: Articles. BRICS Autumn School
on Verification. October 1996. 56 pp.

NS-96-11 Mandayam K. Srivas.A Combined Approach to Hardware Ver-
ification: Proof-Checking, Rewriting with Decision Procedures
and Model-Checking; Part I: Slides. BRICS Autumn School on
Verification. October 1996. 29 pp.


	7: 7
	8: 8
	9: 9
	10: 10
	11: 11
	12: 12
	13: 13
	14: 14
	15: 15
	16: 16
	17: 17
	18: 18
	19: 19
	20: 20
	21: 21
	22: 22
	23: 23
	24: 24
	25: 25
	26: 26
	27: 27
	28: 28
	29: 29
	30: 30
	31: 31
	32: 32
	33: 33
	34: 34
	35: 35
	36: 36
	37: 37
	38: 38
	39: 39
	40: 40
	41: 41
	42: 42
	43: 43
	44: 44
	45: 45
	46: 46
	47: 47
	48: 48
	49: 49
	50: 50
	51: 51
	52: 52
	53: 53
	54: 54
	55: 55
	56: 56
	57: 57
	58: 58
	59: 59
	60: 60
	61: 61
	62: 62
	63: 63
	64: 64
	65: 65
	66: 66
	67: 67
	68: 68
	69: 69
	70: 70
	71: 71
	72: 72
	73: 73
	74: 74
	75: 75
	76: 76
	77: 77
	78: 78
	79: 79
	80: 80
	81: 81
	82: 82
	83: 83
	84: 84
	85: 85
	86: 86


