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Quantum Computation

\Because nature isn't classical, dammit..."

Richard P. Feynman

Andr�e Berthiaume1

ABSTRACT Historically, Turing machines have been the paradigm by

which we de�ned computability and e�ciency. This is based on Church's

thesis that everything e�ectively computable can also be computed on a

Turing machine. But since our world behaves quantum mechanically, it

seems reasonable to also consider computing models that make use of quan-

tum mechanical properties. First stated by Benio� [Ben82] and Feynman

[Fey82], this idea was formalized by Deutsch [Deu85] when he introduced

his quantum computer and, later on, quantum gate arrays. This paper gives

an introduction to quantum computing and brie
y looks at a few results

in quantum computation, not the least of which is Shor's polynomial time

factoring algorithm ([Sho94] and [Sho95]).

1 The Need for Quantum Mechanics

Why introduce quantum mechanics in computation? The opening quote, if

a little blunt, captures the essence of the answer. At the center of computer

science are two questions: what problems are computable and how e�ciently

can they be computed? Historically, (probabilistic) Turing machines have

been the paradigm by which we de�ned computability and e�ciency. This

is based on Church's thesis that everything e�ectively computable can also

be computed on a Turing machine. But since our world behaves quantum

mechanically, it seems reasonable to also consider computing models that

make use of quantum mechanical properties. First stated by Benio� [Ben82]

and Feynman [Fey82], this idea was formalized by Deutsch [Deu85] when he

de�ned the �rst quantum computing model that made full use ofn quantum

superposition. This paper gives an introduction to Deutsch's quantum com-

puting model and brie
y looks at a few results in quantum computation,

not the least of which is Shor's polynomial time factoring algorithm.

Before de�ning a quantum computing model, some basic notions of quan-

1Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands (berthiau@cwi.nl). This article appeared in \Complexity The-

ory Retrospective II'', Springer-Verlag, 1996 (Editors: Lane Hemaspaandra and
Alan L. Selman). It is reproduced here with Springer-Verlag's kind permission.



2 Andr�e Berthiaume

tum mechanics must be introduced. A comprehensive presentation of quan-

tum mechanics is beyond the scope of this paper, but fortunately only the

very simplest systems are used for quantum computation: two-state sys-

tems or �nite groups of two-state systems. The next section introduces the

relevant notions for these special cases. Quantum gate arrays will be de�ned

next and, after a few examples of their capabilities, the results leading to

Shor's algorithm will be brie
y reviewed. The last section addresses some

of the di�culties facing the actual construction of a quantum computer.

Because of space restriction, it will not be possible to include the his-

torical context which lead to many of the subjects discussed here. Where

possible, we will give references for more detailed accounts. For a more ex-

haustive review of the history of quantum computation (dating back almost

50 years), the reader should consult [Ben96].

2 Basic Principles of Quantum Mechanics

We now introduce the basic rules of quantum mechanics through a series

of principles. Young's celebrated two-slit experiment will serve as a back-

ground to illustrate these principles.

2

x

1

s

A/B C

FIGURE 1. Young's two-slits experiment. Curves A and B show the light inten-

sity when only one hole is open. Curve C shows the interference pattern when

both holes are open. (the curves are exaggerated)

In Young's experiment (�gure 1), light coming out of a hole in the left

wall must go through two small holes in the center wall. A detector on the

right wall measures the light intensity at di�erent positions along the length

of the wall. If only one hole is open, the intensity reaches its maximum at

a position directly in line with that hole and the source s. As the detector
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moves away from that position, the intensity slowly fades and eventually

vanishes. When both holes are open, the intensity pattern is not the sum

of the two one-hole intensities, as one would expect, but an alternation

of bright and dark fringes. This e�ect is caused by the interference of the

light coming out from both holes. Surprisingly, the interference persists

even when the source s is dim enough to send only one photon at a time;

if many runs are made and a photon count is kept for various positions,

the same pattern of bright and dark fringes appears. Each photon seems

to interfere with itself.

2.1 Probability Amplitudes

The self-interference appearing in Young's experiment is just one example

illustrating that classical intuition cannot be applied to quantum systems.

The purpose of this section is not to explain why such strange behavior

appears at the quantum level but merely to state the rules for these be-

haviors. Following Feynman's example [FLS64], these rules are presented

as the principles of quantum mechanics.

De�nition 2.1 For a given experiment, an event is a set of initial and

�nal conditions.

For example, an event in Young's experiment is \a photon leaves the source

s and arrives in the detector at position x". The goal of quantum mechanics

is to predict whether an event can happen or not. The �rst principle of

quantum mechanics de�nes the probability of an event actually happening.

First Principle: The probability p of an event is given by the square

norm of a complex number � (called a probability amplitude or

simply amplitude).

p = k�k2

The probability amplitude of an event will be noted as follow:

h �nal condition j initial condition i

For example, the above event can be written as

h a photon is detected at position x j a photon leaves s i

or more succinctly hxjsi. The bracket notation, due to Dirac, is reminiscent

of conditional probabilities and can be read as: hxjsi is the amplitude of

detecting a photon at position x given that a photon left the source s. In

fact, amplitudes can be treated in the same way as probabilities. Consider

again Young's experiment. If a photon leaves the source and arrives at the

detector, it must do so by going through the holes in the wall. That is

to say, the event hxjsi can be broken down in two sequential events: the
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photon �rst leaves the source s and arrives to the middle wall, then the

photon comes out of this middle wall and arrives at the detector. But to go

through the middle wall, the photon has two option: either through hole 1

or hole 2. The following two principles indicate how the laws for addition

and multiplication of probabilities also apply to amplitudes.

Second Principle: If an event can be divided in two sequential sub-

events, the amplitude of the event is the product of the amplitudes

for each of the sub-events.

Third Principle: If an event can occur in several alternative ways,

then the amplitude of the event is the sum of the amplitudes for

each alternative taken separately.

From these two principles:

hxjsi = hxjwallihwalljsi (1.1)

= hxj1ih1jsi+ hxj2ih2jsi (1.2)

where hxjii is the amplitude of a photon arriving at x given it came out of

hole i and hijsi is the amplitude of a photon entering hole i given that it left

the source s. Equation 1.2 implicitly considers terms of the form hxj1ih2jsi
or hxj2ih1jsi to be equal to zero. Informally speaking, these would be asking:

\what is the amplitude that a photon leaves s, goes through hole 1, comes

out of hole 2 and then arrives at x?" and similarly for the other case. The

answer must include the amplitude of going from hole 1 to hole 2 (h2j1i)
and vice versa (h1j2i). So the correct bracket form for the above questions

should be: hxj1ih1j2ih2jsi and hxj2ih2j1ih1jsi. One can verify experimentally

that whenever a photon is detected entering one hole, it is never detected

coming out of the opposite hole. Equations 1.3 and 1.4 express this situation

in terms of amplitudes of events.

h1j1i = h2j2i = 1 (1.3)

h1j2i = h2j1i = 0 (1.4)

No matter where the detector is positioned, the amplitude hxjsi is com-

pletely determined by the amplitudes to transit to and from the two holes.

For this reason, the holes are natural elements for expressing events. This

leads to the following de�nition:

De�nition 2.2 The set B = fi j i is the label of some conditiong is a set

of basis states if for all i; j 2 B

hijji =

�
1 if i = j

0 otherwise

and for any initial condition Y and �nal condition X, we have

hX jY i =
X
i2B

hX jiihijY i
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Fourth Principle: Any event can be described in terms of a set of

basis states by giving the transition amplitudes to and from those

basis states.

Young's experiment seems to have only one possible set of basis states

(namely, B = f1; 2g) but actually, for any experiment, there is an in�nite

number of sets of basis state. Some appear naturally, such as the two holes

in this experiment, and others less so. The notion of basis states can be

better understood through an analogy with a three dimensional real vector

space V and the dot product in that space. Let the three vectors

~e1 =

0
@

1

0

0

1
A , ~e2 =

0
@

0

1

0

1
A and ~e3 =

0
@

0

0

1

1
A

be the canonical basis of V and let

~A =

0
@

a1
a2
a3

1
A and ~B =

0
@

b1
b2
b3

1
A

be two vectors in V . The following is a non-standard yet valid expression

for the dot product of ~A and ~B:

~A � ~B = a1b1 + a2b2 + a3b3

= ( ~A � ~e1)(~e1 � ~B) + ( ~A � ~e2)(~e2 � ~B) + ( ~A � ~e3)(~e3 � ~B)

=

3X
i=1

( ~A � ~ei)(~ei � ~B)

This last line is similar to the equation for hX jY i in de�nition 2.2. The

vectors ~A and ~B correspond to the two conditions X and Y and the set of

canonical basis vectors corresponds to the set of basis states. In this sense,

hX jY i � hX j � jY i. The analogy can be pushed further still. Consider the

following:

~B = b
1
~e
1
+ b

2
~e
2
+ b

3
~e
3

=

3X
i=1

~eibi

=

3X
i=1

~ei(~ei � ~B)

This simply is the previous equation for ~A � ~B where we abstracted ~A.

In other words, ~B is the vector sum of its components along each of the
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basis vectors ~e1, ~e2 and ~e3. Similarly, the initial states Y of hX jY i can be

expressed in terms of the set of basis states by abstracting X .

jY i =
X

i2B

jiihijY i (1:5)

(Note: h�j�i is just a scalar number, so jiihijY i = hijY ijii but the second

form is preferred.) The left and right halves of h�j�i are named bra and

ket respectively. Equation 1.5 de�nes the state of an initial condition Y as

function of B, the set of basis states. The ket jY i is called a state vector

and it lies in a complex vector space (Hilbert space) yspanned by the basis

vector associated with the basis states in B. Similarly,

hX j =
X

j2B

hX jjihjj

de�nes the state of a �nal condition X as function of B. The hX j and jY i

could also be written using another set of basis state just as ~B can be

written in a basis other than the canonical one. Section 2.2 and 2.4 will

present examples where multiple sets of basis states naturally appear. For

a basis set B, the state jY i is said to be in quantum superposition of the

basis states in B, if more than one hijY i is non-zero.
By the �rst principle, the square norm of an amplitude gives a probabil-

ity of the corresponding event. By the fourth principle, any event can be

expressed as a function of the amplitude corresponding to each basis states.

Since probabilities must add up to 1, there should be some constraint on

the amplitudes:

Fifth Principle: For any set of basis states B and for any initial con-

dition Y : X

i2B

khijY ik2 = 1

This follows from the de�nition of a set of basis states which has to be

complete (all possibilities are accounted for) and orthogonal (hijji = 0 if

i 6= j, 1 otherwise).

We leave as an exercise the proof of the following theorem (recall that

�� is the complex conjugate of �.)

Theorem 2.1 For any condition A and B, hBjAi = hAjBi�.

From which we derive that if j'i =
P

i2B �ijii then

h'j =
X

i2B

�ihij

All these principles can be put together in the following situation: con-

sider a system whose initial condition is expressed by the state vector

jY i =
X

i2B

�ijii
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where �i = hijY i, the amplitude of the system under consideration in each

of the basis states i. Now consider a general �nal condition

hX j =
X
j2B

�jhjj

where �i = hX jii. What is the amplitude of �nding the system in condition

X given that it was initially prepared in Y ?

hX jY i =

0
@X

j2B

�jhjj

1
A
 X
i2B

�ijii

!
=
X
i2B

�i�i by def. 2.2

2.2 Qubits and How to Observe Them

The �ve principles presented in section 2 are completely general and apply

to any quantum system. However, for the sake of clarity, we will limit our

attention to systems of interest for quantum computation, namely qubits

and quantum registers. We begin by de�ning a qubit, the quantum version

of bit, as de�ned by Schumacher [Sch95].

De�nition 2.3 A qubit is a quantum state j'i of the form

j'i = �j0i+ �j1i

where �; � 2 C and k�k2 + k�k2 = 1

The above de�nition leaves the actual medium of a qubit completely unde-

�ned. It is of no importance whether the qubit is encoded in the polarization

of a photon, the spin of an atom, the up/down orientation of lamp-post

or the alive/dead state of Schr�odinger's poor cat2 as long as the object

is treated according to the principles given in this introduction. There is

nothing in principle that forbids one from getting quantum mechanical ef-

fects with lamp-posts or cats. In practice, however, it might be easier to use

photons or atoms. The word \easier" should be taken loosely; in the last

section, we will discuss brie
y the issues regarding actual implementations

of qubits and, more generally, quantum computers.

The main di�erence between qubits and classical bits is that a bit can

only be set to either 0 or 1while a qubit j'i can take on any (uncountable)

quantum superposition of j0i and j1i. This means an in�nite amount of

information could potentially be encoded in a single qubit by appropriately

de�ning the amplitudes � and �. Unfortunately, what goes in does not

necessarily come out. Quantum mechanics imposes very strict rules as to

2My apologies to Simone and Hugin and all other cats who might read this
paper.
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how to extract information out of quantum state. This is done through

a mathematical construct called an observable. Let j'i be the state of a

quantum system. We have a probe P at our disposal to measure some

property of j'i. This property could be the direction, the position or even

a simple yes/no question. We need to model the action of the probe P on

the state j'i.

De�nition 2.4 Let H be the Hilbert space used to represent the state

vectors of a quantum system. An observable O is a set of subspaces

E
1
; E

2
; : : : ; Ek � H such that these subspaces completely partition H. i.e.

E
1
�E

2
� � � � �Ek = H

and

8 i; j 2 f1; : : : ; kg; i 6= j : Ei ? Ej

An observable is the mathematical representation of the probes P . The

next principle de�nes the e�ect of an observation of a state vector.

Sixth Principle: Let j'i be a state vector in a state space H and let

O = fE
1
; E

2
; : : : ; Ekg be an observable. Since O partitions H , j'i

can be expressed as a linear superposition of its components along

each of the Ei's:

j'i =
kX

i=1

�ij'Ei
i

where j'Ei
i lies in Ei. Observing the state j'i with O will cause

the following:

1. One of the Ei will be selected with probability k�ik
2

.

2. The state j'i will \collapse" to j'Ei
i (renormalized).

3. The only classical information given by O is which subspace

(i) was selected. All information not in j'Ei
i is lost.

To each possible output value of the probe corresponds a subspace in the

observable. Since all these values are di�erent from each other, the corre-

sponding subspace must be orthogonal. Again, any observable is allowed in

principle for observing a quantum state. Whether the physical apparatus

that corresponds to that speci�c observable is easy to build is a di�erent

matter entirely.

The standard observable for a qubit is B = fE0; E1g where E0 and E1
are spanned by the two basis vectors j0i and j1i respectively. An example

of a non-standard observable on a qubit is O = fE00 ; E10g where E00 and

E10 are spanned by

j00i =
1
p
2
(j0i+ j1i) and j10i =

1
p
2
(j0i � j1i)
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respectively. The reader can check that E00 and E10 have the correct prop-
erties of an observable. The next section will emphasize how the information
in a qubit is linked to which observable is used to read them.

2.3 Digression in Quantum Cryptography

If qubits are encoded in the polarization of photons, the two observables
B and O in section 2.2 have a simple physical implementations. De�ne
j0i and j1i as horizontally and vertically polarized photons. Then B is a
horizontally positioned polarizing �lter and O is a polarizing �lter set at
45 degrees from the horizontal. This forms the basic set-up for quantum
cryptography. Alice, the sender, wants to send her secret bit to Bob, the
receiver. They agree that 0 will be encoded as a photon either in state j0i or
j00i (based on a coin 
ip) and a 1 is similarly send as either j1i or j10i. Bob
must read the the photons either with B or O. Table 1.1 shows the various
outcomes for each possible choice of encoding (by Alice) and observable (by
Bob). As an example, assume Alice's bit is a zero. Her coin-
ip instructs

Alice Bob Alice's state result Correctness
sends uses relative to Bob and probability

j0i B j0i 0 (prob 1) correct

O 1p
2
(j00i+ j10i) 0

0=10 (prob 50%) random

j00i B 1p
2
(j0i+ j1i) 0/1 (prob 50%) random

O j00i 0
0 (prob 1) correct

j1i B j1i 1 (prob 1) correct

O 1p
2
(j00i � j10i) 0

0=10 (prob 50%) random

j10i B 1p
2
(j0i � j1i) 0/1 (prob 50%) random

O j10i 1
0 (prob 1) correct

TABLE 1.1. Depending on how Alice will encode her secret bit and what observ-

able will be used by Bob, Bob's read-out of the photon send by Alice will either

be correct or completely randomized.

to encode it as a j0i. If Bob chooses the observable B to observe Alice's
incoming photon, he will get a 0 outcome with certainty and will know
Alice's bit (assume Alice discloses her bases to Bob in a later discussion).
However, Bob could choose the O observable to read the incoming photon.
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The reader can check that

j0i = 1p
2
(j00i+ j10i)

Bob thus has 50% probability of getting the 00 outcome and 50% probability

of getting the 1
0 outcome. Similar arguments hold for each case of table

1.1. To learn more about the importance of this situation, see [BBB+92],

[BBE92] and [Bra93]. The point of this digression was to demonstrate that

the information of a quantum state is a function of the observable used. The

same state j'i observed with two di�erent observable can give a de�nite

answer in one case and a totally randomized answer in the other.

2.4 Evolution of a Quantum System

The situations considered up to now were static in the sense that the initial

state did not change after being set. Once the initial state vector jY i was
de�ned, we considered amplitudes of the form hX jY i for some hX j. But
to compute something with quantum states, some transformation of the

initial state will have to be performed. Suppose an apparatus A is used to

execute this transformation on the initial state jY i. The events of interest

are now of the type \what is the amplitude for the �nal condition X given

that the initial condition Y went through apparatus A?". In the bracket

notation, this is written as

hX jAjY i
The next principle gives the mathematical representation of A.

Seventh Principle: State vectors are transformed by unitary matri-

ces. Relative to a set of basis state B, Ai;j (i; j 2 B) is the ampli-

tude of going from state i to state j.

A matrix U is unitary if UU y = U yU = I (U y is the conjugate transpose of

U). In principle, any unitary transformation on a quantum state is allowed

but constructing a physical device corresponding to any given matrix U

might pose some technological problems.

A simple example of qubit transformation can be made with polarized

photons. A polarized photon going through a transparent tank of sugar

water will have its polarization slowly rotated3. The amount of rotation

depends on the length of the tank and the density of sugar. By appropri-

ately setting these parameters, the tank can be made to induce a 45 degree

rotation on incoming photons. If j0i and j1i respectively correspond to hor-

izontally and vertically polarized photon, then the tank has the following

3Actually, more than just the polarization will be a�ected, but for simplicity,
we will ignore these other e�ects.
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e�ect:

j0i will be transformed into
1p
2
(j0i+ j1i) and (1.6)

j1i will be transformed into
1p
2
(�j0i+ j1i) (1.7)

The transformation induced on the basis states completely determines the

matrix A. If j'i = �j0i + �j1i is shot through the tank, it will come out

transformed into state j'0i where

j'0i = Aj'i
= A(�j0i+ �j1i)
= �Aj0i+ �Aj1i (by linearity)

= �

�
1p
2
(j0i+ j1i)

�

+ �

�
1p
2
(�j0i+ j1i)

�
(by eqn. 1.6, 1.7)

=
1p
2
(�� �)j0i+

1p
2
(�+ �)j1i

Or, in more familiar matrix-and-vector style:

A =
1p
2

�
1 �1

1 1

�
; j'i =

�
�

�

�

and

j'0i = Aj'i =
1p
2

�
1 �1

1 1

��
�

�

�
=

 
1p
2
(�� �)

1p
2
(�+ �)

!

Another transformation very similar to that induced by A is \square root of

not". The name is derived form the fact a qubit going through two identicalp
Not
:-apparatuses comes out in a state corresponding to the boolean inverse

of its initial value. The
p
Not
: transformation is given below; the reader is

encouraged to check that it performs as stated.

p
Not
: =

1

4

�
1� i 1 + i

1 + i 1� i

�

A qubit can be set, transformed and observed. But to do serious com-

putation, more than a single qubit is required. The next section introduces

the last few mathematical tools needed for quantum computation.

2.5 Quantum Registers

Quantum computations generally use more than just one qubit. The math-

ematical formalism introduced so far must be adapted to the treatment of

groups of qubits.
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De�nition 2.5 A quantum register is an ordered set of a �nite number

of qubits.

De�nition 2.6 The standard basis B of an n-qubit quantum register is

B = fjii j i is an n-bit binary stringg

Let j'1i = �0j0i + �1j1i and j'2i = �0j0i + �1j1i be two qubits com-

posing a 2-qubit quantum register. The state vector j i of the register is

de�ned as the tensor product of the states j'1i and j'2i

j i = j'1i 
 j'2i =

 
1X

i=0

�ijii

!



0
@ 1X

j=0

�j jji

1
A

=

1X
i;j=0

�i�j(jii 
 jji)

By de�nition, the tensor product maps jii 
 jji (where i and j are basis

states to jiji. This allows us to write j i as

j i =

�i�j jijiX
i;j=0

Similarly, let A and B be two unitary matrices corresponding to two appa-

ratuses operating on j'1i and j'2i separately. The combined action of A

and B on the joint state j i = j'1i 
 j'2i is de�ned as a 4� 4 matrix C

where

C = A
B =

�
a11B a12B

a21B a22B

�
It is easily veri�ed that the tensor product has the following property

(A
B)(j'1i 
 j'2i) = (Aj'1i)
 (Bj'2i)

and that it preserves unitarity.

So far, we seem to only complicate the notation for a basically simple

situation: two independent qubits are acted upon by two independent ap-

paratuses. But the point in joining two qubits is speci�cally to allow them

to be dependent. In fact, not all states of a 2-qubit quantum register can

be expressed as the tensor product of single qubit states. An example of

such state is

j i =
1
p
2
(j00i+ j11i)

If j i is observed with the observable corresponding to the standard basis,

the results \00" or \11" will be seen each with probability 50%, but the

results \01" or \10" will never be observed. When the state of an n-qubit
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register cannot be expressed as the tensor product of n qubit states, the

register is said to be entangled. Similarly, not all 4�4 unitary matrices can

be expressed as the tensor product of two 2�2 unitary matrices. One such

matrix is

C =

0
BB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1
CCA

which e�ects the following mapping of the basis states of the register: if the

register's state is such that the �rst qubit is 0 no action is performed, oth-

erwise the value of the second qubit is negated. The above matrix performs

the operation called controlled-not on two qubits. As such, it is the �rst

example of a quantum computation introduced here. For the importance

of the controlled-not operation, see [BBC+95].

It is a simple matter to generalize what has been presented in this section

to represent the state of an n-qubit register. The general state vector j i

of an n-qubit quantum register is

j i =

2
n

�1X
i=0

�ijii

and the 2n vectors jii form the set of basis states of the register (note that

within j�i, the i stands for the binary expansion of the value i). This means

that j i is a vector in a 2n dimensional Hilbert space and operations are

de�ned by 2n�2n unitary matrices. Observables for extracting information

from the state vectors are partitions of the 2n dimensional Hilbert space.

We are now ready to apply these notions of quantum mechanics to com-

putation.

3 Computing with Quantum Registers

The original quantum computing model proposed by Deutsch was essen-

tially a Turing machine, but with the added properties that tape cells

and the head's state could be in quantum superposition. Deutsch also con-

strained the transition function by requiring it to induce a unitary evolution

of the Turing machine. This was of course necessary to respect quantum

mechanical principles, but it made programming quantum Turing machines

even more nightmarish than programming classical ones. Verifying that a

given transition function corresponds to a unitary evolution is non-trivial.

Bernstein and Vazirani give three rules for verifying that a transition func-

tion performs its computation in a unitary fashion [BV93], but even using

this method still requires unnatural programming skills.

In classical complexity theory, uniform circuit families are also commonly

used as a computing model. Turing machine and uniform circuit families
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are e�ectively equivalent in computing power in that they can simulate one

another with negligible complexity overhead. This makes the use of one or

the other a matter of taste. There exists a quantum equivalent to uniform

circuit families: quantum gate arrays. They were introduced by Deutsch

([Deu89]) and studied extensively by many authors (see [BBC+95] for a de-

tailed review of quantum gate arrays). Yao [Yao93] has shown that acyclic

quantum gate arrays could simulate quantum Turing machines, thus mak-

ing the use of one or the other a matter of choice. However, since quantum

gate arrays allow a more natural way to introduce unitarity in compu-

tation, they are emerging as the standard quantum computing model. In

what follows, the diagrams and gate array notation are as in [BBC+95].

3.1 Quantum Gate Arrays

The diagram below represents a general quantum gate array. The initial

(basis) state of the register is on the left and time 
ows from left to

right. One might think of the particles composing the register as travel-

ling through the di�erent gates. At the right end is the observable that

extracts information from the register after it has gone through all the

gates.

b7
b6
b5
b4
b3
b2
b1

A1 A2

: : :
: : :
: : :
: : :
: : :
: : :
: : :

An

�

�

�

�

O

The sequence of Ai's with observable O is what constitutes a quantum

program. Formally speaking, the Ai gate should be of some well-de�ned

form corresponding to some de�nition of elementary steps. For the purpose

of this paper, it is su�cient to consider any quantum gate acting on only

one or two qubits to be such an elementary step. The reader is encouraged

to consult [BBC+95] for more details on the notion of elementary quantum

gates. Also, in our gate arrays, we will not always specify all the elementary

gates: in some cases we will simply convince ourselves that the necessary

elementary gates could be written down. This procedure is analogous to

writing pseudo-code for classical Turing machine and will provide a better

intuitive approach.

To illustrate the programming of quantum gate arrays, we will use a vari-

ation of the Deutsch-Jozsa Problem [DJ92]. First, we de�ne two properties

of functions from f0;1gn to f0;1g:

De�nition 3.1 A function f : f0;1gn ! f0;1g is non-balanced if one

of the two values of f has majority.
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De�nition 3.2 A function f : f0;1gn ! f0;1g is non-constant if there

exist x; y 2 f0;1gn such that f(x) 6= f(y).

Notice that most (but not all) functions from f0;1gn to f0;1g have both

properties simultaneously. The modi�ed Deutsch-Jozsa problem is descri-

bed as follow:

Modi�ed Deutsch-Jozsa Problem (mdjp):

Input: a computable function f : f0;1gn ! f0;1g

Problem: to answer either \non-balanced" or \non-constant", but the

answer must apply to f .

The original Deutsch-Jozsa problem dealt with strings rather than func-

tions and was the �rst example of a problem which could be solved exponen-

tially faster on a quantum computer than on a Turing machine [DJ92]. By

recasting the original problem in the context of promise-problems, Berthi-

aume and Brassard in [BB94], [BB92a] and [BB92b] proved some early

results in relativized quantum complexity theory. These results were im-

proved upon �rst by Bernstein and Vazirani [BV93] and then by Simon

[Sim94] who proved the following theorem.

Theorem 3.1 (Simon) There exists an oracle relative to which there is a

problem solvable in polynomial time (with bounded error probability) on a

quantum computer, but any probabilistic Turing machine with bouded error

probability claiming to solve this problem (using the oracle) will require

exponential time on in�nitely many inputs.

Simon's theorem is the strongest argument in favor of the superiority of

quantum computers over Turing machines. Moreover, the quantum gate

array used in Simon's proof is similar to the one used by Shor for his

factoring algorithm. In this section, we present a solution to the mdjp

using quantum gate arrays. This allows us to introduce, in section 4, the

gate array used in the proof of theorem 3.1. In section 5, we outline the

quantum component of Shor's factoring algorithm.

We now present a quantum solution to the mdjp. According to the prin-

ciples given in section 2, a valid quantum algorithm corresponds to a uni-

tary matrix. But programming in terms of unitary matrices is unnatural

to humans who prefer to think in terms of sequential steps. We need to

break down the mdjp into a sequence of unitary operations. If each of

these sequential steps are simple enough, asserting their unitarity should

be a relatively easy task. Just how simple need be these steps? Ideally, they

should be broken down to what we de�ned as elementary gates, but in some

cases, this will be unnecessary. The following theorem (Lecerf [Lec63] and

Bennett [Ben73]) greatly simpli�es quantum thinking:
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Theorem 3.2 (Lecerf-Bennett) For any Turing machine T computing

a function f there exists a reversible Turing machine T 0 computing hx; f(x)i

on input x and whose running time is within a constant factor of the run-

ning time of T . The cost in space is also polynomial in jxj, but all the tape

cells used in the process of computing hx; f(x)i will be reset back to zero

(reversibly). These tape cells are referred collectively as the workspace.

Reversible Turing machines are such that at any point in the computation,

two operations are possible: continue the computation forward one step or

undo the previous step. For a more precise de�nition, see [Lan61] or the

review in [BL85]. Benio� [Ben82] and Deutsch [Deu85] have shown that

quantum Turing machines can directly simulate reversible Turing machines.

Since quantum Turing machines (and thus also to quantum gate arrays)

are reversible4, we have the following corollary:

Corollary 3.3 A Turing-computable function f is always computable on

a quantum gate array (with a negligible increase in the time complexity).

Consider the mdjp. The input function is computable so, by the Lecerf-

Bennett theorem, there exists a reversible Turing machine that computes

hx; f(x)i on input x. By de�nition of the problem, x is an n-bit value and

f(x) is a single bit. By corollary 3.3, this implies the existence of a unitary

matrix F that computes f on n-bit values in the following sense. Consider

the quantum gate corresponding to F :

x

(

0

0
m

( F

)
x

f(x))
0
m

F jx;0;0
m

i �! jx; f(x);0mi

This gate works on an (n+ 1+m)-qubit register; the top n qubits encode

the input x 2 f0;1gn. Those qubits must have the same value before and

after the gate: if they are changed during the computation itself, they must

be returned to their initial value . The next qubit, initially set to 0, will

have the value of f(x) at the output of the gate. The last m qubits are

the \workspace" that comes about in theorem 3.2: before and after the

computation, they are set to 0
m, but within the gate itself, those qubits

will be used and reversibly reset to zero afterwards. We do not specify the

4Apart from the observation, which is inherently irreversible.
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exact circuitry of elementary gates within the F gate, but by theorem 3.2

and corollary 3.3 we are certain that it can be done in accordance with the

quantum principles. Also, for clarity, we will not usually display the qubits

used as workspace since they serve no purpose outside the gates themselves.

Therefore, the above gate F will displayed as follow:

x

8>><
>>:
0

F

9>>=
>>;

x

f(x)

F jx;0i �! jx; f(x)i

A remark: informally speaking, unitarity means that information cannot

be lost. This means that the value f(x) cannot simply overwrite the 0 in

the last qubit: those values (f(x) and 0) must be combined in a way that

allows the recovery of both values. The exclusive-or function is commonly

used for this purpose. In the Dirac notation, if the initial of the register is

jx; bi then the action of the F gate is actually

F jx; bi = jx; b� f(x)i

Of course, if b = 0 then F jx;0i = jx; f(x)i, which is what we wanted. This

property of non-destructive writing will be important later on.

Computing a function on an input is �ne, but the rules of quantum

mechanics allowmuch more. Recall that by linearity of quantum operations,

if the input state is in quantum superposition 1p
2
(jx;0i + jy;0i) then the

F gate will compute the superposition of f on both values.

F

�
1
p
2
(jx;0i+ jy;0i)

�
=

1
p
2
(jx; f(x)i + jy; f(y)i)

Assume there is a way to unitarily generate (through some matrix Sn) a

superposition of all possible values of an n qubit register. That is, if the

initial state of the register is all zero, Sn transforms it in a superposition

of all 2n values of the �rst n qubits.

Snj0 : : :0| {z }
n

i =
1

p
2n

2
n�1X
i=0

jii

We can see that by �rst applying Sn and then F , we can compute in one

sweep all possible values for f in quantum superposition.
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0
n

8>><
>>:
0

Sn F

FSnj0 : : :0| {z }
n

;0i �! F

 
1p
2n

2
n

�1X
i=0

ji;0i
!
�! 1p

2n

2
n

�1X
i=0

ji; f(i)i

The reader should take careful note of what is meant by the above diagram.

While the operator Sn acts on n qubits, its mathematical representation

is a 2n � 2n unitary matrix. Also, in the expressions below the diagram, it

would be more accurate to use Sn
 I (where I is the 2�2 identity matrix)

since our gate array uses n+1 qubits. I trust the reader will be comfortable

with this small abuse of notation throughout the text.

We now show how to implement an Sn gate to achieve this form of

quantum parallelism. Consider the unitary matrix (and associated gate):

S1 =
1p
2

�
1 1

1 �1

�
) S1

It is a simple matter to verify that S1 is indeed unitary. Note also that

S�1
1

= S1. An S1 gate is an elementary gate as it acts only on a single

qubit: it sends j0i to 1p
2
(j0i+ j1i) and j1i to 1p

2
(j0i� j1i). The desired Sn

gate acts on a quantum register by sending each qubit individually into a

separate S1 gate (an example on six qubits is shown here).

S6 �

S1

S1

S1

S1

S1

S1

The unitary transformation induced by an Sn gate is given by the formula

Sn =
N

n
S1. This has a nice recursive de�nition5: If n > 1 then

Sn =

�
Sn�1 Sn�1

Sn�1 �Sn�1

�

In gate form: for any x 2 f0;1gn,

5
Note: Sn is a special case of Hadamard matrices.
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x

8>><
>>:

Sn

9>>=
>>;

'

Snjxi �! j'i = 1p
2n

2
n

�1X
i=0

(�1)x�ijii

where the operation x � i is the xor of the bitwise and of the strings x and

i. Clearly, if x is set to 0n, Sn performs the desired transformation. When

outlining the proof of Simon's theorem, the transformation induced by Sn
will be more fully used.

With the conjunction of Sn and F gates, a single computation produces

all possible values of the function f for each input. But these values are

in quantum superposition and we have seen (by the sixth principle) that

only an observable can obtain information from a superposition (and this

act destroys the original superposition). If our aim is to compute various

outputs hx; f(x)i for all x, then the only observable that could be used is

the standard one, B (see de�nition 2.6).

0
n

8>><
>>:
0

Sn F

�

�

�

�

B

But B will only produce a single pair hx; f(x)i where x is chosen randomly

(uniformly). To obtain all values of f in this fashion would require (on

average) an exponential number of such runs. This could have been done

just as easily using a probabilistic Turing machine by choosing x randomly

and computing f(x). Deutsch [Deu85] proved that quantum parallelism

used in this simplistic way cannot produce that values of f any faster than

classical machines. To get some form of bene�t from superpositions, a more

subtle use of quantum parallelism is needed.

Consider the following unitary transformation (and associated gate):

P =

�
1 0

0 �1

�
) P

If a qubit is set to 0 nothing happens but if it is set to 1 then the amplitude

is multiplied by �1. This gate \encodes" the \value" of the qubit into the

sign of the amplitude. Now consider the following gate array
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0
n

8>><
>>:
0

Sn F

P

F

�

�

�

�

D

(where the observable D will be de�ned shortly). From our gate de�nitions,

we know that the state j'i of the register just after the P gate is:

j'i = 1p
2n

2
n

�1X
i=0

(�1)f(i)ji; f(i)i

When that state goes through the �nal F gate, the values for f are again

computed and non-destructively combined using (in our case) the xor

function. Since f(i) � f(i) = 0 for all i 2 f0;1gn, the �nal state before

observation is

j'i = 1p
2n

2n�1X
i=0

(�1)f(i)ji;0i

All the manipulations done so far had only one purpose: to transfer the val-

ues of f into the amplitudes relative to each of the basis states. The power

of quantum computation resides in the interference of these amplitudes and

the observable used to read the quantum states. We now de�ne that observ-

able. Consider D = fEa; Ebg where the subspace Ea is the one-dimensional

space spanned by

j i = 1p
2n

2n�1X
i=0

ji;0i

and Eb = (Ea)
?, the orthogonal complement of Ea. Using D in the gate

array above allows us to answer the mdjp, that is to determine without

errors whether f is non-balanced or non-constant. To see this, recall that

D will give the answer a or b with probabilities depending on the amplitudes

of j'i in the subspaces Ea and Eb. We must �nd the expression of j'i in
the basis de�ned by D. This is easy since D has only two subspaces, one

being one-dimensional. Let � and � be the projections of j'i in Ea and Eb,

then

j'i = �j i + �j bi
where j bi is a vector in Eb and of course, j i ? j bi. Observing the

�nal state j'i with D will give the answer a or b with probability k�k2
and k�k2 respectively. Since the observable has only two possible answers,

k�k2 = 1�k�k2. Also, �nding the projection of j'i in the one-dimensional

subspace Ea is simple. We now compute the exact expression for �, the
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projection of j'i along j i.

� = h j'i

=

 
1p
2n

2
n

�1X
i=0

hi;0j
!0
@ 1p

2n

2n�1X
j=0

(�1)f(j)jj;0i
1
A

=
1

2n

2n�1X
i=0

2n�1X
j=0

(�1)f(j)hi;0jj;0i

But since hi;0jj;0i = 1 if and only i = j and zero otherwise, the expression

for � simpli�es to

� =
1

2n

2n�1X
i=0

(�1)f(j)

We now look at the value of � for di�erent functions f . If f is a balanced

function, the sum for � will contain exactly as many 1's as �1's, so in this

case � = 0 and D will always give a b answer and never a. If f is a constant

function, the value for � will either be 1 or �1, so in this case D always

gives the answer a and never b. If f is of any other type, D will answer a

or b with various probabilities.

To demonstrate that the above quantum gate array solves the mdjp, we

need to take the above reasoning backwards. If the answer received from D
is a, we know for certain that f could not have been a balanced function

(since a is never given in that case), so answering \non-balanced" is correct.

Similarly. if D gives the answer b, then we know for certain that f could

not have been a constant function, so answering \non-constant" is correct.

For cases where f is neither of these those case, D might give any of a

and b, but this is not a problem since both answers \non-balanced" and

\non-constant" are correct.

4 Separating Two Classes of Functions

The solution to the modi�ed Deutsch-Jozsa problem, like most interesting

quantum algorithms (or gate arrays) depends on the ability to evolve an n-

qubit register in superposition of all 2n values. In the solution we presented,

this operation was performed by the Sn gate. But the transformation in-

duced by Sn is much more subtle. Recall that

S1 =
1p
2

�
1 1

1 �1
�
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and

Sn = S1 
 Sn�1 =

�
Sn�1 Sn�1
Sn�1 �Sn�1

�

If an n-qubit register, initially set to x 2 f0;1gn, goes through an Sn gate,

the transformation will be as follow:

Snjxi = 1p
2n

2
n

�1X
i=1

(�1)x�ijii

Where x � i is the xor of the bitwise and of the two strings. We now show

how Simon [Sim94] used this transformation to prove theorem 3.1.

Assume we have a computable function f : f0;1gn ! f0;1gm, where
m � n. The Lecerf-Bennett theorem still applies, so there exists a quantum

gate F that transforms jx; bi into jx; b � f(x)i for all x 2 f0;1gn and

b 2 f0;1gm. Consider the following gate array:

0
n

(

0
m

(
Sn

F

Sn

SnFSnj0n;0mi �! 1

2n

2
n

�1X
i=0

2
n

�1X
j=0

(�1)i�j jj; f(i)i

The �rst application of Sn allows all values of f to be computed using

quantum superposition (with the F gate). The second application of Sn
creates an elaborate entanglement of the states jj; f(i)i whose phases are a
function of both i and j. In fact, the output state of the gate array is a form

of Fourier spectrum of the function f . With this gate array, Simon was able

to distinguish e�ciently two classes of function: 1-to-1 versus 2-to-1 with

a mask.

A function f : f0;1gn ! f0;1gm is said to be 2-to-1 with a mask s if

there exists a non-trivial s 2 f0;1gn such that for all x 6= x0, f(x) = f(x0)

if and only if x0 = x � s (where � is the bitwise xor). Suppose we are

given a computable function f : f0;1gn ! f0;1gm with a promise that it

is either 1-to-1 or 2-to-1 with a mask. The task is to determine which of

these hold for f and, in the second case, produce s. Simon proved that this

problem can be solved in expected time O(nTf (n) +G(n)), where Tf (n) is

the time to compute f on inputs of size n and G(n) is the the required to

solve an n � n linear system of equations over Z2. The algorithm will call

(on average) n times the following gate array:
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0
n

(

0
m

(
Sn

F

Sn

�

�

�

�

B

To see how this gate array works, we must do a analysis similar to the one

for the mdjp in section 3.1. Let j'i be the state of the register just before

the observation.

j'i =
1

2n

2
n

�1X
i=0

2n�1X
j=0

(�1)i�j jj; f(i)i

If f is 1-to-1, then all jj; f(i)i con�gurations are di�erent, each with ampli-

tude �1=2n. The observable B will yield any of those con�gurations with

probability 1=22n and k repetitions of this subroutine will result in k con-

�gurations of jj; f(i)i distributed uniformly and independently.

However, if there exists a non-trivial s such that for all x 2 f0;1gn,
f(x) = f(x0) if and only if x0 = x � s, then for all i; j 2 f0;1gn, the con-

�gurations jj; f(i)i and jj; f(i� s)i are identical. Therefore, the amplitude

�i;j for a particular con�guration is:

�i;j =
(�1)i�j + (�1)(i�s)�j

2n

Two values are possible: if j � s = 0 then i � s = (i� s) � j so �i;j = 1=2n�1.

Otherwise, �i;j = 0. This means that when the register is observed, only

con�gurations such that j � s = 0 can be seen. Repeating k times this

subroutine will result in k con�gurations of this type chosen uniformly and

independently.

In both of these cases, after an expected O(n) repetitions, we can �nd n

con�guration jj1; f(i1)i; : : : ; jjn; f(in)i such that the equations ji �s = 0 are

linearly independent. Solving this linear system yields a non-trivial s0. If f

is 1-to-1, this s0 is a random string and if f is 2-to-1 with mask, s0 is that

mask. Computing f(0n) and f(s0) and comparing the values determines

the status of f : if f(0n) 6= f(s0), then f is 1-to-1, otherwise f is 2-to-1 with

s = s0 as the mask.

The proof of Simon's theorem rests on the interaction of phases induced

by the double application of Sn (with a relativized version of the above

problem). Shor's factoring algorithm uses the same trick, but with a re�ned

version of Sn, called the quantum discrete Fourier transform, and more

number theory. The next section will go over the quantum component of

the factoring algorithm; the reader may consult [Sim94] to see how the

relativized version of the above problem is used to prove Simon's theorem.
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5 Shor's Factoring Algorithm

Every integer n has a unique decomposition in prime factors. However, �nd-

ing this decomposition when n is large is a di�cult computational problem.

All known classical methods are resolutely ine�cient (see [Adl94]) and even

the best known classical algorithm, the number �eld sieve (see [LLMP90],

[LL93]) requires time O(ec(logn)
1=3(log log n)2=3), which is exponential in the

size (the number of digits, i.e., logn) of n. Whether the factoring problem

is polynomial or not (classically) is still unknown. Yet the faith in hardness

of this problem is such that the security of many classical cryptographic

protocols is based of the impossibility of factoring e�ciently.

Number theory o�ers another interesting problem: �nding the order of

an element. Given x and n, �nd r (called the order) such that xr � 1

(mod n). As with the factoring problem, no e�cient algorithm is known

for solving this problem. But while these problems appear very di�erent,

they are closely related. Miller [Mil76] has shown that, using randomization,

one could solve the factoring problem if one had access to an oracle for

�nding the order of an element. His reduction works as follows: �rst, make

sure that n is odd and not a prime (there are e�cient primality testing

algorithms). Then, use the following algorithm:

Program One-Factor (input: n odd integer)

x  randomf0,: : : ,ng
r  use the oracle to �nd the order of x (mod n)

Output: if r is odd or xr=2 � �1 (mod n) then fail

else return gcd(xr=2 � 1; n)

Choosing a random number in the range f0; : : : ; ng, doing the modular

exponentiation and �nding the gcd (greatest common divisor) can all be

done in polynomial time (see [Knu81]). Let k be the number of odd prime

factors of n. One can prove that, provided n is odd and non-prime, the

above algorithm will return a prime factor of n with probability at least

1 � 1=2k�1. Repeating this algorithm a polynomial number of times will

produce a complete factorization of n.

Shor's breakthrough was to discover an e�cient quantum algorithm to

�nd the order of an element. The factoring algorithm is simply Miller's

reduction where the oracle call is replaced by a call to this quantum algo-

rithm. The next section describes how to �nd the order of an element using

quantum superpositions.

5.1 Finding the Order of an Element

We now describe Shor's algorithm to �nd the order r of an element x

(mod n). There are two distinct parts to algorithm: the �rst is the quan-

tum component, described next, which produces a value c. Thanks to ap-
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proprietly chosen amplitudes, this c has a relationship to r such that a little

(purely classical) post-processing in the second part can e�ciently deter-

mine r. We describe the quantum component using quantum gate arrays.

First, we need to �nd m such that n2 � 2m � 2n2. The gate array oper-

ates on a 2m-qubit quantum register. Next, we need a gate such that on

input ja; 0i, it computes ja; xamod ni. We known that modular exponenti-

ation can be done classically in polynomial time. So by the Lecerf-Bennett

theorem and corollary 3.3, there exists a quantum gate Ex
n
that e�ciently

implements this operation. This Ex

n
gate is shown below.

a

(

0
m

( Ex

n

)
a

)
xa (mod n)

We only need one more quantum operation. Shor re�ned the Sn transfor-

mation used by [BV93] and [Sim94] in the following way: instead of using

phases that were �1=p2m, we now make use of the full spectrum of com-

plex amplitudes. The transformation Am sends a m qubit register in basis

state jai to
1p
2m

2
m

�1X
c=0

e
2�iac
2m jci

(Recall that for any a+ bi 2 C of norm 1, there exists an angle � 2 [0; 2�]

such that a + bi = cos � + i sin � = ei�.) This transformation is called

the discrete quantum Fourier transform. The fact that one can e�ciently

implement such a quantum gate is not immediately clear, if only for the

fact that the amplitudes seem to require increasing precision as m grows

large. However, Deutsch and Coppersmith [Cop94] independently found an

e�cient solution based on the Fast Fourier Transform algorithm [Knu81],

which only requires O(m2) elementary quantum gates.

The gate array for Shor's algorithm to �nd the order r of an element x

(mod n) is:

0
m

(

0
m

(
Sm

Ex

n

Am

�

�

�

�

B



26 Andr�e Berthiaume

The Sn gate was de�ned in the previous section and only serves to generate

a superposition of all possible values for the top half of the register. We

then compute in quantum parallel the modular exponentiation of x for all

these values and then apply the Fourier Transform Am. The state of the

register just prior the observation: is (omitting the (mod n) in the ket for

clarity):

1

2m

2
m

�1X

a=0

2
m

�1X

c=0

e
2�iac
2m jc; xai

Since we are using the standard observable, the observation will yield any

basis state jc; xki with probability







1

2m

X

a:xa�xk

e
2�iac
2m








2

Shor proves that this probability vanishes everywhere except for basis states

jc; xki such that there exists an integer d satisfying
����
c

2m
�
d

r

���� �
1

2m+1

where the probability is at least 1=3r2. This means that reading the �nal

state of the register will yield with high probability a value c such that the

fraction c=2m is close to d=r. Because 2m > n2, there is only one fraction

d=r that satis�es the above equality while keeping r < n. The algorithm

for �nding that fraction d=r from c=2m is the post-processing we referred

to earlier and can be done e�ciently by continued fraction expansion (see

[Knu81]). This produces the r we needed.

For a more detailed study of Shor's algorithm including the necessary

number theory which was left out here, see [Sho95] and [EJ96]. Shor's

algorithm and Simon's theorem are two of the most important results in

quantum complexity theory. Both are strong arguments in favor of the

superiority of quantum computing models over classical ones. But if new

e�cient algorithms are developed on quantum machines, it would be nice

to have actual quantum machines on which to run them! The next section

considers the obstacles to building quantum mechanical computers.

6 Building a Quantum Computer

Quantum computers o�er capabilities unmatched by classical Turing ma-

chines. But if quantum computing models could in principle be constructed,

there are enormous practical issues still to overcome before reaching this

goal. The most serious of these obstacles is the preparation and manip-

ulation of macroscopic physical systems in quantum superposition. This

section outlines the di�culties and possible solutions to this problems.
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Qubits were de�ned in section 2.2 as any object having two distinct

states whose evolution is considered according to the principles of quantum

mechanics. Following those principles, it is possible to have this object

in quantum superposition, which permits quantum parallelism. But while

experimental physicists have been observing and manipulating atomic and

sub-atomic particles in quantum superposition, no one has yet claimed

to have observed a lamp-post exhibiting a similar behavior. Why? The

explanation has to do with decoherence: the process by which a system in

quantum superposition decays to a classical state because of interaction

with the environment.

We illustrate the problem as follow: a qubit in state j'i = �j0i+ �j1i is
put inside a black box. If the box is perfectly sealed, sheilding its interior

from the rest of the universe, the qubit remains in state j'i inde�nitely.

But perfect isolation is impossible: some energy in one form or another

always leaks through the box, carrying traces of information of the box's

content. Consider a very simple case: a stray electron in state jesi enters the
box and interacts with the qubit. The interaction is such that the electron

leaves the box in state either je0i or je1i depending whether the qubit

was in basis state j0i or j1i. In Dirac notation, this sequence of events is

described as follows. Initially, we have two independent systems: a qubit in

state j'i and the electron in state jesi. Since they are independent, their

joint state is

j'i 
 jesi = (�j0i+ �j1i)
 jesi

However, once the electron enters the box, it interacts with the qubits. As

it leaves the box, the joint state becomes

�(j0i 
 je0i) + �(j1i 
 je1i)

The qubit is still in the box and the electron is on its way yonder, but they

now form an entangled system. If the state of the electron is now observed in

any way (and here any interaction with an object in the lab is considered an

observation), the states of the electron will collapse. For simplicity, assume

the electron collapses to either je0i or je1i. Since the electron and the

qubit are entangled, the collapse of one causes the collapse of the other:

the electron-qubit system will be in state j0i 
 je0i with probability k�k
2

and in state j1i 
 je1i with probability k�k2. The qubit spontaneously

collapses to either j0i or j1i (in accordance with the electron's collapse)

and the quantum superposition lost.

No matter how well qubits are isolated, random energy exchanges be-

tween the environment and the qubits will cause some decoherence on a

time scale that depends on the medium used for a qubit and the conditions

under which it operates. In the best cases, coherence is kept for some 104

seconds and in the worst cases, hardly 10�10 seconds. And these �gures

are for a single qubit only; some decoherence models show the decoherence

time dropping exponentially as the number of qubits increases (see [Unr95]
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and [MSE95]). But keeping a qubit in quantum superposition is only part

of the problem. A quantum computer will have to perform operations on

that qubit. The time needed to perform an operation also depends on the

medium used for a qubit and the conditions under which it operates. Un-

fortunately, the quick-action qubits are precisely those that interact easily

with the environment, i.e. those having the shortest coherence time (see

[DiV95]). The faster the operations can be performed, the less time there

is to perform them!

Yet hope still remains. Shor's discovery attracted enough attention that

more and more breakthroughs are coming from experimental physics. Many

proposals for constructing a quantum computer already exist, such as

[Fey86],[SW94], [CY94], [Llo93] or [DiV95]. Currently, a proposal by Pel-

lizzari, Gardener, Cirac and Zoller using trapped ions technology appears

very promising [PGCZ95] and the authors even suggest a way to control

to a certain extent the decoherence in their implementation. An alterna-

tive approach proposed by Deutsch could allow computation on a less than

perfect quantum state through a stabilizing scheme (the scheme is outlined

in [BDJ94] and a preliminary analysis is given in [Ber95]).

In view of this, it seems unlikely that a general purpose quantum com-

puter will be available in the near future. But technological advances in

this �eld are appearing at an increasing rate. Some researchers are already

talking about controlling 3 or 4 qubits for a few operations within ten

years. This may not be much of a computer, but it would still be quite

an achievement! A more reasonable goal could be to have small special

purpose quantum machines. For example, considering that cryptography

plays such an important role in today's world, a quantum factoring mod-

ule would have important consequences. History does have a tendency to

repeat itself; were not the �rst classical computers used for code breaking?
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Seminar on Quantum Computation

André Berthiaume
CWI

Computer science has a classical soul; many definitions implicitly contain
ideas from the time we believed the world evolved according to newtonian physics.
Ideas such as: an object’s state is well defined, instantaneous actions at a distance
are impossible, etc. Modern physics and more specifically quantum physics tells
us that Nature is not as straightforward as Newton originally believed. One
can prepare systems such that the state is completely undefined in any classical
sense. Instantaneous actions at a distance have been observed and sometimes
having less alternatives to produce a given outcome may improve the probability
of getting this outcome! What would happen computing models are allowed to
operate within the rules of quantum physics? What are the advantages offered
by a quantum computer?

In this mini-course, I will introduce the quantum computer and present some
of the milestone results in quantum complexity theory leading up to Shor’s fa-
mous polynomial time quantum factoring algorithm. Foreknowledge of quantum
physics is useful but not necessary as the relevant notions will be introduced
when needed. A fascinating aspect of quantum computation is the possibility
of building such devices. I will briefly address some of the problems still to be
overcome, but it is worth mentioning that some ongoing experiments have shown
some very positive results. Quantum computers may well be available sooner
than we think.

Session I: Introduction
We present the basic elements of quantum physics and introduce the qubit,
the quantum gate, the quantum register, quantum gate arrays and observ-
ables.

Session II: Quantum Complexity, Part I
We define the Deutsch-Jozsa problem and show how a quantum gate ar-
ray can solve it exponentially faster than a classical computer. Using this
problem in a relativised setting, we extend the result to complexity classes.

Session III: Quantum Complexity, Part II
We show how Bernstein & Vazirani (1993) and Simon (1994) seperated
(relative to oracles) the classe BPP from its quantum version, BQP.

Session IV: Factoring
We present Shor’s factoring algorithm and review some issues concerning
the construction of a quantum computer.
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