
B
R

IC
S

N
S

-95-2
E

ngberg
etal.

(eds.):
TA

C
A

S
P

roceedings

BRICS
Basic Research in Computer Science

Proceedings of the Workshop on

Tools and Algorithms for the

Construction and Analysis of Systems

19–20 May 1995, Aarhus, Denmark

Uffe H. Engberg
Kim G. Larsen
Arne Skou (editors)

BRICS Notes Series NS-95-2

ISSN 0909-3206 May 1995

See back inner page for a list of recentpublications in the BRICS
Notes Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@daimi.aau.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.aau.dk/BRICS/
ftp ftp.brics.aau.dk (cd pub/BRICS)

Proceedings of the Workshop on

Tools and Algorithms for the
Construction and Analysis of Systems

19–20 May 1995 — Aarhus, Denmark

Uffe H. Engberg
Kim G. Larsen

Arne Skou
(editors)

Foreword

Welcome to Aarhus, Denmark, and welcome to this workshop on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS, May 19–20,
1995. The aim of the workshop is to bring together researchers and practi-
tioners interested in the development and application of tools and algorithms
for specification, verification, analysis and construction of distributed systems.
The overall goal of the workshop is to compare the various methods and the
degree to which they are supported by interacting or fully automatic tools.

The workshop will present 23 papers covering the following topics: refinement-
based verification and construction techniques; compositional verification meth-
odologies; analysis and verification via theorem-proving; decision procedures for
verification and analysis; specification formalisms, including process algebras
and temporal and modal logics; analysis techniques for real-time and/or proba-
bilistic systems; approaches for value-passing systems, tool sets for verification
and analysis case studies. Special sessions for demonstration of verification
tools are planned.

The workshop is organized as a satellite activity of the TAPSOFT ’95 confer-
ence, May 22–26, University of Aarhus. The TAPSOFT ’95 conference and
its satellite workshops are hosted by BRICS, a centre of the Danish National
Research Foundation at the Computer Science Departments of Aarhus and Aal-
borg Universities. We want to thank the TAPSOFT ’95 organizers Peter D.
Mosses and Karen K. Møller as well as Birger Nielsen for handling all practical
matters concerning TACAS.

The following Program Committee has been responsible for the reviewing and
selection of papers: Ed Brinksma (Twente University) Kim G. Larsen (BRICS,
Aalborg University), Bernhard Steffen (University of Passau), Rance Cleaveland
(North Carolina State University).

We want to thank the members of the Program Committee for their work in
evaluating the submitted papers. We would also like to thank all referees who
assisted the members of the Program Committee: L. Aceto, F. Andersen, V.
Braun, E.H. Eertink, A. Geser, L. Heerink, A. Ingólfsdóttir, W. T. M. Kars,
J-P. Katoen, K. J. Kristoffersen, R. Langerak, G. Luettgen, T. Margaria, A.
Nymeyer, J. Tretmans, C. Weise, W. Yi.

BRICS, Aarhus and Aalborg, May 1995

Uffe H. Engberg
Kim G. Larsen
Arne Skou

iii

Addresses

For a hardcopy of the proceedings, please contact:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark,

or, by e-mail: <BRICS@brics.aau.dk>.

Copies of the Proceedings and individual papers in A4 format are electronically
accessible through WWW and anonymous FTP:

http://www.brics.aau.dk/BRICS/NS/95/2/BRICS-NS-95-2/

ftp ftp.brics.aau.dk (cd pub/BRICS/NS/95/2/TACAS)

iv

Contents

Foreword iii

Addresses iv

Contributions

Session 1

Combining model checking and deduction for I/O-automata 1
O. Müller and T. Nipkow

A constraint oriented proof methodology based on modal transition systems 13
K. G. Larsen, B. Steffen, and C. Weise

HyTech: The Cornell HYbrid TECHnology Tool 29
T. Henzinger and P.-H. Ho

Session 2

The modal µ-calculus, model checking, equation systems and Gauß elimination 44
A. Mader

MONA: Monadic second-order logic in practice 58
J. G. Henriksen, O. J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige,
T. Rauhe, and A. B. Sandholm

Computing small nondeterministic finite automata 74
O. Matz and A. Potthoff

Session 3

Efficient simplification of bisimulation formulas 89
U. H. Engberg and K. S. Larsen

On implementing unique fixpoint induction for value-passing processes 104
H. Lin

Translating a process algebra with symbolic data values to linear format 119
D. J. Bosscher and A. Ponse

Session 4

A UNITY-based algorithm design assistant 131
M. Charpentier, G. Padiou, and A. E. Hadri

Implementing FS0 in Isabelle: adding structure at the metalevel 146
S. Matthews

A framework for parallel program refinement 159
J. Bodeveix and M. Filali

Formal verification of concurrent program using the Larch Prover 174
B. Chetali

v

Session 5

Hierarchical compression for model-checking CSP or how to check 1020 dining 187
philosophers for deadlock
A. Roscoe, P. Gardiner, M. Goldsmith, J. Hulance, D. Jackson,
and J. Scattergood

A front-end generator for verification tools 201
R. Cleaveland, E. Madelaine, and S. Sims

CAVEAT: technique and tool for computer aided verification and 216
transformation
P. Gribomont and D. Rossetto

Session 6

What if model checking must be truly symbolic? 230
W. Damm, H. Hungar, and O. Grumberg

Analytic and locally approximate solutions to properties of probabilistic 245
processes
C. Tofts

Session 7

Model checking of non-finite state processes by finite approximation 260
N. D. Francesco, A. Fantechi, S. Gnesi, and P. Inverardi

On automatic and interactive design of communicating systems 275
J. Bohn and S. Rössig

Composition and refinement mapping based construction of distributed 290
applications
A. Mester and H. Krumm

Session 8

Layers as knowledge transitions in the design of distributed systems 304
W. Janssen

Parallelism for free: Efficient and optimal bitvector analyses for parallel 319
programs
J. Knoop, B. Steffen, and J. Vollmer

Author Index 334

vi

Combining Model Checking and Deduction for I/O-Automata

Olaf Müller∗ and Tobias Nipkow†

TU München‡

Abstract

We propose a combination of model checking and interactive theorem proving where the
theorem prover is used to represent finite and infinite state systems, reason about them
compositionally and reduce them to small finite systems by verified abstractions. As an
example we verify a version of the Alternating Bit Protocol with unbounded lossy and
duplicating channels: the channels are abstracted by interactive proof and the resulting
finite state system is model checked.

1 Introduction

The purpose of this paper is to combine the two major paradigms for the verification of dis-
tributed systems: model checking and theorem proving. The advantages of each approach are
well known: model checking is automatic but limited to finite state processes, theorem proving
requires user interaction but can deal with arbitrary processes. Recently attempts have been
made to combine the strength of both methods by using the deductive machinery of theorem
provers to reduce “large” correctness problems to ones that are small enough for model check-
ing. The key idea is abstraction whereby the state space is partitioned to obtain a smaller
automaton which is amenable to model checking. Of course the abstraction has to be sound
w.r.t. the property we want to check: if the abstracted automaton satisfies the property so
should the original automaton.

In our approach the theorem prover provides a common representation language and tools
for

• both finite and infinite state systems,

• checking the soundness of abstractions,

• reasoning about systems in a compositional manner.

Our work is based on Lynch and Tuttle’s Input/Output-Automata (IOA) [14] as model of
distributed processes which have been embedded in the theorem prover Isabelle/HOL [15]. We
are interested in verifying safety properties of IOA. These safety properties are not expressed by
temporal logic formulae but again by IOA. Hence we need to check that the traces of one IOA C
(the implementation) are included in the traces of another IOA A (the specification). Assuming
that C is infinite or at least too large to check traces(C) ⊆ traces(A) automatically, we define
an intermediate automaton B which is an abstraction of C and should satisfy traces(C) ⊆
traces(B) ⊆ traces(A). Thus we achieve the following division of labor: traces(C)⊆ traces(B),
∗Research supported by DFG, Leibniz Programm.
†Research supported by ESPRIT BRA 6453, Types.
‡Address: Institut für Informatik, Technische Universität München, 80290 München, Germany. Email:

{Mueller,Nipkow}@Informatik.TU-Muenchen.De

1

i.e. the soundness of the abstraction, is proved interactively in Isabelle; traces(B) ⊆ traces(A) is
verified automatically by a model checker; finally, transitivity of⊆ yields the desired traces(C)⊆
traces(A).

The distinguishing feature of our approach is the ability to reason about the soundness of
arbitrary abstractions because we have the meta-theory of IOA at our disposal. Assuming that
the theorem prover and the formalization of IOA in it are correct, the only remaining source
of errors is the model checker which is treated like an oracle by the theorem prover. Note that
this includes the interface between model checker and theorem prover, which is particularly
critical because we need to ensure that the theorem prover formalizes exactly the logic the
model checker is based on.

The rest of the paper illustrates this approach using a particular example, namely an im-
plementation of the Alternating Bit Protocol using unbounded channels. This is in contrast
to pure model checking approaches where the channels are always of a fixed capacity (usually
1). The key to the success of our approach is the fact that channels may lose and duplicate,
but not reorder messages. Thus is is possible to “compactify” channels without altering their
behaviour by collapsing all adjacent identical messages. This is what our abstraction from C
to B does. The full picture looks like this:

ABP

Ch

C

-
reduce

-Compositionality
ABP

RedCh

B

-Model Checking
abs

Specification

A

The implementation C contains unbounded channels Ch which are abstracted/compactified
by a function reduce. It is shown interactively that reduce is indeed an abstraction function,
i.e. traces(Ch) ⊆ traces(RedCh). B is the same as C except that collapsing channels are used.
Compositionality proves that C must be an implementation of B , i.e. traces(C) ⊆ traces(B).
Although RedCh is not a finite state system, it behaves like one if used in the context of the
ABP because at any one time there are at most two different messages on each channel. Thus B
is a finite state system. Note however, that we never need to prove this explicitly: It is merely
an intuition which is later confirmed by the model checker when it is given a description of B
and A together with an abstraction function abs between them. The model checker explores
the full state space of B verifying transition by transition that abs is indeed an abstraction. It
is only the successful termination of the model checker which tells us that B is finite.

1.1 Related work

Our paper is closely related to the work by Hungar [11] who embeds a subset of OCCAM in the
theorem prover LAMBDA and combines it with an external model checker. The key difference
is that Hungar relies much more on unformalized meta-theory than we do: he axiomatizes
OCCAM’s proof rules instead of deriving them from a semantics, and does not verify the
soundness of his data abstractions.

The literature on abstraction for model checking is already quite extensive (see for example,
[4, 8, 5]). The general idea is to compute an abstract program given a concrete one together with
an abstraction function/relation. The approach of Clarke et al. is in principle also applicable to
infinite concrete systems. However, since they compute an approximation to the real abstract
program, the result is not necessarily finite state. Nevertheless it would be interesting to
rephrase their ideas in terms of IOA and apply them to our example. In this case we would

2

not give B explicitly but would compute (via the rewriting machinery of the theorem prover) a
(hopefully finite state) approximation of it.

Our work differs from most approaches to model checking because we do not check if an
automaton satisfies a temporal logic formula but if its traces are included in those of another
automaton. Although theoretically equivalent, automata can be compared by providing an
explicit abstraction function (or simulation relation), abs above. The same approach is followed
in [12] where abstraction functions are also used for reduction, and in [9] where liveness is taken
into account. If the documentation aspect of an explicit abstraction function is not considered
important, one could also use a model checker which searches for an abstraction function using,
for example, the techniques of [6], although this is bound to be less efficient.

Finally there is the result by Abdulla and Jonsson [1] that certain properties of finite state
systems communicating via unbounded lossy channels are decidable, which they apply to the
Alternating Bit Protocol. However, in our work the channels can both lose and duplicate
messages, hence their result does not apply directly.

2 I/O-Automata in Isabelle/HOL

Isabelle notation. Set comprehension has the shape {e. P}, where e is an expression and P a
predicate. Tuples are written between angle brackets, e.g. <s , a, t>, and are nested pairs with
projection functions fst and snd . If f is a function of type τ1 → τ2 → τ3, application is written
f (x , y) rather than f x y . Conditional expressions are written if (A,B ,C). The empty list is
written [], and “cons” is written infix: h :: tl . Function composition is another infix, e.g. f ◦ g .

2.1 I/O Automata

An IOA is a finite or infinite state automaton with labelled transitions. I/O automata, initially
introduced by Lynch and Tuttle [14], are still under development, and the formalization we
used represents only a fragment of the theory one can find in recent papers [7]. For example,
we do not deal with fairness or time constraints. The details of the formalization can be found
in a previous paper [15], so that we give only a brief sketch of the essential definitions inside
Isabelle/HOL.

An action signature is described by the type

(α)signature ≡ (α)set × (α)set × (α)set .

The first, second and third components of an action signature S may be extracted with inputs ,
outputs , and internals . Furthermore, actions(S) = inputs(S) ∪ outputs(S) ∪ internals(S), and
externals(S) = inputs(S)∪outputs(S). Action signatures have to satisfy the following condition:

is asig(triple) ≡
(inputs(triple) ∩ outputs(triple) = {}) ∧
(outputs(triple) ∩ internals(triple) = {}) ∧
(inputs(triple) ∩ internals(triple) = {})

An IOA is a triple with type defined by

(α, σ)ioa ≡ (α)signature × (σ)set × (σ × α × σ)set

and it is further required that the first member of the triple be an action signature, the second
be a non-empty set of start states and the third be an input-enabled state transition relation:

IOA(<asig , starts , trans>) ≡
is asig(asig) ∧ starts 6= {} ∧ is state trans(asig , trans).

3

The property of being an input-enabled state transition relation is defined as follows:

is state trans(asig ,R)≡
(∀<s , a, t> ∈ R. a ∈ actions(asig))∧
(∀a ∈ inputs(asig).∀s .∃t . <s , a, t> ∈ R)

The projections from an IOA are asig of , starts of , and trans of . The actions of an IOA are
defined acts ≡ actions ◦ asig of .

An execution-fragment of an IOA A is a finite or infinite sequence that consists of alternating
states and actions. In Isabelle it is represented as a pair of sequences: an infinite state sequence
of type nat → state and an action sequence of type nat → (action)option. Here the option
datatype is defined as (α)option = None | Some(α) using an ML-like notation. A finite
sequence in this representation ends with an infinite number of consecutive Nones. Using this
representation, a step of an execution-fragment <as , ss> is <ss(i), a, ss(i + 1)> if as(i) =
Some(a). Formally:

is execution fragment(A, <as , ss>) ≡
∀n a. (as(n) = None ⊃ ss(Suc(n)) = ss(n))∧

(as(n) = Some(a) ⊃ <ss(n), a, ss(Suc(n))> ∈ trans of (A))

An execution of A is an execution-fragment of A that begins in a start state of A. If we
filter the action sequence of an execution of A so that it has only external actions, we obtain a
trace of A. The traces of A are defined by

traces(A) ≡ {filter(λa.a ∈ externals(asig of (A)), as) . ∃ss . <as , ss> ∈ executions(A)}

where filter replaces Some(a) by None if a is not an external action.

2.2 Composition and Refinement

I/O automata provide a notion of parallel composition. In Isabelle this mechanism is realized
by a binary operator ‖. The definition simply reflects the fact that each component performs
its locally defined transition if the relevant action is part of its action signature, otherwise it
performs no transition.

A ‖ B ≡
<asig comp(asig of (A), asig of (B)),
{<u, v> . u ∈ starts of (A) ∧ v ∈ starts of (B)},
{<s , act , t> . (act ∈ acts(A)∨ act ∈ acts(B))∧

if (act ∈ acts(A), <fst(s), act , fst(t)> ∈ trans of (A), fst(s) = fst(t)) ∧
if (act ∈ acts(B), <snd(s), act , snd(t)> ∈ trans of (B), snd(s) = snd(t))}>

where an action signature composition is needed:

asig comp(S1, S2) ≡
<(inputs(S1) ∪ inputs(S2))− (outputs(S1) ∪ outputs(S2)),

outputs(S1) ∪ outputs(S2), internals(S1) ∪ internals(S2)>

Action signature composition presumes compatibility of actions, which is defined by

compatible(S1, S2) ≡
(outputs(S1) ∩ outputs(S2) = {}) ∧
(outputs(S1) ∩ internals(S2) = {}) ∧
(outputs(S2) ∩ internals(S1) = {})

4

and is trivially extended to compatibility of automata.
For the aim of refinement, we make use of abstraction functions which Lynch and Tuttle

call “weak possibility mappings”. The set of these maps is described by the following predicate,
which takes a function f (from concrete states to abstract states), a concrete automaton C ,
and an abstract automaton A.

is weak pmap(f ,C ,A)≡
(∀s0 ∈ starts of (C). f (s0) ∈ starts of (A)) ∧
(∀s t a. reachable(C , s)∧<s , a, t> ∈ trans of (C)
⊃ if (a ∈ externals(asig of (C)), <f (s), a, f (t)> ∈ trans of (A), f (s) = f (t)))

The following theorem proved in Isabelle states that the existence of an abstraction function
from C to A implies that the traces of C are contained in those of A.

IOA(C)∧ IOA(A) ∧
externals(asig of (C)) = externals(asig of (A)) ∧
is weak pmap(f ,C ,A)
⊃ traces(C) ⊆ traces(A)

2.3 Renaming

As in [13] we define an operation for renaming actions. The motivation for this is modularity:
name clashes can be avoided and generic components can be plugged into different environments.

rename : (α, σ)ioa→ (β → (α)option)→ (β, σ)ioa

In contrast to [13] we define the action renaming function with type β → (α)option instead
of α → β. Therefore it does not have to be injective, which facilitates reasoning about such
functions.

rename(A, f) ≡
<<{act . ∃act ′. f (act) = Some(act ′) ∧ act ′ ∈ inputs(asig of (A)) },
{act . ∃act ′. f (act) = Some(act ′) ∧ act ′ ∈ outputs(asig of (A)) },
{act . ∃act ′. f (act) = Some(act ′) ∧ act ′ ∈ internals(asig of (A))}>,

starts of (A),
{<s , act , t> . ∃act ′. f (act) = Some(act ′) ∧<s , act ′, t> ∈ trans of (A)}>

3 Specification

The Alternating Bit Protocol [3] is designed to ensure that messages are delivered in order,
from a sender to a receiver, in the presence of channels that can lose and duplicate messages.
This FIFO-communication can be specified by a simple queue and therefore a single automaton
Spec. As we are aiming for a finite state system, we have to consider an additional point: The
sender buffer of the implementation will not be able to store an unbounded number of incoming
messages. Restricting the number of input actions to yield a finite sender buffer is not allowed
because of the input-enabledness of IOA.

What we really need is an assumption about the behaviour of the environment, namely that
it will only send the next message if requested to do so by an explicit action Next issued by
the system. In the IOA-model this can be expressed by including an environment IOA which
embodies this assumption. Therefore the specification is a parallel composition of two processes:

Specification ≡ Env ‖ Spec

and the interaction between them is shown in Fig. 1. The two components Env and Spec are
described in the following subsections.

5

&%

' $

Env
&%

' $

Spec-

�
-

S msg

Next
R msg

Figure 1: The Specification

3.1 The Environment

Env models the assumption that the environment only outputs S msg when allowed to do so
by Next . The state of Env is a single boolean variable send next , initially true, which is set to
true by every incoming Next . S msg is enabled only if send next is true and sets send next to
false as a result:

Next input S msg(m) output
post: send next ′ pre: send next

post: ¬send next ′

where we use the following format to describe transition relations:

action (input | output | internal)
pre: P
post: Q

Predicate P is the constraint on the state s that must hold for the transition to apply. If it is
true, it is omitted. Predicate Q relates the state components before and after the transition;
we refer to the state components after the transition by decorating their names with a ′. If no
state component changes, post is omitted.

3.2 The Specification

The state of the IOA Spec is a message queue q , initially empty, modelled with the type (µ)list ,
where the parameter µ represents the message type. The only actions performed in the abstract
system are: S msg(m), putting message m at the end of q , R msg(m), taking message m from
the head of q , and Next , signaling the world outside to send the next message. Formally:

Next output S msg(m) input R msg(m) output
pre: true post: q ′ = q@[m] pre: q = m :: rst

post: q ′ = rst

4 Implementation

The system being proved correct also contains the component Env described in the previous
section.

Implementation ≡ Env ‖ Impl

Impl represents the Alternating Bit Protocol and is itself a parallel composition of 4 processes:

Impl ≡ Sender ‖ S Ch ‖ Receiver ‖ R Ch

6

&%

' $

Env

&%

' $

Sender
&%

' $

Receiver

�

�

�

�
S Ch

�

�

�

�
R Ch

-
� �

�
�
�
�
�� @

@
@
@
@
@R
�

�
�

�
�
�	@

@
@
@

@
@I

-
Next

S msg

S pkt R pkt

S ackR ack

R msg

Figure 2: The Implementation

a sender, a receiver, and proprietary channels for both. The “dataflow” in the system is depicted
in Fig. 2

Messages are transmitted from the sender to the receiver with a single header bit as packets
of type bool×µ. The type of system actions, (µ)action, is described in Isabelle by the following
ML-style datatype:

(µ)action ≡ Next | S msg(µ) | R msg(µ) | S pkt(bool , µ) |
R pkt(bool , µ) | S ack(bool) | R ack(bool)

4.1 The Sender

The state of the process Sender is a pair:

Field Type Initial Value
message: (µ)option None
header : bool true

The Sender makes the following transitions:

Next output
pre: message = None
S msg(m) input
post: message ′ = Some(m) ∧ header ′ = header
S pkt(b,m) output
pre: message = Some(m) ∧ b = header
R ack(b) input
post: if b = header

then message ′ = None ∧ header ′ = ¬header
else message ′ = message ∧ header ′ = header

Note that the presence of Env , i.e. the fact that the sender can control the flow of incoming
messages via Next , enables us to get by with a buffer of length 1 (modelled by (µ)option) in
the sender; Next is only sent if the buffer is empty, i.e. message = None.

4.2 The Receiver

The state of the process Receiver is also a pair, differing from the Sender only in the initial
value of the header variable:

7

Field Type Initial Value
message: (µ)option None
header : bool false

The Receiver makes the following transitions:

R msg(m) output
pre: message = Some(m)
post: message ′ = None ∧ header ′ = header
R pkt(b,m) input
post: if b 6= header ∧message = None

then message ′ = Some(m) ∧ header ′ = ¬header
else message ′ = message ∧ header ′ = header

S ack(b) output
pre: b = header

Note that R pkt does not change the state unless message = None. This ensures that the
receiver has passed the last message on via R msg before accepting a new one. Alternatively,
one could add the precondition message = None to S ack which would preclude the sender
getting an acknowledgment and sending a new message before the receiver has actually passed
the old one on.

4.3 The Channels

The channels, R Ch and S Ch, have very similar functionality. Roughly speaking, messages are
added to a queue by an input action and removed from it by the corresponding output action.
In addition, there can be no change at all in order to model the possibility of losing messages,
in case of the adding action, and of duplicating messages, in case of the removing action. The
only differences between the channels are the type of the messages delivered, packets for S Ch
and booleans for R Ch, and the specific names for input and output actions, S pkt and R pkt
or S ack and R ack , respectively. Therefore both channels can be designed as instances of a
generic channel using the renaming function described in section 2.

This is done by introducing a new datatype (α)act ≡ S (α) | R(α) of abstract actions and
defining an IOA Ch with a single state component q : (α)list by the following transition relation:

S (a) input R(a) output
post: q ′ = q ∨ q ′ = q@[a] pre: q 6= [] ∧ a = hd(q)

post: q ′ = q ∨ q ′ = tl (q)

In Isabelle we use a set comprehension format to describe transition relations. In the case of
Ch it looks like this:

Ch trans ≡ {<s , act , s ′> . case act of
S (a) ⇒ s ′ = s ∨ s ′ = s@[a]
R(a) ⇒ s 6= [] ∧ a = hd(s) ∧

(s ′ = s ∨ s ′ = tl (s)) }

An automatic translation of the pre/post style into the set comprehension format is possible
and desirable but not the focus of our research.

The concrete channels are obtained from the abstract channel by rename(Ch, S acts) and
rename(Ch,R acts), where

S acts : (µ)action → (bool × µ) act option
R acts : (bool)action → (bool) act option

8

map the concrete actions to the corresponding abstract actions. For example S acts is defined
by S acts(S pkt(b,m)) = Some(S (<b,m>)), S acts(R pkt(b,m)) = Some(R(<b,m>)) and
S acts(act) = None for all other actions act .

5 Abstraction

What we are aiming for is a finite-state description of the Alternating Bit Protocol that is
refined by the given implementation described in the previous section. To achieve this, we have
to remove two obstacles:

1. The channel queues have to be finite.

2. The message alphabet has to be finite.

5.1 Finite Channels

Our attention is focused on this requirement. We define an abstract version RedCh of Ch and
an abstraction function reduce from Ch to RedCh and prove is weak pmap(reduce,Ch,RedCh).
The idea is based on the observation that at most two different messages are held in each channel.
This is easily explained: each message is repeatedly sent to S Ch, until the corresponding
acknowledgment arrives. Once we switch to the next message, S Ch can only contain copies of
the previous message. Hence, S Ch’s queue is always of the form old∗new∗. The same is true
for R Ch. Thus, if all adjacent identical messages are merged, the channels have size at most
2. Fortunately, this reasoning never needs to be formalized but is implicitly performed by the
model checker.

5.1.1 Refinement of Channels

A compacting channel RedCh is obtained from Ch if new messages are only added provided
they differ from the last one added. Thus RedCh is identical to Ch except for action S :

S (α) input
post: q ′ = q ∨ if a 6= hd(reverse(q))∨ q = []

then q ′ = q@[a]
else q ′ = q

By renaming RedCh we obtain the collapsed versions of R Ch and S Ch, called R RedCh and
S RedCh. Notice that the description is a priori not finite, as q is an unbounded list. Finiteness
is only implied by the context, i.e. the behaviour of the protocol.

With the definition of an abstraction function reduce

reduce([]) ≡ []
reduce(x :: xs) ≡ case xs of

[] ⇒ [x]
y :: ys ⇒ if (x = y , reduce(xs), x :: reduce(xs))

we get the following refinement goal:

is weak pmap(reduce,Ch,RedCh)

The proof of this obligation is rather straightforward, proceeding by case analysis on the type of
actions. Using some lemmata on how reduce behaves when combined with operators like @ or

9

tl , most cases are automatically solved by the conditional and contextual rewriting of Isabelle.
Finally, using the meta-theorem

is weak pmap(abs ,C ,A)
⊃ is weak pmap(abs , rename(C , f), rename(A, f))

we get the appropriate refinement results for the concrete channels S Ch, R Ch and their
collapsed versions S RedCh and R RedCh.

5.1.2 Compositionality

In order to extend this refinement result from the channels to the whole system, we have to
prove some compositionality theorems for refinements. Lynch and Tuttle [13] established the
required lemma on the level of trace inclusions. We decided, however, to prove it on the level
of abstraction functions for reasons of simplicity.

IOA(C1) ∧ IOA(C2) ∧ IOA(A1) ∧ IOA(A2) ∧
externals(asig of (C1)) = externals(asig of (A1)) ∧
externals(asig of (C2)) = externals(asig of (A2)) ∧
compatible(C1,C2) ∧ compatible(A1,A2) ∧
is weak pmap(f ,C1,A1) ∧ is weak pmap(g ,C2,A2)
⊃ is weak pmap(λ<c1, c2>.<f (c1), g(c2)>,C1 ‖ C2,A1 ‖ A2)

Unfortunately, trace inclusion does not imply the existence of an abstraction function. Hence
the above theorem is not as general as the corresponding one about traces, in particular since
is weak pmap(id ,A,A) only holds if A has no internal actions. We intend to formalize and
prove compositionality on the trace level in the near future.

Performing the proofs of abstraction and compositionality in Isabelle, we encountered a
mismatch between the time required for the refinement proof and that required for the compat-
ibility checks. Nearly half the time (1.5 min on a SPARC station 10) was needed to establish
that no component causes a name clash of input/output actions. These checks, although auto-
mated, are expensive if performed by a theorem prover. Partly this is caused by our decision to
have rename translate action names in the opposite direction one would expect (see section 2.3),
something we may need to rethink.

5.2 Finite Message Alphabet

The second requirement, the problem of abstracting out data from a data-independent program
has already been addressed by Wolper [17]. In his paper he shows how to reduce an infinite
data domain to a small finite one if data independence is guaranteed and the properties to be
checked are expressible in propositional temporal logic. In [2] and [16] this method is applied
to the Alternating Bit Protocol. There, only three different message values are needed to verify
the protocol’s functional correctness.

Basically, a program is data-independent if its behaviour does not depend on the specific
data it operates upon. A sufficient condition for a program described by an IOA to be data
independent is that everywhere in the automaton the transitions are independent of the value
of messages being transmitted. An inspection of our description of the protocol shows that it
satisfies the condition.

In contrast to [2] our specification is not given as a collection of temporal formulae, but in
terms of I/O automata. Thus, the methods above are not directly applicable to our formaliza-
tion and until now, we have not investigated how to transfer them formally into our setting.
However, it is intuitively plausible that Wolper’s theory of data-independence holds generally,

10

independently of the respective formalization. That is why we analogously restricted our model
checking algorithm to deal with only three different message values.

A formal treatment of data-abstraction in Isabelle/HOL needs a modification of the way we
model data. Currently the diversity of data is modelled by polymorphic types1. But since types
are a meta-level notion and cannot be talked about (e.g. quantified) in HOL, even formalizing
data independence seems to be impossible. Using object-level sets instead of polymorphism
would cure this problem but is likely to complicate the theory.

6 Model Checking

The task of the model checker is to verify that B , the implementation with collapsing channels
refines A, the specification. It is done by a generic ML-function check

check(actions , internal , startsB ,nextsB , startA, transA, abs)

where actions : (α)list is the list of all actions, internal : α→ bool recognizes internal actions of
B , startsB : (σ)list is the list of start states of B , nextsB : σ → α→ (σ)list produces the list of
successor states in B , startsA : τ → bool recognizes start states of A, transA : τ → α→ τ → bool
recognizes transitions of A, and abs : σ → τ is the abstraction function.

It is easy to translate Isabelle’s predicative description of A’s transitions automatically
into an ML-function transA. For nextsB this is only possible if the predicates have a certain
recognizable form, for example disjunctions of assignments of values to the state components.
Otherwise how are we to compute the set of next states satisfying an arbitrary predicate? If σ,
the state space of B (as opposed to the set of reachable states!) is infinite, this is impossible.
That is the main reason why we need to specify B , i.e. RedCh explicitly; otherwise we could
have described RedCh implicitly in terms of Ch and reduce.

The abstraction function abs is given by

abs(s) ≡ l (R.message)@if (R.header = S .header , l (S .message), tl (l (S .message)))

where l : (α)option → (α)list is defined by the equations l (Some(x)) = [x] and l (None) = [].
To distinguish between components of the receiver state and the sender state that have the
same field names, we use a ‘dotted identifier’ notation, e.g. S .header and R.header .

It is also possible to generate abs automatically as a set of corresponding state pairs as
done in [10]. This would not allow the explicit documentation of abs , but it would mean a step
forward towards fully automatic support — the major advantage of model checking.

check itself realizes the predicate is weak pmap(abs ,B ,A) by simply performing full state
space exploration. Beginning with startsB the algorithm examines all reachable states, checking
for every transition <s1, a, s2> ∈ trans of (B) that either <abs(s1), a, abs(s2)> ∈ trans of (A)
(if a is external) or abs(s1) = abs(s2) (if a is internal).

At the moment the ML-code for the different arguments of check is still generated manually.
However, we intend to automate this, subject to the restrictions on B described above. It should
also be noted that check is just a prototype which should be replaced by some optimized model
checker, for example the one described in [9].

References

[1] P. Abdulla and B. Jonsson. Verifying programs with unreliable channels. In Proc. 8th
IEEE Symp. Logic in Computer Science, pages 160–170. IEEE Press, 1993.

1It is not true that a polymorphic IOA is automatically data independent: HOL-formulae may contain the
polymorphic equality “=” which destroys data independence.

11

[2] S. Aggarwal, C. Courcoubetis, and P. Wolper. Adding liveness properties to coupled finite-
state machines. ACM Transactions on Programming Languages and Systems, 12(2):303–
339, 1990.

[3] K. Bartlett, R. Scantlebury, and P. Wilkinson. A note on reliable full-duplex transmission
over half-duplex lines. Communications of the ACM, 12(5):260–261, 1969.

[4] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In Proc.
19th ACM Symp. Principles of Programming Languages, pages 343–354. ACM Press, 1992.

[5] D. Dams, O. Grumberg, and R. Gerth. Abstract interpretation of reactive systems: Ab-
stractions preserving ∀CTL∗, ∃CTL∗ and CTL∗. In E.-R. Olderog, editor, Programming
Concepts, Methods and Calculi (PROCOMET), pages 573–593. North-Holland, 1994.

[6] J.-C. Fernandez and L. Mounier. “On the Fly” verification of behavioural equivalences
and preorders. In K. G. Larsen, editor, Proc. 3rd Workshop Computer Aided Verification,
volume 575 of Lect. Notes in Comp. Sci., pages 181–191. Springer-Verlag, 1992.

[7] R. Gawlick, R. Segala, J. Sogaard-Andersen, and N. Lynch. Liveness in timed and untimed
systems. Technical Report MIT/LCS/TR-587, Laboratory for Computer Science, MIT,
Cambridge, MA., December 1993. Extended abstract in Proceedings ICALP’94.

[8] S. Graf and C. Loiseaux. A tool for symbolic program verification and abstraction. In
C. Courcoubetis, editor, Computer Aided Verification, volume 697 of Lect. Notes in Comp.
Sci., pages 71–84. Springer-Verlag, 1993.

[9] P. Herrmann, T. Kraatz, H. Krumm, and M. Stange. Automated verification of refinements
of concurrent and distributed systems. Technical Report 541, Fachbereich Informatik,
Universität Dortmund, 1994.

[10] P. Herrmann and H. Krumm. Report on analysis and verification techniques. Technical
Report 485, Fachbereich Informatik, Universität Dortmund, 1993.

[11] H. Hungar. Combining model checking and theorem proving to verify parallel processes. In
C. Courcoubetis, editor, Computer Aided Verification, volume 697 of Lect. Notes in Comp.
Sci., pages 154–165. Springer-Verlag, 1993.

[12] R. Kurshan. Reducibility in analysis of coordination. In K. Varaiya, editor, Discrete Event
Systems: Models and Applications, volume 103 of Lecture Notes in Control and Information
Science, pages 19–39. Springer-Verlag, 1987.

[13] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. Techni-
cal Report MIT/LCS/TR-387, Laboratory for Computer Science, MIT, Cambridge, MA.,
1987.

[14] N. Lynch and M. Tuttle. An introduction to Input/Output automata. CWI Quarterly,
2(3):219–246, 1989.

[15] T. Nipkow and K. Slind. I/O automata in Isabelle/HOL. In Proc. TYPES Workshop 1994,
Lect. Notes in Comp. Sci. Springer-Verlag. To appear.

[16] K. Sabnani. An algorithmic technique for protocol verification. IEEE Transactions on
Communications, 36(8):924–930, 1988.

[17] P. Wolper. Expressing interesting properties of programs in propositional temporal logic.
In Proc. 13th ACM Symp. Principles of Programming Languages, pages 184–193. ACM
Press, 1986.

12

A Constraint Oriented Proof Methodology based
on Modal Transition Systems

Kim G. Larsen1 Bernhard Steffen
BRICS2 FB Math. und Informatik,

Aalborg Univ., Denmark, Univ. of Passau, Germany,
kgl@iesd.auc.dk steffen@fmi.uni-passau.de

Carsten Weise
LS für Informatik I,

Aachen Univ., Germany
carsten@informatik.rwth-aachen.de

Abstract

We present a constraint-oriented state-based proof methodology for concurrent
software systems which exploits compositionality and abstraction for the reduction
of the verification problem under investigation. Formal basis for this methodology
are Modal Transition Systems allowing loose state-based specifications, which can be
refined by successively adding constraints. Key concepts of our method are projective
views, separation of proof obligations, Skolemization and abstraction. Central to the
method is the use of Parametrized Modal Transition Systems. The method easily
transfers to real-time systems, where the main problem are parameters in timing
constraints.

1 Introduction

The use of formal methods and in particular formal verification of concurrent systems,
interactive or fully automatic, is still limited to very specific problem classes. For state-
based methods this is mainly due to the state explosion problem: the state graph of a
concurrent systems grows exponentially with the number of its parallel components – and
with the number of clocks in the real-time case –, leading to an unmanageable size for
most practically relevant systems. Consequently, several techniques have been developed
to tackle this problem. Here we focus on the four main streams and do not discuss the
flood of very specific heuristics. Most elegant and ambitious are compositional methods
(e.g. [ASW94, CLM89, GS90]3), which due to the nature of parallel compositions are
unfortunately rarely applicable. Partial order methods try to avoid the state explosion
problem by suppressing unnecessary interleavings of actions [GW91, Val93, GP93]. Al-
though extremely successful in special cases, these methods do not work in general. In
practice, Binary Decision Diagram-based codings of the state graph are successfully ap-
plied to an interesting class of systems, see e.g. [Br86, BCMDH90, EFT91]. These codings
of the state graph do not explode directly, but they may explode during verification, and
it is not yet fully clear when this happens. All these techniques can be accompanied by
abstraction: depending on the particular property under investigation, systems may be

1This author has been partially supported by the European Communities under CONCUR2, BRA 7166.
2Basic Research in Computer Science, Centre of the Danish National Research Foundation.
3In contrast to the first reference, the subsequent two papers address compositional reduction of systems

rather than compositional verification.

13

dramatically reduced by suppressing details that are irrelevant for verification, see e.g.
[CC77, CGL92, GL93]. Summarizing, all these methods cover very specific cases, and
there is no hope for a uniform approach. Thus more application specific approaches are
required, extending the practicality of formal methods.

We present a constraint-oriented state-based proof methodology for concurrent soft-
ware systems which exploits compositionality and abstraction for the reduction of the veri-
fication problem under investigation. Formal basis for this methodology are Modal Transi-
tion Systems (MTS) [LT88] allowing loose state-based specifications, which can be refined
by successively adding constraints. In particular, this allows extremely fine-granular spec-
ifications, which are characteristic for our approach: each aspect of a system component
is specified by a number of independent constraints, one for each parameter configuration.
This leads to a usually infinite number of extremely simple constraints which must all be
satisfied by a corresponding component implementation. Beside exploiting compositional-
ity in the standard (vertical) fashion, this extreme component decomposition also supports
a horizontally compositional approach, which does not only separate proof obligations for
subcomponents or subproperties but also for the various parameter instantiations. This
is the key for the success of the following three step reduction, which may reduce even a
verification problem for infinite state systems to a small number of automatically verifiable
problems about finite state systems:

• Separating the Proof Obligations. Sections 4 and 5 present a proof principle justify-
ing the separation and specialization of the various proof obligations, which prepare
the ground for the subsequent reduction steps.

• Skolemization. The separation of the first step leaves us with problems smaller in
size but larger in number. Due to the nature of their origin, these problems often
fall into a small number of equivalence classes requiring only one prototypical proof
each.

• Abstraction. After the first two reduction steps there may still be problems with in-
finite state graphs. However, the extreme specialization of the problem supports the
power of abstract interpretation, which finally may reduce all the proof obligations
to finite ones.

Our proof methodology is not complete, i.e., there is neither a guarantee for the possibility
of a finite state reduction nor a straightforward method for finding the right amount of
separation for the success of the succeeding steps or the adequate abstraction for the final
verification. Still, as should be clear from the examples in the paper, there is a large
class of problems and systems, where the method can be applied quite straightforwardly.
Of course, the more complex the system structure the more involved will be the required
search of appropriate granularity and abstraction.

Whereas complex data dependencies may exclude any possibility of ‘horizontal’ de-
composition, our approach elegantly extends to real time systems, even over a dense time
domain. In fact, this extension does not affect the possibility of a finite state reduction.
For the real-time case, the basis are Timed Modal Transition Systems (TMS) [CGL93],
where (weak) refinement is decidable. The TMS tool Epsilon (see again [CGL93]) can
be used to find the refinements in demand.

However, in this paper parametrized timed modal transition systems are used. Parame-
ters may appear either in actions (so-called parametrized actions) or in timing constraints.

14

While parametrized actions do not interfere with decidability questions, the decision pro-
cedures used in the Epsilon tool cannot be directly applied to transition systems with
parameters in timing constraints.

We demonstrate our methodology by two examples: an extremely simple problem of
pipelined buffers, and a specification problem of a Remote Procedure Call (RPC) posed
by Broy and Lamport ([BL93]). The method is explained step by step by applying it
to the simple example. For every step, we also give details on how to solve the RPC
problem, thus demonstrating that the method is applicable to larger problems as well.
Both problems have untimed and timed versions, where in the timed cases parameters are
present in the timing constraints. For these special problems we are able to give a (simple)
solution to the problem arising from parameters in timing constraints.

The next section recalls the basic theory of Modal Transition Systems, which we use for
system specification. Thereafter we describe the RPC problem. The following sections
explain our method in detail. Section 4 presents our notion of projective views and dis-
cusses the first reduction step. The subsequent two sections are devoted to the second and
third reduction step, while Section 7 shows how to extend our method to real time systems
over a dense time domain. Finally, Section 8 summarizes our conclusion and directions to
future work.

2 Modal Transition Systems

In this section we give a brief introduction to the existing theory of modal transition
systems. We assume familiarity with CCS. For more elaborate introductions and proofs
we refer the reader to [LT88, HL89, Lar90].

When specifying reactive systems by traditional Process Algebras like e.g. CCS [Mil89],
one defines the set of action transitions that can be performed (or observed) in a given
system state. In this approach, any valid implementation must be able to perform the
specified actions, which often constrains the set of possible implementations unnecessarily.
One way of improving this situation within the framework of operational specification is
to allow specifications where one can explicitly distinguish between transitions that are
admissible (or allowed) and those that are required. This distinction allows a much more
flexible specification and a much more generous notion of implementation, and therefore
improves the practicality of the operational approach. Technically, this is made precise
through the following notion of modal transition systems:

Definition 2.1 A modal transition system is a structure S = (Σ, A,−→2,−→3), where
Σ is a set of states, A is a set of actions and −→2, −→3⊆ Σ × A × Σ are transition
relations, satisfying the consistency condition −→2⊆−→3. 2

Intuitively, the requirement −→2⊆−→3 expresses that anything which is required should
also be allowed hence ensuring the consistency of modal specifications. When the relations
−→2 and −→3 coincide, the above definition reduces to the traditional notion of labelled
transition systems.

Syntactically, we represent modal transition systems by means of a slightly extended
version of CCS. The only change in the syntax is the introduction of two prefix constructs
a2.P and a3.P with the following semantics: a3.P

a−→3 P , a2.P
a−→2 P and a2.P

a−→3

P . The semantics for the other constructs follow the lines of CCS in the sense that each

15

rule has a version for −→2 and −→3 respectively. We will call this version of CCS modal
CCS.

As usual, we consider a design process as a sequence of refinement steps reducing
the number of possible implementations. Intuitively, our notion of when a specification
S refines another (weaker) specification T is based on the following simple observation.
Any behavioural aspect allowed by a S should also be allowed by T ; and dually, any
behavioural aspect which is already guaranteed by the weaker specification T must also
be guaranteed by S. Using the derivation relations −→2 and −→3 this may be formalized
by the following notion of refinement:

Definition 2.2 A refinement R is a binary relation on Σ such that whenever SR T and
a ∈ A then the following holds:

1. Whenever S a−→3 S ′, then T
a−→3 T ′ for some T ′ with S ′R T ′,

2. Whenever T a−→2 T ′, then S a−→2 S ′ for some S ′ with S ′R T ′.

S is said to be a refinement of T in case (S, T) is contained in some refinement R. We
write S � T in this case. 2

Note that when we apply the above definition to traditional labelled transition systems
(where−→=−→2=−→3), we obtain the well–known notion of bisimulation [Par81, Mil89].
Using standard techniques, one straightforwardly establishes that � is a preorder preserved
by all modal CCS operators.

� allows loose specifications. This important property, which can be best explained by
looking at the ‘weakest’ specification U constantly allowing any action, but never requiring
anything to happen. Operationally, U is completely defined by U a−→3 U for all actions
a. It is easily verified that S � U for any modal specification S.

Intuitively, S and T are independent if they are not contradictory, i.e. any action
required by one is not constraint by the other. The following formal definition is due to
the fact that for S and T to be independent all ‘simultaneously’r̀eachable processes S ′ and
T ′ must be indenpendent too:

Definition 2.3 An independence relation R is a binary relation on Σ such that whenever
SR T and a ∈ A then the following holds:

1. Whenever S a−→2 S ′, there is a unique T ′ such that T a−→3 T ′ and S ′R T ′,

2. Whenever T a−→2 T ′, there is a unique S ′ such that S a−→3 S ′ and S ′R T ′,

3. Whenever S a−→3 S ′ and T a−→3 T ′ then S ′R T ′.

S and T are said to be independent in case (S, T) is contained in some independence
relation R. 2

Note in particular that two specifications are independent if none of them requires any
actions. Independence is important, as it allows to define conjunction on modal transition
systems by:

S
a−→2 S ′ T

a−→3 T ′

S ∧ T a−→2 S ′ ∧ T ′
S

a−→3 S ′ T
a−→2 T ′

S ∧ T a−→2 S ′ ∧ T ′

16

S
a−→3 S ′ T

a−→3 T ′

S ∧ T a−→3 S ′ ∧ T ′

Of course, S ∧T is always a well-defined modal specifications (i.e. any required transition
is also allowed), and in fact, for independent arguments S and T it defines their logical
conjunction:

Theorem 2.4 Let S and T be independent modal specifications. Then S ∧ T � S and
S ∧ T � T . Moreover, if R � S and R � T then R � S ∧ T .

In order to compare specifications at different levels of abstraction, it is important to
abstract from transitions resulting from internal communication. The way this is done for
modal transition systems follows the lines of traditional labelled transition systems. That
is, for a given modal transition system S = (Σ, A∪ {τ},−→2,−→3) we derive the modal
transition system Sε = (Σ, A∪{ε},=⇒2,=⇒3), where ε=⇒2 is the reflexive and transitive
closure of τ−→2, and where T a=⇒2 T ′, a 6= ε, means that there exist T ′′, T ′′′ such that

T
ε=⇒2 T ′′

a−→2 T ′′′
ε=⇒2 T ′

The relation =⇒3 is defined in a similar manner.
The notion of weak refinement can now be introduced as follows: S weakly refines T

in S, S � T , iff there exists a refinement relation on Sε containing S and T .
Weak refinement � essentially enjoys the same pleasant properties as �: it is a preorder

preserved by all modal CCS operators except + [HL89] (including restriction, relabelling
and hiding). Moreover, for ordinary labelled transition systems weak refinement reduces
to the usual notion of weak bisimulation (≈).

3 The Remote Procedure Call Problem

We demonstrate our method by applying it to a specification problem given by Broy and
Lamport. Due to space limitations we can only present part of the problem.

The original problem consists of a memory component and an RPC mechanism. The
memory component accepts read and writes from several processes, and returns the re-
quested values (none in case of write) or raises an exception. The only exception here is
memory failure, i.e. the memory could not read from/write to the hardware. A component
in which execptions do never occur is called a reliable memory.

The processes are connected to the memory component via an RPC (Remote Procedure
Call) mechanism. The RPC mechanism simply forwards calls from the processes to the
memory, and returns from the memory to the processes. The RPC should be transparent
to the user, i.e. the composition of the memory component and the RPC should be an
implementation of the memory. This is what we will call the untimed RPC problem.

In the real-time case, the time to forward calls and returns by the RPC should be no
more than δ. Further an exception should be raised if a call to the RPC does not return
within 2δ + ε seconds. We will prove that if all calls to a reliable memory return within ε
seconds, then the composition of the RPC and the reliable memory is an implementation
of the reliable memory. This is the timed RPC problem.

The following is an informal specification of the memory component M , concentrating
on write calls only. We assume sets procId of process identifiers, memLocs of memory

17

locations and memVals of memory values, with typical elements id, loc and val resp. We
will often use Z as an abbreviation for the product of the three sets, i.e. Z := procId×
memLocs× memVals, with typical element z ∈ Z.

The events occurring in the memory component are described by parameterized actions,
taking arguments from procId, memLocs and memVals. The actions of M are:

mWr(id, loc, val) : write-call from process id of value val to location loc
write(id, loc, val) : atomic write of value val to location loc initiated

by process id
mRetWr(id) : send return from a write-request to process id
mFail(id) : signal memory failure to process id

The I/O-behaviour of the memory component M then looks like this:

id in ProcId
loc in MemLoc
val in MemVal

Memory
Component

Internal
write(id, loc, val)

mWr(id, loc, val)

mRetWr(id)
mFail(id)

The specification of the (reliable) memory component is a conjunction of the following
properties:

P0 The memory component engages in actions only when it is called

P1 Each write operation (successful or not) performs a sequence of zero or more atomic
writes of the correct value to the correct location at some time between the call and
return. For a successful write operation, there must be at least one atomic write.

P2 A memory failure is never raised.

Clearly, the memory component M is specified by the conjunction of P0 and P1, while
the reliable memory MR is the conjunction of the M and P2.

The RPC R simply hands calls and returns (including the memory failure exception)
through. These are the actions of the RPC:

rWr(id, loc, val) : remote write of value val to location loc issued by process id
rRetWr(id) : return from remote write issued by process id
rFail(id) : RPC returns an exception from a call issued by process id

mWr(id, loc, val) : send a write of value val to location loc initiated by process id
mRetWr(id) : return from a write initiated by process id
mFail(id) : memory component raised a memory failure

The I/O-behaviour of the combined components can be depicted as:

rRetWr(id)
rFail(id)

mWr(id, loc, val)

mRetWr(id)
mFail(id)

rWr(id, loc,val)

RPC
Component

Memory
Component

Internal
write(id, loc, val)

18

In the next sections, we will explain our method directly using a much simpler example.
At the end of each section we show how our method transfers to the RPC problem. We
start with the untimed case.

4 Projective Views

In the following, we present, motivate and clarify our proof methodology by means of a
minimal example, which is just sufficient to explain the various phenomena.

Consider the parallel system in Figure 1. Here two parameterized, disposable compo-
nent media (supposed to transmit natural numbers) A and B are composed in parallel
yielding a pipeline. Informally, the component A is supposed to input a natural number
on port a, then output this number on port b after which it will terminate. The behaviour
of B is similar. Using modal transition systems, the parallel system may be expressed as

A B
a b c

Figure 1: A Pipe Line of Two Disposable Media

follows: (
a2x.b2x︸ ︷︷ ︸

A

| b2x.c2x︸ ︷︷ ︸
B

)
\{b}

The behaviour of A and B are given by the two infinite–width transition systems of
Figure 2. However, rather than using these direct specifications of A and B we specify the

1 2

A

1
2a

a

b b1 2

B

1
2b

b

c cb0

a0 0b

0c

Figure 2: Behaviour of A and B.

two components behaviour using projective views An and Bn; one view for each possible
natural number n. The projective view An specifies the constraints on the behaviour of
the component A when focusing on transmission of the value n; this constraint can be
expressed as the following modal transition system An (where we use solid lines for must-
and dotted lines for may-transition):

A a b

a

n n n

#n
U

Here a6=n denotes all labels of the form am where m 6= n; also U denotes the universal modal
transition system constantly allowing all actions. Note that this ‘n-th view’ imposes no

19

constraint on the behaviour of A when transporting values different from n. The complete
specification of the component A is the conjunction of all projective views4 An. In fact it
is easy to establish the following facts:

A �
∧
n

An and
∧
n

An � A (1)

where A refers to the (infinite) transition system of Figure 2. Obviously, we may obtain
similar projective views Bn for component B.

Let us now consider the problem of verifying that the overall system
(
A |B

)
\{b} is

observationally equivalent to the system C = a2x.c2x (i.e. a slightly different disposable
media). As A, B and C are standard transitions systems, i.e., everything allowed is also
required, this problem is equivalent to showing(

A |B
)
\{b} � C

Thus (1), together with the observation that also C may be expressed as a conjunction of
an infinite number of constraints Cn, leave us with the following refinement problem:(∧

n

An |
∧
n

Bn
)
\{b} �

∧
n

Cn (2)

4.1 Application to the RPC problem

We give modal transition systems for the specification of properties P0, P1 and P2 of the
memory component. Therefore we split P1 into two properties P1a, P1b meaning

P1a A write-call from process id cannot return unless an atomic write is performed.

P1b As long as a write-call from process id has not returned, no atomic write with a
wrong location or value occurs

The labels in the following transition systems are sets of actions (called abstracted actions).
A single action is a shorthand for the set containing this and only this action. For the other
sets, we use the usual set-theoretic connectives, and a dot-notation, where a parametrized
action with dots as parameters means “the set of all actions where the dotted position is
replaced by all legal values for the parameter”, e.g. for a fixed id ∈ procId, mWr(id, ., .) is
the set {mWr(id, loc, val) | loc ∈ memLocs, val ∈ memVals}.

Our specification assumes that calls from different processes are handled concurrently.
As calls from different processes do not interfere, no actions parametrized with an identifier
other than id is constrained in the specifications of calls from process id. This is modelled
by allowing all actions with an identifier different from the fixed id in any state. Instead
of adding to each state a loop where all these actions are allowed, we draw boxes meaning
“a state with a loop for all non-id actions”. By this the conjunction of the specifications
for all processes is the same as their parallel composition.

The following modal transition systems specify the properties for a fixed value id:
4Note that all the projective views of A are pairwise independent.

20

P2(id,loc,val)

Act \ mFail(id)

mWr(id,.,.)
mFail(id)

∪

wr(id,.,.)

P1a(id,loc,val)

mWr(id,.,.)

Act \ mWr(id,.,.)

mWr(id,.,.)
write(id,loc,val)

∪

P1b(id, loc, val)

mWr(id,loc,val)

Act \ mWr(id,loc,val)

mFail(id)
mRetWr(id) ∪

wr(id,.,.)

mRetWr(id)
mFail(id)

∪

P0(id,loc,val)

mWr(id,.,.)

Note that only P1b really depends on loc and val, and that the properties P0, P1a, P1b
and P2 are the conjunctions of the above modal specifications over all z ∈ Z.

Let M(z) be the conjunction P0(z) ∧ P1a(z) ∧ P1b(z), and MR(z) = M(z) ∧ P2(z).
The memory component M is the conjunction of M(z) over all z ∈ Z.

The transition systems for P1a and P1b are direct translation of their logical specifica-
tions using CTL with modalities. Transition systems resulting from this translation have
may-transitions only, therefore conjunction of constraints is defined. CTL with modalities
and its usefulness for our approach cannot be demonstrated here due to space limitations.

Let Act be the set of all actions. For two sets R ⊆ Act (return set) and T ⊆ Act (tolerance
set), a state s and actions a1, . . . , am ∈ Act. Then we use the following macro state for
the specification of the RPC:

R
s
T

a1

am

s1

sm

:
:

Here the edges leaving the “macro state” can be either may- or must-transition.
For a given transition system with start state s0 and an auxiliary state s′ not already

in the transition system, this is meant to expand to

s0 s’
R

T \ {a1,...,am}

Act \ R

a1

am

s1

s

sm

:
:

i.e. state s tolerates any action from T . If the behaviour of a tolerated action is already
specified by an outgoing edge, nothing new happens. In the other case, the system goes to
the auxiliary state s′, where it accepts any action until a return action (from R) occurs.
Return actions take the system back to the start state. Note that this corresponds to the
idea of specifying procedures, where we specify each branch separately, and take care of
possible other branches using the set T .
There are two main projective views of the RPC. In the first view, a write is handed
through and a return received from the memory. In the second view, instead of a return

21

a memory failure is received. These two views R1(id, loc, val) and R2(id, loc, val) are
given in the following picture:

R1(id, loc, val)

rWr(id,loc,val) mRetWr(id)
b

mWr(id,loc,val)

rRetWr(id)
a

rCall(id)

rRet(id)
dc

mRet(id)

rRet(id)

R2(id, loc, val)

rWr(id,loc,val) mFail(id)
b

mWr(id,loc,val)

rFail(id)

a
rCall(id)

rRet(id)
dc

mRet(id)

rRet(id)

While it is natural to use must-transitions in the specification here, due to the fact that the
memory component has no must-transitions at all it follows that must-transitions of the
above specification can be replaced by may-transitions without affecting the correctness
of the proof. This however makes all our specifications independent, so conjunction is
defined. The sets in the macro states are defined as follows:

rCall(id) := rWr(id, ., .)
rRet(id) := rRetWr(id) ∪ rFail(id)
mRet(id) := mRetWr(id) ∪ mFail(id)

Let R(z) := R1(z)∧R2(z). The untimed specification of the RPC R is the conjunction of
R(z) over all z.

Let f be a relabelling mapping all actions of the RPC to the appropriate actions of the
memory component, and A := ActM and H := write(., ., .). Then the untimed verification
problem is (

R |M/H
)
\A[f] � M/H (3)

where the internal actions of the memory (i.e. the atomic writes) are hidden.

5 Sufficient Proof Condition

Due to the properties of conjunction (cf. Lemma 2.4) the proof of (2) can obviously be
reduced to the verification of (∧

n

An |
∧
n

Bn
)
\{b} � Cn

for each natural n. Thus due to Lemma 2.4 and the fact that � is preserved by parallel
composition and restriction, it suffices to prove

∀n ∈ N.
(
An |Bn

)
\{b} � Cn (4)

There is a general proof principle behind this reduction: in order to conclude:(∧
i∈I1

A1
i | . . . |

∧
i∈Ik

Aki

)
\L �

∧
j∈I

Cj

22

it suffices for each j ∈ I to establish:(∧
i∈I1,j

A1
i | . . . |

∧
i∈Ik,j

Aki

)
\L � Cj

where I`,j ⊆ I` for each ` = 1 . . .k.
Of course, in general the power of this proof principle strongly depends on a good

choice of the I`,j, which was trivial in our example.

5.1 Application to the RPC Problem

With the same argumentation, to prove (3) it is sufficient to show

∀z ∈ Z.
(
R(z) |M(z)/H

)
\A[f] � M(z)/H (5)

6 Skolemization and Abstraction

So far we have reduced the overall verification problem of (2) to that of (4). At first sight
this doesn’t seem much of a reduction as (4) requires a refinement proof to be established
for each natural number. Fortunately, these proofs are not really sensitive to the actual
value of the natural number n. Letting k be an arbitrary natural number (or a Skolem
constant) it suffices to prove: (

Ak |Bk
)
\{b} � Ck (6)

in order to infer (4). Thus we are now left with the problem of establishing a single
refinement. But still, though finite state the specifications Ak and Bk both have infinitely
many transitions (as a6=k is an inifinite label set). This problem can be overcome using
abstraction (or factorization) with respect to an appropriate equivalence relation.

Definition 6.1 Let S = (Σ, S,−→2,−→3) be a modal transition system, let ≡Σ and ≡S
be equivalence relations on Σ and S, and let Σ≡ and S≡ be the sets of equivalence classes.
Then the factorization of S is the modal transition system S≡ = (Σ≡, S≡,−→′2,−→′3),
where −→′2,−→′3 are defined as follows:

s
a−→2 s′

[s]≡
[a]≡

−→′2 [s′]≡

s
a−→3 s′

[s]≡
[a]≡

−→′3 [s′]≡

Equivalence relations ≡Σ and ≡S are called compatible with the modal transition system
S iff for all a ≡Σ b, s ≡S t, s′ ≡S t′:

s
a−→2 s′ iff t

b−→2 t′ and s
a−→3 s′ iff t

b−→3 t′

For compatible equivalence relations, the following reduction lemma is straightforward:

Lemma 6.2 Let S≡ and T≡ be processes in the factorization S≡ of S with respect to
compatible equivalence relations ≡Σ and ≡S . Then we have for arbitrary representatives
S of S≡ and Tof T≡:

S≡ � T≡ implies S � T

23

This Lemma allows us to reduce verification problems for infinite systems to problems for
finite systems, as soon as an appropriate factorization can be found.

For our example, let us consider the equivalence relation ≡ defined by xk ≡ xk and
xi ≡ xj whenever i, j 6= k, where x ranges over {a, b, c}. Obviously, ≡ is compatible with
the underlying transition system. Thus the verification of (2) can further be reduced to
the refinement proof between the finite ≡–abstracted versions of Ak, Bk and Ck(

Ak
≡ |Bk≡

)
\{b} � Ck

≡ (7)

which can easily be done by means of the automatic verification tool Epsilon.

6.1 Application to the RPC Problem

The same is true for the RPC problem: instead of proving (5) for all z, a proof for a pro-
totypical z is sufficient. Most of the abstraction is already carried out by using abstracted
actions. Note however that the abstracted actions are in general not the required equiva-
lence classes. For the RPC problem e.g. write(z) is an equivalence class of its own, and
the set write(id, ., .) \ write(z) is another equivalence classes. This specific partitioning
of the atomic write actions reflects the fact that we must distinguish between a write of
the correct value to the correct location and all other writes from the same process.

From the diagrams in Sect. 4.1 it is easy to see that the resulting transition systems
are of a manageable size, and the proof can be carried out using the Epsilon tool.

7 Specifications with Time

The above example can be extended to deal with real time. For the specification we use
Wang Yi’s Timed CCS (see [Yi91]) together with modal specifications. For details on
these so called Timed Modal Specifications see [CGL93]. This method can be used with
any totally ordered time domain, while in the following we will assume the positive real
numbers.

The passing of time is modelled by a delay action ε(d), where d is a positive real
number. The intuitive meaning of such a delay is that d time units pass until the end of
this action. Normal actions are enabled immediately, and can be taken at any time. As
an example, the process a2x.ε(2).b2x can execute a2x at any time. Thereafter it must
delay for at least two time units before it can engage in b2x.

Further we assume maximal progress , i.e. a communication must be performed as soon
as possible. Putting a2x.ε(2).b2x in parallel with a2x.ε(3).b2x would force the communi-
cation via channel a to take place immediately, and the communication via channel b to
happen after exactly three time units.

For our specification, the macro a[l, u] is convenient, where a is an action and l, u are
real numbers with l < u. The intuition is that a process a[l, u].P may enable a after l time
units and must enable a after u time units. In other words, communication via a may be
possible after at least l time units, and will be possible at any time after u time units.
This macro is defined as a[l, u].P = (ε(l).a3 + ε(u).a2).P .

In our examples, the lower bound is always zero. The graphical presentation we use
for a[0, u].P is:

24

P

u

a

a

Let d be a fixed real number. Then we specify a timed process A(d), which reads port a
and subsequently outputs its input onto port b within d time units, by a2x.bx[0, d].Note
that this is a timed version of process A. The same construction gives timed versions B(d)
and C(d) of B and C.

We are now going to establish that a ‘pipeline’ with two components with delay d
should not be slower than one component with delay 2d, i.e.(

A(d) |B(d)
)
\ {b} � C(2d)

The same method as in the untimed case reduces the situation to(
Ak
≡(d) |Bk≡(d)

)
\ {b} � Ck

≡(2d)

for a Skolem constant k and the equivalence relation of the previous section. Now, given
a specific value for d this proof can be carried out using the Epsilon tool, which treats
real valued timer domains by means of the clock region automaton technique (see [AD94]
for details). This technique relies on integer values for all explicit timer constants in the
specification, which can be achieved by multiplication with an appropriate constant in
most applications. As all timer constants are multiplied by the same constant, this does
not affect the principle behaviour of the system. In our example, the obvious choice for
this constant is 1/d, leaving us with the following refinement problem(

Ak
≡(1) |Bk≡(1)

)
\ {b} � Ck

≡(2)

which can be solved using Epsilon.
Note that this proof indeed covers the statement for any d. Thus even in the presence

of real time, the original verification problem is reduced to a very simple, automatically
solvable problem.

7.1 Application to the RPC Problem

The following is a timed version of R1, where passing through the calls and returns takes
not more than δ seconds:

R1(id, loc, val)

rWr(id,loc,val) mRetWr(id)
b

rRetWr(id)

a
rCall(id)

rRet(id)
dc

mRet(id)

rRet(id)mWr(id,loc,val)

mWr(id,loc,val)
rRetWr(id)

δδ

Note that actions without a timing constraint are enabled at any time. The timed version
of R2 is defined analogously (although unnecessary for the reliable memory). Call the
timed RPC Rδ.

25

In the same way as the RPC we specify a demon which signals a failure if a call to
the RPC does not return within 2δ + ε seconds. The actions of the demon are the same
as those of the RPC, only the prefix r is replaced by a d. Timeout is modelled by a
τ -transition. The specification of the demon D1(z) is

D(id, loc, val)

dWr(id,loc,val)
b

a
dCall(id)

dRet(id)
c

rRet(id)

dRet(id)rWr(id,loc,val) rRetWr(id)
d

τ e

dRetWr(id)

dFail(id)

2δ + ε

To define a timed reliable memory, we only need to alter property P0 by requiring the
return to occur within ε seconds. This is done by the following:

mRetWr(id)
mFail(id)

∪

P0(id) mWr(id,.,.)

εε

wr(id,.,.)

We call the resulting timed specification of the reliable memoryM ε
R. The timed verification

problem then is (
D2δ+ε |Rδ |M ε

R/H
)
\A[f] � MR/H

Note that the memory on the right hand side is the “untimed” MR, where we interprete
all actions to be enabled all the time. Further the set A and the relabelling f have to be
adjusted.

This problem can once again be reduced by our method to a problem where we only
need to look at a prototypical z. The involved transition systems are of small size. The
problem however are the parameters occuring in the timing constraints. With two param-
eters δ and ε present the multiplication trick does not work as before.

There is a simple workaround. Computing Rδ |M ε
R/H by hand one finds a transiton

system where the expression 2δ + ε occurs in all timing constraints. Thus 2δ + ε can be
replaced by d, leaving a system with only d as parameter in timing constraints. Now the
previously used multiplication trick is applicable, so that the problem can be verified using
Epsilon.

8 Conclusion and Future Work

We have introduced a new constraint-oriented method for the (automated) verification
of concurrent systems. Key concepts of our ‘divide and conquer’ method are projective
views, separation of proof obligations, Skolemization and abstraction, which together sup-
port a drastic reduction of the complexity of the relevant subproblems. Of course, our

26

proof methodology does neither guarantee the possibility of a finite state reduction nor
a straightforward method for finding the right amount of separation or the adequate ab-
straction. Still, there is a large class of problems and systems, where the method can be
applied quite straightforwardly. Typical examples are systems with limited data depen-
dence. Whereas involved data dependencies may exclude any possibility of ‘horizontal’
decomposition, our approach elegantly extends to real time systems, even over a dense
time domain. In fact, the resulting finite state problems can be automatically verified us-
ing the Epsilon verification system. All this has been illustrated using a simple example
of pipelined buffers. Our experience indicates that our method scales up to practically
relevant problems, as demonstrated by the problem of the transparent RPC. Due to space
limitations, we did not show how to do a logical specification in CTL with modalities.
Such specifications are very natural problem descriptions, and they are in general easy to
translate into Modal Transition Systems.

Beside further case studies and the search for good heuristics for proof obligation
separation and abstraction, we are investigating the limits of tool support during the
construction of constraint based specifications and the application of the three reduc-
tion steps. Whereas support by graphical interfaces and interactive editors is obvious
and partly implemented in the META-Framework, a management system for synthesis,
analysis and verification currently developed at the university of Passau, the limits of con-
sistency checking and tool supported search for adequate separation and abstraction are
still an interesting open research topic.

As pointed out, one major problem are parameters in the timing constraints. We are
currently investigating methods – similar to the approach presented for parametrized timed
automaton in [AHV93] – for checking bisimulation and (weak) refinement for parametrized
modal transition systems.

References

[ASW94] H. Andersen, C. Stirling, G. Winskel. A Compositional Proof System for the
Modal Mu-Calculus. in: Proceedings LICS, 1994.

[AD94] R. Alur, D.L. Dill. A Theory of Timed Automata. in: Theoretical Computer
Science Vol. 126, No. 2, April 1994, pp. 183-236.

[AHV93] R. Alur, T.A. Henzinger, M.Y. Vardi. Parametric real-time reasoning. Proc. 25th
STOC, ACM Press 1993, pp. 592–601.

[BL93] M. Broy, L. Lamport. Specification Problem. Case study for the Dagstuhl Seminar
9439, 1994.

[Br86] R. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. in:
IEEE Transactions on Computation, 35 (8). 1986.

[BCMDH90] J. Burch, E. Clarke, K. McMillan, D. Dill, L. Hwang. Symbolic Model
Checking: 1020 States and Beyond. in: Proceedings LICS’90.

[CGL93] K. Čerāns, J.C. Godesken, K.G. Larsen. Timed Modal Specification - Theory
and Tools. in: C. Courcoubetis (Ed.), Proc. 5th Int. Conf. on Computer Aided
Verification (CAV ’93), Elounda, Greece, June/July 1993. LNCS 697, Springer
Berlin 1993, pp. 253–267.

27

[CGL92] E. Clarke, O. Grumber, D. Long. Model Checking and Abstraction. in: Pro-
ceedings XIX POPL’92.

[CLM89] E. Clarke, D. Long, K. McMillan. Compositional Model Checking. in: Proceed-
ings LICS’89.

[CC77] R. Bryant. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction and Approximation of Fixpoints. in: Proceedings
POPL’77.

[EFT91] R. Enders, T. Filkorn, D. Taubner. Generating BDDs for Symbolic Model Check-
ing in CCS. in: Proceedings CAV’91, LNCS 575, 1991, pp. 203–213

[GW91] P. Godefroid, P. Wolper. Using Partial Orders for the Efficient Verification of
Deadlock Freedom and Safety Properties. in: Proceedings CAV’91, LNCS 575,
1991, pp. 332–342.

[GP93] P. Godefroid, D. Pirottin. Refining Dependencies Improves Partial-Order Verifi-
cation Methods. in: Proceedings CAV’93, LNCS 697, 1991, pp. 438–449.

[GL93] S. Graf, C. Loiseaux. Program Verification using Compositional Abstraction. in:
Proceedings FASE/TAPSOFT’93.

[GS90] S. Graf, B. Steffen. Using Interface Specifications for Compositional Minimization
of Finite State Systems. in: Proceedings CAV’90.

[HL89] H. Hüttel and K. Larsen. The use of static constructs in a modal process logic.
Proceedings of Logic at Botik’89. LNCS 363, 1989.

[Lar90] K.G. Larsen. Modal specifications. In: Proceedings of Workshop on Automatic
Verification Methods for Finite State Systems LNCS 407, 1990.

[LT88] K. Larsen and B. Thomsen. A modal process logic. In: Proceedings LICS’88,
1988.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Par81] D. Park. Concurrency and automata on infinite sequences. In P. Deussen (ed.),
5th GI Conference, LNCS 104, pp. 167–183, 1981.

[Val93] A. Valmari. On-The-Fly Verification with Stubborn Sets. in: C. Courcoubetis
(Ed.), Proc. 5th Int. Conf. on Computer Aided Verification (CAV ’93), Elounda,
Greece, June/July 1993. LNCS 697, Springer Berlin 1993, pp. 397–408.

[Yi91] W. Yi. CCS + Time = an Interleaving Model for Real-Time Systems,
Proc.18th Int. Coll. on Automata, Languages and Programming (ICALP),
Madrid, July 1991. LNCS 510, Springer New York 1991, pp. 217-228.

28

HyTech : The Cornell HYbrid TECHnology Tool∗

Thomas A. Henzinger Pei-Hsin Ho

Computer Science Department
Cornell University

(tah|ho)@cs.cornell.edu

Abstract. HyTech, the Cornell Hybrid Technology Tool, is an automatic tool for analyzing
hybrid systems. We review some of the formal technologies that have been incorporated into
HyTech, and we illustrate the use of HyTech with two nontrivial case studies.

1 Introduction

Hybrid systems are digital real-time systems that interact with the physical world through sensors and
actuators. Due to the rapid development of digital processor technology, hybrid systems directly control
much of what we depend on in our daily lives. Many hybrid systems, ranging from automobiles to aircraft,
operate in safety-critical situations, and therefore call for rigorous analysis techniques.

HyTech
1 is a symbolic model checker for linear hybrid systems. The underlying system model is

hybrid automata, an extension of finite automata with continuous variables that are governed by differential
equations [ACHH93]. The requirement specification language is the integrator computation tree logic Ictl,
a branching-time logic with clocks and stop-watches for specifying timing constraints. Safety, liveness, real-
time, and duration requirements of hybrid systems can be specified in Ictl [AHH93]. Given a hybrid
automaton describing a system and an Ictl formula describing a requirement, HyTech computes the state
predicate that characterizes the set of system states that satisfy the requirement.

In this report we review the formal technologies that have been incorporated into HyTech for solving
reachability problems of linear hybrid automata; more advanced applications of HyTech, for Ictl model
checking and the analysis of nonlinear hybrid systems [HH95], are detailed in the full version of this paper. In
Section 2, we define the syntax and semantics of linear hybrid automata, which were introduced in [ACHH93,
NOSY93]. In Section 3, we give an introduction to the reachability analysis of linear hybrid automata, which
was presented in [AHH93, ACH+95]. We concentrate on the reachability analysis of systems with unknown
delay parameters, and use HyTech to derive sufficient and necessary conditions on the parameters such
that the system satisfies a given safety requirement. We also demonstrate the use of abstract-interpretation
operators, which are discussed in greater detail in [HH94]. Throughout, we use a temperature controller for
a toy nuclear reactor as a running example to illustrate the use of HyTech. For the practitioning verifier,
we present the actual input language for describing linear hybrid automata and verification commands.

In Section 4, we apply HyTech to two nontrivial benchmark problems. Both examples are taken from
the literature, rather than devised by us. The first case study is a distributed control system introduced
by Corbett [Cor94]. The system consists of a controller and two sensors, and is required to issue control
commands to a robot within certain time limits. The two sensor processes are executed on a single processor,
as scheduled by a priority scheduler. This scenario is modeled by linear hybrid automata with clocks and

∗This research was supported in part by the National Science Foundation under grant CCR-9200794, by the
United States Air Force Office of Scientific Research under contract F49620-93-1-0056, and by the Defense Advanced
Research Projects Agency under grant NAG2-892.

1
HyTech is available by anonymous ftp from ftp.cs.cornell.edu, cd ˜pub/tah/HyTech. See also

http://www.cs.cornell.edu/Info/People/tah/hytech.html.

29

rod1 no rod rod2add1 add2

remove1 remove 2

−5 ≤ ẋ ≤ −1 1 ≤ ẋ ≤ 5 −9 ≤ ẋ ≤ −5

x = 550

x = 510

x = 550

x = 510x = 510
x ≥ 510x ≥ 510 x ≤ 550

Figure 1: The reactor core automaton

stop-watches. HyTech automatically computes the maximum time difference between two consecutive
control commands generated by the controller. It follows, for example, that a scheduler that gives higher
priority to one sensor may meet the specification requirement, while a scheduler that gives priority to the
other sensor may fail the requirement.

The second case study is a two-robot manufacturing system introduced by Puri and Varaiya [PV95].
The system consists of a conveyor belt with two boxes, a service station, and two robots. The boxes will
not fall to the floor iff initially the boxes are not positioned closely together on the conveyor belt. HyTech

automatically computes the minimum allowable initial distance between the two boxes.

2 Specification of Linear Hybrid Automata in HyTech

The system modeling language of HyTech is linear hybrid automata [AHH93]. Intuitively, a linear hybrid
automaton is a labeled multigraph (V, E) with a finite set X of real-valued variables. The edges in E
represent discrete system actions and are labeled with guarded assignments to X. The vertices in V represent
continuous environment activities and are labeled with constraints on the variables in X and their first
derivatives. The state of a hybrid automaton changes either through instantaneous system actions or, while
time elapses, through continuous environment activities.

Example: reactor temperature control

We use a variant of the reactor temperature control system from [NOSY93] as a running example. The
system consists of a reactor core and two control rods that control the temperature of the reactor core. The
reactor core is modeled by the linear hybrid automaton in Figure 1. The temperature of the reactor core is
represented by the variable x. Initially the core temperature is 510 degrees and both control rods are not
in the reactor core. In this case, the core temperature rises at a rate that varies between 1 and 5 degrees
per second. Notice that ẋ is the first derivative of the variable x. The reactor is shut down once the core
temperature increases beyond 550 degrees. In order to prevent a shutdown, one of two control rods can be
put into the reactor core to dampen the reaction. If control rod 1 is put in, the core temperature falls at a
rate that may vary between −5 and −1 degrees per second. Control rod 2 has a stronger effect; if it is put
in, the core temperature falls at a rate that varies between −9 and −5 degrees per second. Either control
rod is removed once the core temperature falls back to 510 degrees.

2.1 Syntax

A linear term over a set X of real-valued variables is a linear combination of variables with integer coefficients.
A linear inequality over X is a nonstrict inequality between linear terms over X. A linear hybrid automaton
A consists of the following components.

Data variables A finite ordered set X = {x1, x2, . . . , xn} of real-valued data variables. For example, the
reactor core automaton from Figure 1 has the single data variable x.
A data state is a point (a1, a2, . . . , an) in the n-dimensional real space Rn or, equivalently, a function
that maps each variable xi to a real value ai. A convex data region is a convex polyhedron in Rn,

30

and a data region is a finite union of convex data regions. A convex data predicate is a conjunction
of linear inequalities, and a data predicate is a disjunction of convex data predicates. Every (convex)
data predicate φ defines a (convex) data region [[φ]] of data states that satisfy φ.

Control locations A finite set V of vertices called control locations. For example, the reactor core automa-
ton has the three control locations no rod , rod1, and rod2.
A state (v, s) of the hybrid automaton A consists of a control location v ∈ V and a data state s ∈ Rn.
A region

⋃
v∈V {(v, Sv)} is a collection of data regions Sv ⊆ Rn, one for each control location v ∈ V . A

state predicate is a collection
⋃
v∈V {(v, φv)} of data predicates φv, one for each control location v ∈ V .

When writing state predicates, we use the location counter l , which ranges over the set V of control
locations. The location constraint l = v denotes the state predicate {(v, true)} ∪

⋃
v′ 6=v{(v′, false)}.

Each state predicate
⋃
v∈V {(v, φv)} defines the region

⋃
v∈V {(v, [[φv]])}.

Location invariants A labeling function inv that assigns to each control location v ∈ V a convex data
predicate inv(v), the invariant of v. The automaton control may reside in location v only as long
as the invariant inv(v) is true; so the invariants enforce progress in a hybrid automaton. The state
(v, s) is admissible if the data state s satisfies the invariant inv(v). We write ΣA for the region⋃
v∈V {(v, [[inv(v)]])} of all admissible states of A.

In the reactor core automaton, we have inv(no rod) = (x ≤ 550), inv(rod1) = (x ≥ 510), and
inv(rod2) = (510 ≤ x). In HyTech, we specify these invariants as follows:

inv[l[core] == norod] = x<=550
inv[l[core] == rodone] = 510<=x
inv[l[core] == rodtwo] = 510<=x

In the graphical representation of a hybrid automaton, we suppress invariants of the form true.

Continuous activities A labeling function dif assigns to each control location v ∈ V and each data
variable xi ∈ X a rate interval dif (v, xi) = [ai, bi], where ai and bi are integer constants. The rate
interval dif (v, xi) = [ai, bi] specifies that the first derivative of the data variable xi may vary within
the interval [ai, bi] ⊂ R while the automaton control resides in location v. If ai = bi, then dif (v, xi)
is called the slope of xi in location v. A data variable is a discrete variable if it has the slope 0 in
all locations; a clock, if it has the slope 1 in all locations; and a stop-watch, if in each location it has
either the slope 1 or the slope 0.
In the reactor core automaton, dif (no rod , x) = [1, 5], dif (rod1, x) = [−5,−1], and dif (rod2, x) =
[−9,−5]. In HyTech, we specify these rate intervals as follows:

dif[core,norod,x] = {1,5}
dif[core,rodone,x] = {-5,-1}
dif[core,rodtwo,x] = {-9,-5}

In the graphical representation of a hybrid automaton, we write ẋ = a short for ẋ ∈ [a, a], and we
suppress rate intervals of the form ẋ = 0.

Transitions A finite multisetE of edges called transitions. Each transition (v, v′) identifies a source location
v ∈ V and a target location v′ ∈ V . For example, the core automaton has four transitions.

Synchronization letters A finite set L of letters called synchronization alphabet, and a labeling function
syn that assigns to each transition e ∈ E a letter from L. The synchronization letters are used to define
the parallel composition of hybrid automata. The reactor core automaton has the four synchronization
letters add1, add2, remove1, and remove2. In the graphical representation of a hybrid automaton, we
suppress synchronization letters that do not occur in the alphabet of any other automata.

Discrete actions A labeling function act that assigns to each transition e ∈ E a guarded command act(e) =
(φ→ α). The guard φ is a convex data predicate. The command α is a set of assignments xi := ti, at
most one for each data variable xi ∈ X, such that each ti is a linear term over X. We write dom(α) for
the set of variables that make up the left-hand sides of the assignments in α, and ti(s) for the value of

31

the linear term ti if interpreted in the data state s. The command α defines a function on data states
that leaves the variables outside dom(α) unchanged: for all data states s, αi(s) = ti(s) if xi ∈ dom(α),
and αi(s) = si if xi 6∈ dom(α), where αi(s) denotes the i-th component of the data state α(s). A
parameter is a discrete variable that does not occur in the domain dom(α) of any command α.
In the reactor core automaton, act(no rod , rod1) = (x = 550 → ∅), etc. In HyTech, we specify the
transitions, synchronization letters, and guarded commands of the reactor core automaton as follows:

act[core,1] = { l[core]==norod && 550==x, add1, {l[core] -> rodone}}
act[core,2] = { l[core]==norod && 550==x, add2, {l[core] -> rodtwo}}
act[core,3] = { l[core]==rodone && 510==x, remove1, {l[core] -> norod}}
act[core,4] = { l[core]==rodtwo && 510==x, remove2, {l[core] -> norod}}

Notice that we encode the source and target locations of a transition within a guarded command. In
the graphical representation of a hybrid automaton, we write α for the guarded command true → α,
and φ for the guarded command φ→ ∅, and we suppress the guarded command true → ∅.

2.2 Semantics

At any time instant, the state of a hybrid automaton specifies a control location and the values of all data
variables. The state can change in two ways: (1) by an instantaneous discrete transition that changes both
the control location and the values of data variables, or (2) by a time delay that changes only the values of
data variables in a continuous manner according to the rate intervals of the corresponding control location.
Accordingly, we define the following two binary relations on the admissible states of the given automaton A.

Transition step For all admissible states (v, s) and (v′, s′) of A, and all synchronization letters σ, let
(v, s) σ→(v′, s′) iff there exists a transition e from v to v′ such that (1) syn(e) = σ and (2) act(e) =
(φ→ α) with s ∈ [[φ]] and s′ = α(s).

Time step For all admissible states (v, s) and (v, s′) of A, and all nonnegative reals δ ≥ 0, let (v, s) δ→(v, s′)
iff there is a differentiable function ρ : [0, δ]→ Rn such that (1) f(0) = s, (2) f(δ) = s′, (3) for all reals
t ∈ [0, δ], ρ(t) ∈ [[inv(v)]], and (4) for all reals t ∈ (0, δ) and each data variable xi, dρi(t)/dt ∈ dif (v, xi),
where ρi(t) denotes the i-th component of the data state ρ(t).

The linear hybrid automaton A defines the labeled transition system [[A]] = 〈ΣA,L,→A〉 that consists of the
infinite state space ΣA, the infinite label set L = L ∪ R≥0, and the binary transition relation →A=

⋃
{ σ→ |

σ ∈ L} ∪
⋃
{ δ→ | δ ≥ 0} on ΣA

For a region S, we define pre(S) to be the set of all states σ such that σ →A σ
′ for some state σ′ ∈ S.

Similarly, we define post(S) to be the set of all states σ such that σ′ →A σ for some state σ′ ∈ S. Both
pre(S) and post(S) are again regions [AHH93]. We write pre∗(S) for the infinite union

⋃
i≥0 prei(S), and

post∗(S) for the infinite union
⋃
i≥0 post i(S). In other words, pre∗(S) is the set of all states that can reach

a state in S by a finite sequence of transitions of the labeled transition system [[A]]; and post∗(S) is the set
of all states that can be reached from a state in S by a finite sequence of transitions of [[A]].

2.3 Parallel Composition

A hybrid system typically consists of several components that operate concurrently and communicate with
each other. We describe each component as a linear hybrid automaton. The component automata may
coordinate either through shared variables or via synchronization letters. The linear hybrid automaton that
models the entire system is then constructed from the component automata using a product operation.

Let A1 = (X1, V1, inv1, dif 1, E1, L1, syn1, act1) and A2 = (X2, V2, inv2, dif 2, E2, L2, syn2, act2) be two
linear hybrid automata. The product automaton A1×A2 generally interleaves the transitions of the compo-
nent automata A1 and A2. If, however, a transition e1 of A1 is labeled with a synchronization letter σ that is
contained also in the alphabet of A2, then e1 can be executed only simultaneously with a σ-labeled transition
of A2. Formally, the product A1×A2 is the linear hybrid automaton A = (X1 ∪X2, V1×V2, inv , dif , E, L1∪
L2, syn, act):

32

out1 in1 in2add1

remove1

add2

remove2

ẏ1 = 1 ẏ2 = 1
out2

y2 := 0y1 := 0

y1 ≥W

y1 = W

y2 ≥W

y2 = Wẏ1 = 0 ẏ2 = 0

Figure 2: The control rod automata

• Each location (v, v′) in V1 × V2 has the invariant inv(v, v′) = (inv1(v) ∧ inv2(v′)). For each variable
x ∈ X1\X2, dif ((v, v′), x) = dif 1(v, x); for each variable x ∈ X2\X1, dif ((v, v′), x) = dif 2(v′, x); and
for each shared variable x ∈ X1 ∩X2, dif ((v, v′), x) = dif 1(v, x) ∩ dif 2(v′, x).

• E contains the transition e = ((v1, v2), (v′1, v′2)) iff

(1) e1 = (v1, v
′
1) ∈ E1, v2 = v′2, and syn1(e1) 6∈ L2; or

(2) e2 = (v2, v
′
2) ∈ E2, v1 = v′1, and syn2(e2) 6∈ L1; or

(3) e1 = (v1, v
′
1) ∈ E1, e2 = (v2, v

′
2) ∈ E2, and syn1(e1) = syn2(e2).

Suppose that act1(e1) = (φ1 → α1), and act2(e2) = (φ2 → α2). In case (1), syn(e) = syn1(e1)
and act(e) = act1(e1). In case (2), syn(e) = syn2(e2) and act(e) = act2(e2). In case (3), syn(e) =
syn1(e1) = syn2(e2); moreover, act(e) = (φ1 ∧ φ2 → α1 ∪ α2) if dom(α1) ∩ dom(α2) = ∅, and
act(e) = false → ∅ if dom(α1) ∩ dom(α2) 6= ∅,

HyTech automatically constructs the product automaton from a set of input automata.
For the reactor example, we use the two linear hybrid automata of Figure 2 to model the two control

rods. Due to the mechanics of moving control rods, after a control rod is removed from the reactor core,
it cannot be put back into the core for W seconds, where W is an unknown parameter. This requirement
is enforced by the stop-watch y1 that measures the time that has elapsed since control rod 1 was removed
from the reactor core, and the stop-watch y2 that measures the time that has elapsed since control rod 2
was removed. The rod automata synchronize with the core automaton through synchronization letters such
as remove1, which indicates the removal of control rod 1. The entire reactor system, then, is obtained by
constructing the product of the core automaton of Figures 1 and the two rod automata of Figure 2.

We now show how the complete reactor temperature control system is specified in HyTech. First we
declare the data variables:

AnaVariables = {x, y1, y2}
DisVariables = {w}

The data variables x, y1, and y2 are analog variables, and the data variable W is a discrete variable. We
have already defined the reactor core automaton. Now we define the two control rod automata:

inv[l[rod1] == out] = 0<=y1
inv[l[rod1] == in] = 0<=y1
inv[l[rod2] == out] = 0<=y2
inv[l[rod2] == in] = 0<=y2

dif[rod1,in,y1] = {0,0}
dif[rod1,out,y1] = {1,1}
dif[rod2,in,y2] = {0,0}
dif[rod2,out,y2] = {1,1}

act[rod1,1] = { l[rod1]==out && w<=y1, add1, {l[rod1] -> in}}
act[rod1,2] = { l[rod1]==in, remove1, {l[rod1] -> out, y1 -> 0}}
act[rod2,1] = { l[rod2]==out && w<=y2, add2, {l[rod2] -> in}}
act[rod2,2] = { l[rod2]==in, remove2, {l[rod2] -> out, y2 -> 0}}

33

The synchronization alphabet of each automaton is defined by declaring a scope for each synchronization
letter. The scope of the letter σ is the set of automata that contain σ in their synchronization alphabet. For
the reactor temperature control system, we specify

syn[remove1] = {rod1,core}
syn[remove2] = {rod2,core}
syn[add1] = {rod1,core}
syn[add2] = {rod2,core}

For example, the letter remove1 is used by the reactor core automaton and by the first control rod automaton.
This means that the core automaton and the rod 1 automaton must synchronize on transitions labeled with
remove1.

While we have given symbolic names like core and no rod to automata and locations, the analysis
procedures of HyTech require that all automaton names and location names are integers starting from 1.
To replace the symbolic names with integers, HyTech calls a macro language preprocessor when it reads
an input file. Therefore, we need to define the integer values of the symbolic names at the beginning of the
input file. The symbolic names that we use for the reactor temperature control system may be defined as
follows:

define(rod1,1)
define(rod2,2)
define(core,3)
define(rodone,1)
define(rodtwo,2)
define(norod,3)
define(out,1)
define(in,2)

We also must declare the number of input automata, and the number of locations and transitions of each
automaton:

AutomataNo = 3
locationo = {2,2,3}
transitiono = {2,2,4}

The expression locationo = {2,2,3} means that the first (control rod 1), second (control rod 2), and third
(reactor core) automaton has 2, 2, and 3 locations, respectively. The expression transitiono = {2,2,4}
specifies the number of transitions in each input automaton.

Global invariants for modeling urgent transitions

Although the product automaton is constructed automatically by HyTech, it is sometimes useful to specify
global conjuncts of all invariants of the product automaton. Such global invariants permit, in particular,
the modeling of urgent transitions, which are transitions that must be taken as soon as possible. In the
graphical representation of hybrid automata, we use boldface synchronization letters to mark urgent transi-
tions. HyTech allows the user to specify location invariants for locations of the product automaton using
the command GlobalInvar. We will show how urgent transitions can be modeled with global invariants as
we analyze the examples of Section 4. The reactor temperature control system does not have any urgent
transitions, so we write:

GlobalInvar = {}
This completes the specification of the reactor temperature control system. Except for initial define state-
ments, all HyTech input commands can be written in any order.

34

Mathematica main program
Ictl formula

Hybrid automata

C++ subroutines

Target region
HyTech

Halbwachs’s polyhedral library

Figure 3: The architecture of HyTech

3 Symbolic Analysis of Linear Hybrid Automata in HyTech

The core of HyTech is a symbolic model-checking procedure, whose primitives are boolean, pre, and post
operations on regions. The original implementation of HyTech represented regions as state predicates and
manipulated regions by syntactic operations on formulas. We have improved the performance of HyTech by
representing and manipulating regions geometrically: each data region is represented as a union of convex
polyhedra. The current implementation of HyTech consists of a Mathematica main program and a
collection of C++ subroutines that make use of a polyhedron-manipulation library by Halbwachs [Hal93,
HRP94]. The architecture of HyTech is shown in Figure 3.

In this paper we do not discuss the full model-checking capabilities of HyTech, but restrict ourselves
to reachability analysis, which amounts to checking safety requirements.

3.1 Reachability Analysis

The reachability problem (A, ϕI , ϕF) for a linear hybrid automaton A, an initial state predicate ϕI , and
a final state predicate ϕF , asks if the region post∗([[ϕI]]) ∩ [[ϕF]] is empty or, equivalently, if the region
[[ϕI]]∩pre∗([[ϕF]]) is empty. In other words, the reachability problem (A, ϕI , ϕF) asks if there is a finite path
in the underlying transition system [[A]] from some state in [[ϕI]] to some state in [[ϕF]]. If [[ϕI]] represents
the set of “initial” states of the automaton A, and [[ϕF]] represents the set of “unsafe” states specified by
a safety requirement, then the safety requirement can be verified by reachability analysis: the automaton
satisfies the safety requirement iff the reachability problem has the answer yes (i.e., post∗([[ϕI]])∩ [[ϕF]] = ∅).

Unfortunately, the computation of post∗([[ϕI]]) or pre∗([[ϕF]]) may not terminate within a finite number of
post or pre operations, because the reachability problem for linear hybrid automata is undecidable [ACHH93].
HyTech, in other words, offers a semidecision procedure for the reachability analysis. It is our experience,
however, that for practical examples, including the examples in this paper, the computation does terminate
and HyTech solves the corresponding reachability problems. Indeed, as for the practitioner there is little
difference between a nonterminating computation and one that runs out of time or space resources, we
submit that decidability questions are mostly of theoretical interest.

For the reactor temperature control system, we wish to check the safety requirement that the reactor
never needs to be shut down; more precisely, whenever the core temperature reaches 550 degrees, then either
y1 or y2 shows more than W seconds, thus allowing the corresponding control rod to be put into the reactor
core. Let A denote the product of the reactor core automaton and the two control rod automata. We define
the reachability problem (A, ϕI , ϕF) as follows. The initial states are characterized by the state predicate

ϕI = (l [rod1] = out ∧ l [rod2] = out ∧ l [core] = no rod ∧ x = 510 ∧ y1 = W ∧ y2 = W);

that is, initially no rod is in the reactor core, the initial temperature is 510 degrees, and y1 = y2 = W (we
write l [c] for the component of the location counter l that is associated with the component automaton c;

35

so l [core] ranges over the locations of the reactor core automaton, etc.). The unsafe states are characterized
by the state predicate

ϕF = (l [rod1] = out ∧ l [rod2] = out ∧ l[core] = no rod ∧ x = 550 ∧ y1 ≤W ∧ y2 ≤W);

that is, the unsafe situation is that the core temperature reaches 550 degrees and neither y1 nor y2 shows
more than W seconds (and, thus, none of the control rods is available). The answer to the reachability
problem (A, ϕI, ϕF) is yes iff the reactor temperature control system satisfies the safety requirement.

In HyTech, the reachability problem is specified as follows:

InitialState = l[rod1]==out && l[rod2]==out && l[core]==norod && 510==x && w==y1
&& w==y2

Bad = l[rod1]==out && l[rod2]==out && l[core]==norod && 550==x && y1<=w && y2<=w

Forward versus backward analysis

HyTech can attack a reachability problem by forward analysis or by backward analysis. Given the reachabil-
ity problem (A, ϕI , ϕF), the forward analysis computes the state predicate that defines the region post∗([[ϕI]]),
and then takes the conjunction with the final state predicate ϕF ; the backward analysis computes the state
predicate that defines the region pre∗([[ϕF]]), and then takes the conjunction with the initial state predi-
cate ϕI . For a given reachability problem, one direction may perform better than the other direction. In
fact, it may be that one direction terminates and the other does not. For example, only the backward
analysis terminates for the reactor temperature control system.

We ask HyTech to perform a forward or backward analysis, respectively, by writing

Go := PrintTime[Forward]

or

Go := PrintTime[Backward]

These commands also print the CPU time consumed by the reachability analysis.

Parametric analysis

The automatic derivation of delay parameters was introduced for real-time systems in [AHV93] and applied
to hybrid systems in [AHH93]. We can use HyTech to synthesize necessary and sufficient conditions on
system parameters such that a hybrid automaton satisfies a requirement.

Recall that the reactor temperature control system contains the parameter w, which specifies the neces-
sary rest time for a control rod. Clearly, the safety requirement will not be satisfied for large values of w.
Indeed, the target region [[ϕI]]∩pre∗([[ϕF]]) gives a sufficient and necessary condition on w such that the safety
requirement is not satisfied. Typically the state predicate that defines the target region is too complex to see
the conditions on the parameters clearly, but these can be isolated in HyTech using projection operators.
By writing

EliminateLocList = {rod1,rod2,core}
EliminateVarList = {x,y1,y2}

we eliminate all location information from the state predicate that defines the target region, and we project
out all information about the data variables x, y1, and y2. Then the resulting projection of the target region,
as computed by HyTech using backward analysis, is

9w => 184

In other words, the target region is empty if and only if 9W < 184. It follows that 9W < 184 is a necessary
and sufficient condition on the parameter W that prevents the reactor from shutdown. The verification
requires 17.27 seconds of CPU time.2

2All performance figures are given for a SPARC 670MP station.

36

3.2 Abstract Interpretation

To expedite the reachability analysis and to force the termination of the analysis, HyTech provides several
abstract-interpretation operators [CC77, HH94], including the convex-hull operator and the extrapolation
operator. Our extrapolation operator is similar to the widening operator of [CH78, Hal93].

An abstract-interpretation operator approximates a set of convex data regions with a single convex data
region. The convex-hull operator overapproximates a union of convex data regions by its convex hull. The
extrapolation operator overapprovimates a directed chain S ⊂ f(S) ⊂ f2(S) ⊂ · · · of convex data regions by
a “guess” of the limit region

⋃
i≥0 f

i(S). Either operator, or the combination of both operators, may cause
the termination of a forward or backward reachability analysis that does not terminate otherwise. However,
since the use of either operator results in an overapproximation of the target region, the abstract analysis is
sound but not complete: if HyTech returns the answer yes to a reachability problem, then the approximate
target region is empty, and therefore also the exact target region must be empty; but if the answer is no,
then the exact target region may still be empty, and the correct answer to the reachability problem may
be yes. In the latter case, we have to refine our approximation, by applying fewer abstract-interpretation
operators, or by using two-way iterative approximation (see below).

In HyTech, we write

TakeConvex = True

or

TakeConvex = False

to turn the convex-hull operator on or off, respectively. The extrapolation operator can be turned on or off
selectively for individual control locations. For example, if we want to apply the extrapolation operator only
to data regions that correspond to the two locations l [rod1] = out ∧ l [rod2] = in ∧ l [core] = no rod and
l [rod1] = in ∧ l [rod2] = out ∧ l [core] = no rod of the reactor temperature control system, then we write:

ExtraSet[lc] = (lc === l[rod1]==out && l[rod2]==in && l[core]==norod) ||
(lc === l[rod1]==in && l[rod2]==out && l[core]==norod)

The commands

ExtraSet[lc] = True

and

ExtraSet[lc] = False

ask HyTech to apply the extrapolation operator to all or none of the control locations, respectively. (In our
analysis of the reactor temperature control system, it was not necessary to use any abstract-interpretation
operators.)

Two-way iterative approximation

If inconlusice, the approximate reachability analysis can be refined by alternating approximate forward and
backward analysis [CC92, DW95]. If any abstract-interpretation operators are used, HyTech automatically
performs a two-way iterative analysis, beginnig with the specified forward or backward pass. The readers
should refer to [HH94] for the details about the two-way iterative analysis of hybrid systems.

4 Two Case Studies

We report on the application of HyTech to two nontrivial benchmark problems.

37

idle

y2 ≤ 6
ẏ2 = 1

ẏ2 = 1
y2 ≤ 8

ẏ1 = 1
y1 ≤ 6

y1 ≤ 4
ẏ1 = 1

done

wait

read

send

read done

sendwait

y1 = 6 y2 = 6

10x1 ≤ 11

Sensor2

Scheduler

Sensor1

u := 0
y1 := 0

request1

request1
ack1

y1 := 0 y2 := 0
request2

ack2

request2

x2 ≤ 2
sensor1 sensor2

request2request1
read1 read 2

read2

request2 wait := 1

x1 := 02x1 ≥ 1 wait = 0 ∧ 2x2 ≥ 3

wait = 1 ∧ 2x2 ≥ 3→ x2 := 0

ẋ1 = 1 ẋ2 = 1

y1 ≥ 6 y2 ≥ 6

wait := 1
request1

x2 := 0

y1 ≥ 4 y2 ≥ 8
u := 0
y2 := 0

read2read1

send1 send2

Figure 4: The two sensors and the scheduler

4.1 A Distributed Control System with Time-outs

The distributed control system of [Cor94] consists of two sensors and a controller that generates control
commands to a robot according to the sensor readings. The programs for the two sensors and the controller
are written in Ada. The two sensors share a single processor, and the priority of sensor 2 for using the
processor is higher than the priority of sensor 1. In other words, if both sensor 1 and sensor 2 want to use
the processor to construct a reading, only sensor 2 obtains the processor, and sensor 1 has to wait. The
two sensors are modeled by the top two linear hybrid automata in Figure 4 and the priorities for using the
shared processor are modeled by the scheduler automaton in the same figure.

Each sensor constructs a reading and sends the reading to the controller. The shared processor for
constructing sensor readings is requested via request transitions, the completion of a reading is signaled via
read transitions, and the reading is delivered to the controller via send transitions. Sensor 1 takes 0.5 to 1.1
milliseconds and sensor 2 takes 1.5 to 2 milliseconds of CPU time to construct a reading. These times are
measured by the stop-watches x1 and x2 of the scheduler automaton. Notice that at most one of the two
stop-watches x1 and x2 runs in a location, which reflects the fact that only one sensor can use the shared
processor at a time. If sensor 1 loses the processor because of preemption by sensor 2, it can continue the
construction of its reading after the processor is released by sensor 2. The value of the discrete variable wait
is 1 if sensor 1 is waiting for the processor, and 0 otherwise.

Once constructed, the reading of sensor 1 expires if it is not delivered within 4 milliseconds, and the
reading of sensor 2 expires if it is not delivered within 8 milliseconds. These times are measured by the
clocks y1 and y2 of the sensor automata. If a reading expires, then a new reading must be constructed. After
successfully delivering a reading, a sensor sleeps for 6 milliseconds (measured again by the clocks y1 and y2),
and then constructs the next reading.

The controller is modeled by the automaton in Figure 5. The controller is executed on a dedicated
processor, so it does not compete with the sensors for CPU time. We use the clock z to measure the delays
and time-outs of the controller. The controller accepts and acknowledges a reading from each sensor, in
either order, and then computes and sends a command to the robot. The sensor readings are acknowledged
via ack transitions, and the robot command is delivered via a signal transition. It takes 0.9 to 1 milliseconds
to receive and acknowledge a sensor reading. The two sensor readings that are used to construct a robot
command must be received within 10 milliseconds. If the controller receives a reading from one sensor but
does not receive the reading from the other sensor within 10 milliseconds, then the first sensor reading expires

38

rest
z ≤ 1z ≤ 1

z ≤ 1 10z ≤ 56 z ≤ 1
compute

ż = 1ż = 1ż = 1

ż = 1 ż = 1

u̇ = 1

signal
10z ≥ 36→

c = u = 0

u̇ = 1

10z ≥ 9→ u := 0

z := 0 z := 0

z := 0z := 0

rec21

rec22

rec12

wait2

rec11

expire1expire2

send2 send1

ack 1ack 2

send2send1

ack 2

u := 0; c := 0

ż = 1
z ≤ 10

u := 0 u := 0
z ≥ 10→z ≥ 10→

u̇ = 1
ż = 1
z ≤ 10
wait1

10z ≥ 9→ u := 0
ack 1

10z ≥ 9→ z := 0 10z ≥ 9→ z := 0

Figure 5: The controller

(via an expire transition). Once both reading are received, the controller takes 3.6 to 5.6 milliseconds to
synthesize a robot command.

We want to know how often a robot command can be generated by the controller. For this purpose,
we add a clock c to the controller automaton such that c measures the elapsed time since the last robot
command was sent. The slope of the clock c is 1 in all locations of the controller automaton (this is omitted
from Figure 5), and c is reset to 0 whenever a robot command is sent. We want to compute the maximum
value of the clock c in all states that are reachable in the product of all four automata.

However, the product of the four automata does not model the system exactly according to Corbett’s
specification. This is because the send transitions should be urgent, that is, they should be taken as soon
as they are enabled. We model the urgency of the send transitions by adding an additional clock, u, and
global invariants. The clock u is reset whenever a sensor is ready to send a reading to the controller, and
whenever the controller is ready to receive a sensor reading. Then we use the global invariant that u = 0 if
both a sensor and the controller are ready for a transmission; that is,

(l[sensor1] = wait ∧ l[controller] = rest → u = 0) ∧
(l[sensor2] = wait ∧ l[controller] = rest → u = 0) ∧
(l[sensor1] = wait ∧ l[controller] = wait1 → u = 0) ∧
(l[sensor2] = wait ∧ l[controller] = wait2 → u = 0).

This invariant enforces whenever a transmission of a sensor reading is enabled, the transmission happens
immediately.

In HyTech, the global invariant is defined as follows:

GlobalInvar = {{l[sensor1]==wait && l[controller]==rest, 0==u},
{l[sensor2]==wait && l[controller]==rest, 0==u},
{l[sensor1]==wait && l[controller]==wait1, 0==u},
{l[sensor2]==wait && l[controller]==wait2, 0==u)}}

To compute the range of possible values for the clock c in the reachable states, we write:

InitialState = l[sensor1]==done && l[sensor2]==done && l[scheduler]==idle
&& l[controller]==rest && 0==c && 6==y1 && 6==y2 && 0==u

Bad = True

39

moving belt

box 1

box 2

robot D robot G

service station

red mark

Figure 6: The two-robot manufacturing system

s ready

d := 0 1 ≤ d→ d := 0

1 ≤ d→ d := 0

1 ≤ d→ d := 0

1 ≤ d→ d := 0

d pick

d turnrightd putdownd turnleft

d stay

d ≤ 6d ≤ 2d ≤ 6

d ≤ 2
ḋ = 1

ḋ = 1ḋ = 1ḋ = 1

5 ≤ d

d pick1
d pick2

5 ≤ d→ d := 0

d put1

d put2

Figure 7: Robot D

EliminateLocList = {sensor1,sensor2,sched,gen}
EliminateVarList = {x1,x2,y1,y2,z,w,u}

Notice that, using the two projection operators, we ask HyTech to print only information about the clock c.
Using forward analysis without approximation, HyTech returns, in 89.53 seconds of CPU time, the following
answer:

0 <= c && -12 <= -5*c || -7 <= -2*c && 9 <= 10*c ||
-3 <= -c && 7 <= 10*c || -9 <= -2*c && 3 <= 2*c ||
12 <= 5*c && -28 <= -5*c || 5 <= 2*c && -18 <= -2*c ||
33 <= 10*c && -105 <= -10*c || 42 <= 5*c && -56 <= -5*c

From this result (the last disjunct is 42 ≤ 5c ∧ −56 ≤ −5c), it follows that the maximum value of the clock c
is 11.2; that is, a robot command is generated by the controller at least once every 11.2 milliseconds. We also
applied HyTech to analyze the same system except that the priority of sensor 1 for using the processor is
higher than the priority of sensor 2. In that case, a command is generated at least once every 11 milliseconds.

4.2 A Two-robot Manufacturing System

Puri and Varaiya [PV95] designed a manufacturing system that consists of a conveyor belt with two boxes,
a service station, and two robots. The system is illustrated in Figure 6.

Robot D, one of the two robots, is modeled by the linear hybrid automaton of Figure 7. The clock d is
used to measure the time needed for the actions performed by robot D. Initially robot D is looking at the
service station (location d stay). When it sees an unprocessed box in the service station, it picks up that box
from the service station in 1 to 2 seconds (location d pick), makes a right turn in 5 to 6 seconds (location
d turnright), puts the box at one end of the conveyor belt in 1 to 2 seconds (location d putdown), makes a

40

166 ≤ bi

133 ≤ bi; u := 0

on g

mov f

on serve

fall

on d

mov m
134 ≥ bi

bi := 0
g picki

g puti

d picki

d picki

167 ≥ bi
ḃi = 1ḃi = 1

redmarki

Figure 8: Box i

g turnright

g turnleft g putdown

g pick

g wait

g stay

ġ = 1
u̇ = 1

g ≤ 11g ≤ 8
ġ = 1

u̇ = 1

g ≤ 12 g ≤ 2 s empty

g := 0

3 ≤ g → g := 0

3 ≤ g → g := 0

1 ≤ g → g := 0

1 ≤ g → g := 0

redmark1

g pick1

g pick2

g put1

redmark2

g put2

g := 0

g := 0

10 ≤ g → u := 0
6 ≤ g → g := 0;u := 0

ġ = 1

ġ = 1

ġ = 1

Figure 9: Robot G

left turn back to the service station in 5 to 6 seconds (location d turnleft), and stays at there waiting for the
next unprocessed box (location d stay).

The two boxes, box 1 and box 2, are modeled by the indexed linear hybrid automaton in Figure 8, where
the index i is either 1 (for box 1) or 2 (for box 2). A box may be in the service station (location on serve),
held by robot D (location on d), moving on the conveyor belt before a red mark (location mov m), moving
on the conveyor belt beyond the red mark (location mov f), held by robot G (location on g), or falling off
the end of the conveyor belt (location fall). A box on the conveyor belt is processed by the manufacturing
system. The conveyor belt is moving at a certain speed from one end to the other. The clock bi measures
the total time that box i spends on the conveyor belt, and thus determines the position of box i on the belt.
A box requires 133 to 134 seconds to reach the red mark after it is placed on the belt by robot D. If a box is
not picked up by robot G before the end of the belt, then the box falls off the belt 166 to 167 seconds after
it is placed on the belt.

Robot G at the end of the conveyor belt is modeled by the automaton in Figure 9. The clock g measures
the time needed to perform the actions of robot G. Initially robot G is looking at the red mark next to
the conveyor belt (location g stay). When it sees a processed box moving beyond the red mark, it picks up
that box from the belt in 3 to 8 seconds (location g pick), makes a right turn in 6 to 11 seconds (location
g turnright), waits for the service station to be empty (location g wait), puts the box into the service station
in 6 to 11 seconds (location g putdown), makes a left turn back to the conveyor belt in 1 to 2 seconds
(location g turnleft), and stays there watching the red mark (location g stay).

The service station is modeled by the automaton in Figure 10. Whenever the service station receives
a processed box, it pops up an unprocessed box for robot D to pick up. The service station takes 8 to 10

41

s empty

s := 0

s empty

s ≤ 10

d pick1

d pick2

s ready2

s ready1on serv1

s ≤ 10
on serv2

u := 0

u := 0

8 ≤ s

8 ≤ s

g put2

g put1

s := 0 s ready

s ready

ṡ = 1

ṡ = 1

Figure 10: The service station

seconds to switch the processed and unprocessed boxes, which is measured by the clock s. Initially both
boxes are on the conveyor belt before the red mark. There are at most two boxes on the belt at any time,
because the service station pops up a new box only when it receives a processed box from robot G.

According to Puri and Varaiya’s specification, the transitions with the synchronization letters s ready,
redmark1, redmark2, and s empty, are urgent; that is, robot D picks up a box from the service station
as soon as it is ready and sees a box in the service station, etc. We treat the s ready transitions as ordinary
transitions, because this assumption will not affect our analysis. We use the clock u and the following global
invariants to model the urgent transitions:

GlobalInvar = {{l[grobot]==stay && l[box1]==movf, 0==u},
{l[grobot]==stay && l[box2]==movf, 0==u},
{l[grobot]==wait && l[station]==sempty, 0==u},
{l[grobot]==wait && l[station]==sempty, 0==u}}

We want to check the safety requirement that no box will ever fall off the conveyor belt. This requirement
clearly depends on the initial positions of the two boxes on the belt. We use the parameter dist such that
dist = b1− b2 represents the difference of the initial values of the clocks b1 and b2. Then we use HyTech to
analyze the reachability problem (A, ϕI , ϕF), where A is the product of all five automata and

ϕI = (l [box1] = mov m ∧ l [box2] = mov m ∧ l [robotG] = g stay ∧ l [robotD] = d stay ∧
l [servicestation] = s empty ∧ u = 0 ∧ dist = b1 − b2),

ϕF = (l [box1] = fall ∨ l [box2] = fall .

Using forward analysis without approximation, HyTech returns, in 1718.73 second of CPU time, the fol-
lowing target region:

-1 <= -dist && -9 <= dist || -1 <= dist && -9 <= -dist

It follows that −9 > dist ∨ dist > 9 is a necessary and sufficient condition on the parameter dist so that
neither box will fall off the conveyor belt; that is, |b1 − b2| > 9.

References

[ACH+95] R. Alur, C. Coucoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138:3–34, 1995.

[ACHH93] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an algorithmic
approach to the specification and verification of hybrid systems. In R.L. Grossman, A. Nerode,

42

A.P. Ravn, and H. Rischel, editors, Hybrid Systems, Lecture Notes in Computer Science 736,
pages 209–229. Springer-Verlag, 1993.

[AHH93] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems.
In Proceedings of the 14th Annual Real-time Systems Symposium, pages 2–11. IEEE Computer
Society Press, 1993.

[AHV93] R. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning. In Proceedings of the
25th Annual Symposium on Theory of Computing, pages 592–601. ACM Press, 1993.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for the static analysis
of programs by construction or approximation of fixpoints. In Proceedings of the Fourth Annual
Symposium on Principles of Programming Languages. ACM Press, 1977.

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrowing approaches
to abstract interpretation. In PLILP, Lecture Notes in Computer Science 631, pages 269–295.
Springer-Verlag, 1992.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In Proceedings of the Fifth Annual Symposium on Principles of Programming Languages.
ACM Press, 1978.

[Cor94] J.C. Corbett. Modeling and analysis of real-time Ada tasking programs. In Proceedings of the
15th Annual Real-time Systems Symposium. IEEE Computer Society Press, 1994.

[DW95] D.L. Dill and H. Wong-Toi. Verification of real-time systems by successive over- and underap-
proximation. To appear at CAV, 1995.

[Hal93] N. Halbwachs. Delay analysis in synchronous programs. In C. Courcoubetis, editor, CAV 93:
Computer-aided Verification, Lecture Notes in Computer Science 697, pages 333–346. Springer-
Verlag, 1993.

[HH94] T.A. Henzinger and P.-H. Ho. Model-checking strategies for linear hybrid systems. Technical
Report CSD-TR-94-1437, Cornell University, 1994. Presented at the Seventh International Con-
ference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems,
and at the Workshop on Hybrid Systems and Autonomous Control (Ithaca, NY).

[HH95] T.A. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hybrid systems. To appear at
CAV, 1995.

[HRP94] N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear hybrid systems by means of
convex approximation. In B. LeCharlier, editor, SAS 94: Static Analysis Symposium, Lecture
Notes in Computer Science 864. Springer-Verlag, 1994.

[NOSY93] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An approach to the description and analysis
of hybrid systems. In R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid
Systems, Lecture Notes in Computer Science 736, pages 149–178. Springer-Verlag, 1993.

[PV95] A. Puri and P. Varaiya. Verification of hybrid systems using abstractions. To appear, 1995.

43

The Modal µ-Calculus, Model Checking,
Equation Systems and Gauß Elimination

Angelika Mader∗

Technische Universität München, Germany

1 Introduction

The modal µ-calculus [Koz83, Sti92] is a powerful logic. It is particularly useful for
expressing properties of parallel processes with finite (or even infinite) state spaces; it
finds application in process algebra [Wal89] and in Petri nets [Bra92]. Proving whether
a property expressed in the modal µ-calculus holds for particular states of a process
is called model checking [CE81, CES86]. Various algorithms are available. The main
approaches are model checkers based on the fixpoint approximation [EmL86, CDS92,
And92, BCMDH92, LBCJM94] and tableau based model checkers [StW89, Cle90, Lar92,
Mad92]. One important technique consists of the transformation of a property and a
model to a (Boolean) equation system [AC88, And92, CDS92, Lar92, VeL92]. Then
model checking is equivalent to the computation of a certain fixpoint. In fact, various
correctness problems may be represented in this way.
In this paper we present a novel, algebraic approach for solving Boolean equation systems.
It does not use approximation techniques and therefore does not require backtracking.
The method works straightforward by successively eliminating variables and reducing
the Boolean equation system, similar to Gauß elimination for linear equation systems.
Homogeneous, hierarchical and alternating fixpoints are treated uniformly. Contrary to
other techniques Gauß elimination leads to both a global and a local model checking
algorithm within one framework.
The elimination of a variable is based on a simple observation: the equation X = A(X)
(with monotone A) has the least fixpoint A(false) and the greatest fixpoint A(true). The
reduction of a Boolean equation system is done by syntactical substitution of variables
by expressions.
The difference between the global version of Gauß elimination and the local one can be
characterized as follows: The global version solves the whole equation system, whereas
the local version only takes a subset of equations into account which is necessary to
determine the variable of interest. The selection of a suitable subset of equations is
demand-driven. Whereas the global version is more of theoretical interest (approximation
∗Institut für Informatik, Technische Universität München, Arcisstr.21, D-80333 München, Germany,

email: mader@informatik.tu-muenchen.de. Supported by Siemens AG, Corporate Research and
Development, and a grant from the Hochschulsonderprogramm II.

44

techniques have better worst case complexity), the local version has advantages in the
context of model checking. It is closely related to the tableau methods, and can be
interpreted as a combination of top-down strategy of the tableau method and bottom-up
evaluation which avoids redundancy caused by recomputation of subtableaux. Therefore
it is much more efficient than the tableau methods and has a better worst case complexity.
Section 2 introduces Boolean equation systems and their solution. Gauß elimination for
Boolean equation systems is presented in section 3. Section 4 contains a short introduction
into the modal µ-calculus, and the transformation of the model checking problem into a
equation solving problem. Comparison with other work is discussed in section 5. Examples
are in section 6. Section 7 is the conclusion. The appendix contains correctness proofs.

2 Boolean Equation Systems

In this section we define Boolean equation systems and what we regard as solution of a
Boolean equation system.

Definition 1 Let X = {X1, . . . , Xn} be a set of Boolean variables, < a linear order on
X , and {A1, . . . , An} a set of negation free Boolean expressions containing
variables from X . Then the set of labelled equations Ei : Xi

σi= Ai, where
σi ∈ {µ, ν}, is a Boolean equation system.

In the following we assume that the order on the variables is according to their indices.
As the Boolean expressions are negation free and therefore monotone the equation system
(the plain one without order and labels) has a set of fixpoints. In the context here we are
interested in a distinguished fixpoint which we call the solution of the Boolean equation
system. Below we give the definition of the solution.
We introduce some notation first. The vector (X1, . . . , Xn) of Boolean variables will be
abbreviated by X; analogously σ, A and E denote the vectors of labels, expressions and
equations respectively. A Boolean equation system can now be written as: E: X σ= A(X).
Further abbreviations will be used. Y (i) stands for the i-th rest (Yi, . . . Yn) of the Boolean
vector Y , and again analogously σ(i), A(i), and E(i) denote the i-the rests of the related
vectors. By E(i)[Yj/Xj] we mean the equation system E(i) where all unbound occurrences
of Xj on the right-hand-side of the equations are substituted by Yj .
Now for σ ∈ {µ, ν}n we define the lexicographic order <σ on the Boolean vector space
IBn. Let <σ on IB for σ ∈ {µ, ν} be such that false <µ true and true <ν false.

Definition 2 Let Y , Y ′ ∈ IBn, σ ∈ {µ, ν}n. The lexicographic order on Y , Y ′ is defined
as Y <σ Y

′ :⇔ ∃i, 1 ≤ i ≤ n : Yi <σi Y
′
i and ∀j, 1 ≤ j < i : Yj = Y ′j .

Definition 3 Y (i) ∈ IBn−i+1 is the solution of the equation system
E(i)[Y1/X1, . . . Yi−1/Xi−1]

:⇔ if i = n, then Y (i) is the least fixpoint of
E(i)[Y1/X1, . . . Yi−1/Xi−1] wrt. <σn,

if i < n, then Y (i) is the least one wrt. <σ(i) of those fixpoints of
E(i)[Y1/X1, . . . Yi−1/Xi−1] which satisfy the following property:

Y (i+1) is solution of E(i+1)[Y1/X1, . . . Yi−1/Xi−1, Yi/Xi].

45

There exist several algorithms to determine the set of fixpoints of a Boolean equation
system; for examples see [Rud74]. However, even if the set of fixpoints is given, it is not
trivial to select the one fixpoint which satisfies the definition of the solution above. This
indicates that the existing equation solving methods do not help in our case. We will
illustrate this by two small examples.
The first example shows that the solution is not the lexicographic least fixpoint. The equa-
tion system X2

µ= X2 has two fixpoints true and false. With respect to the order <µ false is
the least one. Now consider the equation system X1

ν= X2, X2
µ= X2, where X1 < X2. The

lexicographic least fixpoint is (true, true), whereas (false, false) is the solution as indicated
by the first equation system and as defined above.
In the following example two Boolean equation systems are given, both having the same
set of fixpoints and the same labels on the equations, but different solutions. The equation
system X1

ν= X2, X2
µ= X2, where X1 < X2, has the fixpoints (true, true) and (false, false).

The solution is (false, false) as in the previous example.
The equation systemX1

ν= X2, X2
µ= X1, where X1 < X2, also has the fixpoints (true, true)

and (false, false), but the solution here is (true, true).

3 Gauß Elimination

In this section we present two algorithms which determine the solution of a Boolean
equation system as in definition 3. In contrast to other methods we do not make use
of approximation and backtracking techniques. Instead we stepwise reduce a Boolean
equation system to a Boolean equation systemconsisting one equation and one variable
less. The steps of eliminating a variable from an expression and of substituting variables
by expressions remind very much to Gauß elimination for linear equation systems.
The following propositions are the basis for the Gauß elimination. Proofs are contained
in the appendix.

Proposition 1 For the solution Y of the equation system X
σ= A(X) consisting of one

single equation it holds:

Y =
{
A(false) if σ = µ
A(true) if σ = ν

Proposition 1 can be extended to expressions and equation systems. It allows a represen-
tation of the Boolean expression Ai with no occurrence of Xi. In the algorithm we will
call this the Gauß division step.

Proposition 2 Y is the solution of the Boolean equation system E of the form
X

σ
= A(X), iff Y also is the solution of the modified Boolean equation

system F , where the equations are of the following form:

X1
σ1= A1(b1, X2, . . . , Xn)

...
Xi

σi= Ai(X1, . . . , Xi−1, bi, Xi+1, . . . , Xn)
...

Xn
σn= An(X1, . . . , Xn−1, bn)

where

bi =
{

true if σi = ν
false if σi = µ

46

The next proposition shows that every occurrence of a variable Xn may be substituted by
the expression An, in which Xn has been eliminated. We call this the Gauß elimination
step.

Proposition 3 The Boolean vector Y is the solution of the equation system E, iff it is
the solution of the equation system G, where G is the modified equation
system:

X1
σ1= A1 (X1, . . . , Xn−1, An(X1, . . . , Xn−1, bn))

...
Xn−1

σn−1= An−1(X1, . . . , Xn−1, An(X1, . . . , Xn−1, bn))
Xn

σn= An (X1, . . . , Xn−1, bn)

Based on these two Gauß steps we now propose two algorithms to determine the solution
of a Boolean equation system. One algorithm operates on the whole equation system; this
is the global version of Gauß elimination. The basic idea is that a Boolean equation system
can be reduced to a Boolean equation system with the same solution, but one equation
less. The reduction is performed by an elimination step, where in the last equation, say
Xj

σj= Aj(X1, . . . , Xj), all occurrences of Xj on the right hand side are instantiated by
bj = true or bj = false depending on σj, and a substitution step, where in all other
equations each occurrence of Xj is substituted by the expression Aj(X1, . . . , Xj−1, bj).
The result is an equation system with no free occurrence of Xj . Now the same reduction
can be applied to the equation system consisting of the first j − 1 equations and so on.
In the end we get a variable free expression for the variable X1.

Assume X σ= A(X) as input;
i := n;
while not (A1 = true or A1 = false)

do
Instantiate Xi in Ai to {true, false}; (Gauß-division)
Substitute Ai for Xi in A1, . . . , Ai−1; (Elimination step)
A1:=Eval(A1); . . . ; Ai−1:=Eval(Ai−1) (Evaluation step)
i := i - 1;

od

Figure 1: Global Version of Gauß Elimination

In most contexts we are only interested in the first component of the solution, i.e. whether
X1 is true or false. Therefore the algorithm in figure 1 stops, if the solution of X1 (A1)
is determined. If we are interested in the whole solution the Gauß division step and
elimination step have to be applied n times giving an expression for every Xi where the
variables Xi, . . . , Xn do not occur. A straight backward substitution leads to the whole
solution.

47

If only the first variable is of interest, it suffices to consider only the subset of equations
which is necessary to determine the solution for X1. The relevant subset of equations
is selected in a top-down manner. This observation leads to the local version of Gauß
elimination given in figure 2. The idea is as follows. We start with the equation system
E′ consisting only of the equation X1

σ1= A1(X1, . . . , Xj). As long as X1 is not evaluated
to true or false we select a free variable from A1, insert its equation in E′, apply the global
version of Gauß elimination, and continue in the same way with the modified equation
system E′.

Create E1 and let E1 be E′;
Instantiate X1 in A1; (Gauß-division)
A1 := Eval(A1); (Evaluation step)
while not (A1 = true or A1 = false)

do
Select Xj , where j is such that Ej 6∈ E′;
Create Ej, insert Ej in E′ and extend the order on E′ to Ej;
Apply Gauß-elimination on E′

od

Figure 2: Local Model Checking Algorithm

4 The Modal µ-Calculus and Model Checking

This section gives a brief introduction to the modal µ-calculus. For details see [Sti92].
The syntax of the modal µ-calculus is defined with respect to a set Q of atomic proposi-
tions including true and false, a denumerable set Z of propositional variables and a finite
set L of action labels. The set µM of modal µ-calculus assertions is determined by the
following grammar:
Φ ::= Z | Q | Φ ∧ Φ | Φ ∨ Φ | [a]Φ | 〈a〉Φ | µZ.Φ | νZ.Φ
M denotes the set of variable and fixpoint free assertions, i.e., the expressions of the
propositional modal logic, Π0 denotes the set of fixpoint free assertions, M ⊂ Π0. In
the following an expression of the form σZ.Φ, where σ ∈ {µ, ν}, is called a fixpoint ex-
pression. Formulae of the modal µ-calculus with the set L of action labels are interpreted
relative to a labelled transition system T = (S, { a→| a ∈ L}), where S is a finite set
of states and a→ ⊆ S × S for every a ∈ L is a binary relation on states. A valuation
function V assigns to every propositional variable Z and atomic proposition Q a set
of states V(Z) ⊆ S and V(Q) ⊆ S. Let V[S’/Z] be the valuation such that V[S’/Z](Z)
= S’, and otherwise as V. The pair T and V is called a model of the µ-calculus. The
semantics of each µ-calculus formula Φ is the set of states ||Φ||TV defined inductively as
follows:

48

||Z||TV = V(Z)

||Q||TV = V(Q)

||Φ1 ∨ Φ2||TV = ||Φ1||TV ∪ ||Φ2||TV
||Φ1 ∧ Φ2||TV = ||Φ1||TV ∩ ||Φ2||TV

||[a]Φ||TV = [[a]]T ||Φ||TV , where [[a]]TS ′ = {s | ∀s′ ∈ S. if s a→ s′ then s′ ∈ S ′}
||〈a〉Φ||TV = 〈〈a〉〉T ||Φ||TV , where 〈〈a〉〉T S ′ = {s | ∃s′ ∈ S ′.s a→ s′}
||µZ.Φ||TV =

⋂
{S ′ ⊆ S |||Φ||TV [S′/Z]⊆ S ′}

||νZ.Φ||TV =
⋃
{S ′ ⊆ S | S ′ ⊆||Φ||TV [S′/Z]}

Given a modelM = (T , V) model checking is to examine the question whether a certain
expression Φ holds for the initial state s ∈ S of the transition system T , i.e., whether
s ∈||Φ||TV . We transform the model checking problem into the problem of solving a Boolean
equation system. This was already done by several authors, e.g. see [AC88, And92,
Lar92, ClS91, CDS92, VeL92]. In contrary to their approaches here arbitrary negation
free expressions are considered as right hand sides of the equations (no restriction to
simple expressions). Furthermore we create one Boolean equation system for the whole
problem with a partial order defined on its variables and equations.
Roughly the transformation is performed by the following steps: a fixpoint expression
can be represented by an equation system with an additional ordering on the equations.
On the semantic part we interpret the equation system with respect to a model, i.e., a
fixpoint equation of modal logic becomes a fixpoint equation over the powerset of a state
space. An isomorphic representation of a powerset of states is a Boolean vector space.
This allows us to derive a Boolean equation system from the original fixpoint expression
and its model.
A modal µ-calculus formula can be represented as an ordered equation system. For exam-
ple the fixpoint expression νZ1.[a]µZ2.[b]((Z1 ∧Q) ∨ Z2) is equivalent to the equation
system E: Z1

ν= [a]Z2, Z2
µ= [b]((Z1∧Q)∨Z2), where the variables are ordered by Z1 < Z2.

Note that in general here the order on the variables is a partial order in contrast to the
variable ordering as in definition 1.

true S (true, . . ., true)

(M/⇔,⇒)
‖ ‖TV−→ (P(S),⊆)

II∼= (IB|S|,≤|S|)

false ∅ (false, . . ., false)

Figure 3: The lattices and the mappings

J
J
J
J
J
JJ

J
J
J
J
J
JJ

J
J
J
J
J
JJ

J
J
J
J
J
JJ

J
J
J
J
J
JJ

J
J
J
J
J
JJ

The transformation is as follows: Recall that M is the set of variable and fixpoint
free expressions of the modal µ-calculus, i.e., the expressions of the propositional modal

49

logic. The equivalence classes of M together with the implication ordering form a lat-
tice (M/⇔,⇒). The powerset of the state space S = {s1, . . . , sn} with the inclusion
order forms a complete lattice (P(S),⊆). The evaluation function ‖ ‖TV : M → P(S) is
monotone (and continuous). The extension of the evaluation function from M to fix-
point equations over M maps modal operators [a], 〈a〉 to set operators [[a]]T , 〈〈a〉〉T , modal
variables to set variables and the logical operators ∧,∨ to the set operators ∩,∪. Thus
we get an equation system over the powerset of the state space. The labels {ν, µ} and
the partial order on the equations remain the same as in the original equation system.
Defining false ≤ true the Boolean lattice (IB|S|,≤|S|) with pointwise ordering is isomor-
phic to (P(S),⊆). The last step leads from a vector valued equation system in IBn to a
Boolean equation system; every vector equation is split into n equations and the operators
[[a]]T , 〈〈a〉〉T are evaluated.
Altogether a µ-calculus equation Z

σ= Φ is mapped inductively to the (not ordered) set
of n Boolean equations IIZ(si)

σ= IIΦ(si) for 1 ≤ i ≤ n, where

IIQ(s) = true, if s ∈ ‖Q‖TV
IIQ(s) = false, if s 6∈ ‖Q‖TV

IIΦ1∧Φ2(s) = IIΦ1(s) ∧ IIΦ2(s)

IIΦ1∨Φ2(s) = IIΦ1(s) ∨ IIΦ2(s)

IIZ(s) = XZ,s

II[a]Φ(s) =
∧
s
a→s′

IIΦ(s′)

II〈a〉Φ(s) =
∨
s
a→s′

IIΦ(s′)

Note that the Boolean equations derived in this way do not contain negations or modal
operators. A µ-calculus equation system of the size k determines a Boolean equation
system of size k ∗ |S|. There is a partial order on the Boolean equations inherited from
the partial order on the µ-calculus equations. Two Boolean equations derived from one
vector equation are not ordered. Thus the tree-like order on the set equations becomes
an acyclic order on the Boolean equations.
We now show that the two algorithms proposed in the previous section can be applied
to the Boolean equation systems derived from a modal µ-calculus equation system and a
model. There are remaining two open questions: first, whether the partial order on the
Boolean equations here matches the linear order on the Boolean equations and variables
as in definition 1, and second, whether the solution of a Boolean equation system coincides
with the semantics of the modal µ-calculus.

Proposition 4 Given a µ-calculus expression and a transition system let A be the cor-
responding Boolean equation system. On its equations a partial order
<E is defined. For each two extensions of <E to a linear order <l, <l′ it
holds: Y is the solution of A with the order <l, iff Y is the solution of A
with the order <l′ .

Proof (Sketch of the Proof)
For unnested fixpoints an order of equations is not relevant for the solution
(see [Bek84]). The order of the nested fixpoints is preserved by each extension
of the partial order <E to a linear order. 2

50

Proposition 5 Given a fixpoint expression Φ of the modal µ-calculus and a transition
system T with the initial state s, let A be the corresponding Boolean
equation system. For the solution Y of A holds: YΦ,s = true, iff Φ holds
at s.

Proof It is easy to see that the algorithm of Emerson and Lei [EmL86] calculates the
solution as in Definition 2. 2

5 Comparison to Other Work and Complexity

The model checking problem encoded as equation system was already treated by several
authors [AC88, And92, CDS92, Lar92]. The method presented here differs from these
approaches. Roughly speaking, the difference is that they get the solution by approxi-
mating sets. This approach was introduced by Emerson and Lei [EmL86] and continued
for example by Cleaveland, Dreimüller and Steffen [CDS92]. In [And92] Andersen gives
an algorithm based on Boolean equations. However, by representing a Boolean equation
system as a graph his basic algorithm applies only for unnested fixpoints. The extension
of the global version of his algorithm to the full calculus is due to the fixpoint approxima-
tion technique of Emerson and Lei. Also Larsen’s algorithm [Lar92] deals with unnested
fixpoints.
The Gauß elimination for model checking in its local version is more closely related to
the tableau method of Stirling and Walker [StW89] and Cleaveland [Cle90]. In a Boolean
equation system a variable is introduced for each pair of a state and a fixpoint formula.
Each node in a tableau, a sequent, is a pair of a state and a formula. Hence a Boolean
equation can be seen like a reduced form of a subtableau containing only sequents with
fixpoint formulae, which is the only relevant part for the structure of the tableau. The
top-down construction of the tableau can also be found in the local version of the Gauß
elimination. While constructing a tableau the decision which path should be extended is
equivalent to the selection of a variable from the top equation and creating the related
equation. The condition for a leaf in the tableau of being successful or not corresponds to
the Gauß division step: a cycle with a minimal fixpoint is regarded as unsuccessful (false),
a cycle with a maximal fixpoint is regarded as successful (true). The advantage of the
Gauß elimination over the tableau method has its roots in the bottom-up evaluation. On
one hand it spares the introduction of different constants for the same fixpoint expression,
on the other hand there is no redundant evaluation of identical subexpressions (subtrees).
Altogether the local version of the Gauß elimination for model checking can be regarded as
a combination of the top-down strategy of the tableau allowing to explore only the relevant
part of the state space, and a bottom-up strategy which avoids recomputation of identical
subtrees. The maximal size of a tableau is bounded by O(b(|Φ|∗|S|)f(Φ)), where b is the
maximal branching degree of the transition system, |S| the number of states, |Φ| the size of
the formula and f(Φ) the number of fixpoint operators in Φ. For the Gauß elimination the
number of derived equations is determined by the size of the state space and the number of
fixpoint operators in Φ. Substituting Boolean expressions leads to expressions exponential
in the number of equations. The maximal size of the Boolean equation system constructed
by the Gauß elimination is bound by O((ba(Φ) ∗ |Φ|)2 ∗ 2|S|∗f(Φ)), where additional to the
abbreviations above a(Φ) is the maximal nesting depth of modal operators in the formula

51

Φ. Hence it is a natural idea to use the local version of the Gauß elimination for an
implementation of the tableau method.

6 Examples

The aim of this section is to demonstrate the possible advantage of the local version of
Gauß elimination over a tableau based model checker.
The first both examples are academic ones, without a special meaning. They do not
show the advantage of local model checking, because the whole state space has to be
traversed. However, they show how our algorithm avoids recomputation of subexpressions,
or subtrees resp., whereas the tableau method does not.
In the third example we prove a fairness property for the mutual exclusion algorithm of
Peterson.
A prototype of the local version of Gauß elimination was implemented in C++ using
BDDs [Bry92] as data structure for Boolean expressions. In the examples here we com-
pared our implementation with a tableau-based model checker as in [StW89] and with the
tableau-based model checker incorporated in the Concurrency Workbench (CWB), which
uses techniques for avoiding some recomputations. All implementations run on a SUN
SPARC2.

We wish to determine whether
s1 |=M νX.[a]〈b〉X (every
a-successor has a b-successor
and this recursively) holds in:

m1
m11

m1n

m2
m21

m2n

m3 mk
mk1

mkn

m1�
��

@
@R

�
��

@
@R

�
��

@
@R

@
@R

�
��

@
@R

�
��

@
@R

�
��

a

a

a

a

a

a

b

b

b

b

b

b

.
...

...

The example consists of a scalable (n, k)-spindle where the final state is again identified
with the start state. It has kn+ k states.
The local Gauß elimination creates k equations, each of the form: Xi

ν=
∧
j=1..nXi+1 mod k

for 1 ≤ i ≤ k which can be reduced to Xi
ν= Xi+1 mod k. It takes k elimination steps to

determine the solution. The tableau based model checker as in [StW89] builds a tree
with 1 + 2n+ 2n2 + . . .+ 2nk sequents. For this property the number of equations is thus
linear in the variable k of the (n, k)-spindle, whereas the size of the tableau is exponential
in the variable k.

Does the following
s1 |=M νZ1.〈a〉µZ2.〈a〉〈a〉Z2 ∨ 〈a〉〈a〉Z1

hold in (all transitions labelled with a):

ms5
ms3
ms1

ms2 ms4
@

@
@@I@
@
@@R �

�
����
�
��	

6

?

?

�
�
��	

@
@
@@R

A
A
AA
�
�
���

This property was proved by our new local model checker with the following results: It
created 6 equations and took one second time for the whole procedure. The tableau based

52

model checker was interrupted after having generated more than 22 million (!) tableau
sequents.
The model checker of the Concurrency Workbench could cope well with both examples: it
”quickly” returned the result. The techniques for avoiding recomputation came in useful.
This was not the case in the following example.
We considered the two process mutual exclusion algorithm of Peterson, given in [Wal89].
The property we proved is: “As long as process 1 proceeds, after a request it eventually
enters the critical section.” In order to detect progress we added “tick” and “tack”
dummy actions which alternate each other when process 1 performs some action. Then
the property to prove can be formulated as: “if a request comes, then along all paths
where ticks and tacks alternate each other, eventually an enter will follow”. The µ-
calculus formula representing this property is:

νZ1.([−]Z1 ∧ µZ2.(νZ3.([\enter]((〈tick〉tt ∨
νZ4.([\enter]((〈tack〉tt ∨ Z2) ∧ Z4)) ∧ Z3)))))

This rather difficult modal µ-calculus formula is of alternation depth 3 and nesting depth
4. Unfortunately the full discussion of this example exceeds the aim of the paper.
This property, together with our extended Peterson-2 algorithm, was fed to the model
checker, with the following result: The model checker came back with a positive result
after slightly more than 10 minutes of CPU time. The CWB model checker on the other
hand could not compute an answer for the same input within 24 hours elapsed time.
During execution our model checker created 156 out of a possible 240 Boolean equations.
This example is typical of the results we got from an extensive investigation into several
mutual exclusion algorithms with different liveness properties.

7 Conclusion

We presented a novel, algebraic approach for solving Boolean equation systems. As main
application model checking in the full modal µ-calculus was intended. In contrast to other
approaches using equation systems our method is not based on approximation techniques
and backtracking. The method works straightforward by successively eliminating vari-
ables and reducing the Boolean equation system, similar to Gauß elimination for linear
equation systems. Homogeneous, hierarchical and alternating fixpoints are treated uni-
formly. Contrary to other techniques Gauß elimination leads to both a global and a local
model checking algorithm within one framework. The local version is closely related to
the tableau methods, but has a better worst case complexity. An extension to model
checking for infinite state spaces is in work.
There exists a prototype implementation of the Gauß elimination using BDDs for the
representation of Boolean expressions. Several examples (e.g. fairness properties for
mutex algorithms) showed that the local version of our algorithm beats existing tableau
methods.
Acknowledgements Frank Wallner implemented the local version of the algorithm. The
examples were elaborated together with Dieter Barnard. I thank Javier Esparza, Astrid
Kiehn, Bernhard Steffen and Frank Wallner for proof reading and helpful comments.

53

References

[And92] H. Andersen. “Model Checking and Boolean Graphs.” In Proc. of ESOP’92,
LNCS 582, 1992.

[AC88] A. Arnold, P. Crubille. “A Linear Algorithm to Solve Fixed-Point Equations
on Transition Systems.” Information Processing Letters, vol. 29, 57-66, 1988.

[BCMDH92] J.R. Burch and E.M. Clarke and K.L. McMillan and D.L. Dill and L.J.
Hwang. “Symbolic Model Checking: 1020 States and Beyond.” Information
and Computation, Vol. 98, pp. 142-170, 1992.

[Bek84] H. Bekic. “Definable operations in general algebras, and the theory of automata
and flow charts.” In C.B.Jones, editor, Hans Bekic: Programming Languages
and Their Definition, LNCS 177, 1984.

[Bra92] J. Bradfield. “Verifying Temporal Properties of Systems.” Birkhäuser,1992.

[BS91] J. Bradfield, C. Stirling. “Verifying Temporal Properties of Processes.” Proc.
of CONCUR’90, LNCS 458, 1991.

[Bry92] R.E. Bryant. “Symbolic Boolean Manipulation with Ordered Binary-Decision
Diagrams.” ACM Computing Surveys, Vol. 24, No. 3, September 1992.

[CE81] E. M. Clarke and E. A. Emerson. “Design and synthesis of synchronization
skeletons using branching time temporal logics.” In LNCS 131, pp.52-71, 1981.

[CES86] E. M. Clarke, E. A. Emerson and A. P. Sistla. “Automatic verification of finite-
state concurrent systems using temporal logic specifications.” In ACM Trans.
on Programming Languages and Systems 8 , pp. 244-263, 1986.

[Cle90] R. Cleaveland. “Tableau-based model checking in the propositional mu-
calculus.” Acta Informatica, Vol. 27, pp. 725-747, 1990.

[ClS91] R. Cleaveland and B. Steffen. “A Linear-Time Model Checking Algorithm for
the Alternation-Free Modal Mu-Calculus.” In Proc. of CAV’91, LNCS 575,
1992.

[CDS92] R. Cleaveland, M. Dreimüller and B. Steffen. “Faster Model Checking for the
Modal Mu-Calculus.” In Proc. of CAV’92, LNCS 663, 1993.

[EmL86] E.A. Emerson and C.-L. Lei. “Efficient model checking in fragments of the
propositional mu-calculus.” In Proc. of LICS’86, Computer Society Press,
1986.

[Koz83] D. Kozen. “Results on the Propositional µ-Calculus.” TCS, Vol. 27, 1983,
pp. 333-354.

[Lar92] K. Larsen. “Efficient Local Correctness Checking.” In Proc. of CAV’92, LNCS
663, 1993.

54

[LBCJM94] D. E. Long, A. Browne, E. M. Clarke, S. Jha, W. R. Marrero. “An improved
algorithm for the evaluation of fixpoint expressions.” In Proc. of CAV’94,
LNCS 818, 1994.

[Mad92] A. Mader. “Tableau Recycling.” In Proc. of CAV’92, LNCS 663, 1993.

[Rud74] S. Rudeanu. “Boolean Functions and Equations.” North-Holland Publishing
Company, 1974.

[Sti92] C. Stirling. “Modal and Temporal Logics.” In Handbook of Logic in Computer
Science, Oxford University Press, 1992.

[StW89] C. Stirling and D. Walker. “Local model checking in the modal mu-calculus.”
In Proc. of TAPSOFT’89, LNCS 351, 1989.

[Tar55] A. Tarski. “ A Lattice Theoretical Fixpoint Theorem and its Applications.”
In Pacific Journal of Mathematics, 5, 1955.

[VeL92] B. Vergauwen and J. Lewi “A linear algorithm for solving fixed-point equations
on transition systems” In Proc. of CAAP’92, LNCS 581, 1992.

[Wal89] D. Walker. “Automated Analysis of Mutual Exclusion Algorithms using CCS.”
Technical Report ECS-LFCS-89-91, University of Edinburgh, 1991.

[Xin92] Liu Xinxin. “Specification and Decomposition in Concurrency.” PhD Thesis,
Aalborg University Center, Denmark, 1992.

Appendix: Proofs

Proposition 1 For the solution Y of the equation system X
σ= A(X) consisting of one

single equation it holds:

Y =
{
A(false) if σ = µ
A(true) if σ = ν

Proof For σ = µ there are three cases:

1) A(X) = true, i.e. the evaluation of the expression A is independent of
the valuation of the free variable X . Then the solution is Y = true.

2) A(X) = false, i.e. the evaluation of the expression A is independent of
the valuation of the free variable X . Then the solution is Y = false.

3) In the remaining case because of monotonicity of A(X) the following
holds: A(false) = false and Y = false is the solution.

Analogously it holds Y = A(true) that is the solution of X ν= A(X). 2

Often the solution of X σ= A(X) will be denoted by the expression σX.A(X).
For the proof of propositions 2 and 3 we need the following property of the solution.

Proposition 6 The solution Y of the Boolean equation system E is an extremal point
of E, i.e., for 1 ≤ i ≤ n holds:
Yi is solution of Xi

σi= Ai(Y1, . . . , Yi−1, Xi, Yi+1, . . . , Yn).

55

Proof trivial 2

Proposition 2 Y is the solution of the Boolean equation system E of the form
X

σ
= A(X), iff Y also is the solution of the modified Boolean equation

system F , where the equations are of the following form:

X1
σ1= A1(b1, X2, . . . , Xn)

...
Xi

σi= Ai(X1, . . . , Xi−1, bi, Xi+1, . . . , Xn)
...

Xn
σn= An(X1, . . . , Xn−1, bn)

where

bi =
{

true if σi = ν
false if σi = µ

Proof First we sketch the proof scheme, which will be the same for this and
the next proof. For reasons of readability we introduce another abbrevia-
tion: E(i+1) denotes E(i+1)[Y1/X1, . . . , Yi/Xi], and analogously E(i) denotes
E(i)[Y1/X1, . . . , Yi−1/Xi−1]. The same holds for F (i+1) and F (i).
The proof is based on induction on i. The hypothesis for an induction step is:
Y (i+1) is solution of E(i+1), iff Y (i) is solution of F (i+1). Then the conclusion
of an induction step will be: Y (i) is solution of E(i), iff Y (i) is solution of F (i).
For this purpose we have to show the following: The solution of E(i) is a
fixpoint of F (i), i.e. the solution of F (i) is lower or equal to the solution of
E(i).
On the other hand we have to show that the solution of F (i) is also a fixpoint
of E(i), i.e. the solution of E(i) is at most smaller than the solution of F (i).
From these we can conclude that both solutions must be the same.
(i) induction basis: Yn is the solution of E(n), iff Yn is the solution of F (n).
Suppose Yn is the solution of Xn

σn= An(Y1, . . . , Yn−1, Xn). According to propo-
sition 1 for the solution Yn holds: Yn = An(Y1, . . . , Yn−1, bn) and hence Yn is
also the solution of F (n). With the same argument the converse holds.
(ii) induction step: for all i with 1 ≤ i < n we now prove that the solution
of the one equation system E(i) is a fixpoint of F (i) and conversely. Here we
show a stronger proposition, namely that every extremal point of one equation
system is also a fixpoint of the other one. Because the solution is an extremal
point, we can conclude the desired proposition.
Suppose Y (i) is an extremal point of E(i). Then for i ≤ k ≤ n holds:
Yk = σkXk.Ak(Y1, . . . , Yk−1, Xk, Yk+1, . . . , Yn) Y (i) is extremal point of E(i)

= Ak(Y1, . . . , Yk−1, bk, Yk+1, . . . , Yn) proposition 1

Hence Y (i) is also a fixpoint of F (i).
Conversely suppose Y (i) is an extremal point of F (i). Then for i ≤ k ≤ n it
holds:
Yk = σkXk.Ak(Y1, . . . , Yk−1, bk, Yk+1, . . . , Yn) Y (i) is extrem. point of F (i)

= Ak(Y1, . . . , Yk−1, bk, Yk+1, . . . , Yn) Xk is not free in this expr.

= σkXk.Ak(Y1, . . . , Yk−1, Xk, Yk+1, . . . , Yn) proposition 1

= Ak(Y1, . . . , Yk−1, Yk, Yk+1, . . . , Yn) ev. extrem. point is a fixp.

Hence Y (i) is also a fixpoint of E(i).
With these arguments we now can apply the induction step n times, and
altogether we get the proposition. 2

56

Proposition 3 The Boolean vector Y is the solution of the equation system E, iff it is
the solution of the equation system G, where G is the modified equation
system:

X1
σ1= A1 (X1, . . . , Xn−1, An(X1, . . . , Xn−1, bn))

...
Xn−1

σn−1= An−1(X1, . . . , Xn−1, An(X1, . . . , Xn−1, bn))
Xn

σn= An (X1, . . . , Xn−1, bn)

Proof The proof is based on the same scheme as the one of proposition 2.
We will use the analogous abbreviations as in proposition 2.
(i) induction basis:
Yn is the solution of E(n), iff Yn is the solution of G(n) .
Suppose Yn is the solution of Xn

σn= An(Y1, . . . , Yn−1, Xn). According to propo-
sition 1 the following holds: Yn = An(Y1, . . . , Yn−1, bn) and hence Yn is also
the solution of G(n). The converse holds with the same argument.
(ii) induction step:
For all i with 1 ≤ i < n each extremal point of G(i) is a fixpoint of E(i) and
conversely.
Suppose Y (i) is an extremal point of G(i).

Yn = An(Y1, . . . , Yn−1, bn) Y is a fixpoint of G

= σnXn.An(Y1, . . . , Yn−1, Xn) proposition 1

(∗) = An(Y1, . . . , Yn−1, Yn) every extremal point is also a fixpoint

and for i ≤ k ≤ n:

Yk = Ak(Y1, . . . , Yn−1, An(Y1, . . . , Yn−1, bn)) Y (i) is a fixpoint of G(i)

= Ak(Y1, . . . , Yn−1, Yn) with (*)

Hence Y (i) is also a fixpoint E(i).
Now suppose Y (i) is an extremal point of E(i).

Yn = σnXn.An(Y1, . . . , Yn−1, Xn) Y (i) is an extremal point of E(i)

(∗∗) = An(Y1, . . . , Yn−1, bn) proposition 1

and for i ≤ k ≤ n:

Yk = Ak(Y1, . . . , Yn−1, Yn) Y is a fixpoint of E

= Ak(Y1, . . . , Yn−1, An(Y1, . . . , Yn−1, bn)) with (**)

Hence Y (i) is also a fixpoint of G(i).
Now we can apply the induction step n times, and altogether we get the
proposition. 2

57

MONA: MONADIC SECOND-ORDER LOGIC
IN PRACTICE1

JESPER GULMANN HENRIKSEN2, JAKOB JENSEN2,
MICHAEL JØRGENSEN2, NILS KLARLUND3, ROBERT PAIGE4,

THEIS RAUHE2, AND ANDERS SANDHOLM2

Abstract. The purpose of this article is to introduce Monadic Second-order
Logic as a practical means of specifying regularity. The logic is a highly suc-
cinct alternative to the use of regular expressions. We have built a tool MONA,
which acts as a decision procedure and as a translator to finite-state automa-
ta. The tool is based on new algorithms for minimizing finite-state automata
that use binary decision diagrams (BDDs) to represent transition functions
in compressed form. A byproduct of this work is an algorithm that matches
the time but improves the space of Sieling and Wegener’s algorithm to reduce
OBDDs in linear time.

The potential applications are numerous. We discuss text processing, Boolean
circuits, and distributed systems. Our main example is an automatic proof of
properties for the “Dining Philosophers with Encyclopedia” example by Kur-
shan and MacMillan. We establish these properties for the parameterized case
without the use of induction.

Our results show that, contrary to common beliefs, high computational
complexity may be a desired feature of a specification formalism.

1. Introduction.

In computer science, regularity amounts to the concept that a class of structures
is recognized by a finite-state device. Often phenomena are so complicated that
their regularity either

• may be overlooked, as in the case of parameterized verification of distributed
finite-state systems with a regular communication topology; or

• may not be exploited, as in the case when a search pattern in a text editor is
known to be regular, but in practice inexpressible as a regular expression.

In this paper we argue that the Monadic Second-Order Logic or M2L can help
in practice to identify and to use regularity. In M2L, one can directly mention
positions and subsets of positions in the string. This feature distinguishes the logic
from regular expressions or automata. Together with quantification and Boolean
connectives, an extraordinary succinct formalism arises.

1This article is a heavily revised version of [10].
2BRICS, Centre of the Danish National Research Foundation for Basic Research in Computer

Science, Department of Computer Science, University of Aarhus.
3The corresponding author is Nils Klarlund, who is with BRICS, Department of Computer Sci-

ence, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C. E-mail: klarlund@daimi.aau.dk.
4Department of Computer Science, CIMS, New York University, 251 Mercer St. New York,

New York, USA; research partially supported by ONR grant N00014-93-1-0924, AFOSR grant
AFOSR-91-0308, and NSF grant MIP-9300210.

58

Although it has been known for thirty-five years that M2L defines regular lan-
guages (see [17]), the translator from formulas to automata that we describe in this
article appears to be one of the first implementations.

The reason such projects have not been pursued may be the staggering theoretical
lower-bound: any decision procedure is bound to sometimes require as much time
as a stack of exponentials that has height proportional to the length of the formula.

It is often believed that the lower the computational complexity of a formalism
is, the more useful it may be in practice. We want to counter such beliefs in this
article — at least for logics on finite strings.

Why use logic? Some simple finite-state languages easily described in English
call for convoluted regular expressions. For example, the language L2a2b of all
strings over Σ = {a, b, c} containing at least two occurrences of a and at least two
occurrences of b seems to require a voluminous expression, such as

Σ∗aΣ∗aΣ∗bΣ∗bΣ∗

∪ Σ∗aΣ∗bΣ∗aΣ∗bΣ∗

∪ Σ∗aΣ∗bΣ∗bΣ∗aΣ∗

∪ Σ∗bΣ∗bΣ∗aΣ∗aΣ∗

∪ Σ∗bΣ∗aΣ∗bΣ∗aΣ∗

∪ Σ∗bΣ∗aΣ∗aΣ∗bΣ∗.

If we added ∩ to the operators for forming regular expressions, then the language
L2a2b could be expressed more concisely as (Σ∗aΣ∗aΣ∗) ∩ (Σ∗bΣ∗bΣ∗). Even with
this extended set of operators, it is often more convenient to express regular lan-
guages in terms of positions and corresponding letters. For example, to express the
set Laafterb of strings in which every b is followed by an a, we would like a formal
language allowing us to write something like

“for every position p, if there is a b in p then for some position q after
p, there is an a in q.”

The extended regular languages do not seem to allow an expression that very closely
reflects this description — although upon some reflection a small regular expression
can be found. But in M2L we can express Laafterb by a formula

∀p : ′b′(p) ⇒ ∃q : p < q ∧ ′a′(q)
(Here the predicate ′b′(p) means “there is a b in position p”.) In general, we believe
that many errors can be avoided if logic is used when the description in English does
not lend itself to a direct translation into regular expressions or automata. However,
the logic can easily be combined with other methods of specifying regularity since
almost any such formalism can be translated with only a linear blow-up into M2L.

Often regularity is identified by means of projections. For example, if Ltrans
is regular on a cross-product alphabet Σ × Σ (e.g. describing a parameterized
transition relation, see Section 5) and Lstart is a regular language on Σ describing a
set of start strings, then the set of strings that can be reached by a transition from
a start string is π2(Ltrans ∩π−1

1 (Lstart)), where π1 and π2 are the projections from
(Σ × Σ)∗ to the first and second component. Such language-theoretic operations
can be very elegantly expressed in M2L.

Our results. In this article, we discuss applications of M2L to text processesing
and the description of parameterized Boolean circuits. Our principal application is
a new proof technique for establishing properties about parameterized, distributed

59

finite-state systems with regular communication topology. We illustrate our method
by showing safety and liveness properties for a non-trivial version of the Dining
Philosophers’ problem as proposed in [11] by Kurshan and MacMillan.

We present MONA, which is our tool that translates formulas in M2L to finite-
state machines. We show how BDDs can be used to overcome an otherwise inherent
problem of exponential explosion. Our minimization algorithm works very fast in
practice thanks to a simple generalization of the unary apply operation of BDDs.

Comparisons to other work. Parameterized circuits are described using BDDs
in [8]. This method relies on formulating inductive steps as finite-state devices and
does not provide a single specification language. The work in [14] is closer in spirit
to our method in that languages of finite strings are used although not as part of a
logical framework. In [2], another approach is given based on iterating abstractions.
The parameterized Dining Philosopher’s problem is solved in [11] by a finite-state
induction principle.

A tool for M2L on finite, binary trees has been developed at the University of
Kiel [16]. Apparently, this tool has only been used for very simple examples.

In [7], a programming language for finite domains based on a fixed point logic is
described and used for verification of non-parameterized finite systems.

Contents. In Section 2, we explain the syntax and semantics of M2L on strings.
We recall the correspondence to automata theory in Section 3. We give several
applications of M2L and the tool in Section 4: text patterns, parameterized cir-
cuits, and equivalence testing. Our main example of parameterized verification is
discussed in Section 5. We give an overview of our implementation in Section 6.

2. The Monadic Second-order Logic on Strings.

Let Σ be an alphabet and let w be a string over Σ. The semantics of the logic
determines whether a closed M2L formula φ holds onw. The languageL(φ) denoted
by φ is the set of strings that make φ hold. Assume now that w has length n and
consists of letters a0a1...an−1. The positions in w are then 0,...,n− 1. We can now
describe the three syntactic categories of M2L on strings.

A position term t is either
• the constant 0 (which denotes the position 0);
• the constant $ (which denotes the last position, i.e. n− 1);
• a position variable p (which denotes a position i);
• of the form t ⊕ i (which denotes the position j + i mod n, where j is the

interpretation of t); or
• of the form t 	 i (which denotes the position j − i mod n, where j is the

interpretation of t);
(Position terms are only interpreted for non-empty strings).
A position set term T is either
• the constant ∅ (which denotes the empty set);
• the constant all (which denotes the set {0, ..., n− 1});
• a position set variable P (which denotes a subset of positions);
• of the form T1∪T2, T1∩T2, or {T1 (which are interpreted in the natural way);
• of the form T + i (which denotes the set of positions in T shifted right by an

amount of i); or
60

• of the form T − i (which denotes the set of positions in T shifted left by an
amount of i);

A formula φ is either of the form
• ′a′(t) (which holds if letter ai in w = a0a1 · · · is a, where i is the interpretation

of t);
• t1 = t2, t1 < t2 or t1 ≤ t2 (which are interpreted in the natural way);
• T1 = T2, T1 ⊆ T2, or t∈T (which are interpreted in the natural way);
• ¬φ1, φ1 ∧ φ2, φ1 ∨ φ2, φ1 ⇒ φ2, or φ1 ⇔ φ2 (where φ1 and φ2 are formulas,

and which are interpreted in the natural way);
• ∃p : φ (which is true, if there is a position i such that φ holds when i is

substituted for p);
• ∀p : φ (which is true, if for all positions i, φ holds when i is substituted for
p);

• ∃P : φ (which is true, if there is a subset of positions I such that φ holds
when I is substituted for P); or

• ∀P : φ (which is true, if for all subsets of positions I, φ holds when I is
substituted for P);

3. From M2L to Automata.

In this section, we recall the method for translating a formula in M2L to an
equivalent finite-state automaton (see [17] for more details). Note that any formula
φ can be interpreted, given a string w and a value assignment I that fixes values
of the free variables. If φ then holds, we write w, I |= φ. The key idea is that
a value assignment and the string may be described together as a word over an
extended alphabet consisting of Σ and extra binary tracks, one for each variable.
By structural induction, we then define for each formula an automaton that exactly
recognizes the words in the extended alphabet corresponding to pairs consisting of
a string and an assignment that satisfy the formula.

Example. Assume that the free variables are P = {P1, P2} and that Σ = {a, b}.
Let us consider the string w = abaa and value assignment

I = [P1 7→ {0, 2}, P2 7→ ∅].
The set I(P1) = {0, 2} can be represented by the bit pattern 1010, since the
numbered sequence

1
0
0
1
1
2
0
3

defines that 0 is in the set (the bit in position 0 is 1), 1 is not in the set (the bit in
position 1 is 0), etc. Similarly, the bit pattern 0000 describes I(P2) = ∅.

If these patterns are laid down as extra “tracks” along w, we obtain an extended
word α, which may be depicted as:

a b a a
1 0 1 0
0 0 0 0

Technically, we define α = α0 · · ·α3 as the word (a, 1, 0)(b, 0, 0)(a, 1, 0)(a, 0, 0)
over the alphabet Σ×B×B of extended letters, where B = {0, 1} is the set of truth
values.

This correspondence can be generalized to any w and any value assignment for
a set of variables P (which can all be assumed to be second-order).

61

By structural induction on formulas, we construct automata Aφ,P over alphabet
Σ×Bk—where P = {P1, · · · , Pk} is any set of variables containing the free variables
in φ—satisfying the fundamental correspondence:

w, I |= φ iff (w, I)∈L(Aφ,P)

Thus Aφ,P accepts exactly the pairs (w, I) that make φ true.

Example. Let φ be the formula Pi = Pj + 1. Thus when φ holds, Pi is represented
by the same bit pattern as that of Pj but shifted right by one position. This can
be expressed by the automaton Aφ,P :

αi = 1 and αj = 0

αi = 0 and αj = 0 αi = 1 and αj = 1

αi = 0 and αj = 1

In this drawing, αi refers to the ith extra track. Thus, the automaton checks that
the ith track holds the same bit as the jth track the instant before.

4. Applications.

4.1. Text patterns. The language L2a2b of strings containing at least two occur-
rences of a and two occurrences of b can be described in M2L by the formula

(∃p1, p2 : ′a′(p1) ∧ ′a′(p2) ∧ p1 6= p2) ∧
(∃p1, p2 : ′b′(p1) ∧ ′b′(p2) ∧ p1 6= p2)

Our translator yields the minimal automaton, which contains nine states, in a
fraction of a second.

The language Laafterb given by the formula

∀p : ′b′(p) ⇒ ∃q : p < q ∧ ′a′(q)

is translated to the minimal automaton, which has two states, in .3 seconds.
A far more complicated language to express is L<1apart consisting of every string

over {a, b} such that for any prefix the number of a’s and b’s are at most one apart.
When using regular expressions or M2L, one needs to struggle a bit, but in M2L
there is a strategy for describing the functioning of the finite-state machine that
comes to mind.

We observe that a position p may be used to designate a prefix; for example,
0 denotes the prefix consisting of the first letter and $ (the last position) denotes
the whole input string. We may now recognize a string in L<1apart by identifying
three sets of positions: the set P0 corresponding to prefixes with an equal number
of a’s and b’s, the set P+1 corresponding to prefixes where the number of a’s is one
greater than the number of b’s, and the set P−1 corresponding to prefixes where
the number of a’s is one less than the number of b’s:

62

β

α0 α1 αn−2 αn−1α2

Figure 1. A parameterized circuit.

∃P0, P+1, P−1 :P0 ∪ P+1 ∪ P−1 = all
∧ 0 /∈ P0
∧ 0∈P+1 ⇔ ′a′(0)
∧ 0∈P−1 ⇔ ′b′(0)
∧ ∀p : (p > 0 ⇒

p∈P0 ⇔ (′a′(p) ∧ p	 1∈P−1)
∨ (′b′(p) ∧ p	 1∈P+1)

∧ p∈P+1 ⇔ ′a′(p) ∧ p	 1∈P0
∧ p∈P−1 ⇔ ′b′(p) ∧ p	 1∈P0)

The resulting four-state automaton is calculated in a fraction of a second.

4.2. Parameterized circuits. Assume that we are given a drawing as in Figure 1
denoting a parameterized Boolean function.

How do we describe the language Lex ⊆ B∗ of input bit patterns that make the
output true? From the drawing, no immediate description as a regular expression
or finite-state automaton is apparent. In M2L, however, it is easy to model the
outputs of the n or-gates as a second-order variable Q, which allows the language
to be described from a direct interpretation of the drawing. Note that the or-gate
at position p > 0 is true if either there is a 1 at p − 1 or p, or in other words:
p ∈ Q ⇔ ′1′(p 	 1) ∨ ′1′(p). Since the output is 1 if and only if all or-gates are 1,
i.e. if Q = all, the language Lex is given by the formula

∃Q : (∀p : (p = 0⇒ p ∈ Q⇔ ′1′(p)) ∧
(p > 0⇒ (p ∈ Q⇔ ′1′(p	 1) ∨ ′1′(p))) ∧Q = all)

The resulting automaton has three states and accepts the language (1∪10)∗, which
is the regular expression that one would obtain by reasoning about the circuit. For
more advanced applications to hardware verification, see [3].

4.3. Equivalence testing. A closed formula φ is a tautology if L(φ) = L(Σ∗), i.e.
if all strings over Σ satisfy φ. The equivalence of formulas φ and ψ then amounts
to whether φ⇔ ψ is a tautology.
Example. That a set P contains exactly the even positions in a non-empty input

63

string may be expressed in M2L by the following two rather different approaches:
either by the formula even1 (P) ≡

0∈P ∧ ∀p : ((p∈P ∧ p < $⇒ p ⊕ 1 /∈ P)
∧ (p /∈ P ∧ p < $⇒ p⊕ 1∈P)),

or as a formula even2 (P) ≡

P ∪ (P + 1) = all ∧ P ∩ (P + 1) = ∅ ∧ P 6= ∅
To show the equivalence of the two formulas, we check the truth value of the

bi-implication:
∀P : even1(P)⇔ even2(P)

The translation of this formula does indeed produce an automaton accepting Σ∗,
and thus verifies our claim.

5. Dining Philosophers with Encyclopedia.

A distributed system is parameterized when the number n of processes is not
fixed a priori. For such systems the state space is unbounded, and thus traditional
finite-state verification methods cannot be used. Instead, one often fixes n to be,
say two or three. This yields a finite state space amenable to state exploration
methods. However, the validity of a property for n = 2, 3 does not necessarily
imply that the property holds for all n.

A central problem in verification is automatically to validate parameterized sys-
tems. One way to attack the problem is to formulate induction principles such
that the base case and the inductive steps can be formulated as finite-state prob-
lems. Kurshan and MacMillan [11] used such a method to verify safety and liveness
properties of a non-trivial version of the Dining Philosophers example.

Selection hungry read eat

State’

EAT

THINK READ EAT

State THINK READ

Figure 2. Dining Philosophers with Encyclopedia

In this system, symmetry is broken by an encyclopedia that circulates among
the philosophers. Thus each philosopher is in one of three states: EAT, THINK,
or READ. The global state can be described as a string State of length n over the
alphabet ΣState = {EAT,THINK,READ}, see Figure 2.

The system makes a transition according to external events that constitute a
selection . Each process is presented with an event in the alphabet ΣSelection =
{eat, think, read, hungry}. Thus the selection can be viewed as a string Selection
over ΣSelection, see Figure 2. As shown, all processes make a synchronous tran-
sition to a new global State ′ on a selection according to a transition relation
trans(State , State′,
Selection), which is shown in Figure 31 together with an auxiliary predicate

1We use ’#’ in the beginning of a line to indicate that this line is a comment.
64

blocking(Selection) used in its definition. Thus the new state of each process is
dependent on its old state and on the selection events presented to itself and its
neighbors. The transition relation is so complicated that it is hard to grasp the
functioning of the system.

Fortunately, the parameterized transition relation can be translated into basic
M2L on strings. For example, we encode State using two second-order variables P
and Q with the convention that

EATp(State) ≡ p∈P ∧ p∈Q
READp(State) ≡ p /∈ P ∧ p∈Q
THINKp(State) ≡ p /∈ P ∧ p /∈ Q

Similarly, State′ and Selection can also each be encoded using two second-order
variables. Thus, the predicate trans(State, State′, Selection) becomes a formula
with six free second-order variables.

For this distributed system there are two important properties to verify:
• Safety Property : The encyclopedia is neither lost nor replicated. Thus there

is always exactly one process in state READ.
• Liveness Property : If no process remains in state EAT forever, then the en-

cyclopedia is passed around over and over.
In [11] both properties are proved in terms of a complicated induction hypothesis.

This hypothesis is itself a distributed system, where each process has four states.
(The Liveness Property in [11] is technically different since it is modeled in terms
of selections.)

Our strategy is fundamentally different. We cannot directly verify liveness prop-
erties. But we can easily verify properties about the transition relation in the
parameterized case and without induction as follows.

Let φ be an M2L formula about the global state. For example, we might consider
the property that if a philosopher eats, then his neighbors do not:

φmutex(State) ≡ ∀p : EATp(State)⇒ ¬EATp	1(State) ∧ ¬EATp⊕1(State)

A property given as a formula φ can be verified using the invariance principle:

∀State , State′, Selection : φ(State) ∧ trans(State, State′, Selection)⇒ φ(State ′),

which is also a formula in M2L. In this way, we have verified for the parameter-
ized case that both φmutex and the Safety Property that exactly one philosopher
reads, i.e. ∃!p : READp(State), are invariant. MONA verifies such a formula in
approximately 3 seconds on a Sparc 20.

Note that this method does not rely on a state space exploration (which is
impossible since the state space is unbounded). Instead, it is based on the Invariance
Principle: to show that a property holds for all reachable states, it is sufficient to
show that it holds for the initial state and is preserved under any transition.

Establishing the Liveness Property. The Liveness Property can be expressed
in Temporal Logic as

2(READp	1 ⇒ 3READp), (1)

that is, it always holds that if philosopher p	 1 reads, then eventually philosopher
p reads. We must prove this property under the assumption that no philosopher
eats forever:

2(EATp ⇒ 3¬EATp). (2)
65

blocking(Selection) ≡
eatp⊕1(Selection) ∨ hungryp	1(Selection)
∨ eatp	1(Selection)

trans(State,State′, Selection) ≡
∀p :

#THINK → THINK :
(THINKp(State) ∧ THINKp(State′)⇒
thinkp(Selection) ∧ ¬(readp	1(Selection))
∨
hungryp(Selection) ∧ blocking(Selection))

∧
#THINK → EAT :
(THINKp(State) ∧ EATp(State′)⇒
hungryp(Selection) ∧ ¬(blocking(Selection)))

∧
#THINK → READ :
(THINKp(State) ∧ READp(State′)⇒
thinkp(Selection) ∧ readp	1(Selection))

∧
#EAT→ THINK :
(EATp(State) ∧ THINKp(State′)⇒
thinkp(Selection) ∧ ¬(readp	1(Selection)))

∧
#EAT→ EAT :
(EATp(State) ∧ EATp(State′)⇒
eatp(Selection))

∧
#EAT→ READ :
(EATp(State) ∧ READp(State′)⇒
thinkp(Selection) ∧ readp	1(Selection))

∧
#READ → THINK :
(READp(State) ∧ READp(State′)⇒
readp(Selection) ∧ thinkp⊕1(Selection))

∧
#READ → EAT :
(READp(State) ∧ EATp(State′)⇒
false)

∧
#READ → READ :
(READp(State) ∧ READp(State′)⇒
readp(Selection) ∧ ¬(thinkp⊕1(Selection)))

Figure 3. The transition relation

So assume that READp	1 holds. We must prove that 3READp holds. There are
two cases as follows.

• Case EATp holds. By asssumption (2), there is an instant when EATp ∧
¬ ◦ EATp holds. Thus if

READp	1 ∧ EATp ∧ ¬ ◦ EATp ⇒ ◦READp (3)

is a valid property of the transition system, 3EATp holds. In fact, we verified
using MONA that (3) indeed holds.

• Case ¬EATp holds. If EATp becomes true, then use the previous case. Oth-
erwise, ¬EATp continues to hold. Now, by the assumption (2) at some point
¬EATp⊕1 will hold. We then use the property

READp	1 ∧ ¬EATp ∧ ¬ ◦ EATp⊕1 ⇒ ◦READp ∨ ◦EATp, (4)

which we have also verified using MONA, to show that eventually READp

holds (or eventually EATp holds, which contradicts the assumption that
¬EATp continues to hold).

6. Implementation.

MONA is our implementation of the decision procedure, which translates formu-
las of M2L to finite-state automata as outlined in Section 3. Our tool is implemented
in Standard ML of New Jersey. A previous version of MONA was written in C with

66

explicit garbage collection and based on representing transition functions in a con-
junctive normal form. Our present tool runs up to 50 times faster due to improved
algorithms.

Representation of automata. Since the size of the extended alphabet grows ex-
ponentially with the number of variables, a straightforward implementation based
on explicitly representing the alphabet would only work for very simple exam-
ples. Instead, we represent the transition relation using Binary Decision Diagrams
(BDDs) [4, 5]. In this way, the alphabet is never explicitly represented. For the
external alphabet of ASCII-characters, we choose an encoding based on seven extra
tracks holding the binary representation. Thus, character classes such as [a-zA-Z]
become represented as very simple BDDs.

A deterministic automaton A is represented as follows. The state space is Q =
{0, 1, . . . , n − 1}, where n is size of the state space; Bk is the extended alphabet;
i0 ∈ Q is the initial state; δ : Q × Bk → Q is the transition function; and F ⊆ Q
is the set of accepting states. We use a bit vector of size n to represent F and an
array containing n pointers to roots of multi-terminal BDDs representing δ. A leaf
of a BDD holds the integer designating the next state. An internal node v is called
a decision node and contains an index denoted v.index, where 0 ≤ v.index < k, and
high and low successors v.hi and v.lo. If b is a sequence of k bits, i.e. b ∈ Bk, then
δ(q, b) is found by looking up the qth entry in the array and following the decision
nodes according to b until a leaf is reached (node v is followed by selecting the high
successor if the v.indexth component of b is 1 and the low successor if it is 0).

For example, the following finite automaton accepting all strings over B2 with
at least two occurrences of the letter “11”

// 0O N M LH I J K B CE D00,01,10G F��
//

11
1O N M LH I J K B CE D00,01,10G F��

//
11

2O N M LH I J K? > = <8 9 : ; B CE D00,01,10,11G F��
could be represented as in Figure 4.

The use of BDDs makes the representation very succinct in comparison to our
earlier attempt to handle automata with large alphabets [10]. In most cases, we
avoid the exponential blow-up associated with an explicit representation of the
alphabet. We shall see that all operations on automata needed can be performed
by means of simple BDD operations.

Another possibility would have been to use a two-dimensional array of ordinary
BDDs. But that would complicate the operations on automata, because many more
BDD operations would be needed.

Rewriting formulas. The first step in the translation consists of rewriting for-
mulas so as to eliminate nested terms. Then all terms are variables and all formulas
are among a small number of basic formulas.

Translating formulas. The translation is inductive. All automata corresponding
to basic formulas have a small number of states (less than five!).

The composite formulas are translated by use of operations on automata. For ¬φ,
φ1 ∧ φ2 and ∃P : φ, which are the ones left after rewriting, we need the operations
of complement, product, projection, and determinization.

Complement. Complementation is done by simply negating the bit vector repre-
senting the set of final states.

67

lo

hi

lo
hi

lo

hi

lo
hi

false false true

index=
0

index=

index= index=

0

1 1

val= val= val=
0 1 2

0 1 2

Transition function:

Initial state: 0
Accepting states:

Figure 4. BDD automaton representation

Product. The product automaton A of two automata A1 and A2 is

(Q1 ×Q2,Bk, (i1, i2), δ, F1 × F2),

where δ((q1, q2), b) = (δ1(q1, b), δ2(q2, b)). We are careful, however, to consider only
those states of A that are reachable from (i1, i2).

When considering a new state (q1, q2), we need to construct the BDD repre-
senting the corresponding part of the transition function δ. We use the binary
apply operation on the BDDs corresponding to q1 and q2. For each pair of states
(q′, q′′) encountered in a pair of leaves, we associate a unique integer in the range
{0, 1, . . .N − 1}, where N is the number of different pairs considered so far. In this
way, the new BDDs created conform with the standard representation.

Projection and determinization. Projection is the conversion of an automaton over
Bk+1 to a nondeterministic automaton over Bk necessary for translating a formula
of the form ∃P : φ. On any letter b ∈ Bk, there are two transitions possible in
the nondeterministic automaton corresponding to whether the P -track is 0 or 1.
Therefore this automaton is not hard to construct using the projection (restriction)
operation of BDDs.

Determinization is done according to the subset construction. The use of the
apply operation is similar to that of the product construction except that leaves
hold subsets of states.

Minimizing. Minimization seems essential in order to obtain an effective deci-
sion procedure. For example, if a tautology occurs during calculations, then it is
obviously a good idea to represent it using a one-state automaton instead of an
automaton with e.g. 10,000 states.

68

The difficulty in obtaining an efficient minimization algorithm stems from the
requirement to keep our shared BDDs in reduced form. Recall that a reduced
BDD has no duplicate terminals or nonterminals. Such a BDD is just a specialized
form of directed acyclic graph that has been compressed by combining structurally
isomorphic nodes (see Aho, Hopcroft, and Ullman [1] or Section 3.4 of Cai and
Paige [6]). In addition, a reduced BDD has no redundant tests [4]. Such a BDD
is obtained by repeatedly pruning every internal vertex v that has both outedges
leading to the same vertex w, and redirecting all of v’s incoming edges to w.

Suppose that the shared BDD had all duplicate terminals and nonterminals e-
liminated, but did not have any of its redundant tests eliminated. Then it would
be easy to treat the deterministic finite automaton combined with its BDD ma-
chinery as a single automaton whose states were the union of the BDD nodes and
the original automaton states, and whose alphabet were zero and one. If this de-
rived automaton had n states, then it could be minimized in O(nlogn) steps using
Hopcroft’s algorithm [9]. Unfortunately, such an automaton would be too big.

For our purposes, the space savings due to redundant test removal is of crucial
importance. But the important ‘skip’ states that arise from redundant test removal
complicates minimization. Our algorithm combines techniques based on [1] with
new methods adapted for use with the shared BDD representation of the transition
function. For a finite automaton with n states and a transition function represented
by m BDD nodes, the algorithm presented here achieves worst-case running time
O(max(n,m)n).

Terminology. A partition P of a finite set U is a set of disjoint nonempty subsets
of U such that the union of these sets is all of U . The elements of P are called its
blocks. A refinement Q of P is a partition of U such that any block of Q is a subset
of a block of P. If q ∈ U , then [q]P denotes the block of partition P containing the
element q, and when no confusion arises, we drop the subscript.

Let A = (Q, Bk, i0, δ, F) denote a deterministic finite automaton, and let P be
a partition of Q, and Q a refinement of P. A block B of Q respects the partition
P if for all q, q′ ∈ B and for all b ∈ Bk, [δ(q, b)]P = [δ(q′, b)]P. Thus, δ cannot
distinguish between the elements in B relative to the partition P. A partition Q
respects P if every block of Q respects P. A partition is stable if it respects itself.
The coarsest, stable partition Q respecting P is a unique partition such that any
other stable partition respecting P is a refinement of Q.

The refinement algorithm. The minimal automaton A′ recognizing L(A) is isomor-
phic to the automaton defined by the coarsest stable partition QA of Q respecting
the partition {F,Q \ F}. The states of A′ are QA, the transition function δ′ is
defined by δ′([p], b) = [δ(p, b)], the initial state is [i0], and the set of final states is
F ′ = {[f]|f ∈ F}.

Now we are ready to sketch our minimizing algorithm, which works by gradually
refining a current partition.

• First split Q into an initial partition Q = {F,Q \ F}. Note that QA is a
refinement of this partition.

• Now let P be the current partition. We construct the new current partition
Q so that it respects P while QA remains a refinement of Q.

For each state q in Q consider the functions fq : Bk → P defined by fq(b) =
[δ(q, b)]P for all q and b. Now let the equivalence relation ≡ be defined as

69

q ≡ q′ ⇔ (fq = fq′ ∧ [q]P = [q′]P). The new partition Q then consists of the
equivalence classes of ≡. By definition of the fq ’s, Q respects P and is the
coarsest such partition implying the invariant.

We repeat this process until P = Q.
It can be shown that the final partitionQ is obtained in at most n iterations and

equals QA. The preceding algorithm is an abstraction of the initial naive algorithm
presented in Section 4.13 of [1].

The difficult step in the above algorithm is the splitting according to the functions
fq. However, we can here elegantly take advantage of the shared BDD representa-
tion. The idea is to construct a BDD representing the functions fq for each state.
We represent a partition of the states Q, by associating with each state q ∈ Q a
block id identifying its block. The BDD for fq is calculated by performing a unary
apply on the collection of shared BDDs, where the value calculated in a leaf is the
block id. By a suitable generalization of the standard algorithm, it is possible to
carry out these calculations while visiting each node at most once (assuming that
hashing takes constant time). Thus the split operation requires time O(max(n,m)).
Since we use shared BDDs, we may use the results of the apply operations directly
as new block ids.

The Splitting Step Without Hashing. An alternative implementation of the splitting
step is possible that achieves the same worst case time bound O(max(n,m)) without
hashing. It is instructive to first consider the case in which the shared BDDs are
reduced only by eliminating redundant nodes but not by eliminating redundant
tests. In this case the BDD may be regarded as an acyclic deterministic automaton
D whose states are the BDD nodes, and whose alphabet is zero and one. Consider
a partition P ′ of the BDD nodes defined by equivalence classes of the following
relation. Two BDD leaves are equivalent iff their next states belong to the same
block of partition P. All decision nodes of the BDD are equivalent. The coarsest
stable partition Q′ that respects P ′ for automaton D can be solved in O(m) worst
case time by Revuz [13] and Cai and Paige [6], Sec. 3.4. Finding the equivalence
classes of states in Q that point to BDD roots belonging to the same block of Q′
(i.e., finding the coarsest partition Q that respects P) solves the splitting step in
the original automaton in time O(n).

In the case of fully reduced BDDs, the splitting step is somewhat harder, and
a closer look at the BDD structure is needed. For each decision node v, v.index
represents a position in a string of length k such that v.index < (v.lo).index ∧
v.index < (v.hi).index. For each BDD leaf v we have v.index = k, and let v.lo =
v.hi be an automaton state belonging to Q. For each BDD node v we define function
fv : Bk → P much like the way functions fq were defined earlier on automaton
states. For each nonleaf v, fv is defined by the rule fv(b) = fv.lo(b) if bv.index = 0;
fv(b) = fv.hi(b) if bv.index = 1. For each leaf v, fv is a constant function that
maps every argument into an element (i.e., a block) of partition P.

If q ∈ Q is an automaton state that points to a BDD root v, then, clearly,
fq = fv. It is also not hard to see that for any two nonleaf BDD nodes v and v′,
fv = fv′ iff either of the following two conditions hold:

1. v.index = v′.index ∧ fv.hi = fv′.hi ∧ fv.lo = fv′.lo, or
2. fv.hi = fv.lo = fv ∧ v.hi = v′.

This leads to the more concrete equivalence relation ≡ on BDD nodes defined as
v ≡ v′ iff fv = fv′ iff either,

70

1. v.index = v′.index = k ∧ [v.lo]P = [v′.lo]P, or
2. v.index = v′.index < k ∧ v.hi ≡ v′.hi ∧ v.lo ≡ v′.lo, or
3. v.index < k ∧ v.lo ≡ v.hi ≡ v′.
Note that two BDD nodes of different index can be equivalent only by condition

(3). Note also, that we can strengthen condition (2) with the additional constraint
v.hi 6≡ v.lo without modifying the equivalence relation. These two observations al-
low us to construct the equivalence classes inductively using a bottom-up algorithm
that processes all BDD nodes of the same index in descending order, proceeding
from leaves to roots. The steps are sketched just below.

1. In a linear time pass through all of the BDD nodes, place each node in a
bucket according to its index. An array of k + 1 buckets can be used for this
purpose.

2. Next, distribute the BDD leaves (contained in the bucket associated with
index k) into blocks whose nodes all have lo successors that belong to the
same block of P. This takes time proportional to the number of leaves.

3. For j = k − 1, ..., 0 examine each node v with v.index = j. Both nodes
v.lo and v.hi have already been examined, and have been placed into blocks.
Hence, a streamlined form of multiset sequence discrimination [6] can be used
to place v either in an old block (according to condition (3)) or a new block
(according to condition (2)) for nodes whose children belong pair-wise to the
same old block.

The preceding algorithm computes the equivalence classes as the final set of
blocks in O(m) time. As before, we can use these equivalence classes to find the
coarsest partition Q that respects P, which solves the splitting step in the original
automaton, in time O(n). Thus, the total worst-case time to solve the splitting
step is O(max(n,m)) (without hashing).

In an efficient implementation of finite-state automaton minimization, when the
splitting algorithm above is is performed repeatedly, we only need to perform the
first step of that algorithm (i.e., sorting BDD nodes according to index) once.
Thus, the full DFA minimization algorithm runs in worst case time O(max(n,m)n)
without hashing.

BDD Reduction Without Hashing. Sieling and Wegener[15] were the first to com-
press an arbitrary BDD into fully reduced form. Their result depended on a radix
sort, which is closely related to the multiset discrimination technique that we use.
However, their algorithm needs to maintain integer representations of BDD nodes,
and it utilizes two arrays of size m. We can show how our algorithm just described
can be modified to fully reduce an arbitrary BDD in worst case time linear in the
number of BDD nodes (without hashing), but with expected auxiliary space k times
smaller than Sieling and Wegener’s algorithm.

Let Q′ be the partition of BDD nodes produced by the algorithm. The states
of the reduced BDD are the blocks in Q′. For each block B ∈ Q′, B.index is the
largest index of any BDD node contained in B. Let v′ be any node belonging to
B of maximum index. If v′ is a BDD leaf, then B is a leaf in the reduced BDD
(i.e., B.index = k), and B.lo = B.hi = v′.lo. Otherwise, B.lo = [v′.lo]Q′ and
B.hi = [v′.hi]Q′. The hi and lo successor blocks can be determined during the
multiset sequence discrimination pass when a new block is first created. The index
of the first node placed in a newly created block is the index for that block.

71

What distinguishes our algorithm from that of Sieling and Wegener is that our
buckets in steps (2) and (3) are associated with actual BDD nodes (inside the
main BDD data structure). Their buckets are associated with components of two
auxiliary arrays of size m each. If we replaced each equivalence class by a single
witness (as they do) each iteration of step (3), then our auxiliary space would be
bounded by the maximum number of BDD nodes that have the same index. If
BDD nodes were uniformly distributed among indexes, then this number is m/k,
which would give us a k-fold advantage in auxiliary space over their algorithm.
We expect a minor constant factor advantage in time as well, because our BDD
nodes are represented by their locations instead of by computed integer values, and
because we avoid array access in favor of less expensive list and pointer processing.

Work is in progress for exploring the “processing the smaller half” idea found
in e.g. [12]. We should mention, however, that the current implementation of the
minimization algorithm in practice seems to run faster than the procedures for
constructing product and subset automata.

MONA features. MONA is enriched by facilities similar to those of programming
languages.

Predicates. The user may declare predicates that can later be instantiated. For
example, if the predicate P is declared by P (X, x) = (0 = x ∧ x ∈ X), then P can
be instantiated as the formula P ({Y, p⊕ 1) with the obvious meaning.

Libraries. MONA supports creation of user-defined libraries of predicates.

Separate translation. MONA automatically stores the automaton for a translated
predicate. If there are n free variables, then there may be up to n! different au-
tomata corresponding to different orderings of variables in the BDD representation.

To be done. In the current implementation, variables are ordered in their BDDs
according to the level of syntactic nesting in the formula; i.e. innermost variables
receive the highest index. This strategy is obviously often far from optimal and
we are working on implementing heuristics to improve variable ordering. Another
orthogonal optimization strategy is to reorder the product constructions by heuris-
tics. In both cases, however, it is not hard to see that finding optimal orderings is
NP-complete.

Acknowledgements. We are thankful to Vladimiro Sassone for comments on an
earlier version, and to Andreas Potthoff for his advice based on the M2L imple-
mentation at the University of Kiel.

References

[1] A. Aho, J. Hopcroft, and J. Ullman. Design and Analysis of Computer Algorithms. Addison-
Wesley, 1974.

[2] F. Balarin and A.L. Sangiovanni-Vincentelli. An iterative approach to language containment.
In Computer Aided Verification, CAV ’93, LNCS 697, pages 29–40, 1993.

[3] D. Basin and N. Klarlund. Hardware verification using monadic second-order logic. Technical
Report RS-96-7, BRICS, 1995.

[4] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM
Computing surveys, 24(3):293–318, September 1992.

[5] R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, Aug 1986.

72

[6] J. Cai and R. Paige. Using multiset discrimination to solve language processing problems
without hashing. to appear Theoretical Computer Science, 1994. also, U. of Copenhagen Tech.
Report, DIKU-TR Num. D-209, 94/16, URL ftp://ftp.diku.dk/diku/semantics/papers/D-
209.ps.Z.

[7] M-M Corsini and A. Rauzy. Symbolic model checking and constraint logic programming: a
cross-fertilisation. In 5th. Europ. Symp. on Programming, LNCS 788, pages 180–194, 1994.

[8] A. Gupta and A.L. Fisher. Parametric circuit representation using inductive boolean func-
tions. In Computer Aided Verification, CAV ’93, LNCS 697, pages 15–28, 1993.

[9] J. Hopcroft. An n logn algorithm for minimizing states in a finite automaton. In Z. Kohavi
and Paz A., editors, Theory of machines and computations, pages 189–196. Academic Press,
1971.

[10] J. Jensen, M. Jrgensen, and N. Klarlund. Monadic second-order logic for parameterized veri-
fication. Technical report, BRICS Report Series RS-94-10, Department of Computer Science,
University of Aarhus, 1994.

[11] B. Kurshan and K. MacMillan. A structural induction theorem for processes. In Proc. Eigth
Symp. Princ. of Distributed Computing, pages 239–247, 1989.

[12] R. Paige and R. Tarjan. Three efficient algorithms based on partition refinement. SIAM
Journal of Computing, 16(6), 1987.

[13] D. Revuz. Minimisation of acyclic deterministic automata in linear time. Theoretical Com-
puter Science, 92(1):181–189, 1992.

[14] J-K. Rho and F. Somenzi. Automatic generation of network invariants for the verification
of iterative sequential systems. In Computer Aided Verification, CAV ’93, LNCS 697, pages
123–137, 1993.

[15] D. Sieling and I. Wegener. Reduction of obdds in linear time. IPL, 48:139–144, 1993.
[16] M. Steinmann. Übersetzung von logischen Ausdrücken in Baumautomaten: Entwicklung eines

Verfahrens und seine Implementierung. Unpublished, 1993.
[17] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, volume B, pages 133–191. MIT Press/Elsevier, 1990.

73

Computing Small Nondeterministic Finite Automata

Oliver Matz, Andreas Potthoff
Institut für Informatik und Praktische Mathematik

Christian-Albrechts-Universität Kiel
D-24098 Kiel

e-mail: oma@informatik.uni-kiel.de

Abstract

We study the minimization problem for nondeterministic finite automata.
Two approaches are discussed, based on the construction of two versions of
“canonical” automata (for a given regular language), in which minimal automata
occur as subautomata. We introduce a heuristic for this search, which has been
implemented in the program AMoRE.

Introduction

Minimization of nondeterministic finite automata (”NFA”) is more difficult than that
of deterministic finite automata. The problem is PSPACE-complete (except for the
case of one-letter-alphabets) [6], whereas deterministic finite automata can be min-
imized in time O(n · logn) [4]. Moreover, there is in general not a unique minimal
NFA recognizing a given regular language. Procedures for minimization of nondeter-
ministic finite automata are investigated in several papers, e.g. Kameda and Weiner
[10] (see also Indermark [7]) and Kim [11]. Further references are given in Brauer’s
monograph [2].
The purpose of this note is twofold. First, we describe a general technique of construct-
ing minimal NFA which is implicit in older papers like [10] and has been suggested in
a different version in a recent contribution of Arnold, Dicky and Nivat [1]. The idea is
to construct a nondeterministic “canonical automaton” in which any NFA recognizing
the considered language occurs (via a homorphism) as a subautomaton. This means
that the construction of the minimal NFA can be done in two steps: construction
of the canonical automaton and search for a minimal subautomaton therein which
accepts the same language. We compare two versions of “canonical automata” and
develop a method of computing one of these versions (called “fundamental automa-
ton”).
The second issue is the search of a minimal NFA within a given (canonical) automa-
ton. We outline a heuristic which improves the one of [11]. It yields an algorithm
with worst-case-behaviour time O(2(n2)), where n is the number of states of the min-
imal deterministic automaton of the considered language. The algorithm is practical
in the sense that in many non-trivial examples the actual implementation works in
acceptable time. However, we show that the heuristic fails in some cases to produce

74

a minimal NFA. (This is true for both considered versions of canonical NFA.) It is
open how to sharpen the heuristic in order to get an algorithm which always outputs
a proper minimal NFA and is as “practical” as our heuristic.
In the first section basics and terminology on finite automata are recalled (powerset
construction, minimization of deterministic finite automata). In the second section
we construct the “fundamental automaton” F of a regular language L and show that
a minimal NFA accepting L can be found as a subautomaton of F . Then we give the
announced sufficient (but not necessary) criterion for subautomata of F that accept
L; the heuristic is then simply to find a subautomaton of F that satisfies this criterion
and has a minimal number of states. Section 3 offers one of the rare examples where
this heuristic fails to yield a minimal automaton.
Section 4 outlines an implementation for the described strategy.
In the last section, we give a different definition for the fundamental automaton in
order to compare it to the “canonical automaton” as introduced in [1] (which contains
as well any minimal NFA as subautomaton). We show that the fundamental and the
canonical automaton may be different, and transfer the criterion mentioned above to
the canonical automaton.
An implementation (written in C) of the heuristic, based on the fundamental automa-
ton, is part of the AMoRE program (computing Automata, MOnoids, and Regular
Expressions), which is available via FTP (ftp.informatik.uni-kiel.de:pub/kiel/amore).
We thank Wolfgang Thomas for helpful comments on previous versions of the paper.

1 Preliminaries

We use the standard notation of set theory and formal language theory. For a set P
of sets we write

⋂
P for

⋂
p∈P p. We denote by |Q| the number of elements of Q. ∅

is the empty set and 2Q is the set of all subsets of Q. •⋃ denotes a union of disjoint
sets. By Σ we indicate a finite alphabet, by a, b, c, . . . letters and by u, v, . . . words.
The empty word is written ε.
A nondeterministic finite automaton (NFA) is of the form A = (Q,Σ, I, δ, F) with a
finite non-empty set of states Q, a finite non-empty alphabet Σ, a non-empty set of
initial states I ⊆ Q, a transition function δ : Q × Σ −→ 2Q and a set of final states
F ⊆ Q. If |I| = 1 and ∀q ∈ Q ∀a ∈ Σ |δ(q, a)| = 1, then A is a deterministic
finite automaton (DFA). A triple (q, a, q′) ∈ Q × Σ ×Q with q′ ∈ δ(q, a) is called a
transition.
The transition function δ : Q × Σ −→ 2Q can be extended in a natural way to a
function from 2Q × Σ∗ to 2Q, usually also denoted by δ. We write p w→

A
q to indicate

that q ∈ δ(p, w) and say that there exists a path from p to q labelled w.
If the components of an NFA A are not listed explicitly, we will denote by QA, IA, FA
and δA its set of states (initial states, final states resp.) and its transition function.
We will drop the subscripts only if the NFA is clear from the context.
A word u ∈ Σ∗ is accepted by A, if δ(I, u) ∩ F 6= ∅. The language accepted by A
is L(A) = { u ∈ Σ∗ | δ(I, u) ∩ F 6= ∅ }. Two NFA A and B are called equivalent if
L(A) = L(B). An NFA A is called minimal if all NFA that are equivalent to A have
at least as many states as A.
We assign two languages to every state of an NFA.

75

Definition 1.1 ([10],[5]) Let A be an NFA and q ∈ Q. Then the pre-language of q
and the post-language of q are given by pre(A, q) = L((QA,Σ, IA, δA, {q})) and by
post(A, q) = L((QA,Σ, {q}, δA, FA)), respectively. q is reachable if pre(A, q) 6= ∅ and
q is productive if q is reachable and post(A, q) 6= ∅. Two states p, q ∈ Q are equivalent,
written p ∼ q, if post(A, p) = post(A, q). [q] = { p | p ∼ q } denotes the equivalence
class to which q belongs.

In [1], pre- and post-language are called history and prophecy.
In the sequel all NFA have productive states only.
Now we introduce three classical operations on automata and analyze pre- and post-
languages of the resulting automata.

Definition 1.2 ([10]) Let A be an NFA. Its reversed NFA is A = (Q,Σ, F, δ, I) with
∀a ∈ Σ ∀p, q ∈ Q : p ∈ δ(q, a)⇐⇒ q ∈ δ(p, a).
Given a word u = a1 . . . an the word u = an . . . a1 is its reversed word. Given a
language L the language L = { u | u ∈ L } is its reversed language.

Obviously L(A) =
⋃
q∈F post(A, q) =

⋃
q∈F pre(A, q) = L(A) for all NFA A. Fur-

thermore A is a minimal NFA accepting L iff A is a minimal NFA accepting L.
The next operation is the wellknown powerset construction.

Definition 1.3 ([12]) Let A be an NFA. The subset automaton for A, denoted D(A),
is the DFA B = (QB,Σ, IB, δB, FB), where QB = { δA(IA, u) | u ∈ Σ∗ } ⊆ 2Q, IB =
{ IA }, FB = {P ∈ QB |P ∩ FA 6= ∅ } and with δB(P, a) = δA(P, a) for all P ∈ QB
and for all a ∈ Σ.

Obviously L(A) =
⋃
q∈I post(A, q) = post(B, IB) = L(D(A)).

Next we give the constructive definition of the minimal DFA for a given NFA.

Definition and Theorem 1.4 ([5],[10])
Let A be an NFA and B = D(A). The minimal DFA D = (QD,Σ, ID, δD, FD) for A,
denoted M(B) or MD(A), can be constructed the following way: QD = {[P]|P ∈
QB}, ID = [IB], FD = {[P]|P ∈ FB} and for all states P of QB and for all a ∈ Σ,
δD([P], a) = [δB(P, a)].
Let q be a state of A and [P] be a state of MD(A). We write q < [P] as an
abbreviation for: ∃P ′ ∈ [P] q ∈ P ′. We give some relations that hold between post-
and pre-languages in A and D.

q ∈ F ∧ q < [P] ⇒ [P] ∈ FD(1)

q ∈ I ⇒ q < [P] where [P] is the initial state of D(2)

p
a→
A
q ∧ p < [P] ⇒ q < δD([P], a)(3)

76

Remark 1.5
For every regular language L, there is a unique (up to isomorphsm) minimal DFA D
with L(D) = L, which we call “the” minimal DFA for a language L.
The analogue is not true for minimal NFA since there are regular languages for which
several non-isomorphic minimal NFA accepting these languages exist.
All states of a minimal DFA are reachable and at most one state can be non-
productive. If it exists, this state is called the sink state or — because its post-
language is the empty set — the empty state. Pre-languages of different states of a
DFA are disjoint and post-languages of different states in a minimal DFA are different.
The minimal DFA MD(A) for an NFA A with n states can have up to 2n states.

The next theorem is interesting because it offers a way to compute the minimal DFA
for a given language without computing the equivalence classes of states (as it is
suggested by 1.4).

Theorem 1.6 (Brzozowski [3])
Let L be a regular language and D an arbitrary DFA accepting L. Then E := D(D)
is the minimal DFA accepting L.

Definition 1.7 Let A = (Q,Σ, I, δ, F) and B be nondeterministic automata. A
mapping h : Q→ QB is called a morphism if h(I) ⊆ IB, h(F) ⊆ FB and h(δ(q, a)) ⊆
δB(h(q), a) for all q ∈ Q and a ∈ Σ.
A is called a subautomaton of B if Q ⊆ QB, F = FB ∩ Q, I = IB ∩ Q and δ(q, a) ⊆
δB(q, a) ∩ Q for all q ∈ Q and a ∈ Σ. If δ(q, a) ⊆ δB(q, a) ∩ Q, we call A the
subautomaton of B induced by Q.
If h is a morphism from A to B then we denote by h(A) the subautomaton of B
induced by the set h(Q) of states.

Remark 1.8 Let A and B nondeterministic automata and h a morphism from A to
B. Then L(A) ⊆ L(h(A)) ⊆ L(B).

Proof We have p
w→
A
q ⇒ h(p) w→

h(A)
h(q) ⇒ h(p) w→

B
h(q) and p ∈ F (I) ⇒

h(p) ∈ FB (IB). Thus an accepting path in A is mapped to an accepting path in h(A)
which is an accepting path of B by definition. �

2 The Fundamental Automaton

In this section we construct for every regular language L an NFA F , called the fun-
damental automaton of L, such that for every NFA A accepting L there exists a
morphism from A in F . We will use this fact to show that a minimal automaton
accepting L can be found as a subautomaton of F .
In order to simplify the notation we fix the language L. Let A = (Q,Σ, I, δ, F) be an
arbitrary NFA accepting L, D = (QD,Σ, ID, δD, FD) the minimal DFA accepting L
and E = (QE ,Σ, IE, δE , FE) = D(D). (Because of 1.6, E is the minimal DFA accepting
L.) If E has a sink state then this state is not productive in the reversed automaton

77

E = (QE ,Σ, IE , δE , FE) and we assume that this state and all transitions from this
state are deleted in E .
E has several important properties described in the following remark.

Remark 2.1 E is a reversed automaton to a deterministic finite automaton. There-
fore there exists for all words in L a unique accepting path in E , and deletion of any
transition in δE yields an automaton which accepts a proper subset of L. Moreover,
a post-language of an arbitrary NFA accepting L is a subset of a disjoint union of
post-languages of E . E is isomorphic to MD(A) and thus we can associate to every
state r of E an equivalence class of sets of states of A (cf. Definition 1.4). For every
state q of A we denote by

•
q the set of states r of E with q < r.

Now we arrive at the definition of the fundamental automaton, given E = D(D).

Definition 2.2 (The Fundamental Automaton)
The fundamental automaton F = (QF ,Σ, IF, δF , FF) is defined as follows:

QF = {P ⊆ QE |
⋂
P 6= ∅}

IF = {P ∈ QF | P ⊆ IE }
FF = {P ∈ QF | P ∩ FE 6= ∅ }
δF (P, a) = {P ′ ∈ QF | P ′ ⊆ δE (P, a) } for all P in QF and a in Σ.

We proceed in three steps. First, we show that the fundamental automaton accepts
L. Then we verify that for each automaton A accepting L there exists a morphism
from A into the fundamental automaton of L. This proves that a minimal automaton
accepting L can be found as a subautomaton of F . We conclude with a condition
that describes how to find certain subautomata of F that accept L.

Lemma 2.3 The fundamental automaton F is equivalent to E .

Proof L(F) ⊇ L(E) because E is a subautomaton of F (take all subsets of QF of
size 1). The following fact on the transiton function of F can be shown easily by an
induction on the length of words w:

∀P, P ′ ∈ QF ∀w ∈ Σ∗ P w→
F
P ′ ⇒ ∀p′ ∈ P ′ ∃p ∈ P p

w→
E
p′(4)

Then the definition of initial and final states of F yields: if P w→
F
P ′ is an accepting

path in F then there exists a state p′ ∈ P ′ ∩ FE and a state p ∈ P ⊆ IE with p
w→
E
p′.

Thus L(F) ⊆ L(E). �

Lemma 2.4
Let A be an NFA accepting L and F the fundamental automaton of L. The mapping
q 7→ •

q is a morphism from A to F .

78

Proof

Because of Theorem 1.6, we may regard E as D(D(A)). The states of E are thus sets
of states of D(A). For a state q′ of D(A)) and a state r of E , we have then q′ < r iff
q′ ∈ r.

We will begin by showing that q 7→ •
q is a mapping from QA in QF .

Let q be a state of A and r ∈ •q. Since all states of A are supposed to be productive,
there is a state q′ of D(A) such that q ∈ q′. Since q < r and E is isomorphic to
MD(A), there is a state R of D(A) such that q ∈ R and post(D(A), R) = post(E , r).
(Each state of E corresponds to a non-empty set of states of D(A) whose elements
have the same post-language.)

Now we have

post(D(A), q′) = pre(D(A), q′) ⊆ pre(A, q) = post(A, q) ⊆
⋃
p∈R post(A, p)

= post(D(A), R) = post(E , r) = post(D(D(A)), r) =
⋃
p′∈r post(D(A), p′)

Since different pre-languages of a DFA are disjoint, so are different post-language of
D(A). Thus we may conclude that q′ ∈ r, i.e. r ∈ •q′. Since r was chosen arbitrarily
from

•
q, we have shown

•
q ⊆ •q′.

We have
•
q′ = {r ∈ QE | q′ ∈ r}, thus q′ ∈

⋂ •
q′ ⊆

⋂ •
q, showing that

•
q is a state of F .

So we have shown that q 7→ •
q is a mapping into F .

To show that it is a morphism, we have to verify q ∈ F (I) ⇒ •
q ∈ FF (IF) and

p
a→
A
q ⇒ •

p
a→
F

•
q.

q ∈ IA q ∈ FA p
a→
A
q

⇓ Definition of the reversed automaton

q ∈ FA q ∈ IA q
a→
A
p

⇓ Equations (1,2,3)
•
q ⊆ FE

•
q ∩ IE 6= ∅

•
p ⊇ δE (

•
q, a)

⇓ Definition of the reversed automaton
•
q ⊆ IE

•
q ∩ FE 6= ∅

•
q ⊆ δE (

•
p, a)

⇓ Definition of the fundamental automaton
•
q ∈ IF

•
q ∈ FF

•
p
a→
F

•
q

�

Theorem 2.5 A minimal automaton accepting L can be found as a subautomaton
of F .

Proof Let A be a minimal NFA accepting L and let h : q 7→ •
q be the morphism of

Lemma 2.4. The number of states of h(A) is less or equal to the number of states of

79

A. Furthermore we have: L = L(A) ⊆ L(h(A)) ⊆ L(F) = L. Thus L(h(A)) = L and
h(A) is a minimal NFA accepting L and a subautomaton of F . �

With the next lemma we give a criterion for equivalent subautomata of F that im-
proves the one given by Kim [11] and was suggested by Kahlert [9]. Kim claimed that
his criterion was necessary, which is not true in general.
We start with an auxiliary definition. Let Q be a set, P ⊆ 2Q and R ⊂ Q. We say P
covers R with subsets iff R =

⋃
{P ∈ P | P ⊆ R}.

Lemma 2.6
Let FP be a subautomaton of F induced by the set P ⊆ QF of states. Assume

(i) P covers IE with subsets and

(ii) P covers δE (P, a) with subsets for all P ∈ P, a ∈ Σ.

Then FP is equivalent to F .

Proof Let P fulfill conditions (i) and (ii) and let p0
a1→
E
. . .

an→
E
pn be an accepting

path in E . We show that there exists an accepting path P0
a1→
FP

. . .
an→
FP

Pn in FP with

pi ∈ Pi. By p0 ∈ IE and condition (i) there is a set P0 ∈ P with P0 ⊆ IE and p0 ∈ P0.
Furthermore P0 is initial in FP . We find P1 . . .Pn by induction in the following way:
if pi ∈ Pi then pi+1 ∈ δE (Pi, ai+1); by condition (ii) there exists Pi+1 ⊆ δE (Pi, ai+1),
Pi+1 ∈ P with pi+1 ∈ Pi+1. By definition of F we get Pi

ai+1→
F

Pi+1. Pn is final in F
because pn ∈ Pn and pn is final in E . Thus L(E) ⊆ L(FP). �

3 An Example

In this section we present a simple example that shows that the criterion given in 2.6
is not necessary for subautomata of the fundamental automaton which are equivalent
to the given NFA. Thus it does not yield an algorithm for determining a minimal
NFA in general.
Consider the NFA A and its reversed NFA A given by the following transition tables.
Initial and final states are marked with “i” or “f”, respectively.

A

a b
f0 0, 2
1 3 2, 3
i2 1 0, 1
3 3 1

A

a b
i0 0 2
1 2 2, 3

f2 0 1
3 1, 3 1

The following tables show the minimal DFA E equivalent to A, the reverse of this
DFA and the mapping q 7→ •

q from QA into 2QE . The leftmost column of the first
table contains for each state of E the corresponding states of A.

80

a b
{0} ie0 e0 e1
{2} fe1 e0 e2
{1} e2 e1 e3
{2, 3} fe3 e4 e2
{0, 1, 3} e4 e5 e5

{0, 1, 2, 3}, {1, 2, 3} fe5 e5 e5

a b
fe0 e0, e1
ie1 e2 e0
e2 e1, e3

ie3 e2
e4 e3

ie5 e4, e5 e4, e5

h(0) = {e0, e4, e5}
h(1) = {e2, e4, e5}
h(2) = {e1, e3, e5}
h(3) = {e3, e4, e5}

The states of the fundamental automaton are certain subsets of QE . In fact, a look
at the correspondence between E and D(D(A)), which is not presented here, would
show that the fundamental automaton contains actually all subsets of QE . That is
why we do not present it here. But we show the transitition table of the image of A
under the morphism h.

a b
f{e0, e4, e5} {e0, e1, e3, e4, e5} {e4, e5}
{e2, e4, e5} {e3, e4, e5} {e1, e3, e4, e5}

i{e1, e3, e5} {e2, e4, e5} {e0, e2, e4, e5}
{e3, e4, e5} {e3, e4, e5} {e2, e4, e5}

This transition table has to be interpreted like this: if Q ⊆ QE is in the line cor-
responding to P ⊆ QE and letter a, then in the fundamental automaton there is a
transition from P with a to each subset ofQ. So the subautomaton of the fundamental
automaton induced by the image of h is:

a b
fh(0) h(0), h(2), h(3)
h(1) h(3) h(2), h(3)
ih(2) h(1) h(0), h(1)
h(3) h(3) h(1)

The automaton is (up to isomorphism) the same as A, except for one superflous
transition.
The chosen set of states P = {h(0), h(1), h(2), h(3)} of the fundamental automaton
covers indeed the set of initial states of E with subsets, so the first criterion of 2.6
holds. But the transition table shows that the set δE ({e0, e4, e5}, b) = {e4, e5} is
not covered with subsets; so the second property does not hold. Thus h(A) is a
subautomaton of the fundamental automaton that accepts L, but does not fulfill the
conditions (i) and (ii) of Lemma 2.6.
In fact, there is no set of states with the property of Lemma 2.6 that has less than
5 states, so for this example language the suggested heuristic fails to find a minimal
NFA.

4 Some Comments on the Practical Computation

In this section we outline an algorithm to compute a small NFA. This algorithm is
based on the results of Section 2.
An implementation of this strategy (with some improvements not described here) is
part of the AMoRE-System, available via Anonymous FTP.

81

Main Idea

The main idea how to compute a small NFA for a given regular language L is to
proceed in four steps:

1. Compute a minimal DFA E for L.

2. Determine the allowed sets, i.e. those subsets of the state set of E that are states
of the fundamental automaton.

3. Search for a selection P of allowed sets that satisfies the cover/closure property
(i), (ii) of Lemma 2.6 and is minimal with that property.

4. Compute the subautomaton of the fundamental automaton induced by the se-
lection P.

The most important point is, of course, the step 3. For this step we will give (in
Figure 1) a recursive procedure cover that explores in a backtracking strategy all
reasonable extensions of a given selection to a selection satisfying the cover/closure
property. cover receives three arguments called allowed, selected, remain for
subsets of QE . The intuitive meaning is the following: allowed contains all allowed
sets that must be considered for possible extensions of the set selected. selected
contains the subsets of QE-states that have been selected so far. remain contains
all subsets of QE-states for which we will have to make sure (possibly by further
selections) that selection covers them by subsets.
More precisely, the pre- and postcondition of cover are given by:

Precondition: IE 6∈ remain⇒ (selected covers IE by subsets) and
∀R ∈ selected ∀a ∈ Σ : δE (R, a) 6∈ remain⇒ (selected covers δE (R, a) by subsets)
Postcondition: If there is a P ⊇ selected with P\selected ⊆ allowed such
that P fulfills the cover/closure property of Lemma 2.6, then the global variable
best solution contains such a P of minimal size, otherwise best solution remains
unchanged. In any case, best known = |best solution|.

With this procedure cover, the algorithm for the computation of a small NFA looks
like this:

1. Compute the minimal DFA D for L.

2. Apply the powerset constuction to D and obtain E .

3. Let best known = |QE|+ 1.

4. cover({P ⊆ QE |
⋂
P 6= ∅}, ∅, {IE})

5. Define the output automaton A = (Q,Σ, I, δ, F) by

Q = best solution,
I = {P ∈ Q | P ⊆ IE},
F = {P ∈ Q | P ∩ FE 6= ∅},
δ(R, a) = {P ∈ Q | P ⊆ δE (R, a)} for all R ∈ Q, a ∈ Σ.

82

cover(allowed,selected,remain)
/* allowed, selected, remain ⊆ QE fulfill the precondition */
/* explores all reasonable extensions of selected
to a set satisfying the cover/closure property of Lemma 2.6 */
if remain = ∅ then

/* no sets remain to be covered, we have a solution! */
best solution := selected

else
/* there are still sets that remain to be covered */
for all current ∈ remain do

if selected covers current with subsets then
/* current is already covered, treat the rest of remain */
cover(allowed, selected, remain\{current})

else
/* current has to be covered by further selections */
if |selected|+ 1 < best known

/* stop backtracking if best known solution cannot be improved */
for all P ⊆ current with P ∈ allowed do

allowed := allowed\{P}
cover(allowed, selected∪ {P}, remain∪ {δE (P, a) | a ∈ Σ})

rof
fi

fi
rof

fi

Figure 1: The recursive procedure cover

One important and simple way to improve this strategy is to compare the size of the
state set of E and D after line 2 and exchange them if D is smaller. In this case, the
algorithm computes a small NFA for the reversed language L, thus the output NFA
has to be reversed as well.
Note that the modification of allowed in the last for-loop is to avoid that one and the
same selection of subsets is explored more than once: When inside one incarnation of
cover the addition of a certain set P to the current selection has been fully explored,
it is not necesarry to consider P any more unless this incarnation is exited and the
current selection becomes smaller.
In the programm system AMoRE, a similar (but non-recursive) algorithm has been
implemented. One great problem one has to deal with is how to represent the subsets
of QE and 2QE without wasting too much space. We chose to represent the subsets
of QE by 32-bit integers, so the available implementation does not work if both the
minimal DFA for L and for L have more than 32 states.
Another problem is how to realize the last for-loop running over all subsets of a
given set. Here, we have decided to trace the sets in the canonical ordering they

83

have when represented by integers. Experience shows that this order influences the
performance of the algotithm very much, so it might be advantageous to choose a
more sophisticated ordering: For example, one could try to treat the large subsets
before the small ones or vice versa.

5 Fundamental vs. Canonical Automaton

In this section, we will give a more abstract definition of the fundamental automaton,
which is, however, less suitable for actual calculation. Using this characterization, we
compare the fundamental automaton to a different automaton, the so-called canonical
automaton, defined by Arnold, Dicky and Nivat in [1]. This one has similar proper-
ties as the fundamental automaton, but it may be smaller. Moreover, we transfer
the mentioned sufficient cover/closure property (conditions (i),(ii) of Lemma 2.6) for
equivalent subautomata from the fundamental to this canonical automaton.

5.1 Fundamental Automaton Revisited

Define the MDFA D′ (minimal deterministic finite automaton) for a language L by

QD′ = {w−1L | w ∈ Σ∗}
ID′ = {L}
δD′(w−1L, a) = (wa)−1L

FD′ = {w−1L | ε ∈ w−1L}

Observing the fact w−1L = Lw−1, we get that the MDFA for L is isomorphic to the
following DFA E ′ via the mapping M 7→M .

QE′ = {Lw−1 | w ∈ Σ∗}
IE′ = {L}
δE′(Lw−1, a) = L(aw)−1

FE′ = {Lw−1 | ε ∈ Lw−1}

With this definition we can define the fundamental automaton F ′ differently than in
Section 2 by:

QF ′ = {P ⊆ QE′ |
⋂
P 6= ∅}

IF ′ = {P ∈ QF ′ | ε ∈
⋂
P}

δF ′(P, a) = {R ∈ QF ′ | R ⊆ δE′(P, a)}
FF ′ = {P ∈ QF ′ | L ∈ P}

To see that this definition is indeed equivalent to the one given before, let E = D(D′)
with D′ being the minimal DFA for the language L as described above, i.e. the states
of D′ are left quotients. (Note that D′ is a possible choice for the D of the last section,
so E is a possible choice for the E in SectionSecFunAut). Let F ′ be the fundamental
automaton as defined in Definition 2.2 of Section 2, i.e. with states in 2QE .

Lemma 5.1 F ′ is isomorphic to F .

84

Proof It is a well known fact that there exists an isomorphism α from E onto E ′,
namely

α : QE −→ QE′ , ({u−1L | uw ∈ L}) 7→ Lw−1.

We claim that the extension from α to QF ⊆ 2QE into 2QE′ is an isomorphism from
QF onto QF ′ . We will denote this extension again by α. Since the original α is
injective, so is this extension.

Let ∅ 6= M ⊆ QE = {{u−1L | uw ∈ L} | w ∈ Σ∗}. Then we have the following
equivalence showing that α is indeed a mapping from QF into QF ′ .

M ∈ QF ⇐⇒
⋂
M 6= ∅

⇐⇒ ∃u−1L ∈ QD′ : ∀P ∈M : u−1L ∈ P
⇐⇒ ∃u ∈ Σ∗ : u−1L 6= ∅ ∧ ∀Lw−1 ∈ α(M) : uw ∈ L
⇐⇒

⋂
α(M) 6= ∅

⇐⇒ α(M) ∈ QF ′

Similarly, we have

M ∈ IF ⇐⇒ M ⊆ IE = FE

⇐⇒ ∀P ∈ M : P ∩ ID′ 6= ∅
⇐⇒ ∀P ∈ M : L ∈ P
⇐⇒ ∀Lw−1 ∈ α(M) : w ∈ L
⇐⇒ ε ∈

⋂
α(M)

⇐⇒ α(M) ∈ IF ′

The correspondence of the set of final states is shown by the following equivalences:

M ∈ FF ⇐⇒ ∅ 6= M ∩ FE = M ∩ IE
⇐⇒ ID′ ∈ M
⇐⇒ {u−1L ∈ QD | ε ∈ u−1L} ∈M
⇐⇒ L = α({u−1L | ε ∈ u−1L}) ∈ α(M)
⇐⇒ α(M) ∈ FF ′

Finally, we check that α commutes with the transition relations. This is verified as
follows:

N ∈ δF (M, a) ⇐⇒ N ⊆ δE (M, a)
⇐⇒ α(N) ⊆ α(δE (M, a))
⇐⇒ α(N) ⊆ δE′(α(M), a)
⇐⇒ α(N) ∈ δF ′(α(N), a)

This completes the proof and establishes the claimed correspondence of the two def-
initions for the fundamental NFA. In the remainder of the paper we will write F
instead of F ′. �

85

5.2 The Canonical Automaton

We compare the fundamental automaton to a different NFA introduced by Arnold,
Dicky and Nivat in [1]. They defined the canonical automaton C as described now.
We start with an auxiliary definition. For K ⊆ Σ∗, let φ(K) = {u ∈ Σ | uK ⊆ L} =⋂
v∈K Lv

−1.

Definition 5.2 The canonical automaton C is given by

QC= {φ(K) | K ⊆ Σ∗ and K, φ(K) 6= ∅}
= {
⋂
P 6= ∅ | P is a nonempty set of right quotients of L}

IC = {
⋂
P ∈ QC | ε ∈

⋂
P}

δC(
⋂
P, a) = {

⋂
R ∈ QC | (

⋂
P)a ⊆

⋂
R} for all

⋂
P ∈ QC and all a ∈ Σ∗ :

FC = {
⋂
P ∈ QC |

⋂
P ⊆ L}

The canonical and the fundamental automaton have similar properties. For example,
it is shown in [1] that for any NFA A accepting L, there exists a morphism from A
into C, namely q 7→ φ(post(A, q)). Thus any minimal NFA accepting L is isomorphic
to some subautomaton of C.
An interesting fact about the canonical automaton is that it is in some sense the
smallest NFA with that property, because any epimorphism from C onto an equivalent
NFA is injective.
Let us denote by F the fundamental automaton as defined in this section. The relation
between the fundamental automaton and the canonical automaton is illustrated by
the observation of [1] that a morphism f from F into C is given by

f : P 7→ φ(post(F , P)) =
⋂
P

To see the last equality we observe that for any w ∈ Σ∗ and any P ∈ QF we have

w ∈ post(F , P) ⇐⇒ ∃R ∈ QF : R ∈ FF ∧R ∈ δF (P, w)
⇐⇒ ∃R ∈ QF : L ∈ R ∧ δE (R,w) ⊆ P
⇐⇒ ∃R ⊆ QE :

⋂
R 6= ∅ ∧ L ∈ R ∧ ∀Lv−1 ∈ R(L(wv)−1 ∈ P)

⇐⇒ Lw−1 ∈ P.

(To see the last implication from right to left choose R := {L}.) This shows for any
u ∈ Σ∗ and any P ∈ QF

u ∈ φ(post(F , P)) ⇐⇒ ∀w ∈ post(F , P) : uw ∈ L
⇐⇒ ∀w ∈ Σ∗ : Lw−1 ∈ P ⇒ uw ∈ L
⇐⇒ ∀w ∈ Σ∗ : Lw−1 ∈ P ⇒ u ∈ Lw−1

⇐⇒ u ∈
⋂
P

The morphism f is always surjective, and it is injective if there is no right quotient
that is a superset of a nonempty intersection of other right quotients. There are

86

examples where there is such a right quotient. For example for L = {aa, ab, bb}, the
automaton F has 5 states (namely {La−1}, {Lb−1}, {La−1, Lb−1}, {L} and {{ε}}),
whereas C has 4 states (namely {a}, {a, b}, L and {ε}); so the two automata F and
C are in general not isomorphic.
The conditions of Lemma 2.6 leading to the minimization heuristic can be transfered
to C, yielding another heuristic for finding a small NFA for a given language.

5.3 A Criterion for Equivalent Subautomata of the Canonical
NFA

Lemma 5.3 Let P ⊆ QF and P∩ ⊆ QC with P = {P ⊆ QE |
⋂
P ∈ P∩}. (That is,

P = f−1(P∩), with f being the morphism P 7→
⋂
P from above.) Let the following

two properties be fulfilled:

(i) P covers IE with subsets and

(ii) For all R ∈ P and for all a ∈ Σ, P covers δE (R, a) with subsets.

We claim that the subautomaton CP∩ of C induced by P∩ recognizes L.

Proof The direct proof of this result is possible, but we can argue simply like this:
Because of Lemma 2.6, the subautomaton FP of F induced by P is equivalent to A.
The subautomaton CP∩ is simply the image of FP under the morphism P 7→

⋂
P , so

we have L ⊆ L(CP∩) ⊆ L(C) = L, showing our claim. �

Unfortunately, this cover/closure property of Lemma 5.3 is not necessary for equiva-
lent subautomata of C, so also for C it does not give a heuristic that always produces
a minimal NFA.
One way of making use of this lemma would be to proceed as described in Secion 4,
but put together states that have the same image under P 7→ φ(post(F , P) before the
backtracking is started.

6 Conclusion

The minimization of nondeterministic finite automata is a difficult problem. One
possible approach is to search among the subautomata of either the fundamental or
the canonical automaton of a language. Both of these do contain all minimal NFA
as subautomata, but we have no efficiently testable criterion that characterizes those
subautomata that accept the same language. All we have is a sufficient criterion, so
one can at least search for subautomata fulfilling this. It remains an open question
if and how this criterion can be modified so that it characterizes all equivalent sub-
automata of the fundamental or the canonical automaton. If this modification is not
possible, it would be interesting at least to know for which languages the mentioned
sufficient criterion will be necessary.
Apart from the minimization problem the definition and the properties of the fun-
damental and canonical automaton are interesting. Both of these are unique for a
given regular language. Both contain homomorphic images of all automata equivalent
to themselves, and the canonical automaton is in some sense the smallest with that
property.

87

References

[1] A. Arnold, A. Dicky, M. Nivat, A note about minimal non-deterministic au-
tomata; in: Bulletin of the EATCS 47, June 1992, pp. 166-169.

[2] W. Brauer, Automatentheorie, Teubner, Stuttgart 1984.

[3] J.A. Brzozowski: Canonical regular expressions and minimal state graphs for
definite events, in: Proc. Symp. on Math. Theory of Automata, Vol. 12, Brook-
lyn, N. Y.: Brooklyn Polytechnic Institute, 1963, pp. 529 -561.

[4] J.E. Hopcroft: An n log(n) algorithm for minimizing states in a finite automa-
ton; in: Z. Kohavi, A. Paz (Eds.): Theory of Machines and Computation;
Academic Press, New York etc., 1971, pp. 189-196.

[5] J.E. Hopcroft, J.D. Ullman: Introduction to Automata Theory, Languages, and
Computation; Addison-Wesley, 1979.

[6] M.R. Garey, D.S. Johnson: Computers and Intractability – A Guide to the
Theory of NP-Completeness; Freeman, San Francisco, 1979.

[7] K. Indermark: Zur Zustandsminimisierung nichtdeterministischer erkennender
Automaten; GMD Seminarberichte Bd. 33, Gesellschaft für Mathematik und
Datenverarbeitung, St. Augustin – Bonn, 1970.

[8] T. Jiang, B. Ravikumar: Minimal NFA Problems Are hard (Extended Ab-
stract); in: J.Leach Albert, B. Monien, M.Rodriguez Artalejo (Eds.): Au-
tomata, Languages and Programming, 18th International Colloquium, Madrid,
July 1991, Proceedings, LNCS 510, Springer, Berlin etc., 1991, pp. 629-640.

[9] T. Kahlert: Ein Verfahren für die Minimierung nichtdeterministischer
endlicher Automaten und seine Implementierung; Diplomarbeit, Christian-
Albrechts-Universität, Kiel, 1991.

[10] T. Kameda, P. Weiner: On the State Minimization of Nondeterministic Finite
Automata; IEEE Trans. Comp. C–19(1970), pp. 617-627.

[11] J. Kim: State minimization of nondeterministic machines; IBM Thomas J.
Watson Res. Center Rep. RC 4896, 1974.

[12] M.O. Rabin, D. Scott: Finite Automata and their decision problems; IBM J.
Res. and Develop. 3, April 1959, pp. 114-125.

88

Efficient Simplification of Bisimulation Formulas

Uffe H. Engberg
BRICS ∗Department of Computer Science, University of Aarhus, Denmark

Kim S. Larsen †

Department of Mathematics and Computer Science, Odense University, Denmark

Abstract

The problem of checking or optimally simplifying bisimulation formulas is likely
to be computationally very hard. We take a different view at the problem: we set
out to define a very fast algorithm, and then see what we can obtain. Sometimes our
algorithm can simplify a formula perfectly, sometimes it cannot. However, the algo-
rithm is extremely fast and can, therefore, be added to formula-based bisimulation
model checkers at practically no cost. When the formula can be simplified by our
algorithm, this can have a dramatic positive effect on the better, but also more time
consuming, theorem provers which will finish the job.

1 Introduction

The need for validity checking or optimal simplification of first order bisimulation formulas
has arisen from recent work on symbolic bisimulation checking of value-passing calculi
[4, 9, 15]. The NP-completeness of checking satisfiability of propositional formulas [3]
implies that validity checking of that class of formulas is co-NP complete. Additionally,
checking of quantified formulas is P-space hard [7], so there is not much hope for a fast
algorithm for deciding exactly when a bisimulation formula is valid.

Instead, we set out to solve the problem of what you can get for free, i.e., to what extent
is it possible to decide validity simply while reading the formula? As it turns out, there
is almost nothing that can be done in linear time. The most simple tasks of storing and
retrieving information about variables will cost O(n log n). So, we allowed ourselves this
extra log-factor and changed the question to what you can get almost for free. As we shall
demonstrate in this paper, the algorithm we have designed is very fast. Not alone does
it run in O(n log n); the constant is also very small. On average, we read through the
formulas at a rate of about 75 Kbytes per second. Of course, this is only interesting if the
algorithm outputs useful answers reasonably frequently, i.e., in the absence of an obvious
notion of optimal simplification (to a minimal equivalent formula), if the algorithm can
reasonably frequently guarantee that the formula is valid, rule out that the formula could
be valid, or maybe simplify a huge formula to a much smaller equivalent one. It is not easy
∗ Basic Research in Computer Science, a Centre of the Danish National Research Foundation.
† The initial part of this work was done while this author was at Aarhus University.

89

to measure how often the algorithm produces a useful answer, but through examples, we
show that there are families of process expressions which give rise to formulas, where our
algorithm is successful.

The algorithm make a single pass over the formula making no assumptions about the
variable names. Notice that this also implies that if formulas are passed on to our algorithm
from another program, they do not have to be saved at any point, but can be passed on
to our program via pipelining.

As already mentioned, in addition to validity checking, we can also simplify formulas.
This greatly increases the usefulness of this work. Even if our algorithm fails to prove the
validity of a formula, it will quite often simplify the formula so drastically that the validity
of the formula (or the opposite) can easily be asserted by the user. Another possibility
is to check the simplified formula for validity using other tools. Tools that would succeed
more often, but the complexity of which would make it impossible to work on the original
formula. The main advantage of simplifying formulas is that the algorithm can be built
into the program generating the bisimulation formulas and simplify the formula on the fly.
Also, intermediate simplifications can be used to prune the generation of other subformulas.
This can be of vital importance since the formulas can become exponentially large.

Our algorithms work just as well on formulas with free variables as on closed formulas.
This means that by simplifying a formula with free variables, we actually characterize the
conditions, in terms of the free variables, under which two processes are bisimilar.

2 Bisimulation Formulas

In this section, we introduce bisimulation formulas and some general notions from formal
logic. Due to lack of space we shall only briefly sketch how bisimulation formulas are
obtained.

In [4, 9], bisimulation formulas are used in a three stage process of verifying bisimilarity of
value-passing programs ([15] obtain similar formulas, albeit with a different approach).

In the first stage, symbolic transition graphs (a generalization of the standard notion of
labeled transition graphs) are generated from terms of some value-passing language, say
the full CCS calculus [14]. The two graphs are symbolic bisimilar [4, 9, 10] iff the two terms
are bisimilar in traditional sense.

Below, two processes are shown together with their associated graphs. Following [14], 0
is the process having no actions, whereas the prefixed process τ.p can make an internal
action and then act as p. Similarly, there are input (output) prefixes α?x. (α!x.) for
receiving (sending) values on channel α. The expression if E then p can do the actions of
p, provided the condition E evaluates to true, T. The process p+ p′ acts as either p or p′.

A1(x, y) def= τ.0 + τ.if x ≡ y then τ.0

�

?

J
Ĵ

g1

T, τT, τ

x ≡ y, τ

A3(x, y) def= τ.(if x ≡ y then τ.0) + if x ≡ y then τ.0

�

J
Ĵ

?

g3

x ≡ y, τT, τ

x ≡ y, τ

90

To shorten the presentation, all nodes except for root nodes, have been omitted from the
graphs. Each edge is labeled with a guarding condition and a (symbolic) action. The initial
conditions of the graph g1 associated with A1 are T, whereas the last condition is x ≡ y,
i.e., x and y should have equivalent values.

In the next stage, an algorithm is used for finding a first order boolean expression mgb,
called the most general boolean, characterizing the conditions for which two finite symbolic
transition graphs are (symbolic) bisimilar.

Intuitively, two processes are bisimilar if, whenever one process can do an action, the other
has a matching action such that the resulting two processes again are bisimilar. This is
reflected in the bisimulation formula. For example, the fact that g3 must match an action
corresponding to the left edge of g1, is captured in the mgbg1,g3 subformula

T→
T ∧ [T ∧ (x ≡ y → F)]
∨
x ≡ y ∧ [T ∧ T]

If an instantiation of variables satisfies the guarding condition T of g1, then it must satisfy
a guarding condition, T or x ≡ y, of g3 as well as the corresponding mgb, [T∧(a ≡ y → F)]
or [T∧ T].

When matching output actions, the values sent must be equal. An equality predicate
captures this. By input, universal quantification is used to express that for all values
received, the processes are bisimilar.

In the final stage, validity of the bisimulation formula is checked. If it is valid, the origi-
nal programs are bisimilar under all instantiations. Otherwise, the formula expresses the
weakest conditions on the instantiations for which they are bisimilar. Later, in section 7,
we shall see that mgbg1,g3 is in fact valid.

Formally, the class of formulas, which we will work with in the rest of this paper, is defined
by the syntax

E ::= P | E ∧E | E ∨ E | P → E | ∀x : E and P ::= T | F | x ≡ y,

where x and y range over a set, V , of variables. As usual, formulas are closed if they have
no free variables. Notice that bisimulation formulas only have universal quantification.
The binary predicate symbol ≡ is assumed be interpreted as an equivalence relation ≡D
over a nonempty domain D. It is then standard how to define when an environment , i.e.,
a function from V to D, satisfies a formula. An environment satisfies a set of formulas Γ,
if it satisfies each formula of Γ. Γ semantically entails E, written Γ |= E, if E is satisfied
by any environment satisfying Γ. E is valid, |= E, if ∅ |= E.

The class of bisimulation formulas is a subset of the class of all quantified formulas and
checking validity of bisimulation formulas is not P-space hard. An easy reduction shows
that checking satisfiability with respect to an environment is NP complete, so presumably
checking validity of bisimulation formulas is co-NP complete.

We now state some general properties of entailment relevant for the development of the
algorithm. For simplicity, we write Γ as E1, . . . , En when Γ = {E1, . . . , En}. Similarly, we
write Γ,∆ for Γ ∪∆.

91

Theorem 1 (Entailment)

a) If Γ |= E then Γ,∆ |= E (Ext)

b) If E ∈ Γ then Γ |= E (Rep)

c) If Γ |= E and Γ, E |= E′ then Γ |= E′ (Cut)

d) If Γ |= E and E |= E′ then Γ |= E′ (Trans)

e) Γ |= E and Γ |= E′ iff Γ |= E ∧E′ (Conj)

f) Γ, E |= E′ iff Γ |= E → E′ (Imp)

Proof Standard, see e.g. [16]. 2

In general, there is not any similar disjunction theorem allowing both introduction and
elimination to the right. However, from the entailment theorems and a few tautologies,
we get proposition 2. As a consequence of ≡D being an equivalence relation we also have
proposition 3.

Proposition 2 If Γ |= E or Γ |= E′, then Γ |= E ∨E′.

Proposition 3 a) |= x ≡ x b) x ≡ y |= y ≡ x c) x ≡ y, y ≡ z |= x ≡ z

3 The Abstract Algorithm

We now set out to design an algorithm for checking validity of formulas with an equivalence
predicate. We keep it as abstract as possible to allow for a large degree of freedom in the
choice of data structures in the actual implementation.

Intuitively, the idea of the algorithm is to collect in a relation R (over variables) information
about variables known to be equivalent when checking subformulas. For instance, checking
the validity of a formula like x ≡ y → E is reduced to checking E under the assumption
that x and y are equivalent, i.e. (x, y) is added to R and E then checked. To exploit that ≡
is an equivalence relation, the symmetric and transitive closure, is taken before proceeding
to E. However, when checking E of the formula ∀x : E the situation is quite the opposite.
Since a new scope is entered, all previous collected information in R concerning x, must
be removed before E is checked.

Formally, for R denote the symmetric and transitive closure by R⊕, the reflexive closure,
R ∪ {(x, x) | x ∈ V }, by R0 and the removal of x, {(y, z) ∈ R | y 6= x, z 6= x}, by R \ x.
Notice, R \ x ⊆ R, and if R is symmetrically and transitively closed, then so is R \ x.

In order to connect with the logic, we associate with R the set of formulas R≡
def= {x ≡

y | (x, y) ∈ R}. The notions of closures and removal extend to R≡ in the natural way:
R≡ \ x is (R \ x)≡ etc.

The algorithm is conveniently described using Kleene’s three-valued logic [11], the three
truth-values being t for “true”, f for “false” and u for “undefined”/ “unknown”. The
Kleene truth tables for conjunction, ∧K, disjunction, ∨K, and implication,→K, are:

92

∧K t f u
t t f u
f f f f
u u f u

∨K t f u
t t t t
f t f u
u t u u

→K t f u
t t f u
f t t t
u t u u

The abstract algorithm is expressed in terms of a function, ||=, which given a bisimulation
formulaE and a symmetrically and transitively closed relationR, returns t only ifR≡ |= E,
and f only if R≡ 6|= E. From now on, R is assumed to be symmetrically and transitively
closed. Writing ||= infix, the definition is:

R ||= E is case E of T : t
F : f

x ≡ y : if x R0 y then t else u
E′ ∧ E′′ : R ||= E′ ∧K R ||= E′′

E′ ∨ E′′ : R ||= E′ ∨K R ||= E′′

E′ → E′′ : R ||= E′→K R′ ||= E′′,

where R′ =
{

(R ∪ {(x, y)})⊕, if E′ is x ≡ y
R, if E′ is T or F

∀x : E′ : R \ x ||= E′

Notice that ||= is well-defined because we take the symmetric and transitive closure of
(R ∪ {(x, y)}).
Given a formula E, the initial call to this function will be ∅ ||= E, where ∅ is the empty
relation.

Proving correctness is a matter of proving soundness of ||= relative to |=. First, we need a
small result linking R≡ to universal quantification.

Lemma 4 If R≡ \ x |= E, then R≡ |= ∀x : E.

Proof Assume that R≡\x |= E and let an environment ρ satisfying R≡ be given. Because
R≡ \x ⊆ R≡, ρ must satisfy R≡ \x as well. Now x does not occur in any formula of R≡ \x
so all environments differing from ρ only on the value of x, will then also satisfy R≡\x. By
the assumption each such environment also satisfies E wherefore the original environment
ρ satisfies ∀x : E. 2

Writing ||= E for ∅ ||= E, we can now state the correctness of the algorithm.

Theorem 5 (Correctness) a) If ||= E = t, then |= E. b) If ||= E = f, then 6|= E.

Proof Part a) of the theorem follows from the stronger statement

if R ||= E = t then, R≡ |= E

which we prove by induction on the structure of E. Assume R ||= E = t. We consider the
forms of E:

T, F: In general, Γ |= T, so also R≡ |= T. The case of F is trivial, since R ||= F 6= t.

93

x ≡ y: By definition of 0, it follows that R ||= x ≡ y = t iff either x R y or x = y.
Now, x R y is equivalent to x ≡ y ∈ R≡. By (Rep), we get R≡ |= x ≡ y. In the case
x = y, the situation is really that E is x ≡ x. By (Ext) and a) of proposition 3, we
directly obtain R≡ |= x ≡ x.

E′ ∧E′′: By definition, R ||= E′ ∧ E′′ = t implies R ||= E′ = t and R ||= E′′ = t. By
induction, we obtain that R≡ |= E′ and R≡ |= E′′. Using (Conj), we obtain that
R≡ |= E′ ∧ E′′.

E′ ∨E′′: Similar, using proposition 2 instead of (Conj).

E′ → E′′: By the definition of→K, we must have R ||= E′ = f or R′ ||= E′′ = t. The forms
of E′:

T: Then R′ = R and because R ||= T = t, it follows that R ||= E′′ = t. As above we
deduce R≡ |= E′′. Using (Ext), we get R≡,T |= E′′ and therefore R≡ |= T→ E′′

follows by (Imp).
F: In general Γ, F |= E, so in particular R≡, F |= E′′. By (Impl), R≡ |= F→ E′′.

x ≡ y: We have R ||= x ≡ y = t or R ||= x ≡ y = u. In either case, we must have
R′ ||= E′′ = t, where R′ = (R ∪ {(x, y)})⊕. By induction, we get R′≡ |= E′′,
which is the same as (R≡, x ≡ y)⊕ |= E′′. Now any z ≡ w in (R≡, x ≡ y)⊕ can
be deduced from R≡, x ≡ y so by repeated use of (Cut), each of these z ≡ w
can be removed from the hypothesis and we finally get R≡, x ≡ y |= E′′. Thus,
by (Impl), R≡ |= x ≡ y → E′′.

∀x : E′: By the induction hypothesis we get that R≡ \ x |= E′. The result follows from
lemma 4.

Part b) follows similarly from the stronger statement that if R ||= E = f, then R≡ |= ¬E.
2

4 The Concrete Algorithm

In this section, we discuss the implementation of the abstract algorithm outlined in sec-
tion 3. The function ||=, which is defined there, closely follows the structure of a formula E.
The concrete implementation in this section will follow this structure in exactly the same
way. So, the primary task is to find a representation of the relation R such that operations
on this relation (union, closure, checking for equivalence, etc.) can be performed efficiently.

The primary operations are to make two variables equivalent and to test whether two
variables are already equivalent. This is an instance of the so-called disjoint set problem,
which is usually solved using rooted trees [6]. To obtain the best possible performance,
path compression (McIllroy and Morris) and union by rank [17] (or similar schemes) are
normally used to obtain an amortized complexity of O(A−1(n)) per find operation [17, 19],
where A−1 is the inverse of the (unary) Ackermann function [1].

However, when processing formulas like (x ≡ y → E)∧E′, we need to first form the union
of the equivalence classes of x and y, then process the expression E, and then deunion
(undo) the last union before processing E′. Path compressions are impossible to undo
without ruining the complexity, so we only use union by rank, and obtain a complexity of
O(log n) per find [18]. In order to undo the unions, each union operation is registered on a

94

stack. In this way, deunions can be done in constant time (unions are still constant time).
These three operations, find, union, and deunion, can also be implemented such that the
amortized complexity for the find operation becomes O(logn/(log log n)). That proposal
is from [12]. See [20] for the analysis. However, the size of the overhead is so large that
for formulas that we consider (up to approximately 5Mbytes), this method is slower. For
further details on disjoint set implementations, see [13]. We call the structure we use a
union-find-deunion (UFD) structure.

For formulas without universal quantification, this would be all we would need. However,
formulas like (∀x : E) ∧E′ require that the variable x is freed from previous unions while
processing E. Afterwards, for the processing of E′, all the old information on x must be
restored. Having to keep track of several versions of variables means that the variables
cannot be used directly in the UFD structure. Instead, we do the following: at any point
during the processing of a formula, each variable, x, has an associated stack of pointers
corresponding to the number of active versions of x. In greater detail, when a quantifier
construction ∀x : is encountered, a pointer is pushed onto x’s stack. The pointer points to
a new item in the UFD structure not related to anything, which was previously there. In
this way, the old environment can be restored by simply popping the stack.

In order to access the stacks associated with variable names as fast as possible, variable
names (along with the pointer to the stacks) are organized in a red-black tree [2, 8], which
is one of the efficient implementations of dictionaries with a complexity of O(log n) per
operation, where n is the number of elements in the tree.

To summarize, we use a red-black tree that has variable names as keys and stacks of pointers
as values. All these pointers point into a common UFD structure. In addition, the UFD
structure has its own stack of undo information. We refer to the structure consisting of all
these other data structures as the combined structure.

In the following, we list the operations that the three data structures are assumed to be
equipped with. The description is brief as all this is quite well known. However, it seems
useful to introduce the names of the operations on the different structures.

A stack is a collection of values, which can be removed from the structure only in the reverse
order of which they were inserted. Assume that S is a stack and v is a value. The following
operations are supported: Push(S, v), Pop(S), Top(S), Empty(S), and InitStack().

A dictionary implements a set of pairs (k, v), where k is a key value from a totally ordered
domain and v is any value. We assume that each key value appears at most once in the
dictionary. If T is a dictionary, then the following operations are supported: Insert(T, k, v),
Delete(T, k), Member(T, k), LookUp(T, k), and InitTree().

A UFD structure is a collection of elements some of which may be equivalent with other
elements. The following operations are supported: Union(U, p, q), Find(U, p), Deunion(U),
and InitUFD(). Obviously, the implementation is basically the well-known union-find
structure using a stack to save information about the unions.

A Kleene boolean is an implementation of Kleenes three-valued logic. The three Kleene
truth-values TRUE, FALSE, and UNKNOWN correspond to t, f, and u, respectively. The
operations Kand, Kor, and Kimp implement the operations ∧K, ∨K, and→K as described
in the tables of section 3. Furthermore, Ktu turns an ordinary boolean into the Kleene
boolean TRUE if it is true and otherwise into UNKNOWN.

95

The Algorithm

In this section, we present the concrete algorithm, which implements the abstract algorithm
from section 3. Basically, this is all about representing the relation R using advanced data
structures. We assume that the formula E has a representation in the form of a syntax
tree. There are well-developed standard techniques to define and manipulate syntax trees.
For clarity, we leave out these details.

Also, to present the crucial parts of the algorithm as clearly as possible, we treat E1 ∧ E2

and E1 ∨E2 independently. In reality, as we want to process the formula using pipelining,
we should process E1 first and not until after that has been done can we decide whether a
conjunction or a disjunction is been processed. Another reasonable assumption would be
to require that the program generating the formula does this using a prefix notation like
∧(E1, E2) and ∨(E1, E2).

For simplicity, we assume that the formulas are closed, i.e., they do not have any free
variables. This is no serious simplification since free variables can be treated as if they
were bound at the outermost level.

The concrete implementation follows the structure of the formula in the same way as ||=,
except that the call for the left-hand operand of implication is unfolded and incorporated
directly into the case analysis.

function check(E: formula) → Kleene boolean;
var

r: Kleene boolean;
p,q: pointers; (* into the UFD structure *)

case E of
T: r := TRUE;
F: r := FALSE;
x ≡ y: r := Ktu(Find(U,Top(LookUp(T,x))) = Find(U,Top(LookUp(T,y))));
E1 ∧ E2: r := Kand(check(E1),check(E2));
E1 ∨ E2: r := Kor(check(E1), check(E2));
T → E1: r := check(E1);
F → E1: r := TRUE;
(x ≡ y)→ E1: p := Find(U,Top(LookUp(T,x))); q := Find(U,Top(LookUp(T,y)));

if p 6= q then Union(U,p,q);
r := Kimp(Ktu(p 6= q),check(E1));
if p 6= q then Deunion(U);

∀x : E1: if ¬Member(T,x) then Insert(T,x,InitStack());
new(p); Push(LookUp(T,x),p);
r := check(E1);
Pop(LookUp(T,x)); free(p);
if Empty(LookUp(T,x)) then Delete(T,x);

end;
return r;

end;

Before use, T is declared as a red-black tree and properly initialized using InitTree().

96

Similarly, U is declared as a UFD structure and initialized by a call to InitUFD().

Correctness

Proposition 6 The combined structure immediately after a call to the function check is
exactly as it were immediately before the call to check.

Proof By induction in the number of calls to the function check. The base case is when
this number is one, which means that check is not called recursively. Thus, we must be
in one of the cases T, F, or x ≡ y. The result follows since the combined structure is not
altered in any of these cases.

For the induction step, the result follows trivially from the induction hypothesis in the
case where E is E′ ∧E′′, E′ ∨E′′, T→ E′, or F→ E′, since the combined structure is not
changed.

Assume that E is (x ≡ y)→ E′. By the induction hypothesis, the call check(E′) leaves the
structure unchanged. The claim follows as Deunion(U) will undo the last union not yet
undone. This must be Union(U,p,q), as the combined structure after the call to check(E′)
is exactly as it were before the call.

Assume that E is ∀x : E′. By the induction hypothesis, the call check(E′) leaves the
structure unchanged. Since LookUp(T,x) is a stack, the statement Pop(LookUp(T,x))
will undo the effect of the statement Push(LookUp(T,x),p). Furthermore, if the stack
LookUp(T,x) is empty, then this stack must have been inserted into T by this current
invocation of check, so the empty stack should be deleted. 2

Proposition 7 Let F be a bisimulation formula, and let E be a subexpression of F with
x and y bound in the context of E. Immediately before the call check(E), the combined
structure is an exact representation of R in the corresponding call R ||= E, i.e.,

x R0 y ⇔ Find(U,Top(LookUp(T,x))) = Find(U,Top(LookUp(T,y)))

Proof By induction in the structure of E. The base case is when E = F , in which case
both R (and thus also R0) and the combined structure are empty. For the induction step,
we consider all possible forms that E could have.

If E is T, F, x ≡ y, E′ ∧ E′′, E′ ∨ E′′, T → E′, or F → E′, then the combined structure
remains unchanged and the same R is used in the recursive application of ||=.

Assume that E is (x ≡ y) → E′. Then ||= is called with the relation formed by adding
(x, y) to R and taking the symmetric and transitive closure. In the combined structure, if
x and y do not already belong to the same equivalence class, then the equivalence classes
of x and y are joined. Notice that given the representation of the combined structure and
the way it is used, it is automatically closed reflexively, symmetrically, and transitively.

Assume that E is ∀x : E′. Then ||= is called with the relation formed from R by deleting
all pairs that include x. In the combined structure, a new pointer into the UFD structure
is created and placed on the top of x’s variable stack, thus effectively hiding any pairs
involving x; except that the pair (x, x) will belong to the structure ensuring reflexitivity.

2

97

Lemma 8 The function, check, correctly implements ||=.

Proof From proposition 6, it follows that a function semantically equivalent to the function
check can be written by letting the combined structure be a value-passing parameter to
check. As the two algorithms are structurally equivalent modulo unfolding, it is sufficient
to consider the use of the combined structure and R. From proposition 7, it follows that
the combined structure is an exact representation of R0. 2

Theorem 9 Let E be a bisimulation formula, and let n be the size of E. Then the
time-complexity of check(E) is O(n log n).

Proof The algorithm is recursive in the structure of E, and clearly, there are a constant
number of statements per symbol in E. These statements either perform constant-time
operations, or they operate on one of the data structures. As these are initially empty, and
as they share the property that n operations are carried out in time O(n log n), the result
follows. 2

5 Extensions of the Algorithm

In this section, we consider various extensions of the algorithm. For each extension, we
sketch the modifications of the abstract algorithm from section 3, and we discuss the
correctness issues briefly.

Many more extension than the ones presented here are possible. However, we have decided
only to present extensions according to the criteria:

a) the asymptotic complexity should not change.
b) the increase in the actual complexity should be very low (less than a factor of 10).
c) it should still be a one pass algorithm.

It is not hard to deal with constants and through the obvious transformation suggested by
the equivalence

(E ∧E′)→ E′′ =||= E → (E′ → E′′),

the algorithm can easily cover implication subformulas with conjunctions of predicates to
the left. It is straight forward to cope with multiple equivalence relations by letting the
function ||= work with multiple relations over variables.

The function ||= is only able to return t (f) if the formula is valid (unsatisfiable). However,
the algorithm, ||=c, obtained from ||= by returning the result of (R ∪ {(x, y)})⊕ ||=c E

′ in
case of formulas of the form (x ≡ y)→ E′, is able to deal with contingent formulas as well.

Theorem 10 a) If ||=c E = t then |= E. b) If ||=c E = f then 6|= E.

Proof The proof of a) is almost exactly as the corresponding proof of theorem 5. Part
b) is proved by showing that if R ||=c E = f then E it is not satisfied by environments
identifying all variables. 2

||=c is clearly as good as ||=. It is also strictly better because ||= x ≡ y → F = u and
||=c x ≡ y → F = f.

98

6 Simplifications

In this section, we discuss changes to the algorithm with the purpose of outputting a
simplified formula equivalent to the original formula. The algorithm should contain the
validity checking algorithm as a special case, i.e., if the validity checking algorithm deems
a formula valid, then this new algorithm should simplify the formula to T. Also, we would
like the algorithm to fulfill the criteria of the previous section.

Like the ||= function, the new function, ||=r, takes as arguments a relation, R, over variables
and a first order formula, but now it returns a first order formula instead of a truth-value
of three-valued logic. We use the same case analysis, but turn the Kleene truth tables
into simplification tables, essentially by replacing u by the argument formula. Compare
with the Kleene truth tables in section 3. However, this is not quite sufficient. In the
∀x : E′ case of ||=, ∀x is eliminated completely. This cannot be done here when E′ does
not simplify to T or F, so a simplification table for ∀ is also needed.

∧r T F E′

T T F E′

F F F F
E E F E ∧ E′

∨r T F E′

T T T T
F T F E′

E T E E ∨ E′

→r T F E′

T T F E′

F T T T
E T E → F E → E′

∀r x :
T T
F F
E′ ∀x : E′

We are now ready to define ||=r.

R ||=r E is case E of x ≡ y : if x R0 y then T else x ≡ y
E′ ∧ E′′ : R ||=r E

′ ∧r R ||=r E
′′

E′ ∨ E′′ : R ||=r E
′ ∨r R ||=r E

′′

E′ → E′′ : R ||=r E
′→r Upd(R,E′) ||=r E

′′

∀x : E′ : ∀r x : R \ x ||=r E
′

E : E

The final case deals with T and F and for convenience, we have introduced an explicit
update function:

Upd(R,E) =
{

(R ∪ {(x, y)})⊕, if E is x ≡ y
R, otherwise

The simplified formula is logically equivalent with the original as stated in the following
correctness theorem.

Theorem 11 E if and only if ||=r E.

Proof This follows from the statement below which is proved by induction. We omit the
details.

R≡ → E iff R≡ → (R ||=r E) 2

The next proposition expresses that ||=r is at least as good as ||=.

Proposition 12 If ||= E = t (f), then ||=r E = T (F).

99

The next section contains examples of simplifications using this algorithm.

A straightforward improvement of the simplification algorithm can be obtained from the
semantic equivalence

E′ ∧E′′ =||= E′ ∧ (E′ → E′′). (1)

Exploiting the simplification of E′, the conjunction case is changed to:

let E′r = R ||=r E
′ in E′r ∧r Upd(R,E′r) ||=r E

′′.

In this way, the algorithm can simplify (F ∨ x ≡ y) ∧ (x ≡ y → F), for example, to F.

Along the same lines, the algorithm can be improved further by using:

E ∨E′ =||= (¬E)→ E′.

Writing x 6≡ y for the common occurring formula x ≡ y → F, we get as a special case:

x 6≡ y ∨E =||= x ≡ y → E. (2)

As the algorithm is formulated now, there is a priori nothing that prevents the algorithm
from working with more predicates such as x 6≡ y and x ≤ y. In fact, the simplification
algorithm is still sound since the new predicates are not simplified and do not give rise to
updates of R through Upd(,). However, we can use R to simplify the new predicates in
some cases, e.g., for x 6≡ y, we can add the case

if x R0 y then F else x 6≡ y.

Now, we turn our attention to another type of simplification. The idea is that universal
quantifications can be pushed inwards over conjunctions and that quantified predicates in
some cases then can be simplified.

We use this observation to maintain a set, X, of variables corresponding to universal
quantified variables met solely by simplification of conjunctions, and define a function
||=re, which, compared to ||=r, takes X as an extra argument.

R ||=X
re E is case E of x ≡ y : if x R0 y then T

elseif x ∈ X or y ∈ X then F
else x ≡ y

E′ ∧E′′ : R ||=X
re E

′ ∧r R ||=X
re E

′′

E′ ∨E′′ : R ||=∅re E′ ∨r R ||=
∅
re E

′′

E′ → E′′ : R ||=∅re E′→r Upd(R,E′) ||=∅re E′′
∀x : E′ : ∀r x : R \ x ||=X∪{x}

re E′

E : E

The soundness of ||=re follows from

∀x : E ∧ E′ =||= (∀x : E) ∧ (∀x : E′)
∀x : x ≡ y =||= F.

100

Actually, the soundness of the latter requires the quotient set of the domain by the equiv-
alence, D/≡D, to have a size of at least two. However, for empty or singleton quotient
sets,

do not seem very useful, so the restriction should not be significant in practice.

Notice that with the exception of the extension concerning contingent formulas, all exten-
sions can all be combined.

7 Examples

In the first half of this section, we focus on qualitative aspects of the simplification algorithm
by means of five examples used to illustrate different simplification ideas. In the second
half, we deal with some quantitative aspects of the simplification algorithm and the Kleene
algorithm through time measures of concrete implementations applied to increasingly larger
input.

Consider the following symbolic transition graphs:

�

?

J
Ĵ

�
�	 ?

@
@R

? ?

�

J
Ĵ

?

�

?

J
Ĵ

�

?

J
Ĵ

?
x ≡ y

x ≡ y

x ≡ y x ≡ y

x ≡ y x ≡ y x ≡ y

x ≡ y

g1 g2 g3 g4 g5

All actions are internal, so τ has been omitted from the graphs together with the trivial
guarding conditions T. Before proceeding, we invite the reader to try to see which graphs
are bisimilar.

Now, applying ||=r to the bisimulation formula mgbgi,gj (↔ mgbgj ,gi), we get the table of
simplified formulas

i
j 1 2 3 4

2 T
3 x 6≡ y ∨ x ≡ y x 6≡ y ∨ x ≡ y
4 x ≡ y ∧E x ≡ y ∧E E

5 x ≡ y ∧ x 6≡ y (x ≡ y ∨ x ≡ y)
∧ x 6≡ y x ≡ y ∧ x 6≡ y x ≡ y ∧E

∧ x 6≡ y

where E = ((x ≡ y ∧ x 6≡ y) ∨ (x ≡ y ∧ x ≡ y)), and for sake of readability, x ≡ y → F is
written x 6≡ y.

If, in stead, we apply ||=r with the modifications corresponding to (1), many of the formulas
are simplified considerably, some even completely as shown in table below to the left.

i
j 1 2 3 4

2 T
3 x 6≡ y ∨ x ≡ y x 6≡ y ∨ x ≡ y
4 x ≡ y x ≡ y x ≡ y

5 F
(x ≡ y ∨ x ≡ y)
∧ x 6≡ y F F

i
j 1 2 3 4

2 T
3 x 6≡ y ∨ x ≡ y x 6≡ y ∨ x ≡ y
4 F F F

5 F
(x ≡ y ∨ x ≡ y)
∧ x 6≡ y F F

101

If we are interested in knowing whether the graphs are bisimilar under all instantiations
of x and y, we can check validity of the universal closure of the formulas, i.e. simplify the
universally closed formulas to T or F if possible. The result of applying ||=re (with the
modifications mentioned above) yields the table above to the right. We have omitted the
quantifiers in the formulas different from T and F.

Adding to ||=re an extra case for 6≡, the formula in entry (i, j) = (5, 2) would also simplify
to F, and if the modification suggested from (2), i.e., transforming x 6≡ y∨E to x ≡ y → E,
is incorporated into the algorithms as well, then the last two entries would also simplify
completely, but this time to T.

Turning to the quantitative aspects of the concrete algorithms, we consider processes de-
fined for i ≥ 0 by

pi+2
T,α?x0−−−→ qi+1, qi+1

T,α?x1−−−→ ri1, ri+1
k

ck,α?xk+1−−−−−→ rik+1 and r0
k

ck,β!xk−−−→ 0,

where ck is the equality xk−1 = xk. Initially two values are unconditionally received on
α and then, iteratively, values are received on α provided the two most resently received
values are equal. Finally, after i iterations and under the same proviso, the last value is
send on β. Similarly, we define primed versions which only differ in that c′k is the equality
x′0 = x′k. That is, the last value received on α is compared with very first.

In order to give the reader examples of how concrete bisimulation formulas look like,
we now describe the most general boolean, mgbrik,r′ik , characterizing those instantiations
(environments) of rik and r′ik for which they are late bisimilar.

mgbri+1
k

,r′i+1
k

=
ck → (c′k ∧ ∀xk+1 : ∀x′k+1 : xk+1 = x′k+1 → mgbri

k+1,r
′i
k+1

)
∧
c′k → (ck ∧ ∀x′k+1 : ∀xk+1 : x′k+1 = xk+1 → mgbri

k+1,r
′i
k+1

)

mgbr0
k,r
′0
k

=
ck → (c′k ∧ xk = x′k ∧ T)
∧
c′k → (ck ∧ x′k = xk ∧ T)

The most general booleans for the p’s and q’s are similar to the first formula above, except
that the conditions here are T.

For 2 ≤ i ≤ 13, we have measured the average time of five runs of a C implementation
of ||=c (||=r) processing mgbpi+2,p′i+2

on a SPARC station ELC. To give a few examples,
mgbp13+2,p′13+2

of size 5.754 Mb was simplified to t (T) in 77284 (78912) milliseconds. Simi-
larly, mgbp13+2,p′13+3

, which is 4.477 Mb large, was simplified to f in 62958 milliseconds. On
average, ||=c and ||=r process input at a rate of about 75 Kbytes per second.

References

[1] W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen. Math. Annalen, 99:118–
133, 1928.

[2] R. Bayer. Symmetric Binary B-Trees. Acta Inform., 1:290–306, 1972.

102

[3] S.A. Cook. The Complexity of Theorem-Proving Procedures. In ACM STOC, pages
151–158, 1971.

[4] U.H. Engberg. Simple Symbolic Bisimulations. In preparation.

[5] U.H. Engberg and K.S. Larsen. Efficient Reduction of Bisimulation Formulas.
Preprint 47, Dept. of Math. and Computer Science, Odense University, 1993.

[6] B.A. Galler and M.J. Fischer. An improved equivalence algorithm. Comm. ACM,
7:301–303, 1964.

[7] M.R. Garey and D.S. Johnson. Computers and Intractability. W. H. Freeman, 1979.

[8] L.J.Guibas and R.Sedgewick. A Dichromatic Framework for Balanced Trees. IEEE
FOCS, 8–21, 1978.

[9] M. Hennessy and H. Lin. Symbolic Bismulations. Tech. Rep. 1/92, University of
Sussex, 1992. To appear in Theoretical Computer Science, 1995.

[10] M. Hennessy and H. Lin. Proof systems for message-passing process algebras. CON-
CUR ’93, pages 202–216, August 1993.

[11] G.J. Klir and T.A. Folger. Fuzzy Sets, Uncertainty, and Information. Prentice-Hall,
1988.

[12] H. Mannila and E. Ukkonen. The set union problem with backtracking. LNCS 226,
236–243, 1986.

[13] K. Mehlhorn and A. Tsakalidis. Data Structures. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, chapter 6, pages 301–341. Elsevier Science
Publishers, 1990.

[14] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[15] Z. Schreiber. Verification of Value-Passing Systems. In First North American Process
Algebra Workshop, pages 9.1–9.20. Tech. Rep. 92-15, Johns Hopkins University, 1992.

[16] D. Scott. Notes on the formalization of logic. Technical report, Sub-faculty of Phil.,
Oxford, 1981.

[17] R.E. Tarjan. Efficiency of a good but not linear set union algorithm. JACM, 22:215–
225, 1975.

[18] R.E. Tarjan. Data Structures and Network Algorithms. Soc. for Industrial and Applied
Math., 1983.

[19] R.E.Tarjan and J.v.Leeuwen. Worst-Case Analysis of Set Union Algorithms. JACM,
31:245–281, 1984.

[20] J. Westbrook and R.E. Tarjan. Amortized analysis of algorithms for set union with
backtracking. SIAM J. Comput., 18(1):1–11, 1989.

103

On Implementing Unique Fixpoint Induction for
Value-passing Processes

H. Lin∗

Laboratory for Computer Science
Institute of Software, Chinese Academy of Sciences

P.O Box 8718, Beijing 100080
E-mail: lhm@ios.ac.cn

Abstract

We examine the possible pitfalls in formulating the unique fixpoint induc-
tion proof rule in the setting of value-passing process calculi and describe how
this rule is implemented in the verification tool VPAM. An argument is also
given to justify the implementation.

1 Introduction

Computer-aided verification of concurrent systems has attracted considerable re-
search efforts in the past decade. Many proof tools based on the theoretical results in
process algebra have been developed and widely used: The Concurrency Work Bench
[CPS89], TAV [GLZ89], AUTO [SV89], The Pisa tool [DIN89], PAM [Lin91], and
LOTOS tools [BBV92], to name just a few. Some of these tools are automatic and
work by searching state space generated according to operational semantics. Some
are interactive and rely on direct manipulation of syntactic terms. These verification
tools are only for pure process algebras where data exchange between processes is
reduced to synchronization on signals. To apply them to problems involving value-
passing one has to first transform the problems into pure calculi. Even for finite value
domains such transformation could cause exponential explosion of states. When the
value domains are infinite the problems would become infinite and thus beyond the
scope of these tools.

The “symbolic” semantic theories for value-passing processes have recently been
advocated, with avoiding such infinity in mind [HL92]. “Symbolic” style proof sys-
tems have also been formulated, allowing to reason about semantic equivalences at a
syntactic level [HL93]. These proof systems are finitary in nature and are therefore
∗Supported by the President Fund of Chinese Academy of Sciences, the National Science Foun-

dation of China, and the EU KIT project SYMSEM.

104

amenable to implementation. In fact we have developed the proof assistant VPAM
(for Value-passing Process Algebra Manipulator) [Lin93] based on such proof sys-
tems. The aim of this paper is to explain the way VPAM deals with recursion, a
process construction needed in any non-trivial problems.

Let us start by considering a simple example (in full-CCS syntax):

P = c?x. if x ≥ 0 then P ′(x) else P
P ′(x) = c!x.P

Q = c?x. if x ≥ 0 then Q′(x) else Q
Q′(x) = c!|x|.Q

where the data domain is integer and |x| means the absolute value of x.
Clearly P = Q when = is interpreted as bisimulation equivalence. What kind

inference rules do we need in order to infer P = Q? Since P, Q are recursively
defined, some form of induction is required. The most-widely used induction rule in
the process algebra community is unique fixpoint induction. In pure process algebras
this rule has the form:

Si = Ti[Sk/Rk|1 ≤ k ≤ m], 1 ≤ i ≤ m
Si = Ri

Ri = Ti
R̃ guarded in T̃

(1)

The premises of this rule verify that S̃ is a fixpoint of T̃ . By definition S̃ is also a
fixpoint of T̃ . Since T̃ is guarded it has only one fixpoint. Hence the conclusion. But
this rule is not applicable to our example because it does not deal with data variables
and data expressions. To solve our problem we need to generalise it to the setting of
value-passing processes.

Rule (1) uses process substitution [Sk/Rk|1 ≤ k ≤ m] where Sk:s are process
terms and Rk:s process identifiers. When applied to a term T it replaces Rk with Sk.
This is fine for pure calculi because in such calculi a process identifier is a process
term on its own-right, so replacing Rk with Sk in T is guaranteed to result in a
syntactically well-formed term. In value-passing calculi, however, process identifiers
may take data parameters and process terms may contain free data variables, so we
can not simply substitute terms for identifiers. For instance applying substitution
[P ′(x)/Q′] to term c?y.Q′(y) would result in c?y.P ′(x)(y) which is syntactically ill-
formed. What is needed here is a device to take care of correct parameter-passing
for substitutions. For this we can use lambda abstraction to close up substituting
terms and application to realise parameter-passing: T [λx̃A/B], where x̃ is the set
of free data variables of A, is the result of substituting λx̃A for identifier B in T
followed by β-conversion, so that the x̃ in A get replaced by the actual parameters
of B-occurences. For example

(if x ≥ 0 then c!x.P (x) else c?z.P (z))[λyQ(y)/P]
= if x ≥ 0 then c!x.(λyQ(y))(x) else c?z.(λyQ(y))(z)
= if x ≥ 0 then c!x.Q(x) else c?z.Q(z)

105

With this notation a naive generalization of (1) to the value-passing setting might
look like

Si = Ti[λx̃kSk/Rk|1 ≤ k ≤ m], 1 ≤ i ≤ m
Si = Ri(x̃i)

Ri(x̃i) = Ti
R̃ guarded in T̃

(2)

Applying this rule to P = Q in our example requires to prove the following two
equations

P = c?x. if x ≥ 0 then P ′(x) else P
P ′(x) = c!|x|.P

The first equation can be settled immediately, but the second gives rise to (after
unfolding P ′(x))

c!x.P = c!|x|.P
which can not (and should not) be proved.

It is not difficult to see what went wrong: P ′(x) is not bisimilar to Q′(x) for all
values of x; they are bisimilar only when x ≥ 0 (i.e. P ′(x) ∼x≥0 Q′(x), using symbolic
bisimulation notation). This is sufficient to establish the bisimilarity between P and
Q, because in their definitions P ′(x) and Q′(x) appear only in contexts satisfying
x ≥ 0.

To take such context information into account, instead of pure equations we use
conditional equations of the form

b � T = U

where b is a boolean expression on the value domain, as judgments of our inference
system. Intuitively it means T and U are equivalent under the constraint b on the
free data variables appearing in them. When b ≡ true it becomes unconditional and
can be abbreviated as T = U . The fact that P ′(x) and Q′(x) are bisimilar over x ≥ 0
can be expressed as

x ≥ 0 � P ′(x) = Q′(x).

With conditional equation we could reformulate (2) as

bi � Si = Ti[λx̃kSk/Rk|1 ≤ k ≤ m], 1 ≤ i ≤ m
bi � Si = Ri(x̃i)

Ri(x̃i) = Ti
R̃ guarded in T̃

(3)

Unfortunately this is unsound. Here is a counter-example: Let

P1 = c?x. if x ≥ 0 then P ′1(x) else P1

P ′1(x) = c!x.c?y.P ′1(y)

Q1 = c?x. if x ≥ 0 then Q′1(x) else Q1

Q′1(x) = c!|x|.c?y.Q′1(y)

Using (3) one can derive
x ≥ 0 � P ′1(x) = Q′1(x) (4)

106

This is wrong because although the first outputs from P ′1(x) and Q′1(x), which are
x and |x| respectively, are equal due to the condition x ≥ 0, after the input action
c?y further outputs from the two processes, which are y and |y| now, can no longer
match under this condition. This time the problem is with the premises of (3): The
conclusion only asserts Si = Ri(x̃i) under the condition bi, but in the premise λx̃iSi
are substituted for Ri unconditionally.

How to express the idea that Si is substituted for Ri(x̃i) only over the value space
constrained by bi? We can use λx̃i(biSi) (biSi is a shorthand for if bi then Si else NIL)
instead of just λx̃iSi as the substituting abstraction. This ensures that Si will be
constrained by bi after substitution. With this observation one might change rule (3)
to

bi � Si = Ti[λx̃k(bkSk)/Rk|1 ≤ k ≤ m], 1 ≤ i ≤ m
bi � Si = Ri(x̃i)

Ri(x̃i) = Ti
R̃ guarded in T̃

(5)

Now (4) is no longer derivable. But the new rule creates a different problem. To
see this let us change the definition clause for P ′1(x) in the above example to

P ′1(x) = c!x.c?y.if y ≥ 0 then P ′1(y) else NIL

Apparently P ′1(x) and Q′1(x) are not bisimilar over x ≥ 0. But applying rule (5) to
the goal x ≥ 0 � P ′1(x) = Q′1(x) results in the subgoal

x ≥ 0 � P ′1(x) = (c!|x|.c?y.Q′1(y))[λx(x ≥ 0P ′1(x))/Q′1]
≡ c!|x|.c?y.if y ≥ 0 then P ′1(y) else NIL

which can be proved after unfolding P ′1(x) with its new definition. So what is wrong
with rule (5)? The problem is that the premises of this rule only checks whether
biSi:s constitute a fixpoint of Ti:s over bi, but does not do so for Ri:s. Though by
definition R̃ is a fixpoint of T̃ , this does not imply that biRi:s constitute a fixpoint of
Ti:s over bi:s. In this example one does not have

x ≥ 0 � Q′1(x) = (c!|x|.c?y.Q′1(y))[λx(x ≥ 0Q′1(x))/Q′1]
≡ c!|x|.c?y.if y ≥ 0 then Q′1(y) else NIL

To make the rule sound we must check such a “partial fixpoint” property for R̃ as
well. This can be achieved by employing more premises:

bi � Si = Ti[λx̃k(bkSk)/Rk|1 ≤ k ≤ m],
bi � Ri(x̃i) = Ti[λx̃kbkRk/Rk|1 ≤ k ≤ m], 1 ≤ i ≤ m

bi � Si = Ri(x̃i)

Ri(x̃i) = Ti
R̃ guarded in T̃

(6)

This rule is sound, but has the disadvantage of doubling the number of premises. This
is particularly unsatisfactory from the implementation point of view. The VPAM
implementation has avoided such duplication by exploiting “context conditions” im-
plicitly associated with process identifiers. In the rest of this paper we shall explain
how this can be achieved.

107

The next section briefly describes how proofs are constructed in VPAM, setting
up the necessary background for further discussion. Section 3 explains the implemen-
tation of unique fixpoint induction in VPAM. It also includes a correctness proof for
the implementation. The paper is concluded with Section 4.

Some familiarity with value-passing process calculi such as full-CCS ([Mil89]) is
assumed.

2 Proofs in VPAM
VPAM is an interactive verification tool for value-passing process calculi. It is an
extension of PAM ([Lin91]) which can only deal with pure process algebras. VPAM
implements a “symbolic” style proof system for value-passing processes, extending
those proposed in [Hen91, HL93] for recursion-free languages with a version of unique
fixpoint induction for value-passing calculi. The proof system consists of a set of
inference rules together with some standard equational axioms. The inference rules,
as listed in the Appendix A, are built into VPAM while axioms are provided by
the users, allowing different equivalences to be reasoned about. The syntax of the
calculus one wants to work with is also definable. Thus VPAM is a parameterisable
tool. Both the syntax and axioms of a calculus are defined in a single file which can
be compiled in VPAM’s top-level window. We will not get into details of calculus
definition and compilation here. The interested readers are referred to [Lin93]. In
the following discussion we will use full-CCS ([Mil89]) as the example language. So
. is action prefixing, + external choice, | parallel composition, if _ then _ else _
conditional, c?x input action, c!e output action, NIL the empty process, etc.. The
full-CCS axioms, as defined in VPAM, are listed in Appendix B. We shall write
` b � T = U if b � T = U can be derived from the proof system. The set of free
data variables of T will be denoted by fv(T).

The problems to be submitted to VPAM for verification are described in problem
definition files. An example follows:

function

ABS _ :: Int -> Int

process

P1 :: Int
Q1 :: Int
P2 :: Int Int
Q2 :: Int Int

channel r w

conjecture

108

Figure 1: A Proof Window

|- P1(x) = Q1(x)

where
P1(x) = r?y. if y > x then P2(x,y) else NIL
P2(x,y) = w!(y-x).P1(y)
Q1(x) = r?y. if y > x then Q2(x,y) else NIL
Q2(x,y) = w!ABS(y-x).Q1(y)

end

Int is a built-in type with the usual operators >, <, +, -, etc.. ABS is the absolute
value function. P2 :: Int Int declares that P2 is a process identifier with two
integer parameters. Data parameters to a process identifier must be distinct variables.
Recursive definitions are listed in the where part. The statement to prove is given
after the keyword conjecture.

Given such a problem definition file VPAM creates a proof window for it (Figure 1).
The left half of a proof window (see Figure 1) is a command panel where there is
a command button for each inference rule. For example the buttons if , ? and !
correspond, respectively, to the rules IF, INPUT and OUTPUT in the Appendix A.
Two switches (auto-step and left-right) control the behavior of the rewrite buttons
(below them) which are labeled by axiom names appearing in the calculus definition
file. Rules and axioms are invoked when the corresponding buttons are pressed.
Proofs are displayed on the right subwindow. A conditional equation b � T = U is
displayed as

assum b

109

show T = U

As the inference system underlining VPAM consists of inference rules as well as
equations, proofs in VPAM are displayed in a mixed way: invoking inference rules
is goal-directed, while applying equations is implemented as rewriting (and does not
generate subgoals). Some inference rules of this proof system use the semantics
implication relation |= between boolean conditions. These are where we appeal to
an “oracle” to answer questions about the data domain. This is is a consequence
of the fact that our process languages are parameterised on languages for data and
boolean expressions. The inference system treats these expressions “symbolically”,
i.e. as uninterpreted strings. In fact, one of the main design ideas behind the proof
system is to separate data reasoning from process reasoning as much as possible.
For example, in order to infer x = y � c!(x − y).P (x) = c!0.P (x) we need to know
x = y |= x − y = 0. Since we do not want to be involved in reasoning in any
particular data domain (integer in this case), this question is left to the oracle. In
VPAM the proof commands corresponding to these rules, such as output and absurd,
will generate proof obligations appended at the end of the proof, after the keyword
provided. Such proof obligations represent an interface to an auxiliary data domain
theorem prover which “implements” the oracle.

In a proof window there is always a unique term, called the current term, which is
highlighted. The equation and the subgoal containing the current term are called the
current equation and current goal respectively. Each goal has an assumption which
is a list of booleans (interpreted as connected by conjuncts). The current global
assumption is the conjunction of the assumption of the current goal together with
the assumptions of all its ancestors. Goal equation is the first equation of a goal.

3 UFI in VPAM

3.1 The Implementation

In VPAM the unique fixpoint induction is implemented by three related proof com-
mands: ufi, bind and known. We assume parameters of any process identifiers are
distinct data variables.

To apply ufi, the right hand side of the current equation must be a recursively
defined identifier, possibly with parameters. For easy reference suppose the current
conditional equation is

b1 � S1 = R1(x̃1) (7)

and the definition clauses relevant to R1 are

Ri(x̃i) = Ti 1 ≤ i ≤ m.

where the set of identifiers appearing in the Ti:s is {Ri | 1 ≤ i ≤ m }. When the
ufi command is invoked the system automatically generates a pair of “unknowns”
for each of these identifiers, one is “process unknown” of the form X’n and the other

110

is “boolean unknown” of the form B’n, where n is a number. X’1 is bound to the
left hand side of the current equation and B’1 to the global assumption. A subgoal
is created for each of the relevant definition clauses in the following manner: The
right hand side of the ith subgoal equation is the result of substituting λx̃1S for R1

and Xk for Rk, 2 ≤ k ≤ m, in Ti. The left hand side of the first subgoal equation is
S, and the left hand side of the ith subgoal equation for i ≥ 2 is X ′i(x̃i). The goal
assumption of the first subgoal is empty and the ith subgoal assumption is B′i. So
for the absolute-value problem in the previous section, applying ufi to the top level
goal P1(x) = Q1(x) will result in the following configuration:

show P1(x) = Q1(x)
by ufi with X’1(x)=P1(x) B’1=true

show P1(x) = r?y.if y>x then X’2(x,y) else NIL

assume B’2
show X’2(x,y) = w!ABS(y-x).X’1(y)

The “unknowns” generated by the ufi command must be bound to some terms for
the proof to be completed. In fact the ufi command does the initial binding: it binds
R1 to X ′1 and the current global assumption to B′1. This is the “first push” allowing
the proof to go ahead. Other “unknowns” must be bound using the bind command.
To apply bind, one side of the current equation must be a “process unknown” which
has not been bound before, and the other side must not contain any unknowns. bind
binds this “process unknown”, say X ′n(̃(x)n), to the term at the other side of the
equation. At the same time it also binds B′n, the “boolean unknown” associated
with X ′n, to the current global assumption. This boolean will be referred as the
binding condition of X ′n.

An “unknown” that has been bound by bind can be “made known” using the
command known. Similar to the case of bind, to apply known the current side
of the current equation must be a “process unknown”. known then replaces this
“unknown” with the term previously bound to it by bind. At the same time known
also generates a proof obligation which asserts that the current global assumption
must imply the binding condition of this unknown. More precisely, suppose the
current term is X ′n(x̃′), and X ′n(x̃n) and B′n have previously bound to Sn and
b, respectively. Then known will unfold X ′n(̃(x)′) to Sn[x̃′/x̃n] and generate b′ |=
b[x̃′/x̃n] as a proof obligation, where b′ is the current global assumption. As said
in the previous paragraph the ufi command automatically binds X ′1 to R1. It also
automatically makes X ′1 known: that is why the left hand side of the first subgoal
equation is R1 instead of X ′1. The proof obligation of this implicit application of
known is “the current global assumption implies the current global assumption”
which holds trivially (hence is not generated).

111

3.2 Correctness of the Implementation

The VPAM implementation of the unique fixpoint induction, as described above,
generates only m subgoals for the goal (7) which involves m mutual-recursive defini-
tion clauses while the unique fixpoint induction rule (6) has twice as many premises.
In fact VPAM does not generates subgoals to check the context conditions of the
identifiers, i.e. the m premises

bi � Ri(x̃i) = Ti[λx̃kbkRk/Rk|k] 1 ≤ i ≤ m

in rule (6). They are validated as a by-product. In this subsection we shall justify
that the three commands ufi, bind and known correctly implement rule (6).

By α-conversion in the following discussions we assume different input actions
in a term use different variables which are also different from the free variables of
the term. We also assume the “unknowns” X ′n and B′n are not used in the problem
definitions.

An atom is a process term of the form P (x̃) where P is an identifier or an unknown.
An occurrence of an atom A in a process term T is designated by a box surrounding
it. When A ≡ P (x̃) we also call A a P -occurrence. The context condition of an

occurrence A in T , denoted C
A
T , is defined inductively thus

• C A

A
= true

• C A
if b then T else U =

 b ∧ C A
T if A in T

¬b ∧ C A
U if A in U

• C A
α.T = C

A
T

• C A
T+U =

 C
A
T if A in T

C
A
U if A in U

• C A
T |U =

 C
A
T if A in T

C
A
U if A in U

• C A
T [f] = C

A
T

• C A
T \c = C

A
T

Intuitively, C
A
T represents the boolean condition (implicitly) holds at A in T .

The usefulness of this notion lies in the fact that one can safely insert any boolean
expression weaker than it in front of A without change the behaviour of T , because

112

such an expression will eventually be “absorbed” by C
A
T . More generally, a boolean

expression can be added at every P -occurrence if it is implied by the context condi-
tions of all such occurrences (module renaming of free data variables). For example,
let T denote the term

c!x.if x ≥ 0 then P (x) else Q +
d?y.if y ≥ 1 then P (y) else Q

It is straightforward to calculate that C
P(x)

T = x ≥ 0 and C
P(y)

T = y ≥ 1. Consider
the boolean z ≥ 0. We have x ≥ 0 |= (z ≥ 0)[x/z] and y ≥ 1 |= (z ≥ 0)[y/z]. Also

T [λz(z ≥ 0)P/P] ≡ c!x.if x ≥ 0 then (if x ≥ 0 then P (x) else NIL) else Q +
d?y.if y ≥ 1 then (if y ≥ 0 then P (y) else NIL) else Q

It is easy to check that ` T [λz(z ≥ 0)P/P] = T .
In general, we have the following lemma:

Lemma 3.1 If C
A
T |= b then ` T = T [bA/ A].

Proof: Straightforward induction on the structure of T . 2

Corollary 3.2 Let b be a boolean with fv(b) ⊆ {x̃′}, P an identifier or unknown. If

C
A
T |= b[x̃/x̃′] for every P -occurrence A ≡ P (x̃) in T , then ` T = T [λx̃′bP/P].

Applying ufi to goal (7) generates the following subgoals:

B′i � X ′i(x̃i) = T ′i , 1 ≤ i ≤ m (8)

where T ′i ≡ Ti[X ′k/Rk|1 ≤ k ≤ m], X ′1(x̃1) andB′1 are bound to S1 and b1, respectively.
From the description given in the previous subsection, an “unknown” can only be
bound or made known when it is the top level term of one side of the current equation.
In this case we say this unknown is exposed. The current global assumption when
an unknown is exposed is called the exposure condition of the exposure. Note that
although each exposed unknown has a unique occurrence in some T ′i , an occurrence
of an unknown in a T ′i may correspond to more than one exposures of this unknown
due to applications of IF and CUT rules.

During a proof each term T in an equation B � U = T is associated with a global

condition, namely the global assumption, say b, of the equation. We call b∧C A
T the

global context condition of an atom occurrence A in T . The following lemma says
that such global context conditions are invariants of a proof.

Lemma 3.3 Let B � X ′j(x̃) = T be a goal equation and A with A ≡ X ′k(x̃
′) an

unknown occurrence in T . Suppose during the proof X ′k(x̃′) is exposed n times with

exposure conditions bi, 1 ≤ i ≤ n. Then B ∧ C A
T =

∨
1≤i≤n bi.

113

Proof: By induction on the number of rule applications during the proof. We need
only to check that each rule application preserves the global context condition of an

unknown, i.e. B ∧ C A
T =

∨
1≤i≤n(Bi ∧ C

A
Ti

), n ∈ {1, 2} where B � U = T is a goal
and Bi � Ui = Ti, 1 ≤ i ≤ n, n ∈ {1, 2} are the subgoal(s) containing A generated
from the goal by a rule application. For this purpose the only interesting rules are
IF and CUT.

For the IF rule there are two cases. If T is of the form if b then T ′ else T ′′ then
the two subgoals are B ∧ b � U = T ′ and B ∧ ¬b � U = T ′′. If A is in T ′ then it is
not in T ′′, and

B ∧ C A
T = B ∧ b ∧ C A

T ′

If A is in T ′′ then it is not in T ′, and

B ∧ C A
T = B ∧ ¬b ∧ C A

T ′′

If U is of the form if b then U ′ else U ′′ then the two subgoals are B∧ b � U ′ = T and
B ∧ ¬b � U ′′ = T , and

B ∧ C A
T = B ∧ (b ∨ ¬b) ∧ C A

T = (B ∧ b ∧ C A
T) ∨ (B ∧ ¬b ∧ C A

T)

For the CUT rule the two subgoals are B1 � U = T and B2 � U = T with
B |= B1 ∨B2. Hence

B ∧ C A
T = B ∧ (B1 ∨ B2) ∧ C

A
T = (B ∧B1 ∧ C

A
T) ∨ (B ∧B2 ∧ C

A
T)

2
Now suppose during the proofs of the subgoals (8) X ′i(x̃i) is bound to Si, and B′i

to bi, for 2 ≤ i ≤ m. Then we have

Lemma 3.4 When all subgoals (8) are proved, and the proof obligations generated
during the proofs are valid, the following hold:

1. ` bi � Si = T ′i [λx̃kSk/X ′k|1 ≤ k ≤ m]

2. For each T ′i and each occurrence A with A ≡ X ′j(x̃) in T ′i , bi∧C
A
T ′i
|= bj[x̃/x̃j]

Proof: 1 is a direct consequence of the fact that X ′i(x̃i) is bound to Si for each i.
To see 2, suppose X ′j is exposed n times during the proof with exposure conditions
b′k, 1 ≤ k ≤ n. By Lemma 3.3

bi ∧ C
A
T ′i

=
∨

1≤k≤n
b′k

The first timeX ′j(x̃j) is exposed it is bound to Sj and at the same time B′j is bound to
bj. For each other exposure X ′j(x̃) is made known and a proof obligation b′k |= bj[x̃/x̃j]

114

is generated. Hence bi ∧ C
A
T ′i
|= bj[x̃/x̃j], under the assumption that these proof

obligations are valid. 2

From this lemma and Corollary 3.2 we can derive the correctness of the imple-
mentation:

Theorem 3.5 The three commands ufi, bind and known correctly implement the
inference rule UFI. That is, when goal (7) is proved with ufi, and the proof obligations
generated during the proofs are valid, the following hold:

1. ` bi � Si = Ti[λx̃k(bkSk)/Rk|1 ≤ k ≤ m]

2. ` bi � Ri(x̃i) = Ti[λx̃kbkRk/Rk|1 ≤ k ≤ m]

Proof: In the following the range of k is omitted.

1.
` bi � Si

3.4.1= T ′i [λx̃kSk/X ′k|k]
3.4.2 ,3.2= T ′i [λx̃kbkX ′k/X ′k|k][λx̃kSk/X ′k|k]

= T ′i [λx̃k(bkSk)/X ′k|k]
= Ti[X ′k/Rk|k][λx̃k(bkSk)/X ′k|k]
= Ti[λx̃k(bkSk)/Rk|k].

2.
` bi � Ri(x̃i) = Ti

= Ti[X ′k/Rk|k][Rk/X ′k|k]
= T ′i [Rk/X ′k|k]

3.4.2 ,3.2= T ′i [λx̃kbkX ′k/X ′k|k][Rk/X ′k|k]
= T ′i [λx̃kbkRk/X ′k|k]
= Ti[X ′k/Rk|k][λx̃kbkRk/X ′k|k]
= Ti[λx̃kbkRk/Rk|k] 2

4 Conclusions

We have discussed the formulation of unique fixpoint induction in the setting of
value-passing process calculi and showed how this inference rule is implemented in
the verification tool VPAM. By exploiting context conditions the implementation
reduces the number of subgoals as required by the UFI rule by half. An argument
has also been given to justify the implementation.

Theoretical results concerning the soundness and completeness of the proof system
with the UFI rule will be reported in a separate paper.

Acknowledgment Thanks to an anonymous referee for detailed comments.

115

References

[BBV92] T. Bolognesi, E. Brinksma, and C.A. Vissers. Proceedings of Third Loto-
sphere Workshop. Pisa, CNR-CNUCE, 1992.

[CPS89] R. Cleaveland, J. Parrow, and B. Steffen. A semantics based verification tool
for finite state systems. In Proceedings of the 9th International Symposium
on Protocol Specification, Testing and Verification, North Holland, 1989.

[DIN89] R. DeNicola, P. Inverardi, and M. Nesi. Using the axiomatic presentation
of behavioural equivalences for manipulating CCS specifications. In Proc.
Workshop on Automatic Verification Methods for finite State Systems, num-
ber 407 in Lecture Notes in Computer Science, 1989.

[GLZ89] J. Godskesen, K. Larsen, and M. Zeeberg. Tav user manual. Report R89-19,
Aalborg University, 1989.

[Hen91] M. Hennessy. A proof system for communicating processes with value-
passing. Formal Aspects of Computing, 3:346–366, 1991.

[HL92] M. Hennessy and H. Lin. Symbolic bisimulations. Technical Report 1/92,
Computer Science, University of Sussex, 1992.

[HL93] M. Hennessy and H. Lin. Proof systems for message-passing process alge-
bras. In CONCUR’93, number 715 in Lecture Notes in Computer Science,
pages 202–216, 1993.

[Lin91] H. Lin. PAM: A process algebra manipulator. In Computer Aided Verifi-
cation, volume 575 of Lecture Notes in Computer Science, pages 136–146.
Springer–Verlag, 1991.

[Lin93] H. Lin. A verification tool for value-passing processes. In Proceedings of
13th International Symposium on Protocol Specification, Testing and Veri-
fication, IFIP Transactions. North-Holland, 1993.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[SV89] R. De Simone and D. Vergamimi. Aboard auto. Report RT111, INRIA,
1989.

116

Appendices

A Inference Rules

EQUIV
true � T = T

b � T = U
b � U = T

b � T = U,U = V
b � T = V

CONGR
b � Ti = Ui i = 1, 2

b � op(T1, T2) = op(U1, U2)
op 6∈ {., ?, !}

EQN
true � Tσ = Uσ

T = U is an axiom

RENAME
true � c?x.T = c?y.T [y/x] y 6∈ fv(T)

L-INPUT
b � T = U

b � c?x.T = c?x.U x 6∈ fv(b)

OUTPUT
b |= e = e′, b � T = U
b � c!e.T = c!e′.U

TAU
b � T = U

b � τ.T = τ.U

IF
b ∧ b′ � T = V b ∧ ¬b′ � U = V

b � if b′ then T else U = V

UFI
bi � Si = Ti[λx̃k(bkSk)/Rk|1 ≤ k ≤ m],
bi � Ri(x̃i) = Ti[λx̃k(bkRk(x̃i))/Rk|k], 1 ≤ i ≤ m

b1 � S1 = R1(x̃i)

Ri(x̃i) = Ti
R̃ guarded in T̃

REC
true � Pi(x̃i) = Ti[λx̃kTk/Pk |1 ≤ k ≤ m]

Pi(x̃i) = Ti, 1 ≤ i ≤ m

CUT
b |= b1 ∨ b2, b1 � T = U b2 � T = U

b � T = U

ABSURD
false � T = U

117

B Value-passing CCS Axioms in VPAM
A1 x + x = x
A2 x + NIL = x
PN x | NIL = x

R1 (x + y)\A = x\A + y\A
R21 (c?v.x)\A = c?v.(x\A) if not(c in A)
R22 (c?v.x)\A = NIL if c in A
R31 (c!e.x)\A = c!e.(x\A) if not(c in A)
R32 (c!e.x)\A = NIL if c in A
R4 NIL\A = NIL

N1 (x + y)[a/b] = x[a/b] + y[a/b]
N21 (c?v.p)[a/b] = c?v.(p[a/b]) if not(c eq b)
N22 (c?v.p)[a/b] = a?v.(p[a/b]) if c eq b
N31 (c!e.p)[a/b] = c!e.(p[a/b]) if not(c eq b)
N32 (c!e.p)[a/b] = a!e.(p[a/b]) if c eq b
N4 NIL[a/b] = NIL

T1 a.tau.x = a.x
T2 x + tau.x = tau.x
T3 a.(x + tau.y) + a.y = a.(x + tau.y)

IFP (if b then x else y) | z = if b then (x | z) else (y | z)
IFA (if b then x else y) + z = if b then (x + z) else (y + z)
IFR (if b then x else y)\A = if b then x\A else y\A
IFN (if b then x else y)[a/b] = if b then x[a/b] else y[a/b]
IFT tau.(if b then x else y) = if b then tau.x else tau.y
IFO c!e.(if b then x else y) = if b then c!e.x else c!e.y

expansion law

EXP let x = a1.x1 + ... + an.xn y = b1.y1 + ... + bm.ym
then
(x|y)\A = NIL if sync_move(x,y) eq nil and async_move(x,y) eq nil
(x|y)\A = Sum(+,async_move(x,y)) if sync_move(x,y) eq nil
(x|y)\A = Sum(+,sync_move(x,y)) if async_move(x,y) eq nil
(x|y)\A = Sum(+,async_move(x,y)) + Sum(+,sync_move(x,y))

otherwise
with
async(c?x) = true if not(c in A)
async(c!e) = true if not(c in A)

118

Translating a Process Algebra with Symbolic Data Values to Linear Format

Doeko Bosscher
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Alban Ponse
Programming Research Group, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam

The first author was supported by Esprit BRA 7166 concur 2.

Abstract

Historically, process algebras have been studied mostly without data. In this paper the transformation is
described of the valued process algebra µCRL [GP95] to a symbolic transition system in the spirit of [Sch94].
The data oriented specifications thus obtained, seem to be in a better format for checking modal properties.

1. Introduction

Historically, much effort has been put into understanding the theories of pure process algebra calculi.
Also, process algebra tools concentrate on process calculi with explicit data values as an input lan-
guage. A few front ends have been developed which translate a calculus with symbolic values into a
pure calculus, such as the value passer [Bru91], which translates value-passing CCS [Mil89] into pure
CCS. In the LOTOS community several tools have been constructed which can translate (valued)
LOTOS to C programs or labeled transitions system, e.g. [FGM+92, KBG93].

We aim at building a tool which can do model checking for µCRL [GP95]. µCRL is a specification
language for a process algebra with symbolic data values, where the process part is based on ACP
[BW90] and the data part on algebraic specifications as in [EM85]. Until now µCRL has been mainly
used for manual verification proving equivalences between processes (e.g. [BG94a]), but we are think-
ing of checking properties in a suitable logic. Sometimes we know only part of the desired behavior,
as in the case of safety criteria for railroads [GKvV94].

In this respect [Sch94] is highly interesting, which treats a calculus with symbolic data values as a
first class citizen. In [Sch94] value-passing CCS is mapped onto a data structure called parametrized
graphs, which are essentially symbolic transition systems. This has two advantages over the con-
ventional procedure of translating the valued calculus to the pure calculus and then perform modal
checking. First, the structure of the processes is still visible in the parametrized graphs. Second, part
of the state explosion is avoided because data is not expanded.

Whereas [Sch94] is mainly focused on checking various equivalences, we are interested in check-
ing modal formulas as in [GvV94] or [HL93]. We think that translating the language µCRL to
parametrized graphs is an interesting experiment in itself and a signal for model checking. We refer
to the experience that Hennessy-Milner Logic seems to be checked more efficiently on a restricted
form of pure CCS [Hol89]. A second point of interest is that the parameterized graphs are a kind of
data oriented specifications. In several case studies verification starts by transforming specifications
to such a form by hand and then performing further analysis, see e.g. [Bru95, GS95].

We describe the transformation of µCRL to parametrized graphs, which we will define syntactically.

119

2. Translating a Fragment of µCRL to a Single-Linear Specification

We start with a translation of a fragment of µCRL to single-linear format by means of typical examples
1. This format is a direct translation of a graph grammar and can be seen also as a fragment of value-
passing CCS. Next we explain how a larger part of the µCRL specifications in the full calculus can be
translated to this format. We end with some conclusions on the implementation of the transformation
in the ASF+SDF system [Kli93].

2. Translating a Fragment of µCRL to a Single-Linear Specification

The specification language µCRL has come out of the SPECS project, as the essence of the language
CRL [BDE+93]. It has been developed under the assumption that a study of the basic concepts of
specification languages will yield more fundamental insights then studying the complete language.

The data part contains equational specifications. The process part contains processes described in
the style of CCS, CSP or ACP, where the syntax has been taken from the last. It basically consists
of a set of uninterpreted actions that may be parametrized by data. These actions represent various
activities, depending on the usage of the language. There are sequential composition, alternative and
parallel composition operators. Furthermore, recursive processes are specified in a simple way. See
for a complete definition of jargon, syntax and semantics [PVvV95].

In this section we describe the translation of a basic fragment of µCRL to linear format. It is
similar to BPA, in that it contains only alternative and sequential composition 2 It extends BPA by
the presence of data and the if-then-else and sum construct. First we define this fragment and linear
specifications in a precise way. Next we describe the translation by means of examples.

2.1 Specifications in BPS Format
A well-formed µCRL specification E is a specification in Basic Process Syntax, BPS for short, iff all
process-declarations occurring in E have in their right-hand sides process-expressions that are in BPS:

Definition 2.1 The syntactical category BPS that constitutes the class of processes in BPS has the
following BNF syntax.

process-expression ::= process-expression + process-expression
| process-expression / data-term . process-expression
| process-expression · process-expression
|

∑
(single-variable-declaration, process-expression)

| δ
| name
| name(data-term-list)
| (process-expression).

In the above defintion + is the choice operator, · sequential composition and / . is the notation for
the if-then-else construct in µCRL .

∑
is the notation for a summation over data. δ is the deadlocked

process. The precedence is in the order ·, / .,+ (as can be seen seen from definition above).

Example 2.2 Consider the following well-formed µCRL specification in BPS, E of the sender in the
Alternating Bit Protocol of [GP95]:

1Formal approaches to µCRL proof theory are e.g., [GP93],[BG94b].
2In linear formats, sequential composition can actually be replaced by action prefixing.

120

2. Translating a Fragment of µCRL to a Single-Linear Specification

E ≡ sort bit, D, error,Bool
func T, F :→ Bool

0, 1 :→ bit
e :→ error
invert : bit→ bit
d1, d2, d3 :→D

act r1 : D
r6 : error
r6 : bit
s2 : D× bit
c : Bool

rew invert(0) = 1
invert(1) = 0

proc S = S(0) · S(1) · S
S(n : bit) = sum(d : D, r1(d) · S(d, n))
S(d : D, n : bit) = s2(d, n) · ((r6(invert(n)) + r6(e)) · S(d, n) + r6(n))

We will use the terms process and action as follows: let E be a µCRL specification and q a process-
expression that is Statically and Semantically Correct (SSC, [GP95]) with respect to E and has no free
data variables, then p from E is called a process from E. We will use the term parametrized process
name for the name in the left-hand side of a process specification, which has a type given by the
parametrization 3. Furthermore an action is a process that refers directly to an action-specification
in E and has no free data variables. So in the example above S(0) is a process from E, and
r6(invert(0)), r6(e) are actions from E. If E is fixed, we just speak of “the process p”.

We will restrict our attention to a decidable class of guarded specifications in BPS. We will admit
only those specifications where the defining right hand side of every process name is such that the
process name occurs only guarded, i.e. either directly or indirectly in the scope of an action.

Definition 2.3 Let P be the set of process names occurring in the specification E and p, p1, ..., pn, q ∈
P (parametrized) process names. Let UG(p, E) be a set of tuples of the form < p, q > where q is a
(parametrized) process name occurring unguarded in the declaration of p, i.e. not in the scope of a
preceding action. E is syntactically guarded iff

⋃
p∈P UG(p, E) contains no cycle, i.e. a subset of the

form {< p1, p2 >,< p2, p3 > ... < pn−1, pn >} so that p1 ≡ pn.

Given a µCRL specification E, we associate with each process from E a (referential) transition
system that describes its meaning. The intended semantics of a process p from a µCRL specification
E is a transition system A(AANE , p from E) where AANE is the canonical term algebra of E, and where
the labels of transitions may be parameterized by the fixed representations of the elements of AANE .
These transition systems are considered modulo bisimulation equivalence, notation ↔ AANE

, as this is
the coarsest congruence that respects operational behaviour.

Now processes from syntactically guarded µCRL specifications in BPS constitute the source lan-
guage for the translation described in the sequel.

Conventions. For readability we adopt the following conventions.

• Binary operations associate to the right, brackets are omitted if possible.
3So in Example 2.2 the three process declarations have a different parametrized process name, although their name

is the same.

121

2. Translating a Fragment of µCRL to a Single-Linear Specification

• Instead of repeatedly denoting µCRL specifications in a syntactically correct way (as was done
in the example above), we often only write down a process-specification without the keyword
proc, and assume that it is part of some well-defined µCRL specification. In doing so we use
a, b, c, ... as syntactic variables for action names and X, Y, Z, ... as syntactic variables for process
names .

• Whenever convenient, we assume that any µCRL specification under consideration contains the
(standard) functions ¬ and ∧ on the standard sort Bool. Applications of the function ∧ will
always be written in an infix manner. Note that from the point of view of describing processes
this convention causes no loss of generality, as we can always extend specifications with these
functions. 2

2.2 Single-Linear Process Specifications
In this section we define the syntax of “single-linear” process-specifications that play a crucial role in
our canonical translation.

We start by introducing the following two archetypes of µCRL process-specifications in BPS. In
their definition we use the symbol Σ also as a shorthand to denote finite sums (not to be confused
with the sum operator of µCRL): let p1, p2, ... be process-expressions, then the expression

k∑
i=1

pi

abbreviates δ in case k = 0, and p1 + p2 + ...+ pk otherwise.

Definition 2.4 A process-specification of the form pd1 ... pdm withm ≥ 1 from some µCRL specification
E is in normal form iff for all 1 ≤ i ≤m the declaration pdi has a right-hand side of the form

ki∑
j=1

pij

where each of the process-expressions pij 4 is of the form

(
∑kij
k=1 Σ(dijk : Dijk, aijk ·X1

ijk ·X2
ijk)+∑lij

l=1 Σ(dijl : Dijk, bijl ·X3
ijl)+∑mij

m=1 Σ(dijm : Dijm, cijm)) / tij . δ

with the dijk single variables over data typesDijk, aijk, bijk, cijk (possibly parameterized) process-expressions
over the names in the action-specifications from E, and the X1

ijk, X
2
ijk, X

3
ijk (possibly parameterized)

process- expressions over the names in the left-hand sides of the declarations pd1, ..., pdm.
In the special case that kij = 0 for all appropriate i, j we say that the process-specification pd1 ... pdm
is in linear form.

Now we can define what is meant by a “single-linear” process-specification.

Definition 2.5 Let E be a µCRL specification. A process-specification occurring in E is single-linear
iff it is in linear form and contains exactly one process-declaration.

4We use of course the axiom
∑

(d : D, p) = p, d not free in p, to remove summations.

122

2. Translating a Fragment of µCRL to a Single-Linear Specification

Example 2.6 Consider the following specification:

E ≡ sort Bool, S
func T, F :→ Bool

C :→ S
f : Bool→ S
g : S → Bool

act a, d
b : Bool
c : S ×Bool

proc X(x : Bool, y : S) = (a ·X(x, f(x)) + b(x)) / x . δ
+(c(y, g(y)) ·X(g(y), f(x)) + d) / g(y) . δ

that has a single-linear process-specification.

2.3 The Translation
Given a syntactically guarded well-formed µCRL specification E in BPS and a process p from E, we
describe in this section the construction of a syntactically guarded µCRL specification E′ such that

• E′ is a µCRL specification, obtained from E by the (possible) addition of sort-, function-,
rewrite- and process-specifications in such a way that p from E ↔ AAN

E′
p from E′.

• there is a process p′ from E′ such that

– p′ satisfies p′ from E′ ↔ AAN
E′
p from E′, i.e. p and p′ behave the same,

– p′ is a process that is specified in a single-linear way, i.e. the name of p′ is declared in a
single-linear process-specification contained in E′.

We just describe the construction of E′ by means of examples, and refrain from formal descriptions
which are required for a correctness proof. We hope that the suggestion of provability is sufficiently
clear.

We distinguish six consecutive steps in this type of construction, each of which should be ap-
plied in case its conditions hold. Application of such a step extends the specification with at least a
process-specification. We assume that these extensions always yield a µCRL specification , so in par-
ticular we assume that the newly added sort-, function- and process-specifications have fresh names .

1. Introducing a process expression as a new declaration. Let p fromE be the object for translation.
This step applies whenever p is not of the form n or n(t1, ..., tk) for some process name n. In this
case we extend E to E1 by adding a process-specification that specifies a process p1 of the form n or
n(t1, ...tk) that behaves the same as p from E1.

Example of step 1. Let p ≡ X(t) + b(u) where X(x : S) is specified as follows:

X(x : S) = a(x) ·X(x) + a(x)

and the action-specification act b : S′ is also contained in E. We extend E to E1 by adding the
process-specification

X′(x : S, y : S′) = X(x) + b(y)

123

2. Translating a Fragment of µCRL to a Single-Linear Specification

Note that

X(t) + b(u) from E1↔ AANE1
X′(t, u) from E1.

(End example.)

2. Translating the process declarations to normal form. Let p1 from E1 satisfy p1 ≡ n or p1 ≡
n(t1, ..., tk). This step applies whenever the process-specification of p1 is not in normal form. In this
case we extend E1 to E2 by adding a process-specification in normal form of a process p2 that behaves
the same as p1 from E2.

Example of step 2. Let p1 ≡ X(t) where X(d : D), is specified as follows, with d0 ∈ D a constant:

X(d : D) =
∑

(e : D, a(d) ·X(d0) ·X(e) ·X(d)) + b

We sketch the technique to obtain a process-specification in normal form that defines the same pro-
cess(es) as X(d : D). The main problem here is the summand

∑
(e : D, a(d) · X(d0) · X(e) ·X(d)),

as it is essentially different from the ‘normal form syntax’. We start by replacing this subterm by the
term

∑
(e : D, a(d) ·X1(d, e)). We add the new process declaration

X1(d : D, e : D) = X(d0) ·X(e) ·X(d)

and thus obtain the specification

X(d : D) =
∑

(e : D, a(d) ·X1(d, e)) + b
X1(d : D, e : D) = X(d0) ·X(e) ·X(d).

The process declaration for X is now essentially in normal form. We repeat the same step for the
process declaration for X1. The new specification becomes

X(d : D) =
∑

(e : D, a(d) ·X1(d, e)) + b
X1(d : D, e : D) = X(d0) ·X2(d, e)
X2(d : D, e : D) = X(e) ·X(d).

Having done this, we can replace the specification using the new declaration for X, i.e.,

X(d : D) =
∑

(e : D, a(d) ·X1(d, e)) + b
X1(d : D, e : D) = (

∑
(e : D, a(d0) ·X1(d0, e)) + b) ·X2(d, e)

X2(d : D, e : D) = (
∑

(e′ : D, a(e) ·X1(e, e′)) + b) ·X(d).

Using the axioms for the sum operator distributivity and the conditional construct this gives a speci-
fication which is in normal form. From this sketch it follows in what we can extend E1 to E2 with a
process-specification in normal form that defines a process behaving like X(t):

X′(d : D) =
∑

(e : D, a(d) ·X′1(d, e)) + b / T . δ
X′1(d : D, e : D) =

∑
(e : D, a(d0) ·X′1(d0, e) ·X′2(d, e)) + b ·X′2(d, e) / T . δ

X′2(d : D, e : D) =
∑

(e′ : D, a(e) ·X′1(e, e′) ·X′(d)) + b ·X′(d) / T . δ.

124

2. Translating a Fragment of µCRL to a Single-Linear Specification

We remark that a process-specification in normal form has a syntax comparable to the restricted
Greibach Normal form (rGNF) as defined in [BBK87]. They do not give an explicit method to obtain
this form but give a sketch in the proof. We believe that their method is more difficult to implement
than the method presented above, as we restrict ourselves to syntactically guarded specifications.

(End example.)

3. Disambiguate the formal parameters. Let p2 from E2 be specified in a process-specification that
is in normal form. This step applies whenever it is the case that the process-specification of p2 has
overloading of variable names . By definition of E2 being Statically Semantically Correct (SSC), this
can only be the case if the process-specification of p2 contains more than one declaration. In this case
we extend E2 to E3 by adding a process-specification in normal form that has uniquely typed variable
names , and that defines a process p3 that behaves like p2 from E3.

Example of step 3. Let p2 ≡ X(t) where X(x : S) is specified as follows:

X(x : S) = (a · Y (f(x)) + b) / t . δ
Y (x : S′) = (c ·X(g(x)) + d(x)) / h(x) . δ

We extend E2 to E3 by adding the process-specification

X′(x : S) = (a · Y ′(f(x)) + b) / t . δ
Y ′(y : S′) = (c ·X′(g(y)) + d(y)) / h(y) . δ

Note that

X(t) from E3 ↔ AANE3
X′(t) from E3.

(End example.)

4. Globalize formal parameters. Let p3 from E3 be specified in a process-specification that is in
normal form and that has uniquely typed variable names . This step applies whenever it is not the
case that the process-specification of p3 has global parameterization:

Definition 2.7 A process-specification in normal form with uniquely typed variable names
has global parameterization iff each occurring variable name is declared in all of its decla-
rations, that is in all occurring process parameter lists.

Note that a single-linear process-specification has by definition global parameterization. If step 4
applies, we extend E3 to E4 by adding a process-specification in normal form and with uniquely typed
variables that has global parameterization, and that defines a process p4 that behaves like p3 from E4.
The next step will show the purpose of this extension.

Example of step 4. Let p3 ≡ X(t) and let X(x : S) be specified as follows:

X(x : S) = (a · Y (f(x)) ·X(g(x)) + b(x)) / t1 . δ
Y (y : S′) = (c · Y (h(y)) + d(y)) / t2 . δ

We extend E3 to E4 by adding the process-specification

125

2. Translating a Fragment of µCRL to a Single-Linear Specification

X′(x : S, y : S′) = (a · Y ′(x, f(x)) ·X′(g(x), y) + b(x)) / t1 . δ
Y ′(x : S, y : S′) = (c · Y ′(x, h(y)) + d(y)) / t2 . δ

Note that x and y being different names is essential for application of this step. This extension has
the following property:

X(t) from E4 ↔ AANE4
X′(t, u) from E4

for any closed data-term u of sort S′.
(End example.)

5. Form single declaration. Let p4 from E4 be specified in a process-specification in normal form
that has uniquely typed variable names and global parameterization. This step applies whenever the
process-specification of p4 contains more than one process-declaration. In this case we extend E4 to E5
by adding a sort-specification, a function-specification and a process-specification containing only one
declaration that defines a process p5 which behaves the same as p4 from E5. The following example
also shows how the data-part of µCRL may be used, and the purpose of global parameterization (step
4).

Example of step 5. Let p4 ≡ X′(t, u) where X′(x : S, y : S′) is specified as in the example of step 4:

X′(x : S, y : S′) = (a · Y ′(x, f(x)) ·X′(g(x), y) + b(x)) / t1 . δ
Y ′(x : S, y : S′) = (c · Y ′(x, h(y)) + d(y)) / t2 . δ

We extend E4 to E5 by adding a new sort Sort with constants X′, Y ′, an equality function on Sort
(we use infix notation) and the process-specification

Z(n : Sort, x : S, y : S′) = (a ·Z(Y ′, x, f(x)) ·Z(X′, g(x), y) + b(x)) / t1 ∧ n = X′ . δ
+(c · Z(Y ′, x, h(y)) + d(y)) / t2 ∧ n = Y ′ . δ

The summands b(x) and d(y) show the purpose of global parameterization: the process Z has to be
parameterized with both the sorts S and S′ in order to have the specification E5 SSC. Note that
indeed

X′(t, u) from E5 ↔ AANE5
Z(X′, t, u) from E5.

(End example.)

6. Linearize the process declaration. Let p5 from E5 be specified in a process-specification in normal
form containing one process-declaration. This step applies whenever the process-specification of p5 is
not linear. In this case we extend E5 to E6 by adding sort-, function- and rewrite-specifications, and
a single-linear process-specification that defines a process p6 that behaves the same as p5 from E6.

Example of step 6. Let p5 ≡ Z(X′, t, u) where Z(n : Sort, x : S, y : S′) is specified as in the example
of step 5:

Z(n : Sort, x : S, y : S′) = (a ·Z(Y ′, x, f(x)) ·Z(X′, g(x), y) + b(x)) / t1 ∧ n = X′ . δ
+(c · Z(Y ′, x, h(y)) + d(y)) / t2 ∧ n = Y ′ . δ

126

3. From µCRL to Single-Linear Specifications

We add two sorts to E5. First a sort Unproper over which the data-terms are of the form X′, t′, u′

and Y ′, t′, u′, for all data-terms t′, u′ over the sorts S and S′, respectively. Note that this cannot be
proper µCRL syntax, as names may not contain commas. However, for the purpose of readability we
do not care for the moment and underline the elements of the unproper sort.

Next we add a sort Stack defined over Unproper and the constant λ for the empty stack, and the
functions pop, push, rest and is-empty with rewrite rules as expected. We extend E5 to E6 by also
adding the process-specification

Z′(n : S, x : S, y : S′, s : Stack) =
(a · Z′(Y ′, x, f(x), push(X′, g(x), y, s)) + b(x)) / t1 ∧ n = X′ ∧ is-empty(s) . δ

+ (a · Z′(Y ′, x, f(x), push(X′, g(x), y, s)) + b(x) · Z′(pop(s), rest(s)))
/ t1 ∧ n = X′ ∧ ¬(is-empty(s)) . δ

+ (c · Z′(Y ′, x, h(y), s) + d(y)) / t2 ∧ n = Y ′ ∧ is-empty(s) . δ
+ (c · Z′(Y ′, x, h(y), s) + d(y) · Z′(pop(s), rest(s))) / t2 ∧ n = Y ′ ∧ ¬(is-empty(s)) . δ

Note that

Z(X′, t, u) from E6↔ AANE6
Z′(X′, t, u, λ) from E6.

(End example.)
The general idea behind step 6 is that we can define a sort that has a class of (properly encoded)
process-expressions as its closed data-terms, and a sort Stack of stacks over this sort. Upon a summand
of the form a · X · Y we stack the subprocess Y , and upon a non-recursive summand of the form a
and a non-empty stack, we pop the first subprocess for execution.

3. From µCRL to Single-Linear Specifications

The Basic Process Syntax of the previous section is a concise way to specify processes with data, but
somewhat inconvenient to specify protocols. Usually protocols are specified as a parallel composition
of processes. Therefore we reintroduce more involved operators (merge, encapsulation etc.) into the
syntax. This will make specifying easier, but at the same time we have to be attentive that the
specifications we allow can be translated to a linear format.

It is well-known that regularity (and hence linearity) is undecidable when the occurrence of paral-
lelism in the syntax is unrestricted [BK89]. Moreover finiteness conditions as in the case of process
algebra without data such as in [MV90] become undecidable if processes and data interact.

It will be sufficient for our purposes to exclude specifications like

X(n : Int) = a(n) ‖ a(n+ 1) ·X(n + 2)

where a merge operator is used in the scope of the recursion. For convenience the above mentioned
operators will only be used to compose processes which are in BPS, or can be translated to it. Such a
strategy is straightforward and is used in e.g. the AUTO tool [SR91] to specify processes. In [Sch94]
syntactic conditions similar to ours are formulated and motivated with examples.

We formalize the restriction to a specification with a safe use of parallel operators with the aid of
syntactic guardedness.

Definition 3.1 Let E be a well-formed µCRL specification . E is safely linearizable iff

127

4. Conclusions and Future Work

1. E is the extension of a syntactically guarded µCRL specification Esyng with (parametrized)
process names Nsyng and,

2. All right hand sides of process declarations in the extension E − Esyng are process expressions
in which only (parametrized) process names in Nsyng occur.

Without proof we state that well-formed µCRL specifications , which are safely linearizable are
bisimilar to linear process specifications (see e.g. [BP94]). The receipt to obtain such a specification
is obvious. We translate in an innermost-outermost fashion all process declarations to single-linear
format, starting with the declarations in BPS. The other operators are eliminated in the usual way, by
expansion and straight forward data parametric substitution, using the recursive specification principle
RSP [GP93].

Of course the conditions of Definition 3.1 can be relaxed to allow more nesting. For this an iteration
á la syntactic guardedness suffices.

4. Conclusions and Future Work

In this paper we aim at arriving at a single-linear format. We believe that this is a natural format for a
parametrized graph or a symbolic transition system. Of course other formats are possible. The use of
steps 3–5 can be avoided if we had aimed at a linear format, i.e. several coexisting linear declarations.
One could say that this is a matter of taste, but we feel that Step 6 becomes more difficult and the
resulting specification is less insightful. If several (mutually dependent) process declarations remain,
process calls are not uniform and explicit list access has to be introduced, instead of implicit bindings.
Also extra control information has to be supplied to process calls, to allow correct selection of the
called process. Also in some way or another, process calls have to be stacked with varying types of
parameters. The data structure needed will be a list of lists of varying types, and hence be complicated.

At the moment the first author is implementing the above described translation in the ASF+SDF
system [Kli93]. This general purpose term rewriting system has several built-in possibilities, among
them the possibility to compile rewriting systems to C code. We can make ample use of the fact that
µCRL data and process specification is ASF like. We are aiming to integrate this “linearizer” with
the well-formedness checker [HK95] developed for µCRL .

We see several next steps. A first (conservative) next step is to build an “instantiator”, a front
end which can translate single-linear specifications to labeled transition systems. These can then be
interfaced with the tools in the Concur 2 project, which offer various model checking facilities for pure
calculi. Of course it will then be essential that all data types are finitary.

A second, more ambitious step is to implement a part of the logic of [GvV94], which is tailored to
the syntax of µCRL . An obvious strategy would be to expand modal formulas, to instantiate data
and check the pure formulas on a labeled transition system.

Third, we can make a detailed investigation of the complexity of the various steps and suggest op-
timizations. Furthermore we can look for a class of specifications for which the stacking of processes
in Step 6 of Section 2 can be avoided, using the results of [MM94].

Acknowledgements. Jan Bergstra, David Griffioen, Jan-Friso Groote, Wilco Koorn, Eric Made-
laine and Frits Vaandrager are thanked for helpful suggestions.

References

[BBK87] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equivalence for
processes generating context-free languages. In J.W. de Bakker, A.J. Nijman, and P.C. Tre-
leaven, editors, Proceedings PARLE conference, Eindhoven, Vol. II (Parallel Languages),
volume 259 of Lecture Notes in Computer Science, pages 94–113. Springer-Verlag, 1987.

128

References

[BDE+93] W. Bouma, M. Dauphin, G.D. Evans, M. Michel, and R. Reed, editors. SPECS-
Specification and Programming Environment for Communicating Software. North Holland,
1993.

[BG94a] M.A. Bezem and J.F. Groote. A correctness proof of a one bit sliding window protocol in
µCRL. The Computer Journal, 37(4):289–307, 1994.

[BG94b] M.A. Bezem and J.F. Groote. Invariants in process algebra with data. In Bengt Jonsson
and Joachim Parrow, editors, CONCUR’94: Concurrency Theory, volume 836 of Lecture
Notes in Computer Science, pages 401–416. Springer-Verlag, 1994.

[BK89] J.A. Bergstra and J.W. Klop. Process theory based on bisimulation semantics. In J.W.
de Bakker, W.P. de Roever, and G. Rozenberg, editors, REX School/Workshop on Linear
Time, Branching Time and Partial Order in Logics and Models for Concurrency, Noord-
wijkerhout, The Netherlands, May/June 1988, volume 354 of Lecture Notes in Computer
Science, pages 50–122. Springer-Verlag, 1989.

[BP94] M.A. Bezem and A. Ponse. Two finite specifications of a queue. Report P9424, Program-
ming Research Group, University of Amsterdam, 1994.

[Bru91] Glenn Bruns. A language for value-passing CCS. Technical Report ECS-LFCS-91-175,
Laboratory for Foundations of Computer Science, University of Edinburgh, 1991.

[Bru95] J.J. Brunekreef. Process Specification in a UNITY format. In Ponse et al. [PVvV95], pages
319–337.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

[EM85] H. Ehrig and B. Mahr. Fundamentals of algebraic specifications I, volume 6 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1985.

[FGM+92] Jean-Claude Fernandez, Hubert Garavel, Laurent Mounier, Anne Rasse, Carlos Rodŕıguez,
and Joseph Sifakis. A toolbox for the verification of lotos programs. In Proceedings of
the 14th International Conference on Software Engineering ICSE’14 Melbourne, Australia,
1992.

[GKvV94] J.F. Groote, J.W.C. Koorn, and S.F.M. van Vlijmen. The Safety Guaranteeing System at
Station Hoorn-Kersenboogerd. Report 121, Logic Group, Preprint Series, Utrecht Univer-
sity, 1994.

[GP93] J.F. Groote and A. Ponse. Proof theory for µCRL: A language for processes with data. In
D.J. Andrews, J.F. Groote, and C.A. Middelburg, editors, Proceedings of the International
Workshop on Semantics of Specification Languages, Workshops in Computer Science, pages
231–250. Springer-Verlag, 1993.

[GP95] J.F. Groote and A. Ponse. The Syntax and Semantics of µCRL. In Ponse et al. [PVvV95],
pages 26–62.

[GS95] J.F. Groote and A. Sellink. Confluence for Process Verification, 1995. To be published in
the proceedings of CONCUR’95.

[GvV94] J.F. Groote and S.F.M. van Vlijmen. A Modal Logic for µCRL. Research Report 114,
Dept. of Philosophy, Utrecht University, May 1994. Also in: Modal Logic and Process
Algebra, A. Ponse, Y. Venema, and M. de Rijke, editors, CSLI Publications, to appear.

[HK95] J.A. Hillebrand and H. Korver. A Well-formedness Checker for µCRL. Report P9501,
Programming Research Group, University of Amsterdam, February 1995.

[HL93] M. Hennessy and X. Liu. A modal logic for message passing processes. Research Report
3/93, University of Sussex, January 1993.

[Hol89] Uno Holmer. Translating Static CCS Agents into Regular Form. PMG report 51, De-

129

References

partment of Computer Science, Chalmers University of Technology and the University of
Göteborg, 1989.

[KBG93] G. Karjoth, C. Binding, and J. Gustafsson. LOEWE: A LOTOS engineering workbench.
Computer Networks and ISDN Systems, 25:853–874, 1993.

[Kli93] P. Klint. A meta-environment for generating programming environments. ACM Transac-
tions on Software Engineering and Methodology, 2(2):176–201, 1993.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood
Cliffs, 1989.

[MM94] Sjouke Mauw and Hans Mulder. Regularity of BPA-Systems is Decidable. In Bengt Jonsson
and Joachim Parrow, editors, CONCUR’94: Concurrency Theory, volume 836, pages 34–
47. Springer-Verlag, 1994.

[MV90] E. Madelaine and D. Vergamini. Finiteness Conditions and Structural Construction of
Automata for all Process Algebras. In Proceedings of CAV ’90, New Brunswick (NJ), 1990.

[PVvV95] A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors. Algebra of Communicating Pro-
cesses, Utrecht ’94, Workshops in Computing, Utrecht, 1995. Springer-Verlag.

[Sch94] Marcel Zvi Schreiber. Value-passing Process Calculi as a Formal Method. PhD thesis,
University of London, 1994.

[SR91] R. de Simone and V. Roy. Auto/Autograph. In E.M. Clarke and R.P. Kurshan, ed-
itors, Proceedings of the 2nd International Conference on Computer-Aided Verification,
New Brunswick, NJ, USA, volume 531 of Lecture Notes in Computer Science, pages 65–75.
Springer-Verlag, 1991.

130

A UNITY-based Algorithm Design Assistant

Michel Charpentier† Abdellah El Hadri‡

Gérard Padiou†

†ENSEEIHT-IRIT ‡EMI
2, rue Charles Camichel Avenue Ibn Sina BP 765
31071 TOULOUSE cedex RABAT (MAROC)
e-mail: {charpov, padiou}@enseeiht.fr e-mail: elhadri@emi.ma

Abstract

We address the problem of the automatic verification of reactive sys-
tems. For such algorithms, parallelism, non-determinism and distribution,
lead to frequent design flaws and make debugging difficult. Proving pro-
grams with respect to their specification may solve both these problems.
In this framework, we describe the implementation of an algorithm design
assistant based upon the UNITY formalism. A theorem prover and a Pres-
burger formulas calculator are used to perform the underlying proofs. We
illustrate the main difficulties encountered with representative examples.

Key words: Program verification, reactive programs, UNITY formalism,
parallelism, distribution, theorem proving.

I Introduction

Concurrency and distribution generate two further difficulties with respect to
sequential programming. Concurrency leads to a drastic increase in program
states and distribution results in a knowledge loss of both any global state and
time. Therefore, program debugging becomes especially difficult.

To cope with these problems, we need to improve and formalize the meth-
ods and tools to design such programs. In this framework, two approaches may
be investigated. Firstly, the development process itself may be assisted and
supervised rigorously. Several projects are currently devoted to such computer

131

assisted software engineering (CASE) tools. Secondly, the development oper-
ations may be improved too. In this case, the use of well formalized methods
should enable to produce correct programs more quickly. However, without as-
sistance, proofs are long, tedious and error prone. Therefore, computer assisted
proofs appear a worthwhile requirement. We investigate this approach.

Stepwise refinement programming is a well known method. The develop-
ment of a program consists of a sequence of pairs (Spec, Prog) in which Spec
is a specification and Prog its associated implementation. Starting from a
high level abstract version, successive refinements generate new pairs to lead
to a final program validated with respect to its specification. Each refinement
must have well defined semantics in order to check its validity in the context of a
specific development. The handling of both the specification and the implemen-
tation of a program helps to grasp the problem insofar as these representations
complement each other.

However, a parallel calculus model is required to experiment such an ap-
proach. This model should:

• provide both a specification and programming language with a well for-
malized foundation;

• allow a stepwise refinement design with the same formalism all along the
development process;

• include parallel features.

According to these requirements, we have chosen the UNITY model from
Chandy and Misra [CM88] as an experimental basis. Its specification language
allows to describe the safety properties and liveness properties of programs
and the programming language provides both synchronous and asynchronous
statements to express parallelism. Furthermore, this model is general enough
to carry out a stepwise refinement approach.

In this framework, the formalization of a development involves two tasks:

• the research and the definition of generic refinements;

• the consistency verification of the pair (Spec, Prog). More precisely, the
program Prog must be validated with respect to its specification Spec.

About the first task, the refinement method allows to prove only the initial
pair (Spec, Prog) if the further performed refinements are sound. Although
this point will not be further considered in this paper, we actually search how
to refine a centralized algorithm so that it can be efficiently mapped to a target
distributed architecture.

The second task raises an automatic proof problem. We study this question
in the following sections more precisely and its implementation in a UNITY based
environment.

132

II The UNITY formalism

The UNITY formalism is based on fair transition systems. It consists of a pro-
gramming language to describe the state transitions and a specification language
based upon linear temporal logic. We only outline the main features. Readers
familiar with UNITY may skip this section.

II.1 UNITY programs

A UNITY program consists of four sections:

• the declare section defines a set of typed variables.

• the initially section assigns initial values to the variables. A variable may
be initialised at most once with an expression of its type. Non-initialized
variables have arbitrary values at the beginning of the program execution.

• the always section defines some variables as functions of others.

• lastly, the assign section contains the program statements. More pre-
cisely, a set of multiple-assignment statements are listed. The symbol [] is
used to separate these assignments.

A program execution runs forever starting from any state satisfying the
initial conditions. At any step, a statement is arbitrarily selected for execution.
However, each statement is executed infinitely often (weak fairness hypothesis).

Terminating programs are interpreted as programs that reach a fixed point,
namely, a stable state. Any further execution step leaves the (stable) state
unchanged.

The only UNITY statement is the assignment with several forms: conditional,
quantified and enumerated. For instance, a conditional multiple assignment has
the following syntax:

v1, v2, · · · , vn := e1
1, e

1
2, · · · , e1

n if g1
∼ e2

1, e
2
2, · · · , e2

n if g2
· · · · · · if · · ·
∼ ep1, e

p
2, · · · , epn if gp

Unlike Dijkstra’s guarded commands, when several conditions are simul-
taneously true, the assigned values must be the same. Each assignment is
deterministic. The assignment leaves the variable values unchanged if none of
the conditions is true.

Enumerated assignments are a syntactic feature to cut long multiple assign-
ments. For instance, x := a ‖ y, z := b, c ‖ t := d is an equivalent notation for
x, y, z, t := a, b, c, d.

Quantification is allowed, especially with parallel or exclusive assignments.
For instance, the quantified assignment 〈‖ i : 1 ≤ i ≤ N :: A[i] := B[i]〉 assigns
the array B to the array A.

133

II.2 UNITY logic

A specification language is associated to the former operational language. It
allows to specify safety and liveness properties as logical expressions. The
program variables are operands of such predicates. These properties may be
proved with respect to the program component by means of a set of theorems.

The UNITY logic is based on Hoare triples {P} s {Q} [Hoa69] in which
P and Q are predicates and s a statement. Such a triple has the following
interpretation: if the statement s is performed from a program state satisfying
P and terminates, the resulting state will verify the predicate Q.

Safety property syntax

Three basic relations allow to express safety properties, namely: Unless, Sta-
ble and Invariant. For a program Prog and predicates P and Q, we have the
following definitions:

P Unless Q ≡ 〈∀s : s in Prog :: {P ∧ ¬Q}s{P ∨Q}〉
(if P holds at some point, P remains true at least until Q holds.)

Stable P ≡ P Unless false
(if P becomes true, it remains true forever.)

Invariant P ≡ (initial conditions ⇒ P) ∧ (Stable P)
(P is true at the program start and all over the execution.)

Liveness property syntax

The basic liveness relation is ensures with the following definition: for a
program Prog and predicates P and Q

P Ensures Q ≡ (P Unless Q) ∧ 〈∃s : s in Prog :: {P ∧ ¬Q}s{Q}〉

(if P holds at some point, P remains true at least until Q becomes true and
there exists one statement to eventually validate Q.)

This property allows to define a more powerful relation 7→ (leads-to).
P 7→ Q means that if P holds at some point, Q eventually becomes true.

II.3 Example

We consider a program with two counters i and j. Their behaviour depends on
each other.

initially i, j = 0, 10;
assign

i := i+ 1
[] j := i if i 6=5

This program verifies the following safety and liveness properties:

134

∀ k Stable i ≥ k – i cannot decrease
∀ k i = k Unless i = k + 1 – i can only increase by 1 steps
∀ k i = k Ensures i = k + 1 – i actually increases by 1 steps
Invariant i ≥ 0 – i is always non negative
Invariant i ≥ 0 ∧ j ≥ 0 – i and j are always non negative
∀ k j = k 7→ j > k – j increases indefinitely

Note on invariant and “always true” properties

As defined in UNITY, a property I is invariant if it holds in the initial state of
the program and it is maintained by any transition of the program (stable).

Thus, from a state where I holds, a transition must lead to a state where
I still holds. The only knowledge about the starting state is that I holds. In
particular, no assumption is made about the reachability of the state. If there
exists a state from which I is not maintained, I is not invariant, even if this
state is unreachable.

Therefore, a property may hold for all possible executions of a program and
not be invariant (i.e. not be maintained from some unreachable state). For
instance, in the example above, we do not have Invariant j ≥ 0 although j is
never less than zero for all possible executions of the program. Actually, from
the (unreachable) state (i, j) = (−1, 2), the second statement does not maintain
j ≥ 0.

A weaker form of invariants has been introduced that exactly fits the notion
of always true properties [San91]. It is based on the idea of strongest invariant.
The strongest invariant of a program is the strongest (for the imply relation)
invariant property of that program. It is defined as the conjunction of all the
invariants of the program. In other words, the strongest invariant holds in any
reachable state and only in the reachable states. It may be used to characterize
the reachable states of a program, and thus avoids the above difficulty. An
always true property is then a property implied by the strongest invariant.

In practice, the main difficulty in proving that a given property is always true
in a program is to find an invariant strong enough to imply the property, that is
to specify precisely enough which are the reachable states. Some tools used in
proving programs automatically allow to strengthen a given invariant (see VI.2)
and even to compute the strongest invariant in particular cases (see VI.1).

III The design assistant

III.1 Description

The assistant appears as a syntax-directed editor with an X Window System
interface for both the UNITY language and logic. It has been generated by
the Grammatech Synthesizer Generator and provides all the functionalities
of the editors created with this tool, described in [RT89].

The system handles a two-part text:

135

• an algorithm description in the UNITY language,

• a specification for both the safety and liveness properties of this algorithm
in the UNITY logic. Each property is labelled with a name.

The goal is to control automatically the program with respect to all the specified
properties.

Figure 1: User interface of the assistant

Figure 1 shows the user interface of the environment. The user can edit a
syntactically correct text in the UNITY formalism. The editor translates this
text into an attributed abstract tree. Incremental analysis is performed by up-
dating attribute values throughout the current tree in response to each editing
transaction (text editing, system command, ...).

In this UNITY editor, the attribute evaluation performs the following seman-
tic actions:

• static semantic checking (type control);

• generation of formulas that express the consistency between the specifi-
cation part and the implementation part;

• calls to a theorem prover to verify the previous formulas. Currently, the
user can choose between two tools: the Otter theorem prover (see IV)
and the Omega calculator (see V).

136

The labels of the properties to be checked are displayed after each program
statement. In order to check a property, the user must first select this property
with the mouse, and then call a theorem prover by clicking on the corresponding
button. If the proof of the property succeeds, the corresponding label disap-
pears. For instance, in figure 1, the Stable property i incr is selected and its
proof may be launched by clicking on a button located at the bottom of the
window.

Currently, the environment only manages a subset of the UNITY formalism.
The language accepts integers and booleans but neither arrays nor statement
quantification are allowed. At the logical level, the temporal operator 7→ is
not handled. Such proofs involve too many practical and theoretical difficulties
(transitive closure calculus, for example).

In addition to the usual sections of a UNITY program (declare, always,
initially and assign) a with section provides a direct interface with the theo-
rem provers. This feature is useful for proving (non temporal) predicates with
program variables as operands.

III.2 Example

The tool has been tested in different areas including distributed systems, hard-
ware design or robotics. We detail an infinite-state synchronisation problem,
namely the parking problem.

The parking model [AHV83] illustrates the problem of critical resource al-
location to concurrent processes. The parking size C represents the number
of available resources. A car arrival event simulates a resource request. An
effective car entrance into the parking represents a resource allocation and an
exit stands for a resource release.

The specification is based upon event counters respectively representing
the number of arrivals A, entrances E and departures D. The basic invariant
property expresses that the number of cars inside the parking always remains
less then or equal to the parking capacity, that is E −D + F = C where F is
the number of free places and E, D and F are non negative.

A distributed implementation can be seen as a parking with several access
points. Each access point manages its own local counters of events and free
places, namely ai, ei, di and fi with the representation invariant:

A =
∑
i

ai, E =
∑
i

ei, D =
∑
i

di, F =
∑
i

fi

In the following program, we consider a three access point parking. UNITY
assignments update event counters and the different access points exchange free
places by means of a virtual ring topology.

Program Parking

declare
C : INT;
a1,a2,a3,e1,e2,e3,d1,d2,d3,f1,f2,f3 : INT;
ka,ke,kd : INT

137

always
INT D = ((d1 + d2) + d3),
INT E = ((e1 + e2) + e3),
INT A = ((a1 + a2) + a3),
INT F = ((f1 + f2) + f3)

Specifications
Inv_gl_Impl invariant (((E − D) + F) = C),
f123_ge_0 invariant (((f1 ≥ 0) ∧ (f2 ≥ 0)) ∧ (f3 ≥ 0)),
a123_ge_0 invariant (((a1 ≥ 0) ∧ (a2 ≥ 0)) ∧ (a3 ≥ 0)),
e123_ge_0 invariant (((e1 ≥ 0) ∧ (e2 ≥ 0)) ∧ (e3 ≥ 0)),
d123_ge_0 invariant (((d1 ≥ 0) ∧ (d2 ≥ 0)) ∧ (d3 ≥ 0)),
a1_Croit (a1 = ka) unless (a1 > ka),
e1_Croit (e1 = ke) unless (e1 > ke),
d1_Croit (d1 = kd) unless (d1 > kd)

with
(((((E − D) + F) = C) ∧ (F ≥ 0)) ⇒ ((E − D) ≤ C))

implementation

initially
a1,a2,a3,e1,e2,e3,d1,d2,d3 = 0,0,0,0,0,0,0,0,0;
f1,f2,f3,C = 2,2,1,5

assign
a1 := (a1 + 1)

[]
e1,f1 := (e1 + 1),(f1 − 1) if ((e1 < a1) ∧ (f1 > 0))

[]
d1,f1 := (d1 + 1),(f1 + 1) if (d1 < e1)

[]
a2 := (a2 + 1)

[]
e2,f2 := (e2 + 1),(f2 − 1) if ((e2 < a2) ∧ (f2 > 0))

[]
d2,f2 := (d2 + 1),(f2 + 1) if (d2 < e2)

[]
a3 := (a3 + 1)

[]
e3,f3 := (e3 + 1),(f3 − 1) if ((e3 < a3) ∧ (f3 > 0))

[]
d3,f3 := (d3 + 1),(f3 + 1) if (d3 < e3)

[]
f1,f2 := (f1 − 1),(f2 + 1) if (f1 > 0)

[]
f2,f3 := (f2 − 1),(f3 + 1) if (f2 > 0)

[]
f3,f1 := (f3 − 1),(f1 + 1) if (f3 > 0)

end {Parking}

With a 64 MB SUN SPARCstation 5, the proof of all the properties in
the Specifications section requires 114 calls to Otter taking a total time of
2 minutes and 20 seconds, or 102 calls to Omega taking a total time of 20
seconds.

138

IV The theorem prover Otter

IV.1 Presentation

By means of attribute grammars, the editor part of the tool performs an at-
tribute evaluation based on weakest precondition (wp) [Dij76] and generates a
set of predicates. These predicates have to hold for the program to respect its
specification.

Therefore, we need to use a theorem prover to check the predicates validity.
After having studied different tools ([KZ87, GG91, Ast92]), based on rewriting
or resolution, we have chosen the Otter (Organized Techniques for Theorem-
proving and Effective Research) theorem prover [McC90, McC91], mainly be-
cause of its simplicity (that makes easier the interfacing with the editor), its
speed, and its ability to work entirely automatically. We emphasize that the
formulas to prove automatically are numerous but quite simple.

IV.2 Checking specifications

The UNITY specification language is based on the respect of state formulas at
different points of a program (Hoare-triples). This kind of logic is very useful,
and Dijkstra introduced a useful tool for reasoning about it, known as weakest
precondition (wp) [Dij76]. For a state formula Q and a statement s, wp (s, Q) is
the weakest state formula that must hold before s to ensure that Q holds after
s. Therefore, a state formula P is a sufficient precondition for Q with respect
to s if and only if it is a stronger formula than wp (s, Q), that is:

{P} s {Q} iff P ⇒ wp (s, Q)

The function Q → wp (s, Q), from predicates to predicates, expresses the se-
mantics of the statement s, interpreted as a predicate transformer.

While reasoning about UNITY programs, wp is very useful because of its com-
putability. One can automatically compute wp (s, Q) and transform a specifica-
tion problem {P} s {Q} into the logical formula P ⇒ wp (s, Q). This deductive
approach can deal with infinite state spaces (in contrast with model checking),
as, for example, in the parking program (see III.2).

Application to UNITY:

As we have seen, UNITY only provides a single kind of statement, namely the
multiple assignment. Therefore, we only have to define wp for such assignments.
A formulaQ will hold after an assignment s if the formula it comes from through
s held before executing s. Thus, the wp for a formula Q is obtained by variable
substitution in Q:

wp (v1, · · · , vn := e1, · · · , en , Q) ≡ Q|v1,···,vn
e1,···,en

This method still works with guarded assignments. An assignment with n
guards can be seen as n different assignments, each one having to fit the specifi-
cation. The wp has to be sufficient whichever assignment is actually performed,

139

but the guard can strengthen the precondition for the selected assignment. Fi-
nally, one must consider the nop statement in the case where no guard holds
(no assignment is performed).

For an assignment s of the form:

v1, v2, · · · , vn := e1
1, e

1
2, · · · , e1

n if g1
∼ e2

1, e
2
2, · · · , e2

n if g2
· · · · · · if · · ·
∼ ep1, e

p
2, · · · , epn if gp

we obtain:

{P} s {Q} iff
p∧
i=1

(P ∧ gi ⇒ wp (αi, Q))
∧

(P ∧ ¬g1 ∧ · · · ∧ ¬gp ⇒ Q) (1)

where αi is the assignment v1, v2, · · · , vn := ei1, e
i
2, · · · , ein and where each

wp (αi, Q) is computed by substitution over Q.
In the UNITY logic, a constraint of the form X Unless Y requires to check
the Hoare triple {X ∧ ¬Y } s {X ∨ Y } for all assignments s. For a nop

statement, this boils down to verify X ∧ ¬Y ⇒ X ∨ Y which is a tautology.
Therefore, for any Unless property, the last conjunction of formula 1 needs

not be computed, since this part of the formula expresses the nop case. This
simplification remains possible with the Stable, Constant and Invariant con-
straints which are special cases of the Unless relation.

V The Presburger calculator Omega

V.1 Presentation

Reactive programs, like those we consider, often use integer counters. However,
classical theorem provers, like Otter, are not well suited to symbolic arithmetic
calculations. Therefore, we decided to try another kind of tool.

Omega [Pug92, KMP+94] is a calculator for Presburger formulas. It is not
a theorem prover, but manipulates on sets and tuple relations based on Pres-
burger arithmetic, a class of logical formulas built from affine constraints over
integer variables. Such a formula is of the form:

φ ∧ ψ or φ ∨ ψ
or ¬φ or ∃ v1, v2, · · · , vn : φ
or ∀ v1, v2, · · · , vn : φ or C

where φ, ψ are Presburger formulas and C is a logical constraint of the form
e1, e2, · · · , en op e′1, e

′
2, · · · , e′n with op among =, 6=, <, >,≤,≥. The e′i are affine

expressions on the variables.
A set is defined as follow:

{[u1, u2, · · · , un] : φ};

where φ is a Presburger formula, and a tuple relation is of the form:

{[u1, u2, · · · , un]→ [v1, v2, · · · , vn] : φ};

140

Omega then offers a variety of set and relational operators to handle these
sets and relations, such as union, subset, join, etc.

V.2 Checking specifications

We have added a second interface to the syntax directed editor that allows us
to check UNITY specifications with Omega. We translate preconditions and post-
conditions into sets of state, and the multiple assignment into a tuple relation.

To check an assertion like {P} s {Q}, one can use the notion of strongest
postcondition (sp). For a statement s and a predicate P , sp (s, P) is the strongest
state formula that holds after having executed s from a state in which P holds.
Therefore, a formula Q is a necessary postcondition of P with respect to s if
and only if it is a weaker formula than sp (s, P), that is:

{P} s {Q} iff sp (s, P)⇒ Q

For an assignment s of the form:

v1, v2, · · · , vn := e1
1, e

1
2, · · · , e1

n if g1
∼ e2

1, e
2
2, · · · , e2

n if g2
· · · · · · if · · ·
∼ ep1, e

p
2, · · · , epn if gp

we obtain:

{P} s {Q} iff
p∧
i=1

(sp (αi, P ∧ gi)⇒ Q)
∧

(P ∧ ¬g1 ∧ · · · ∧ ¬gp ⇒ Q)

where αi is the assignment v1, v2, · · · , vn := ei1, e
i
2, · · · , ein.

Instead of handling a predicate directly, one can consider the set of the
states for which the predicate holds. A state is the tuple built from the values
of the variables in the program. An assignment is a function from states to
states. The formula sp (s, P)⇒ Q is handled as the set relation S (P) ⊂ Q
where S is the function corresponding to the statement s and P and Q are the
sets of states corresponding to the formulas P and Q. This approach avoids to
compute the strongest postcondition explicitly and allows to compute neither
weakest precondition nor strongest postcondition at the editor level.

VI Related work

We distinguish two main approaches in the program proof domain.
On the one hand, the programmer has to describe a complete and formal

proof by hand. Afterwards, this proof is automatically checked by a verification
system. In this case, no assistance is provided in generating the proof. Systems
like HOL [GM93], Deva [CJL+89] and PVS [SOR93] are used to perform such
verifications. The tool does not handle both specification and program, but
only the hand proof resulting from such a confrontation. UNITY proof systems
have been described with HOL [And92] and with the Boyer-Moore logic [Gol92].

141

On the other hand, the proof construction from a program and its speci-
fication is handled at the tool level. The TLP system [Eng94], based on the
temporal logic of actions (TLA) [Lam94], illustrates this one approach. We
now focus on two others projects with a closer relationship to our work. The
first one, called UNITY Verifier [Kal94a, Kal94b], is also based on the UNITY
programming notation, but uses model checking to perform the proofs. The
second one, called STeP [Ma94], allows to validate a program with respect to a
linear temporal logic specification.

VI.1 The UNITY Verifier

Model checking is a traditional way for automatically proving programs. It con-
sists in checking that a model (a program) is correct with respect to a formula
(a specification) usually by exhaustively checking all possible transitions.

The UNITY Verifier is a model checker intended for interactively verifying
concurrent programs written in UNITY. Through a X Window System interface,
it operates on a restricted part of the UNITY formalism (no array, no statement
quantification, no always section) and, due to its model checking algorithm, it
only handles finite state programs.

Its main attractive feature is its ability to generate the strongest invariant
(see II.3) for a finite state program and thus, to directly handle always true
properties. However, always true properties raise compositional issues [Col94]
and non finite state programs cannot be handled, especially those with integer
variables.

VI.2 The STeP system

The STeP project (Stanford Temporal Prover) is a system being developed to
support the computer-aided formal verification of concurrent and reactive sys-
tems based on fair state transition models and temporal logic specifications.
Thus, it handles both a linear temporal logic specification and a program writ-
ten in a parallel language called SPL.

The proofs either can be entirely automatic or can be user directed. The sys-
tem combines model checking and deductive methods to handle non finite state
programs. The programming language SPL is more complete and deterministic
than UNITY, and provides synchronisation facilities (such as semaphores, for in-
stance), but UNITY remains sufficient to express parallelism with a high degree
of non determinism.

Finally, an interesting feature of the system is its ability to generate invari-
ants from the program text and to strengthen user given invariants.

VII Conclusions

With regard to this experiment, the use of several provers with their own capa-
bilities seems to be a more practical way than looking for a very general tool.
The STeP system also adopts this approach. Therefore, we think of using other
provers, especially the Boyer and Moore theorem prover [BM88].

142

Automatic invariant generation (as, for instance, in the UNITY Verifier
and the STeP system) provides an important proof assistance. However, the
strongest invariant cannot be generated by computation for non finite state pro-
grams. In our approach, refinements may allow a stepwise invariant derivation.

Hundred of proofs were necessary to check the small programs described
above. Large programs remain out of reach. In front of this difficulty, we are
studying two possibilities:

• investigate modularity. Modules are proved independently and further
linked with each other. Consequently, sound compositional operators
must be available. UNITY provides such operators and allows this research
direction.

• define generic sound refinements.

In both cases, the assistant will have to check if the refinements are allowed. We
investigate both these directions. Generic refinements have already been defined
for mapping a centralized algorithm to a distributed architecture [FMP93].

References

[AHV83] F. André, D. Herman, and J.-P. Verjus. Synchronisation de pro-
grammes parallèles. Dunod Informatique, 1983.

[And92] F. Andersen. A Theorem Prover for UNITY in Higher Order Logic.
PhD thesis, Technical University of Denmark, 1992.

[Ast92] O. Astrachan. Exploring Model Elimination Theorem Proving.
Technical Report CS-1992-22, Duke University, Durham, ,NC USA,
December 1992.

[BM88] R. S. Boyer and J. S. Moore. A Computational Logic Handbook.
Academic Press, 1988.

[CJL+89] J. Cazin, R. Jacquart, M. Lemoine, P. Michel, and P. Maurice.
Method driven programming. G.X. Ritter Editor, Information Pro-
cessing 89. Elsevier Science Publishers B.V. (North-Holland), 1989.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design : A Founda-
tion. Addison-Wesley, 1988.

[Col94] P. Colette. Design of Compositional Proof Systems Based on
Assumption-Commitment Specifications. Application to UNITY.
Thése de docteur en sciences appliquées, Faculté des Sciences Ap-
pliquées, Université Catholique de Louvain, June 1994.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, En-
glewood Cliffs, 1976.

143

[Eng94] U. Engberg. TLP Manual. Computer Science Department, Aarhus
University, Ny Munkegade, Building 540, DK-8000 Aarhus C, DEN-
MARK, release 2.5a edition, May 1994.

[FMP93] M. Filali, Ph. Mauran, and G. Padiou. Raffiner pour répartir. Tech-
nical Report 93-29/R, Institut de Recherche en Informatique de
Toulouse, France, November 1993.

[GG91] S. J. Garland and J. V. Guttag. A Guide to LP, The Larch Prover.
Technical Report 82, Systems Research Center, Digital Equipment
Corporation, December 1991.

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL : A The-
orem Proving Environnement for Higher Order Logic. Cambridge
University Press, 1993.

[Gol92] D. M. Goldschlag. Mechanically Verifying Concurrent Programs.
PhD thesis, University of Texas at Austin, May 1992.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576–580,583, 1969.

[Kal94a] M. Kaltenbach. Model Checking for UNITY : The UV System. De-
partment of Computer Sciences, The University of Texas at Austin,
revision 1.10 edition, May 1994.

[Kal94b] Markus Kaltenbach. The UV System. User Interface Manual. The
University of Texas at Austin, revision 1.13 edition, December 1994.

[KMP+94] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and
D. Wonnacott. The Omega Calculator and Library, version 0.90.
Dept. of Computer Science and Institute for Advanced Computer
Studies, Univ. of Maryland, College Park, MD 20742, November
1994.

[KZ87] Deepak Kapur and Hantao Zhang. RRL : Rewriting Rule Laboratory
User’s Manual. Department of Computer Science, State University
of New York at Albany, The University of Iowa, June 1987.

[Lam94] L. Lamport. The Temporal Logic of Actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[Ma94] Z. Manna and al. SteP : The Stanford Temporal Prover. Technical
Report STAN-CS-TR-94-1518, Department of Computer Science,
June 1994.

[McC90] William W. McCune. OTTER 2.0 Users Guide. Technical Report
ANL-90/9, Mathemetics and Computer Science Division, Argonne
National Laboratory, Illinois, March 1990.

144

[McC91] William W. McCune. What’s New in OTTER 2.2. Technical Report
ANL/MCS-TM-153, Mathemetics and Computer Science Division,
Argonne National Laboratory, Illinois, July 1991.

[Pug92] W. Pugh. The Omega Test : a fast and practical integer program-
ming algorithm for dependence analysis. Communications of the
ACM, August 1992.

[RT89] Thomas W. Reps and Tim Teitelbaum. The Synthesizer Generator
Reference Manual. Texts and Monographs in Computer Science.
Springer-Verlag, 1989.

[San91] B. A. Sanders. Eliminating the Substitution Axiom from UNITY
Logic. Formal Aspects of Computing, 3(2):189–205, April-June
1991.

[SOR93] N. Shankar, S. Owre, and J.M. Rushby. A tutorial on Specifica-
tion and Verification Using PVS (Beta Release). Technical report,
Computer Science Laboratory, SRI International,, Menlo Park, CA,
March 1993.

145

Implementing FS0 in Isabelle:
adding structure at the metalevel

Seán Matthews
Max-Planck-Inst., Im Stadtwald

66123 Saarbrücken, Germany
<sean@mpi-sb.mpg.de>

April 30, 1995

Abstract Often the theoretical virtue of simplicity in a theory does not fit
with the practical necessities of working with it. We present as a case study
an implementation in a generic theorem prover (Isabelle) of a theory (FS0)
which at first sight seems to lake all the facilties needed to be practically usable.
However, we show that we can use the facilties available in Isabelle to provide all
the structuring facilities (modules, abstraction, etc.) that are needed without
compromising the simplicity of the original theory in any way, resulting in a
thouroghly practical implementation. We further argue that it would be difficult
to build a custom implemenation as effective.

§1 Introduction

A great many logics have been proposed as tools in computer science, especially for
all sorts of formal, machine checked reasoning. However, if we try to implement these
theories in some practical manner, we find that what has been proposed by theoreticians
as a practical tool has to be augmented in all sorts of ways before it really becomes a
practical tool. Essentially, the basic tools of structured programming and other facilties
need to be imported. Unfortunately, this means that a proof theory which originally
could be summarised on a page or so, grows to fill a manual, and is augmented with
descision procedures an other extras, which can be difficult to verify.

A suggested solution to this problem is what have become known as ‘Logical frame-
works’: systems designed to be suitable for implementing a wide range of different
logics easily, so that they can be presented in a uniform manner to users, allowing
the same theorm proving facilties to be reused across a wide range of implemented
theories, instead of having to be rebuilt from scratch each time. The basic idea
of a logical framework (we will be concentrating in particular here on the Isabelle
system) is to make it easier to implement logics, via some sort of equation of the
Syntax + Axioms + Rules = Theorem prover form; but in fact we get more than that.
Because a logical framework based system is generic, its implementors can afford to
invest in much more powerful facilties, since they are likely to be reused in a range
of different contexts (in fact, since they don’t know what those contexts will be, they
have to provide powerful and general tools so as to improve the possibility that they
are usable any particular context). But since this machinery is developed prior to the
implementation of any particular theory it must be independent of the details of such
theories. Thus given an initial proposal for a theory to be implemented, a logical frame-
work based system should not only be able to provide a much quicker implemenation
(via the equation given above) but also might be able to provide some, or all of the
structuring facilities that are needed for practical proof development, so that they are
actually independent of the theory to implemented. If this is so, then the theory itself
does not have to be extended, and thus can be implemented in a way that is closer to
the original proposal.

Feferman’s FS0 [3] is such a theory, in this case as nominated as a suitable vehicle
for machine checked metatheory. While it is simple (20 or so axioms in a three sorted

146

first-order logic), it so primitive that it is not at all clear that it is practically usable
(especially in the form that Feferman gives it). It comes with none of the structuring
facilities which we usually depend on when developing large theories (modularity, ab-
straction, etc.), but these have to be provided somehow in the implementation. We
show how we can we can get these directly from Isabelle.
§1.1 Contributions We see this paper as making the following contributions. We show
the effectiveness of a generic theorem prover such as Iabelle for dealing with an unusual
logic and how its facilties can be exploited to provide a great deal of high-level struc-
turing of development in such a theory, without having to introduce such structuring
facilties into the logic to be implemented itself, and thus complicating it unnecessarily.
We also claim that this case example is an argument that implementation in a generic
system can in the end sometimes be more effective than a custom implementation,
since so many of the facilties our implementation provides are exploit the powerful
facilities that a generic system has to provide (in fact the design is directly driven by
the facilities Isabelle provides).

Secondly, and independently We demonstrate that FS0 is a plausible theory for real
computer supported theory development, by presenting the first practical implementation1

§1.2 Outline of paper The outline of the rest of this paper is as follows: In §2 and §3
we briefly describe FS0 as background, in §4 we discuss the facilities that we want to
provide for theory definition in our implementation, in §5 we describe how we have
provided these, in §6 we describe some of the tools for proving theorems in FS0, in §7
we then briefly outline some of the theory development we have performed, and in §8
we present our conclusions.
§2 The theory FS0

FS0 is a theory in the tradition of Gödel’s incompleteness results: one can think of it
as a ‘rational reconstruction’ of the results of the preliminary development that that
Gödel did in arithmetic (i.e. building tools for doing ‘gödel-numbering’) to prove his
theorems, and is a conservative extension of primitive recursive arithmetic. The details
can be found in [3].

A first impression is that the theory is very simple, and, as we have said, there are
various reasons for not adulterating that simplicity, so it should be implemented pretty
much as it stands: as a three-sorted classical first order, finitely axiomatisable theory
of s-expressions, primitive recursive functions and recursively enumerable classes, that
resembles Pure Lisp. A summary outline of Feferman’s definition is as follows:
• There is the sort S of s-expressions. This is contains a leaf object nil, and is

closed under a pairing function (,); equality is defined in the obvious way over
s-expressions.

• There is the sort F of functions. All functions are of the form S → S and function
application is denoted by ‘, so that if f is a function and t is an s-expressions then
f ‘t is a function application of sort S. we have a small set of basic functions
on s-expressions, Id (identity), π1, π2 (car and cdr), and Dec (decide). Most
of these should be well known, apart, perhaps, from the last which behaves as
follows:

Dec‘(((a, b), c), d) =
{
a = b → c
a 6= b → d

There are also constant functions K(a) of sort S → S, where K(a)‘b = a.
The basic functions can be combined using combinators of the form F ×F → F ,
of which there are three, as follows. Composition, ∗ , where (f ∗ g)‘t = f ‘(g‘t);
pairing, [,], where [f, g]‘t = (f ‘t, g‘t); and structural recursion, Rec(,), where,

1So far as we, or Feferman, know.

147

if h = Rec(f, g),
h‘nil = nil

h‘(a, nil) = f ‘a
h‘(a, (b, c)) = g‘((((a, b), c), h‘(a, b)), h‘(a, c))

Finally, equality on functions is defined extensionally.
• There is the sort C of classes. We are given the class containing only nil, i.e. {nil}

and have binary intersection and union ∪ and ∩, as well as the inverse image of
a class c under a function f , f−1c where t ∈ f−1c↔ f ‘t ∈ c.
More complicated, we can also build recursively enumerable classes Ic(a, b),
which is the class containing a and closed under the rule t1, t2/t, where ((t, t1), t2) ∈
b. Equality, and the subset relation, on classes are defined extensionally.

• Finally, we have induction. Over the universe,
nil ∈ c→ ∀a, b(a, b ∈ c→ (a, b) ∈ c)→ ∀x(x ∈ c)

and over inductively defined sets,
c′ ⊂ c→ ∀a, b, c(b, c ∈ c→ ((a, b), c) ∈ c′′→ a ∈ c)→ Ic(c′, c′′) ⊂ c.

FS0 is intended for building Gödel-encoding of formal languages and theories, and
this is done by building classes that define well formed, or provable, formulae; e.g. we
could define the class of all well-formed formulae of first order logic (encoded as s-
expressions). When we try to do this, however, it soon becomes clear that enormous
and painstaking effort is needed to build these by hand and at the end the definitions
are not are not intuitive; further, when we try to prove that what we have produced
has the properties that we want, we find, almost invariably, that it is full of hard to
correct errors. Further, there is no way to structure developments very effectively.

We do, however, have a theorem that characterises which classes we are able, in
theory, to define, in the form of a comprehension principle. Given the definition

Definition 1 We define the class of Σ0
1-formulae to be the class containing equali-

ties and inequalities between S sorted terms, and set membership, and closed under
disjunction, conjunction and existential quantification of S sorted variables.

then we have a comprehension theorem,

Theorem 1 (Feferman) Given a Σ0
1-formula P [x] with one free variable x of type S,

there exists a class c, such that FS0 ` x ∈ c↔ P [x].

Σ0
1-formulae provide an expressive specification language: with them we can define any

recursively enumerable set of s-expressions (which includes sets of provable formulae,
of course). But this comprehension result is a meta-theorem; it is neither a schematic
axiom nor a theorem of FS0, and while we could add it as an axiom to the theory
directly, that is precisely the sort of extension that we want to avoid. How we provide
comprehension is in fact one of the main facilities that we document.
§3 Isabelle

The Isabelle pds [5] comes as a collection of extensions for an SML programming system.
It cannot accurately be described as a program that just happens to be written in SML;
the relationship between the two is much closer than that. We work with Isabelle
directly through the SML command line, meaning that we also have direct access to
SML to program extensions, or as a tactic language; a powerful but safe facility—the
strong typing acting as an effective prophylaxis against accidental, unnoticed damage
being done to an implemented theory.

The system is based on the observation dating back to the Automath [2] project,
that a good foundation for a generic pds is type-theory, or typed lambda calculus, since
it is possible to encode the proof systems of many logics (particularly those that can be

148

reasonably expressed in a natural deduction style) directly in the ∀,→ fragment of such
a theory and that in doing this we finesse the traditionally ubiquitous problems with
variable binding or capture, and substitution.2 For details of the type theory provided
by Isabelle see [5]. We can think of Isabelle as a collection of tools for deriving and
manipulating terms in type theory.

It is important to stress several unusual points about Isabelle. The terms that
are derived in it are terms in a typed lambda calculus, some of which happen to
encode terms in a declared logic, but these are not the only terms Isabelle works
with: other terms represent rules in declared logic, and these can be derived too. In
fact perhaps the best way to think of Isabelle is as basically a system for deriving
rules rather than theorems; theorems are simply a degenerate case of rules with no
premises and no schematic variables. Also, Isabelle is not, based on rewriting; lambda
terms (i.e. encoded rules) are combined together rather by (higher order) unification
and proofs are thus built by resolving rules represented as implicational terms in the
type-theory against forumalae to be proved (also terms in type theory). This has some
interesting effects; for instance we can use the same rule for both forward and backwards
proof (since unification is ‘bidirectional’), and it is possible to have metavariables in
formulae that are to be proven, which can be instantiated in the course of the proof,
picking up information from rules as they are used.

The details of how Isabelle allows access to the type theory through SML are as
follows:
• A new data-type theory for packaging the collections of constant definitions that

make up a declared theory.
• Functions for combining and extending theorys; i.e. if we have defined a theory

encoding first-order logic and call it Pred, we can extend it with definitions for
natural numbers to generate a new theory which we might call Nat, or combine
Nat with, say, List to generate a theory of naturals and lists which inherits all
the theorems that have been proven for either.

• A new data-type thm for the axioms of the theorys we have defined, and also
for the terms we have derived in the ‘theory’s we have defined. In fact, and im-
portantly, in Isabelle there is no distinction between derived and basic theorems
of a theory, they are all just thms.

Along with the the basic system, we also get some tools for building things like rewrite
systems, and a few predefined logics, including sorted classical first-order logic.

Since classical first order logic is already available, we can immediately define, as
an extension of it, a basic system for FS0, all we have to do is declare sorts S, F, C
then we can type in the axioms literally (allowing for the restrictions that a typewriter
imposes compared to a typesetting system) as we find them in [3]. And we have a näıve
implementation of FS0.
§4 The basic implementation

As we have already said, a näıve implementation of FS0 is not usable, but we can take
stock of what it does make available (in Isabelle).

What this mostly amounts to is an effective method for modularising development.
We have said that in Isabelle we can define a theory as an extension of another; thus
the idea of a theory simply as a definitional extension of another is very natural: we
simply add a new constant, and make it equivalent to the formula or term that it is
abbreviating in the new extended theory.

Now, since a theory in FS0 is basically a collection of FS0 terms, we can take
over this facility for abbreviation as definitional extension in a new theory and use it

2Of course, FS0 is in a completely different tradition to this, and we have to build our own
binding mechanism, but is intended for different purposes—we do find it pleasing that one
framework logic should be so effective for implementing another.

149

for defining new FS0 theories, each of which is a new Isabelle theory, albeit only a
definitional extension. For a collection of classes, functions and s-expressions that we
want to define as a module, we make a definitional extension of some earlier theory
(which might be root FS0, or itself some extension) and package these together as a
new theory. Then we can prove the basic theorems that show that the definitions have
the properties we want. From then on, all the the messy details of the implementation
work can be hidden behind the abbreviations for the definitions, and theorems about
them. And since we can combine these theories in Isabelle, with the result inheriting
the theorems of its ancestors, we have a simple but effective tool for structuring the
development of large theories as collections of small ones.

There are two ways to define a new theory as an extension of an old. The the
first, ‘basic’ way is to use the extend_theory function that comes with the system.
This is messy, since it takes a large and complicated collection of half a dozen or more
arguments. The second is to use the Isabelle front end; this is a preprocessor that takes
files which contain the equivalent of the information needed by extend_theory, but
in a much more readable format, generates the theory and packages it, along with the
various new axioms and other declarations that have been added, as an SML structure.
Unfortunately neither of these methods is really suitable. The second method is not
suitable because to use it we need to type the details of terms in by hand, and we have
already explained why we want to avoid that). The first is unsuitable not only because
here too, we would need to type the terms in by hand, but because it is simply too
complicated (since we are only interested in definitional extensions).
§4.1 What do we need? At this point we have to consider in more detail exactly what
we need to be able to do in an implementation. We automatically have a way to
structure theories declared in FS0, but anything else has to be built. And we know
that we want to avoid having to construct, by hand, large terms to be assigned to
abbreviations.

If a collection of definitions is constructed by hand (as happened in [4]) then the first
thing that has to be done is to prove a collection of theorems describing (and checking)
what those definitions actually do; i.e. translating them back into logical propositions.
For instance we know from the comprehension theorem (theorem 1) that there is a
close relationship between FS0 classes and a certain class of logical formulae, and we
have explained that this relationship is central to how we use the theory, so, if possible,
we would like direct access to it. But as well as classes, we also want to define new
functions, where there is no clear relationship like for classes. However, the idea that
allows us to provide comprehension can be generalised (if not so elegantly) to provide
a mechanism for generating terms from statements of their extensional properties.

The facilities for constructing classes and functions that we have implemented are
very effective for connecting a defined object to a formula giving its properties. However
they are also ‘bottom up’, since they build objects out of basic components. This is
very safe, or course, since it ensures that everything we define is a definitional extension
of FS0. This means that the ‘top down’ approach to development is not possible. Thus
we also provide a way to add, temporarily, new constants to the theory, along with
new axioms, instead of just definitional extensions perhaps so that development on it
can be postponed, or maybe continued in parallel.

We shall describe each of these in turn in the next section.
§5 Building definitions

Thus we have defined a new function extend_FS0_theory (by analogy with extend_theory)
which takes the theory to be extended and a list of definitions and returns a package
of a new theory and an association list of useful theorems that we have been able to
generate automatically. Currently four sorts of definitions can be put on this list, and
we discuss them one at a time.

150

§5.1 Simple constants The first sort of definition allows the definition of simple con-
stants where we can type the body of the definition in whole.

For instance, in a theory of natural numbers, the natural numbers can be modeled
as lists of nils; i.e. 0 nil, s(0) (nil, nil), s(s(0)) (nil, (nil, nil)) etc. Then on
the list of definitions would be the declarations

def("zero", "nil"),
def("s", "[const(nil),Id]")

which results in the new theory containing the new name zero for nil and the new
function s, where s‘t = (nil, t). Note that this last fact is a theorem that we have
to prove, def declarations are so general that it is not possible to extract any extra
information from them; however we can see the beginning of an abstract interface here:
we can try to provide a set of theorems that talk about the abstract behaviour of s
and zero in the natural numbers, without regard to their implementation.
§5.2 Comprehension A def declaration is not really different from the sort of declara-
tions that the standard Isabelle front end can handle. More interesting is comprehen-
sion. We would like to make this available in some convenient way. The secret to doing
this is to examine the proof (on paper) of the comprehension theorem. This shows,
by induction on the structure of Σ0

1-formulae, that it is always possible to construct a
suitable class. Most of the cases are easy; for instance there is an obvious equivalence
between ∩,∪, and ∧,∨. The most tricky case is for ∃, were we have to show that given
x ∈ c ↔ P [π1‘x, π2‘x], then there is some construction Ex(c) such that x ∈ Ex[c] iff
∃y.P [x, y]. The construction of Ex is a bit tedious but not impossible (see [3] for the
details).

Unfortunately the type theory of Isabelle is too weak to formalise all of this ar-
gument, since it does not support induction. The induction is the only thing that
cannot be formalised though; all the step cases are provable; i.e. we can derive rules
for each possible reduction step needed by the proof. Then, since rules in Isabelle are
implicational formulae in higher order logic, and proofs are built by resolving those
rule against the formula to be proven, the equivalent of the induction can be imple-
mented as a simple backchaining algorithm (which is, in fact, deterministic, since there
is exactly one rule that resolves against each case in the definition of Σ0

1-formulae.
Thus for existential quantifiers, we can prove the rule

∀x(x ∈ z ↔ P [π1‘x, π2‘x])

∀x(x ∈ Ex[z]↔ ∃a(P [a, x]))
(given some z such that. . . , then there is some z′ (actually Ex[z]) such that . . .).

Thus, if we wanted to define the class of the ‘less than’ relation, we could start
with a goal of the form

∀x(x ∈ ?c↔ ∃w, y, z(x = (y, z) ∧ plus‘(x, w) = z))
(where ?c is a metavariable hole in the goal). We can immediately apply the rule for
the existential case, which reduces the goal to

∀x(x ∈ ?d↔ ∃y, z(π2‘x = (y, z) ∧ plus‘(π2
′x, π1‘x) = z))

now ?c has been instantiated with Ex[?d]. We can repeat this step twice more, then
we change to the rule for ∧ and so on. Eventually we have only goals of the form

∀x(x ∈ ?e↔ x ∈ d)
which can be made true by unifying with

∀x(x ∈ y ↔ x ∈ y)
which sets ?e equal to d, then we can look at ?c to see what it has been instantiated
with, which gives us the class term we are looking for. This way, not only do we generate
the class term that we want from the property we want it to satisfy, but we get, for

151

free a theorem that states that it satisfies that property.3 This approach is similar to
the idea that Basin suggests in [1], as a general method for program synthesis.

We have implemented this so that we can write a definition, directly, as

comp("ltC", "(y,z)", "EX w. plus‘(y,w)=z")

(i.e. the class of all instances of the term (y,z) such that. . .) Then the whole procedure
just described is performed automatically: first an equivalent term, with just one free
variable, is constructed, which has the form

x:?c <-> EX y z w. x = (y,z) & plus‘(y,w)=z

then this is set as the goal to be proven and the proof procedure we have just described
is run on it. The class is generated and attached to a name, then a version of the
theorem defining the comprehension relation, only with the new name substituted for
the generated class term, is proven and returned.

Thus we have solved both problems at once: the constant defining the class has been
generated, automatically from a clear specification, and at the same time, a theorem
connecting the specification and the class together by a logical equivalence has been
proved, so it should never, in future, be necessary to unfold this class definition to get
at what is inside it.
§5.3 general synthesis We have described a powerful method for building classes in
FS0 as conservative extensions, but general though it is, it is not always suitable, and
anyway we also want to define, similarly, new functions as conservative extensions; and
unfortunately no similarly elegant solution is available for that.

However the situation can be improved far beyond having to piece functions to-
gether by hand out of primitives, and then proving that the result has the right prop-
erties. In fact, we can extend the idea that we have just used to implement the com-
prehension theorem to a much larger class of synthesis problems.

Above, we have a uniform procedure which when given theorem-with-a-hole of a
particular form, can fill out that hole. But in general no such uniform procedure is
available; instead, a custom proof has to be provided. As an example, consider the ‘less
than’ ordering again, only this time we want to define it as a function, not as a relation.
We can adopt the same method to synthesise it, starting with a formula-with-a-hole
that we try to prove, as follows:

?lt‘nil = false ∧ ?lt‘(a, zero) = false ∧
?lt‘(a, s‘a) = true ∧ (a 6= b→ ?lt‘(a, s‘b) = ?lt‘(a, b))

The ?lt here can be filled in in exactly the same way as ?c above, resulting in a definition
that can be read off, and theorem giving properties of that definition. The difference
here is that we have to find a proof ourselves.

This can still be partially automated though. We just have to arrange to tell the
system somehow what the right way to go about proving this goal, apart from the
results are the same. Thus we find the entry

sch_def("lt",
"?lt‘nil=true & ?lt‘(a,zero)=false &
?lt‘(a,s‘a)=true) & (a~=b --> ?lt‘(a,s‘b)=?lt‘(a,b))"
ltsynthtac)

where the extra argument, ltsynthtac, is a program to prove the goal, that replaces
the uniform proof procedure for comprehension. Assuming that ltsynthtac doesn’t
fail, the result of running it is exactly like before: the new function is synthesised and
attached to a new constant, and the theorem that has been proved is returned, with
the new abbreviation replacing the synthesised term.

3Essentially the induction which was not possible in Isabelle has been added informally,
using SML.

152

In fact, we could have defined ltC in the same way, by giving the definition

sch_def("ltC",
"x:?ltC <-> EX y z w. x = (y,z) & plus‘(y,w)=z",
comprehension_tac)

As we said, this is clearly not quite as elegant as that for comprehension, for all sorts
of reasons: it requires a user to build the tactic that is to be given as a parameter, which
can be quite tricky, and it does not guarantee that the theorem returned is an exact
and complete description of the object that has been synthesised, but it is, nonetheless,
very effective, and, of course, very general.
§5.4 top down specification It is part of the received wisdom that large systems should,
at least in part, be developed ‘top down’; i.e. the implementation should be developed
by repeatedly refining the abstract definition into somethingc oncrete. This, it is ar-
gued, helps to keep the development under intellectual control. We cannot do this with
the facilities we have defined so far: anything we define has be be built from the ground
up. We add a fourth sort of entry on the range of possible definitions, to allow a top
down style. This looks very like sch_def, but has one less parameter.

abstract("lt",
"lt‘nil=true & lt‘(a,zero)=false &
lt‘(a,s‘a)=true) & (a~=b --> lt‘(a,s‘b)=lt‘(a,b))")

(notice that the formula has no holes) With comp and sch_def a definitional extension
of the given theory is generated and a theorem about it is proven. With abstract this
process is short-circuited: no effort is made to try to generate a suitable definition, or
prove a theorem. The new theory is extended with a new constant lt, and a new axiom
defining its behaviour. This is dangerous because this extension is not definitional and
the associated theorem is not a theorem of FS0 (there is nothing to stop us adding
a false axiom), but as was said earlier, abstract is supposed to be used only as a
temporary, stop-gap, measure, and removed before the end.
§5.5 Taking stock If we take stock of what we have done in this section we see a single
idea, presented in a variety of ways. We have tried constantly to hide the details of
FS0 definitions behind abbreviations, which we treat as new objects, with new defining
axioms, added to the theory. FS0 is, in fact really being used only as an underlying
foundation to the extension we define. However, if we really need to, we can, at
any time, strip these levels of abstraction away, leaving the unadorned theory, since
everything is, in the end, just a definitional extension. We will extend this theme in
the next section, when we talk about how Isabelle allows us to implement rewriting.
§6 In use

We have described a modification of Isabelle that we have found to be a practical way of
building theories as definitional extensions of FS0. We now show that it is a practical
way of working in those theories. There are several aspects to this work, which we will
discuss in turn.
§6.1 Induction As we have said earlier, a lot of the work involved in using FS0, is
building classes. This work is more ubiquitous even than we have implied, since the
typical method of proof in the theory is induction, of one sort or anther, and induction
is only available over classes, in spite of the fact that we almost never want actually
to do this. Again, as a result of the comprehension theorem we know that there is
an equivalent class for any Σ0

1 predicate, and thus we have induction over this class of
formulae (which is enough in for most practical things). The metatheory of Isabelle
will not allow us to prove derived rules of this form; e.g. we cannot prove as a single

153

metatheorem that
P [nil] ∀x, y(P [x]→ P [y]→ P [(x, y)])

∀xP [x]
(where P is a Σ0

1-formula). We are, however able to prove something almost identical
in the rule:

∃c∀x(x ∈ c↔ P [x]) P [nil] ∀x, y(P [x]→ P [y]→ P [(x, y)])

∀xP [x]
(no side condition). This produces an extra goal, of course, which corresponds to the
side condition on the previous rule since we know that it is exactly these classes that
is defineable. And the extra goal is not a problem, since it can be disposed of immedi-
ately and automatically with the same tactic that we use to implement generation by
comprehension in comp.
§6.2 Rewriting The other large and ubiquitous problem-in-use for FS0 is term simpli-
fication, since many theorems are proven mostly by selecting a suitable induction then
simplifying the resulting terms. But this work of term simplification is tedious and
difficult to do by hand.

It maybe not immediately clear why this is a problem. The functions we are able
to define have a well defined structure with obvious rewrites (described in 2); surely we
need only implement this, and arrange for abbreviations to be unfolded as necessary.

But consider a simple example: we need a function to number the elements of a
list with their positions. We can specify this as follows:

label‘l = labeld‘(zero, l)
labeld‘(n, nil) = nil

labeld‘(n, (f, r)) = ((n, f), labeld‘(s‘n, r))
and it is not hard, though tedious, to define first-order primitive recursive (i.e. using
Rec) versions of label and labeld to satisfy this specification. But if we try to evaluate
the resulting program using the strategy we have just described, we discover that the
path the evaluation takes looks nothing like the specification suggests it should be.
If the term to be normalised is ground, we get the result we want, but as ‘raw s-
expressions’; that is, many of the abbreviations in subterms will have been unfolded
(and without these abbreviations, the term is an incomprehensible s-expression built
of nothing but nil).4 If the term is not ground, the results will be much worse. In fact
the näıve term reduction strategy suggested by the axioms is useless.

What is needed is a rewriting system that respects the specifications, and abstract
properties of what has been defined, not the concrete details of the implementation.
However, Isabelle, provides a general rewrite package (term_simp_tac) that can be
effectively used for our purpose. This takes, as a parameter, a set of equational theorems
that are to be used as rewrite rules. These theorems need not describe the actual
normalisation path of a set of terms (the package accept a diverging set of rules); they
must only be provably correct. Thus once we have verified that label and labeld behave
as they should, according to their specification above (we need induction for this) we
can use the equations that specify their behaviour as their rewrite rules. Such equations
are always available, since whenever a function is defined, the first thing we have to
do is check that it does what it should. In fact if, like in the case of lt above, which
is defined with a sch_def, we get the desirable rewrite properties at the same time as
we synthesise it.

4It worth mentioning that in this case even the technique that has been used in some
systems, where unfolded abbreviations are tracked, so to be folded back afterwards when
possible, does not work.

154

Thus we have continued the the theme of abstraction that we started in the last
section. There we provided facilities for defining objects in abstract terms, trying as
much as possible to hide the underlying structures used to build them. Here we bring
that process to a conclusion by implementing rewrite for the functions we define in
those same abstract terms, again hiding (and thus allowing a user in future to ignore)
the underlying structure. We are thus able to provide efficient, and completely abstract
interfaces for the various theories that we build, and we can combine them using just
these interfaces.
§7 Development experience

We have described the basic facilities that we have implemented for working with FS0.
We now describe some of the development that we have actually carried out.

FS0 is designed for doing proof theory, and therefor for formalising mathematical
theories. But most theories have some notion of binding, and substitution, and (unlike
type theoretic logics for encoding) it does not have these, so they have to be developed
inside the theory. However, with a sufficiently general idea of what sort of facilities are
needed, the work of implementing this should be reusable for any theory. I.e. rather
than define binding for first-order logic, the lambda calculus, and higher order logic
all separately, we could define the term structure of each of these on top of some
more abstract theory, and this is what we have done. The largest theory we have
implemented is for the ‘binding structures’ proposed by Talcott [6]. However this is a
large and complicated theory (the implementation details will appear in another paper)
so the development has been structured. In fact we have developed in all the following
theories: natural numbers, lists, finite functions (from lists), and a general system of
binding structures. However the intention of this paper has been to concentrate on the
implementation of FS0 that we have built, rather than to report on the details of how
theories are developed in it.
§8 Conclusions

At the centre of any formal proof development system are two things: an underlying
logic which can be used to build various theories, and a way to make that work of
building as easy as possible, by allowing users to impose various sorts of structure on
the development. This latter might provide (among other things)
• Modularity: it should be possible to develop parts of a theory as separate chunks,

which can be combined as necessary.
• Top down development: it should be possible to assume that certain theories

are available, even if the supporting development has not been finished, allowing
that effort to be postponed or performed concurrently.

• Abstraction: it should be possible to present an interface to a theory that hides
the (possibly messy) details of the implementation behind an abstract description
of its behaviour.

We have shown that in a system like Isabelle, which provides sophisticated struc-
turing and development facilities of the sort we have listed, that are provided prior to,
and therefore independent of, any theory we might implement, we can take a simple
(= primitive) theory, in this case FS0, lacking any such facilities and provide them,
while preserving the simplicity of the theory. We have been able to provide a very
practical and usable system which is implemented using exactly the axioms that we
find in Feferman’s original paper; all development in the system can easily be unwound
to that level.

We even believe it would be difficult to build a custom theorem prover as effective
as what we have produced, since many of the more useful facilities are inspired directly
by what Isabelle provides, and these facilities are so much more powerful than we can
imagine trying to program ‘from scratch’.

155

System availability Parties interested in getting a copy of the code for the implemen-
tation should send e-mail to the address given at the beginning of this paper); we hope
to have it ready for release in the immediate future.
Appendix: !An example development

In this appendix we list some code, and some sample development from a theory (the
of lists).

The Isabelle development of a theory can be packaged inside a structure, which
means that it can present a fairly abstract interface, which is of the following form:

signature LISTS =
sig val thy : theory

val thms : (string * thm) list
val list_ax1 : thm
val list_ax2 : thm
val list_ax3 : thm
val ListRec1 : thm
val ListRec2 : thm
val ListRecTyping : thm
val inject1 : thm
val inject2 : thm
val injectTyping : thm
val map1 : thm
val map2 : thm
val mapTyping : thm
val ListIndg : thm
val List_ss :simpset

end;

i.e., the rest of the system should see the development as consisting of a theory thy,
an association list thms which contains a bunch of information about comprehension
generated by the comprehension tactics, that we do not want to use explicitly (and
could not really, even if we wanted to) and a list of theorems which together (should)
present to the rest of the system an abstract view of the concrete structures that we
have developed. Unfortunately the typing of ML is not enough to make the details of
a thm explicit (i.e. what exactly it is a theorem about), but only enough to ensure that
it is a theorem of some sort. Thus the typing details of signature cannot give all the
details that we would like. Then, inside a lists:LISTS=struct, end pair we can build
concrete objects in FS0, prove theorems about them, and then assign some of these
theorems to the names listed in the signature.

First we build the basic theory, which is a collection of constant definitions, as
follows:

val (thy,thms) =
extend_FS0_theory basics.thy "sorted lists" []

[def("empty_List", [], "nil"),
comp("base_List", [], "a", "a=empty_List"),
comp("step_List", ["sort"], "re2((h,t),t)", "h:sort"),
def("List", ["sort"], "I2(base_List, step_List(sort))"),
sch_def("ListF", ["f"],
"?ListF=Rec(Id,andF * [f*arg1,rc2]) * [trueF, Id] &\
\?ListF‘nil=true & ?ListF‘(a,b)=andF‘(f‘a,?ListF‘b)",
(fn _ => fn _ =>

[...])),

156

sch_def("ListRec", ["base", "step"],
"?ListRec=Rec(base, step * [[[arg0,arg1],arg2],rc2]) &\
\?ListRec‘(a,empty_List)=base‘a &\
\?ListRec‘(a,((b,c)))=step‘(((a,b),c),?ListRec‘(a,c))",
(fn thy => fn _ =>

[...])),
comp("step_List_x", ["sort"],

"re2((h,t),t)", "h:sort & t:List(sort)"),

def("Listarg0", [], "P1 * P1 * P1"),
def("Listarg1", [], "P2 * P1 * P1"),
def("Listarg2", [], "P2 * P1"),
def("Listrc", [], "P2"),

def("inject", ["f"],
"ListRec(P2, f *\
\[[P1 * Listarg0, Listarg1], Listrc])"),

def("map", ["f"],
"inject([f*P1,P2]) * [[P1, const(empty_List)],P2]")

];

This constucts a new theory (with the name "sorted lists" as an extension of the
earlier basics.thy and assigns it to thy while at the same time assigning details about
how the various classes generated by the comprehension tactic correspond to the given
first-order predicates, to thms.

Then, using these two, we are able to start developing the theorems that give the
abstract properties of the objects we have just defined. For instance we can write

val List_ax1 =
prove_goal thy

"empty_List : List(D)"
(fn _ =>[...]);

which proves that empty_List is a member of the class of lists generated from any
class D (the details of the tactic used to prove it have been replaced with an ellipsis
...).

Or, more complex, we can prove one of the axioms that gives the properties of the
inject combinator.

val inject2 =
prove_goal thy

"inject(f)‘((k,b),(h,t))=f‘((k,h),inject(f)‘((k,b),t))"
(fn _ => [...])

Then finally we have the theorem for induction over lists,

val ListIndg =
prove_goal thy

"[| x:List(C); !! x. f‘x = true <-> x:C;
!! x. x:X <-> P(x); P(empty_List);
!! h s. [| h:C ; s: List(C); P(s)|] ==> P((h,s))

|]==> P(x)"
(fn [h1, h2, h3, h4, h5] =>

[...]);

157

and we finish by building a suitable rewriting system List_ss, which rewrites in terms
of these theorems (though it, of course, doesn’t actually have to use them, or work
through them).

Now, if we have chose our theorems well, we have a complete theory of lists which
as far as the rest of the system is concerned, has been effectively abstracted away
from impementational details. We are able to treat the set of theorems provided by
the structure list as though they were simply axioms. The isolation is not quite
complete, we can always go around this abstract interface, but there should not be
much temptation to do so if the theorems are well chosen, since it is hard and messy to
do. (If we wanted to be absolutely sure about what we have done, we could, of course,
check for implementational bias).
References

1. D. Basin. Logic frameworks for logic programs. In 4th International Workshop on Logic
Program Synthesis and Transformation, (LOPSTR’94), Pisa, Italy, June 1994. Springer-
Verlag. To Appear.

2. N. G. de Bruijn. A survey of the project Automath. In J. R. Hindley and J. P. Seldin,
editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism,
pages 579–606. Academic Press, New York, 1980.

3. S. Feferman. Finitary inductive systems. In D. Gabbay, editor, What is a Logical System?,
Oxford, 1994. Oxford University Press. (also appeared in Logic Colloquium ’88).

4. S. Matthews. Metatheoretic and Reflexive Reasoning in Mechanical Theorem Proving.
PhD thesis, University of Edinburgh, 1992.

5. l. C. Paulson. Isabelle: A generic theorem prover, volume 828 of Lecture Notes in Computer
Science. Springer, Berlin, 1994.

6. C. Talcott. A theory of binding structures, and applications to rewriting. Theoret. Comput.
Sci., 112:99–143, 1993.

158

A framework for parallel program refinement

J.-P. Bodeveix, M. Filali
IRIT

Université Paul Sabatier
118 Route de Narbonne

F-31062 Toulouse cédex France
email: bodeveix@irit.fr filali@irit.fr

April 26, 1995

Abstract
This paper presents a formal framework for developing provably correct parallel programs through

refinements. We formalize rigorously, with respect to typing, some imperative programming constructs
and propose refinements of them. Moreover, we try to make the semantics denotation as close as possible
to the usual programming notation; the aim being to make easy the reasoning at the semantics level.
This formalization is embedded within the HOL interactive theorem prover and consequently reusable
as a framework for general programming by refinement.

1 Introduction

This paper presents a formal framework for developing provably correct parallel programs through refine-
ments. We formalize rigorously, with respect to typing, some imperative programming constructs and propose
refinements of them. After the study of some existing state representations in programming logics, we pro-
pose a new state representation allowing strong typing. Then, we adapt the semantics of usual sequential
and parallel statements to our representation and show that classical or intuitive properties are still valid.
In a third step, after introducing refinements in the context of transition systems, we propose and validate
some refinement properties concerning sequential and parallel statements. In the last part of the paper, we
show how these results have been embedded within the HOL interactive theorem prover and can be used to
establish refinement properties on concrete problems like cache coherency protocols on multiprocessors.

2 Program state logic

2.1 Overview of some state representations

In this section, we first review some existing approaches for representing program states. Then, we present
a “genuine” state representation, its motivation being to allow the use of well types notations of Pascal like
programming languages. In some way, we try to reduce the gap between the syntactic domain where we are
used to reason and the semantic domain where we can rigorously prove program properties.

2.1.1 States as mono valued functions

In this approach, the space of program variables Var and a space of values Val are assumed. A program
state is a mapping from variables to values. Its type is

Var→ Val

For instance, in their programing logics theory[Tre92, vW90], Var is the type string and Val is the set
of natural numbers. Then in order to reuse such logics, one has to encode all its variables as naturals.

159

2.1.2 States as type union valued functions

This representation has been used by [APP93] to describe UNITY[CM88] logics. A state is represented by
a function from an enumerated of variable representatives to the union of variable values types. Then a
variable is defined as a function from states to its type domain.

Suppose we have the following declaration in a PASCAL like language:

VAR i, j: INTEGER; b: BOOLEAN;

Then, we define the abstract data type Rep of variable representatives by the enumeration:

type Rep = I | J | B

Then, we define the union of variable types Types by the enumeration:

type Types = INT integer | BOOL boolean

Destructors are associated to this type in order to down-cast union-typed expressions to their effective
type. Here, two functions are defined:

dest int: Type → integer
dest int (INT n) = n

dest bool: Type → boolean
dest bool (BOOL b) = b

A state σ is represented by a function from Rep to Types.
Now, a variable is defined as a function from states to its type. For instance, the the variable i is defined

as follows:

i : (Rep → Types)→ integer
i(σ) = dest int (σ(I))

This representation raises a problem concerning the definition of assignment. An expression must be con-
verted to the union type before being assigned. Thus, the type checker cannot detect that an expression
is assigned to a variable of a different type. Type checking will indeed occur at proof time: an access to a
badly assigned variable cannot be reduced to its value as destructor functions are partial.

2.2 Another state representation

A state is represented by a boolean valued function over variable- value associations. The space of well typed
variable−value associations is introduced as an abstract data type of which constructors are the variables
of the program. Consequently, a variable can also be considered as a function from well−typed values to
the previously defined abstract data type. In a given state, the variable values are such that the association
variable−value is mapped to true through the state function. Then, such a state function can also be
considered as a set of associations variable−value.

In order to give a concrete view of such a representation we consider two examples concerning scalar and
array variables.

2.2.1 Scalar variables

Suppose we have the following declaration in a PASCAL like language:

VAR i, j: INTEGER; b: BOOLEAN;

Then, we define the abstract data type declarations of well typed variable−value associations by its
constructors:

160

type declarations =
i INTEGER

| j INTEGER
| b BOOLEAN

This type declaration introduces three functions (the constructors of the data type):

i : INTEGER → declarations
j : INTEGER → declarations
b : BOOLEAN → declarations

The state where the variables i, j and b have respectively the values i0, j0 and b0 is represented by the
function state0 : declarations → bool such that1:

state0(i(x)) = (x = i0)

state0(j(x)) = (x = j0)

state0(b(x)) = (x = b0)

In our approach, the operation which consists in the creation of a “pair“ (variable,value) defined by the
application of the variable to the value is not injective if the variable is not supposed to be a type constructor.
More precisely, this application can give the same association for different pairs. The definition of injectivity
would require here quantification over types and a generalized equality (=̇) between elements of different
types. The expression of such a property would state the existence of a set of variables V such that 2:

∀(x1 : ∗x1 → ∗s) (v1 : ∗x1) (x2 : ∗x2→ ∗s) (v2 : ∗x2)
x1 ∈̇ V ∧ x2 ∈̇ V ⇒ x1(v1) = x2(v2)⇒ (x1=̇x2) ∧ (v1=̇v2)

This formula raises two typing problems:

• the set V contains elements of different types (x1, x2).

• equality is applied between objects of different types (x1=̇x2).

In fact, we would like to specify that V is the set of constructors of some type. In order to overcome this
problem, we define weaker properties on individual variables by introducing the two polymorphic predicates
IS VAR and D VAR.

IS VAR (v : ∗v → ∗s) = ∀ a b. (v(a) = v(b)) = (a = b)
D VAR (x : ∗x→ ∗s, y : ∗y → ∗s) = ∀ vx vy. (x(vx) 6= y(vy))

2.2.2 Array variables

The same formalism can be used to represent arrays. For the following declaration:

VAR t: ARRAY [INDEX] of INTEGER;

we associate the data type:

type declarations =
t INDEX INTEGER

In the same way, this type declaration introduces the function:

t : INDEX → INTEGER → declarations

The state state0 where all the elements of the array t are 0 except the one at index i0 where the value
is v0 is encoded as follows.

∀i x. state0(t(i, x)) = if (i = i0) then x = v0 else x = 0
1We note that such a representation allows for multivalued variables. However in this paper we do not use such a feature.
2type variables are prefixed by *

161

2.2.3 Expressions and variable access

Although in our representation a variable may be multivalued, we define expressions as functions over states:

expression : *state → *exp type

Then the standard operators (boolean and arithmetic operators) can be lifted to such expressions. For
this purpose, we define a unary and a binary polymorphic lifting functions. For instance, we define the
Bop Lift function as follows:

Bop Lift op = λ e1 e2 st. op (e1(st), e2(st))
We use the same convention as [APP93] where the name given to the lifted operator is the name of the

original operator suffixed by *. For instance, Bop_Lift (<) = <*.
Note that the multivaluation of variables could have been extended to expressions. However, in this

framework, the definition of boolean algebra operators becomes tricky and some classical properties are lost.
As specific expressions, we define the variable access function val. This function must choose one of the

values associated to the variable by the state. Moreover, in a given state, this choice must be the same for
every access in the same expression. For this purpose, we use the Hilbert choice function[GM94] denoted ε.
The term ε x : σ. P (x) denotes an arbitrary but fixed variable of type σ. This term verifies the predicate P
if a term verifying P exists. Then, the polymorphic function val is defined as follows:

val : (*v → *decl) → (*decl → bool) → *v
v , st 7→ ε x. st(v(x))

Note that val(v) is a function from states of type *decl → bool to variable values of type *v.

3 Statements logic

In order to allow for non determinism, we define statements as binary relations over states[Tre92]. If we
consider states as sets of associations variable-value, a statement can also be interpreted as a function which
consumes some elements of a set and produces new ones. However, we have not pursued further in this
direction. An interesting study would be to explore the links with linear logic [Gir87].

In the following, we give the semantics of some basic statements like assignments, conditional, alternative
and parallel statements. In the last section, we establish some well known results and give some examples.

3.1 Assignments

The assignment statement x := e establishes a relation between two states st1 and st2 such that the value of
the variable x in st2 is the value of the expression e in st1, any other variable binding remaining unchanged.
The assignment is defined as follows:

x := e = λ st1 st2. ∀ y. st2(x(y)) = (y = e(e1)) ∧
∀ s. (∀ y. s 6= x(y)) ⇒ st2(s) = st1(s)

From this definition, we can prove the following theorems which state explicitly the usual properties of
the assignment statement:

(x := e)(st1, st2)⇒ val (x)(st2) = e(st1)
D VAR (x, y)⇒ (x := e)(st1, st2)⇒ val (y)(st2) = val (y)(st1)

We have only defined the single assignment statement. The multiple assignment statement will be defined
in section 3.4.3 through the parallel constructor ‖.

3.2 Alternatives

The definition of statements as binary relations over states yields a straightforward definition of non deter-
ministic statements as in CSP[Hoa85]. We consider the binary operator [] and the generalized one indexed
by a set of alternatives A: []A.

162

i1 [] i2 = λ st1st2. i1(st1, st2) ∨ i2(st1, st2)
[]Ai = λ st1st2.

∨
a∈A ia(st1, st2)

The associativity and commutativity of the binary alternative operator are easily proved.

3.3 Conditional Statements

We introduce successively two conditional statements. The first one (−→) is similar to a guarded statement[Dij76],
while the second one (IF) is similar to the usual if-then statement.

i −→ c = λ st1 st2. c(st1) ∧ i(st1, st2)
i IF c = λ st1 st2. if c(st1) then i(st1, st2) else (st1 = st2)

3.4 Parallel statements

The basic idea of the parallel construct is to superpose the changes performed by several statements. A
variable binding is changed by a parallel statement if it is changed by one of the composing statements;
otherwise it remains unchanged. We should note that such a definition of parallelism cannot be reduced to
interleaving and non-determinism. For instance the exchange of two variables can be achieved by a parallel
composition (§3.6.2) of the two symmetric assignments which is not equivalent to a non deterministic choice
between the sequential compositions of the two assignments.

3.4.1 The binary PAR constructor

From the intuitive definition of parallelism, we first define a binary parallel operator ‖ between two statements
i1 and i2. The parallel statement updates a state so that a binding is present in the final state if it is present
in the final state of one of the statements modifying it. This is encoded as follows:

i1 ‖ i2 = λ st st′. ∃ st1 st2. i1(st, st1) ∧ i2(st, st2) ∧
∀s. st′(s) = (st(s) 6= st1(s) ∧ st1(s)) ∨

(st(s) 6= st2(s) ∧ st2(s)) ∨
(st(s) = st1(s) ∧ st(s) = st2(s) ∧ st(s))

The previous definition can be simplified to the following one:

i1 ‖ i2 = λ st st′. ∃ st1 st2. i1(st, st1) ∧ i2(st, st2) ∧
∀s. st′(s) = if st(s) then st1(s) ∧ st2(s)

else st1(s) ∨ st2(s)

We should remark that the ‖ constructor requires a point by point interpretation of states contrary to
other constructors such as conditional alternatives.

3.4.2 The generalized PAR constructor

The previous definition can be easily extended to an indexed set of statements insi in the following way:

PAR ins = λ st st′. ∃ e′. ∀ i. insi(st, e′i) ∧
∀ s. st′(s) = if st(s) then ∀ i. e′i(s) else ∃ i. e′i(s)

3.4.3 Multi-assignments

The parallel operator lets us introduce multi-assignment statements as a parallel combination of single
assignments. Then, single assignment theorems (§3.1) can be extended, for instance, to two-assignment
statements.

163

D VAR (x, y) ∧ (x := ex ‖ y := ey)(st1 , st2)⇒
val (x)(st2) = ex(st1) ∧ val (y)(st2) = ey(st1)

D VAR (x, z) ∧ D VAR (y, z) ∧ (x := ex ‖ y := ey)(st1, st2)⇒
val (z)(st2) = val (z)(st1)

The previous two rules illustrate the idea of the superposition of changes made by the components of
a parallel statement. However, the behaviour of a multi-assignment to a single variable (which is usually
syntactically forbidden) is counter intuitive; for instance, let us consider the multi-assignment x := 1 ‖ x := 2.
If in the initial state the value of x is 0, then in the final state x is multivalued. But, if the initial value
of x is 1, then the final value of x is 2! Another semantics could be to allow a non-deterministic behaviour
in such cases, or to state explicitly how values are combined[BC84]. Nevertheless, we have done with this
definition for its conciseness and since we do not consider parallel updates of the same variable.

At last, general multi-assignment rules cannot be stated because of typing problems: each variable has its
own type and a set of such variables cannot be defined. However, we will see in section 5.3 how to overcome
this problem by introducing a kind of meta theorem.

3.5 Assessment of the definitions

In order to assess our definitions, we establish some results of well known programming logics within our
framework. We consider the weakest precondition semantics of Dijkstra [Dij76]. The following definition
expresses the weakest precondition (or predicate transformer) of a statement i and a predicate p:

wp (i, p) = λ e. ∀e′. i(e, e′)⇒ p(e′)

Then, by defining the substitution of variable x in expression e1 by expression e2 as follows:

subst (x, e1, e2) = λ st. e2(λ s. if ∃z. s = x(z) then s = x(e1(st)) else st(s))

We have the following theorems3:

∀x. IS VAR (x)⇒ wp (x := e,FALSE P) = FALSE P
∀x p. IS VAR (x)⇒ wp (x := e, p) = subst (x, e, p)

3.6 Some results and examples

3.6.1 Independent parallel statements

Parallel constructs may be transformed into sequential constructs given some independence hypothesis ex-
pressed using the following e indep x predicate:

An expression is said to be independent of a variable x if any assignment to x does not modify its value.

e indep x (exp, x) = ∀st1 st2 e. (x := e)(st1, st2)⇒ exp (st1) = exp (st2)

The following theorem states the equivalence between a sequential and a parallel assignment.

∀x y ex ey. IS VAR (x) ∧ IS VAR (y) ∧ D VAR (x, y) ∧ e indep x (ey, x)⇒
(x := ex ‖ y := ey) = Seq (x := ex, y := ey)

3.6.2 Exchange of two variables

Under the hypothesis that x and y are different variables, the following result is a straightforward application
of the multi-assignment rules given in section 3.4.3.

D VAR (x, y)⇒ (x := y ‖ y := x)(st1, st2)⇒ val (x)(st2) = val (y)(st1) ∧ val (y)(st2) = val (x)(st1)
3FALSE P is the predicate identically false

164

4 Program refinements

Several formulations of refinements have been proposed[Nip92]. For our work on the protocols for multi-
processor memories [BFR94], we have found the definition given by [LT87] well suited since it considers
transition systems[Arn92]. In the following, we recall the basic definition of refinement then we present some
of the results we have established.

4.1 Definitions

4.1.1 Transition systems

We represent a generic transition system as a pair consisting in a set of initial states and a next relation
between its states.

Definition 1 (Transition system) A transition system on an alphabet A is a triplet (Σ, Q0, T) where

• Σ is a state space,

• Q0, the set of initial states, is a subset of Σ,

• T , the set of labelled transitions, is a subset of A× Σ×Σ.

Notation 1 A triplet (l, e, e′) of the set of labelled transitions of a system S will be denoted e
l→S e

′ .

Definition 2 (Initial states) Let S = (Σ, Q0, T) be a transition system. Then InitS characterizes the
initial states of the transition system: for any state e of Σ, InitS e is true iff e ∈ Q0.

Definition 3 (Next Relation) Let S = (Σ, Q0, T) be a transition system. Then NextS (also denoted →S)
is a relation defined over Σ such that e→Se

′ iff there exits a label l such that e l→S e
′ .

4.1.2 Refinement relation

Definition 4 (Refinement relation) Given two transition systems s and s’, s simulates s’ iff there exits
a simulation relation such that:

• to each initial state of s at least one initial state of s’ corresponds,

• if from a state e1, s can move to e2, and e1 corresponds to the state e1’ of s’ then there exists a state
e2’ such that e2’ corresponds to e2 and s’ can move from e1’ to e2’.

We formalize such a definition as follows:

∀ s s’. s Sim s’ = ∃ R.
∀ e. Init s e =⇒ ∃ e’. R e e’ ∧ Init s’ e’ ∧
∀ e1 e1’ e2. Nexts e1 e2 ∧ R e1 e1’ =⇒ ∃ e2’. R e2 e2’ ∧ Nexts′ e1’ e2’

4.2 Refinements through operators

In the previous section, the simulation relation is defined in terms of the initial states and the Next relation of
a transition system. However, refinement is usually proved independently for each label (also called operator
in the following).

Definition 5 (Binary relation refinement) A relation R (denoted R→) is a refinement of a relation R′

through a relation ϕ (R vϕ R′) iff

∀e1 e2 e1′. e1 R→ e2 ∧ ϕ e1e1′ =⇒ ∃e2′. e1′ R
′
→ e2′ ∧ ϕ e2e2′

165

We extend this binary refinement relation to transition systems where labels are interpreted as binary
relations over the system states. We can now link transition system simulation and refinement between their
respective labeled transitions.

Theorem 1 (Refinement through operators) Given two transition systems S1(Σ1, Q1
0, T

1) and S2(Σ2, Q2
0, T

2)
with the same alphabet A, a sufficient condition for S2 to simulate S1 is that there exists a relation ϕ such
that:

• for each label l ∈ A, l→S2 vϕ l→S1

• ∀e ∈ Q2
0 , ∃e′ ∈ Q1

0 such that ϕe e′

4.3 Refinement of sequential statements

In [BFR94], we have already presented refinement rules for the conditional and alternative constructs. In
this paper, we investigate two new refinement rules for the sequential construct.

• The first one allows the independent refinement of the elements of a sequence.

• The second one allows the refinement of a sequence by a single statement that refines independently
each element of the sequence.

4.3.1 Independent refinement

A sequence of statements can be refined by refining each of its components separately:

i1 vϕ i′1 i2 vϕ i′2
Seq (i1, i2) vϕ Seq (i′1, i

′
2)

Sketch of the proof:
The figure 1 represents the states connected by the sequential construct and its components as well as

the states connected by the refinement relation ϕ.

Given st1, st3, st′1 such that Seq(i1, i2)(st1, st3) and ϕ(st1, st′1), we look for a state st′3 such that st′1
Seq(i′1,i

′
2)−→ st′3

and ϕ(st3, st′3).

By the first refinement hypothesis: i1 vϕ i′1, there exists a state st′2 such that st′1
i′1−→ st′2 and ϕ(st2, st′2)

and finally, by the second refinement hypothesis: i2 vϕ i′2, there exists a state st′3 such that st′2
i′2−→ st′3 and

ϕ(st3, st′3).

st’
2

st’
3

st
1

st
2

st
3

ϕ ϕ ϕ
i
2

i
1

i’
1

i’
2

i
2

Seq i1

st’
1

Figure 1: Independent SEQ refinement

166

4.3.2 Joint refinement

We first introduce the predicate stable (ϕ, i):

Definition 6 (Stability) The refinement relation ϕ is invariant through the statement i.

stable (ϕ, i) = ∀st st′1 st′2. ϕ(st, st′1) ∧ i(st′1, st′2)⇒ ϕ(st, st′2)

The idea of the joint refinement rule is to split the refinement of a sequence of statements by a single
statement into the refinement of each component through a projection of the initial refinement operator.

i vϕ1 i
′
1 i vϕ2 i

′
2 stable (ϕ1, i

′
2) stable (ϕ2, i

′
1)

i vϕ1∧ϕ2 Seq (i′1, i
′
2)

Sketch of the proof:
The figure 2 represents the states connected by the sequential construct and its components as well as

the states connected by the refinement relation ϕ.
Given st1, st2, st

′
1 such that st1

i−→ st2, ϕ1(st1, st′1) and ϕ2(st1, st′1), we look for a state st′3 such that

st′1
Seq(i′1 ,i

′
2)−→ st′3 and ϕi(st2, st′3).

• By the refinement hypothesis i vϕ1 i
′
1, there exists a state st′2 such that st′1

i′1−→ st′2 and ϕ1(st2, st′2).

• By the stability hypothesis stable (ϕ2, i
′
1), we have ϕ2(st1, st′2).

• By the refinement hypothesis i vϕ2 i
′
2, there exists a state st′3 such that st′2

i′2−→ st′3 and ϕ2(st2, st′3).

• By the stability hypothesis stable (ϕ1, i
′
2), we have ϕ1(st2, st′3).

• Thus there exists a state st′3 satisfying the refinement requirements.

st’
2

st’
3

st
1

st
2

ϕ
i

i’
1

i’
2st’

1

ϕ
1 2

i’
2

Seq i’1

ϕ
1

ϕ
2

ϕ ϕ
1 2

Figure 2: Joint SEQ refinement

4.4 Refinement of parallel constructs

4.4.1 Binding invariance

A binding is invariant or unchanged through a statement i if it has the same status in any states connected
by i.

unchanged (s, i) = ∀st1 st2. i(st1, st2)⇒ st1(s) = st2(s)

We can prove the intuitive result concerning invariance through a parallel statement: if i1 and i2 are
functional, we have:

unchanged (s, i1 ‖ i2) = unchanged (s, i1) ∧ unchanged (s, i2)

167

4.4.2 Projections

We define the projection of a relation ϕ with respect to a statement i (denoted by ϕi) as a relation which
only depends on bindings unchanged by i.

ϕi = λ st st′. ∃ st′′. ϕ(st, st′′) ∧ ∀s. unchanged (s, i)⇒ st′(s) = st′′(s)

Then, the projected relation is easily shown to be stable by the statement i.

stable (ϕi, i)

Furthermore, if ϕ is functional and if the statements i1 and i2 are independent (they cannot change a
binding together4), then ϕ is the conjunction5 of its projections over i1 and i2.

IsF (ϕ) ∧ indep (i1, i2)⇒ ϕ = And (ϕi1 , ϕi2)

4.4.3 A restricted parallel construct

In order to allow a smooth proof of the following theorem, we introduce a new parallel construct denoted |||.
We define it using the unchanged global predicate.

(i1 ||| i2)(st1, st2) = ∃st′ st′′. i1(st1, st′) ∧ i2(st1, st′′) ∧
∀s . st2(s) = (unchanged (s, i1) ∧ st′′(s)) ∨

(unchanged (s, i2) ∧ st′(s))

The following theorem establishes the relation between the two parallel constructs:

∀st1 st2 i1 i2. indep(i1, i2)⇒ (i1 ||| i2)(st1, st2)⇒ (i1 ‖ i2)(st1, st2)

Under the same independence hypothesis, the constructor ||| can also be defined as follows:

indep (i1, i2)⇒ (i1 ||| i2)(st1, st2) =
∃st′ st′′. i1(st1, st′) ∧ i2(st1, st′′) ∧

∀s . st2(s) = if unchanged (s, i1) then st′′(s) else st′(s)

4.4.4 Refinement theorem

The following refinement rule states that the refinement of a parallel construct can be split into the refinement
of its components given some hypothesis.

IsF (ϕ) indep (i′1, i
′
2) i vϕi′

2
i′1 i vϕi′

1
i′2

i vϕ i′1 ‖ i′2

Sketch of the proof:
The figure 3 represents the states connected by the parallel construct and its components, as well as

the refinement relation and its projections over the two statements i′1 and i′2. The refinement hypothesis
provides the states st′2 and st′′2 and the refinement relations ϕi′1(st2, st′2) and ϕi′2(st2, st′′2). Now, the state
st′′′2 can be introduced as the superposition of the states st′2 and st′′2 , as defined in the ||| construct:

∀s. st′′′2 (s) = if unchanged (s, i′1) then st′′2(s) else st′2(s)

Thus, we have the relation (i′1 ||| i′2)(st′1, st
′′′
2) and by the theorem relating the two parallel constructs, we

have (i′1 ‖ i′2)(st′1, st′′′2).
Then, we prove that the two projected refinement relations remain valid between the states st2 and st′′′2 .

So is their conjunction ϕ.
4indep (i1,i2) = ∀s. unchanged (s, i1) ∨ unchanged (s, i2)
5And (ϕ1, ϕ2) = λ x y. ϕ1(x, y) ∧ ϕ2(x, y)

168

ϕ

ist
1

st’
1

st
2

st’
2

st"
2

st
2
’’’

i’
1

i’
2

i’
1

i’
2||

ϕ
i’1

ϕ
i’2 ϕ

i’1

ϕ
i’2

Figure 3: Parallel independent refinement

5 Refinements rules and tactics

We use a theorem prover first to validate the previously presented results and second to offer a framework
to support the development of correct parallel algorithms.

5.1 The HOL interactive theorem prover

HOL[GM94] is an interactive theorem prover based on higher order logic. The formulation of this logic
relies on a small number of axioms, inference and definition rules. Although HOL was initially intended for
hardware design, it is now widely used for general program proving[CT94, Bac92].

5.2 HOL refinement theories

All the refinement theory we have developed is definitional. Starting with the initial theory, we have elabo-
rated the presented framework without introducing any axiom. Consequently, since the initial HOL theory
is consistent, the developed one is consistent as well. The figure 4 illustrates the hierarchy of the theories.

Lift Refinement

StateStatements

Assignment

Par

Figure 4: HOL hierarchy of theories

• The Lift theory (§2.2.3) defines the standard operators lifted to functions over states as well as the
proof of lifted standard theorems on booleans, sets . . .

• The Refinement theory (§4) defines basic relational algebra, the refinement relation and basic refinement
theorems.

• The State theory (§2.2) defines environments and variables.

169

• The Statements theory (§3) defines basic sequential control structures and refinement theorems on
them.

• The Assignment theory (§3.1) defines the assignment statement, theorems on environments modified
through assignments.

• The Par theory (§3.4.3) defines the parallel operator, theorems concerning independent refinements of
parallel statements as well theorems and conversions on multi-assignments.

5.3 Meta theorems in HOL

The theorems stated in this paragraph assume that we have a data type defined by an indexed set of
constructors. Such a data type cannot be characterized in HOL since this would require at least sets
with elements of different types. Consequently generals theorems about these data types cannot be stated
rigorously in HOL. However, HOL conversions provide a way to generate specific instances of these theorems
for a given data type.

In the following, we suppose that we have a data type Decl and an indexed family of typed constructors
(Ci : Ti → Decl)i∈I such that:

• ∀i ∈ I. IS VAR (Ci)

• ∀i j ∈ I. i 6= j ⇒ D VAR(Ci, Cj)

An example of such a data type Decl coming from the study of the refinement of multiprocessor memory
models, describing an array of cache and status registers, and a global memory is given below:

C_decls = VAL *ind *val
| STATE *ind *state
| MEM *val

This type declaration defines three families of constructors: VAL (i), STATE (i) and MEM.

5.3.1 Assignments

The single assignment meta-rule applied to an assignment statement expresses the value of each variable in
the new state in terms of expressions evaluated in the current state.∧

i∈I

{
∀e : Ti. (Ci := e)(st1, st2) = ∀x : Ti. st2(Ci(x)) = (x = e(st1)) ∧∧

j 6=i ∀x : Tj . st2(Cj(x)) = st1(Cj(x))

We illustrate the application of this meta rule on a data type on the data type introduced in the previous
paragraph. The HOL conversion associated to the single assignment meta rule proves the following theorem:

|- (∀ x0 ex e1 e2.
((VAL x0) := ex)e1 e2 =
(∀ x0’ x1. e2(VAL x0’ x1) = ((x0’ = x0) => (x1 = ex e1) | e1(VAL x0’ x1))) ∧
(∀ x0’ x1. e2(STATE x0’ x1) = e1(STATE x0’ x1)) ∧
(∀ x. e2(MEM x) = e1(MEM x))) ∧

(∀ x0 ex e1 e2.
((STATE x0) := ex)e1 e2 =
(∀ x0’ x1. e2(VAL x0’ x1) = e1(VAL x0’ x1)) ∧
(∀ x0’ x1. e2(STATE x0’ x1) = ((x0’ = x0) => (x1 = ex e1) | e1(STATE x0’ x1))) ∧
(∀ x. e2(MEM x) = e1(MEM x))) ∧

(∀ ex e1 e2.
(MEM := ex)e1 e2 =
(∀ x0 x1. e2(VAL x0 x1) = e1(VAL x0 x1)) ∧
(∀ x0 x1. e2(STATE x0 x1) = e1(STATE x0 x1)) ∧
(∀ x. e2(MEM x) = (x = ex e1)))

170

5.3.2 Multi-Assignments

The multi-assignment meta rule is similar to the single assignment one except that the effects of the different
assignments are superposed. The meta rule is formulated as follows:

∀e1 : T1 · · · en : Tn
(Ci1 := e1 ‖ · · · ‖ Cin := en)(st1, st2) =

∀x : Ti1 . st2(Ci1(x)) = (x = e1(st1)) ∧
...

∀x : Tin . st2(Cin(x)) = (x = en(st1)) ∧∧
i 6∈{i1,···,in} ∀x : Ti. st2(Ci(x)) = st1(Ci(x))

We illustrate the application of the multi-assignment rule on the same data type. Here, the HOL con-
version needs the variables assigned to. The generation of all combinations of assignments is not realistic.
Here, the conversion proves the following theorem defining the multi-assignment of the three variables MEM,
STATE p and VAL q:

|- (MEM := m) || (STATE p := s) || (VAL q := v) =
(λ e1 e2.
(∀ x0 x1. e2 (VAL x0 x1) = ((x0 = q) => (x1 = v e1) | e1(VAL x0 x1))) ∧
(∀ x0 x1. e2 (STATE x0 x1) = ((x0 = p) => (x1 = s e1) | e1(STATE x0 x1))) ∧
(∀ x. e2 (MEM x) = (x = m e1)))

5.3.3 Refinements tactics

Refinement theorems concerning the sequential and parallel constructs have been also implemented in HOL
as proof tactics. Thus, these tactics can be used by the backward proof engine to reduce a goal into subgoals.
To give the flavor of the application of a tactic, we have peeked a fragment from the proofs developed for
the study of refinements between multiprocessor memory models.

Suppose we have to prove the following refinement property:

∀ p st ost states. st IN states ∧ ¬ ost IN states ⇒
REF_Op
((((STATE p) := (CST st)) || ((VAL p) := (val MEM))) IF ((val(STATE p)) =* (CST ost)))
((A_STATE := (REPLACE_B_P(val A_STATE)(CST ost)(CST st))) || (A_VAL := ((val A_MEM) INSERT_P (val A_VAL))))
(λ e1 e2. e2 = C2Af states e1)

The application of the parallel-sequential transformation of independent assignments (section 3.6.1) yields
the following subgoal:

% Goal %
REF_Op
((((STATE p) := (CST st)) || ((VAL p) := (val MEM))) IF ((val(STATE p)) =* (CST ost)))
(Seq (A_STATE := (REPLACE_B_P(val A_STATE)(CST ost)(CST st))) (A_VAL := ((val A_MEM) INSERT_P (val A_VAL))))
(And (Pr2_Phi_X(λ x y. y = C2Af states x)A_VAL) (Pr2_Phi_X(λ x y. y = C2Af states x)A_STATE))"

% Hypothesis %
2 ["st IN states"]
1 ["¬ ost IN states"]

Then, the application of the tactic associated to the joint sequential refinement theorem of section 4.3.2
splits the current goal into four subgoals:

171

% Subgoal 4 %
REF_Op
((((STATE p) := (CST st)) || ((VAL p) := (val MEM))) IF ((val(STATE p)) =* (CST ost)))
(A_VAL := ((val A_MEM) INSERT_P (val A_VAL)))
(Pr2_Phi_X(λ x y. y = C2Af states x)A_STATE)
2 ["st IN states"]
1 ["¬ ost IN states"]

% Subgoal 3 %
REF_Op
((((STATE p) := (CST st)) || ((VAL p) := (val MEM))) IF ((val(STATE p)) =* (CST ost)))
(A_STATE := (REPLACE_B_P(val A_STATE)(CST ost)(CST st)))
(Pr2_Phi_X(λ x y. y = C2Af states x)A_VAL)
2 ["st IN states"]
1 ["¬ ost IN states"]

% Subgoal 2 %
stable
(Pr2_Phi_X(λ x y. y = C2Af states x)A_STATE)
(A_STATE := (REPLACE_B_P(val A_STATE)(CST ost)(CST st)))
2 ["st IN states"]
1 ["¬ ost IN states"]

% Subgoal 1%
stable
(Pr2_Phi_X(λ x y. y = C2Af states x)A_VAL)
(A_VAL := ((val A_MEM) INSERT_P (val A_VAL)))
2 ["st IN states"]
1 ["¬ ost IN states"]

6 Conclusion

The start point of this paper is the proposal of a new state representation. We believe that it should reduce
the gap between the syntactic and the semantic levels. Proofs do not need any new information with respect
to the syntactic specification of the program, such as type informations. Within this framework, we have
restated and validated the usual programming constructs. Another important aspect of our work has been
concerned with the refinement of sequential and parallel constructs. All these results have been validated by
their embedding in the HOL theorem prover.

The next step of our work is to use the results presented here to validate consistency cache protocols.
We are especially interested in generic models and their relations.

This paper was mainly concerned with local properties of programs. A further study would be to consider
state sequences for reasoning about behavioral program properties.

References
[APP93] F. Andersen, K. D. Petersen, and J.S. Pettersson. Program verification using HOL-UNITY. In Higher

Order Logic Theorem Proving and its Applications, volume 780 of Lecture Notes in Computer Science.
Springer-Verlag, 1993.

[Arn92] A. Arnold. Systèmes de transitions finis et sémantiques des processus communicants. Etudes et recherches
en informatique. MASSON, 1992.

[Bac92] R. J. R. Back. Refinement calculus, lattices, and higher order logic. In Program design calculi, volume 118
of NATO ASI Series F. Computer and systems sciences, pages 53–72. Springer Verlag, 1992.

[BC84] G. Berry and L. Cosserat. The ESTEREL synchronous programming language and its mathematical seman-
tics. volume 197 of Lecture Notes in Computer Science, pages 389–448, Berlin, Germany, 1984. Springer-
Verlag.

[BFR94] J.-P. Bodeveix, M. Filali, and P. Roché. Towards a HOL theory of memory. In Higher Order Logic
Theorem Proving and its Applications, volume 859 of Lecture Notes in Computer Science, pages 49–64.
Springer-Verlag, sep 1994.

172

[CM88] K.M. Chandy and J. Misra. Parallel Program Design, A Foundation. Addison-Wesley, 1988.

[CT94] C. Ching-Tsun. Mechanical verification of distributed algorithms in higher order logic. In Higher Order
Logic Theorem Proving and its Applications, volume 859 of Lecture Notes in Computer Science, pages
158–176. Springer-Verlag, 1994.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Englewood Cliffs New Jersey: Prentice Hall, 1976.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Comp. Science, 50:1–102, 1987.

[GM94] M.J.C. Gordon and T.F. Melham. Introduction to HOL. Cambridge University Press, 1994.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[LT87] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In Proceedings of
the sixth annual ACM symposium on principles of distributed computing, pages 137–151, aug 1987.

[Nip92] T. Nipkow. Formal verification of data type refinement - theory and practice. In Stepwise refinement of
distributed systems, volume 430 of Lecture Notes in Computer Science, pages 561–591. Springer Verlag,
1992.

[Tre92] G. Tredoux. Mechanizing execution sequence semantics in HOL. South African Computer Journal, (7),
July 1992.

[vW90] J. von Wright. A lattice-theoretical basis fro program refinement. PhD thesis, Abo Akademi Finland, 1990.

173

Formal Veri�cation of Concurrent Programs using the
Larch Prover

Boutheina Chetali

CRIN-CNRS and INRIA-Lorraine, University of Henri Poincaré,Nancy I

Campus Scienti�que � B.P. 101, 54602 Villers-les-Nancy � FRANCE

email: chetali@loria.fr

Abstract. This paper describes, by means of an example, how one may mechani-

cally verify concurrent programs on the theorem prover Lp. The chosen speci�cation
environment is Unity, a subset of ordinary temporal logic for specifying and veri-

fying programs. We present the proof of a lift-control program, we explain how we
can use the theorem proving methodology to prove safety and liveness, and to get

semi-automated proofs.

1 Introduction

Unity [CM88], a fragment of ordinary temporal logic, is a theory to specify and verify

concurrent programs. It provides a formalism to express the relevant properties of a pro-

gram, an appropriate language to construct well-founded formulae and a proof system to

construct proofs. Nevertheless, despite the simplicity of the model, formal reasoning about

Unity program correctness is a complex and error prone task. Therefore, a theorem prover

is required to provide a very high degree of con�dence in the correctness of the veri�cation.

Unity o�ers a logic and a notation in which abstract speci�cation of the computation

are expressed, without any mention to execution sequences. This static view of the program

recall the Larch style of speci�cation [GHG+93], which emphasizes brevity and clarity

rather than executability. Moreover Unity logic is built from a number of modalities

called temporal predicates that allow a concise speci�cation of many interesting aspects

of programs. These predicates are applied to nonmodal formulae and logical operations or

nesting of modalities are not part of the logic. This is interesting aspect for the encoding

of Unity logic on a �rst-order theorem prover.

In this paper, by means of an example, we show how we mechanize formal proofs of

concurrent programs speci�ed in Unity and the use of a general-purpose theorem prover

for �rst order logic like Lp, to verify safety and liveness properties. Our aim is to show that

we can take advantage of both the power and the simplicity of Unity and Lp, in order to

get semi-automated proofs of safety properties.

The chosen example is taken from [APP93]. It describes a lift-control program speci�ed

in Unity. Its formal proofs of correctness was made with the HOL-Unity system, which

implements Unity theory in the higher order theorem prover HOL. This example was

interesting for several reasons: First, it is a good archetypical problem, second it allows us

fruitful comparisons on the use of a theorem prover in mechanizing the proof of correctness

of a concurrent programs described in Unity. Moreover, this example is well-suited to

illustrate our approach to get semi-automated proofs of safety properties.

The paper is organized as follows. We start by a brief description of the mechanized

implementation of Unity in Lp. Then we present the lift-control program as described in

[APP93], and we give the main steps of the mechanization of the correctness proof. For

that we focus on one of its safety properties, we present our informal hand proof and the

corresponding automated proof in Lp. Finally, we conclude with a discussion about this

study and future work.

174

We suppose little familiarity with Lp (as few as possible) and we recommand [GG91]

as an introduction. This experiment has been conducted with the release 3.1 of Lp.

2 About LP

In this section, we give some hints about Lp, in order to introduce the formalism used in

the remainder of this paper.

The design and development of the Larch proof assistant Lp have been motivated

primarily to debug LSL speci�cation [GHG+93] but it has been also used to establish the

correctness of hardware designs [SGG89] [CL92], or to reason about algorithms involving

concurrency [SGG88].

It is a general-purpose theorem prover for multisorted �rst-order logic. It is based on

equational term rewriting [GG91], and supports proofs about axiomatic speci�cations. All

proofs are carried out by applying rewrite rules, proofs by case splitting, induction, con-

tradiction and application of inference rules.

Lp does not contains any prede�ned theory, but automatically declares the sort bool
with the corresponding logical operators. A simple speci�cation in Lp looks like:

declare sorts Elt, Set

declare variables e, e1: Elt, x, y: Set

declare operators

{}: -> Set

{__}: Elt -> Set

insert: Elt, Set -> Set

__ \union __: Set, Set -> Set

__ \in __: Elt, Set -> Bool

..

Sample axioms for this speci�cation are:

set name Axioms

assert

sort Set generated by {}, insert;

{e} = insert(e, {});

~(e \in {});

e \in insert(e1, x) <=> e = e1 \/ e \in x;

e \in (x \union y) <=> e \in x \/ e \in y

..

The �rst axiom is an induction rule, used in proofs by induction. These axioms (except the
�rst one) are oriented into rewrite rules, for which Lp uses the prede�ned ordering:

Axioms.2: {e} -> insert(e, {})

Axioms.3: e \in {} -> false

Axioms.4: e \in insert(e1, x) -> e = e1 \/ e \in x

Axioms.5: e \in (x \union y) -> e \in x \/ e \in y

A sample conjecture is: prove e \in {e}

3 About the encoding of UNITY in LP

A Unity program consists of a declare section that declares the variables used in the

program, an initially section that describes the initial values of the variables, and an

assign section that consists of a non-empty set of assignment statements. It could be

175

an additional section named always section used to de�ne shorthands for complicated

expressions used in the program.

Execution of every Unity statement (assignment) terminates in every program state

and a program execution consists of an in�nite number of steps in which each statement

is executed in�nitely often. A Unity program terminates by reaching a �xed point, which

is equivalent to termination in standard sequential-programming terminology. Correctness

of concurrent programs is de�ned in terms of properties of execution sequences. There are

two basic kinds of properties of concurrent programs: Safety, the property must always be

true, and Liveness, the property must eventually be true [Lam77]. There are �ve relations

on predicates in Unity theory: Unless, Stable, invariant, Ensures and leads_to. The �rst

three are used for stating safety properties whereas the last two are used to express progress

properties, a subset of liveness properties.

The reader can �nd the speci�cations of the Unity logic and methodology in Lp

in [Che95b], with the encoding of the syntax of Unity, the wp-calculus and the syntax

of �rst order predicates. In the following, we give only the de�nitions needed in this paper.

The Unity predicates

Unless, ensures and leads_to are higher-order functions applied to predicates, which are

nonmodal formulae. As Lp is a �rst-order language, we had to encode these higher-order

functions by �rst-order functions.

We de�ne a sort Bexp, which is the sort of boolean expressions (boolean structures[DS89]).
Two boolean expressions connected by a relational operator, such as A=B or A < B, is

not interpreted as statement of fact but denotes a boolean expression as general as the

connected operands. Therefore, as the set Bexp is not (and cannot be) an extension of bool

(a basic type provided by Lp, we had to de�ne imply, or, and, true, false as \=>, \or,

^, T and F di�erent from Lp's built-in operators =>, \/, /\, true, false for implication,

disjunction and conjunction. So as for nnot, \= which are di�erent from Lp operators ~,

=. Then in our system, A=B is interpreted as the fact that A and B are equal "everywhere",

and A \= B stands for a boolean expression.

Moreover, expressions in program variables have types, there are boolean expressions or

integer expressions. Integer expressions are the arithmetic expression built with the oper-

ators +, - , and *.

Proofs in Unity are based on assertions of type {P}s{Q}, equivalent to P ⇒ wp(s, Q),
where wp(s, Q) is the weakest pre-condition for the post-condition Q [Dij76]1 We formalize

the wp-calculus for assignment statements using a function: wp:Act,Bexp→Bexp, where act
is the sort of actions. We also de�ne list of actions (alist), pairs of identi�ers and expressions

(id, exp) or (id, bexp) and �nally sets of pairs (pset) that we think of as being unordered

lists of pairs of identi�ers and expressions.

Here is the axiomatization of wp:

Set name wp
assert

wp(assg(i1.ex),p) = sub_bexp(p(i1.ex),p)

wp(cond_assg(i1.ex,b),p) = (b \=> wp(assg(i1.ex),p)) ^ (nnot(b) \=> p)
wp(mult_assg(pl),p) = sub_bexp(pl,p)

wp(cond_mult_assg(pl,b),p) = (b \=> wp(mult_assg(pl),p)) ^ (nnot(b) \=> p)

1 {P}s{Q} means that "starting from a state where P holds, the execution of s in that state

results in a state where Q holds if s terminates". As Unity statements are assignments, we
assume their termination, i.e. P ⇒ wlp(s,Q) is equivalent to P ⇒ wp(s,Q).

176

The function sub_bexp(list,p), where list is a list of pairs (id,exp), substitutes each occur-

rence of id by exp in the boolean expression p.

Let us now give the de�nition of the temporal predicates.

Set name unless
assert

unless(p, q, anil) = true

unless(p, q, a) = (((p ^ nnot(q)) \=> wp(a, p \or q))=T)
unless(p, q, cons(a,act_l)) = unless(p, q, a) /\ unless(p, q, act_l)

Set name ensures

assert
ensures(p, q, anil) = false

ensures(p, q, pgm) = unless(p, q, pgm) /\ exists_act(p, q, pgm)

Set name exist_act

assert

exists_act(p, q, anil) = false
exists_act(p, q, a) = (((p ^ nnot(q)) \=> wp(a, q))=T)

exists_act(p, q, cons(a,act_l)) = exists_act(p, q, a) \/ exists_act(p, q, act_l)

Set name leads_to
assert

(1) when ensures(p, q, pgm) yield leads_to(p, q, pgm)

(2) leads_to(p, r, pgm) /\ leads_to(r, q, pgm)) ⇒ leads_to(p, q, pgm)
(3) leads_to(p, r, pgm) /\ leads_to(q, c, pgm)) ⇒ leads_to(p \or q, r \or c, pgm)

Set name Invariant
assert

Inv(p, pgm, init_cond) = ((init_cond \=> p)=T) /\ unless(p,F,pgm)

In these de�nitions, cons(a,act_l) is the list of the actions of the program. For an atomic

statement a, unless(p,q,a) means that if p holds and q does not in a program state, then

after executing a either q or p holds; hence, by induction on the number of statement exe-

cutions, p keeps holding as long as q does not hold.

The function exists_act checks whether there is a in pgm such that {p ∧ ¬q}a{q} is valid.
For a given program pgm, ensures(p,q,pgm) implies that unless(p,q,pgm) holds, and if p
holds at any point in the execution of the program then q holds eventually.

invariant(p,pgm,cond_init) states that if p holds at every initial state and p is stable, then

p holds at every state during any execution of pgm.

In order to infer p leads to q once we have p ensures q in the current system, we use what

Lp calls a deduction rule and which it notes when hypotheses yield conclusions: the when

clause contains the hypotheses of the rule and the yield clause, the fact inferred when the

hypotheses are true. In the de�nition of the predicate leads_to [CM88], the disjunction

rule is really an in�nite set of rules, one for each integer n. Indeed, all of these rules are

consequences of special case of the rule for n = 2. Furthermore, we encode the disjunction

rule for n = 2.

An Induction principle for leads to

The following induction rule has is crucial since it involves the fundamental predicate,

leads_to, which usually helps to specify progress properties of programs. In most of the

proofs of concurrent programs, in order to prove a progress property, we have to exhibit

177

something which "decreases". We give the rule as it was in [CM88]:

Induction :
∀m : m ∈ W :: leads to(p ∧M = m, (p ∧M <w m) ∨ q)

leads to(p, q)

W is a set well-founded under the relation <w and M is a function (the metric) from

program states to W . For simplicity, in this rule, M (without its argument) denotes the

function value when the program state is understood from the context. The hypothesis of

this rule is that from any program state in which p holds, the program execution eventually

reaches a state in which q holds, or it reaches a state in which p holds with a lower value of

the metricM . Since the metric value cannot decrease forever, eventually a state is reached

in which q holds.

The function M and the ordering depend on the example or the program to prove. So

M and the corresponding order should be considered as parameters to be instancied. That

it is not possible in Lp, as in almost all theorem provers. For example,M could be a binary

function M ≡ f(x, y) = (x, y), with the lexicographic ordering among pairs of integers, or

an unary function f(x) = x+ 2 with the ordering <.
So we have formalized this principle using a lexicographic ordering on list of arithmetic

expression. We de�ne this ordering as follow:

lexico(nil,nil)=T
lexico(cons(e1,list1),cons(e2,list2)) = (e1<e2) \or ((e1 \= e2) ^ lexico(list1,list2))

where list1 and list2 are lists of expressions, e1 and e2 expressions. We de�ne <: exp, exp→
bexp as an extension of <: nat, nat→ bool.

In Lp, we state the induction principle as:

Set name IND_leads_to

assert

leads_to((p ^ equal_exp_list(exp_list1,exp_list2)),(p ^ lexico(exp_list1,exp_list2)) \or q,pgm)

\=> leads_to(p,q,pgm)

where eq is a function testing "equality" of two expression lists.

With this principle, we prove this following rule :

IND coroll :
leads to(pq(l1, l2), lexico(l1, l2), pgm)

leads to(T, nnot(p), pgm)

4 A lift-control program

The aim of this section is to show, by means of an example, the mechanization of safety

properties with Lp and how we deal with a program manipulating naturals, booleans

and abstract data type as arrays. The following example is taken from [APP93], which

describes a lift-control program. The proof was made with the HOL-Unity system, which

implements Unity theory in the higher order theorem prover HOL. Therefore we want to

investigate the mechanization of the proof on a �rst order theorem prover like Lp.

The lift program describes a lift that moves between a number of �oors to serve requests

on these. In [APP93] the bottom and top �oors are speci�ed with two constant parameters

min and max, we simplify without loss of generality considering three �oors : min = 0
and max = 2.

178

Program {Lift}
Declare

floor : integer,
up,move, stop, open : bool,
req : array[0..2] of bool,

initially

floor = 0 [] up,move, stop, open = false, true, true, false
req[0], req[1], req[2] = false, false, false

Always

above = ∃i : floor < i ≤ 2 ∧ req[i]
below = ∃i : 0 ≤ i < floor ∧ req[i]
queueing = above ∨ below
goingup = above ∧ (up ∨ ¬below)
goingdown = below ∧ (¬up ∨ ¬above)
ready = stop∧ ¬open ∧move

assign

{request act} stop,move := true, false if ¬stop∧ req[floor]
[]{open act} open, req[floor],move := true, false, true if stop ∧ ¬open ∧ req[floor]

∧¬(move∧ queueing)
[]{close act} open := false if open
[]{req up} stop, f loor, up := false, f loor+ 1, true if ready ∧ goingup
[]{req down} stop, f loor, up := false, f loor− 1, true if ready ∧ goingdown
[]{move up} floor := floor+ 1 if ¬stop∧ up ∧ ¬req[floor]
[]{move down} floor := floor− 1 if ¬stop∧ ¬up∧ ¬req[floor]

end{lift}

The state space of the lift is represented by six variables, floor denotes the current position
of the lift, open (resp. stop) whether the door is open (resp. stopped) at floor, req[i] whether
the lift is requested at the �oor i, up denotes the current direction of the movement, and

move whether moving the lift takes precedence over opening of the doors.

5 Translation in LP

Much of the power of the deductive system of Lp relies upon normalization, e.g. compu-

tation of normal forms by rewriting, then the basis for proofs is a logical system, which

consists of signatures, equations, rewrites rules, operators theories, . . .etc. In addition, Lp

provides inference rules and tactics for proving theorems, and requires guidance in the proof

strategy, e.g. the chaining of elementary proof tactics, and in the introduction of lemmas if

necessary. These lemmas are proved and later used as axioms in proofs. In our proof, the

suggestions we made were about the proof methods, or explicit instantiations of variables

in lemmas, equations, . . .etc. In the following, we explain the main steps in the translation

of the Unity program lift in Lp.

5.1 State variable and Proof variable

We consider two kinds of Unity variables. The identi�ers appear in the program text, they

are state or dynamic variables (so called because they represent quantities that can vary

with time). These variables are encoded as constant in Lp of sort Id. The proof variables

appear in the Unity proof, are static variables encoded as Lp variables of sort Id_of_var2.

The variables floor, up, move, stop, and open are declared in Lp as unary operators of

sort Id. The array req is de�ned as an array of Id.

2 The di�erence in the encoding of state variables and proof variables comes from the fact that the
former are involved in substitution. Substitutions are needed to encode the wp-calculus [Che95b]

179

5.2 The program

A Unity program is de�ned as a list of actions and will be encodded in Lp as a constant

of sort Actlist: lift : → Actlist.

A boolean expression init represents the Initially section of the program lift:

assert

init =

(id_to_exp(floor) |= nat_to_exp(0))

^ bool_to_bexp(id_to_bexp(up) = F) ^ bool_to_bexp(id_to_bexp(move) = T)

^ bool_to_bexp(id_to_bexp(stop) = T) ^ bool_to_bexp(id_to_bexp(open) = F)

^ bool_to_bexp(id_to_bexp(req[0]) = F)^ bool_to_bexp(id_to_bexp(req[1]) = F)

^ bool_to_bexp(id_to_bexp(req[2]) = F)

The term bool_to_bexp(id_to_bexp(up) = F) represents the initial condition up = false,
the function id_to_bexp embeds the sort Id in the sort bexp and bool_to_bexp transforms

a boolean into a boolean expression.

Identi�ers and naturals are themselves expressions. As the logic of Lp does not has

subsorts, we explicitly embedded Id, Id_of_var and nat into exp using functions id_to_exp
and nat_to_exp.
The always section is translated as a set of axioms:

set name always

assert

queueing = (above \/ below);

goup = (above /\ ((id_to_bexp(up)=T) \/ ~(below)));

godown = (below /\ ((nnot(id_to_bexp(up))=T) \/ ~(above)));

ready = ((id_to_bexp(stop) ^ (nnot(id_to_bexp(open)) ^ id_to_bexp(move)))=T);

above = (\E ex_i ((((id_to_exp(floor)<id_to_exp(ex_i))

^(id_to_exp(ex_i)<=nat_to_exp(2)))

^(id_to_bexp(req[id_to_nat(ex_i)])))=T));

below = (\E ex_j ((((nat_to_exp(0)<=id_to_exp(ex_j))

^(id_to_exp(ex_j)<id_to_exp(floor)))

^id_to_bexp(req[id_to_nat(ex_j)]))=T))

..

The assign section is encoded as a list of actions:

lift = cons(request act, cons(open act, . . . , cons(move down act, nil)))

For example, the action request act is translated in Lp using the function cond_mult_assg(plist,
bexp) which encodes conditional multiple assignments:

cond_mult_assg({stop.T} \u ({move.F}\u {}),

(nnot(id_to_bexp(stop)) ^ (id_to_bexp(req[id_to_nat(floor)]))))

6 Proof Obligations

In this section, we present the proof as it is described in [APP93], in order to show its

mechanization in our system.

The proof obligations describe properties that the lift program must satisfy. For that,

the main property to prove is that any request for service will eventually be served:

∀n : min ≤ n ≤max⇒ req[n] leads to open ∧ floor = n (1)

As in HOL-Unity, a property leads_to must be satis�ed for any state in the total state

space spanned by the program variables. Hence, a predicate valid is introduced, which

180

characterizes a subset of the total state space including the reachable states of the program

lift :

∀n : min ≤ n ≤ max⇒ req[n] ∧ valid leads to open ∧ floor = n (2)

This property is decomposed into simpler Unity properties [APP93], from which it can be

deduced using leads_to inference rules.

Note: In the following, 7→ stands for leads_to, and p op q for op(p, q, lift). We use s for
the variable stop, o for open, m for move, f for floor, q for queueing, a for above, b for
below, goup for goingup.

The decomposition of (2) leads to the following properties, the proof of each one follows

from the corresponding ensures properties:

s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid 7→ s ∧ o ∧m ∧ (f = n) ∧ req[n] (P1)
s ∧ ¬o ∧ ¬m ∧ (f 6= n) ∧ req[n] ∧ valid 7→ s ∧ o ∧m ∧ (f 6= n) ∧ req[n] (P2)
s ∧ o ∧m ∧ (f 6= n) ∧ req[n] ∧ valid 7→ s ∧ ¬o ∧m ∧ ¬(f = n ∧ ¬q) ∧ req[n] (P3)
s ∧ o ∧m ∧ (f = n ∧ ¬q) ∧ req[n] ∧ valid 7→ s ∧ o ∧m ∧ (f = n) ∧ req[n] (P4)
s ∧ ¬o ∧m ∧¬(f = n ∧¬q) ∧ req[n] ∧ valid 7→ ¬s ∧ ¬o (P5)
¬s ∧ ¬o ∧ req[n] ∧ valid 7→ s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] (P6)

To illustrate the next section, let us explain the main steps of the proof of P1, which states

that if the lift is moving and there is a request at the �oor n then the lift will stop at that

�oor and the door will open:

s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid 7→ s ∧ o ∧m ∧ (f = n) ∧ req[n] (P1)

⇐{De�nition of leads_to}

s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid ensures s ∧ o ∧m ∧ (f = n) ∧ req[n] (P1)

⇐{De�nition of ensures}

[s ∧ ¬o ∧¬m ∧ (f = n) ∧ req[n] ∧ valid unless s ∧ o ∧m ∧ (f = n) ∧ req[n]] (P1.1)
∧[s ∧¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid exit act s ∧ o ∧m ∧ (f = n) ∧ req[n]] (P1.2)

⇐{De�nition of unless}

[∀act ∈ lift [(s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)
⇒ wp(act, (s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)

∨(s ∧ o ∧m ∧ (f = n) ∧ req[n]))]] (P1.1)
∧[s ∧¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid exit act s ∧ o ∧m ∧ (f = n) ∧ req[n]] (P1.2)

Proof of (P1.1): This subgoal leads to six subsubgoals, each per action of the program.

Therefore, in order to keep the length of the proof within a reasonable size, we present the

main steps using the �rst action of the lift program.

[(s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)
⇒ wp(req act, (s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)

∨(s ∧ o ∧m ∧ (f = n) ∧ req[n]))]
{De�nition of wp and assignments}

(s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)
⇒ [((¬s ∧ req[f])⇒ sub bexp({(s.true), (m, false)},

(s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)

181

∨(s ∧ o ∧m ∧ (f = n) ∧ req[n])))
∧(¬(¬s ∧ req[f])⇒ ((s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)

∨(s ∧ o ∧m ∧ (f = n) ∧ req[n])))]

{De�nition of substitution}

(s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)
⇒ [((¬s ∧ req[f])⇒ ((true ∧ ¬o ∧ ¬false ∧ (f = n) ∧ req[n] ∧ valid)

∨(true ∧ o ∧ false ∧ (f = n) ∧ req[n])))
∧(¬(¬s ∧ req[f])⇒ ((s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)

∨(s ∧ o ∧m ∧ (f = n) ∧ req[n])))]

{De�nitions of ∧,∨ and booleans }

(s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)
⇒ [((¬s ∧ req[f])⇒ (¬o ∧ (f = n) ∧ req[n] ∧ valid))
∧((s ∨ ¬req[f])⇒ ((s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)

∨(s ∧ o ∧m ∧ (f = n) ∧ req[n])))]

[true] 2

Proof of P1.2:

[s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid exit act s ∧ o ∧m ∧ (f = n) ∧ req[n]]

{De�nition of exis_act}

[(s ∧ ¬o ∧ ¬m ∧ (f = n) ∧ req[n] ∧ valid)
⇒ wp(req act, (s ∧ o ∧m ∧ (f = n) ∧ req[n]))]

∨[(s ∧ ¬o ∧¬m ∧ (f = n) ∧ req[n] ∧ valid)
⇒ wp(open act, (s ∧ o ∧m ∧ (f = n) ∧ req[n]))]

∨ . . .
∨[(s ∧ ¬o ∧¬m ∧ (f = n) ∧ req[n] ∧ valid)
⇒ wp(move down act, (s ∧ o ∧m ∧ (f = n) ∧ req[n]))]

{only open_act veri�es the wp property}

[false]
∨[(s ∧ ¬o ∧¬m ∧ (f = n) ∧ req[n] ∧ valid)
⇒ [((s ∧ ¬o ∧ req[f] ∧ ¬(m ∧ q))⇒ (s ∧ true ∧ true ∧ (f = n) ∧ req[n]))
∧(¬(s ∧¬o ∧ req[f] ∧ ¬(m ∧ q))⇒ (s ∧ o ∧m ∧ (f = n) ∧ req[n]))]]

∨[false]

{Simpli�cations}

[false]
∨[(s ∧ ¬o ∧¬m ∧ (f = n) ∧ req[n] ∧ valid)
⇒ [((s ∧ ¬o ∧ req[f] ∧ ¬(m ∧ q))⇒ (s ∧ (f = n) ∧ req[n]))
∧(¬(s ∧¬o ∧ req[f] ∧ ¬(m ∧ q))⇒ (s ∧ o ∧m ∧ (f = n) ∧ req[n]))]]

∨[false]
{Using ((f = n) ∧ req[n] ∧ ¬q) ≡ false)}
[true] 2

In the next section, we illustrate the mechanized proof by showing how Lp is used to prove

the progress property P1. Precisely, Lp automatically discharges the appropriate subgoals

182

in the informal proof and saves us from supplying the tedious details in manipulating the

logic parts of the proof goals.

7 The mechanized Proof

In Lp, to prove that p unless q holds for the lift program, we must prove that the term

unless(p,q,lift) boils down to true.

We introduce the conjecture typing:

prove unless(p,q,lift)

Using the de�nition of unless, Lp expands the conjecture in:

unless(p, q, request_act) /\ unless(p, q, cons(open_act,cons(..,nil))).

Each conjunct is expanded, introducing wp, the normalization goes on and leads to the

term3:

((p ^ nnot(q)) \=> wp(request_act,p \or q))

/\ ((p ^ nnot(q)) \=> wp(open_act,p \or q))

/\ ...

/\ ((p ^ nnot(q)) \=> wp(move_down_act,p \or q))

Following the informal hand proof of the previous section, we must divide this conjecture

in six subgoals, one per action. We supply Lp with two forms of user guidance:

The command resume by /\-method directs Lp to prove each of the subgoal of the cur-

rent conjecture as a separate subgoal. It generates the appropriate subgoals of the form

((p ^ nnot(q))=T) => (wp(act,p \or q)=T).

For each subgoal, the command resume by =>-m directs Lp to use the implicationmethod.

It generates the hypothesis ((p ^ nnot(q))=T) and automatically discharges the subgoal

wp(act,p \or q)=T). To complete the proofs, it uses the axioms and rewrite rules which

de�ne the ^, \or and properties of the boolean expressions.

In this proof, we made no mention to the formulae p or q. Actually, what appears in

the following script is the entire interaction with Lp for the proof of the unless part of the
property P1.1:

set name property1

prove

unless(stopped^(id_to_exp(floor)|=id_to_exp(nn))

^id_to_bexp(req[nn])

^(id_to_exp(nn)<=nat_to_exp(2))^(nat_to_exp(0)<=id_to_exp(nn)),

opened^(id_to_exp(floor)|=id_to_exp(nn))

^id_to_bexp(req[nn])

^(id_to_exp(nn)<=nat_to_exp(2))^(nat_to_exp(0)<=id_to_exp(nn)),

lift)

..

resume by /\-method

3 Actually, we do not write the normal form of the subterms wp(..)

183

resume by =>-method

resume by =>-method

resume by =>-method

resume by =>-method

resume by =>-method

resume by =>-method

resume by =>-method

qed

To prove the properties P2,P3, and P4 we use the same script4 than the one of P1. To make

the proving of the property P5 easier, we �rst prove an additional property:

(~above /\ ~below /\ (req[n]=T) /\ (0<=n<=2)) => (floor = n)

which states that �if there is no request at the �oors upper than the floor where the lift

is currently located, nor at the �oors lower than floor and there is a request at the �oor n
then floor = n�. The predicate valid is proved as an invariant in our system and implicitly

added to each property to prove.

More technically The general tactic is the following: Let k be the number of statements in

a given program pgm. For each proof of an unless property, we use one command resume
by /\-m and k commands resume by =>-m. The proofs of an invariant use one com-

mand resume by /\-m and k + 1 commands resume by =>-m. The additional subgoal

is (init \=> I) given by the de�nition of invariant(p,init,pgm).

The proofs of the progress property ensures involve a resume by /\-method which

leads to a number of subgoals equal to (k + 1), where k is as above the number of ac-

tions in the program. The additional subgoal corresponds to the exist act part in the

de�nition of ensures(p,q,pgm). This subgoal is proved by cases, (p ^ nnot(q)) = T and

(p^nnot(q)) = F. In order to derive the corresponding leads to properties, Lp uses the

deduction rule (1) in the de�nition of the leads to predicate.

Note that we can de�ne a general proof strategy using the command:

set proof-methods normalization, /\, =>

This commands directs Lp to attempt to prove conjectures by the �rst applicable proof

method speci�ed in the given list. So to prove an unless property, Lp uses the /\ method

to split the conjecture after rewriting it to its normal form, and uses the => method for

each subgoal. As the proof obligations of p unless q or invariant p are the same for all

p and q, the mechanized proof could be fully automated with a single command and the

corresponding script will be

prove unless(p,q,pgm)

qed

Although this strategy leads to less interaction with Lp, we do not use it in order to

keep control on the lower steps of the proof. Indeed, as our goal is primarily to check

proofs and safety properties, the full mechanization of a proof leads us, as often in such an

experiment, to enter low-level detail of the speci�cation. In most of the cases, the low-level

steps carry the deeper aspect of the problem. Nevertheless, low steps in hand proofs are

usually achieved using intuitive arguments. As those arguments are often based on critical

aspects of the problem, they must be formalized and mechanized in order to retrieve errors

and mistakes[Che95a].

4 The command qed requests Lp to con�rm that the proof is indeed complete.

184

8 Discussion and Conclusion

In this paper, we have proved the correctness of a lift-control protocol. We have used this

example as an illustration of our approach of fully mechanizing the correctness using the

theorem prover Lp. This process requires �rst a speci�cation in Unity. Unlike others, our

approach lies on a reasoning on the text of the program which we feel more intuitive and

closer to the problems we have to solve. Moreover our mechanized Lp proof follows as

closely as possible a hand proof a user could make, adding to the hand proof the scrutinity

of the theorem prover which should take out all mistakes of the original speci�cation.

For a �rst comparison with the HOL proofs, we note that we made no mention to state

and execution in our proofs. In Andersen, Petersen, and Pettersson [APP93] proofs, the

variable names, the program constructs and the logical connectors are state lifted. The

organization of the proof is also di�erents. The proof of a property that must be satis�ed

by the program is derived from smaller proofs, each per action, when our proof deals with

the whole program. They obtain proofs of minimum size but a number of proofs linear in

the number of program actions. In our proofs have exactly the opposite behaviour, e.g the

number of commands used in each proof is linear in the number of program actions. This

approach allows to handle larger examples, since the proofs of safety properties have the

same architecture, e.g the number of commands used depends on the number of actions in

the given program.

The whole tactics used for the progress property leads_to in both proofs are similar. In

both formalizations, the proof of a leads_to requires a decomposition of the given property

into simpler ones in order to use the derived inference rules. This decomposition is based

most of the time on intuitive arguments and the use of the cancellation rule of the predicate

leads_to [Che95a].

The extra amount of time needed to prove the arithmetic parts of each subgoal could

be advocated against our approach. But these additional lemmas could be proved and put

in a separate library and credit should be given to HOL for its rich arithmetic library.

Our implementation of Unity contains all de�nitions, theorems, corollaries de�ned

in [CM88], but the axiom of substitution has been removed in order to preserve sound-

ness [B.A91]. All the theorems (derived rules) about unless and ensures are proved in

Lp [Che95b], whereas the rules about leads_to are not since they require structural induc-

tion on the length of proof that is not available in Lp.

Our future e�orts will concentrate on the generalization of the presented approach and

the design of a translator, which will translate automatically a Unity program in a script

Lp, and proof obligations as input to Lp.

References

[APP93] F. Andersen, K.D. Petersen, and J.S. Pettersson. Program veri�cation using HOL-
Unity. In J.J. Joyce and C.H. Seger, editors, Proceedings sixth International Workshop

on Higher Order Logic theorem proving and its applications, volume 780 of Lecture Notes

in Computer Science, pages 1�15, Vancouver, Canada, August 1993. Springer-Verlag.

[B.A91] Sanders B.A. Eliminating the substitution axiom from UNITY logic. Formal Aspects

of Computing, 3:189�205, 1991.

[Che95a] B. Chetali. A formal proof of a protocol for communications over faulty channels using
the Larch Prover. Research Report 2476, Inria-Lorraine, 1995. submitted.

[Che95b] B. Chetali. Formal veri�cation of concurrent programs: How to specify UNITY using
the Larch Prover. Research Report 2475, Inria-Lorraine, 1995.

[CL92] B. Chetali and P. Lescanne. An exercice in LP: The proof of the non restoring division

circuit. In U. martin and J.M. Wing, editors, Proceedings First International Workshop

on Larch, volume 780 of Workshops in Computing, pages 55�68, Dedham, Boston,
August 1992. Springer-Verlag.

185

[CM88] K. M. Chandy and J. Misra. Parallel Program Design: A Fundation. Addison-Wesley,
1988. ISBN 0-201-05866-9.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[DS89] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, 1989.

[GG91] S. V. Garland and J. V. Guttag. A guide to LP, the larch prover. Technical Report 82,

Digital Systems Research Center, 130 Lytton Ave., Palo Alto, CA 94301, USA., 1991.
[GHG+93] J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet, and J. M. Wing.

Larch: Languages and Tools for Formal Speci�cation. Springer-Verlag, 1993.

[Lam77] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering, 3(2):125�143, 1977.

[SGG88] J. Staunstrup, S. J. Garland, and J. V. Guttag. Veri�cation of VLSI circuits using LP.

In Proceedings of the IFIP WG 10.2 Conference on the Fusion of Hardware Design and
Veri�cation, pages 329�345. Elsevier Science Publishers B. V. (North-Holland), 1988.

[SGG89] J. Staunstrup, S. J. Garland, and John V. Guttag. Localized veri�cation of circuit

descriptions. In J. Sifakis, editor, Proceedings of a Workshop on Automatic Veri�cation
Methods for Finite State Systems, Grenoble (France), volume 407 of Lecture Notes in

Computer Science, pages 349�364. Springer-Verlag, June 1989.

This article was processed using the LATEX macro package with LLNCS style

186

Hierarchical compression for model-checking CSP
or How to check 10 20 dining philosophers for deadlock

A.W. Roscoe, P.H.B. Gardiner, M.H. Goldsmith,
J.R. Hulance, D.M. Jackson and J.B. Scattergood

1 Introduction

FDR (Failures-Divergence Refinement) [4] is a model-checking tool for CSP [5]. Except for the
recent addition of determinism checking [12, 14] (primarily for checking security properties) its
method of verifying specifications is to test for the refinement of a process representing the
specification by the target process. The presently released version (FDR 1) uses only explicit
model-checking techniques: it fully expands the state-space of its processes and visits each state
in turn. Though it is very efficient in doing this and can deal with processes with approximately
10 7 states in about 4 hours on a typical workstation, the exponential growth of state-space
with the number of parallel processes in a network represents a significant limit on its utility. A
new version of the tool (FDR 2) is at an advanced stage of development at the time of writing
(February 1995) which will offer various enhancements over FDR 1. In particular, it has the
ability to build up a system gradually, at each stage compressing the subsystems to find an
equivalent process with (hopefully) many less states. By doing this it can check systems which
are sometimes exponentially larger than FDR 1 can – such as a network of 10 20 (or even 10 1000)
dining philosophers.

This is one of the ways (and the only one which is expected to be released in the immediate
future) in which we anticipate adding direct implicit model-checking capabilities to FDR. By
these means we can certainly rival the sizes of systems analysed by BDD’s (see [2], for example)
though, like the latter, our implicit methods will certainly be sensitive to what example they
are applied to and how skillfully they are used. Hopefully the examples later in this paper will
illustrate this.

The idea of compressing systems as they are constructed is not new, and indeed it has been
used to a very limited extent in FDR for several years (at the boundary between its low and
high-level processes). What we believe is new is the choice of models, obtaining far better
compressions in some cases than can be achieved using other, stronger, equivalences. The most
similar work to our own is that of Valmari, for example [7, 16].

The main ideas behind FDR were introduced in a paper in the Hoare Festschrift [11] as,
indeed, was part of the theory behind this compression.

In this paper we will introduce the main compression techniques used by FDR2 and give
some early indications of their efficiency and usefulness.

A.W. Roscoe and J.B. Scattergood: Oxford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford OX1 3QD, UK
and Formal Systems (Europe) Ltd,3 Alfred Street, Oxford;
other authors all at Formal Systems as above.

187

2 Two views of CSP

The theory of CSP has classically been based on mathematical models remote from the language
itself. These models have been based on observable behaviours of processes such as traces,
failures and divergences, rather than attempting to capture a full operational picture of how the
process progresses.

On the other hand CSP can be given an operational semantics in terms of labelled transition
systems. This operational semantics can be related to the mathematical models based on be-
haviour by defining abstraction functions that ‘observe’ what behaviours the transition system
can produce. Suppose Φ is the abstraction function to one of these models. An abstract operator
op and the corresponding concrete/operational version op are congruent if, for all operational
processes P, we have Φ(op(P)) = op(Φ(P)). The operational and denotational semantics of a
language are congruent if all constructs in the language have this property, which implies that
the behaviours predicted for any term by the denotational semantics are always the same as
those that can be observed of its operational semantics. That the standard semantics of CSP
are congruent to a natural operational semantics is shown in, for example, [10].

Given that each of our models represents a process by the set of its possible behaviours, it
is natural to represent refinement as the reduction of these options: the reverse containment of
the set of behaviours. If P refines Q we write Q v P , sometimes subscripting v to indicate
which model the refinement it is respect to.

In this paper we will consider three different models – which are the three that FDR supports.
These are

• The traces model: a process is represented by the set of finite sequences of communications
it can perform. traces(P) is the set of P ’s (finite) traces.

• The stable failures model: a process is represented by its set of traces as above and also
by its stable failures (s ,X) pairs where s is a finite trace of the process and X is a set of
events it can refuse after s which (operationally) means coming into a state where it can
do no internal action and no action from the set X . failures(P) is the set of P ’s stable
failures in this sense. (This model is relatively new; it is introduced in [6]. The concepts
behind it will, however, be familiar to anyone well-versed in CSP. It differs from those of
[7] in that it entirely ignores divergence.)

• The failures/divergences model [1]: a process diverges when it performs an infinite un-
broken sequences of internal actions. divergences(P) is the set of traces after or during
which the process can diverge (this set is always suffix closed). In this model a process is
represented by divergences(P) and a modified set of failures in which after any divergence
the set of failures is extended so that we do not care how the process behaves

failures⊥(P) = failures(P) ∪ {(s ,X) | s ∈ divergences(P)}

This is done both because one can argue that a divergent process looks from the outside
rather like a deadlocked one (i.e., refusing everything) and because the technical problems
of modelling what happens past divergence are not worth the effort.

We will also only deal with the case where the overall alphabet of possible actions is finite,
since this makes the model a little more straightforward, and is an obvious prerequisite to
model-checking.

188

All three of these models have the obvious congruence theorem with the standard operational
semantics of CSP. In fact FDR works chiefly in the operational world: it computes how a process
behaves by applying the rules of the operational semantics to expand it into a transition system.
The congruence theorem are thus vital in supporting all its work: it can only claim to prove
things about the abstractly-defined semantics of a process because we happen to know that this
equals the set of behaviours of the operational process FDR works with.

The congruence theorems are also fundamental in supporting the hierarchical compression
which is the main topic of this paper. For we know that, if C [·] is any CSP context, then the
value in one of our semantic models of C [P] depends only on the value (in the same model) of
P , not on the precise way it is implemented. Therefore, if P is represented as a member of a
transition system, and we intend to compute the value of C [P] by expanding it as a transition
system also, it may greatly be to our advantage to find another representation of P with fewer
states. If, for example, we are combining processes P and Q in parallel and each has 1000 states,
but can be compressed to 100, the compressed composition can have no more than 10,000 states
while the uncompressed one may have up to 1,000,000.

3 Generalised Transition Systems

A labelled transition system is usually deemed to be a set of (effectively) structureless nodes
which have visible or τ transitions to other nodes. From the point of view of compression in the
stable failures and failures/divergences models, it is useful to enrich nodes by a set of minimal
acceptance sets and a divergence labelling. We will therefore assume that there are functions
that map the nodes of a generalised labelled transition system (GLTS) as follows:

• minaccs(P) is a (possibly empty) set of incomparable (under subset) subsets of Σ (the
set of all events). X ∈ minaccs(P) if and only if P can stably accept the set X , refusing
all other events, and can similarly accept no smaller set. Since one of these nodes is
representing more than one ‘state’ the process can get into, it can have more than one
minimal acceptance. It can also have τ actions in addition to minimal acceptances (with
the implicit understanding that the τs are not possible when a minimal acceptance is).
However if there is no τ action then there must be at least one minimal acceptance, and
in any case all minimal acceptances are subsets of the visible transitions the state can
perform.

minaccs(P) represents the stable acceptances P can make itself. If it has τ actions then
these might bring it into a state where the process can have other acceptances (and the
environment has no way of seeing that the τ has happened), but since these are not
performed by the node P but by a successor, these minimal acceptances are not included
among those of the node P .

• div(P) is either true or false. If it is true it means that P can diverge – possibly as the
result of an infinite sequence of implicit τ -actions within P . It is as though P has a τ -
action to itself. This allows us to represent divergence in transition systems from which
all explicit τ ’s have been removed.

A node P in a GLTS can have multiple actions with the same label, just as in a standard
transition system.

A GLTS combines the features of a standard labelled transition system and those of the
normal form transition systems used in FDR 1 to represent specification processes [11]. These

189

have the two sorts of labelling discussed above, but are (apart from the nondeterminism coded
in the labellings) deterministic in that there are no τ actions and each node has at most one
successor under each a ∈ Σ.

The structures of a GLTS allow us to compress the behaviour of all the nodes reachable from
a single P under τ actions into one node:

• The new node’s visible actions are just the visible transitions (with the same result state)
possible for any Q such that P τ−→ ∗Q .

• Its minimal acceptances are the smallest sets of visible actions accepted by any stable Q
such that P τ−→ ∗Q .

• It is labelled divergent if, and only if, there is an infinite τ -path (invariably containing a
loop in a finite graph) from P .

• The new node has no τ actions.

It is this that makes them useful for our purposes. Two things should be pointed out immediately

1. While the above transformation is valid for all the standard CSP equivalences, it is not for
most stronger equivalences such as refusal testing and observational/bisimulation equiv-
alence. To deal with one of these either a richer structure of node, or less compression,
would be needed.

2. It is no good simply carrying out the above transformation on each node in a transition
system. It will result in a τ -free GLTS, but one which probably has as many (and more
complex) nodes than the old one. Just because P τ−→ ∗Q and Q ’s behaviour has been
included in the compressed version of P , this does not mean we can avoid including a
compressed version of Q as well: there may well be a visible transition that leads directly
to Q . One of the main strategies discussed below – diamond elimination – is designed to
analyse which of these Q ’s can, in fact, be avoided.

FDR2 is designed to be highly flexible about what sort of transition systems it can work on.
We will assume, however, that it is always working with GLTS ones which essentially generalise
them all. The operational semantics of CSP have to be extended to deal with the labellings
on nodes: it is straightforward to construct the rules that allow us to infer the labelling on a
combination of nodes (under some CSP construct) from the labellings on the individual ones.

Our concept of a GLTS has been discussed before in [11], and is similar to an “acceptance
graph” from [3], though the latter is to all intents the same as the normal form graphs used in
FDR1 and discussed in [11, 4].

4 Methods of compression

FDR2 uses at least five different methods of taking one GLTS and attempting to compress it
into a smaller one.

1. Strong, node-labelled, bisimulation: the standard notion enriched (as discussed in [11] and
the same as Π-bisimulations in [3]) by the minimal acceptance and divergence labelling of
the nodes. This is computed by iteration starting from the equivalence induced by equal
labelling. This was used in FDR1 for the final stage of normalising specifications.

190

2. τ -loop elimination: since a process may choose automatically to follow a τ -action, it follows
that all the processes on a τ -loop (or, more properly, a strongly connected component under
τ -reachability) are equivalent.

3. Diamond elimination: this carries out the node-compression discussed in the last section
systematically, so as to include as few nodes as possible in the output graph.

4. Normalisation: discussed extensively elsewhere, this can give significant gains, but it suffers
from the disadvantage that by going through powerspace nodes it can be expensive and
lead to expansion.

5. Factoring by semantic equivalence: the compositional models of CSP we are using all
represent much weaker congruences than bisimulation. Therefore if we can afford to com-
pute the semantic equivalence relation over states it will give better compression than
bisimulation to factor by this equivalence relation.

There is no need here to describe either bisimulation, normalisation, or the algorithms used
to compute them. Efficient ways of computing the strongly connected components of a directed
graph (for τ -loop elimination) can be found in many textbooks on algorithm design (e.g., [9]).
Therefore we shall concentrate on the other two methods discussed above, and appropriate ways
of combining the five.

Before doing this we will show how to factor a GLTS by an equivalence relation on its nodes
(something needed both for τ -loop elimination and for factoring by a semantic equivalence). If
T = (T ,→, r) is a GLTS (r being its root) and ∼= is an equivalence relation over it, then the
nodes of T /∼= are the equivalence classes n for n ∈ T , with root r . The actions are as follows:

• If a 6= τ , then m a−→n if and only if there are m′ ∈ m and n ′ ∈ n such that m′ a−→n ′.

• If m 6= n, then m τ−→n if and only if there are m′ ∈ m and n ′ ∈ n such that m′ τ−→n ′.

• If m = n, then m 6τ−→n but (if we are concerned about divergence) the new node is marked
divergent if and only if there is an infinite τ -path amongst the members of m, or one of
the m′ ∈ m is already marked divergent.

The minimal acceptance marking of m is just the union of those of its members, with non-
minimal sets removed.

4.1 Computing semantic equivalence

Two nodes that are identified by strong node-labelled bisimulation are always semantically
equivalent in each of our models. The models do, however, represent much weaker equivalences
and there may well be advantages in factoring the transition system by the appropriate one.
The only disadvantage is that the computation of these weaker equivalences is more expensive:
it requires an expensive form of normalisation, so

• there may be systems where it is impractical, or too expensive, to compute semantic
equivalence, and

• when computing semantic equivalence, it will probably be to our advantage to reduce the
number of states using other compression techniques first – see a later section.

191

To compute the semantic equivalence relation we require the entire normal form of the input
GLTS T . This is the normal form that includes a node equivalent to each node of the original
system, with a function from the original system which exhibits this equivalence (the map need
neither be injective – because it will identify nodes with the same semantic value – nor surjective
– because the normal form sometimes contains nodes that are not equivalent to any single node
of the original transition system).

Calculating the entire normal form is more time-consuming that ordinary normalisation. The
latter begins its normalisation search with a single set (the τ -closure τ∗(r) of T ’s root),but for the
entire normal form it has to be seeded with {τ∗(n) | n ∈ T} – usually1 as many sets as there are
nodes in T . As with ordinary normalisation, there are two phases: the first (pre-normalisation)
computing the subsets of T that are reachable under any trace (of visible actions) from any
of the seed nodes, with a unique-branching transition structure over it. Because of this unique
branching structure, the second phase, which is simply a strong node-labelled bisimulation over
it, guarantees to compute a normal form where all the nodes have distinct semantic values. We
distinguish between the three semantic models as follows:

• For the traces model, neither minimal acceptance nor divergence labelling is used for the
bisimulation.

• For the stable failures model, only minimal acceptance labelling is used.

• For the failures/divergences model, both sorts of labelling are used and in the pre-normalisation
phase there is no need to search beyond a divergent node.

The map from T to the normal form is then just the composition of that which takes n to the
pre-normal form node τ∗(n) and the final bisimulation.

The equivalence relation is then simply that induced by the map: two nodes are equivalent
if and only if they are mapped to the same node in the normal form. The compressed transition
system is that produced by factoring out this equivalence using the rules discussed earlier. To
prove that the compressed form is equivalent to the original (in the sense that, in the chosen
model, every node m is equivalent to m in the new one) one can use the following lemma and
induction, based on the fact that each equivalence class of nodes under semantic equivalence is
trivially τ -convex as required by the lemma.
lemma 1

Suppose T be any GLTS and let M be any set of nodes in T with the following two properties

• All members of M are equivalent in one of our three models C.

• M is convex under τ (i.e., if m,m′ ∈ M and m′′ are such that m τ−→ ∗m′′ τ−→ ∗m′ then
m′′ ∈ M .

Then let T ′ be the GLTS T /≡, where ≡ is the equivalence relation which identifies all members
of M but no other distinct nodes in T . m is semantically equivalent in the chosen model to m
(the corresponding node in T ′).
proof

It is elementary to show that each behaviour (trace or failure or divergence) is one of m (this
does not depend on the nature of ≡).

Any behaviour of a node m of T ′ corresponds to a sequence σ of actions
1If and only if there are no τ -loops.

192

m = m0
x1−→ m1

x2−→ m2 . . .

either going on for ever (with all but finitely many xi τ ’s), or terminating and perhaps depend-
ing on either a minimal acceptance or divergence marking in the final state. Without loss of
generality we can assume that the mr are chosen so that there is, for each r , m′r+1 such that
mr

xr−→ m′r+1 and that (if appropriate) the final mr possesses the divergence or minimal accep-
tance which the sequence demonstrates. Set m′0 = m, the node which we wish to demonstrate
has the same behaviour exemplified by σ.

For any relevant s , define σ ↑ s to be the final part of σ starting at ms :

ms
xs+1−→ ms+1

xs+2−→ ms+2 . . .

If M , the only non-trivial equivalence class appears more than once in the final (τ -only)
segment of an infinite demonstration of a divergence, then all intermediate classes must be the
same (by the τ -convexity of M). But this is impossible since an equivalence class never has a τ
action to itself (by the construction of T / ≡).

Hence, σ can only use this non-trivial class finitely often. If it appears no times then the
behaviour we have in T ′ is trivially one in T . Otherwise it must appear some last time in σ, as
mr , say. What we will prove, by induction for s from r down to 0 , is that the node m′s (and
hence m = m′0) possesses the same behaviour demonstrated by the sequence σ ↑ s in T ′.

If the special node M in T ′ becomes marked by a divergence or minimal acceptance (where
relevant to C) through the factoring then it is trivial that some member of the equivalence class
has that behaviour and hence (in the relevant models) all the members of M do (though perhaps
after some τ actions) since they are equivalent in C. It follows that if mr is the final state in σ,
then our inductive claim holds.

Suppose s ≤ r is not final in σ and that the inductive claim has been established for all i
with s < i ≤ r . Then the node ms is easily seen to possess in T the behaviour of σ ↑ s . If
the equivalence class of ms is not M then ms = m′s and there is nothing else to prove. If it is
M then since ms and m′s are equivalent in C and m′s has the behaviour, it follows that m′s does
also. This completes the proof of the lemma.

4.2 Diamond elimination

This procedure assumes that the relation of τ -reachability is a partial order on nodes. If the input
transition system is known to be divergence free then this is true, otherwise τ -loop elimination
is required first (since this procedure guarantees to achieve the desired state).

Under this assumption, diamond reduction can be described as follows, where the input state-
machine is S (in which nodes can be marked with information such as minimal acceptances),
and we are creating a new state-machine T from all nodes explored in the search:

• Begin a search through the nodes of S starting from its root N0 . At any time there will
be a set of unexplored nodes of S; the search is complete when this is empty.

• To explore node N , collect the following information:

– The set τ∗(N) of all nodes reachable from N under a (possibly empty) sequence of τ
actions.

– Where relevant (based on the equivalence being used), divergence and minimal ac-
ceptance information for N : it is divergent if any member of τ∗(N) is either marked
as divergent or has a τ to itself. The minimal acceptances are the union of those of

193

the members of τ∗(N), with non-minimal sets removed. This information is used to
mark N in T .

– The set V (N) of initial visible actions: the union of the set of all non-τ actions
possible for any member of τ∗(N).

– For each a ∈ V (N), the set Na = N after a of all nodes reachable under a from any
member of τ∗(N).

– For each a ∈ V (N), the set min(Na) which is the set of all τ -minimal elements of
Na .

• A transition (labelled a) is added to T from N to each N ′ in min(Na), for all a ∈ V (N).
Any nodes not already explored are added to the search.

This creates a transition system where there are no τ -actions but where there can be am-
biguous branching under visible actions, and where nodes might be labelled as divergent. The
reason why this compresses is that we do not include in the search nodes where there is another
node similarly reachable but demonstrably at least as nondeterministic: for if M ∈ τ∗(N) then
N is always at least as nondeterministic as M . The hope is that the completed search will tend
to include only those nodes that are τ -minimal: not reachable under τ from any other. Notice
that the behaviours of the nodes not included from Na are nevertheless taken account of, since
their divergences and minimal acceptances are included when some node of min(Na) is explored.

It seems counter-intuitive that we should work hard not to unwind τ ’s rather than doing
so eagerly. The reason why we cannot simply unwind τ ’s as far as possible (i.e., collecting the
τ -maximal points reachable under a given action) is that there will probably be visible actions
possible from the unstable nodes we are trying to bypass. It is impossible to guarantee that
these actions can be ignored.

The reason we have called this compression diamond elimination is because what it does is
to (attempt to) remove nodes based on the diamond-shaped transition arrangement where we
have four nodes P ,P ′,Q ,Q ′ and P τ−→P ′, Q τ−→Q ′, P a−→Q and P ′ a−→Q ′. Starting from P ,
diamond elimination will seek to remove the nodes P ′ and Q ′. The only way in which this might
fail is if some further node in the search forces one or both to be considered.

The lemma that shows why diamond reduction works is the following.
lemma 2

Suppose N is any node in S, s ∈ Σ∗ and N0
s=⇒ N (i.e., there is a sequence of nodes M0 =

N0 , M1 , ...,Mk = N and actions x1 , ..., xk such that Mi
xi−→ Mm+1 for all i and s = 〈xi | i =

1 , .., n, xi 6= τ〉). Then there is a node N ′ in T such that N0
s=⇒ N ′ in T and N ∈ τ∗(N ′).

proof

This is by induction on the length if s . If s is empty the result is obvious (as N0 ∈ T always),
so assume it holds of s ′ and s = s ′〈a〉, with N0

s=⇒ N . Then by definition of s=⇒, there exist

nodes N1 and N2 of S such that N0
s ′=⇒ N1 , N1

a−→ N2 and N ∈ τ∗(N2).

By induction there thus exists N ′1 in T such that N0
s ′=⇒ N ′1 in T and N1 ∈ τ∗(N ′1). Since

N ′1 ∈ T it has been explored in constructing T . Clearly a ∈ V (N ′1) and N2 ∈ (N ′1)a . Therefore
there exists a member N ′ of min((N ′1)a) (a subset of the nodes of T) such that N2 ∈ τ∗(N ′).
Then, by construction of T and since N ∈ τ∗(N2) we have N0

s=⇒ N ′ and N ∈ τ∗(N ′) as
required, completing the induction.

This lemma shows that every behaviour displayed by a node of S is (thanks to the way we
mark each node of T with the minimal acceptances and divergence of its τ -closure) displayed
by a node of T .

194

Lemma 2 shows that the following two types of node are certain to be included in T :

• The initial node N0 .

• S0 , the set of all τ -minimal nodes (ones not reachable under τ from any other).

Let us call S0 ∪ {N0} the core of S . The obvious criteria for judging whether to try diamond
reduction at all, and of how successful it has been once tried, will be based on the core. For
since the only nodes we can hope to get rid of are the complement of the core, we might decide
not to bother if there are not enough of these as a proportion of the whole. And after carrying
out the reduction, we can give a success rating in terms of the percentage of non-core nodes
eliminated.

Experimentation over a wide range of example CSP processes has demonstrated that dia-
mond elimination is a highly effective compression technique, with success ratings usually at or
close to 100% on most natural systems. To illustrate how diamond elimination works, consider
one of the most hackneyed CSP networks: N one-place buffer processes chained together.

COPY � COPY � . . . COPY � COPY

Here, COPY = left?x −→ right !x −→ COPY . If the underlying type has k members then
COPY has k + 1 states and the network has (k + 1)N . Since all of the internal communications
(the movement of data from one COPY to the next) become τ actions, this is an excellent target
for diamond elimination. And in fact we get 100% success: the only nodes retained are those
that are not τ -reachable from any other. These are the ones in which all of the data is as far to
the left as it can be: there are no empty COPY’s to the left of a full one. If k = 1 this means
there are now N + 1 nodes rather than 2 N , and if k = 2 it gives 2 N+1 − 1 rather than 3 N .

4.3 Combining techniques

The objective of compression is to reduce the number of states in the target system as much as
possible, with the secondary objectives of keeping the number of transitions and the complexity
of any minimal acceptance marking as low as possible.

There are essentially two possibilities for the best compression of a given system: either its
normal form or the result of applying some combination of the other techniques. For whatever
equivalence-preserving transformation is performed on a transition system, the normal form
(from its root node) must be invariant; and all of the other techniques leave any normal form
system unchanged. In many cases (such as the chain of COPYs above) the two will be the same
size (for the diamond elimination immediately finds a system equivalent to the normal form, as
does equivalence factoring), but there are certainly cases where each is better.

The relative speeds (and memory use) of the various techniques vary substantially from
example to example, but broadly speaking the relative efficiencies are (in decreasing order) τ -loop
elimination (except in rare complex cases), bisimulation, diamond elimination, normalisation and
equivalence factoring. The last two can, of course, be done together since the entire normal form
contains the usual normal form within it. Diamond elimination is an extremely useful strategy
to carry out before either sort of normalisation, both because it reduces the size of the system
on which the normal form is computed (and the number of seed nodes for the entire normal
form) and because it eliminates the need for searching through chains of τ actions which forms
a large part of the normalisation process.

One should note that all our compression techniques guarantee to do no worse than leave
the number of states unchanged, with the exception of normalisation which in the worst case

195

can expand the number of states exponentially[11, 8]. Cases of expanding normal forms are very
rare in practical systems. Only very recently, after nearly four years, have we encountered a
class of practically important processes whose normalisation behaviour is pathological. These
are the “spy” processes used to seek errors in security protocols [13].

At the time of writing all of the compression techniques discussed have been implemented
and many experiments performed using them. Ultimately we expect that FDR2’s compression
processing will be automated according to a strategy based on a combination of these techniques,
with the additional possibility of user intervention.

5 Compression in context

FDR2 will take a complex CSP description and build it up in stages, compressing the resulting
process each time. Ultimately we expect these decisions to be at least partly automated, but in
early versions the compression directives will be included in the syntax of the target process.

One of the most interesting and challenging things when incorporating these ideas is preserv-
ing the debugging functionality of the system. The debugging process becomes hierarchical: at
the top level we will find erroneous behaviours of compressed parts of the system; we will then
have to debug the pre-compressed forms for the appropriate behaviour, and so on down. On very
large systems (such as that discussed in the next section) it will not be practical to complete this
process for all parts of the system. Therefore we expect the debugging facility initially to work
out subsystem behaviours down as far as the highest level compressed processes, and only to
investigate more deeply when directed by the user (through the X Windows debugging facility
of FDR).

The way a system is composed together can have an enormous influence on the effectiveness
of hierarchical compression. The following principles should generally be followed:

1. Put together processes which communicate with each other together early. For example, in
the dining philosophers, you should build up the system out of consecutive fork/philosopher
pairs rather than putting the philosophers all together, the forks all together and then
putting these two processes together at the highest level.

2. Hide all events at as low a level as is possible. The laws of CSP allow the movement
of hiding inside and outside a parallel operator as long as its synchronisations are not
interfered with. In general therefore, any event that is to be hidden should be hidden the
first time (in building up the process) that it no longer has to be synchronised at a higher
level. The reason for this is that the compression techniques all tend to work much more
effectively on systems with many τ actions.

3. Hide all events that are irrelevant (in the sense discussed below) to the specification you
are trying to prove.

Hiding can introduce divergence, and therefore invalidate many failures/divergences model
specifications. However in the traces model it does not alter the sequence of unhidden events, and
in the stable failures model does not alter refusals which contain every hidden event. Therefore
if only trying to prove a property in one of these models – or if it has already been established by
whatever method that one’s substantive system is divergence free – the improved compression
we get by hiding extra events makes it worthwhile doing so.

We will give two examples of this, one based on the COPY chain example we saw above
and one on the dining philosophers. The first is probably typical of the gains we can make with
compression and hiding; the second is atypically good.

196

5.1 Hiding and safety properties

If the underlying datatype T of the COPY processes is large, then chaining N of them together
will lead to unmanageably large state-spaces whatever sort of compression is applied to the
entire system. For it really does have a lot of distinct states: one for each possible contents the
resulting N -place buffer might have. Of course there are analytic techniques that can be applied
to this simple example that pin down its behaviour, but we will ignore these and illustrate
a general technique that can be used to prove simple safety properties of complex networks.
Suppose x is one member of the type T ; an obviously desirable (and true) property of the
COPY chain is that the number of x ’s input on channel left is always greater than or equal
to the number output on right, but no greater than the latter plus N . Since the truth or
falsity of this property is unaffected by the system’s communications in the rest of its alphabet
{left .y , right .y | y ∈ Σ \ {x}} we can hide this set and build the network up a process at a time
from left to right. At the intermediate stages you have to leave the right-hand communications
unhidden (because these still have to be synchronised with processes yet to be built in) but
nevertheless, in the traces model, the state space of the intermediate stages grows more slowly
with n than without the hiding. In fact, with n COPY processes the hidden version compresses
to exactly 2 n states whatever the size of T (assuming that this is at least 2).

This is a substantial reduction, but is perhaps not as good as one might ideally hope for. By
hiding all inputs other than the chosen one, we are ignoring what the contents of the systems
are apart from x , but because we are still going to compose the process with one which will
take all of our outputs, these have to remain visible, and the number of states mainly reflects
the number of different ways the outputs of objects other than x can be affected by the order of
inputting and outputting x . The point is that we do not know (in the method) that the outputs
other than x are ultimately going to be irrelevant to the specification, for we are not making
any assumptions about the process we will be connected to.

Since the size of system we can compress is always likely to be one or two orders of magnitude
smaller than the number of explicit states in the final refinement check, it would actually be
advantageous to build this system not in one direction as indicated above, but from both ends
and finally compose the two halves together. (The partially-composed system of n right-hand
processes also has 2 N states.) Nothing useful would (in this example) be achieved by building
up further pieces in the middle, since we only get the simplifying benefit of the hiding from the
two ends of the system.

If the (albeit slower) exponential growth of states even after hiding and compressing the
actual system is unacceptable, there is one further option: find a network with either less states,
or better compression behaviour, that the actual one refines, but which can still be shown to
satisfy the specification. In the example above this is easy: simply replace COPY with

Cx = (µp.left .x −→ right .x −→ p) ||| CHAOS(Σ \ {left.x , right .x})

the process which acts like a reliable one-place buffer for the value x , but can input and output
as it chooses one other members of T . It is easy to show that COPY refines this, and a chain
of n Cx ’s compresses to n + 1 states (even without hiding irrelevant external communications).

In a sense the Cx processes capture the essential reason why the chain of COPY ’s satisfy
the x -counting specification. By being clever we have managed to automate the proof for much
larger networks than following the ‘dumb’ approach, but of course it is not ideal that we have
had to be clever in this way.

The methods discussed in this section could be used to prove properties about the reliability
of communications between a given pair of nodes in a complex environment, and similar cases

197

where the full complexity of the operation of a system is irrelevant to why a particular property
is true.

5.2 Hiding and deadlock

In the stable failures model, a system can deadlock if and only if P \Σ can. In other words, we
can hide absolutely all events – and move this hiding as far into the process as possible using
the principles already discussed.

Consider the case of the N dining philosophers (in a version, for simplicity, without a Butler
process). A natural way of building this system up hierarchically is as progressively longer chains
of the form

PHIL0‖FORK0‖PHIL1‖ . . .‖FORKm−1‖PHILm

In analysing the whole system for deadlock, we can hide all those events of a subsystem that do
not synchronise with any process outside the subsystem. Thus in this case we can hide all events
other than the interactions between PHIL0 and FORKN−1 , and between PHILm and FORKm .
The failures normal form of the subsystem will have very few states (exactly 4). Thus we can
compute the failures normal form of the whole hidden system, adding a small fixed number of
philosopher/fork combinations at a time, in time proportional to N , even though an explicit
model-checker would find exponentially many states.

We can, in fact, do even better than this. Imagine doing the following:

• First, build a single philosopher/fork combination hiding all events not in its external
interface, and compress it. This will (with standard definitions) have 4 states.

• Next, put 10 copies of this process together in parallel, after suitable renaming to make
them into consecutive pairs in a chain of philosophers and forks (the result will have
approximately 4000 states) and compress it to its 4 states.

• Now rename this process in 10 different ways so that it looks like 10 adjacent groups of
philosophers, compute the results and compress it.

• And repeat this process as often as you like...clearly it will take time linear in the number
of times you do it.

By this method we can produce a model of 10 N philosophers and forks in a row in time pro-
portional to N . To make them into a ring, all you would have to do would be to add another
row of one or more philosophers and forks in parallel, synchronising the two at both ends. De-
pending on how it was built (such as whether all the philosophers are allowed to act with a
single handedness) you would either find deadlock or prove it absent from a system with doubly
exponential number of states.

On the prototype version of FDR2, we have been able to use this technique to demonstrate
the deadlock of 10 1000 philosophers in 15 minutes, and then to use the debugging tool described
earlier to tell you the state of any individual one of them (though the depth of the parse tree even
of the efficiently constructed system makes this tedious). Viewed through the eyes of explicit
model-checking, this system has perhaps 7 101000

states. Clearly this simply demonstrates the
pointlessness of pure state-counting.

This example is, of course, extraordinarily well-suited to our methods. What makes it work
are firstly the fact that the networks we build up have a constant-sized external interface (which

198

could only happen in networks that were, like this one, chains or nearly so) and have a behaviour
that compresses to a bounded size as the network grows.

On the whole we do not have to prove deadlock freedom of quite such absurdly large systems.
We expect that our methods will also bring great improvements to the deadlock checking of more
usual size ones that are not necessarily as perfectly suited to them as the example above.

6 Conclusions

We have given details of how FDR2’s compression works, and some simple examples of how it
can expand the size of problem we can automatically check. At the time of writing we have not
had time to carry out many evaluations of this new functionality on realistic-sized examples,
but we have no reason to doubt that compression will allow comparable improvements in these.

It is problematic that the successful use of compression apparently takes somewhat more
skill than explicit model-checking. Only by studying its use in large-scale case studies can we
expect to assess the best ways to deal with this – by automated tactics and transformation, or
by design-rule guidance to the user. In any case much work will be required before we can claim
to understand fully the capabilities and power of the extended tool.

Acknowledgements

As well as our owing him a tremendous debt for his development of CSP, on which all this work
is based, it was a remark by Tony Hoare that led the first author to realise how our methods
could check the exponential systems of dining philosophers described in this paper.

We would like to thank the referees for some helpful remarks, in particular for pointing out
the need for Lemma 1.

The work of Roscoe and Scattergood was supported in part by a grant from the US Office
of Naval Research.

References

[1] S.D. Brookes and A.W. Roscoe, An improved failures model for communicating processes, in
Proceedings of the Pittsburgh seminar on concurrency, Springer LNCS 197 (1985), 281-305.

[2] J.R. Burch, E.M. Clarke, D.L. Dill and L.J. Hwang, Symbolic model checking: 10 20 states
and beyond, Proc. 5th IEEE Annual Symposium on Logic in Computer Science, IEEE Press
(1990).

[3] R. Cleaveland and M.C.B. Hennessy, Testing Equivalence as a Bisimulation Equivalence,
FAC 5 (1993) pp1–20.

[4] Formal Systems (Europe) Ltd., Failures Divergence Refinement User Manual and Tutorial,
version 1.4 1994.

[5] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall 1985.

[6] L. Jategoankar, A Meyer and A.W. Roscoe, Separating failures from divergence, in prepa-
ration.

199

[7] R. Kaivola and A Valmari The weakest compositional semantic equivalence preserving
nexttime-less linear temporal logic in Proc CONCUR ’92 (LNCS 630).

[8] P.C. Kanellakis and S.A. Smolka, CCS expressions, Finite state processes and three problems
of equivalence, Information and Computation 86, 43-68 (1990).

[9] K. Melhorn Graph Algorithms and NP Completeness, EATCS Monographs on Theoretical
Computer Science, Springer-Verlag 1984.

[10] A.W. Roscoe, Unbounded Nondeterminism in CSP, in ‘Two Papers on CSP’, PRG Mono-
graph PRG-67. Also Journal of Logic and Computation 3, 2 pp131-172 (1993).

[11] A.W. Roscoe, Model-checking CSP, in A Classical Mind: Essa ys in Honour of C.A.R.
Hoare, A.W. Roscoe (ed.) Prentice-Hall 1994.

[12] A.W. Roscoe, CSP and determinism in security modelling to ap pear in the proceedings of
1995 IEEE Symposium on Security and Privacy.

[13] A.W. Roscoe, Modelling and verifying key-exchange protocols using CSP and FDR, to ap-
pear in the proceedings of CSFW8 (1995), IEEE Press.

[14] A.W. Roscoe, J.C.P. Woodcock and L. Wulf, Non-interference t hrough determinism, Proc.
ESORICS 94, Springer LNCS 875, pp 33-53.

[15] J.B. Scattergood, A basis for CSP tools, To appear as Oxford University Computing Lab-
oratory technical monograph, 1993.

[16] A. Valmari and M. Tienari An improved failures equivalence for finite-state systems with a
reduction algorithm, in Protocol Specification, Testing and Verification XI, North-Holland
1991.

200

A Front-End Generator for Verification Tools ∗

Rance Cleaveland † Eric Madelaine ‡ Steve Sims †

April 28, 1995

Abstract

This paper describes the Process Algebra Compiler (PAC), a front-end generator for process-
algebra-based verification tools. Given descriptions of a process algebra’s concrete and abstract
syntax and semantics as structural operational rules, the PAC produces syntactic routines and
functions for computing the semantics of programs in the algebra. Using this tool greatly sim-
plifies the task of adapting verification tools to the analysis of systems described in different
languages; it may therefore be used to achieve source-level compatibility between different veri-
fication tools. Although the initial verification tools targeted by the PAC are MAUTO and the
Concurrency Workbench, the structure of the PAC caters for the support of other tools as well.

1 Introduction

The past ten years have seen the development of a variety of automatic verification tools for
finite-state systems expressed in process algebra; examples include MAUTO [6], the Concurrency
Workbench [10], TAV [14], and Aldébaran [11]. In general, these tools support a specific language,
such as CCS [19], Meije [1], or Basic Lotos [5], for describing systems and provide users different
methods, such as equivalence checking, preorder checking, model checking, random simulation,
and abstraction mechanisms, for analyzing their behavior. The utility of these tools has been
demonstrated via several case studies [7, 18]. However, the impact on system design practice of
such tools has been limited by the fact that the languages they support, while possessing nice
theoretical properties, are not widely used by system engineers. In addition, as each tool in general
supports a different language, it is difficult to compare the tools and to investigate approaches to
using them in collaboration with one another.

This paper presents the Process Algebra Compiler (PAC), a system that substantially simpli-
fies the task of changing the language supported by verification tools. The PAC is a “front-end
generator”; given a description of the syntax and semantics of a language, it produces routines for
parsing and unparsing programs in the language and for computing user-defined semantic relations.
By providing users with high-level notations for defining languages and managing the difficult and
∗This work is partially funded by NSF-INRIA collaboration # CCR-9247478, ESPRIT Basic Research Action

CONCUR2, NSF/DARPA grant CCR-9014775, ONR Young Investigator Award N00014-92-J-1582, and NSF Young
Investigator Award CCR-9257963.
†rance@csc.ncsu.edu, gr-sts@galois.csc.ncsu.edu, Department of Computer Science, North Carolina State

University, Raleigh, NC 27695-8206, USA, (919) 515-7862.
‡Eric.Madelaine@sophia.inria.fr, INRIA, B.P. 93, 06902 Sophia Antipolis Cedex, France, (+33) 93 65 78 07.

201

technically tedious development of syntactic and semantic functions, the PAC provides the research
community with a useful tool for expanding the repertoire of languages their tools can support.

The remainder of the paper is organized along the following lines. The next section sharpens
the motivation for the PAC by presenting two verification tools, MAUTO and the Concurrency
Workbench (CWB) , and the common semantic framework underlying the (different) languages
each supports. The section following presents an overview of the architecture of the PAC and
describes the specification language used for defining algebras and their semantics, while Section 4
discusses issues in generating semantic functions from their PAC specifications. Section 5 then
gives experimental results obtained from PAC-produced front ends for the Concurrency Workbench;
somewhat surprisingly, the PAC-generated code significantly outperforms existing hand-produced
code built for this tool. The final section contains our conclusions and directions for future work.

2 Verification Tools and Structural Operational Semantics

This section presents an overview of two verification tools, MAUTO and the Concurrency Work-
bench. Although similar in intent, the tools differ markedly in terms of the analyses they support,
and yet at the moment there is no way for a user to use the tools collaboratively. On the other
hand, the languages supported by the two tools have a semantics that is given in a very similar
style, which we also discuss at the end of this section. These observations provided the impetus for
the development of the PAC.

2.1 Verification tools

Both MAUTO and the Concurrency Workbench provide utilities for verifying finite-state systems
expressed in process algebra. The specific process algebras supported differ, however, as do the
supported analyses. The following provides more detail about the systems.

MAUTO. MAUTO is a system for analyzing networks of finite-state systems. MAUTO builds
automata from programs in the Meije process algebra and is capable of reducing and comparing
them with respect to various bisimulation-based equivalences. It also provides a novel facility that
enables users to define abstract transition relations on a given automaton, obtaining a new system,
usually smaller and more tractable, that highlights specific behaviors of the original system. Much
attention has been devoted to issues of efficiency. In particular, the building of automata from
terms is mixed with the reduction of the automata using congruence properties of the semantic
equivalences, thereby ensuring that automata are kept as small as possible. Facilities are also
provided for explaining the results of analysis and for drawing the resulting automata in a graphical
editor [21].

The Concurrency Workbench. The Concurrency Workbench (CWB) is an extensible tool for
verifying systems written in the process algebra CCS . In contrast with other process algebra tools,
the CWB supports the computation of numerous different semantic equivalences and preorders; it
does so in a modular fashion in that generic equivalence- and preorder-checking routines are com-
bined with suitable process transformations (see, e.g., [8]) in order to compute different relations.
The CWB also includes a flexible model-checking facility for determining when a process satisfies
a formula in a very expressive temporal logic, the propositional mu-calculus. Recently the CWB

202

has been extended to deal with a discrete-time version of CCS (TCCS), and with the synchronous
algebra SCCS.

2.2 Structural Operational Semantics

MAUTO and the CWB are similar in that they analyze systems by converting them into finite
automata and then invoking routines on these automata. However, the languages and forms of
analysis they support, and the approaches they take to construct automata from systems, differ
markedly. In the last case in particular, MAUTO adopts a “bottom-up” approach, with automata
recursively constructed for subsystems and then assembled into a single machine for the entire sys-
tem. The CWB, on the other hand, uses an “on-the-fly” approach, with transitions of components
calculated and then combined appropriately into transitions for the over-all system.

One characteristic shared by MAUTO and the CWB, however, is that the languages they sup-
port have operational semantics given in the Structural Operational Semantic (SOS) [20] style;
this fact motivates our inclusion in the PAC of capabilities for generating routines from SOS de-
scriptions. A SOS for a language consists of rules for inferring the execution behavior of programs
written in the language. Rules have the following general form.

premises

conclusion
(side condition)

The intuitive reading of the rule is that if one is able to establish the premises, which typically involve
statements about the execution behavior of subprograms of the one mentioned in the conclusion,
and the side condition holds, then one may infer the conclusion. As an example, the following
describes the synchronizations allowed by the parallel composition operation in CCS.

p
a→ p′ q

b→ q′

p|q τ→ p′|q′
(a, b inverses)

The rule states that if p can engage in an action a and evolve to p′ and q can engage in b and evolve
to q′, and a and b are inverses (i.e. constitute an input/output pair on the same communication
channel), then p|q can execute an internal action, τ , corresponding to the synchronized execution
of a and b.

The SOS style has evolved in many ways since the Plotkin’s seminal paper [20] and has been
applied to many areas of language semantics. The SOS style is very flexible, as numerous languages
with widely varying features have been given semantics using this framework. Recent work has
focused on the metatheory of SOS [4, 17, 12, 2, 22]; in particular, researchers have shown that when
SOS rules conform to different syntactic formats, the resulting languages have nice properties. In
the area of process algebras, one important property is congruence of the behavioral equivalences
with respect to the operators of the language; this allows one to reason about the system components
in a compositional way.

3 Using the PAC

This section provides an overview of the PAC architecture and indicates how users specify process
algebras for processing by the PAC.

203

Parser/Scanner
Generator

'
&
$
%

'
&
$
%

#
"

!

-

-

-

-

�

�
�
�
�
�
��3

PPPPPPq

PAC

Libraries

PAC
Parser

Process
Algebra

Description

Intermediate
Format

Backends Verification Tool

Tool kernel

Semantic
Functions

Syntactic
Analyser

Figure 1: Architecture of the PAC

3.1 PAC Overview

Figure 1 sketches the organization of the PAC. The system takes as input files containing the
syntactic and semantic description of a process algebra as well as libraries containing the definitions
of any necessary auxiliary functions. It then produces two (sets of) files:

• A YACC/LEX1 specification of the language’s syntax.

• Semantic routines to analyze programs written in the language.

To specialize a target verification tool to the given language, the PAC user must run YACC/LEX on
the first set of files to produce a parser and then insert the parser and the semantic routines into the
verification engine. Provided that the target tool separates the syntactic analysis of programs from
their verification, the language-independent part of the verification tool (its kernel) need not change
at all. It should be noted that the PAC is in fact a “compiler”: it takes a PAC specification of a
language as input and produces source code which is compiled along with the kernel of the target
verification tool. There is no PAC run-time system that becomes part of the target verification tool.
The PAC can also be viewed as a “compiler compiler” since the generated code is a “compiler”
which accepts a process algebra program as input and produces a labeled transition system as
output.

The PAC itself is organized into several components centered around an internal representation
of the syntax and semantics of the language being processed. This internal structure is produced by
the PAC parser from files provided by the user. From it, back ends produce the required routines
for the target systems. As target verification tools are typically written in different languages
(MAUTO in Lisp, the Concurrency Workbench in SML, Aldébaran in C, for example), there will
in general be several back ends in the PAC. The initially targeted systems are MAUTO and the
Workbench; accordingly, the existing prototype includes back ends that generate Lisp and SML,
respectively.

1Using YACC/LEX provides an easy way of guaranteeing the compatibility of parsers generated for a given algebra
by different back ends. Other parser-generators may also be used at the discretion of the back-end writer.

204

The PAC parser. The PAC parser tries to factor out as much of the back-end-independent work
as possible from the processing of user-supplied algebra descriptions; in particular, it checks the
PAC input for syntactic correctness and performs certain consistency checks. If user files satisfy
these criteria, the parser then produces an intermediate representation of the input which contains:

• A representation of the abstract syntax of the process algebra.

• A structured description of the concrete syntax from which specifications for scanners, parsers,
and unparsers may be generated.

• A representation of the sets of SOS rules used for defining the semantics of the operators in
the algebra.

Back ends. The back ends build the actual routines to be included in the verification tools. They
accept as input the intermediate format generated by the PAC parser and generate as output a
YACC grammar together with routines that compute the semantics of a system from its abstract
syntax. The routines typically differ from one verification tool to another; typical examples include
those for computing the single-step transitions of a process, generating the composition of several
automata by a given composition operator, computing sufficient syntactic conditions for a process
to be finite-state [17], and calculating whether or not a process is divergent.

Implementation. The PAC is implemented in Standard ML (SML). The system, which currently
consists of roughly 15,000 lines of code, is batch-oriented; it processes inputs and either generates
output files or reports error messages.

3.2 PAC Process Algebra Specifications

A PAC process algebra specification consists of two components. The ALGEBRA module contains
descriptions of the concrete and abstract syntax of actions, processes and semantic relations. The
RULE SET modules contain SOS rules defining the relations used to define the semantics of processes.
Users may also provide library files containing code that directly implements auxiliary structures
(such as sets or environments) and operations (such as set membership or lookup functions) used
in defining the semantics and for which users do not wish to provide SOS definitions. Back ends
directly insert this code into the files they generate; consequently this code must be written in a
language compatible with that of the target tool. The remainder of this section discusses each of
these modules using as an example the CWB-6.0 version of Milner’s CCS .

3.2.1 ALGEBRA Modules

ALGEBRA modules consist of several sections.

• In the sorts section, users define the syntactic categories for their language.

• The cons section defines the term constructors (i.e. the abstract syntax) to be used to build
elements in the different syntactic categories.

• The funs sections introduces the names and “types” of functions that may be applied to
elements of sorts. The implementations of these functions must be supplied by the PAC user.

205

ALGEBRA CCS
sorts

id, act, id_set, restriction, (’a eqn), agent, (’a frame), (’a env), ...
cons

Tau : act
Input : id -> act
Output : id -> act
...
Res_set : id_set -> restriction
Res_var : id -> restriction
Eqn : id * ’a -> (’a eqn)
...
Nil : agent
Bottom : agent
Ag_var : id -> agent
Prefix : act * agent -> agent
Plus : agent * agent -> agent
Restriction : agent * restriction -> agent
Fix : agent * (agent frame) -> agent
...

funs
id_parse : string -> id
id_eq : id * id -> bool
...
inverses : act * act -> bool
...
mk_id_set : (id list) -> id_set
member : id * id_set -> bool
...
mk_frame : ((’a eqn) list) -> (’a frame)
mk_frame_inv: (’a frame) -> ((’a eqn) list)
empty : ’a env
push_frame : (’a frame) * (’a env) -> (’a env)
...

rels
transition : (agent env) * (id_set env) * agent * act * agent -> bool
diverges : (agent env) * (id_set env) * agent -> bool

inputs
transition is [1,2,3]
diverges is [1,2,3]

pragmas
...
CWB "parser entries: act, agent, id_set"
...

SYNTAX
...

RULE_SYNTAX
...

end

Figure 2: An ALGEBRA module for CCS

• The rels section defines the names and “types” of the semantic relations to be defined by
SOS rules and for which the PAC will generate an implementation. The inputs section then
indicates what type the generated functions computing these relations should have (i.e. which
positions in the relation should be “inputs” and which should be “outputs”).

• The pragmas section contains back-end-specific directives, such as locations of library files
and names to be assigned to functions generated by back ends.

• The SYNTAX and RULE SYNTAX sections contain descriptions of the concrete syntax of both the
process algebra and of the relations used to define the algebra’s semantics.

To illustrate what appears in these sections, consider the (elided) version of an ALGEBRA module
for CCS in Figure 2. The sorts section declares the kinds of objects that appear in the definition
of the algebra, including act (actions), agent (CCS processes), ’a eqn (equations), and ’a frame
(frames, or mappings from identifiers to values). Note that sorts may be polymorphic: in the case

206

SYNTAX
tokens

"nil" => NIL
"where" => WHERE
"and" => AND
"end" => END
...

priorities
...

nonterminals
agent of agent
ag_eqn_list of (agent eqn) list
...

grammar
agent : NIL (Nil())

| agent WHERE agent_frame END (Fix(agent, agent_frame))
...

agent_frame : ag_eqn_list (mk_frame(ag_eqn_list))
lists

ag_eqn_list is non_empty_list EMPTY_STR COMMA AND EMPTY_STR of ag_eqn
...

RULE_SYNTAX
...

grammar
relation : agent_env COMMA id_set_env COLON agent DASHDASH act ARROW agent

(transition (agent_env, id_set_env, agent1, act, agent2))
...

Figure 3: A SYNTAX and RULE SYNTAX section for CCS

of ’a frame, for instance, the ’a may be instantiated with any well-formed sort. The PAC also
includes three built-in sorts: string for character strings, bool for booleans, and ’a list for
polymorphic lists.

The next section of the example introduces the constructors used in CCS and their sorts. For
example, Tau is introduced as a constructor taking no arguments and producing a value of sort act;
that is, Tau is an action constant. Input and Output take an identifier (intuitively, a channel name)
as an argument and produce an action. In the CWB version of CCS, users may bind identifiers
to sets of actions and then use these identifiers in place of sets in the restriction operator. To
cater for this possibility, the algebra introduces a sort restriction and two constructors, Res set
and Res var, permitting sets of identifiers (i.e. a label set, in CCS terms) or a single identifier (a
variable name bound to a set) to be viewed as “restrictions”. Eqn is used to construct equations
from identifiers and values, while the remaining constructors are used to build agents. Note that
the Fix operator takes an agent and an agent frame as arguments; intuitively, the frame contains
bindings for the free variables that may appear in the agent.

The funs section introduces operations that may be applied to elements of given sorts. These
operations differ from constructors in that the PAC will generate implementations for the latter
but not for the former; users must provide routines for these. This feature permits users to re-use
existing code and to program efficient implementations of low-level data structures as appropriate.2

Thus, to generate a CWB front end on the basis of the example algebra module a user would neet to
provide implementations in Standard ML (the language in which the CWB is written) for operations
such as id parse, mk id set and mk frame.

2PAC back ends also generate implementations of sorts having constructors declared for them; it relies on users
to specify implementations of sorts for which no constructors have been specified. For example, act would have a
PAC-supplied implementation, since three constructors have act as their return sort. The sort ’a frame, on the other
hand, does not have constructors defined for it; consequently, a user must supply code defining the data structure to
be used to represent frames.

207

The rels component of the example introduces two semantic relations: transition and
diverges. In this version of CCS, the transitions and potential for divergence of an agent depend
on two environments: one to resolve free agent variables, and one to resolve free variables used
in restrictions. Thus each relation includes an agent environment and an id set environment
argument.

For each relation the inputs section indicates the form the PAC-generated function for com-
puting this relation should take. In the case of transition, for example, the input specification
indicates that the generated function should have three inputs corresponding to the first three
positions of the relation (here, two environment arguments and an agent). Given such a triple, the
function will return the set of all action-agent pairs which, when combined with the triple, yield
a quintuple in the relation. In the case of diverges, all places are mentioned in the input list; in
this case, the PAC will generate a function taking three arguments and returning a boolean.

The pragmas section includes miscellaneous directives for specific back ends. In the above
example, the given pragma indicates that the parser produced by the PAC back end for the CWB
should have entries for agents, actions and identifier sets. These are needed since the CWB supports
commands requiring users to provide information from these sorts. Other pragmas might be used to
rename sorts appropriately (some tools might require a type proc rather than agent, for example)
or supply names of library files.

Samples of the syntax sections of the CCS algebra specification appear in Figure 3. The SYNTAX
component contains information needed to generate the parsers to be used by the target tool; this
currently takes the form of a YACC-like grammar whose semantic actions consists of “sort-correct”
expressions built using the constructors and functions declared previously. In the example, the
syntax of the fixpoint agent operator is defined to be a where e1 and . . . and en end, where
each ei is an equation. Note that PAC grammars extend YACC grammars by permitting list
specifications; the nonterminal ag eqn list, for example, yields lists of ag eqn (agent equations)
whose beginning and ending delimiters are the empty string and whose separator is the token
AND (and in concrete syntax). The RULE SYNTAX section enriches this syntactic specification with
information needed to parse the SOS rules that define the semantics of processes; in particular,
it includes definitions of the concrete syntax of relations. This example defines the syntax of the
transition relation to be ae, se : p --a--> q. The PAC fits this information into a general
“rule template” in order to produce a grammar which is processed and then used to parse the
user-supplied rules.

3.2.2 RULE SET Modules

The second part of a PAC process algebra specification consists of the SOS rules needed to
define the semantics of processes. In general, a user must supply a collection of rules for each
relation introduced in the ALGEBRA module. Each rule in turn consists of four components: a name,
a list of premises, a side condition, and a conclusion. In general, premises and conclusions involve
relations, while side conditions can be any expression generated using the following grammar,

be ::= true | not be | be and be | be or be | P (t1, ..., tn)

where P is a predicate: any boolean-sorted function declared in the funs section or any relation
in the rels section all of whose positions are input positions. The ti should be terms in the
appropriate sort, based on the definition of P . A fragment of the rules for the transition relation

208

RULE_SET transition
vars

a, b : act
p, p’, p1, p1’, p2, p2’ : agent
s : id_set
ae : (agent env)
se : (id_set env)
...

rules
prefix

-------------------------(true)
ae, se : a.p -- a --> p

...
parallel_1

ae, se : p1 -- a --> p1’
------------------------------------(true)
ae, se : p1 | p2 -- a --> p1’ | p2

parallel_2
ae, se : p2 -- a --> p2’

------------------------------------(true)
ae, se : p1 | p2 -- a --> p1 | p2’

parallel_3
ae, se : p1 -- a --> p1’, ae, se : p2 -- b --> p2’

---(inverses(a,b))
ae, se : p1 | p2 -- t --> p1’ | p2’

...
end

Figure 4: A RULE SET module for the CCS transition relation

for CCS appears in Figure 4. Note that premises appear above, and conclusions below, a line of
hyphens, with the side condition appearing in parentheses after the hyphens. All expressions in the
rules are written using the concrete syntax declared in the ALGEBRA module; this enables the rules
to look very close to what appears in the literature. In addition, functions defined in the ALGEBRA
module may be used in the rules; for example, parallel 3 contains a reference to the inverses
predicate, which intuitively should hold when the given actions represent an input and output on
the same channel (note that t is the concrete syntax that has been defined for the CCS internal
action). Rule sets can refer to relations defined in other rule sets, although no such reference is
made in this example.

4 PAC Back Ends

The PAC currently includes back ends dedicated to the CWB and to MAUTO. The former generates
code in SML, the language in which the CWB is written, while the latter, which is still under
construction, produces LeLisp, the programming language in which MAUTO is implemented. In
each case, the produced code contains a parser, some unparsing functions, and a number of semantic
functions encoding the SOS rules of the algebra. The parsers (generated using respectively LeLisp-
Yacc and SML-Yacc) are fully compatible, meaning that PAC-generated front ends for MAUTO
and the CWB handle the same syntax. As Section 2 indicated, however, the analysis functions of
the target tools are different, as are the semantic functions. The following discusses what semantic
functions the different back ends must produce and how they are generated from SOS specifications.

4.1 The CWB Back End

In addition to various parsing and unparsing routines, the CWB requires that its front end include
implementations of types act and agent and functions transition, diverges and sort. The

209

functions each take an agent and return a set of action-agent pairs, a boolean, and a set of actions,
respectively. This section describes how the CWB back end generates code from the SOS definitions
of semantic relations. Generally speaking, given a rule set for a particular semantic relation, the
technique constructs a function whose inputs correspond to the places in the relation declared as
inputs in the inputs section of the ALGEBRA module. On a given input, the generated routine
produces a set of tuples as outputs; the idea is that each output tuple, when combined with the
input tuple, yields an element in the relation. As an example, in the case of the transition relation
defined in Section 3.2, positions 1, 2 and 3 of transition are declared as inputs; the procedure that
is produced will therefore accept an 〈agent env, id set env, agent〉 triple as input and produces a
set of 〈action, agent〉 pairs as output with the property that if the input is 〈ae, se, p〉, then pair
〈a, q〉 is in the set of outputs if and only if 〈ae, se, p, a, q〉 is in relation transition.

In order for the procedure described below to work, the rules used to define semantic relations
must obey certain syntactic restrictions. Recall from Sections 2.2 and 3.2.2 that SOS rules have
the following general form:

premises

conclusion
(side condition)

where conclusion is an element of the relation being defined, premises is a list of elements of the
relation being defined or of other relations declared in the rels section, and side condition is a
boolean expression that may involve predicate expressions of the form P (t1, . . . , tn), with the ti
being terms that may involve variables. For the code produced by the CWB back end to compile,
each rule must satisfy the following constraints.

1. All variables appearing in the input positions of the premises must appear in the input
positions of the conclusion.

2. All variables appearing in the output positions of the conclusion or in the side condition must
appear either in the input positions of the conclusion or in the output positions of a premise.

3. All variables appearing in the input positions of the conclusion or the output positions of a
premise are distinct.

These constraints place restrictions on the “flow of data” through a rule: information flows from the
inputs of the conclusion to the premises, and the outputs of premises flow (together with inputs of
the conclusion) to the side condition and the outputs of the conclusion. Note also that patterns of
arbitrary depth can appear in the input or output positions of the conclusion or premises. It should
be noted that this rule format subsumes the positive GSOS format of [4] while being incomparable
to the tyft/tyxt pattern of [12] and the path scheme of [2]. However, restriction 1 can be relaxed
without too much difficulty to allow variables appearing in the output positions of premises to
appear in the input positions of other premises; with this generalization, our format would subsume
pure and well-founded tyft/tyxt and path. Other formats allow negative premises [4, 22] and are
incomparable to ours.

The basic strategy used by the code generated from rules involves pattern matching: given a
tuple of inputs, a generated function in essence determines which rules have conclusions whose
input positions match the input tuple. Using the premises of these rules, appropriate (recursive)
calls are issued, and the results which satisfy the side condition are combined into a set of result
tuples using the form of the conclusion. To illustrate this idea, consider the rules given for CCS
in Section 3.2.2, and suppose that the generated semantic function is given an input of the form

210

〈ae, se, p|q〉. In this case, three rules are applicable— parallel 1, parallel 2 and parallel 3.
Each of the rules mentions the transitions of p or q in the premises; consequently, the generated
code would include recursive calls to calculate the transitions for 〈ae, se, p〉 and 〈ae, se, q〉. On the
basis of the first rule, transitions of p would be combined appropriately with q, while the second
rule would transform transitions of q by combining them with p. The final rule combines transitions
of the form 〈a, p′〉 and 〈b, q′〉 into 〈τ, p′|q′〉 provided that the predicate inverses(a, b) is satisfied.
The results of these combinations are collected into one set and returned.

To improve the performance of the generated code, the CWB back end also employs several
optimizations. For example, in order to minimize matching overhead, rules with the same input
pattern in their conclusions are grouped and processed simultaneously. Also, the generated routines
cache results of recursive calls in a hash table; before issuing a recursive call, this table is consulted
to determine if the call has been made before. To demonstrate the savings from this technique,
consider how the CWB would compile the agent p|q into a labeled transition system. First, a call is
made to the generated CCS transition function with 〈ae, se, p|q〉 as input (ae and se are the current
agent and set environments). After making the recursive calls to compute the transitions of p and
q, the generated transition function saves the results of these calls in a table. From par rule1, it
follows that p|q has a transition 〈a, p′|q〉 for every transition 〈a, p′〉 of p. The next step in compiling
the labeled transition system for p|q will include computing the transitions of each p′|q; but, in this
case instead of making recursive calls to recompute the transitions of q, transition would simply
look this up in the transitions table. This strategy leads to significant time savings when computing
the finite-state representation of a system; somewhat surprisingly, it can also lead to substantial
space savings as well, since sharing becomes possible in the computation of output tuples.

4.2 The MAUTO Back End

MAUTO uses a “compositional” (bottom-up) approach to building automata; language constructs
are interpreted as automaton transformations, and thus it is not in general possible to use directly
the transition function described above. The same SOS rules that yield the transition function for
the CWB are interpreted as specifying these automata transformers. Thus, the semantic functions
generated by the PAC for MAUTO encode transition system transducers in the sense of Larsen
and Xinxin [15]. Computing the automaton for p|q, for example, involves computing separately the
finite automata describing the full behaviors of p and q, eventually reducing each of them according
to any congruence at hand, then combining them using the transducer for parallel composition.
In practice, the rule format required by this interpretation is more restrictive than the one in the
preceding section: it ensures that the transducer generated for any context expression is finitely
represented, and that the combination of finite automata always yields a finite global automaton.
The structure of the functions produced for MAUTO is also very different from the structure of those
produced for the CWB. In general, there are two functions for each operator, one describing the
recursive structure of the bottom-up traversal, and one describing how to combine the transitions
of a tuple of argument automata.

A static analysis of the structure of the SOS rules of the transition relation allows us to classify
the process operators in the algebra. This is used to produce optimized automata-constructing
routines, to ensure the finiteness of the produced transducers, and to guarantee a priori the ter-
mination of automata construction. The classification is a generalization of the notions defined in
[17], and distinguishes between:

211

• Combinators, which are typically operators used for parallel composition. The format ensures
that they do not generate infinite transition systems from finite arguments.

• Switches, which have only one process argument active at a time, and will eventually select
one of them (sum, sequence). They are used for defining static conditions for finiteness of
recursive definitions.

• Sieves, which have exactly one process argument and act as action transformers, keeping their
structure unchanged (hiding, restriction, relabeling). Identifying sieves enables various run-
time optimizations to be employed that avoid some intermediate automaton constructions.

We have produced code using these ideas that has proved to be very efficient and flexible, and
easy to integrate with other compositional approaches.

5 Results

The current prototype of the PAC includes an algebra description parser and a back end for the
CWB, with the development of the MAUTO back end in progress. In this section we describe our
experience with using the PAC to generate front ends for the CWB. The experiments take two
forms. In the first, we compare the efficiency of a PAC-generated front end for CCS with existing
hand-coded front ends for CCS, while in the second we investigate the performance of front ends
produced by the PAC for other languages. Our initial results suggest that the PAC does indeed ease
the task of changing the language supported by the CWB and that the generated interfaces perform
well. Our tests used a version of the Concurrency Workbench under development at North Carolina
State University and were run on a Sun Sparc 5 with 128 megabytes of RAM. The functionality
of this version of the CWB is similar to the Edinburgh CWB [10], but the NCSU version includes
more efficient graph-construction and equivalence-checking routines.

Table 1 compares the performance of a PAC-generated front end with two hand-coded front ends
for CCS. The first of these is the front end included with Version 6.0 of the CWB, while the second
is a hand-tuned version of the first one developed at NCSU. The numbers describe the amount of
processor time in seconds (time needed for system activities and for garbage collection have been
omitted) needed by the NCSU CWB to build finite-state automata from different CCS sample
programs using the transitions function supplied by the given interface. The example programs we
used to test the interfaces included:

• Two communications protocols: an implementation of the Alternating Bit Protocol (ABP)
and an implementation of part of the data link control layer of IEEE 802.2 (802-2).

• Two solutions of the two-process critical-section problem: an implementation of Dekker’s
algorithm (Dekker-2) and an implementation using semaphores (Semaphore-2).

• Milner’s Jobshop example [19] (Jobshop).

• A specification of the Edinburgh mail system (Mail-system).

In addition, we tried some examples consisting of the parallel composition of these examples in
order to assess the performance of the front ends on systems with large state spaces. In the
table these examples have the form System1| System2. As the table indicates, the PAC-generated

212

Number Interface
Example of states CWB 6.0 NCSU CWB PAC-generated
ABP 57 0.12 0.13 0.14
Jobshop 77 0.14 0.14 0.12
Dekker-2 127 0.38 0.35 0.39
802-2 331 1.67 1.33 1.83
Semaphore-2 468 2.66 2.44 2.25
Mail-system 1616 9.12 8.68 7.59
ABP | Jobshop 4389 18.82 13.76 10.73
Dekker-2 | Semaphore-2 59436 522.82 288.19 101.88
ABP | Mail-system 92112 Ran out of memory Ran out of memory 340.90
Dekker-2 | Mail-system 205232 Ran out of memory Ran out of memory 779.03

Table 1: This table shows the program time in seconds required by the different interfaces to
construct automata for various CCS examples.

CCS interface actually performs substantially better than existing CCS interfaces while using less
memory; the main reason for this lies in the caching of recursive calls outlined in Section 4.1.

We have also used the PAC to generate CWB front ends for several other languages as well.
Examples have included a simple language of regular expressions and a version of CCS in which
actions take priority [9]; the latter is noteworthy in that its semantic account requires the use of
auxiliary semantic relations. In general, the amount of effort required has been much less than
what would be required to generate interfaces by hand, although more experience with the tool
is necessary to substantiate this claim. However, the fact that the notations the tool provides
for expressing semantic and syntactic specifications of languages are more abstract than those
provided by standard programming languages lead us to believe that the PAC will greatly simplify
the production of front ends for verification tools.

Our most involved example has been the generation of a CWB front end for Basic Lotos, which
is more complex, both syntactically and semantically, than the others we have tried. We have
analyzed a number of Basic Lotos examples with the generated interface. Since no Basic Lotos
interface existed previously for the CWB it is harder to evaluate the efficiency of the generated
code than it was in the case of CCS. One crude measure, however involves comparing the states
generated per unit time from LOTOS programs against a similar figure for the CCS front ends
described previously. The states-per-second measures for the CCS front ends were computed from
the first eight examples in the table above (the ones that all interfaces were able to handle), while
the figure for the Basic Lotos interface was calculated based on timing results from the compilation
of 8 examples ranging in size from 20 states to 45,000 states. The results are shown in Table 2,
which shows that the front end generated for Basic Lotos is roughly 8 times slower than the one
generated for CCS. This difference is not necessarily due to the inadequacy of the code-generating
scheme used by the PAC, but rather arises from the fact that Basic Lotos is syntactically and
semantically more complex than CCS.

213

Interface
CWB 6.0 NCSU CWB PAC-generated CCS PAC-generated Basic Lotos

States per second 119.66 211.10 532.31 65.47

Table 2: Average number of states generated per second for four different interfaces.

6 Conclusions

In this paper we have presented the Process Algebra Compiler, a tool for generating front ends for
verification tools. The PAC allows users to specify the syntax and semantics of a language they wish
their verification tool to support; the system then produces the syntactic and semantic routines
needed to specialize the given tool for the language. Experimental results indicate that PAC-
generated routines exhibit performance that can in fact improve on that of hand-coded routines.

Regarding future work, our most immediate goal is to complete the MAUTO back end so that
it and the CWB may become source-level compatible. Back ends for other verification tools could
also be built and our experiences in building the CWB and MAUTO back ends would certainly
ease this task. We anticipate that this will be possible for most tools based on transition system
semantics, although some reorganization of the target tools may be necessary.

We would also like to investigate the addition of features in the PAC specification language. In
particular, the lexical specifications supported by the PAC can be made more flexible, and providing
some facility for modularity in the algebra section would be desirable. We have experimented with
the latter; defining concrete syntax in a modular way, however, appears to be very difficult. We have
also experimented with a less flexible, but much easier to use, format for expressing concrete syntax
and plan to study this issue more. We have also worked on and would like to further investigate
routines in the PAC for analyzing a rule set and reporting to the user whether it satisfies a given
rule format, such as those mentioned in Section 2.2.

We also would like to explore the possibility of using the PAC for activities other than generating
front ends for verification tools. Given the widespread use of SOS rules for defining the semantics
of languages, it might be possible to use the PAC to automatically generate interpreters and
compilers. We are also examining the feasibility of using the PAC as an implementation engine
for generating on-the-fly verification routines, as these may often be formulated using SOS-style
rules [3]. Obviously, these uses are greatly different from the PAC’s initial purpose, and it remains
to be seen if they are indeed practical.

Related Work. Other verification tools have also aimed at providing some parametricity with
respect to the language analyzed. The ECRINS system [16] permitted users to specify the SOS
semantics of their algebra, and to prove algebraic laws of their operators. MAUTO allows users
to extend the syntax of the language it supports, although semantic routines must be altered by
hand. As a compiler for syntactic and semantic specifications, the PAC is closely related to the
CENTAUR system, and in particular to its semantic component TYPOL [13]. TYPOL provides a
general framework for defining languages, interpreters, and compilers, using SOS rules. The more
restrictive PAC rule format allows for the generation of simpler and more efficient code.

214

References
[1] D. Austry and G. Boudol. Algèbre de processus et synchronisation. Theoretical Computer Science, 30:91–131,

1984.
[2] J.C.M. Baeten and C. Verhoef. A congruence theorem for structured operational semantics with predicates.

Technical Report 93/05, Eindhoven University of Technology, 1994.
[3] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model checking for CTL∗. In Tenth Annual

Symposium on Logic in Computer Science (LICS ’95), San Diego, July 1995. IEEE Computer Society Press.
[4] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. In Fifteenth Annual ACM Symposium on

Principles of Programming Languages (PoPL ’88), pages 229–239, San Diego, January 1988. IEEE Computer
Society Press.

[5] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. In P.H.J.van Eijk,
C.A.Vissers, and M.Diaz, editors, The Formal Description Technique LOTOS, pages 23–76. North-Holland,
1989.

[6] G. Boudol, V. Roy, R. de Simone, and D. Vergamini. Process calculi, from theory to practice: Verification tools.
Rapport de Recherche RR1098, INRIA, October 1989.

[7] R. Cleaveland. Analyzing concurrent systems using the Concurrency Workbench. In P.E. Lauer, editor, Func-
tional Programming, Concurrency, Simulation and Automated Reasoning, volume 693 of Lecture Notes in Com-
puter Science, pages 129–144. Springer-Verlag, 1993.

[8] R. Cleaveland and M.C.B. Hennessy. Testing equivalence as a bisimulation equivalence. In Proceedings of the
Workshop on Automatic Verification Methods for Finite-State Systems, pages 11–23. Springer-Verlag, 1989.

[9] R. Cleaveland and M.C.B. Hennessy. Priorities in process algebra. Information and Computation, 87(1/2):58–77,
July/August 1990.

[10] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A semantics-based tool for the verifica-
tion of finite-state systems. ACM Transactions on Programming Languages and Systems, 15(1):36–72, January
1993.

[11] J.C. Fernandez. Aldébaran: A tool for verification of communicating processes. Technical Report Spectre-c 14,
LGI-IMAG, Grenoble, 1989.

[12] J.F. Groote and F. Vaandrager. Structured operational semantics and bisimulation as a congruence. Information
and Computation, 2(100):202–260, 1992.

[13] G. Kahn. Natural semantics. Technical Report RR601, INRIA, 1987.
[14] K.G. Larsen, J.C. Godskesen, and M. Zeeberg. TAV, tools for automatic verification, user manual. Technical

Report R 89-19, Dept of Mathematics and Computer Science, Ålborg university, 1989.
[15] K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of contexts. In M.S. Paterson,

editor, Automata, Languages and Programming (ICALP ’90), volume 443 of Lecture Notes in Computer Science,
pages 526–539, Warwick, England, July 1990. Springer-Verlag.

[16] E. Madelaine, R. de Simone, and D. Vergamini. ECRINS, user manual, 1988. Technical Documentation.
[17] E. Madelaine and D. Vergamini. Finiteness conditions and structural construction of automata for all process

algebras. In R. Kurshan, editor, proceedings of Workshop on Computer Aided Verification, New-Brunswick, June
1990. AMS-DIMACS.

[18] E. Madelaine and D. Vergamini. Specification and verification of a sliding window protocol in LOTOS. In K. R.
Parker and G. A. Rose, editors, Formal Description Techniques, IV, volume C-2 of IFIP Transactions, Sydney,
December 1991. North-Holland.

[19] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[20] G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19, University of

Aarhus, September 1981.
[21] V. Roy and R. de Simone. Auto and autograph. In R. Kurshan, editor, proceedings of Workshop on Computer

Aided Verification, New-Brunswick, June 1990. AMS-DIMACS.
[22] C. Verhoef. A congruence theorem for structured operational semantics with predicates and negative premises.

In B. Jonsson and J. Parrow, editors, Proceedings CONCUR 94, Uppsala, Sweden, volume 836 of Lectures Notes
in Computer Science, pages 433–448. Springer-Verlag, 1994.

215

CAVEAT : technique and tool for Computer
Aided VErification And Transformation

E. Pascal Gribomont and Didier Rossetto
Institut Montefiore, Université de Liège, Sart-Tilman B28,

B-4000 Liège (Belgium)
gribomon,rossetto@montefiore.ulg.ac.be

accepted for presentation to CAV’95 (LNCS) .

Abstract. We describe caveat, a technique and a tool (under develop-
ment) for the stepwise design and verification of nearly finite-state con-
current systems (NFCS). A concurrent system is nearly finite-state when
most of its variables have a finite range (Booleans, bounded integers).
The heart of caveat is a tool for verifying invariants, i.e., inductive safety
properties. The underlying method is classical : formula I is an invariant
for system S if and only if some formula ΦI =def {I}S{I} is valid. If S
is an NFCS, the formula ΦI contains only a small set of non-boolean vari-
ables. caveat uses the connection method to extract from ΦI a (small)
set Ψ of paths (some kind of assertions) about the non-boolean variables;
ΦI is valid if and only if all paths contain connections, i.e., are inconsis-
tent. For typical NFCS given with a correct invariant, the formula ΦI is
rather large (more than 100 lines) but Ψ is quite small (a dozen one-line
formulas). The second part of caveat (not implemented yet) supports
an incremental development method that is fairly systematic, but has
proved to be flexible enough in practice.

1 Introduction

From the theoretical point of view, formal methods are a rather satisfactory
answer to the problem of unreliable software. However, from the practical point
of view, these methods are nearly useless without appropriate tools.

It is well-known that fully automatic tools for general program design and/or
verification can not exist, so we have to be satisfied with semi-automatic tools
and/or restricted classes of programs.

The most classical approach to non-automatic program verification is the
invariant method. Its principle is to reduce the correctness problem (“Is this
program correct w.r.t. this specification ?”) to the validity problem (“Is this
formula a valid formula of classical first order logic ?”). Even when automation
is not considered, the invariant method has two drawbacks : it is restricted to
safety properties, and it is “creative” in the sense that the validation of a safety
property implies the (non-trivial) design of an adequate invariant, that is, a
stronger safety property which can be proved by induction. The first problem
has been satisfactorily solved by the introduction of temporal logic; the second
problem is dealt with in more or less satisfactory ways, and for more or less
general classes of programs. The pragmatic view (and caveat is / will be a
pragmatic tool) is that formal methods become interesting when, first, testing

216

methods really prove disappointing, second, reliability is really required, and
third, programs are subtle and tricky even when they are not long. This is
often the case for concurrent, distributed, reactive systems, and the problem of
invariant construction seems especially important for such systems. caveat is
an attempt to automate an invariant-based stepwise design/verification method
introduced in [13, 14, 16].

Most earlier approaches to (semi-)automatic program verification have been
based on (semi-)automatic theorem proving, for classical logic and sometimes for
temporal logic. A pragmatic drawback of theorem provers is that they are mostly
interactive. Even if the prover really performs the biggest part of the verification
task, the user has to oversee the whole verification process, and from time to
time needs to interact with it. The problem lies with the rather poor ability of
proving systems to extract from a large set of mostly elementary verification
steps the small subset which is outside the scope of purely automatic tools. The
success of the semi-automatic theorem proving approach depends on the skill of
the user [11].

A more recent approach is restricted to finite-state systems. The principle
is that both the finite-state system and the specification can be modelled by
a formula of propositional temporal logic, or by some kind of automaton. As
a result, system verification is decidable, for instance by model checking algo-
rithms [8, 29]. Recent improvements in the performances of computer systems,
and also in the search algorithms, have led to rather powerful tools. This induced
attempts to extend these techniques to some classes of infinite-state systems,
but only moderately successful results have been obtained until now [20, 30].
On the contrary, some severe theoretical restrictions to this approach have been
obtained [1]. Besides, when a tested finite-state program is incorrect, the veri-
fication system gives little high-level insight about how the program should be
corrected; similarly, the validation of a correct program gives little insight about
how the program works and why it is correct.

Another promising track comes from recent improvements in tautology check-
ing, especially the connection method (see [5, 31]) and the concept of (ordered)
binary decision diagram (see [6, 26]). It is rather natural to wonder whether these
techniques remain practically usable outside pure propositional logic. caveat

has evolved from some successful experiments in this area.
Section 2 introduces caveat with a very elementary example and discusses

the main choices we have made in the strategy of invariant verification. Section 3
accounts for a more significant experiment and demonstrates the usefulness of
the approach in a restricted but important class of applications. It also presents
an introduction to incremental design and verification. Section 4 is a brief com-
parison with related works.

2 The heart of caveat : tautological reduction

2.1 Position of the problem

A formula I is an invariant of a concurrent system S if, in all computations,
successors of states satisfying I also satisfy I. Hoare’s axiom, or the liberal ver-
sion of Dijkstra’s weakest precondition calculus, reduces the problem of invariant

217

verification to the purely logical problem of validity checking. With familiar no-
tation (illustrated below), the formula to validate is ΦI =def (I ⇒ wlp[S; I]).
The construction of ΦI, when S and I are given, is (usually) straightforward.
The validation, however, is not, since ΦI is typically a rather large formula.

A formula J expresses a safety property of S with initial condition A if every
state of every computation satisfies J . This holds if and only if an invariant I
of S exists such that (A⇒ I) and (I ⇒ J). The standard verification problem is
to determine whether some system S with initial condition A satisfies the safety
property (expressed by) J .

If S is a non-parametric finite-state system, the formulas A, J , I and ΦI
are propositional and full automation is possible. However, the construction of
the invariant I is not a trivial task. Model checking is usually more effective
here, since an explicit form of the invariant I is not needed; the model checker
simply verifies that all accessible states satisfy J . (The set of accessible states
determines the strongest invariant implied by A, often denoted sin[A;S].)

Pure model-checking does not apply if S is an infinite-state system. In this
case, A, J , I and ΦI are formulas of some first-order language (for instance, the
language of number theory) and the verification problem becomes theoretically
unsolvable even for a rather restricted class of programs. The invariant method
still works, but is not easily turned into a reasonably efficient semi-automatic
method.

There is, however, a large and interesting class of “borderline” cases, for
which ΦI is a large formula with only few occurrences of non-boolean variables.
The method illustrated in the sequel seems very promising for this class. For
the sake of simplicity, it is first introduced with the help of a purely finite-state
example, even though it does not show its full potential in this case.

2.2 The connection method

The connection method can be viewed as an efficient implementation of the clas-
sical tableau method, used to determine whether a formula or a set of formulas
has a model. The principle of the method is to reduce the initial formula into
sets of literals, in such a way that the initial formula has no model if and only
if each of the sets of literals contains a connection, i.e., a tuple of contradictory
elements. In a purely propositional framework, only pairs like {p,¬p} are consid-
ered. In our framework, a connection is a bit more general; typical instances are
{x > y, x = y, x < y} and {at `0, at `1}, where `0 and `1 are distinct locations
of the same process.

The connection method can be a powerful technique [31]; it is illustrated in
the sequel of this section, first with a simplistic example.

The example is a two-process naive mutual exclusion algorithm, that has to
be checked for mutual exclusion. The set of processes is {P,Q}. Each process
contains three locations, identified by subscripts 0 (idle state), w (waiting state)
and c (critical state), so P = {p0, pw, pc} and Q = {q0, qw, qc}. There are two

218

Boolean variables inP and inQ. The set of transitions is

T = {(p0, inP := true , pw) ,
(pw, ¬inQ −→ skip , pc) ,
(pc, inP := false , p0) ,

(q0, inQ := true , qw) ,
(qw, ¬inP −→ skip , qc) ,
(qc, inQ := false , q0) } .

Comment. The formal notation used here and in caveat to write programs has
been introduced in [14]. It is similar in spirit to many other notations based on
states and transitions, e.g. the language of Action Systems introduced in [3].

There are two Boolean variables and each process has three control locations,
leading to a state space of 36 possible states. The main safety property of interest
is mutual exclusion, formalized as

J =def ¬(at pc ∧ at qc) .
An acceptable initial condition is :

A =def (at p0 ∧ at q0 ∧ ¬inP ∧ ¬inQ) .
An appropriate invariant I is

(at pc ⇒ (¬inQ ∨ at qw)) ∧ (at qc ⇒ (¬inP ∨ at pw)) ∧
(at p0 ≡ ¬inP) ∧ (at q0 ≡ ¬inQ) .

One sees easily that both A⇒ I and I ⇒ J holds,1 and caveat is used to check
that I is really an invariant. It is sufficient to show that formula (I ⇒ wlp[τ ; I])
holds for each transition τ , and we consider here τ = (pw, ¬inQ−→ skip, pc).
The corresponding verification formula, say Φ, is obtained by wlp-calculus :

(¬¬inP ∧ (at q0 ⇒ ¬inQ) ∧ (¬inQ⇒ at q0)) ⇒
(¬inQ ⇒ [(¬inQ ∨ at qw) ∧ (at qc ⇒ ¬inP) ∧ ¬¬inP ∧

(at q0 ⇒ ¬inQ) ∧ (¬inQ⇒ at q0)]) .

With standard elementary techniques, Φ is reduced into two formulas, i.e.,

((at q0⇒ ¬inQ) ∧ (¬inQ⇒ at q0)) ⇒ (¬inQ ⇒ (¬inQ ∨ at qw)) (1)
and
(¬¬inP ∧ (at q0 ⇒ ¬inQ) ∧ (¬inQ⇒ at q0)) ⇒ (¬inQ⇒ (at qc ⇒ ¬inP)) .

Comment. The first one should have been
(¬¬inP ∧ (at q0 ⇒ ¬inQ) ∧ (¬inQ⇒ at q0))⇒ (¬inQ⇒ (¬inQ ∨ at qw))

but inP occurred only once, and has therefore been replaced by its polarity T,
leading to formula (1). This transformation and some similar ones are automated
in caveat.2

The subformula tableau for formula (1) is given in Figure 1.
Each line of the subformula tableau corresponds to a node of the syntactic

tree of the formula (the tree is traversed depthfirst). Let us consider formula (1).
The polarity of the formula itself (root line a1) is F, meaning that our “goal”
(hopefully unreachable) is to falsify the (hopefully valid) formula a1. This for-
mula is an implication; it will be false if and only if its antecedent a2 is true and
1 Recall that each process is at exactly one location at a time; this location rule is

“wired in” caveat.
2 These simplifications are classical in resolution-based theorem provers; see e.g. [23].

219

Polarity Formula P-type S-type

a1 F
((at q0 ⇒ ¬inQ) ∧ (¬inQ⇒ at q0))

⇒
(¬inQ ⇒ (¬inQ ∨ at qw))

α −

a2 T (at q0 ⇒ ¬inQ) ∧ (¬inQ⇒ at q0) α α

a3 T at q0 ⇒ ¬inQ β α

a4 F at q0 − β

a5 T ¬inQ α β

a6 F inQ − α

a7 T ¬inQ⇒ at q0 β α

a8 F ¬inQ α β

a9 T inQ − α

a10 T at q0 − β

a11 F ¬inQ ⇒ (¬inQ ∨ at qw) α α

a12 T ¬inQ α α

a13 F inQ − α

a14 F (¬inQ ∨ at qw) α α

a15 F ¬inQ α α

a16 T inQ − α

a17 F at qw − α

Fig. 1. Subformula tableau for formula (1)

its consequent a11 is false. As a result, the polarities of a2 and a11 respectively
are T and F. Besides, the P-type (primary type) of a1 is α, meaning that a1 is
a conjunctive line.3 The S-type (secondary type) of a line if the P-type of its
father, so the root line has no S-type and the atomic lines (corresponding to
atomic subformulas) have no P-type.

The subformula tableau is used to construct the verification acyclic graph,
or VAG. The VAG corresponding to formula (1) is given in Figure 2 (left).

Each node in a VAG is a sequence of subformula indices; we distinguish
atomic and non-atomic indices, corresponding respectively to atomic and non-
atomic subformulas. The index i of an atomic subformula ai is printed in bold-
face. The VAG is constructed from root to leaves according to the following rule.
A node has successor(s) if it contains at least one non-atomic index i. If ai has
P-type α, there is only one successor, obtained by replacing i by j, k, where aj
and ak are the immediate subcomponents of ai (if ai is a negation, there is only
one subcomponent aj). If ai has P-type β, there are two successors, obtained

3 Conjunctive lines are denied implications, denied disjunctions, asserted conjunctions;
disjunctive lines (P-type is β) are asserted implications, asserted disjunctions and
denied conjunctions. P-type is not really relevant for unary connectives, but we
attribute P-type α to negations.

220

1

?
2, 11

?
3, 7, 11

?
3, 7, 12, 14

?
3, 7,13, 14

?
3, 7, 15, 17

?
3, 7,16
����)
PPPPq

4, 7
Q
Q
Q
Q
Q
Qs

?

5, 7

?
8

?

6, 7�

?
9 10

1 4, 9, 13, 16, 17 9, 13
2 4, 10, 13, 16, 17 4, 10
3 6, 9, 13, 16, 17 6, 9
4 6, 10, 13, 16, 17 6, 16

Fig. 2. Verification acyclic graph and path list for formula (1)

by replacing i by j and k, respectively. To save place, atomic indices of a node
are not inherited by its successor(s). Leaves contain atomic indices only. The
construction is non-deterministic, since a node can contain several non-atomic
indices (in Figure 2, selected indices are underlined). The strategy of considering
indices of P-type α first leads to a smaller VAG and is therefore adopted.
An example about formula (1). Three non-atomic indices 3, 7, 15 occur in node
(3, 7, 15, 17); only index 15 is of P-type α, so it is selected. There is only one
successor, obtained by replacing 15 by 16; besides, atomic index 17 is omitted.

It is now clear why the elementary claims introduced in paragraph 2.2 are
called paths : each claim corresponds to a (maximal) path in the VAG. The last
step of the connection method is to explore the VAGs and to list their paths.
Each path connects the root of the VAG to a leaf and is identified in the list
by the atomic indices occurring in the labels of its nodes. For instance, the first
path of the VAG corresponding to formula (1) is

1→ 2, 11→ . . .→ 3, 7,13, 14→ 3, 7, 15,17→ 3, 7,16→ 4, 7→ 8→ 9 ,
so this path will be identified as 4, 9, 13, 16, 17.

A formula is valid if each path of the corresponding path list contains a
connection. The path list for formula (1) is given in Figure 2 (right), with a
connection for each path. As a consequence, formula (1) is valid.

2.3 Concurrent construction and exploration of the VAG

An elementary but useful optimization consists in closing a path as soon as a
connection is detected in it. This gives rise to shortened VAGs and path lists;

221

those for formula (1) are given in Figure 3.

1

?
2, 11

?
3, 7, 11

?
3, 7, 12, 14

?
3, 7,13, 14

?
3, 7, 15,17

?
3, 7,16

1 3, 7, 13, 16, 17 13, 16

Fig. 3. Optimized VAG and shortened path list for formula (1)

2.4 The non-propositional case

The connection method reduces the problem of checking the validity of formula
Φ =def (a ∧ b ∧ c) ⇒ ¬(b⇒ ¬a)

to the problem of finding a connection within each element of the path list
Ψ =def ({T : a ; T : b; T : c ; F : b} , {T : a ; T : b; T : c ; F : a}) .

The second problem is trivial, but the reduction process itself is not. Now, let
us consider a rather similar case. The formula

Φ′ =def (x > y ∧ b ∧ c) ⇒ ¬(b⇒ x < y)
is valid if each path of the list
Ψ ′ =def ({T : x > y ; T : b ; T : c; F : b} , {T : x > y ; T : b ; T : c; T : x < y})

is connected. The first path contains a trivial, propositional connection (atom b
appears with both polarities) but the connection contained in the second path
is {T : x > y ; T : x < y}, which is non-propositional.4

The interesting point is that half the verification work (in this example)
remains within the propositional framework and hence fully automatic. Our
working hypothesis is that, for many “nearly finite-state systems”, most of the
invariant verification work will reduce to tautology checking and nearly all paths
(say 99.9 %) will be closed (a connection will be found) in an automatic way. The
main advantage we seek from our approach with respect to the more classical
theorem-proving approaches, is the inherent ability of the connection method
to “extract” the tiny fraction of the verification work which falls outside the
propositional framework. This fraction is then isolated from the rest, and dealt
4 More precisely, analysis of the “atoms” x > y and x < y is needed to detect that

they are contradictory.

222

with in a classical way; either we use a knowledge base and a theorem prover
that would tell us that x > y and x < y are not simultaneously satisfiable,
or we simply report to the user the sublist of unconnected paths. The example
presented in the next section illustrates what can be achieved even without ATP
(automatic theorem proving).

3 Ricart and Agrawala’s algorithm

It is now usual to verify some fine-grained version of a concurrent system by
first considering some coarser-grained version(s). This approach was already used
in [9] and [21] and is turned into a systematic method in [14] and [16]. We extract
from the latter [16, p. 43] an intermediate, medium-grained version of Ricart and
Agrawala’s N -process mutual exclusion algorithm, introduced in [27].

3.1 The algorithm and its invariant

The basic idea, as introduced in [27], is as follows. A node attempting to invoke
mutual exclusion sends a request to all other nodes. On receipt of the request,
the other nodes send an immediate reply or defer it. When all replies have been
received, the access to the critical section is granted. A deferred reply is delayed
until the replying node has completed its own access to the critical section.

Some notation is introduced, mostly in accordance with [27].

rcsp : p needs access to the resource;
[] : internal activity, able to alter rcs only;
RCS p : p requests access to the resource (Request Critical Section);
ORq

p : p waits for a reply from q (Outstanding Reply);
RDq

p : p defers a reply to q (Reply Deferred);
SNp : p has requested access at that time (Sequence Number)

(time-stamp, implementing Lamport’s “Bakery algorithm”);
SNp<SNq : p takes precedence over q;
time : monotonically increasing integer, models real time;
P : the set of nodes; P = {p, q, r, . . .};
N : the number of nodes; |P| = N ;
Pp : short for P\{p}; |Pp| = N − 1;
Xp : variable ranging over subsets of Pp.

The transitions of S are given in Figure 4 (for all distinct stations p and q).
In order to switch, say, from control location p2 to p3, node p has to send a

request to each member of Pp. In system S, theN−1 corresponding messages are
already modelled by N − 1 distinct transitions, but each of them remains rather
abstract and the communication itself is modelled by switching the Boolean
variable ORq

p from false (i.e. 0) to true (i.e. 1), just as if communications always
were reliable and timeless; system S is not very coarse-grained, but not really
fine-grained either. Also note that the N − 1 communications are performed in
arbitrary order; q ∈ Xp means, “node q has been issued the request from p”.
Intuitively, the predicate atq p3 means : “from the point of view of station q, the

223

(p0, ¬rcsp −→ [] , p0) ,
(p0, rcsp −→ (RCSp, SNp, time) := (1, time, time + 1) , p2) ,
(p2, q ∈ Pp\Xp −→ (ORq

p,Xp) := (1, Xp∪{q}) , p2) ,
(p2, Xp = Pp −→ Xp := ∅ , p3) ,
(p3, q ∈ Pp\Xp ∧ RCS q ∧ SNq < SNp −→ (RDp

q ,Xp) := (1,Xp∪{q}) , p3) ,
(p3, q ∈ Pp\Xp ∧ [¬RCS q ∨ SNp < SNq] −→ (ORq

p,Xp) := (0,Xp∪{q}) , p3) ,
(p3, Xp = Pp −→ Xp := ∅ , p4) ,
(p4, q ∈ Pp\Xp ∧ ¬ORq

p −→ Xp := Xp∪{q} , p4) ,
(p4, Xp = Pp −→ Xp := ∅ , p5) ,
(p5, rcsp −→ [] , p5) ,
(p5, ¬rcsp −→ RCSp := 0 , p6) ,
(p6, q ∈ Pp\Xp ∧ RDq

p −→ (RDq
p,ORp

q ,Xp) := (0, 0,Xp∪{q}) , p6) ,
(p6, q ∈ Pp\Xp ∧ ¬RDq

p −→ Xp := Xp∪{q} , p6) ,
(p6, Xp = Pp −→ Xp := ∅ , p0) .

Fig. 4. Abstract code of an intermediate version of R-A algorithm

place predicate at p3 is true”. Below is the formal definition of the latter and
other similar predicates.

atq p0 =def ((at p6 ∧ q ∈ Xp) ∨ at p0) ,
atq p2 =def (at p2 ∧ q ∈ Pp\Xp) ,
atq p3 =def ((at p2 ∧ q ∈ Xp) ∨ (at p3 ∧ q ∈ Pp\Xp)) ,
atq p4 =def ((at p3 ∧ q ∈ Xp) ∨ (at p4 ∧ q ∈ Pp\Xp)) ,
atq p5 =def ((at p4 ∧ q ∈ Xp) ∨ at p5) ,
atq p6 =def (at p6 ∧ q ∈ Pp\Xp) .

The invariant I is the conjunction, for all distinct p and q, of the assertions

1p : [Xp ⊂ Pp ∧ (at p05⇒ Xp = ∅)] ,
2p : [at p06 ≡ ¬RCSp] ,
3pq : [SNp 6=SNq ∧ SNp< time ∧ ((atq p5 ∧ RCS q) ⇒ SNp<SNq)] ,
4pq : [(RDp

q ⇒ ORq
p) ∧ (¬atq p3 ≡ (ORq

p ⇒ RDp
q))] ,

5pq : [(atq p6 ∧ atp q4) ∨ (RDq
p ≡ (atp q4 ∧ RCSp ∧ SNp<SNq))] .

(2)

Acceptable initial conditions are, for all distinct stations p and q,
at p0 ∧ Xp = ∅ ∧ ¬RCSp ∧ ¬ORq

p ∧ ¬ORp
q ∧ ¬RDq

p ∧ ¬RDp
q ∧ SNp 6=SNq .

3.2 What can be obtained in an automatic way ?

Our task is to use caveat in order to determine whether I really is an invariant
of system S. This system is typically “nearly propositional”. Most of the vari-
ables are Boolean; SNp and Xp are not, but SNp<SNq and q ∈ Xp are. Another
worrying point is the parameter N (number of nodes in the network). Clearly
enough, there exists a formula I(p, q) — in fact, the conjunction of formulas (2)
— such that the invariant really is

I =def ∀p ∀q 6=p I(p, q) .

224

Due to symmetry, we can now fix two specific distinct stations p and q and
decide that only the transitions explicitly written in Figure 4 ought to be checked
against invariant I. Now, we have 14 transitions to consider instead of O(N2),
but the size of the invariant is still O(N2). We cannot similarly reduce the triple
{I}τ{I} to the triple {I(p, q)}τ{I(p, q)}. However, we can reduce the triple
{I}τ{I} to the family of N ∗ (N − 1) triples {I}τ{I(p′, q′)}. We can further
observe that, what matters about p′, q′ are whether they belong to {p, q} or
not. Let us now assume that p, q, r, s are four distinct stations (and therefore,
that N ≥ 4). We can reduce the aforementioned family of triples to only seven
triples,5 listed below :

1. {I} τ {I(p, q)} ,
2. {I} τ {I(q, p)} ,
3. {I} τ {I(p, s)} ,
4. {I} τ {I(r, q)} ,
5. {I} τ {I(s, p)} ,
6. {I} τ {I(q, r)} ,
7. {I} τ {I(r, s)} .

Triple 3, for instance, serves as a pattern for N − 2 triples of the family since s
stands for any node distinct from p and q.6

A similar reduction can be operated on the precondition. For instance, triple 1
can be replaced by

{I(p, q) ∧ I(q, p) ∧ I(p, s) ∧ I(r, q) ∧ I(s, p) ∧ I(q, r) ∧ I(r, s)} τ {I(p, q)}

Such a triple, when fully developed, is a finite piece of text. The corresponding
formula Φ is truly propositional, provided that predicates like SNp < SNq and
q ∈ Xp are considered as atoms (we call pseudo-atoms these predicates; true
atoms are location predicates and Boolean variables). The connection method
will work, but only connections involving atoms will be detected with cer-
tainty (they contain the same atom with both polarities). Connections involving
pseudo-atoms can remain undetected. For instance,

{T : SNp < SNq, F : SNp < SNq}
will be detected, but

{T : SNp < SNq, T : SNp = SNq}
will not. The simple default strategy followed by caveat is to suppose that
when a path can not be closed using atoms only, pseudo-atoms form a connec-
tion. Such paths are collected, and the suspected connections are put into a table
to be validated by the user. Even if, say, 1000 paths contain connections involv-
ing pseudo-atoms, it is possible that only a dozen distinct connections exist. So
caveat should sort the paths according to suspected connections, in order to
minimize the work performed by the user.
5 Only four triples are needed if N = 3, and two triples if N = 2.
6 Taking symmetry into account may allow to reduce the number of assertions and

the number of transitions. The favourable case (as for this version of Ricart and
Agrawala’s algorithm) occurs when these numbers become true constants (indepen-
dent from the size N of the network, or from any other parameter). An example of
the unfavourable case is reported in [14].

225

3.3 What is obtained using caveat ?

The main data file for caveat contains the program to be verified. The decla-
rations are rather standard and omitted here. The languages for transitions and
assertions are slightly adapted from those used in Figure 4 and Formula (2).

Two differences exist between the real code and the abstract code in Figure 4.
First, [] becomes skip, since it does not interfere with the invariant. Second, the
set Xp is implemented as a Boolean array XP, with XP[q] meaning q ∈ Xp (we
suppose that XP[p] is true, although that does not really matter). The constant
XPempty is such that XPempty[q] holds only if q=p; the variable XPCard records
the number of true elements in the array XP. The transformation induced in the
real code is straightforward.

The main data file also contains the invariant to be verified.
caveat generates and explores the VAG for each of the 14 transitions; if the

invariant to be checked is I(p, q)∧I(q, p), this takes ten minutes (SUN Sparc 10)
since, in spite of the simplifications introduced above, the path list remains long.7
However, most of the paths are closed by the system, and the set of “suspected
connections” submitted to the user is short : 11 small sets, all of which being
inconsistent. Here they are, in abstract notation :

1. {F : SNq = SNp, F : SNq < SNp, F : SNp < SNq} ,
2. {T : SNp < SNq , T : SNq < SNp} ,
3. {F : q ∈ Xp, T : |Xp| = N} ,
4. {T : q ∈ {p}} ,
5. {T : SNq < time, T : time = SNq} ,
6. {T : |Xq| = 1, T : p ∈ Xq} ,
7. {F : time < time + 1} ,
8. {T : |Xp| = 1, T : q ∈ Xp} ,
9. {T : SNq < time, T : time < SNq} ,

10. {T : SNq < time, T : SNq = time} ,
11. {T : SNq < time, F : SNq < time + 1} .

In this favourable case, caveat succeeds in isolating exactly the (tiny) non-
propositional part of the verification work; in order to understand the program,
the user has to know that all the eleven small lists of formulas given above are
inconsistent.8

3.4 Limitations of caveat

Within the restricted, but important subclass of programs caveat is intended
to validate, two worrying limitations have been found. First, the gap of running
time between the short version of the invariant, i.e.

I(p, q) ∧ I(q, p)
and the full version, i.e.
7 Nearly twenty hours are needed for the full version of the invariant, i.e.

I(p, q) ∧ I(q, p) ∧ I(p, s) ∧ I(r, q) ∧ I(s, p) ∧ I(q, r) ∧ I(r, s) .
8 Observe that, although the invariant is symmetric w.r.t. p and q, the code is not,

and neither is the connection set.

226

I(p, q) ∧ I(q, p) ∧ I(p, s) ∧ I(r, q) ∧ I(s, p) ∧ I(q, r) ∧ I(r, s) ,
is clearly not acceptable (ratio is worse than 1 to 100), especially since the
last five assertion groups of the full version are mostly trivial. This limitation
prevents us for now to consider larger, more realistic systems. Techniques for
decomposing invariants are currently investigated.

Second, caveat is not efficient for parametric systems whose parameter is not
the number of processes. An example is Stenning’s “sliding window” protocol,
where the parameter is the size of the window. The problem is that quantifica-
tion elimination is more difficult in this case, and leads to longer propositional
formulas.

3.5 A necessary extension

caveat is inspired by the classical idea that the best way to validate (the safety
part of) the specifications of a concurrent system is to provide an appropriate
invariant. However, as many designers are already reluctant to write specifica-
tions in a formal way, they are even less likely to be willing to also provide
the invariant. Indeed, although the invariant is usually not more complex than
the program code, it is more complex than the specification and not obvious to
derive. The conclusion is that the construction of the invariant itself should be
automated as much as possible.

The point of view adopted in [14, 16] is to view the system under study,
say Sn, and its invariant In, as the last pair of a sequence ((Sk, Ik) : k ≤ n) of
“specified systems”. Small transformation steps lead quite systematically from
one version to the next, and the initial system S0 is very abstract, so the con-
struction of its invariant I0 is usually easy. As can be seen in [16], the de-
sign/verification process is quite lengthy but much more time was devoted in
verifying the “candidate-invariants” (by hand) than in their actual construction;
this construction will be integrated in the next version of caveat. Note however
that the construction process is not always amenable to automation. The exer-
cise considered in [14] is probably a worst case in this respect. The extension to
liveness and other temporal properties may be possible, using e.g. the technique
reported in [15].

4 Related work

Several successful experiments have been made in combining model checking and
theorem proving. In [19], an 8.2m-bit multiplier is verified in this way. The prin-
ciple is to verify the basic component of the multiplier, i.e., the 8-bit multiplier,
by model-checking. Theorem proving (in temporal logic) is used to validate the
recursive way in which fourN -bit multipliers are combined to form a 2N -bit mul-
tiplier. This approach takes full benefits of the now powerful implementations
of model-checking algorithms, but applies to a more restricted class of programs
than ours. The reason is that many parametric systems (including Ricart and
Agrawala’s algorithm) cannot be decomposed into non-parametric ones.

227

In this paper, we avoid this decomposition problem and consider the sys-
tem to be verified as a whole. Simplification is performed on the verification
conditions. As a result, we do not use model-checking, but tautology-checking.

Our approach is more similar to the approach reported in [25]. The system
STeP uses model-checking whenever possible, and reverts to (temporal) theo-
rem proving when model-checking fails. STeP does not rely on our incremental
approach for obtaining invariants, but attempts to synthesize invariants directly
from the program code. It also integrates various simplification methods, includ-
ing two decision procedures for Presburger arithmetic (the first one is efficient,
the second one is complete). STeP does not appear to achieve a full separa-
tion between the automatic part and the ATP-supported part, which is one of
our main objectives. Indeed, in our opinion, this separation allows to reduce
the ATP-part to short and elementary formulas, for which complicated ATP
techniques are not really needed.

The incremental approach that is currently integrated in caveat is not the
only way to transform concurrent systems, from higher-level to lower-level ver-
sions. Other approaches might be amenable to partial automation, for instance
those refining atomicity with a reduction principle [2, 22], those using refinements
and hierarchical design [24, 18] or phase decomposition [10, 28], and those based
on property preserving abstractions [4, 12].

Symbolic model-checking and tautology-checking can be improved by using
(ordered) binary decision diagrams [6]. This approach is followed in [7], and
successfully applied to the verification of a simple synchronous pipeline. Besides,
using Boolean automata can be more effective than using Boolean formulas, and
this kind of approach is not restricted to investigating concurrent systems [17].
First experiments with (O)BDD in caveat have not been encouraging, however,
since we lack an effective procedure for ordering atoms and pseudo-atoms. No
experiment has been made yet in the area of digital circuits.

References

1. K.R. Apt and D.C. Kozen, Limits for Automatic Program Verification, Inform.
Process. Letters 22 (1986) 307-309.

2. R.J. Back, A Method for Refining Atomicity in Parallel Algorithms, PARLE’89,
Lect. Notes in Comput. Sci. 366 (1989) 199-216.

3. R.J. Back and R. Kurki-Suonio, Distributed co-operation with action systems,
ACM Trans. Programming Languages Syst. 10 (1988) 513-554.

4. S. Bensalem et al., Property Preserving Abstractions for the Verification of Con-
current Systems, to appear in Formal Methods in System Design (1994).

5. W. Bibel, Deduction – Automated Logic, Academic Press, 1993.
6. R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE

Trans. on Computers C-35 (1986) 677-691.
7. J.R. Burch et al., Symbolic Model Checking: 1020 States and Beyond, Proc. 5th.

Symp. on Logic in Computer Science (1990) 428-439.
8. E. Clarke, E. Emerson and A. Sistla, Automatic Verification of Finite-State Con-

current Systems Using Temporal Logic Specifications, ACM Trans. Programming
Languages Syst. 8 (1986) 244-263.

228

9. E.W. Dijkstra and al., On-the-Fly Garbage Collection: An Exercise in Cooperation,
Comm. ACM 21 (1978) 966-975.

10. T. Elrad and N. Francez, Decomposition of Distributed Programs into
Communication-closed Layers, Sci. Comput. Programming 2 (1982) 155-173.

11. D.M. Goldschlag, Mechanically Verifying Concurrent Programs with the Boyer-
Moore Prover, IEEE Trans. on Software Eng. 16 (1990) 1005-1023.

12. S. Graf, Verification of a distributed Cache memory by using abstractions, Lect.
Notes in Comput. Sci. 818 (1994) 207-219.

13. E.P. Gribomont, Synthesis of parallel programs invariants, TAPSOFT’85, Lect.
Notes in Comput. Sci. 186 (1985) 325-338.

14. E.P. Gribomont, Stepwise refinement and concurrency : the finite-state case, Sci.
Comput. Programming 14 (1990) 185-228.

15. E.P. Gribomont, Design, verification and documentation of concurrent systems, in
Proc. 4th. Refinement workshop, J.M. Morris and R.C. Shaw (Eds), pp. 360-377,
Springer-Verlag, 1991.

16. E.P. Gribomont, Concurrency without toil : a systematic method for parallel pro-
gram design”. Sci. Comput. Programming 21 (1993) 1-56.

17. N. Halbwachs and F. Maraninchi, On the symbolic analysis of combinational loops
in circuits and synchronous programs, REACT Report, 1994.

18. B. Jonsson, Compositional Specification and Verification of Distributed System,
ACM Trans. Programming Languages Syst. 16 (1994) 259-303.

19. R.P. Kurshan and L. Lamport, Verification of a Multiplier : 64 Bits and Beyond,
CAV’93, Lect. Notes in Comput. Sci. 697 (1993) 166-179.

20. R.P. Kurshan and M. McMillan, A structural induction theorem for processes,
Proc. 8th ACM Symp. on Principles of Distributed Computing, Edmonton (1989).

21. L. Lamport, An Assertional Correctness Proof of a Distributed Algorithm, Sci.
Comput. Programming 2 (1983) 175-206.

22. L. Lamport and F.B. Schneider, Pretending Atomicity, DEC SRC Rep. 44, May
1989.

23. R. Letz, J. Schumann, S. Bayerl and W. Bibel, SETHEO : A High-Performance
Theorem Prover, Jl. of Automated Reasoning 8 (1992) 183-212.

24. N.A. Lynch and M.R. Tuttle, Hierarchical Correctness Proofs for Distributed Algo-
rithms, Proc. 6th ACM Symp. on Principles of Distributed Computing, New-York
(1987) 137-151.

25. Z. Manna et al., STeP : the Stanford Temporal Prover (Draft), June 1994.
26. J.S. Moore, Introduction to the OBDD algorithm for the ATP Community, Jl. of

Automated Reasoning 12 (1994) 33-45.
27. G. Ricart and A.K. Agrawala, An optimal algorithm for mutual exclusion, Comm.

ACM 24 (1981) 9-17 (corrigendum : Comm. ACM 24 (1981) 578).
28. F. Stomp and W.P. de Roever, A principle for sequential phased reasoning about

distributed systems, Formal Aspects of Computing 6 (1994) 716-737.
29. M.Y. Vardi, P. Wolper, An Automata-Theoretic Approach To Automatic Program

Verification, Proc. Symp. on Logic in Comput. Sci., Cambridge (1986) 322-331.
30. P. Wolper and V. Lovinfosse, Verifying Properties of large Sets of Processes with

Network Invariants, CAV’89, Lect. Notes in Comput. Sci. 407 (1990) 68-80.
31. L. Wallen, Automated Deduction in Nonclassical Logics, MIT Press, 1990.

229

What if Model Checking Must Be Truly Symbolic∗

Hardi Hungar
OFFIS, Oldenburg

hungar@informatik.uni-oldenburg.de

Orna Grumberg
The Technion, Haifa
orna@cs.technion.ac.il

Werner Damm
University Oldenburg

damm@informatik.uni-oldenburg.de

Abstract

There are many methodologies whose main concern it is to reduce the complexity of a verification
problem to be ultimately able to apply model checking. Here we propose to use a model checking like
procedure which operates on a small, truly symbolic description of the model. We do so by exploiting
systematically the separation between the (small) control part and the (large) data part of systems which
often occurs in practice. By expanding the control part, we get an intermediate description of the system
which already allows our symbolic model checking procedure to produce meaningful results but which is
still small enough to allow model checking to be performed.

1 Introduction

This paper is about a close marriage of two well known verification paradigms: that of model checking and
generation of verification conditions. There is no need for reiterating the success story of model checking
in the verification of reactive systems originating with the seminal paper by Clarke, Emerson and Sistla on
CTL model checking [7]; indeed it is safe to say that the combination of (so-called) symbolic techniques [6],
abstraction [8] and compositional reasoning [15, 18] have rendered this technology to a state where industrial
usage is feasible.

But beyond doubt even those combined approaches are inadequate for a complete verification of the
majority of designs. In particular, applications with large or complicated data parts will escape them. We
will bring in the generation of verification conditions to overcome some of the limitations.

The story of generation of verification conditions dates back to Floyd’s seminal paper [13] from 1967. A
large body of research has been conducted over the years on sequential program verification for increasingly
more complex programming language constructs [1]. More recently, parallel programming languages [2]
have also been extensively investigated. However, the inherent complexity of the task and less stringent
commercial need for formally verified software systems has impeded industrial applications of this technology.
A few exceptions mainly come from the area of secure systems.

The arguments impeding industrial applications of software verfication do not hold if we look at systems
closer to the hardware level. For such systems, the incentive to avoid errors is higher. Moreover, many
of them combine data and control in a way that enables simplifying or even automating large parts of the
verification.

In this paper we will show a method that avoids some of the difficulties with verification condition
generation. We will demonstrate how model checking techniques may be used to reduce automatically
first-order temporal logic specifications to simpler verification conditions. These conditions concern either
purely sequential behavior of subsystems or first-order data properties. Our procedure is very different
from what is usually called “symbolic” model checking, which operates on codes for the state sets of the
system. Here, we represent data and data operations by first-order formulas and substitutions, similar to
their respective representations in the specification logic and the system description language. We called
this “truly symbolic” in contrast to the coding approach of “symbolic” model checking.

∗This research has been funded in part by the MWK under No. 210.3 - 70631 - 99 - 14/93. The views and conclusions
contained in this document are those of the authors.

230

The class of applications we aim at include processors where the data path is simply too wide to be reason-
ably considered finite state, or embedded control applications, where complex interfacing logic is combined
with sometimes nontrivial computations on sampled data (e.g. solving differential equations numerically).
These applications have in common, that there is a clear separation between the handling of control and
data. I.e.:

• The pipelined execution of a RISC instruction is solely determined by the instruction type, the pipeline
stage, and other state information collected in the controller, which together constitute the control
part of the design; register contents as well as address fields etc. form the data part and are evaluated
separately and do influence control only sparsely.

• In embedded control applications it is the control part which governs the interaction between the
controller and the controlled system (determining e.g. the sampling rate, strobes, etc.); whenever
sampled data are latched into the controller, it initiates the data part of the computation, causing a
possibly complex but terminating evaluation.

We find the perfect match for our approach when the data part does not affect control at all. In this case, we
show that specifications can be tested by conventional model checking on the control part of the system. If
the test result is negative, not only the control part of the specification, but also the complete specification
involving data is not satisfied by the system. A positive result, on the other hand, tells that the control part
of the specification is true in the complete system.

Specifications (and systems) which survive this test phase may then be analyzed more thoroughly. For
that, we propose a method that generates first-order verification conditions. This phase does not require
a complete separation of control from data. The restriction on their interdependence is more relaxed.
Therefore, this phase is applicable also to systems for which the test phase is not.

The procedure we apply is based on a first-order extension of local model checking in the style of [22],
using the control information present in the system description to investigate only those first-order aspects
of the model consistent with the required behavior of its control part. The first-order verification conditions
to be generated appear as success conditions of the model checking procedure. A sufficient criterion for
the generation to be performed completely automatically is that the control part only allows a bounded
number of computations on the data. This criterion subsumes e.g. Wolper’s data independence property
[23], which forbids any computation on data. Sometimes it is possible to transform a system description
which does not meet our criterion to one which does. A loop which computes on data may be replaced by a
finite (first-order) representation of its effects. This generates a sequential verification condition which can
be treated separately.

Our approach differs from others addressing the verification of first-order temporal logic specifications mainly
by exploiting the above separation between control and data to achieve a high degree of automation of the
verification process. Also, its scope of application certainly goes beyond what can be done in others.

Approaches based on abstraction [8, 14] and, to some extent, [11] try to reduce the state space to a small
resp. finite one, where the proof engineer is required to find suitable abstractions for program variables. In our
approach, the verifyer’s main involvement is in deciding which variables to consider as control. Remaining
are of course first-order and sequential verification conditions. But even these may often be discharged
automatically, e.g. if each single data loop can be handled by BDD-techniques after it is extracted from the
context of the rest of the system.

More similar results involving data/control separation can be found in [17] where another generalization
of Wolper’s data independence is pursued. Due to the different system description format used there,
separation has a different meaning and thus the results are complementary to ours. However, [17] does not
even attempt to cope with data computations, and does not include techniques for first-order verification
condition generation.

Verification techniques in the style of [20] which underly e.g. procedures of the STEP system [19] are
closer to our approach. Indeed, one could certainly integrate a variant of our generation method as one
subprocedure of STEP, suited to deal with a specific class of problems.

Although our techniques and results are rather independent from the overall framework, we chose one
particular for their demonstration.

231

Our specification logic is FO-ACTL, a first-order version of ACTL (which resembles CTL, but allows only
universal path quantifiers). The programming language might be thought of as being VHDL, stripped to its
semantical essence: a flat parallel composition of sequential processes, which are essentially while-programs
extended by one communication construct inspired from VHDL’s wait statement called step. A step can
only be executed jointly by all processes and thus serves as a synchronization barrier ; whenever the processes
synchronize in a step, they exchange information through typed in- resp. outports. All local computations
(between steps) work only on local variables.

A program is given as a transition system in which the transitions are annotated by the actions performed
between states. Such a program stands for a (possibly infinite-state) Kripke structure, whose states represent
the current position in the program and the current variable valuation. Halfway to this large Kripke structure,
we have the control-expanded program, where only control valuations are explicitly coded into the states and
operations on the data variables still annotate the transition symbolically, in the same way as in the original
program. This is the structure on which our verification procedures operate.

The test whether a specification is consistent with control of the system is performed by stripping the
control-expanded program from its data annotations (e.g. turning branches governed by data dependent
predicates into nondeterministic choice). This process may introduce nonterminating loops which, if data
were considered, would always terminate. In the stripped program, these loops get annotated by fairness
constraints ensuring their eventual termination. The validity of a similarly stripped formula will then be
evaluated using standard (i.e. propositional) model checking. The data/control separation we require in the
original program guarantees that this evaluation approximates validity of the specification in the desired
way.

The verification condition generation essentially collects data operations on those paths through the
control-expanded model which justify the specification. Besides the sufficient criterion mentioned above
which guarantees fully automatic verification condition generation, the procedure works in several other
cases as well (which do not seem to have a nice characterization).

The paper is organized as follows. Having developed the programming language and its semantics including
the control-expanded program and its stripped version in Section 2, Section 3 defines the logic as well as
a stripping operator on formulas, reducing them to their control aspects. Section 4 develops the theory to
provide the quick test of validity of a FO-ACTL formula, while the generation of verification conditions is
described in Section 5.

A fully formal development of our method would require numerous definitions and constructions, which
would be impossible to fit into the available space. So we appeal to the reader’s intuition whenever a concept
is introduced not rigorously but informally or by example.

2 Semantical Foundation

This section introduces the programming language and its semantics. We treat a toy language vaguely
similar to VHDL; any other parallel programming language would serve the purpose of this paper. The
main novel notion introduced is that of a control-expanded program, which makes the distinction between
data and control aspects of a program explicit, thus providing the semantic basis of the subsequent sections.

Programs in our toy language consist of a flat parallel composition P1‖ . . .‖Pr of sequential processes.
We retain from VHDL that processes communicate over ports, which in our toy language almost reduce to
read-only variables modelling inports resp. write-only variables modelling outports. In contrast to variables,
updates of ports are possible only when executing a step-statement discussed below.

Process definitions are of the form

process <process-declarative-part> begin <sequential-statement> end.

The process declarative part of a process P defines in particular the sets of its in- resp. outports IP resp.
OP , and VP of P ′s local variables. We require ports and variables to be initialized and omit the index P
whenever it is understood from the context. Its body is given by a so-called sequential statement , which is
executed continuously as if enclosed in a do forever loop. We allow, like VHDL, standard statements such
as variable assignments, if-, case-, and while- statements, and sequential composition. Given an assignment

232

v:=e, we will call v the sink of the assignment. In our toy language we have collapsed signal assignments
and wait statements from VHDL in the step statement taking the form

step(in v1, . . . , vm; out e1, . . . , en) .

A step statement is executed iff all processes are willing to do a step; in this case, P ’s inports IP = {i1, . . . , im}
are copied into the local variables v1, . . . , vm, while its outports OP = {o1, . . . , on} take values determined by
expressions e1, . . . , en. For simplicity, we assume that ”wiring” of ports is given by equality of port names,
hence the collection of all ports are variables shared between all processes, which are updated only in the
disciplined style provided by the step statement; in VHDL jargon, this restriction would correspond to using
only signal assignments with delta delay. We also require that for each port p there is at most one process
assigning a value to p.

Our language is strongly typed; for the purpose of this paper we simply assume a collection of types with
typical element τ . Example types are bool, bit, integer, real, bitvector, array, and enumeration types.
At latest at verification time we assume, that types are classified in two modes, data and control , with the
obvious restriction that the domain Dτ of expressions of type τ is finite whenever τ is of mode control . This
classification of types induces a classification of ports and variables.

As a simple example, consider the program from Fig. 1. Depending on the value of the boolean input
op, until the next step the program either computes res:=arg*2 or - by executing a terminating loop -
res:=arg^2. A typical choice of modes is to consider the inport op and the corresponding local variable c
to be of mode control .

process small
in op: bool := f, arg: nat := 0
out res: nat := 0
var x,y,z: nat := 0, c: bool := f
begin

step(in c, x; out z);
if c

then z:= x+x
else y:= x; z:= 0;

while y>0
do
y:= y-1; z:= z+x

od
fi

end

y>0

¬y>0

c/

y:=x

z:=x+x

z:=0

c:=op
x:=arg

¬c

op:=?
arg:=?
res:=z

y:=y-1

step

rts

z:=z+x

Figure 1: Example program and its flowchart

We use a variant of labeled transition systems as intermediate models for the semantics of our toy
language. As a first step, a program is translated into a flowchart which represents the flow of control
in a graphical format, see again Fig. 1 for an example. States in the flowchart correspond to positions in
the program. They are labeled by rts, step or none to indicate whether in that position, the program
is willing to engage in a step action, performing a step, or doing neither. To get the second intermediate
model, the values of variables and ports of mode control get expanded : Their values will then be represented
explicitly in the states. This results in a structure we call the control-expanded program, denoted CEP . It
is this control-expanded program on which the verification condition generation will operate. Removing the
transition labels yields the stripped CEP or SCEP , which will allow tbe propositional test of specifications.
If, instead of removing the transition labels, we expand all variables, we get the fully expanded program,
or FEP . The FEP is a Kripke structure. Its states include a valuation of all variables and ports, and
its transitions are not labeled any more. This Kripke structure is the reference structure for defining the
satisfaction relation between first-order temporal logic formulas and processes of our toy language.

233

For the more formal development, we fix a set of inports I, outports O, and variables V , and abbreviate
V ∪ I ∪O by Var .

A labeled symbolic transition system over I, O, V assumes a classification of each element of Var as either
being expanded (Varexp) or symbolic (Varsymb). It is an (ordinary) labeled transition system whose state
space consists of pairs of so called control points from a finite set S and valuations of the expanded variables
Varexp collected in the set Γ. Its transitions are labeled by an enabling condition on the symbolic variables
and a set of assignments to symbolic variables. We use s (resp. γ) as meta variables for control points (resp.
valutations of expanded variables). The initial value of expanded variables is given by a designated valuation
γ0, while the initial valuation of symbolic variables is given by a set of initial assignments Ainit. The initial
control point is designated s0. The (standard) labeling function of states L assigns to any control point
atoms of our logic in the set {rts, step,none}. Assignments are of the form v:=e s.t. v and all variables
occurring in e are symbolic. All sinks of assignments occuring in one transition label must be mutually
distinct. Moreover we require, that sinks of assignment are local variables, except for transitions originating
from control points labeled rts, where also assignments to outports are allowed.

Collecting all items into a structure yields an eight-tuple (S,Γ, L, R, V arexp, s0, γ0, Ainit) as constituents
of a labeled symbolic transition system M . Flowcharts, CEPs and FEPs are all instances of symbolic labeled
transition systems. So the flowchart in Fig. 1 constitutes an example with Varexp = ∅ (only that the initial
assigmnments “op := c := f, arg := out := x := z := y := 0” have been omitted in the picture). In
a CEP , the expanded variables are those of mode control , while in the FEP , the set Varexp consists of all
variables (i.e. it equals Var and Varsymb is empty.

We translate processes of our toy language into flowcharts by induction on the structure of processes. With
each statement, we associate a canonically derived flowchart with a unique entry- and exit control-point,
which are used in the inductive definition as gluing points. Since the definition is otherwise routine, we only
discuss the semantics of the step statement in detail.

The flowchart of step(in v1, . . . , vm; out e1, . . . , en) has three control points s0, s, se labeled rts, step,
none, respectively. In s0 the process is willing to synchronize with its brother processes. If and only if this
happens - as modeled in the definition of the product of the transition systems at the end of this section -
it will pass to the designated control point s representing the passage of the synchronization barrier. The
transition from s0 to s is labeled by random assignments for all inports, which guess the value produced by
some brother process during this synchronization step, as well as a collection of assignemts to its outports
with the expressions occuring in the step statement. More formally,

tt / i1 := ?,. . ., im := ?, o1 := e1,. . ., on := en

labels the transition connecting s0 and s. The subsequent postlude transition copies the values received
through inports into the local variables specified in the step statement:

tt / v1 := i1,. . ., vm := im

Compound statements are handled trivially by appropriate gluing and possibly introduction of fresh control
points, e.g. using fresh s0, se in the semantics of if b then π0 else π1 fi to relate s0 with the entry point
of π0 using a transition labeled with b and the entry point of π1 labeled ¬b. The exit points of πi are linked
with the new exit point.

The flowchart semantics of process P , FC [[P]] , is obtained from the semantics of its body by relating its
exit point with its entry point and adding as set of initial assignments those canonically induced from P ’s
process declarative part.

The semantics of programs is given by defining a parallel composition operator on labeled symbolic
transition systems capturing VHDL’s communication and synchronization semantics. Since synchronization
is only required at steps, all transitions except for those relating control-points labeled rts with step control
points can be taken in any order, e.g. in an interleaved fashion. Transitions handling the step are taken
in lock step, replacing random values assigned to inports by those expressions provided by the processes
running in parallel. Due to space restrictions, we do not discuss this in detail; the reader might refer to [10]
for a full definition of the comparable operator of VHDL.

Let us now turn to the process of expanding a labeled symbolic transition system M . Fig. 2 shows an
expansion of our example flowgraph.

234

To the right, the result of ex-
panding the variable c and the
port op in the flowgraph from
Fig. 1 is shown. This is the CEP
belonging to the example pro-
gram. The picture omits initial
assignments and does not con-
tain unreachable states.

Figure 2: Example CEP

res:=z
arg:=?arg:=?

res:=z

arg:=?
res:=z res:=z

arg:=?

c=f
op=f

step
c=f
step
op=t

step
op=f

c=t
op=t

c=t
op=t

z:=x+x

y:=x

z:=0

c=f
op=f

rts
c=t
rts

step
c=t

y>0

x:=arg x:=arg x:=arg

¬y>0

x:=arg

s0

s7s2

s3

s5

op=f
c=f

op=f
c=f

op=f
c=f

y:=y-1
z:=z+x

c=f
op=f

s4

s1 s6 s9 s10

s8
op=t

Each symbolic variable v ∈ V arsymb can be expanded separately. The expansion of M w.r.t. v is
obtained by essentially substituting each occurrence of v in transition labels by its value now represented in
the valuation component of states. The only situation deserving special attention arises, whenever v occurs
as the sink of an assignment v := e in a transition label. In this case, the assignment is deleted from the
transition label. But the query d = e is added to the condition part of the transition leading to a state where
v is evaluated to a value d. Expanding the variables and ports of mode control in the flowchart FC [[P]] of
a program yields its control-expanded version, CEP [[P]]. Expanding all variables gives the fully expanded
program FEP [[P]].

By abstracting from data annotations, any labeled symbolic transition structure turns into a classical Kripke
structure allowing safe model checking of properties related only to expanded variables and the synchroniza-
tion atoms, provided the expanded structure is finite. The next section shows that this abstraction, called
the stripped transition system, enriched by suitable fairness constraints, may in fact be a precise abstraction
for such formulas under some additional assumptions. The definition of stripping is trivial: for a labeled
symbolic transition system M we simply delete all transition labels, thus replacing conditional selection by
nondeterminism. We are only interested in the stripped version of the control-expanded program, and will
denote this structure by SCEP [[P]].

When the program P is understood from the context, the parameter [[P]] will be omitted and we will simply
write FEP or CEP . For ease of exposition we will assume in the following that all control variables are of
type bool (instead of an arbitrary finite type).

3 The Logic

The logic FO-ACTL (first-order ACTL) is a branching-time first-order temporal logic. It is similar to the
propositional temporal logic ACTL (universal CTL) except that it is defined over first-order atomic formulas.
Following Emerson [12], a formula in the logic is interpreted over a Kripke structure and an interpretation
which is fixed for all states of the Kripke structure.

Similarly to propositional ACTL, FO-ACTL provides only universal path quantifiers. To avoid the
invocation of existential path quantifiers via negations, the logic is given in a positive normal form in

235

which negations are applied only to atomic formulas. Since only universal path quantifiers are allowed, path
quantifiers are left implicit in the syntax. Thus, φU ψ represents the ACTL formula A(φU ψ) and similarly
for any other temporal operator.

Definition 1 (FO-ACTL) Let L be a first-order language over some signature and let Var be a set of
(typed) variables. A formula in our logic is defined inductively as follows:

1. Every first-order formula of L over Var is an atomic formula.

2. rts, step, none are atomic formulas.

3. If p is an atomic formula then ¬p is a formula.

4. If φ and ψ are formulas and x ∈ Var then φ ∨ ψ, φ ∧ ψ, ∃x.φ, ∀x.φ are formulas.

5. If φ and ψ are formulas then X φ, φU ψ and φW ψ are formulas.

The operator U is the usual until . I.e. φU ψ requires to eventually reach a state satisfying ψ and not
violate φ before that event. W is weak until and allows the formula to the left to hold forever.

We use the following abbreviations:

Fφ = tt U φ and Gφ = φW ff .

Let Int be an interpretation for L over domains Dτ for occurring type τ . The semantics of FO-ACTL
formulas is defined with respect to an interpretation Int and a Kripke structure K. For simplicity we denote
T = S×Γ and omit the empty set of assignments Ainit in K. For t = (s, γ), with a slight abuse of notation,
we use L(t) and t(v) instead of L(s) and γ(v). A Kripke structure has now the form K = (T, L, R,Var, t0).
A path in a Kripke structure K is a sequence, π = w0, w1, . . ., such that for every i, (wi, wi+1) ∈ R.

K, Int, t |= φ denotes that the formula φ is true in state t of structure K under interpretation Int. If
clear from the context, Int is omitted.

We sometimes want to restrict our attention to fair paths only, based on some given fairness criterion
F that characterizes fair paths. We use K, t |=F φ to denote that φ holds at t in K with respect to the
fair paths only. In particular, the relation |=F for the temporal operators X , U , and W is defined with
respect to every fair path rather than with respect to every path.

In the sequel, we will only consider specifications that do not contain the next-time operator. This
operator will be used, however, in the tableau construction in Section 5.

Stripped formulas Given a specification written in FO-ACTL, we extract its propositional part by apply-
ing the strip operator. The strip operator eliminates all first-order components of the formula, thus results
in a propositional ACTL formula. Data-dependent parts of the formula are replaced by tt, so the stripped
formula will be more often true.

Definition 2 (stripped formula) Let Varc ⊆ Var be a set of boolean (control) variables and let φ be a
FO-ACTL formula, strip(φ) with respect to Varc is defined as follows.

1. strip(p(v1, . . . , vk)) = p(v1, . . . , vk); strip(¬(p(v1, . . . , vk))) = ¬(p(v1, . . . , vk)) if v1, . . . , vk ∈ Varc.

2. strip(p(v1, . . . , vk)) = strip(¬p(v1, . . . , vk)) = tt if some variable vi 6∈ Varc.

3. strip(l) = l; strip(¬l) = ¬l for l ∈ {rts, step,none}.

4. strip(φ ∨ ψ) = strip(φ) ∨ strip(ψ).

5. strip(φ ∧ ψ) = strip(φ) ∧ strip(ψ).

6. strip(∃x.φ) = strip(φ[tt/x]) ∨ strip(φ[ff /x]) for x ∈ Varc.

7. strip(∀x.φ) = strip(φ[tt/x]) ∧ strip(φ[ff /x]) for x ∈ Varc.

236

8. strip(∃x.φ) = strip(∀x.φ) = strip(φ), for x 6∈ V arc.

9. strip(φU ψ) = strip(φ) U strip(ψ).

10. strip(φW ψ) = strip(φ) W strip(ψ).

Lemma 3 If φ is a FO-ACTL formula then strip(φ) with respect to V arc is a propositional ACTL formula
over V arc.

Example: Consider two specifications for the example in Figure 1, where op is a control variable and arg,
res and x are data variables. Let φ1 = (F rts) W (step ∧ ¬op), then strip(φ1) = φ1.
Consider now the formula φ2 = ∀x.G ((step ∧ arg = x ∧ op)→ F (step ∧ res = x ∗ 2)). Then, strip(φ2) =
G ((step ∧ tt ∧ op)→ F (step ∧ tt)) which is equivalent to G ((step ∧ op)→ F step).

4 The Propositional Verification Methodology

In this section, we restrict our concern to programs for which there is a clear separation between data and
control. In particular, data cannot influence control variables. For such programs, their verification with
respect to first-order temporal specification can take advantage of a preliminary phase in which propositional
temporal specifications are proved for the control part of the program.

More precisely, let a data-dependent condition be a boolean condition that contains (also) data variables.
A program has the separation property if no control variable gets assigned a value depending on data, and
neither assignments to control variables nor step statements occur in the scope of a data-dependent condition.

The separation property ensures that data do not directly influence control values. But there is a more
subtle way in which the validity of a temporal formula not referring to data may be affected: by the
termination behavior of data-controlled loops it might be determined whether observable changes to control
might happen or not. This influence we eliminate by the assuming - which at least in a hardware context
is not unreasonable - that data-controlled loops always terminate. Formally, the assumption enters in the
form of fairness constraints.

In more detail, the situation is as follows. Let P have the separation property. Since the transition
labels in CEP [[P]] contain no control variables, stripping the CEP from its transition labels eliminates data-
dependent conditions only. But the separation property implies that also no control variable changes its
value along a transition if the condition labeling it is different from tt. Thus, the stripping does not introduce
changes of control which did not happen before. And if the stripping results in an infinite loop that did
not occur before, then this must be a data loop in which only data variables may change their value. For
all these loops, we assume termination and check the stripped formula in the stripped CEP based on this
assumption (To complete the verification, we must of course later show that in the fully expanded Kripke
structure FEP [[P]] all data loops are indeed terminating). As a result, control properties are not affected by
stripping the CEP .

For the verification of formulas which also depend on data, we can conclude the following. If the check of
the stripped formula in SCEP (the stripped CEP) returns tt, then we can conclude that the stripped formula
is true of FEP [[P]]. But if the check returns ff , then we know that the original formula is ff on FEP [[P]]. As
mentioned before, we consider the latter as a significant contribution that enables model checking together
with termination proofs to debug any first-order temporal specification.

Our methodology is summarized in the following theorem, where F denotes termination of all data loops.
We refer to the well-known notion of a generalized Kripke structure [12] to explain the meaning of validity
of a temporal logic formula under fairness assumptions.

Theorem 4 If FEP [[P]] |= F then

1. SCEP [[P]] |=F strip(φ) =⇒ FEP [[P]] |= strip(φ), and

2. SCEP [[P]] 6|=F strip(φ) =⇒ FEP [[P]] 6|= φ.

237

The proof of the theorem could not be included in this paper due to space limitations. The main technical
result in the proof states that, if all data loops terminate, then SCEP [[P]] and FEP [[P]] are fair stuttering
bisimilar and therefore agree on all propositional ACTL formulas (with no next-time operator).

Example: Consider again the example of Figure 1. Once we verify that the while loop always terminates,
we can use SCEP [[P]] to verify propositional ACTL formulas and to refute FO-ACTL formulas. SCEP [[P]]
is obtained from the CEP of Figure 2 in the appendix by eliminating all transition labels.

For instance, since SCEP [[P]] satisfies φ1 = (F rts) W (step∧¬op) under loop termination assumption,
we can conclude that this formula is true also in FEP [[P]] (recall that strip(φ1) = φ1).
Consider the FO-ACTL formula φ2 = ∀x.G ((step ∧ arg = x ∧ op) → F (step ∧ res = x ∗ 2)). Since the
formula strip(φ2) = G ((step ∧ op) → F step) is true of SCEP [[P]] we can conclude that strip(φ2) is true
also in FEP [[P]]. Note that we cannot conclude that φ2 is true in FEP [[P]]. For that we must use the method
developed in Section 5.
Consider also the FO-ACTL formula φ3 = G F (step ∧ ¬op ∧ y = 0 ∧ z = arg2). Then strip(φ3) =
G F (step∧¬op∧ tt). Recall that our formulas have an implicit universal path quantifier accompanied with
any temporal operator. Thus, strip(φ3) means that for every path, (step ∧ ¬op) is true for infinitely many
states on that path. This does not hold, for instance, on the path s0, s6, s7, s8, s10, s7, . . . in Fig. 2. Hence,
strip(φ3) is false in SCEP [[P]] and as a result we can conclude that φ3 is false in FEP [[P]].

5 Verification Condition Generation

To handle specifications including data, we propose to verify the temporal aspects relative to first-order
verification conditions. As we did before, we start by expanding control variables to get the CEP . The key
idea then is to use an approach close to what is usually called local model checking . Local model checking
searches for a sufficient reason for the specification to be satisfied. It has the advantage over iterative model
checking that it may turn out that some parts of the program behavior are irrelevant to the specification
considered. Here, it may be the case that control information alone can tell that a loop, which can not
be handled in general, does not affect validity of the specification. In such and further cases, local model
checking will be successful without expanding every data domain. This is essential if some of the data
domains are infinite or too large or complex to be completely expanded.

A tableau system for FO-ACTL Local model checking consists in constructing a tableau proving the
validity of the formula in question for the start state - or, in the negative case showing the nonexistence of
such a tableau. A tableau is essentially a proof tree. Ignoring data for the moment, the root of the tableau
is the sequent s0 ` φ, where s0 is the initial state of the system and φ is the formula in question. The
successors of each node provide sufficient reason for the validity of that node. Rules are available for each
form of node which fix possible successor sets. If the expansion of a tableau is stopped at some point, a
success criterion tells whether the tableau constitutes a complete proof for the sequent at its root.

Our tableau system serves as the basic formalism to derive first-order temporal properties involving
data, by providing a well-defined method to generate pure first-order conditions from the system and a
specification. Below we present our rules for tableaux construction. They differ in two respects from the
usual rules for CTL. One is notational: Usually, the different possibilities for proving a sequent (i.e. the
different possibilities for successor sets of one vertex) are given in different rules which could be applied
alternatively. Our format comprises them in one schema, the alternatives being separated by “ | ”. Elements
in one successor set are separated by “ , ”. But the rules also reflect that we deal with a first-order model:
The state component of a sequent consists of a control state (an element of S) and a condition on a variable
valuation, given in the form of a first-order formula.

Or Rule

s, p ` φ ∨ ψ

s, p ` φ | s, p ` ψ

And Rule

s, p ` φ ∧ ψ

s, p ` φ , s, p ` ψ

238

Exists Rule

s, p ` ∃x.φ

s, p ` φ[y/x]
, y 6∈ free(p)

Forall Rule

s, p ` ∀x.φ

s, p ` φ[y/x]
, y 6∈ free(p)

Until Rule

s, p ` φU ψ

s, p ` ψ ∨ (φ ∧X (φU ψ))

Unless Rule

s, p ` φW ψ

s, p ` ψ ∨ (φ ∧X (φW ψ))

Next Rule

s, p ` X φ

s1, p1 ` φ , . . . , sn, pn ` φ
, s −→ {s1, . . . , sn}

where p ∧ ci → subst(pi, Ai) for s
ci/Ai−→ si, i = 1, . . . , n.

Case Split Rule

s, p ` φ

s, p1 ` φ , s, p2 ` φ
, p→ p1 ∨ p2

subst(pi, Ai) in the rule dealing with “X ” means the parallel substitution of e for v in pi for each assignment
v := e ∈ Ai. The rules above are chosen to be as simple rules as possible. For convenient application, usually
several of them would be combined. For instance, a more useful rule to deal with “∨” like

s, p ` φ ∨ ψ

s, p1 ` φ | s, p2 ` ψ
, p→ p1 ∨ p2

is derived from our rule set by combining the Case Split and the Or Rule.
The reader may have noted that ∃ and ∀ as well as U and W are treated in the same way by the rules.

The difference between the operators is captured by (global) success conditions, see below.
A tableau is a finite tree of sequents s, p ` φ where the set of successors of each internal node are

instances of one of the alternative successor sets according to the rules. The nodes on the path from the
root of the tableau to a given node are called its predecessors.

To each tableau we associate a first-order formula which specifies whether the tableau is successful . This
success formula is computed bottom-up. The success formulas of leaves are as follows.

• p→
∨
i pi for leaves s, p ` φW ψ, where pi, i = 1, . . . , n are the first-order conditions in predecessors

of the form s, p′ ` φW ψ,

• p→ rs for leaves s, p ` r with a first-order formula r (see below for the computation of rs), and

• p→ ff for other leaves s, p ` φ.

For a first-order formula r and a state s, replace the atoms rts and step as well as control variables in r by
their truth values in the state s to obtain the formula rs.

At inner nodes, the success formula is computed by conjuncting the success formulas of the subtableaux
following it. If case split is applied, the appropriate implication is added. At quantifier steps, the respective
quantifier is applied.

A tableau is successful in a data domain, if its success formula is valid in the domain. A sequent is
provable if it has a successful tableau. A formula φ is provable if s0, tt ` φ is a provable sequent.

Theorem 5 (Soundness) The tableau system is sound. I.e., if a sequent s, p ` φ is provable, then all
copies of s in the full model where the data variable valuation satisfies p have property φ. If a formula is
provable, it is valid in the system.

The tableau system does not provide us with a decision method, though. One reason is that of course
the validity of success formulas can not be decided in general. Another one concerns the treatment of the

239

U operator. To achieve a stronger form of completeness than we do, we would have to allow a successful
recurrence of U -formulas in the style of the recurrence condition for minimal fixpoints of [4, 3]. This,
however, would introduce a new dimension of undecidability, because successful U -recurrence would have
to involve a well-foundedness condition. We do not strive for completeness in general, though. We do achieve
completeness and even decidability relative to first-order questions for a certain class of interesting cases, as
indicated by the results below.

The construction of a generic tableau Roughly spoken, systematic tableau construction will provide
a proof or a refutation (up to first-order verification conditions) if all “nontrivial cycles” are “broken by
control”. This is a property of system and formula combined. A “nontrivial cycle” occurs when a data
variable value at one position in the program may result by applying a function other than identity to the
value the same variable had at that same location at an earlier stage of the execution of a program.1 Such
cycles may cause unbounded expansion of the tableau during construction. A cycle like that one is “broken
by control”, if one can tell from control information that there is a bound on the number of iterations through
this cycle which are necessary to decide the validity of the formula. As an extreme case, the path through
the program which introduces the cyclic dependency might not be executable at all without violating an
essential control condition in the formula, giving zero as a bound.

A formalization of this informal concept will take several steps. First of these is the construction of a
generic tableau which comprises in some sense all tableaux which can be constructed for a given formula φ.
It represents, essentially, the control part of each first-order tableau. Thus, it can later be used to detect
cycles broken by control. The rules for the generic tableau are derived from the above rules essentially by
removing all first-order aspects.

s ` φ ∨ ψ

s ` φ | s ` ψ

s ` φ ∧ ψ

s ` φ , s ` ψ

s ` ∃x.φ

s ` φ[ff /x] | s ` φ[tt/x]
, x ∈ Vc

s ` ∀x.φ

s ` φ[ff /x] , s ` φ[tt/x]
, x ∈ Vc

s ` ∃/∀x.φ

s ` φ
, x 6∈ Vc

s ` φU /W ψ

s ` ψ | s ` φ , s ` X (φU /W ψ)

s ` X φ

s1 ` φ , . . . , sn ` φ
, s −→ {s1, . . . , sn}

With these rules, we construct the generic tableau for a given CEP and a temporal formula by the following
deterministic procedure. Starting with s0 ` φ, the appropriate rule gets applied. But different from the
first-order tableau, no choice is made between alternative successors. Instead, all alternatives are pursued.
The expansion of the generic tableau stops if the temporal formula is reduced to a pure first-order formula
(first-order leaf) or if a node recurs, i.e. at a node which has a predecessor labeled by the same sequent
(recurring leaf resp. recurrence node). Since there is a finite number of states and subformulas, the process
is bound to terminate.

Next, irrelevant branches are removed. This starts at non-recurring leaves. X -leaves can be replaced
by s ` tt . Also, some of the first-order leaves s ` p can be evaluated. To do this, first the formula ps
is constructed. Then, the control information present in ps is used to determine whether by propositional
reasoning and trivial first-order identities like (∃x.ff)→ ff the formula can be reduced to tt or ff.

Then, tt and ff are propagated upwards in the tableau. A successor set gets replaced by ff (resp. tt) if one
(resp. all) of its components becomes ff (resp. tt). If one of the alternative successor sets of a node becomes
tt, the node itself is replaced by tt, and if all alternatives become ff, it is replaced by ff. The resulting,
reduced structure is called the generic tableau for φ.

1More general, the value need not be computed from the previous value alone, but also other variables might influence the
result.

240

Observation 6 For every system and formula, there is one (unique) generic tableau.

Let us return to our example program from Fig. 1, and take φ1 = (F rts) W (step∧¬op) as a specification.
Fig. 3 shows the first steps of the construction of the generic tableau (indicating the evaluation of first-order
leaves in boxes) and the final result, after removing irrelevant branches. The generic tableau contains one
pair of a recurring leaf and recurrence node. These are marked with “•”. Note that other recurrences (e.g. of
sequences involving F rts) occurring during its construction have been eliminated by the reduction process.

s0 ` (F rts) W (step ∧ ¬op)
s0 ` F rts

s0 ` rts
tt

| s0 ` X F rts....

, s0 ` X ((F rts) W (step ∧ ¬op))....

| s0 ` step ∧ op = f

ff

s0 ` (F rts) W (step ∧ ¬op)
s0 ` tt , s0 ` X φ1

s1 ` tt , s6 ` φ1

s6 ` tt , s6 ` X φ1

• s7 ` φ1

s7 ` tt , s7 ` X φ1

s8 ` φ1

s8 ` tt , s8 ` X φ1

s9 ` φ1

s9 ` tt
, s10 ` φ1

s10 ` tt , s10 ` X φ1

• s7 ` φ1

| s10 ` ff

| s8 ` ff

| s7 ` ff

| s6 ` ff

| s0 ` ff

Figure 3: Constructing the generic tableau

If the program has the separation property, the construction of the generic tableau can profit from the
results of the test computation according to Theorem 4. They enable early detection of irrelevant or always
successful branches.

Instantiating the generic tableau The relevance of the generic tableau construction relies on the fact
that every successful tableau can be put in a form that it is an instance of the generic one. Instances are built
by adding first-order formulas to the state components of sequents and perhaps by unfolding the generic
tableau at its recurring leaves.

To be more precise, a first-order tableau T with root s, p ` φ is an instance of a subtableau (to get an
inductive condition) of the generic tableau starting at node n if:

• n has the form s ` φ, and

• if n is not a leaf, the rule applied to n is matched by an appropriate rule combination in T , and
subtableaux starting at end nodes of the rule combination are instances of the corresponding end
nodes of the generic rule (“Matching” requires choosing among the alternatives present in the generic
tableau, and we allow the matching combination to contain applications of Case Split). And

• if n is a recurring leaf and T is not a leaf itself, it is an instance of the subtableau starting at the
recurrence node. And

• if n = s ` tt where this is the result of a reduction, T is an instance of the subtableau reduced to n.

The restrictions imposed on a tableau to be an instance of the generic tableau are rather modest. They
require complete case distinction for control values, and that branches which are always successful (and have
been reduced to tt in the generic tableau construction) have to be chosen. So we have:

241

Observation 7 If a formula is provable at all, it is also proved by an instance of its generic tableau.

Now we give a procedure which tries systematically to construct an instance of the generic tableau. It will
not terminate in general. The procedure operates on the generic tableau. It computes a first-order formula,
called instantiating formula, for each node of the generic tableau. These formulas can subsequently be used
to generate an instance.

First-order leaves s ` p are instantiated with ps. Recurring U -leaves are initialized with ff and recurring
W -leaves with tt. For inner nodes, the instantiating formulas are computed from those for their successor
nodes. Disjunction is used for ∨, conjunction for ∧, existential quantification for ∃, and universal quantifica-
tion for ∀. For a X -node with successor formulas p1, . . . , pn, the conjunction over ci → subst(pi, Ai) is taken.
Inner U - and W -nodes get instantiated with their successor formulas. But if such a node is a recurrence
node, the process of computing the instantiating formula is iterated after instantiating the corresponding
recurring leaves with the formula computed for the recurrence node. The iteration stops if a fixpoint is
reached for a recurrence node. Propositional and control reasoning is applied to detect a fixpoint.

Although this process does not literally generate an instance of the generic tableau, it performs all
necessary computations. Due to lack of space we can not show the formal construction of the instance. One
point to note is that the iteration steps at U -nodes during the computation process correspond to unfoldings
in the construction. Most importantly, we can prove that the result of a terminating instantiation provides
us with a first-order characterization of the correctness of the program.

Theorem 8 If the instantiation process terminates for a specification φ, the success formula of the gener-
ated instance characterizes validity of φ. I.e. the success formula is valid in a data domain iff under this
interpretation the specification φ is valid (for the system).

In our example in Fig. 3, data do not matter at all. A successful tableau can be derived directly from the
generic tableau. One only has to restore branches which have been reduced to the form s ` tt. As an
example for a nontrivial, but still terminating instantiation process the reader may consider the specification
∀x.G ((step ∧ arg = x ∧ op = t) → F (step ∧ res = x ∗ 2)). We have to leave the development of this
example to the reader.

The formulas computed for recurrence nodes form chains of monotonically weaker (U) resp. stronger
(W) approximations of the strongest resp. weakest fixpoint formula. For infinite data domains, this process
need not come to an end, or the end, if reached, need not be detected. Below we will formalize the notion
of “cycles broken by control” by a criterion sufficient for the termination of the instantiation.

Termination of the instantiation The termination criterion is based on an annotation of the generic
tableau with variable sets. Basically, one just takes the sets of free variables of the instantiating formulas
which would be computed by the process sketched above. But it is not necessary to compute the formulas
themselves. Instead, one can operate on the finite domain of sets of variables involved (namely, the data
variables of the program and the bound variables of the formula) where termination is guaranteed.

The case of next nodes may serve as an example of how these sets are computed. If x annotates the
ith successor node of a next node in the CEP, and x := e ∈ Ai, all variables in e annotate the next node.
Additionally we take the variables from ci.

On the completed annotation sets, we draw edges indicating for each variable which other annotations
caused its introduction. E.g. if x annotates the ith successor node of a next node, and e gets assigned to x
along the edge, all variables in e have an edge pointing to x. Edges always go from inner node annotations to
their successor annotations and from recurring leaves to recurrence nodes. Edges originating at next nodes
which arise from some x := e where e contains a function application get marked. Let us call the generic
tableau cycle-free if there is no cycle in the resulting graph contains a marked edge.

Theorem 9 The instantiation of the generic tableau of a formula terminates if the tableau is cycle-free.

Critical points for termination of the instantiation are the fixpoint computations at recurrence nodes.
During a fixpint computation, only substitutions and boolean operations are applied. If the generic tableau
is cycle-free, only a finite number of terms will occur in those computations. Since only finitely many

242

propositionally nonequivalent formulas can be constructed with finitely many terms, fixpoints will be reached
and detected.

The condition on the annotations of the generic tableau can be viewed as describing a set of specifications
having a finite reason in every data domain. It gives rise to a proof procedure which subsumes properly
everything which can be gained by data independence reasoning [23]. A program is said to be data inde-
pendent if, intuitively, its behavior does not depend on the identity of input values (changes to input values
lead to similar changes of output values).

Any program which meets appropriate syntactic criteria on its data ports2 will have only cycle-free
generic tableaux, regardless of the formula. On the other hand, there are programs with cycle-free tableaux
which perform a control-bounded number of computations and also tests on their data and which are thus
not data independent.

This becomes clear if we draw a value flow graph of the CEP, similar to the graph on the annotations of
the generic tableau. I.e. we annotate each state with the full set of data variables and draw edges and marked
edges between variables annotating successive nodes according to the value flow. Transferring the notion of
cycle-freeness to value flow graphs, we get a class of programs which will have only cycle-free tableaux.

Proposition 10 If the value flow graph of a program is cycle-free, then each generic tableau built on its
CEP is cycle-free.

The proposition is implied by the observation that cycles in the generic tableau come from cycles in the
CEP . This criterion is not necessary, but close to. It should be kept in mind, though, that the automatic
instantiation process works in far more cases than just for programs having cycle-free value flow graphs. To
decide specific properties, it is not necessary that each generic tableau is cycle-free.

Elaborations of the method The basic proof procedure described above, which is already quite powerful
and has the advantage of being completely automatic, can be improved in several ways. For instance, it
may be adapted to make use of the first-order theory of the data domain. Also, the user might be allowed
to propose invariants or other guidance.

6 Conclusion

We envision the techniques described in this paper to be integrated into current design verification environ-
ments, providing interfaces to standard design languages. Given a system in one of those languages, the
designer would provide formal specifications in FO-ACTL. Based on design knowledge and the properties
to be checked, the designer would then debug the system by model checking stripped versions of the specifi-
cations in stripped control-expanded versions of the system. Note that the selection of the expanded set of
variables will typically depend on the formula to be verified. In this phase, the full range of techniques for
”classical” symbolic model checking will come into play. Only after surviving this debugging phase, truly
symbolic model checking enters the stage.

Truly symbolic modelchecking will unfold the CEP in the verification process; data loops touched in
this unfolding process have to be contracted using guidance on the source language level by the designer
to a single transition labeled by the effect of the loop on the data variables and a condition guaranteeing
termination. The verification of the purely sequential loop against such a total correctness formula is a
classical task handled by a dedicated prover component, which will also have to handle termination proofs
for loops claimed to be terminating by the introduction of fairness assumptions during the debugging phase.
Given the contraction of loops, the techniques described in Section 5 will automatically generate verification
conditions reducing the correctness of the FO-ACTL formula to be checked to a pure first order formula.

The scenario described above will be realized on the basis of the FORMAT verification tools [9], us-
ing symbolic timing diagrams [21] as graphical representations of FO-ACTL specifications, within a new
industrial project aiming at safety critical embedded control applications.

2These are: No computations on data variables, no tests depending on them.

243

References
[1] Apt, K.R. Ten years of Hoare’s logic: A survey – part I , TOPLAS 3 (1981), 431–483.

[2] Apt, K.R. and Olderog, E.-R. Verification of sequential and concurrent programs, Springer, New York (1991).

[3] Bradfield, J.C. Verifying temporal properties of systems , Birkhäuser, Boston (1992).

[4] Bradfield, J.C. and Stirling, C.P. Verifying temporal properties of processes, CONCUR ’90, LNCS 458 (1990),
115-125.

[5] Brown,M.C., Clarke, E.M. and Grumberg, O. Characterizing finite Kripke structures in propositional temporal
logic, TCS 59 (1988), 115–131.

[6] Burch, J.R., Clarke, E.M., McMillan, K.L. and Dill D.L. Sequential circuit verification using symbolic model
checking DAC ’90, 46–51.

[7] Clarke, E.M., Emerson, E.A. and Sistla, A.P. Automatic verification of finite state concurrent systems using
temporal logics, POPL ’83, 117–126.

[8] Clarke, E.M., Grumberg, O. and Long, D.E. Model checking and abstraction , POPL ’92, 343–354.

[9] Damm, W., Döhmen, G., Helbig, J., Herrmann, R., Josko, B., Kelb, P., Korf, F. and Schlör, R. Correct system
level design with VHDL, Tech. Rep., Oldenburg (1994), 54p.

[10] Damm, W., Josko, B. and Schlör, R. Specification and verification of VHDL-based system-level hardware designs ,
in Börger (ed.) Specification and Validation Methods, Oxford Univ. Press, 331–410 (to appear).

[11] Dingel, J. and Filkorn, T. Model checking for infinite state systems using data abstraction, assumption-
commitment style reasoning and theorem proving, CAV ’95, to appear.

[12] Emerson, E.A. Temporal and modal logic, in: Handbook of Theor. Comp. Sc., B, North Holland (1990), 997–
1072.

[13] Floyd, R.W. Assigning meanings to programs , Proc. AMS Symp. Applied Math. 19 (1967), 19–31.

[14] Graf, S. Verification of a distributed cache memory by using abstractions, CAV ’94, LNCS 818 (1994), 207–219.

[15] Grumberg, O. and Long, D.E. Model checking and modular verification , TOPLAS 16 (1994), 843–871.

[16] Herrmann, R. and Pargmann, H. Compiling VHDL data types into BDDs , EURO-VHDL ’94, 578–583.

[17] Hojati, R. and Brayton, R.K. Automatic datapath abstraction in hardware systems, CAV ’95, to appear.

[18] Josko, B. Verifying the correctness of AADL modules using model checking, in: Stepwise refinement of distributed
systems: models, formalisms, correctness, LNCS 430 (1990), 386–400.

[19] Manna, Z. Beyong model checking, CAV ’94, LNCS 818 (1994), 220–221.

[20] Manna, Z. and Pnueli, A. The temporal logics of reactive and concurrent systems. Specification. Springer, New
York 1992.

[21] Schlör, R. and Damm, W. Specification and verification of system-level hardware designs using timing diagrams,
EDAC ’93, 518–524.

[22] Stirling, C. and Walker, D. Local model checking in the modal mu-calculus, TAPSOFT ’89, LNCS 351, 369–383.

[23] Wolper, P. Expressing interesting properties of programs in propositional temporal logic, POPL ’86, 184–193.

244

Analytic and locally approximate solutions to properties of
probabilistic processes
(Extended Abstract)

C. Tofts∗

Department of Computer Science,
The University,

Manchester,
M13 9PL,

email: cmnt@cs.man.ac.uk

April 24, 1995

Abstract

Recent extensions to process algebra can be used to describe performance or error rate properties of
systems. We examine how properties of systems expressed in these algebras can be elicited. Particular
attention is given to the ability to describe the behaviour of system components parametrically. We
present how analytic formulae for performance properties can be derived from probabilistic process
algebraic descriptions. Demonstrating how local approximate solutions can be derived for the properties
when their exact solutions would be too computationally expensive to evaluate. As an example we derive
the performance of an Alternating Bit protocol with respect to its error and retry rates.

1 Introduction

Process algebra [Mil80, Mil83, BK84, Hoa85, BBK86,M il90] is a methodology for formally calculating the
behaviour of system in terms of the behaviours of its components. Recent extensions have added: timing
properties [RR86, Tof89, MT90, Yi90, CAM90]; probabilistic properties [GSST90, Tof90, SS90, Tof94];
priority properties [BBK86, Cam89, Tof90, SS90, Tof94] and combinations of the above [Tof90, Han92,
Tof94]. Process algebras with these extensions can be exploited to formally analyse the performance (in
terms of either success or failure) of the design of systems [VW92,Tof93]. The analysis of a design can be
greatly facilitated if an analytic solution to the performance of the system can be generated from an abstract
description of the performance of its components. A possibly more important question is how tolerant to
error (in the precise value of component parameters) are system level predictions.

Within the process algebra community the standard approach, to a verification problem, is to describe
and compose the sytem components and then verify by comparing the systems behaviour with another
process[Chr90,JS90] or a logical predicate[Han94,HJ94]. Whilst in many cases, where for instance design
criterion are known in advance, this can be an appropriate methodology, it is however limited for the
analysis of choices of system design. Of great importance is the ability to ‘track’ the effect of a single
component upon system performance. To achieve this we need two things, firstly a syntactic presentation of
system components, secondly an abstract method of calculating the components contribution to the systems
performance.

Within a system subject to failure system requirements are often expressed in terms like, the probability
of error is less than 0.05. It is hard to see how to interpret such a requirement in terms of the behaviour at
a particular state. Indeed such requirements would often be re-expressed as the probability of failure at any
∗This work is supported by an SERC Advanced Fellowship.

245

state is less than 0.05. Whilst this condition is certainly sufficient to ensure the conformance of a system
to the requirement, is it reasonable? Consider the following WSCCS [Tof90,Tof94] process:

P1
def
= 9.

√
: P1 + 1.

√
: P2

P2
def= 1.error : P1 + 9.

√
: P1

The process P1 certainly does not obey the condition that the probability of error in all states is less than
0.05 as this probability is 0.1 in state P2. However, the process will only spend 10% of its time in state P2
hence the probability of error is only 0.01, which does indeed meet our performance requirement. In order
to calculate the error probability of this system we need to know the probability of the system being in any
particular state. These probabilities can only be evaluated with respect to the complete system, and hence
any logic suitable to express these properties will need to express probabilities of being in a particular state,
and thus will not be an abstraction on any underlying transition description.

A frequently used method to formally derive the compliance of a probabilisitic system with some re-
quirements is to express those requirements in the form of a ‘standard’ process [Chr90,JS90,Tof90]. Then
demonstrating an equality between the intended implementation and the standard. If we attempt to describe
our requirement on errors in this fashion we might write the following process:

Q
def
= 95.

√
: Q+ 5.error : Q

A process which certainly does not produce errors at a greater rate than 0.05. There’s appears to be no
sensible formal equivalence between the process Q and our previous example P1. Again the reason for this
incompatibility is that we compare processes on a state by state basis.

A possibly more realistic question would be the following. Given the process:

R1
def= p.

√
: R1 + 1.

√
: R2

R2
def
= 1.error : P1 + q.

√
: P1

what values of the expressions p and q will ensure that the process does not produce error actions at a greater
rate than 0.05?

In many cases systemic requirements are expressed in terms of average performance. That is to say the
average time before an error is seen will be greater than some amount, or alternatively the average time to
see a ‘good’ outcome will be less than some amount. In order that such performance parameters can be
derived we need to know not only the probability of reaching a particular state, but also how long it will
take system to do so.

In Section 2 we present an extension to WSCCS to permit reasoning over weight expressions containing
variables, and demonstrate how a Markov chain [Kei,Kle75,GS82] can be derived from a WSCCS process.
In Section 3 we discuss how the properties of terminating processes can be derived. In Section 4 we discuss
the solution of finite processes, in particular we examine how approximate analytic solutions can be derived
when the system is too computationally expensive to solve exactly.

2 WSCCS

Our language WSCCS is an extension of Milner’s SCCS [Mil83] a language for describing synchronous
concurrent systems. To define our language we presuppose a free abelian group Act over a set of atomic
action symbols with identity

√
, the inverse of a being a, and action product denoted by #. As in SCCS, the

complementary actions a (conventionally input) and a (output) form the basis of communication. Within
our group we define that a = a−1.

2.1 Expressions

We define a set of expressions.

Definition 2.1 A relative frequency expression (RFE) is formed from the following syntax, with x ranging
over a set of variable names V RF , and c ranging over a fixed field (such as N or R):

246

e ::= x|c|e+ e|e ∗ e

Further we assume that the following equations hold for relative frequency expressions:

e+ f = f + e
(e+ f) + g = e+ (f + g)
e ∗ f = f ∗ e
(e ∗ f) ∗ g = e ∗ (f ∗ g)
e ∗ (f + g) = e ∗ f + e ∗ g

alternatively, we have commutative and associative addition and multiplication, with multiplication distribut-
ing over addition. We shall assume that two expressions are equivalent if they can be shown so by the above
equations.

In the sequel we shall omit the ∗ in expressions, denoting expression multiplication by juxtaposition. It
should be noted that unlike other calculi with expressions [Mil90, Hen91] the value of our expressions can
have no effect on the structure of the transition graph of our system. Hence we should not expect that
adding this extra structure to our probabilistic process algebra will cause any new technical difficulties.

2.2 Weights

We also take a set of weightsW, denoted by wi, which are of the form1 eωk with e from the relative frequency
expressions and the ωk (with k ≥ 0) a set of infinite objects, with the following multiplication and addition
rules (assuming k ≥ k′), we consider the objects e used as weights to be abbreviations for eω0:

eωk + fωk
′

= eωk = fωk
′
+ eωk eωk + fωk = (e+ f)ωk = eωk + fωk

eωk ∗ fωk′ = (ef)ωk+k′ = fωk
′ ∗ eωk

2.3 The Calculus

The collection of WSCCS expressions ranged over by E is defined by the following BNF expression, where
a ∈ Act, X ∈ V ar, wi ∈ W , S ranging over renaming functions, those S : Act −→ Act such that S(

√
) =
√

and S(a) = S(a), action sets A ⊆ Act, with
√
∈ A, and arbitrary finite indexing sets I:

E ::=X | a.E |
∑
{wiEi|i ∈ I} | E × E | EdA | Θ(E) | E[S] | µix̃Ẽ.

We let Pr denote the set of closed expressions, and add 0 to our syntax, which is defined by 0
def=
∑
{wiEi|i ∈

∅}.
The informal interpretation of our operators is as follows:

• 0 a process which cannot proceed;

• X the process bound to the variable X;

• a : E a process which can perform the action a whereby becoming the process described by E;

•
∑
{wi.Ei|i ∈ I} the weighted choice between the processes Ei, the weight of the outcome Ei being

determined by wi. We think in terms of repeated experiments on this process and we expect to see
over a large number of experiments the process Ei being chosen with a relative frequency of wi

Σi∈Iwi
.

• E × F the synchronous parallel composition of the two processes E and F . At each step each process
must perform an action, the composition performing the composition (in Act) of the individual actions;

• EdA represents a process where we only permit actions in the set A. This operator is used to enforce
communication and bound the scope of actions;

• Θ(E) represents taking the prioritised parts of the process E only.
1Here e is the relative frequency with which this choice should be taken and k is the priority level of this choice. The choice

of notation is based in [Tof90] arising from the observation that priority is similar to infinite weight.

247

• E[S] represents the process E relabelled by the function S;

• µix̃Ẽ represents the solution xi taken from solutions to the mutually recursive equations x̃ = Ẽ.

Often we shall omit the dot when applying prefix operators; also we drop trailing 0, and will use a binary
plus instead of the two (or more) element indexed sum, thus writing

∑
{11.a : 0, 22 : b.0|i ∈ {1, 2}} as

1.a + 2.b. Finally we allow ourselves to specify processes definitionally, by providing recursive definitions
of processes. For example, we write A def= a.A rather than µx.ax. The weight n is an abbreviation for the
weight nω0, and the weight wk is an abbreviation for the weight 1ωk.

The semantics, congruences and equational theory of this (minor) extension of WSCCS are essentially
identical to that of [Tof95] up to arithmetic on weight expressions.

The congruences of WSCCS[Tof90,Tof94] are important as they permit us to algebraically manipulate
our processes. However, in many instances these equivalences are too fine, consider the following pair of
processes:

2.(2.P + 4.Q) 4.P + 8.Q

in many instances we should like to be able to consider these processes as equivalent. Hence, we would
like a notion of equivalence that permits us to disregard the structure of the choices and just look at the
total chance of reaching any particular state. whilst this notion of equivalence is useful it is known not to
produce a congruence [SST89] for the complete language. However, such problems do not arise if we restrict
our process syntax to only allow a single depth of summation, in which case a∼ coincides with the original
probability preserving congruence [Tof94].

Definition 2.2 We define an abstract notion of evolution as follows;

P
a[w]−→ P ′ iff P

w17−→ . . .
wn7−→ a−→ P ′ with w =

∏
wi.

As an example, 5.(3.(2.a : Q+ 4.b : P) + 1.c : R) + 7.d : S
a[30]−→ P .

In order to define an equivalence which uses such transitions we need a notion of accumulation.

Definition 2.3 Let S be a set of processes then:

P
a[w]−→ S iff w =

∑
{wi|P

a[wi]−→ Q for some Q ∈ S}; 2

We can now define an equivalence that ignores the choice structure but not the choice values.

Definition 2.4 We say an equivalence relation R ⊆ Pr × Pr is an abstract bisimulation if (P,Q) ∈ R
implies that:

there are e, f ∈ RFE such that for all S ∈ Pr/R and for all w, v ∈ W, P
a[w]−→ S iff Q

a[v]−→ S and
ew = fv.

Two processes are abstract bisimulation equivalent, written P
a∼ Q if there exists a abstract bisimulation R

between them.

In particular this description of a WSCCS process gives us (essentially) a probability transition
graph[Paz71].

Definition 2.5 A probabilistic transition graph is a quintuple (V, T, s0, A, RFE) where V is a set of states,
T a set of transitions ⊆ V × (a × p) × V , s0 ∈ V is an initial state, A ranged over by a an alphabet, and
RFE ranged over by p the set of relative frequency expressions.

2Remembering this is a multi-relation so some of the Q and wi may be the same process and value. We take all occurences
of processes in S and add together all the weight arrows leading to them.

248

3 Terminating Systems

As an example consider the following simple game. Two identical (possibly) biased coins are tossed repeat-
edly. If the coins both show heads then the game is won, if the coins both show tails then the game is lost,
otherwise the coins are tossed again. What is the probability of winning the game? And how many tosses
will be needed on average to see an outcome?

Coin
def= p.head : Coin+ q.tail : Coin

GR
def= 1.head2#win : 0

1.head#tail : GR
1.tail2#lose : 0

Game
def
= (Coin ×Coin×GR)d{win, lose}

The probability of winning a game can be computed by solving the following simultaneous equation:

P (win) = 2pq
(p+q)2P (win) + p2

(p+q)2 .1

and the average number of coin tosses equired to reach an outcome:

E(Game) = 2pq
(p+q)2 (E(Game) + 1) + p2

(p+q)2 (E(0) + 1) + q2

(p+q)2 (E(0) + 1)
E(0) = 0

In the above we can rearrange the first equation to obtain the following:

E(Game) = 2pq
(p+q)2E(Game) + p2

(p+q)2E(0) + q2

(p+q)2E(0) + 1

Definition 3.1 The total output of a state T (s) =
∑
{p|s a[p]→ s′}.

Definition 3.2 Let Win ⊆ A be a set of winning actions, and P (s0,Win) be the probability of observing
an action in the set Win starting from state s0, and the average number of ticks before an action in Win is
observed D(s0, win).

P (Win, s0) is the solution of the following set of simultaneous equations, for all s ∈ V

P (s,Win) def=
∑
{ pi
T (s)P (s′,Win)|s a[pi]→ s′, a 6∈Win}

+
∑
{ pj
T (s) |s

a−→ a[pj], a ∈ Win}

Similarly we can define D(Win, s0) to be the a solution of the following set of simulataneous equations:

D(s,Win)
def
= ∞ if s 6a[p]→

D(s,Win)
def
=

∑
{ pi
T (s)D(s′,Win)|s a[pi]→ s′, a 6∈Win}

+1

Hence given a probabilistic transition graph with n states we can produce a set of n simultaneous equations
which describe the probabilities and averages we are interested in. Generating the equations from the graph
is straightforward and the equations can subsequently be solved by any symbolic mathematics package.

4 Finite State Non-terminating Systems

Consider the following process:

W1
def
= 6.sunny : W1 + 4.cloudy : W2

W2 def= 5.cloudy : W2 + 5.sunny : W1

249

If we assume that the environment (of the process) is unbiased with respect to the sunny and cloudy actions
then the above system can be represented by the following Markov [Kei, Paz71, Kle75, GS82] transition
matrix:(

0.6 0.5
0.4 0.5

)
A question that is asked about the above system is with what probability is the action sunny seen. This
question can be answered by knowing with what probability the system is likely to be in state W1 or W2
at an arbitrary time. In Markov chain theory this is known as the stable distribution[Kei,GS82] of the
chain. For a chain whose transition matrix is A then a stable distribution v is one which satifies the following
equation:

Av = v

and |v| is equal to 1.
In the case of the transition system above the stable distribution [Kei,Kle75,GS82] is given by the vector:(

5/9
4/9

)
and hence the probability of observing a sunny action is:

P (sunny) = 5
9

6
10 + 4

9
5
10

= 5
9

Whilst in principle it is possible to convert a probability graph into its associated Markov chain and then
solve for the stable distribution (by exploiting eigen theory) this is a highly inefficeint method of solving the
problem. Given an n state probability transition graph the associated Markov chain matrix will be of size
n2. Since the number of states tends to be exponential in the number of components this would be highly
prohibitive in its use of memory. An alternative manner of presenting the system is as folows. Remembering
the original equation:

Aπ = π

by defining ri(A) as the ith row of the matrix A this is equivalent to solving the set of equations:

ri(A).π = πi

Whilst this would appear to still require O(n2) memory to represent the problem, in practice this is not the
case. The probabilistic transition graphs that in practice result from process algebraic descriptions tend to
be very sparse. On the whole very few of the states of a system are reachable from any particular state, in
fact there is generally a (small) bound (k) on the number of permitted transitions from any particular state
and therefore in this representation an amount O(kn) of memory will be necessary to represent the solution.

We can define the necessary set of simultaneous3 equations directly in terms of the original graph as
follows:

πs = {
∑ pjπj

T (sj)
|sj

a[pj]→ s}

together with the condition that
∑
{πs} = 1. the solution vector π being a stable distribution4 for the

transition system.
In this case the unstructured sparseness of the equation set makes the use of standard symbolic math-

emtical equation packages very inefficient. A sparse equation solver was written to directly solve sets of
equations generated by the above. By solving equations in inverse order of their fan out a considerable speed
up can be achieved. The system generates a back substitution list which can be evaluated using a symbolic
mathematics package.

To calculate the mean occurence of an action, the probability of that action occuring at a particular state
is multiplied by the probability of being in that state.

3The set of equations derived for Markov transition matrix will not be independent [GS82] and hence an extra condition is
neede to ensure a unique solution. This condition is derived from the definition that a probability distribution must sum to 1

4Care should be excersised when using stable distributions as their uniqueness is only guaranteed under restricted circum-
stances [Kei,GS82]

250

Example 4.1 Consider two processes competing for the same resource. Each process issues a request with
probability 1/p after the last time it had the resource, and then will release the resource with probability 1/q
at each instant. We present the processes in the syntax of our analysis tool see Appendix A.

*Simple competition example

bs U1 p.t:U1G + 1-p.t:U1
bs U1G 1@1.get^-1:U1Got + 1.baulk:U1G
bs U1Got q.put^-1:U1 + 1-q.t:U1Got

bs Res 1.get:RG + 1.t:Res
bs RG 1.put:Res + 1.t:RG

basi C baulk

btr Sys U1|U1|Res/C

Having solved the equations the above system generates we obtian the average number of baulk actions seen
at each tick is given by the following eqaution:

2 3 -15 2 3
(8. p - 4. p - 4.44089 10 p q + 4. p q - 8. p q +

4 2 2 2
4. p q + 1. (2. - 2. p) p q) /

2 3 -15 2 3
(8. p - 4. p + 8. p q + 4.44089 10 p q - 8. p q +

4 2 2 2 3 2 4 2
4. p q + 4. q - 4. p q - 4. p q + 4. p q)

As a result of using a real representation for numerical values in the toolset there are rounding errors5

in the above and if these are corrected we can obtain the following formula:

p2(4−2p+2q−4pq+4p2q+(1−p)2q2)
4p2−2p3+4p3q−4p3q+2p4q+2q2−2p2q2−2p3q2+2p4q2

Unfortunately, the solution of symbolic simultaneous equations requires NP-space in the number of equation
to represent the solutions. In practice it appears that symbolic solutions are unfeasible for systems of more
than about 30 states.

An alternative definition[GS82] of the stable distribution of a markov system is presented in the following
fashion:

πi+1 = Aπi

with π = limi;∞πi if there is a unique stable distribution.
Using the above definition we can define an iterative calculation over the probability transition graph in

the following fashion:

πi+1s
= {

∑ pjπi
j

T (sj)
|sj

a[pj]→ s}

5Caused by the use of real numbers in the analysis system, easily identifiable as the terms are insignificant. The exponential
growth of terms exhibited by products of processes forced the use of (truncated) real aritmetic in the tool, rather than the
prefered (exact) integer arithmetic

251

��
��

Sa

��
��
Ack

��
��
Tns

��
��

Ra

accept deliver

Z
Z
ZZ �

�
��

Z
Z
ZZ�

�
��

Z
Z~ �

�>

Z
Z}�

�=

Figure 1: Alternating Bit Protocol

If an attempt is made to calculate an exact solution to the above iteration procedure then the same
representation problem is encountered. However, it is possible to exploit the above method to provide an
approximate solution to the stable vector problem. By truncating the πi to a particular accuracy after each
iteration of the calculation. If the terms (in a variable x say) are maintained to order k then, standard
numerical solution of eigensystems theory, [Wil65] shows that the solution will have an absolute error of
O(xk).

Hence the following procedure can be exploited to give an approximate solution to the distribution
problem, choose any non-zero length 1 π0

6:

1. Compute πi+1 from πi;

2. truncate πi+1 to required accuracy k

3. repeat from 1 until stability is achieved

In practice one can compute a central approximation and then compute the further terms by increasing
the approximation level steadily until the desired level is reached.

4.1 The alternating bit protocol

In [Mil90] Milner presents an implementation of the alternating bit protocol in CCS, and demonstrates that
the protocol is correct. Perforce this implementation ignores the temporal and probabilistic properties of
the system and its components.

Our alternating bit protocol realisation is depicted in Figure 1.
The process Sa will work in the following manner. After accepting a message, it sends it with bit b along

the channel Tns and waits. Subsequently there are three possibilities:

• it times out and retransmits the message;

• it gets an acknowledgement b from the Ack line (signifying a correct transmission), so that it can now
accept another message;

• it gets an acknowledgement ¬b from the Ack line (signifying a superfluous extra acknowledgement of
earlier message) which it ignores.

The replier Ra works in a dual manner. After a message is delivered it sends an acknowledgement with
bit b along the Ack line. Subsequently there are again three possibilities:

• it times out, and retransmits the acknowledgement;

• it gets a new message with bit ¬b from the Tns line, which it delivers and acknowledges with bit ¬b;
6In practice we use the vector π0i = 1

n
when the system has n states.

252

• it gets a repetition of the old message with bit b which it ignores.

We assume that messages are lost by the medium with probability err on each transmission. The
sender and replier processes will retry with probability rt at for each tick whilst they are waiting for an
acknowledgement or the message bit to change. In order that we can apply our peturbation theory to the
variables err and rt, we assume perturbations of ere and rte upon their basic values.

*Probabilistic alternating bit protocol
*
*Chris Tofts 9/8/94 after CWB versions
*

*The basic sender process, note do everything asynchronously
*this should be Sa 1.send:Sa1 + 1.t:Sa

bs Sa 1.t:Sa1

*send out a signal as soon as possible

bs Sa1 1@1.s0^-1:Sa2 + 1.t:Sa1

*wait for acknowledgement to come through

bs Sa2 1.rack0:S1s + 1.rack1:Sa1 + rt-rte.t:Sa1 + 1-rt-rte.t:Sa2

*tell the world that it got through OK and invert sending bit

bs S1s 1.succ:S1

*the dual of the above system for sending with bit set to 1
*this should be bs S1 1.send:S11+ 1.t:S1

bs S1 1.t:S11
bs S11 1@1.s1^-1:S12 + 1.t:S11
bs S12 1.rack1:Sas + 1.rack0:S11 + rt-rte.t:S11 + 1-rt-rte.t:S12
bs Sas 1.succ:Sa

*the receiver for all of our endeavours....

bs Ra 1.r0:Rar1+1.r1:Ra2 + rt-rte.t:Ra2 + 1-rt-rte.t:Ra
bs Rar1 1.receive:Ra1

*try to send the data as quickly as possible

bs Ra1 1@1.sack0^-1:R1 + 1.t:Ra1 + 1.r0:R11 + 1.r1:Ra12
bs Ra2 1@1.sack1^-1:Ra + 1.t:Ra2 + 1.r1:R12 + 1.r0:Rar1
bs R1 1.r1:Ra12 + 1.r0:R11 + rt-rte.t:R11 + 1-rt-rte.t:R1
bs Ra12 1.receive:R12
bs R11 1@1.sack0^-1:R1 + 1.t:R11 + 1.r0:R11 + 1.r1:Ra12
bs R12 1@1.sack1^-1:Ra + 1.t:R12 + 1.r1:R12 + 1.r0:Rar1

*the lower channel for sending data on
*we send out data as soon as possible after the transmission
*time if it is not lost to error...

bs Ml1 1.s0:Ml1a0 + 1.s1:Ml110 + 1.t:Ml1

*decide if the data was transmitted OK, or was subject to error

bs Ml1a0 1-err-ere.t:Ml1a + err-ere.t:Ml1
bs Ml1a 1@1.r0^-1:Ml1 + 1.t:Ml1a
bs Ml110 1-err-ere.t:Ml11 + err-ere.t:Ml1
bs Ml11 1@1.r1^-1:Ml1 + 1.t:Ml11

*this is the transmitting medium for the return of the data

bs Ml2 1.sack0:Ml2a1 + 1.sack1:Ml211 + 1.t:Ml2
bs Ml2a1 1-err-ere.t:Ml2a + err-ere.t:Ml2

253

bs Ml2a 1@1.rack0^-1:Ml2 + 1.t:Ml2a
bs Ml211 1-err-ere.t:Ml21 + err-ere.t:Ml2
bs Ml21 1@1.rack1^-1:Ml2 + 1.t:Ml21

*That’s all the sequential bits done so we can now have a go at putting
*it all together...

basi Allow send, receive, succ

*this is the complete system

btr ABP Ra|Ml1|Ml2|Sa/Allow

For a value of rt = 0.5 and rte = 0.0 and err in the range 0.05 to 0.35, we obtain the following piecewise
approximation in the form of an SML function:

fun ABP(vl)
=if 0.05<=vl andalso vl<=0.15
then let val ere = (0.05+0.15)/2.0 - vl in

(26.2801394665775-285.522119242462ere^3 -94.9741260228557ere^2 +26.6274947013716ere)/
(270.683502505543+1.32871491587139E~12ere^3 -
7.47846229387505E~13ere -3.12638803734444E~13ere^2)
end
else if 0.15<=vl andalso vl<=0.25
then let val ere = (0.15+0.25)/2.0 - vl in

(11.7544078755176-83.86909484614ere^3 -16.6668138922172ere^2 +19.7005844688574ere)/
(139.000000000001-3.19744231092045E~13ere^3 -
4.01456645704457E~13ere -3.92574861507455E~13ere^2)
end
else if 0.25<=vl andalso vl<=0.35
then let val ere = (0.25+0.35)/2.0 - vl in

(9.68600554074613-41.7301838198085ere^3 +1.29897621781181ere^2 +20.937477181878ere)/
(139.0-1.59872115546023E~14ere^3 -
3.5438318946035E~13ere -2.46025422256935E~13ere^2)
end
else 0.0;

The total time to construct the process graph and the above approximations was about 1/2 hour on a
Sun II.

5 Conclusions

Whilst it is possible to verify the behaviour of a system by checking the process that describes it against
another process[Mil80,Mil90,Chr90,JS90,Tof90,SS90] or a predicate[Mil90,Han94,HJ94] this is often not the
best approach. In many cases the intention of the design analysis is to determine how well a system can
function which is why simulation[BDMN79,Bir79,Kre86,BFS87] is often resorted to. It is important in such
circumstances to be able to identify the contribution of the underlying components to the overall system
performance. The verify strategy works well when system requirements are known in advance but in many
cases the design problem is one of: what is the best way of using these components to solve a particular
problem? In this case the components are fixed, and we need to be able to derive the resulting systemic
behaviour.

It might seem that we are not exploiting the algebraic properties of the process algebraic description in
deriving our systemic properties. This is not the case. In order to minimize computation time care must be
taken to keep the probability transition graph as small as possible. Thus we exploit algebraic properties of
WSCCS to maintain as small a description of our systems as is necessary.

Whilst it is true that for the majority of problems a symbolic approach to process representation cannot
give an analytic solution this approach still has major advantages. Since we can describe performance

254

aspects of the system components symbolically and construct its probability transition graph in terms of
those symbols (a costly operation in time even if all of the transition probabilities are constants) and then
instantiate the graph with particular values of interest. We can study the systemic behaviour quickly under
a wide range of conditions.

The generation of local approximations to the solutions of systems is of great importance. It has long
been known that the behaviour of complex systems can critically dependent on the precise values of their
parameters. In any real implementation of a system the true values of its components performances are
liable to vary slightly from the exact values in our models. Local approximations allow us to assess the effect
that these small variations may have on the systems true behaviour. For instance if performance could be
heavily compromised by a small variance in one components performance it may be a good idea to redesign
the system to be more tolerant or replace that component.

A sublanguage of WSCCS and the algorithms in this paper have been implemented as a set of SML
functions (Probabilistic Algebra Tools set) which can be obtained from cmnt@cs.man.ac.uk. In terms of
scale the exact solution generator can cope with systems of about 30 states, and will execute upon systems
of this scale in 2 hours on a Sun 2. The approximation method can cope with systems of 1000’s of states and
can take 24 hours to execute on such systems. Automatic scanning functions have been written to generate
the piecewise approximations. For numerical problems the system can successfully manage systems of 10000s
of states.

6 Bibliography.

[BBK86] J. Baeten, J. Bergstra and J. Klop, Syntax and defining equations for an interrupt mechanism in
process algebra, Fundamenta Informatica IX, pp 127-168, 1986.

[BDMN79] G. Birtwistle, O-J Dahl, B. Myhrhaug and K. Nygaard, Simula Begin, 2nd Edition, Studentliteratur,
Lund, Sweden, 1979.

[BFS87] P. Bratley, B. Fox and L. Schrage, A guide to simulation, second edition, 1987.

[Bir79] G. Birtwistle, DEMOS — discrete event modelling on Simula. Macmillen, 1979.

[BK84] J.A. Bergstra, J.W. Klop, The algebra of recursively defined processes and the algebra of regular
processes, in Proc 11th ICALP, Springer LNCS 172, pp 82-85, 1984.

[CAM90] L. Chen, S. Anderson and F. Moller, A Timed Calculus of Communicating Systems, LFCS-report
number 127

[Cam89] J. Cammilleri. Introducing a Priority Operator to CCS, Computer Laboratory Technical Report,
Cambridge University, 1989.

[Chr90] I. Christoff, Testing Equivalences and Fully Abstract Models for Probabilistic Processes, Proceedings
Concur ’90, LNCS 458, 1990.

[DLSB82] V.A. Dyck, J.D. Lawson, J.D. Smith and R.J. Beach, Computing: An Introduction to Structured
Problem Solving Using Pascal: Reston, Reston, 1982.

[GS82] G.R. Grimmet and D.R. Stirzaker, Probability and Random Processes, Oxford Science Publications,
1982.

[GSST90] R. van Glabbek, S. A. Smolka, B. Steffen and C.Tofts, Reactive, Generative and Stratified Models of
Probabilistic Processes, proceedings LICS 1990.

[Han94] M.R. Hansen, Model checking discrete duration calculus, FACS 6A:826-845, 1994.

[Hen91] M. Hennessy, A proof system for CCS with value passing, FACS 3: 346-366.

[HJ94] H. Hansson and B. Jonsson, A Logic for Reasoning about Time and Reliability, FACS (6):512-535,
1994.

255

[Hoa85] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall 1985.

[HR90] M. Hennessey and T. Regan, A Temporal Process Algebra, Technical Report, Department of Cognitive
Science, Sussex University, 1990.

[Jon90] C. C. M. Jones, Probabilistic Non-determinism, PhD Thesis University of Edinburgh 1990.

[Kei] J. Keilson, Markov Chain Models - Rarity and exponentiality, Applied Mathematical Sciences 28,
Springer Verlag.

[Kin69] J.F.C. Kingman, Markov Population Processes, Journal of Applied Probability, 6:1-18, 1969.

[Kle75] L. Kleinrock, Queueing Systems, Volumes I and II, John Wiley, 1975.

[Kre86] W. Kreutzer, System Simulation, Addison Wesley, 1986.

[JS90] C. Jou and S. Smolka, Equivalences, Congruences and Complete Axiomatizations for Probabilistic
Processes, Proceedings Concur ’90, LNCS 458, 1990.

[LS89] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. proceedings POPL 1989.

[Mil80] R. Milner, Calculus of Communicating System, LNCS92, 1980.

[Mil83] R. Milner, Calculi for Synchrony and Asynchrony, Theoretical Computer Science 25(3), pp 267-310,
1983.

[Mil90] R. Milner, Communication and Concurrency, Prentice Hall, 1990.

[MT90] F. Moller and C. Tofts, A Temporal Calculus of Communicating Systems, Proceedings Concur ’90,
LNCS 458, 1990.

[OW78] G. F. Oster and E. O. Wilson, Caste and Ecology in Social Insects, Princeton University Press, 1978.

[Paz71] A. Paz, Introduction to probabilistic automata, Academic Press, 1971.

[Plo81] G. D. Plotkin, A structured approach to operational semantics. Technical report Daimi Fn-19, Com-
puter Science Department, Aarhus University. 1981.

[RR86] G. Reed and W. Roscoe, A Timed Model for CSP, Proceedings ICALP ’86, LNCS 226, 1986.

[SS90] S. Smolka and B. Steffen, Priority as Extremal Probability, Proceedings Concur ’90, LNCS 458, 1990.

[SST89] S. Smolka, B. Steffen and C. Tofts, unpublished notes. Working title, Probability + Restriction ⇒
priority.

[THF92] C. Tofts, M.J.Hatcher, N. Franks, Autosynchronisation in Leptothorax Acervorum; Theory, Testability
and Experiment, Journal of Theoretical Biology 157: 71-82.

[TF92] C. Tofts, N. Franks, Doing the Right Thing: Ants, Bees and Naked Mole Rats, Trends in Evolution
and Ecology 7: 346-349.

[Tof89] C. Tofts, Timing Concurrent Processes, LFCS-report number 103, 1989.

[Tof90] C. Tofts, A Synchronous Calculus of Relative Frequency, CONCUR ’90, Springer Verlag, LNCS 458.

[Tof93] C. Tofts, Exact Solutions to Finite State Simulation Problems, Research Report, Department of Com-
puter Science, University of Calgary, 1993.

[Tof94] C. Tofts, Using Process Algebra to Describe Social Insect Behaviour, Transactions on Simulation, 1993.

[Tof94] C. Tofts, Processes with Probabilities, Priorities and Time, FACS 6(5): 536-564, 1994.

[Yi90] Yi W., Real-Time Behaviour of Asynchronous Agents, Proceedings Concur ’90 LNCS 458, pp 502-520,
1990.

256

[VW92] S. F. M. van Vlijmen, A. van Waveren, An Algebraic Specification of a Model Factory, Research report,
University of Amsterdam Programming research Group, 1992.

[Wil65] J. Wilkinson, The Numerical Eigenvalue Problem, Oxford University press 1965.

A PRobabilistic Algebra Toolset (PRAT)

The basic process definition mechanism is to present a file in Edinburgh concurrency workbench like syntax.
The system then generates an extended probabilistic transition graph (it takes account of priorities) and
provides a set of analysis functions which can be applied to the system.

A.1 Weights

Weights are defined by the following syntax, where n is an integer and string an ascii character string:

e ::= n|string|e− e7

w ::= e@n

So the following are weights: 5, 1-p, 5@2, 1-p@3. the last two being weights at priority level 2 and 3
repsectively. Note that we do not allow symbolic priorities, as this would actually affect the computational
structure.

A.2 Actions

Actions are defined as products of powers of strings;

A ::= string[ˆn]|A#A

again we do not allow symbolic action powers.
So the following are actions: a, aˆ-1,a#bˆ-2, cˆ4#a#bˆ3.
To form a permission free group we provide a binding operator for sets of actions:

bs Set a,b,c

binds the name Set to the actions a,b,c.

A.3 Processes

We define the following constructions on processes which we present by example, it should be noted that
we only allow one depth of operator application, this permits automatic absorbtion of equivalent state in
parallel compositions:

Sequential bs Coin p.head:C1 + 1-p.tail:C2
Parallel bpa Sys S1|S2
Permission bperm S1 Sys/Set
Priority bpi Sn S
Pri(Perm(Par)) btr Sys S1|S2|S3/Set
Perm(Par) bpc Sys S1|S2/Set
Comment *this is a comment

As the sytem constructs processes it prints out the number of states it has allocated so far as an indication
of the work left to do.

7It should be noted that the current parser works LR so that 1 − p− q is actually 1 − p+ q

257

A.4 Analysis

The following functions are presented to allow the maintenance, exploration and analysis of systems:

• cle() clear the current process environment.

• rf(filename) read a process definition from filename.

• dupo(filename) duplicate all output to the file.

• co() close duplicate output file.

• sim(Pname) simulate the process state called Pname. The simulator presents a menu of actions. Typing
the number of the action causes the system to continue from the labelled state. Hitting return takes
option 0 and hitting q exits the simulator.

• fd(Pname) find deadlocks in the process Pname. If a deadlock is found then the shortest transition to
that state is printed.

• ll(Pname) find livelocks in the process Pname.

• do prob(Pname,Win,Lose) generate a set of equations describing the probability of seeing the Win
action, ignoring other actions but terminating on the Lose action. Action syntax as above.

• do mean(Pname,Win,Lose) generate a set of equations describing the mean number of ticks to see a
Win or Lose action, ignore all other actions.

• ibv(vn,real) bind the weight variable vn to the real value real.

• sc(Pname) generate a set of back substitutions for the stable distribution of process Pname.

• solmn(Pname,action,file) produce an expression for the mean number of action in process Pname
output the results to file. This is separate from the above to allow reuse of the stable solution
information.

• genfun(Pname,Action,vn,low,hi,step,inR,gR,aL) generate a piecewise approximation to the mean
number of actions Action the parameters are as follows:

Pname the process;

Action the action;

vn the variable name to range over;

low lower limit of solution generation;

hi upper limit of solution generation;

step step between solutions;

inR initial number of iterations at approx level 0, to generate coarse approximation;

gR number of iterations at final approx level;

aL required accuracy of the final answer.

• genml(evrn,aprx,file) generate an SML function to evaluate the piecewise approximation generated
by above function, the error variable is given by evrn and file is the name of a file to copy the result
to.

The system supplies two iterative solution packages, one for numeric solutions the other for local approx-
imations, we describe their use below:

258

Numerical Analytical
Initialise start iterate(Pname) SI(Pname)
Iterate itn(n) APN(n)
Print Sol pt() CAP()
Mean ma(action) AM(action)
Mean (Cyclic) mcyc(action,n) APC(acs,n)

In the above the n in the cyclic means is the number of states in the cycle. Often good approximations
to nearly cyclic systems can be obtained cheaply by exploiting this function. A further function sal(n) is
supplied to set the approximation level in the second set of functions.

259

Model Checking of non-finite state processes by Finite
Approximations

N. De Francesco ♣, A. Fantechi ♣ ♦, S. Gnesi ♦ and P. Inverardi ♦ ♥

♣ Dipartimento di Ingegneria dell’Informazione, Univ. di Pisa, Italy, e-mail: nico@iet.unipi.it, fantechi@iet.unipi.it
♦ Istituto di Elaborazione dell’Informazione, C.N.R. Pisa, Italy, e-mail: gnesi@iei.pi.cnr.it
♥ Dip. di Matematica Applicata, Univ. dell’Aquila, Italy, e-mail:inverard@iei.pi.cnr.it

Abstract

In this paper we present a verification methodology, using an action-based logic, able to check
properties for full CCS terms, allowing also verification on infinite state systems. Obviously, for
some properties we are only able to give a semidecision procedure. The idea is to use (a sequence
of) finite state transition systems which approximate the, possibly infinite state, transition
system corresponding to a term. To this end we define a particular notion of approximation,
which is stronger than simulation, suitable to define and prove liveness and safety properties of
the process terms.

1 Introduction

Many verification environments are presently available which can be used to automatically verify
properties of reactive systems specified by means of process algebras, with respect to behavioural
relations and logical properties. Most of these environments [7, 12, 13, 19] are based on the hypoth-
esis that the system can be modelled as a finite state Labelled Transition Systems (LTS) and that
the logic properties are regular properties. That is, no means are provided to deal with non-finite
state LTS’s. Usually, in these environments, to avoid the nontermination of the generation phase
a term must satisfy some finiteness syntactic conditions: in the case of CCS, for example, terms
where a process variable x occurs in a parallel composition belonging to the definition of x are not
handled [22].

We are interested here to deal with non finite-state systems; approaches have been proposed to
this aim, which are not based on LTS’s [1, 4, 14, 15, 16]; we consider instead LTS based verification.
The idea is to use, for proving a logical property, a sequence of finite state LTSs approximating
the, possibly infinite state, LTS corresponding to a term by the standard CCS semantics.

In this paper we present a verification methodology to check properties expressed in ACTL, an
action based logic [11], on full CCS terms (with no syntactic restriction), thus allowing complete
generality of the class of reactive systems to be specified. We are able to carry on the verification
even though the ”usual” LTS generation fails. Obviously, for some of the properties, we are able to
give only a semidecision procedure. This procedure is based on a notion of approximation and on
the study of the ACTL properties preserved by the approximation. In this way, we can infer the
satisfaction of a property by the whole system from the satisfaction of the property by a chain of
approximations. In particular, we define an approximation chain, denoted as {Ni}, which is very
expressive with respect to liveness properties.

In order to reason on the properties that we are able to prove with approximation chains, we
start giving a syntactic characterization of different kinds of properties. Moreover, we define a

260

Act
µ.p

µ→ p
Con

p
µ→ p′, x

def
= p

x
µ→ p′

Sum
p
µ→ p′

p+ q
µ→ p′ and q + p

µ→ p′
Par

p
µ→ p′

p|q µ→ p′|q and q|p µ→ q|p′

Com p
α→ p′, q

α→ q′

p|q τ→ p′|q′
Res

p
µ→ p′, µ, µ 6∈ A
p\A µ→ p′\A

Rel
p
µ→ p′

p[f]
f(µ)→ p′[f]

Figure 1: The SOS rules

criterion to compare the suitability of approximation chains to prove properties. Following this
notion, we formalize the fact that a chain is ”better” than another one, if its set of provable
properties is greater. Our work differs from the abstract interpretation approaches for model
checking of transition systems [2, 6, 8] since we do not build an abstract (with respect to values)
model on which the properties are proved, but a suitable chain of finite labelled transition systems
based on the operational semantics: when dealing with infinite systems, this allows us to choose
the approximation level case by case.

2 Background

2.1 CCS

We summarize the most relevant definitions regarding CCS, and refer to [21] for more details. The
CCS syntax is the following:
p ::= µ.p | nil | p+ p | p|p | p\A | x | p[f]

Terms generated by p (Terms) are called process terms (called also processes or terms); x ranges

over a set {X, Y, ..}, of process variables. A process variable is defined by a process definition x def= p,

(p is called the expansion of x). As usual, there is a set of visible actions V is = {a, a, b, b, ...} over
which α ranges, while µ, ν range over Act = V is∪{τ}, where τ denotes the so-called internal action.
We denote by α the action complement: if α = a, then α = a, while if α = a, then α = a. By nil
we denote the empty process. The operators to build process terms are prefixing (µ.p), summation
(p + p), parallel composition (p|p), restriction (p\A) and relabelling (p[f]), where A ⊆ V is and
f : V is→ V is. Given a term p, an occurrence of a process variable x is guarded in p if it is within
some sub-term of the form µ.q. We assume that (i) V is is finite; (ii) for each definition x

def
= p,

each occurrence of each process variable is guarded in p; (iii) all terms are closed, i.e. all variables
occurring in a term are defined.

An operational semantics OP is a set of inference rules defining a relation D ⊆ Terms×Act×
Terms. The relation is the least relation satisfying the rules. If (p, µ, q) ∈ D, we write p µ→OP q.
The rules defining the semantics of CCS [21], from now on referred to as SOS, are recalled in
Figure 1.

A labelled transition system (or simply transition system) TS is a quadruple (S, T,D, s0), where

261

S is a set of states, T is a set of transition labels, s0 ∈ S is the initial state, and D ⊆ S × T × S.
A transition system is finite if D is finite.

A finite computation of a transition system is a sequence µ1µ2..µn of labels such that:
s0

µ1→OP ..
µn→OP sn.

Given a term p (and a set of process variable definitions), and an operational semantics OP ,
OP (p) is the transition system (Terms, Act, D, p), where D is the relation defined by OP .

Let TS1 = (S1, T1, D1, s01) and TS2 = (S2, T2, D2, s02) be transition systems and let s1 ∈ S1
and s2 ∈ S2. s1 and s2 are strongly equivalent (or simply equivalent) (s1 ∼ s2) if there exists a
strong bisimulation that relates s1 and s2. B ⊆ S1 × S2 is a strong bisimulation if ∀(s1, s2) ∈ B
(where µ ∈ T1 ∪ T2),

• s1
µ→1 s

′
1 implies ∃s′2 : s2

µ→2 s
′
2 and (s′1, s

′
2) ∈ B; s2

µ→2 s
′
2 implies s1

µ→1 s
′
1 and (s′1, s

′
2) ∈ B

s2 simulates s1 if there exists a strong simulation that relates s1 and s2. R ⊆ S1×S2 is a strong
simulation if ∀(s1, s2) ∈ R (where µ ∈ T1 ∪ T2): s1

µ→1 s
′
1 implies ∃s′2 : s2

µ→2 s
′
2 and (s′1, s

′
2) ∈ R.

TS1 and TS2 are said to be equivalent (TS1 ∼ TS2) if a strong bisimulation exists for s01 and
s02. Two CCS terms p and q are equivalent (p ∼ q) if SOS(p) ∼ SOS(q).

TS2 simulates TS1 if a strong simulation R exists such that (s01, s02) ∈ R.
Given a state s of a transition system TS = (S, T,D, s0), we say that s 6→ if no s′ ∈ S and

µ ∈ T exist such that (s, µ, s′) ∈ D.
CCS can be used to define a wide class of systems, that ranges from Turing machines to finite

systems [22]; therefore, in general, CCS terms cannot be represented as finite state systems.

2.2 ACTL

We introduce now the action based branching temporal logic ACTL defined in [11]. This logic is
suitable to express properties of reactive systems defined by means of TS’s. ACTL is in agreement
with the notion of bisimulation defined above. Before defining syntax and semantics of ACTL
operators, let us introduce some notions and definitions which will be used in the sequel.

For A ⊆ Act, we let DA(s) denote the set {s′: there exists α ∈ A such that (s, α, s′) ∈ D}.
We will also use the action name, instead of the corresponding singleton denotation, as subscript.
Moreover, we let D(s) denote in short DAct(s) and DAτ (s) denote DA∪{τ}(s).
For A,B ⊆ Act, we let A/B denote the set A− (A ∩B).
Given a LTS TS=(S,T,D,s0), we define:

• σ is a path from r0 ∈ S if either σ = r0 (the empty path from r0) or σ is a (possibly infinite)
sequence (r0, α1, r1)(r1, α2, r2) . . . such that (ri, αi+1, ri+1) ∈ D for each i ≥ 0.

• A path σ is called maximal if either it is infinite or it is finite and its last state r has no
successor states (D(r) = ∅). The set of maximal paths from r0 will be denoted by Π(r0).

• If σ is infinite, then |σ| = ω.
If σ = r0, then |σ| = 0.
If σ = (r0, α1, r1)(r1, α2, r2) . . . (rn, αn+1, rn+1), n ≥ 0, then |σ| = n + 1. Moreover, we will
denote the ith state in the sequence, i.e. ri, by σ(i). ut

To define the logic ACTL [11], an auxiliary logic of actions is introduced. The collection AF
of action formulae over V is is defined by the following grammar where χ, χ′, range over action
formulae, and α ∈ V is:

χ ::= α|¬χ|χ ∧ χ

262

We write ff for α0 ∧ ¬α0, where a0 is some chosen action, and tt stands for ¬ff . Moreover, we
will write χ ∨ χ′ for ¬(¬χ ∧ χ′). An action formula permits the expression of constraints on the
actions that can be observed (along a path or after next step); for instance, α ∨ β says that the
only possible observations are α or β, while tt stands for ”all actions are allowed” and ff for ”no
actions can be observed”, that is only silent actions can be performed.

The satisfaction of an action formula χ by an action α, α |= χ, is defined inductively by:

•α |= β iff α = β; •α |= ¬χ iff not α |= χ; •α |= χ ∧ χ′ iff α |= χ and α |= χ′

Given an action formula χ, the set of the actions satisfying χ can be given by the function
κ : AF(V is)→ 2V is as follows:

•κ(tt) = V is; •κ(α) = {α}; •κ(¬χ) = V is/κ(χ); •κ(χ ∨ χ′) = κ(χ) ∪ κ(χ′).

The syntax of ACTL is defined by the state formulae generated by the following grammar:
φ ::= tt | φ ∧ φ | ¬φ | Eγ | Aγ
γ ::= Xχφ |Xτφ | φ χU φ | φ χUχ′ φ

where χ, χ′ range over action formulae, E and A are path quantifiers, X and U are next and until
operators respectively.

Let TS = (S, Act, D, s0) be a LTS. Satisfaction of a state formula φ (path formula γ) by a
state s (path σ), notation s |=TS φ (σ |=TS γ) is given inductively by :

s |=TS tt always;
s |=TS φ ∧ φ′ iff s |=TS φ and s |=TS φ

′;
s |=TS ¬φ iff not s |=TS φ;
s |=TS Eγ iff there exists a path σ ∈ Π(s) such that σ |=TS γ;
s |=TS Aγ iff for all maximal paths σ ∈ Π(s), σ |=TS γ;
σ |=TS Xχφ iff |σ| ≥ 1 and σ(2) ∈ Dκ(χ)(σ(1)) and σ(2) |=TS φ;
σ |=TS Xτφ iff |σ| ≥ 1 and σ(2) ∈ D{τ}(σ(1)) and σ(2) |=TS φ;
σ |=TS φ χUφ

′ iff there exists i ≥ 1 such that σ(i) |=TS φ
′, and for all

1 ≤ j ≤ i− 1: σ(j) |=TS φ and σ(j + 1) ∈ Dκ(χ)τ (σ(j));
σ |=TS φ χUχ′φ

′ iff there exists i ≥ 2 such that σ(i) |=TS φ
′ and

σ(i) ∈ Dκ(χ′)(σ(i− 1)), and for all
1 ≤ j ≤ i− 1: σ(j) |=TS φ and σ(j) ∈ Dκ(χ)τ (σ(j − 1)).

Several useful modalities can be defined, starting from the basic ones. In particular, we will
write:

• EFφ for E(tt ttU φ), and AFφ for A(tt ttU φ); these are called the eventually operators.

• EGφ for ¬AF¬φ, and AGφ for ¬EF¬φ; these are called the always operators.

ACTL can be used to define liveness (something good eventually happen) and safety (nothing
bad can happen) properties of reactive systems. In a branching time logic both liveness and safety
properties could be divided into two classes: universal liveness (safety) properties and existential
liveness (safety) properties. The former state that a condition holds at some (all) states of all
computation paths. The latter state that a condition holds at some (all) states of one computation
path. Moreover liveness properties can be better classified as in the following [17, 20]:

263

Termination properties: ”a good thing happens at some states of a (all) computation(s)”.
Recurrence properties: ”a good thing happens at infinitely many states of a (all) computation(s)”.
Persistence property: ”a good thing happens at all but finitely many states of a (all) computa-
tion(s)”.
We can also talk of finite properties, that state some condition on the finite initial part of the
behaviour of the system.

2.3 Infinite state systems and logical properties

We know that all ACTL formulae are decidable on finite state transition systems and the linear time
ACTL model checker [10] can be used to do this job. Hence, when we have a CCS description of a
system and we want to prove on it ACTL properties, the labeled transition system associated to it
needs to be built. This will be the model on which the satisfiability of the formulae will be checked.
Problems, obviously, arise when the system to be modelled has an infinite state representation, due
for example to the interplay between parallel composition and recursion operators.

As an example, let us consider the CCS definition of a bag containing two kinds of elements:

X = p1.(g1.nil|X) + p2.(g2.nil|X)

where p1 and p2 represent insertions and g1 and g2 deletions of the two kinds of elements, re-
spectively. It is known that X is neither finite state nor context-free. Some typical properties of a
bag could be requested to be checked on this specification, in order to validate it:
1) The bag is not a set, therefore it is possible to put twice the same value in the bag consecutively:
AFAXp1EXp1tt.
2) It is possible, on all (but finitely many) states to do a put action immediately followed by a get
action: EFEG(EXp1EXg1tt).
3) There exists a computation path on which it is possible to do infinitely often put actions:
EGAF (EXp1∨p2tt).
4) It is always possible to perform a put action: AGEXp1∨p2tt.

3 Verification by approximations

Let us first present a syntactic characterization, as ACTL formulae, of the logical properties we will
deal with. We then introduce the general notion of chain of finite approximations of the transition
system of a term p. Finally, we introduce a notion of approximation suitable to prove liveness
properties.

3.1 Temporal properties

Definition 3.1 (Positive formula) We say that π′ is a positive formula if it is an ACTL formula
without negations.

Definition 3.2 (Liveness property) We say that ψ is a liveness property if one of the following
holds, where π′ is a positive formula:

• ψ = AFπ′ or ψ = EFπ′ (termination property)

• ψ = AFAGπ′, ψ = EFAGπ′, ψ = AFEGπ′ or ψ = EFEGπ′ (persistence property)

• ψ = AGAFπ′, ψ = EGAFπ′, ψ = AGEFπ′ or ψ = EGEFπ′ (recurrence property)

264

Definition 3.3 (Finite property) We say that σ is a finite property if it can be expressed by an
ACTL formula defined by the following grammar: σ ::= tt | σ ∧ σ | σ ∨ σ | ¬σ |Eγ |Aγ
γ ::= Xχσ |Xτσ

Definition 3.4 (Positive finite property) We say that π is a positive finite property if it is a
finite property without negations.

Definition 3.5 (Safety property) We say that θ is a safety property if θ = AGπ or θ = EGπ
and π is a positive finite property.

The given syntactical presentation of liveness and safety properties does not obviously cover all
the liveness and safety properties expressible by means of all the ACTL operators as the negation
operator. Indeed, negation makes the syntactic classification of formulae difficult. Following this
classification, we have that properties 1) to 3) of the bag example are liveness properties, while 4)
is a safety one.

Finite, liveness and safety properties are decidable on a finite state LTS. In general, while finite
properties are provable, liveness (including termination, persistence and recurrence) and safety
properties can be undecidable for a non-finite state term p.

3.2 Approximation chains

Given a CCS term p, we define chains of finite LTSs which more and more accurately simulate the
behaviour of SOS(p). Since each LTS in a chain is finite proof checking methodologies for finite
LTSs can be used. First we define in the most general way the concept of approximation chain. In
the following we denote, with T and T , the set of all LTSs and a generic LTS, respectively.

Definition 3.6 (Approximation chain) Let � a preorder over T . We say that T1 approximates
by � (�-approximates) T2 iff T1 � T2. Given a term p, a chain {Ti(p)|i ≥ 0} on (T ,�) is called
approximation chain for p by � (�-approximation chain) iff:

• for each i, Ti(p) is finite;

• for each i, Ti(p) � Ti+1(p);

• t{Ti(p)} ∼ SOS(p).

Note that, if we have a finite approximation chain {Ti(p)|r ≥ i ≥ 0}, then Tr(p) ∼ SOS(p).

�s

6�bc

TS2TS1

a ba
B
B
B
BBN

�
�
�
��

�
�
�
��

��
��

��
��

��
��
��
��

��
��

Figure 2: Simulation vs. BC-simulation.

265

Definition 3.7 (Properties preserved by �) A preorder � preserves a property φ if whenever
T1 verifies φ and T1 � T2 then T2 verifies φ.

The above definitions allow us to define a procedure for proving the validity of a property on an
infinite state-system, by checking the property on the elements of an approximation chain, starting
from the first one, until we find that the property is verified. The procedure is sound if the chain
preserves the property, i.e. it must happen that, if we are able to prove φ on an element of the
chain, we can assert the validity of φ on SOS(p). This means that the property must be monotonic
on the preorder. The first result we show is that simulation, from now on denoted by �s, is not
suitable to prove all liveness properties.

Proposition 3.1 �s does not preserve all liveness properties.
Proof Let us consider the following liveness property:
Each path contains a state from which all the outcoming arcs are labelled by a, expressed by
(AFAXatt) and the transition systems TS1 and TS2 in Figure 2.
We have that TS1 �s TS2, but TS1 verifies the property and TS2 does not.

In order to manage all liveness properties, we now introduce a stronger notion of simulation
between transition systems. This notion, in contrast to simulation, permits the definition of ap-
proximation chains that preserve the branching structure, that is, for each approximation, if a node
has been exploded, all its branches have been developed.

Definition 3.8 (Branching Complete Simulation) Let TS1 = (S1, T1, D1, s01) and TS2 =
(S2, T2, D2, s02) be transition systems and let s1 ∈ S1 and s2 ∈ S2.
s2 BC-simulates s1 if there exists a strong BC-simulation that relates s1 and s2. R ⊆ S1 × S2 is a
strong BC-simulation if ∀(s1, s2) ∈ R, µ ∈ T1 ∪ T2,

• s1
µ→1 s

′
1 implies ∃s′2 : s2

µ→2 s
′
2 and (s′1, s

′
2) ∈ R.

• s2
µ→2 s

′
2 implies either s1 6→1 or s1

µ→1 s
′
1 and (s′1, s

′
2) ∈ R.

TS2 BC-simulates TS1 (TS1 �bc TS2) if a branching complete simulation R exists such that
(s01, s02) ∈ R.

It is easy to see that TS1 �bc TS2 implies TS1 �s TS2, but the converse is not true in general.
For example, TS2 does not BC-simulate TS1 in Figure 2.

The following proposition holds.

Proposition 3.2 �bc is a preorder.
Proof Sketch. It is reflexive and transitive.

The notion of approximation chain based on BC-simulation preserves the branching structure
of the transition systems all along the chain. This allow us to prove properties not provable on a
chain based on simulation. One of the main results of the paper is the following:

Proposition 3.3 �bc preserves liveness properties.
Proof sketch By structural induction on the structure of the liveness formulae and taking into
account that the liveness properties are defined on a positive fragment of ACTL and that the BC-
simulation forces the simulating transition system to exactly mantain all the (bisimilar) branches
of the simulated one, if any.

It is now easy to relate approximation chains, based on BC-simulation, with liveness properties.
The following proposition is the basis of our verification method.

266

a

��
��

??

��
��

��
��

��
��

��
��

��
��

�
�
�
��

B
B
B
BBN

a

ba

TS1 TS3

�bc

�s

Figure 3: Simulation and BC-simulation.

Proposition 3.4 Let p be a term and {Ti(p)} a �bc-approximation chain for p. If φ is a liveness
property, it holds that: if s0 |=Ti(p) φ for some i, then s0 |=SOS(p) φ.
Proof. It follows by proposition 3.3.

For safety properties, the following proposition holds :

Proposition 3.5 �s and �bc do not preserve safety properties.
Proof Let us consider the safety property ”It is always possible to perform an action a ” , expressed
by AGAXatt, and the transition systems TS1 and TS3 in Figure 3. Then TS1 �bc TS3 and
TS1 �s TS3, but TS1 verifies the property and TS3 does not.

This means that we cannot define a semidecision procedure based on approximation chains for
the satisfaction of safety properties; on the converse, the following proposition gives a method to
prove that a safety property does not hold for SOS(p).

Proposition 3.6 Let p be a term and {Ti(p)} a �bc-approximation chain for p. If ψ is a safety
property, it holds that: if s0 6|=Ti(p) ψ for some i, then s0 6|=SOS(p) ψ.
Proof sketch For duality from Prop. 3.4

Prop. 3.6 corresponds, according to the definition of safety properties in [20, 17], to say that if
a finite approximation of a term p violates the property, then p itself violates the property.

Let us now consider finite properties. The following holds:

Proposition 3.7 �s does not preserve all finite properties.
Proof sketch Consider the finite property: Each path starts with an action a (AXatt), with TS1
and TS2 of Figure 2. We have that TS1 �s TS2, but TS1 verifies the property and TS2 does not.

Since finite properties represent a particular class of liveness properties we have a semidecision
procedure for testing the validity of these properties by using approximation chains based on �bc.
We can do more, as one should have expected, and provide a decision procedure for finite properties.
To this end, we furtherly constrain our chains. Let us consider, for example, the following finite
property for SOS(p) for some p:
All paths start with the action b and contain at least an action a as a second action (AXbEXatt).

267

Approximation chains based on �bc are not suitable to give a positive or negative answer if SOS(p)
is infinite: in fact a new path of length 2 may appear in whatever element of the chain. The
property is decidable if, instead, each transition system Ti(p) of the chain grows on all possible
paths with respect to Ti−1(p). This suggests the following notion:

Definition 3.9 (Transition system path-approximation) Let TS1 and TS2 be transition sys-
tems. We say that TS1 is an n-path-approximation of TS2 (TS1 �n TS2) if

• TS1 �bc TS2;

• either TS1 ∼ TS2 or the paths of length ≤ n of TS1 and TS2 coincide.

We can now state the following:

Proposition 3.8 Let π be a finite property of depth n, that is with only n nested next operators,
and {Ti(p)} a �bc-approximation chain for a term p such that Ti(p) �i SOS(p) for each i. Then
s0 |=SOS(p) π iff s0 |=Tn(p) π.
Proof sketch We have that Tn(p) has all the paths of length n of SOS(p).

4 How to build approximations

In this section, we present some ways of constructing approximation chains. In order to obtain
correct approximations for a term p, the idea is to derive p using the operational semantics until
some stopping condition, thus obtaining a partial transition system, which is furtherly expanded to
obtain the successive elements of the chain. The first chain we present, described in the following
sub-secton, is based on the standard SOS semantics. In order to obtain better approximations,
we then introduce a second chain, which is based on a different semantics, able to produce ”more
expressive” transition systems.

4.1 SOS approximations

Definition 4.1 ({Mi(p)}) Given a term p, the chain {Mi(p) = (SMi , Act, DMi, s0)} is inductively
defined as follows:

• M0(p) = ({p}, Act, {}, p)

• Mi+1(p) = (SMi+1, Act, DMi+1, p) where

– SMi+1 = SMi ∪ {q|p ∈ SMi and µ ∈ Act exist such that p
µ→SOS q};

– DMi+1 = DMi ∪ {(p, µ, q)|p ∈ SMi and µ ∈ Act exist such that p
µ→SOS q}.

Informally, M0(p) has the only state p without transitions and Mi+1(p), i ≥ 0, is obtained from
Mi(p), by adding to the states (and the related transitions) of Mi(p) all those states reachable from
them with only one action. The following proposition holds:

Proposition 4.1 Given a term p, the chain {Mi(p)} is a �bc-approximation chain for p.
Proof sketch. By induction on the length of the chain and by definig suitable BC-simulations.

Actually, the chain {Mi(p)} is the simplest chain derivable from SOS(p) which is a �bc-
approximation chain. In fact the simpler approximation chain which at any step adds a single
new transition to the previous element of the chain, is not a �bc-approximation chain.

268

Example 4.1 Let us now reconsider the bag example of section 2.3, and try to prove the properties
on the chain {Mi(X)}. Since {Mi(X)} is a �bc-approximation chain, it preserves all properties
from 1) to 3) and does not preserve the safety property 4). Thus, if we find that an approximation
Mi(X) verifies a property among 1) and 3), we prove that the property holds for the bag (i.e.
SOS(X)). M0(X) is given by a transition system with only one state, i.e. X itself, while M1(X)
and M2(X) are represented in Figures 4 and 5 respectively.

g2.nil|xg1.nil|x

p2p1

x

@
@
@@R

�
�

��	 �
�
�

�
�
�

��
��

Figure 4: M1(X)

�
�/

@
@R

�
�

�

�
�

�

�
�

�

�
�

�
 g2.nil|g2.nil|xg2.nil|g1.nil|xg1.nil|g2.nil|xg1.nil|g1.nil|x

g2g1

p1 p2p2p1

�
�
�

�
�	

@
@
@
@@R??

��
��

�
�
�

�
�
�

�
�

��	

@
@
@@R

x

p1 p2

g1.nil|x g2.nil|x

�� �nil|x

Figure 5: M2(X)

We have that property 1) is not satisfied by M1(X), it is satisfied by M2(X) and thus it is true
for the bag. Moreover, property 4) is verified by M1(X), but this does not mean that it is true for
the bag, since it is a safety property. Properties 2) and 3) are not verified by M1(X) neither by
M2(X). It is easy to see that these properties are not verified by any Mi(X), for each i. In fact
their satisfiability implies detecting a cycle in the transition system: this cycle will never appear in
the chain {Mi(X)}.

Thus, if we use this chain to approximate SOS(X), these properties are not provable, while
they hold for SOS(X). Nothing can instead be asserted about property 4), following proposition
3.6. The following proposition states that each Mi is a �i-approximation of SOS(p), i.e. the size
of the transition system grows.

Proposition 4.2 Given a term p, for each i ≥ 0, Mi(p) �i SOS(p).
Proof. By proposition 4.1 it holds that Mi(p) �bc SOS(p). Moreover, by induction on the length
of {Mi(p)}, we have by definition that Mi(p) has all the paths of length less or equal to i.

269

As a consequence, using {Mi(p)} we can decide any finite property of depth n of a term p: it
sufficies to check the property on Mn(p).

4.2 SS Approximations

In this section, we present a way of approximating SOS(p) based on a different operational se-
mantics, which allows us to prove a greater set of properties than those proved by {Mi(p)}. In
[9] the semantics SS was defined, which is more abstract than SOS, since the SS rules have built
in some behavioural equivalence axioms, i.e. they accomplish some simplifications on the terms
during the derivations, with the purpose of obtaining, if possible, a finite-state transition system
for p. The rules of SS are such that SS(p) is strongly equivalent to SOS(p). The definition of SS,
whose rules are shown in figure 6, is based on the following considerations. Given the CCS syntax,
those operators that, in presence of recursion, would give rise to the derivation of growing terms
(and therefore to an infinite number of derivations) are parallel composition, restriction and rela-
belling. For restriction and relabelling, in a language with finite action set, the unlimited growth of
terms can be prevented by using suitable inference rules. In fact, successive, possibly intermixed,
occurrences of restriction and relabelling can be reduced to only one restriction, followed by only
one relabelling. Moreover, the parallel operator can be deleted as soon as one of the two arguments
terminates, i.e. is equivalent to nil. The SS inference rules accomplish these strong equivalence
preserving simplifications during the derivation. The following notation is used in the rules:

p\\A = p\A, if p 6= q\B, p 6= q[f] q\A ∪B, if p = q\B
q\f1(A)[f], if p = q[f], q 6= r\B q\f1(A) ∪B[f], if p = q\B[f]

p[[f]]= p[f], if p 6= q[g] q[f ◦ g], if p = q[g]

S-Act=Act S-Con=Con S-Sum=Sum

S-Par1
p
µ→ p′, not p′ 6→

p|q µ→ p′|q and q|p µ→ q|p′
S-Par2

p
µ→ p′, p′ 6→

q|p µ→ q and q|p µ→ q

S-Com1
p
α→ p′, q

α→ q′, not p′ 6→ and not q′ 6→
p|q τ→ p′|q′

S-Com2
p
α→ p′, q

α→ q′, p′ 6→
p|q τ→ q′ and q|p τ→ q′

S-Res
p
µ→ p′, µ, µ 6∈ A
p\A µ→ q\\A

S-Rel
p
µ→ q

p[f]
f(µ)→ q[[f]]

Figure 6: The SS rules

The chain {Ni(p)} is defined in a similar way to {Mi(p)}, but using the above rules:

Definition 4.2 ({Ni(p)}) Given a term p, the chain {Ni(p) = (SNi , Act, DNi, s0)} is inductively
defined as follows:

• N0(p) = ({p}, Act, {}, p)

270

• SNi+1(p) = (SNi+1, Act, DNi+1, p) where

– SNi+1 = SNi ∪ {q|p ∈ SNi and µ ∈ Act exist such that p
µ→SS q};

– DNi+1 = DNi ∪ {(p, µ, q)|p ∈ SNi and µ ∈ Act exist such that p
µ→SS q}.

If we reconsider the bag example, Figures 7, 8 show N1(X) and N2(X), respectively.

g2.nil|xg1.nil|x

p2p1

x

@
@
@@R

�
�

��	 �
�
�

�
�
�

��
��

Figure 7: N1(X)

�
�

�

�
�

�

�
�

�

�
�

�
 g2.nil|g2.nil|xg2.nil|g1.nil|xg1.nil|g2.nil|xg1.nil|g1.nil|x

g2g1

Z
Z

Z
Z

Z
Z}

�
�
�
�
�
�>

p1 p2p2p1
�

�
�

�
�	

@
@
@
@@R??

��
��

�
�
�

�
�

��	

@
@
@@R

x

p1 p2

g1.nil|x g2.nil|x
�
�
�

Figure 8: N2(X)

The following proposition holds:

Proposition 4.3 Given a term p,

• the chain {Ni(p)} is a �bc-approximation chain for p;

• for each i ≥ 0, Ni(p) �i SOS(p)

Proof sketch Analogous to the proof of proposition 4.1 and 4.2 and since SOS(p)∼ SS(p).

If we check the properties 1) . . . 4) on the chain {Ni(p)}, we have the same results as with
{Mi(p)} for 1) and 4), but N2(X) satisfies properties 2) and 3), which are then true for the bag,
while their validity is not provable on the chain {Mi(X)}.

The following proposition relates the two chains we have introduced.

Proposition 4.4 Given a CCS term p, for each i ≥ 0, ∃j such that Mi(p) �bc Nj(p).
Proof. The finite paths are equal in Mi(p) and Ni(p), since they are both �i SOS(p). Moreover,

271

it holds that: ∀s ∈ SMi , ∃s′ ∈ SNi such that s ∼ s′ and length(s′) ≤ lengh(s), where length(t)
denotes the number of operators occurring in the term t. This holds since terms generated by SS
are ”shorter” than terms generated by SOS. Consider an infinite path in Mi(p), i.e. a path leading
from a state s ∈ SMi to itself and take n equal to the number of terms t equivalent to s and such
that length(t) ≤ lengh(s). Take j = i+ n.

Note that the converse of the above proposition is not true: if we consider the bag example, no
Mi(X) exists which is �bc N2(X).

5 Suitability of approximation chains

Let us consider a liveness property φ and a �bc-approximation chain {Ti(p)} for a term p. Propo-
sition 3.4 above ensures that, if we are able to prove φ on an element of the chain, we can assert
the validity of φ on SOS(p). Thus an algorithm to check the validity of a liveness property is
that of checking it on the elements of the chain, starting from the first one, until we find that
the property is verified. But the converse of proposition 3.4 is not true in general: if a liveness
property φ is verified on SOS(p), this does not imply that it is true for some {Ti(p)}. Thus, given
an approximation chain, the above algorithm (which checks a liveness property on the elements
of the chain) is not in general a semidecision procedure for the validity of a formula. This is the
case of the chain {Mi(p)} and the properties 2) and 3) of our example above. Moreover, different
approximation chains for the same term can be used to check different sets of properties, in the
sense that, given a property φ, it is possible that the above algorithm is a semidecision procedure
for φ if using a chain, while it cannot be used to semidecide the validity φ with another chain.
This suggests a comparison criterion on the suitability of approximation chains for proving liveness
properties.

Definition 5.1 (Checkable properties) Let be given a term p and a �bc approximation chain
{Ti(p)}. We say that a liveness property φ is checkable by {Ti(p)} if

• either φ is not verified by SOS(p) or

• (Tr(p) ∈ {Ti(p)}) exists such that s0 |=Tr(p) φ.

The set of checkable properties of p by {Ti(p)} is denoted as PTi(p).

Thus PTi(p) includes the properties for whose validity there is a semidecision procedure using
{Ti(p)}.

Definition 5.2 (Suitability of approximation chains) Let be given a term p and two �bc ap-
proximations chains {Ti(p)} and {Si(p)}. We say that {Ti(p)} is more suitable or equal for p
than {Si(p)} if PSi(p) ⊆ PTi(p). Moreover, {Ti(p)} is strictly more suitable for p than {Si(p)} if
PSi(p) ⊂ PTi(p).

Note that the notion of suitability of approximation chains is different from a notion considering
the ”growing rate” of the chains. Given, for example, an approximation chain {Ti(p)}, let us
consider the chain containing a subset of the elements of {Ti(p)}, for example the elements of even
position, i.e. {Si(p)} = {T0(p), T2(p), T4(p), · · ·}. We have that {Si(p)} grows faster than {Ti(p)},
but it is not more suitable. As a consequence of the above definitions and propositions 4.4, we can
state the following propositions:

Proposition 5.1 For each term p, PMi(p) ⊆ PNi(p).
Proof sketch. By proposition 4.4.

272

The following proposition states that the converse of proposition 5.1 is not true in general.

Proposition 5.2 Given a term p, PMi(p) ⊂ PNi(p), i.e. {Ni(p)} is strictly more suitable than
{Mi(p)}.
Proof sketch Properties 2) and 3) in the bag example are checkable by {Ni(p)} but not by {Mi(p)}.

6 Implementation in the JACK environment

The JACK system [3] is a verification environment for process algebra description languages. It is
able to cover a large extent of the formal software development process, such as rewriting techniques,
behavioural equivalence proofs, graph transformations, and (ACTL) logic verification. In JACK a
particular description format is used to represent TSs, the so called format commun fc2, that has
been proposed as standard format for automata [18]. The ACTL model checker was built on the
basis of an algorithm similar to that of the EMC model checker [5], so it guarantees model checking
of an ACTL formula on a TS in a linear time complexity [10].

The JACK environment has been extended with a tool to build the chain {Ni(p)}. We now
describe the methodology for proving properties. Let be given a CCS term p and a list of ACTL
formulae to be checked on it. A verification session has the following steps:

1. The term is input to JACK. If the term satisfies the finiteness condition of the transition
system generator inside JACK, a corresponding transition system TS is built and the list of
ACTL formulae is checked on it. The session terminates.

2. If the syntactic finiteness conditions are not satisfied, then we call the chain generator of
JACK. Once obtained the first approximation N1(p), we put TS := N1(p).

3. The list of ACTL formulae is input to the model checker which checks them on TS. If
Ni+1(p) = TS, the session terminates, since TS ∼ SOS(p). Otherwise, the results of the
model checker are analyzed according to propositions 3.4, 3.6 and 3.8. This means that,
possibly, a new approximation is built, i.e. TS := Ni+1(p) and we repeat step 3.

Acknowledgement

We wish to acknowledge Luigi Polverini for its work on the implementation of the NSS approx-
imation generator, Rocco De Nicola and Gioia Ristori for interesting discussion about the topics of
this paper.

References

[1] J. C. M. Baeten, J. A. Bergstra, J. W. Klop. Decidability of bisimulation equivalence for
processes generating context-free languages. Journal of ACM 40,3,1993, pp. 653-682.

[2] G. Bruns. A practical technique for process abstraction. CONCUR’93, LNCS 715, pp. 37-49.

[3] A. Bouali, S. Gnesi, S. Larosa. The integration Project for the JACK Environment. Bulletin
of the EATCS, n.54, October 1994, pp.207-223.

[4] O. Burkart, B. Steffen. Pushdown processes: Parallel Composition and Model Checking.
Proceedings, CONCUR 94, LNCS 836, 1994, pp.98-113.

273

[5] E.M. Clarke, E.A. Emerson, A.P. Sistla. Automatic Verification of Finite State Concurrent
Systems using Temporal Logic Specifications. ACM Toplas, 8 (2), 1986, pp. 244-263.

[6] E.M.Clarke, O.Grumberg, D.E.Long. Model Checking and Abstraction. ACM Toplas, 16 (5),
1994, pp.1512-1542.

[7] R. Cleaveland, J. Parrow, B. Steffen. The Concurrency Workbench. Proceedings of Auto-
matic Verification Methods for Finite State Systems. Lecture Notes in Computer Science 407,
Springer-Verlag, 1990, pp. 24-37.

[8] D.Dams, O.Grumberg, R.Gerth. Automatic Verification of Abstract Interpretation of Reac-
tive Systems: Abstractions Preserving ∀CTL*, ∃CTL*, CTL*. IFIP working conference on
Programming Concepts, Methods and Calculi (PROCOMET’94), 1994.

[9] N. De Francesco, P. Inverardi. Proving Finiteness of CCS Processes by Non-standard Seman-
tics. Acta Informatica, 31 (1), 1994, pp. 55-80.

[10] R. De Nicola, A. Fantechi, S. Gnesi, G. Ristori. An action-based framework for verifying logical
and behavioural properties of concurrent systems. Computer Network and ISDN systems, Vol.
25, No.7, 1993, pp 761-778.

[11] R. De Nicola, F. W. Vaandrager. Action versus State based Logics for Transition Systems.
Proceedings Ecole de Printemps on Semantics of Concurrency. LNCS 469, 1990, pp. 407-419.

[12] J.C. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, J. Sifakis. A Toolbox for the
Verification of LOTOS Programs. 14th ICSE, Melbourne, 1992, pp. 246-261.

[13] J. C. Godskesen, K. G. Larsen, M. Zeeberg. TAV Users Manual. Internal Report, Aalborg
University Center, Denmark, 1989.

[14] H. Hungar, B. Steffen. Local Model Checking for Context-Free Processes. Proceedings, ICALP
93, LNCS 700, 1993, pp.593-605.

[15] H. Hungar. Local Model Checking for Parallel Composition of Context-Free Processes. Pro-
ceedings, CONCUR 94, LNCS 836, 1994, pp.114-128.

[16] H. Huttel, C Stirling. Actions speak louder than words: Proving Bisimilarity for Context Free
Processes. LICS 91, IEEE Computer Society Press, 1991, pp. 376-386.

[17] E. Kindler. Safety and Liveness Properties: A Survey. Bulletin of the EATCS, 53, 1994,
pp.268-272.

[18] E. Madelaine. Verification Tools from the Concur Project. Bulletin of EATCS 47, 1992, pp.
110-120.

[19] E. Madelaine, D. Vergamini. AUTO: A Verification Tool for Distributed Systems Using Re-
duction of Finite Automata Networks. FORTE ’89, North-Holland, 1990, pp. 61-66.

[20] Z. Manna, A. Pnueli. The Anchored Version of the Temporal Framework, Linear Time, Branch-
ing Time and Partial Order in Logics and Models for Concurrency. Lecture Notes in Computer
Science 354, Springer-Verlag, 1989, pp. 201-284.

[21] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[22] D. Taubner. Finite Representations of CCS and TCSP Programs by Automata and Petri Nets.
LNCS 369, 1989.

274

On Automatic and Interactive Design
of Communicating Systems∗

Jürgen Bohn Stephan Rössig

FB Informatik, C.v.O. Universität Oldenburg
Postfach 2503, 26111 Oldenburg, Germany†

Abstract

This paper presents a transformational approach to the design of distributed sys-
tems where environment and concurrently running components communicate via syn-
chronous message passing along directed channels. System specifications that combine
trace-based with state-based reasoning are gradually modified by application of trans-
fromation rules until occam-like programs are achieved finally. We consider interactive
and automatic aspects of such a design process and illustrate our approach by sketch-
ing the development of a shared register implementation.

1 Introduction

The design of provable correct software requires formal methods whose usage should be
assisted by suitable tools. Following a transformational approach the design needs interac-
tive user help when important design decisions have to be made. Nevertheless simple parts
should be automated as far as possible. Ideally the user only guides the design process
by indicating the design ideas which are then carried out automatically. Typically se-
quential implementations are more appropriate for automation while parallelization needs
interaction to determine the intended program architecture.

Our approach deals with the transformational development of communicating systems
in the mixed term language MIX which encompasses specification and programming nota-
tion. A formal refinement notion guarantees that starting from a specification of a desired
system only correct implementations can be reached. As part of the ESPRIT Basic Re-
search Action ProCoS a refinement calculus for communicating systems was developed
in order to provide a constructive and mathematically sound way for bridging the gap
between specifications and programs [Old91, Rös94]. We consider communicating systems
as an approach to distributed computing that integrates the state transformation aspect of
iterative programs in the sense of UNITY [CM88] and action systems [Bac90] with the CSP
paradigm of synchronous message passing along communication channels. When designing
such systems several different aspects like concurrency, communication, nondeterminism,
deadlock, termination, divergence and assignment to variables have to be considered. A
state-trace-readiness semantics in a specification-oriented fashion provides the necessary
power to express such properties and concepts. Additionally it induces immediately a
refinement relation which is used to define correctness of system transformations.
∗This research was partially supported by the CEC with the ESPRIT Basic Research Project No. 7071

ProCoS II and by the German Ministry of Research and Technologie (BMFT) as part of the project
KORSO (Korrekte Software) under grant No. 01 IS 203 N.
†{bohn,roessig}@informatik.uni-oldenburg.de

275

The rest of this paper is structured as follows. Section 2 introduces our specification
language SL and explains how SL constructs can be applied in order to specify a regular
register with concurrent access. Section 3 considers basic aspects of a transformational
approach to system design. Section 4 sketches major steps within the development pro-
cess of a parallel architecture of sequential components implementing the regular register.
Section 5 treats the derivations of sequential implementations by systematic exploitation
of specifications. Section 6 deals with the automation of such systematic proceeding in
order to decrease the degree of user interaction within the whole design process. A final
section concludes this paper with a short discussion of the achieved results.

2 Specification Language SL

The specification language SL develops further the ProCoS specification language SL0
[JROR90] that was designed to describe continuously running embedded systems commu-
nicating with their environment via synchronous message passing along directed channels.
A communication along a channel takes place if both, system and environment, are ready
for communication on that channel. A system is in a deadlock whenever it does not become
ready for communication on at least one channel.

An SL specification provides several parts to describe such communicating systems in
a constraint-oriented style. Syntactically a specification is a list of so-called basic items
enclosed by spec – end brackets. The following sketches the basic ideas of these constructs
using the general specification pattern given in figure 1. Afterwards a few more details

spec

dirc c [of tyc] ∆
modex x [of tyx]

ta = trace αta in reta TA

ca = com naca write wca read rca CA
when whca then thca

var v of tyv lV

chan c [of tyc] lC

ini = initial pini SRini

sta = stable psta for csta SRsta

alw = always palw SRalw

est = establish pest by cest SRest

end

Figure 1: Specification format.

are discussed in the context of an example specification (cf. figure 3).
The interface ∆ stresses a static view of the intended system by listing all entities

which may be used for interaction with the environment. It consists of optionally typed
declarations of external channels with associated direction indication (input or output)
and of global variables with assoicated access mode (write or read-only).

Essentially the description of the intended dynamic behaviour is split into two parts
in SL. The trace part TA specifies in which order communications may take place on

276

the various channels. A trace assertion ta ∈ TA describes a sequencing constraint for
the channels of alphabet αta by giving a regular expression1 reta over these channels.
Several ordering aspects can be specified in a modular fashion by stating different trace
assertions. Technically the so-called trace language L[[∆,TA]] of the specification is that
regular language over all channels which obeys all sequencing constraints simultaneously.
The trace part prevents any communication trace of which the channel order does not
belong to L[[∆,TA]].

The state part CA relates single communications with the current system state. A com-
munication assertion ca ∈ CA consists of a channel name naca , two disjoint lists wca and
rca of write and read-only variables, respectively, and two predicates. The when-predicate
whca over free variables wca , rca disables channel naca for communication whenever whca
does not hold in the current state. The value of a communication refered to by @naca
as well as its effect on the system state are specified by the then-predicate thca over free
variables wca , rca , w

′
ca ,@naca . In the style of TLA [Lam94] and Z [Spi89] the unprimed

variables refer to the values in the before state while the primed ones to those in the after
state in which read-only variables rca must not change their values. Giving empty lists as
well as predicate true is optional. Several communcation assertions for the same channel
must be obeyed all together.

The use of a more operational formalization approach to the behaviour specification
is supported by declarations of local variables lV and local channels lC. The various state
restrictions SR provide a good basis for the integrated reasoning with state-based argu-
ments as invariance and stable properties and with control flow arguments as initial state
and establish properties. Technically these latter constraints could be replaced by certain
more or less complex combinations of other basic items of which intuitive understanding
is then often lost. The same holds for the always possible replacement of the trace part
by additional local variables and communications assertions.

In [LG89] a good overview can be found about the various kinds of shared registers
treated in the literature on distributed algorithms. According to the classification in
[Lam86] we use as running example in this paper a regular register with a single reader
and a single writer. In general a register stores values of a type V and the most recently
written value shall be returned to the reader if its access does not overlap with a write.
In the case of overlapping phases the regular behaviour guarantees that a read phase will
return a value that was hold before or after one of write accesses. Figure 2 presents our

#
"

!writer single-reader

register

#
"

!reader

W -
�

A

R

T

�
-

Figure 2: Register as communicating system

view of single-writer, single-reader register as communicating system. The writer initiates
a writing phase by sending the new value along the input channel W . This phase ends
when a corresponding acknowledgment signal is output on channel A. Conversely, the
reader initiates a reading phase by sending a signal along the input channel R. This phase
ends when a value is returned along the output channel T .

Figure 3 shows a complete SL specification of a regular register which is explained here
shortly.2 Here the interface consisting of the declarations of channels W,A,R, T together

1of an extended format additionally using pref as prefix closure operator
2Similar SL specifications of various registers are presented in [OR93, Rös94] together with a very

detailed motivation of the single components.

277

RegisterSpec = spec input W of V
output A of signal
input R of signal
output T of V

ta1 : trace W,A in pref(W.A)∗

ta2 : trace R, T in pref(R.T)∗

var new , old of V
var C of V−set

caW : com W write new , C then new ′ = @W ∧ C ′ = C ∪ {@W}
caA : com A write old read new then old ′ = new
caR : com R write C read new , old then C ′ = {new , old}
caT : com T read C then @T ∈ C

end

Figure 3: Specification of a regular register.

with the trace part consisting of trace assertions ta1, ta2 formalize the value independent
aspects. Communications along channels of type signal are used for synchronization
purposes only but do not pass any message value. The trace assertions guarantee that
initiating and ending communications of write as well as read phases always occur in
alternating order starting with channels W and R, respectively.

To specify the values that may be returned we use local variables to store certain pieces
of information. Variables old and new shall hold the before and the after value when a write
access is active and otherwise that unique value which is stored in the register. Therefore
a communication on W updates new with the newly received value what is formalized by
conjunct new ′ = @W in the then-predicate of caW . Analogously old′ = new expresses
that old gets the value of new whenever an A signal ends up a write phase. The idea of
the set-valued variable C is to collect all possible return values for a read access. Thus the
value @T to be passed by an ending T communication can be easily chosen from C. The
initialization of variable C is performed by the initiating R signal of a read phase. Note
that the values of new and old are equal outside of write phases and hence then-predicate
C′ = {new, old} of caR leads to the only return value. Any write phase starting during
a read phase overlaps this and thus every newly written value becomes a possible return
value. Therefore each W communication enriches C by its communication value @W .

3 Transformational Implementation Design

To implement communicating systems we use an occam-like programming language PL
[INM88]. Programs are terms constructed from the 0-ary operators STOP, SKIP, multiple
assignments, input and output on channels, the unary operators WHILE, var and chan for
describing loops and declaration of local variables and channels, and the operators SEQ,
IF, ALT and PAR for sequential, conditional, alternative and parallel composition of lists of
n arguments. Figure 4 shows a PL program which implements the register specification of
figure 3. Analogously to specifications a program declares its interface to the environment
explicitly. The system – end brackets emphasize that programs represent implementations
of communicating systems.

Semantically a communicating system is viewed as pair ∆ :P where the interface ∆
declares the communication channels and global variables. The predicate P characterizes
the dynamic behaviour of the system as the set of possible observations in a state-trace-
readiness model. This model integrates a purely event-based readiness approach [OH86]
and a standard input/output semantics into a specification-oriented semantics of which

278

system input W of V
output A of signal
input R of signal
output T of V
chan u, d of V
chan r of signal
PAR[var new of V

WHILE true do SEQ[W ?new , u !new , A!] od,
var x of V
WHILE true do ALT[u ?x-->SKIP, r ?-->d !x] od,

var y of V
WHILE true do SEQ[R?, r ! , d ?y, T !y] od]

end

Figure 4: Register Implementation.

details are presented in [Old91, Rös94]. A major reason for this semantics construction
is the immediate presence of a refinement notion for communicating systems. A system
∆1 :P1 refines a system ∆2 :P2 if both ones have the same interface and if behaviour P1
implies behaviour P2:

∆1 :P1 ≡> ∆2 :P2 iff ∆1 = ∆2 and |= P1 ⇒ P2.

This definition encompasses a correctness notion Prog ≡> Spec since specifications and
programs are special representations of communicating systems.

Figure 5 shows a design sequence of a transformational implementation approach.
Starting from an SL specification Spec, a PL implementation Prog is derived in a top-

Spec ≡ S1

|||
AA��

...

|||AA��
Sn ≡ Prog

Figure 5: Implementation design sequence.

down fashion by iterated application of transformation rules such that the specification
notation is gradually replaced by programming language constructs. The intermediate
system expressions Si are so-called mixed terms of the language MIX. This language en-
compasses specifications and programs as disjoint subsets and extends the application of
every programming operator to arbitrary mixed terms. Moreover, there exist additional
MIX specific operators in order to express intermediate stages of a system design much
more conveniently. E.g. the treatment of the semantically complex PL operator PAR can
be reduced within MIX to a combination of the simpler operators SYN and HIDE dealing
separately with the aspects of multiple synchronization and of divergence raised by infinite
internal communication.

Typically a transition step from mixed term Si to Si+1 is performed by replacing some
specification expression S in Si by a mixed term T where the refinement T ≡> S is
guaranteed by a transformation rule. Then the overall implementation correctness follows
from the transitivity of ≡> and the monotonicity of all operators.

279

In easy cases a transformation step will replace a specification by a basic PL statement
as e.g. an input or output communication or an assignment. Figure 13 below shows ap-
propriate equivalences of specification and programming constructs. But more often more
complex specifications have to be decomposed into mixed terms applying some composi-
tion operator to several simpler arguments. As typical example supporting this later kind
of refinements, figure 6 shows a transformation rule which introduces the synchronization

spec ∆ TA CA lV end

|||
AA��

SYN[spec ∆1 TA1 CA1 lV 1 end, . . . ,
spec ∆n TAn CAn lV n end]

provided ∆ =
⋃ n
|| i=1∆i, TA =

⋃n
i=1 TAi, CA =

⋃n
i=1 CAi, lV =

⊎n
i=1 lV i and . . .

Figure 6: Transformation rule SYN decomposition.

operator SYN. Generally a side condition “provided . . . ” restricts the applicability of the
transformation rule and describes how the new mixed term is derived by syntactic modifi-
cations from the given one. In the example it is expressed that essentially the basic items
of the given specification have to be shared out between the new argument specifications
spec ∆i TAi CAi lV i end obeying some static semantic constraints.

For practical implementation designs a user needs guidance how to realize intuitive
implementation ideas by application of such transformation rules. Here so-called design
strategies provide recipes how to combine several rules in order to derive implementations
in certain situations systematically or even mechanically. Data refinement, parallelization
concepts or the development of specific sequential implementations are implementation
concepts that can be supported by such strategies. As example we will later consider the
automated synthesis of sequential programs based on the syntax directed transformation
strategy SDT.

Tool support

An interesting consequence of basing all semantic reasoning on a uniform predicate lan-
guage is that this reasoning comes close to what can be mechanically supported higher
order logic theorem provers. In the German national research project KORSO one of the
goals was to provide tool support for formal methods in software design. As part of this
work a computer assisted validation of our semantical model was performed within the
theorem prover Lambda [BR95]. To this end first the model was implemented in the
higher order logic of Lambda [FM91, FFHM93] and various basic propositions about the
model have been verified in the Lambda framework interactively. On the one hand this
validation gives great confidence in soundness of the model as well as of its formalization
in Lambda. On the other hand a basic transformation environment for communicat-
ing systems emerges from the verification of transformation rules since Lambda provides
mechanisms for the representation of syntactic objects and supports their modification by
rule applications. Particularly a transformational design processes is assisted by saving
the design history, backtracking mechanisms, generation of proof obligations and a rule
browser. Furthermore the tactics concept provides a possibility to perform algorithmic
rule applications and automatic condition checking.

280

4 Parallel Register Architecture

Frequently specifications require that sometimes a system should be ready for commu-
nication on several channels. As in occam, the restriction to so-called input guards as
arguments of the alternative operator ALT forces parallel implementations in such cases
where an output channel must be together ready with at least one other channel.

In the regular register such a situation is present e.g. when a first communication
took place. Initially the regular register must be ready for input channels W and R.
Independently on the channel along which a communication is performed in the next
situation common readiness is required for an input and an output channel. Hence an
occam-like implementation of this register has to use concurrently running subcomponents
which interact via internal communication. Obviously we shall choose one write manager
component WM dealing with write access and a read manager RM serving the reader.
Both these components require access to the value stored in the register. But PL does not
provide shared variables and therefore a third component SV will play this role. Figure 7
indicates how these components are connected via local channels u, r , d of which usage is

W

A WM u SV d

r
RM

R

T

Figure 7: Intended process architecture.

as follows. After having received a new value along W the WM component updates the
current register value by sending the new value along channel u to SV before the external
acknowledgment on A is offered. RM serves a read request along R by sending an internal
request along r to SV. The shared variable process immediately answers by delivering
its actual value along channel d to RM which then transmits this value along T to the
reader.34 The specifications WMspec, SVspec and RMspec presented in figure 8 express
this intuitive description of WM, SV and RM formally. They are designed by systematic
transformation from the original specification shown in figure 3. Due to space limitations
we list the major transformation steps towards the parallel decomposition in the following
only.5 Essentially these steps are motivated by the intended architecture which reflects
the overall design ideas.

1. The local channels u, r , d are declared and their global communication behaviour
is restricted according to the indicated communication order by modification of the
trace assertions ta1, ta2 to

trace W,A, u in pref(W.u.A)∗

trace R, T, r , d in pref(R.r .d .T)∗

trace u, r , d in pref(u + r .d)∗ .

2. To store the register value in SV and to hold the return value in RM, respectively,
the state space is extended by variable declaration var x,y of V.

3The different treatment of write and read accesses to the shared variable process are necessary in
order to allow a sequential implementation of SV because otherwise the problem of output channels in non
singleton readysets would only be delayed.

4Note that this register implementation refines the regular specification properly because of a more
deterministically chosen return value in the case of overlapping write and read accesses. Essentially this
implementation realizes the stronger behaviour of an atomic register.

5In [OR93, Rös94] detailed explanations are given on the execution of such steps.

281

WMspec =

spec
input W of V
output A of signal
output u of V
trace W,A, u

in pref(W.u.A)∗

var new of V
com W write new

then new ′ = @W
com A
com u read new

then @u = new
end

SVspec =

spec
input u of V
input r of signal
output d of V
trace u, r , d

in pref(u + r .d)∗

var x of V
com u write x

then x′ = @u
com d read x

then @d = x
end

RMspec =

spec
input R of signal
output T of V
output r of signal
input d of V
trace R, T, r , d

in pref(R.r .d .T)∗

var y of V
com T read y

then @T = y
com d write y

then y′ = @d
end

Figure 8: Component specifications.

3. The original variables old and C are removed. To this end they are made auxil-
iary variables by introduction of appropriate state restrictions and strengthening of
communication effects.

4. The local channel declarations are moved in front of the specification and thus they
become global ones for the body. Since the trace part prevents infinite communi-
cation on local channels u, r , d only, their hiding from the specification does not
introduce divergence.

5. The communication assertions of channels u and d are split in order to enable the
intended distribution of local variables new, x, y onto the components WM, SV, RM.

6. Now the synchronous decomposition rule shown in figure 6 is applied and we end up
with the mixed term

chan u, d of V
chan r of signal
HIDE u, r , d in SYN[WMspec, SVspec,RMspec]

with the component specifications of figure 8. Finally the operators HIDE and SYN
are replaced by PAR because exactly all channels linking two argument systems of
SYN are hidden.

The steps 2. and 3. perform a data refinement on the internal state space thereby pro-
ceeding quite systematically. A partial automation of this strategy would be very useful
and seems to be possible. Generally executing the above steps and especially those per-
forming the parallel decomposition requires a high degree of user interaction because the
underlying rules allow various instantiations of their parameters leading to quite different
refinements.

In contrast implementations of the three component specifications WMspec, SVspec and
RMspec can be achieved by automatic synthesis of sequential programs. The conceptual
basis of this automation and its implementation within Lambda are dealt with in the rest
of this paper.

5 Designing Sequential Implementations

A notion of termination is essential when dealing with sequential implementations. In this
section we present a suitable extension of SL to enable the description of termination. This
new notion provides the basis for a transformational design of sequential implementations.

282

In order to refine a specification into a sequential composition of several specifications of
reduced complexity, the circumstances have to be expressed, under which the control flow
passes from one system to the next one. Therefore so-called T-specifications are introduced
in SL. These are syntactically distinguished by system – end brackets instead of spec
– end bracketed so-called S-specifications. Dependent on the trace part T-specifications
may terminate in certain situations where the corresponding S-specifications would reach a
deadlock. For a detailed comparison of S- and T-specifications see [Rös94]. A consequence
of this differentiation is that an empty T-specification system end immediately terminates
what is equivalent to the SKIP statement at the programming level. In contrast the empty
S-specification spec end denotes an immediate deadlock which is represented in PL by
STOP.

The following presents two transformation rules which relate S- and T-specifications.
The first one in figure 9 allows in par-
ticular to switch from an S- to a T-
specification which at most differs in the
trace part. The trace language L[[∆,TA]]
of the S-specification must be equal to
pcL[[∆,TA1]] which denotes the prefix
closure of the trace language of the T-
specification. When the refined system
reaches the STOP it starves in a dead-
lock.

spec ∆ TA CA end

|||
AA��

SEQ[system ∆ TA1 CA end, STOP]

provided L[[∆,TA]] = pcL[[∆,TA1]].

Figure 9: Linking S- and T-specifications

Figure 10 shows a more general rule for the sequential decomposition of S-specifications.
The first condition of this rule links the trace languages of the different specifications. The

spec ∆ TA CA end

|||
AA��

SEQ[system ∆ TA1 CA end, spec ∆ TA2 CA end]

provided L[[∆,TA]] = pcL[[∆,TA1]] ∪L[[∆,TA1]].L[[∆,TA2]]
and L[[∆,TA1]] is prefix free.

Figure 10: Transformation rule sequential decomposition.

other condition “L[[∆, TA1]] is prefix free” guarantees a unique transition of the control
flow from the first to the second argument in the mixed term.

In the following we concentrate on the implemention of T-specifications. The introduc-
tion of while-loops within the implementation design process simplifies T-specifications of
which trace languages are iterations of prefix-free base languages. The body of an achieved
while-loop is built up from the given specification by reducing the trace language to this
base language as shown in the conditions of the while rule in figure 11. The termination
condition (

∨
c∈first(∆,TA1)whc) is constructed from the when-predicates of those channels

which are initially enabled by the trace language.
The decomposition of S-specifications into while-loops can be performed by an prepara-

tory application of the rule in figure 9 and afterwards introducing a while-loop for the
T-specification part. In case of a never terminating loop as first argument the sequential
composition with STOP as second argument can be simplified using the rewriting rule :

SEQ[WHILE true do P od, Q] → WHILE true do P od .

283

system ∆ TA CA end

|||AA��

WHILE
∨
c∈first(∆,TA1) whc do system ∆ TA1 CA end od

provided L[[∆,TA]] = L[[∆,TA1]]∗ and L[[∆,TA1]] is prefix free.

Figure 11: Transformation rule loop decomposition.

Another way of decomposing a specification into several ones with simpler trace lan-
guages are disjunctive decompositions thereby introducing an ALT or IF operator. Fig-
ure 12 shows a transformation rule for alternative decomposition which splits a T-specifi-
cation into k subspecifications, where k is the number of that interface channels that occur
as first element in at least one word of the trace language. Immediate termination is im-

system ∆ TA CA end

|||
AA��

ALT[system ∆ TA trace c in d1.(c1 + · · ·+ cn)∗ CA end,
· · · ,
system ∆ TA trace c in dk.(c1 + · · ·+ cn)∗ CA end]

provided ε /∈ L[[∆,TA]] and first(∆,TA) = {d1, . . . , dk} 6= ∅ and c = Chans(∆).

Figure 12: Transformation rule alternative decomposition.

possible due to the first rule condition. Each subspecification contains an additional trace
assertion that marks one channel to precede each communication trace of that subsystem.

Using these decomposition rules and similiar ones a specification can be systematically
refined into a mixed term where the trace languages of all occuring specifications are
very simple. Here the languages consists of the empty word or of a single channel name.
If furthermore the state part is also of a simple pattern then such specifications can be
directly replaced by PL statements. Figure 13 shows that certain T-specifications are

c?v ≡ system input c write v
trace c in c
com c write v then v′ = @c

end

c? ≡ system input c of signal
trace c in c

end

c!e ≡ system output c read free (e)
trace c in c
com c read free(e) then @c = e

end

c! ≡ system output c of signal
trace c in c

end

Figure 13: Meaning of input and output communication statements in PL.

equivalent to input and output communications in PL. Other simple specifications can
be transformed into these patterns and are therefore automatically implementable, as
described in the next chapter.

Tool support for application of single rules

A transformational design step based on one rule application can be supported by a
tool with the generation of the modified system and the check of the side conditions.

284

A single application of one transformation rule in a theorem prover like Lambda on
the one hand modifies the current MIX term and on the other hand generates proof
obligations from the rule conditions. To reduce the necessary interaction with the tool
the proof programming language of tactics can be used. Tactics are based on possibly
guided single rule applications and equational rewriting which are combined by tactical
composition constructs like sequences, if-then-else statements and repetitions to proof
searching algorithms.

Since most application conditions of our transformation rules are decidable their ver-
ification can be automated. For example all conditions concerning regular expressions
are decidable. Many other conditions are provable by simple set operations. The tool
only needs user guidance when a transformation rule modifies a MIX term in a way that
cannot be generated from the context. For example the user should describe the desired
subspecifications when applying the parallel decomposition of figure 10.

6 Automatic Program Synthesis

A transformational software design requires even with tool assistance user support to
realize creative design decisions. Nevertheless, if the designer has made some decision a
tool should perform all necessary transformation steps and check their correct execution.
Thus we have started to implement design strategies thereby exploiting the Lambda

implementations of the transformation rules which arose from a formal validation of our
approach [BR95].

There are two ways how to integrate strategies inside Lambda. The first one is pro-
vided by tactics. Strategies can be realized by sequential combinations of tactics for single
transformation rules. This method allows a flexible combination of previously defined tac-
tics. But reasoning about the strategies is impossible in Lambda itself because tactics are
expressed in a meta language. E.g. termination of tactic applications cannot be proven
in Lambda.

The second way overcomes this disadvantage. Here strategies are formalized within
Lambda as functions which implement algorithms that describe the design ideas. This
integrated treatment allows us to prove properties of strategies as termination and applica-
bility in certain situations in Lambda. While the correctness of tactical strategies follows
immediately from the correctness of their underlying rules the correctness of strategy func-
tions has to be proved itself, although these proofs are also reducible to easier rules or
simple statements. The correctness of a function strat realizing a certain strategy is easily

S

|||
AA��

strat(S)

provided ...

Figure 14: Strategy as function.

expressed as transformation rule (cf. figure 14) where “. . . ” characterize all side condi-
tions of the strategy. The automated application of such a strategy in Lambda is then
reduced to a call of a simple tactic which applies the corresponding rule and afterwards
expands the definition of strat.

A tactical combination of several rules requires the explicit condition check for each
rule application. Often in the context of a strategy similar conditions have to be checked

285

for the various rules applications. Such overlapping checks can be avoided in the case
of functional strategy implementation. Here all these checks are collected in the single
strategy condition thereby removing redundant checks.

SCS: implementing specifications of single communications

In a last step of any transformation process simple specifications of communications and
their effects to the systems state have to be implemented. Therefore the equivalences of
input and output communications in figure 13 are extended to specifications with less re-
stricted communication assertions. Figure 15 shows the implementation of a so-called SCS
(Single Communication System) for an input channel. The new variable vc is introduced to

system input c of ty write w read r
trace c in c
com c write w read r when whc then thc

end

|||
AA��

IF[whc → var vc of ty SEQ[c?vc, impl(thc[vc/@c])]]

provided vc is a fresh variable

Figure 15: SCS transformation for input channel.

pass the received value from the input to the effect computation. An analogous rule with
the sequence SEQ[impl (thc[v′c/@c]), c!vc] holds in the case of an output channel. Here
the communication value has to be computed before it can be offered to the environment.

The mixed term derived from an SCS rule applications is transformed further by
replacing impl(thc[vc/@c]) and impl (thc[v′c/@c]), respectively. For a transition predicate p
we use impl (p) to denote any program that computes this state transition and afterwards
terminates. Not every transition predicate is implementable, e.g. false. Thus the design
process should yield then-predicates which can be treated by rules of the following kind :

impl(x′ = e)

|||
AA��

x := e

impl(p ∧ q)

|||
AA��

SEQ[impl(p), impl(q[Writes(p)/Writes(p)′])]

provided Writes(p) ∩Reads(q) = ∅

Figure 16: Implementing transition predicates.

Applying SCS and impl() rules recursively yields a little basic strategy which imple-
ments specifications of which the trace part cannot be further decomposed. Automating
this SCS strategy as tactic would first apply the SCS rules and then repeatedly impl()-
rules. A formalization as function in Lambda recursively walks through the structure of
a mixed term and replaces SCS suitable systems by PL implementations as follows :

SCS(SEQ[P,Q]) = SEQ[SCS(P), SCS(Q)]
SCS(ALT[P,Q]) = ALT[SCS(P), SCS(Q)]
SCS(WHILE b do P od) = WHILE b do SCS(P) od
...
SCS(system ouput c of tyc ... trace c in c com c ... end)

= IF[whc → var vc of tyc SEQ[impl(thc[v′c/@c]), c!vc]]

286

SCS(system input c of tyc ... trace c in c com c ... end)
= IF[whc → var vc of tyc SEQ[c?vc, impl(thc[vc/@c])]]

All other mixed terms remain unchanged by SCS. The corresponding strategy rule is
presented in figure 17.

S

|||
AA��

SCS(S)

provided no local variable vc occurs free in thc

Figure 17: SCS strategy rule

In the following SDT strategy we will use this SCS implementation as basic strategy.

SDT: generating sequential implementations

For restricted classes of specifications it is possible to generate a program structure from
the trace part automatically. The idea of the Syntax Directed Transformation strategy
(SDT) is to drive the transformation process by the structure of the regular expression of
the only trace assertion of a specification. A tactical automation of this strategy would
recursively apply the decomposition rules presented in chapter 5. This tactic would per-
form many similar checks of application conditions which are avoided by the following
functional implementation.

The function PCS formalizes in Lambda the inductive construction of a Program
Control Structure from the operators of one regular expression and calls the SCS strategy
to generate communication statements for channel names in the regular expression.

PCS(∆, re1 + re2,CA) = ALT[SEQ[PCS(∆, re1,CA), PCS(∆, re2,CA)]]
PCS(∆, re1.re2,CA) = SEQ[PCS(∆, re1, CA), PCS(∆, re2, CA)]
PCS(∆, re∗,CA) = WHILE ... do ... od
PCS(∆, c,CA) = SCS(system ∆|c, trace c in c ,CA|c end)

The interface ∆ and communication assertions CA are used for calls of the SCS strat-
egy where ∆|c denotes the restriction of ∆ and CA|c gives the communication assertion
of channel c. Figure 18 shows the corresponding PCS rule which generates sequential
programs for certain T-specifications.

system ∆ trace c in re CA end

|||
AA��

system ∆ PCS(∆, re,CA) end

provided re is SDT suitable and impl(thc) is defined for all c ∈ c = Chans(∆).

Figure 18: PCS implementation of system specifications.

Basically PCS uses the rules presented in chapter 5 and the SCS function. The con-
ditions of the PCS rule guarantee that all application conditions corresponding to the
intermediate transformation steps are satisfied. SDT suitable regular expressions contain
no nested iterations (stars). Further more alternative regular expressions are restricted to
input channels as first letters.

287

Now the SDT strategy is defined as follows : An S-specification is transformed by the
rule in figure 9 into a T-specification with a following STOP. Then PCS and SCS are applied
to this T-specification. Based on algebraic laws, the so far generated program is finally
simplified by rewriting rules like those in figure 19.

SEQ[WHILE do true odP,Q] → WHILE true do P od
ALT[ALT[...]] → ALT[...]
IF[true, P] → P
SEQ[c?v, x:=v] → SEQ[c?x, v:=x]
SEQ[v:=e, c!v] → SEQ[v:=e, c?e]
var v of ty P → P, if v is an auxiliary variable in P

Figure 19: Rewriting Rules for the SDT strategy

The SDT strategy can be applied to each of the component specifications WMspec,
RMspec and SVspec (see figure 8) of the register example. The combined application of
PCS, SCS, impl() and simplifying rewriting rules yield the implementations which are
shown as the three arguments of the PAR operator in figure 4.

The three specifications WMspec, SVspec and RMspecsatisfy the application conditions
of the SDT strategy. Its application yields the following implementations of WM, SV and
RM :

WM = var new of V
WHILE true do SEQ[W ?new, w!new, A!] od

SV = var x of V
WHILE true do ALT[w?x→ SKIP, r? → t!x] od

RM = var y of V
WHILE true do SEQ[R?, r!, t?y, T !y] od

Figure 20: Implementations of WMspec, RMspec and SVspec.

7 Discussion

We reported on a mixed term language MIX for the transformational design of commu-
nicating systems. Using the example of a register specification we demonstrated how to
realize certain implementation ideas in a transformational design approach.

In the theorem prover Lambda the mixed terms and transformation rules have been
formalized in order to validate the whole approach and prove the rules mechanically. At a
first stage this embedding provides a simple tool for interactive execution of transformation
steps.

In a transformational setting strategies systematically combine several rules in order
to direct large transformation steps. To decrease the degree of user interaction in a design
process the execution of such strategies has been automated in Lambda. Aspects of
different realizations are discussed on the examples SCS and PCS. These strategies are
used to generate implementations for the sequential components of the previously parallel
decomposed register specification. A formal treatment of strategies inside Lambda allows
to prove properties like correctness, termination and applicability to certain mixed terms.

Ideas for further strategies reveals in the context of parallel implementations concerning
the systematic treatment of shared variables and methods of data refinement. Building up

288

these strategies together with their integration in a design tool yields improved support
of important design tasks.

References

[Bac90] R.J.R. Back. Refinement calculus, Part II: Parallel and Reactive Programs. In
J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Stepwise Refinement
of Distributed Systems - Models, Formalisms, Correctness, LNCS 430, pages 67–
93. Springer-Verlag, 1990.

[BR95] J. Bohn and S. Rössig. Towards a design assistant for communicating systems.
Technical Report ProCoS Doc. Id. OLD JB 2/1, Univ. Oldenburg – FB10, 1995.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design - A Foundation. Addison-
Wesley, 1988.

[FFHM93] M. Francis, S. Finn, R.B. Hughes, and E. Mayger. LAMBDA Version 4.3,
Documentation Set. Abstract Hardware Limited, London, 1993.

[FM91] M. Fourman and E. Mayger. Integration of formal methods with system design.
In Proc. VLSI’91, Edingburgh, 1991.

[INM88] INMOS Ltd. occam 2 Reference Manual. Prentice Hall, 1988.

[JROR90] K.M. Jensen, H. Rischel, E.-R. Olderog, and S. Rössig. Syntax and informal
semantics of the ProCoS specification language level 0. Technical Report ESPRIT
Basic Research Action ProCoS, Doc. Id. ID/DTH KMJ 4/2, Technical University
of Denmark, Lyngby, Dept. Comput. Sci., 1990.

[Lam86] L. Lamport. On interprocess communications Part II. Distributed Comp., 1:86–
101, 1986.

[Lam94] L. Lamport. The temporal logic of actions. TOPLAS, 16(3):872–923, 1994.

[LG89] N.A. Lynch and K.J. Goldman. Distributed algorithms. Technical Report
MIT/LCS/RSS 5 6.852 Fall 1988, MIT, 1989.

[OH86] E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communi-
cating processes. Acta Inform., 23:9–66, 1986.

[Old91] E.-R. Olderog. Towards a Design Calculus for Communicating Programs. In
J.C.M. Baeten and J.F. Groote, editors, Proc. CONCUR ’91, LNCS 527, pages
61–77. Springer-Verlag, 1991. invited paper.

[OR93] E.-R. Olderog and S. Rössig. A case study in transformational design of concur-
rent systems. In M.-C. Gaudel and J.-P. Jouannaud, editors, TAPSOFT’93: The-
ory and Practice of Software Development, LNCS 668, pages 90–104. Springer-
Verlag, 1993.

[Rös94] S. Rössig. A Transformational Approach to the Design of Communicating Sys-
tems. PhD thesis, Univ. Oldenburg, 1994. Tech. report 4-94, Fachbereich Infor-
matik, Univ. Oldenburg.

[Spi89] J.M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, London, 1989.

289

Composition and Refinement Mapping based Construction of
Distributed Applications

Arnulf Mester, Heiko Krumm
Universität Dortmund, Fachbereich Informatik, D-44221 Dortmund, Germany

Phone +49 231 755-4662, Fax -4730, {mester|krumm}@ls4.informatik.uni-dortmund.de

Abstract

Major steps of the design of distributed applications correspond to the integration of predefined
patterns. To support such design steps, a concept for refinement by pattern composition is introduced
which applies formal process composition and provides functions for the tool assisted construction
and modification of specifications. The approach is based on L. Lamport’s Temporal Logic of Actions
TLA and the related theory of refinement mappings and system composition.

1 Introduction

The increasing complexity of distributed applications can be faced by enhanced design support, by
implementation-near tools and building blocks as well as by more abstract design guides, building blocks
and methods. On an implementation near level, syntax and static semantics based tools - as they are
integrated into current development environments (e.g., [18]) - support the construction of design docu-
ments and implementation modules. Libraries provide for reusable solutions of specific application fields
and implementation platforms (e.g., [7, 15, 19]). On a more abstract informal level, the design process
can be guided by design patterns [9]. Formal description techniques (e.g., Lotos [12], TLA [14]) model
the dynamic semantics and support the specification and verification of system behaviour. Correctness
preserving transformation methods (e.g., [3, 4, 5, 8, 13]) view the design as a series of stepwise refinements
which can be guided by transformation rules.

Like correctness preserving transformation methods, our approach supports the stepwise refinement
and verification of formal description technique based specifications. A new type of transformation
‘pattern integration’ provides for the efficient reuse of specification modules. It corresponds to syntactical
transformations which can be performed by a tool. So, even very specific design patterns can be utilized
efficiently (However, unlike CPTs, some transformations have to be accompanied by explicit verification
steps).

The approach concentrates on the design of control structures of distributed applications. They can
be viewed as a composition of patterns which provide abstract distributed algorithms for the distribution
of functionality, user models of standardized communication services, and detailed interface mechanisms
to application program interfaces of application platforms.

The approach is based on L. Lamport’s Temporal Logic of Actions (TLA [14]) and refers to the
concepts of refinement mappings [2] and composition by logical conjunction [1]. We apply a composi-
tional TLA style which supports the specification of process systems and corresponding decompositional
verifications [10].

The paper introduces pattern integration and an additional operation for process splitting in principle
and with respect to tool functions. (A similar process splitting operation is proposed in [6] for algebraic
process definitions.) The concepts are exemplified by views of an example (presented in more detail in
[17]). The example is ’academic’. However, it is designed to sketch practical aspects of the application
of pattern integration in the complete design process of computer network applications. So, the paper
concentrates on the application, the formal background is outlined only.

290

2 TLA and Refinement Mappings

TLA is a linear time temporal logic modelling systems as state transition systems [14]. The state space is
defined by a set of variables. The next state relation is structured into so-called actions. A closed system
can be described by a TLA formula in canonical form.

variables id, od, s ;
Init

∆= s=idle ;
Start(p)

∆
= s=idle ∧ id ′=p ∧ s ′=pre ;

Step
∆
= s=pre ∧ id ′=id ∧ od ′=f(id) ∧ s ′=post ;

F
∆= Init ! initial states
∧ 2 (Step ∨ ∃ p: Start(p) ! next state: actions

∨ (id ′=id ∧ od ′=od ∧ s ′=s)) ! stuttering steps
∧ ∀ p: WFid,od,s(Start(p)) ∧ WFid,od,s(Step); ! liveness

The canonical formula F above describes a system with three variables id, od, and s. Each system
execution starts with a state fulfilling the initial predicate Init. A pair of successive states < σ, σ′ >
always fulfills one of the actions Start or Step or is a stuttering step (i.e., σ = σ′). In the definitions of
the actions, the primed variables refer to the successor state. The fairness assumptions in the last line of
F express the liveness of the system: both actions are assumed to be scheduled weakly fairly. An action
is called weak fair in a behaviour, if it is infinitely often executed unless infinitely often disabled.

Besides of the weak fairness operator WF, TLA provides for a strong fairness operator SF (not used
in this paper). The always operator is denoted by 2. Enabled(α) is true in a state σ, if there can exist a
value combination σ′, such that < σ, σ′ > fulfills the action α.

Verification is performed by proofs of implications. Assume the formulas F and G to describe two
systems, F intended to be a refinement / implementation of G. The two systems shall correspond to each
other with respect to so called visible variables which occur in both formulas. Additionally F and G may
contain internal variables xF and xG. F is a correct refinement of G iff the formula ∃∃xF : F ⇒ ∃∃xG : G
can be proved. Proofs are supported by the TLA inference rules. Refinement proofs can profit from
refinement mappings [2]. The existence of a refinement mapping fR from F to G is sufficient for the proof.
Later we utilize an appropriate specification construction, where a refinement mapping gets obvious. A
refinement mapping fR is a function from the state components of the fine-system to the state components
of the coarser system. fR has to map states of F to states of G mapping visible variables by identity.
Initial states of F have to be mapped to initial states of G. The images of state pairs fulfilling the next
state relation of F have to fulfill the next state relation of G. Finally each image of a state sequence of F
has to fulfil the fairness assumptions of G.

3 Processes in a compositional TLA style

A compositional TLA style – supporting both safety and liveness properties – is introduced in [10] and
applied here in an enhanced version. It facilitates the description of process systems. The style provides
for process abstractions1. As in Lotos [12], a process in principle is an open subsystem which can perform
joint actions with its environment, and data parameters of actions support the communication of values.
Moreover, a process specification can be interpreted for itself. It reflects a closed system consisting of the
process and an environment which is universal in the sense that it does not constrain the process.

variables eStart, eStep, ! environment readiness variables
id, od, s ; ! private state variables

Init
∆
= s=idle ;

Start(p)
∆
= s=idle ∧ id ′=p ∧ s ′=pre ;

Step
∆
= s=pre ∧ id ′=id ∧ od ′=f(id) ∧ s ′=post ;

cStart(p)
∆
= Start(p) ∧ p ∈ eStart ; ! conditional Start action

cStep
∆
= Step ∧ eStep 6= ∅; ! conditional Step action

Appl1
∆
= Init ! initial states
∧ 2 (Step ∨ ∃ p: Start(p) ! next state: actions

∨ (id ′=id ∧ od ′=od ∧ s ′=s)) ! stuttering steps
∧ ∀ p: WFid,od,s(cStart(p))
∧ WFid,od,s(cStep) ; ! liveness

1TLA and it’s accompanying notations are intended as broad-spectrum specification tools. The compositional TLA style
aroused from the experiences of our ’Tools for TLA based specifications’ project [16], where the need of developers for more
guidance in specification has been identified.

291

The canonical TLA formula Appl1 above describes a process. The formula Appl1 ∧2(eStart = Vp ∧
eStep 6= ∅) describes a corresponding separated process and is equivalent to the formula F of Sect. 2. Vp
denotes the set of values of the data type of the parameter p of the action Start.

The liveness properties are described by fairness assumptions on conditional actions which are con-
junctions of actions and environment conditions.

The environment readiness variables (introduced for each fair process action) are assumed to be set
by the environment of the process. By writing these variables, the environment can define, which possible
system action execution it tolerates – either combined as joint action or with a stuttering step of the
environment. For our example above, e.g. if p ∈ eStart, the environment can tolerate the action Start(p)
in the next step, i.e. either stutters or makes a joint action with it.

By style convention, the actions only affect private variables. Additional conventions concern those
actions which are supplied with a fairness assumption. Fair actions of a process have to be disjoint to all
other actions of the process. Also, they have to be disjoint to stuttering steps.

process Appl1 ;
variables id, od : array [0..5] of integer ; s : (idle, pre, post) ;
Init

∆
= s=idle ;

actions
Start(p : array [0..5] of integer)

∆
= s=idle ∧ id ′=p ∧ s ′=pre ;

Step
∆
= s=pre ∧ id ′=id

∧ od ′=[2*id[0],2*id[1],..,2*id[5]] ∧ s ′=post ;
WF : Start, Step ;

end ;
Fig. 1 Process Appl1

For the description of processes, we use a PASCAL like notation in the sequel. The notation only
specifies the non-canonical parts. So, Fig. 1 represents the formula Appl1 from above. Because it rep-
resents tool input syntax, the variables are now typed and the unknown symbol f is replaced by scalar
multiplication. We will refer to this form as flat system formula or flat process definition synonymously.
’Flat’ characterizes a definition with all specification operations (cf. Sect. 5) performed. The formal
semantics of this notation is given by the correspondence to TLA formulas outlined above.

4 Process patterns

Any productive use of formal design must rely on building blocks. Our building blocks for specification
are processes and process patterns. They are able to define various abstractions in mixed bottum-up,
top-down and ’middle-out’ design.

The process Appl1 of Fig. 1 corresponds to a more general pattern. It is a sequential and terminating
process which is defined over three control states and computes result data by the application of a function
to input data.

process Prepost (tdata : datatype ; f : function) ;
variables d : tdata ; s : (idle, pre, post) ;
Init

∆= s=idle ;
actions
Start(p : tdata)

∆
= s=idle ∧ d ′=p ∧ s ′=pre ;

Step
∆
= s=pre ∧ d ′=f(d) ∧ s ′=post ;

WF : Start, Step ;
end ;
process Auxvar (tdata : datatype) ;

variables v : tdata ;
Init

∆
= true ;

actions Write(p : tdata)
∆
= v ′=p ;

end ;
Fig. 2 Process patterns Prepost and Auxvar

The pattern is called Prepost and shown in Fig. 2. tdata and f denote generic parameters of the
pattern. The second pattern Auxvar can be used to introduce auxiliary variables, i.e. variables used for
verification purposes only and not to appear in implementations.

It’s obvious, that a library of process patterns modelling common abstractions2 in distributed ap-
plications design significantly increases the productivity of the designer. Appropriate concepts and tool

2More representative process patterns appear in Sect. 6.

292

support for using process patterns and processes as building blocks in design are described in the next
section.

5 Operations on specifications

During design, design decisions are normally introduced stepwise into the artifact. In formal design, the
formal specification of each maturity ’level’ captures the sum of design decisions done and introduced
already. We are capturing design decisions by recording the sequence of specification operations and
their process/pattern parameters. Specification operations are formally relating their resulting process
definitions with their input process definitions.

Features, formal background and motivation for the operations are presented. The syntax for the
operations is exemplified in the next section.

5.1 Process composition

The compose operation takes as input a number of processes and a coupling description and delivers a
flat process definition for the resulting system.

Formally, a system S composed of processes P1, P2, .., Pm is described by a compositional system
formula S ∆=P1 ∧ P2 ∧ .. ∧ Pm ∧CC. The different Pj stand for the process formulas. CC is an invariant
and describes the coupling of the system. CC defines the system actions which are conjunctions of
process actions and process stuttering steps. To each system action, each process contributes by exactly
one action respectively stuttering step.

With respect to fair process actions, CC defines the environment readiness variables of each process
to be functions of the ‘real’ state variables of the other processes. Let α be a fair action of a process Pi
which occurs in a system action β together with the actions γj of other processes. The readiness variable
eα of process Pi has always to be equal to the intersection of the system readiness variable eβ and the
sets {p : Enabled(γj(p))}.

The occurence of fair process actions in system actions is constrained by additional style conventions.
Each fair action of a process has to occur exactly once in the set of system actions. If the fair process
action α(p1, .., pn) occurs in a system action β(q1, .., qm), the actual parameters p1, .., pn of α have to be
identical to the formal parameters q1, .., qm of β. If α is supplied with the strongest fairness assumption
of the process actions of β, the fairness assumption of β is analogous to the fairness assumption of α.

Due to the conventions, the compositional system formula can be transformed syntactically into an
equivalent flat formula (as defined in Sect. 3) which meets the syntax of a process description.

5.2 Pattern integration

Input to the pattern integration operation are processes Pi which are instances of patterns. We intend R
to be a combination of the Pi for which implications R⇒ Pi hold (dependent on the role of Pi, for some
Pi, R ⇒ ∃∃eα, . . . : Pi may be sufficient). The benefit of this is very important: The resulting process
is formally related by refinement mappings with all its integrated processes, i.e. their behaviour and
theorems.

The style conventions of composition (cf. last Subsect.) are weakened. There may be fair process
actions which occur in more than one system action. The actual parametrization of fair process actions
not necessarily has to be identical to the formal parameters of system actions.

We split the task of pattern integration into a syntactical operation and accompanying proof. The
syntactical operation is prepared mechanically and followed by creative modification. The preparing
operation results in an intermediate system IR which is constructed by firstly computing the flat form of
the composition and then applying variable substitutions which replace component variables by system
variables. The substitutions can serve as proposals of refinement mappings for proofs of R⇒ Pi.

293

5.3 Composed patterns

Composition and pattern integration can support the application design. Additionally it can facilitate
the definition of patterns if a pattern regards different aspects in combination. So, a pattern may be
a composition of resource oriented processes which reflect a predefined distribution of functionality. By
means of a composition of constraint oriented processes, a pattern can reflect a logical decomposition of
system properties.

5.4 Process splitting

Design by pattern integration would result in one large flat specification of a distributed application.
Nevertheless, distributed applications consist of several components which are located at different sites.
Therefore, we propose the operation of process splitting. Like pattern integration, it is based on compo-
sition and performed interactively.

Process splitting starts from a flat specification F and transforms it into a compositional specification
C which is composed from a set of processes Pi and which is a refinement of F. We assume that the
actions of F (as well as the Init predicate) are defined as conjunctions of predicates.

The process splitting is performed in a sequence of steps. First, the designer proposes a set of process
names P1, . . . , Pn. Then he has to define the distribution of variables. For each variable of F he can
define a non-empty set of those processes, in which a copy of the variable will occur. Thereafter a tool
can check, if the process splitting can be prepared mechanically. It checks the occurrence of variables in
predicates, and decides if all variables of a predicate are assigned to the same set of processes. If this is
the case, the predicate is associated with this set of processes. If all predicates can be associated with
process sets, a proposal IC for C can be computed mechanically. Finally IC can be modified interactively
to form C.

IC is a composition of processes P1, . . . , Pn. IC has the notation of a composition which is equivalent
to F . Additionally, the specifications of the processes Pi are parts of IC. The variables of Pi are copies
of all the variables of F which are assigned to Pi. The Init condition and the actions are conjunctions
of copies of predicates. For each action β of F , a process Pi will contain a corresponding action α. α is
defined by the conjunction of these predicates of β the process set of which contains Pi (if β does not
contain such predicates, α equals to true).

An arbitrary splitting – not only motivated by physical variable distribution – is possible, e.g. for
preparing simplification and verification tool employment (cf. Sect. 7).

6 A distributed ISO/OSI-conformant producer/consumer ex-
ample

We sketch parts of the stepwise design of a distributed application, modelling a producer and a consumer
agent targeted at a realistic use of an ISO/OSI-conformant transfer service and appropriate procedure
style application program interface. The full example is available as [17]. The first three subsections
exemplify the specification operations described above, using the syntax of our manipulation tool. The
last two subsections illustrate the benefits of the manipulation tool when using larger process patterns
and specifications as building blocks for specifications.

294

Appl1

Appl3

Appl2

Appl4

Segmentate

ProdCons

TermRes
DSTart

Appl5

Transfer
PCCS

ClientAPI

integrate

integrate

integrate

integrate

integrate

split

P5 M5C5

P6

C7 P7

Fig. 3 Overview of the example design

Fig. 3 gives an outline of the
example design. An abstract
process Appl1 performs a termi-
nating two-step operation. The
final result is a system of
two remote processes P7 and
C7. P7 produces segments of
data, C7 consumes and pro-
cesses segments. P7 and C7
communicate via a ’standard’
communication service. The
application programming inter-
face to the service is provided
by a special application plat-
form. In order to refine Appl1
into this producer consumer
system, the design references
the predefined patterns Segmen-
tate,ProdCons,DStartTermRes,
TransferPCCS, and ClientAPI.

6.1 Process composition
type aoi = array [0..5] of integer ;
process CAppl1 ;

processes P : Prepost(aoi, [x0,..,x5]→[2*x0,..,2*x5]);
A : Auxvar(aoi) ;

actions
Start(p : aoi)

∆
= P.Start(p) ∧ A.Write(p) ;

Step
∆
= P.Step ∧ A.Stutter ;

end ;
process FAppl1 ;

variables P.d : aoi ; P.s : (idle, pre, post) ; A.v : aoi ;
Init

∆
= P.s=idle ∧ true ;

actions
Start(p : aoi)

∆
= P.s=idle ∧ P.d ′=p ∧ P.s ′=pre ∧ A.v ′=p ;

Step
∆
= P.s=pre ∧ P.d ′=[2*P.d[0],..,2*P.d[5]]
∧ P.s ′=post ∧ A.v ′=A.v ;

WF : Start, Step ;
end ;

Fig. 4 System composed from Prepost and Auxvar instances

Fig. 4 shows the processes CAppl1 and FAppl1. CAppl1 is composed from instances P and A of the
patterns Prepost and Auxvar (cf. Fig. 2). Furthermore it is an example for the syntax of a compositional
system. The coupling constraint CC follows from the actions part of CAppl1. It defines the system
actions to be joint actions of P.Start and A.Write, or to be P.Step actions accompanied by stuttering
steps of A. Implicitly, it defines the environment readiness variables of the component P to be functions:
2(P.eStart = {p ∈ aoi : Enabled(A.Write(p))}∩ eStart ∧P.eStep = eStep). CAppl1 is equivalent to FAppl1
which represents the flat system formula (which is – under appropriate variable renaming – equivalent to
Appl1 of Fig. 1).

295

6.2 Pattern integration
process IAppl1 ;

variables id, od : aoi ; s : (idle, pre, post) ;
integrate

A : Auxvar(aoi) substitute A.v by id ;
P : Prepost(aoi,[x0,..,x5]→[2*x0,..,2*x5])

substitute P.s by s ; P.d by if s=post then od else id ;
actions
Start(p : aoi)

∆
= A.Write(p) ∧ P.Start(p) ;

Step
∆
= A.Stutter ∧ P.Step ;

end ;

process IAppl1 ;
variables id, od : aoi ; s : (idle, pre, post) ;
Init

∆
= true ∧ s=idle ;

actions
Start(p : aoi)

∆
=

id ′=p ∧ s=idle ∧ (if s=post then od else id) ′=p ∧ s ′=pre ;
Step

∆
=

id ′=id ∧ s=pre ∧ s ′=post
∧ (if s=post then od else id) ′=

[2*(if s=post then od else id)[0],..,
2*(if s=post then od else id)[5]] ;

WF : Start, Step ;
end ;

Fig. 5 Construction of Appl1 by pattern integration

For exemplification, we alternatively construct Appl1 of Fig. 1 by pattern integration. Fig. 5 shows
definition and result of the mechanical operation. The variable id of IAppl1 is shared between an Auxvar
and a Prepost process. By simplifications IAppl1 can be modified interactively and Appl1 of Fig. 1 can
be derived.

6.3 Design by pattern integration

Pattern integration steps can substantially facilitate the construction of the detailed specification of a
distributed application. We assume that a suitable library of patterns exists. The designer starts from
an abstract specification of the application and successively develops more detailed specifications by the
integration of pattern instances.

process Segmentate (n : cardinal ; t1, t2 : datatype ; fs : function) ;
variables id : array[0..n-1] of t1 ; od : array[0..n-1] of t2 ;

sc : 0..n ; s : (idle, ready, term) ; stc : cardinal ;
Init

∆
= s=idle ∧ stc>0 ;

actions
Start(p : array[0..n-1] of t1)

∆
=

s=idle ∧ id ′=p ∧ sc ′=0 ∧ s ′=ready ∧ stc ′=stc ;
Reset

∆=
s=ready ∧ stc>0 ∧ id ′=id ∧ sc ′=0 ∧ s ′=ready ∧ stc ′<stc;

DoSeg
∆
=

s=ready ∧ sc<n ∧ id ′=id ∧ od ′=od besides od[sc]=fs(id[sc])
∧ sc ′=sc+1 ∧ s ′=ready ∧ stc ′=stc ;

Terminate
∆
= s=ready ∧ sc=n ∧ id ′=id ∧ od ′=od

∧ sc ′=sc ∧ s ′=term ∧ stc ′=stc ;
WF : Start, DoSeg, Terminate ;

end ;

Fig. 6 Pattern Segmentate

Now, we outline the refinement of Appl1 of Fig. 1 into the distributed application, which consists of
two application processes, a producer of segments and a remote consumer. The first design step is the
integration of the pattern Segmentate (Fig. 6) in order to introduce the segmentwise processing of data.
Segmentate successively applies the function fs to the elements of array id, the results stored in od. To
prepare reactions on exceptions of the distributed system, the process may be reset and may start the
processing again. Since the number of resets is limited (by stc), the process will eventually terminate due
to the fairness assumptions.

process IAppl2 ;
variables id, od, aod : array[0..5] of integer ; sc : 0..6 ;

s : (idle, ready, term) ; stc : cardinal ;
integrate
A : Appl1 substitute

A.id by id, A.od by if s=term then od else aod,

296

A.s by if s=idle then idle elsif s=ready then pre else post;
S : Segmentate(6,aoi,aoi,x→2*x) substitute

S.id by id, S.od by od, S.sc by sc, S.s by s, S.stc by stc;
actions

Start(p : aoi)
∆
= A.Start(p) ∧ S.Start(p) ;

Reset
∆
= A.Stutter ∧ S.Reset ;

DoSeg
∆
= A.Stutter ∧ S.DoSeg ;

Terminate
∆
= A.Step ∧ S.Terminate ;

end ;

Fig. 7 Integration of Segmentate into Appl1

The integration of Segmentate into Appl1 is shown in Fig. 7. We want IAppl2 to be a refinement of a
composition of an instance of Segmentate with an instance of Appl1. Note, that the third array variable
aod is an auxiliary variable as it is only written. It does not influence the execution of the system and
may be omitted in an implementation.

process IAppl2 ;
variables
id, od, aod : array[0.. 5] of integer ;
sc : 0.. 6 ; s : (idle, ready, term) ; stc : cardinal ;

Init
∆
=

(if s=idle then idle elsif s=ready then pre else post)=idle
∧ s=idle ∧ stc>0 ;

actions
Start (p : aoi)

∆
=

(if s=idle then idle elsif s=ready then pre else post)=idle
∧ id ′=p
∧ (if s=idle then idle elsif s=ready then pre else post) ′=pre
∧ s=idle ∧ sc ′=0 ∧ s ′=ready ∧ stc ′=stc ;

Reset
∆=
id ′=id

∧ (if s=term then od else aod) ′=(if s=term then od else aod)
∧ (if s=idle then idle elsif s=ready then pre else post) ′ =

(if s=idle then idle elsif s=ready then pre else post)
∧ s=ready ∧ stc>0 ∧ sc ′=0 ∧ s ′=ready ∧ stc ′<stc ;

DoSeg
∆
=
id ′=id

∧ (if s=term then od else aod) ′=(if s=term then od else aod)
∧ (if s=idle then idle elsif s=ready then pre else post) ′ =

(if s=idle then idle elsif s=ready then pre else post)
∧ s=ready ∧ sc<6
∧ od ′=od besides od[sc]=(x→2*x)(id[sc])
∧ sc ′=sc+1 ∧ s ′=ready ∧ stc ′=stc ;

Terminate
∆=

(if s=idle then idle elsif s=ready then pre else post)=pre
∧ id ′=id
∧ (if s=term then od else aod) ′ =

[2*id[0], 2*id[1],.., 2*id[5]]
∧ (if s=idle then idle elsif s=ready then pre else post) ′=post
∧ s=ready ∧ sc=6 ∧ od ′=od ∧ sc ′=sc ∧ s ′=term
∧ stc ′=stc ;

WF : Start, DoSeg, Terminate ;
end ;

Fig. 8 Integration result IAppl2
process Appl2 ;

variables
id, od : array[0.. 5] of integer ;
sc : 0.. 6 ; s : (idle, ready, term) ; stc : cardinal ;

Init
∆
= s=idle ∧ stc>0 ;

actions
Start (p : aoi)

∆
=

id ′=p ∧ s=idle ∧ sc ′=0 ∧ s ′=ready ∧ stc ′=stc ;
Reset

∆
=
id ′=id ∧ s=ready ∧ stc>0 ∧ sc ′=0

∧ s ′=ready ∧ stc ′<stc ;
DoSeg

∆
=
id ′=id ∧ s=ready ∧ sc<6

∧ od ′=(od besides od[sc]=2*id[sc])
∧ sc ′=sc+1 ∧ s ′=ready ∧ stc ′=stc ;

Terminate
∆
=

id ′=id ∧ s=ready ∧ sc=6 ∧ od ′=od ∧ sc ′=sc
∧ s ′=term ∧ stc ′=stc ;

WF : Start, DoSeg, Terminate ;
end ;

Fig. 9 Modified integration result Appl2

297

Fig. 8 shows IAppl2, the result of the mechanical integration. It can be modified interactively by
simplifications to form Appl2 of Fig. 9. Moreover we removed the auxiliary variable aod. With respect to
the action Terminate, we see that the primed value of od is constrained twice in Fig. 7 (equations od′ = od
and (if s = term then od else aod)′ = [2∗ id[0], 2∗id[1], .., 2∗id[5]]). One can prove, that both equations
are not in contradiction in this system. The equations are equivalent, the proof is an essential part of
the safety proof of Appl2 ⇒Appl1. The proof can be facilitated if the pattern Segmentate is accompanied
in the library by a theorem 2(s = term ⇒ od = [fs(id[0]), .., fs(id[n− 1])]). A second theorem of the
pattern Segmentate can state that Terminate eventually occurs and facilitates the liveness proof.

process ProdCons (tdata : datatype);
variables psq, bsq, csq : queue of tdata;

s: (idle, ready, term) ; stc: cardinal;
Init

∆
= s=idle ∧ stc>0 ;

actions
Start(p: queue of tdata)

∆
=

s=idle ∧ psq ′=p ∧ bsq ′=empty ∧ csq ′=empty
∧ s ′=ready ∧ stc ′=stc ;

Reset(p: queue of tdata)
∆
=

s=ready ∧ stc>0 ∧ psq ′=p ∧ bsq ′=empty ∧ csq ′=empty
∧ s ′=ready ∧ stc ′<stc ;

Produce
∆
=

s=ready ∧ psq 6=empty ∧ psq ′=tail(psq) ∧ stc ′=stc
∧ bsq ′=insert(bsq,front(psq)) ∧ csq ′=csq ∧ s ′=ready ;

Consume
∆
=

s=ready ∧ bsq 6=empty ∧ psq ′=psq ∧ bsq ′=tail(bsq)
∧ csq ′=insert(csq,front(bsq)) ∧ s ′=ready ∧ stc ′=stc ;

Terminate
∆=

s=ready ∧ psq=empty ∧ bsq=empty ∧ s ′=term ;
WF : Start, Produce, Consume, Terminate ;

end ;

Fig. 10 Pattern ProdCons

At next, we integrate the pattern ProdCons (Fig. 10) into Appl2. It models a producer/consumer
interaction. Initially the producer gets a queue of data psq, which is the source for producing data items
and forwarding them into a buffer bsq. Data items are removed from bsq and stored in the queue csq by
the consumer.

process Appl3 ;
variables
buffer : queue of integer ; s : (idle, ready, term) ;
stc : cardinal ; id, od : aoi ; ic, oc : 0.. 6 ;

Init
∆
= s=idle ∧ stc>0 ;

actions
Start (p : aoi)

∆
= id ′=p ∧ s=idle ∧ s ′=ready ∧ stc ′=stc

∧ ic ′=0 ∧ buffer ′=empty ∧ oc ′ =0 ;
Reset

∆
= id ′=id ∧ s=ready ∧ stc>0 ∧ s ′=ready ∧ stc ′<stc

∧ ic ′=0 ∧ buffer ′=empty ∧ oc ′=0 ;
Produce (p : integer)

∆
=

id ′=id ∧ od ′=od ∧ oc ′=oc ∧ s ′=s ∧ stc ′=stc ∧ s=ready
∧ ic<6 ∧ ic ′=ic+1 ∧ p=id[ic] ∧ buffer ′=insert(buffer, p);

Consume (p : integer)
∆
=

id ′=id ∧ s=ready ∧ oc<6 ∧ p=front(buffer)
∧ od ′=(od besides od[oc]=2*p) ∧ oc ′=oc+1
∧ s ′=ready ∧ stc ′=stc ∧ buffer 6= empty
∧ ic ′=ic ∧ buffer ′=tail(buffer) ;

Terminate
∆
=

id ′=id ∧ s=ready ∧ oc=6 ∧ od ′=od ∧ oc ′=oc ∧ s ′=term
∧ stc ′=stc ∧ ic=6 ∧ buffer=empty ;

WF : Start, Produce, Consume, Terminate ;
end ;

Fig. 11 Modified integration result Appl3

The result of the integration of ProdCons has been simplified resulting in Appl3 of Fig. 11. Addition-
ally, parameters were introduced into the actions Produce and Consume (this will be explained on page
11).

6.4 Composed patterns

We exemplify composed patterns by considering the pattern DStartTermRes. The example application
Appl3 (Fig. 11) yet contains non-distributed actions Start, Terminate, and Reset. DStartTermRes provides

298

for the distribution of these actions. It is composed from three resource-processes, the producer (modelled
by ProdState), the consumer (modelled by ConsState), and the medium. The medium is modelled by a
set of constraint processes.

The distributed start of an application is performed by a sequence of two actions, either StartP1
followed by StartC2 or StartC1 followed by StartP2 will happen. Similarly termination and reset are
performed by distributed action sequences.

process ProdState (pdtyp, ptyp : datatype ; p0 : ptyp) ;
variables
pd : pdtyp ; ! problem data structure
pp : ptyp ; ! problem state component
ps : (idle, ready, compl, term) ; ! control state

Init
∆
= ps=idle ;

actions
StartP (nd : pdtyp)

∆
=

ps=idle ∧ ps ′=ready ∧ pp ′=p0 ∧ pd ′=nd ;
Produce (np : ptyp)

∆
=

ps=ready ∧ ps ′ in {ready,compl} ∧ pp ′=np ∧ pd ′=pd ;
TermP1

∆
= ps=compl ∧ ps ′=ps ∧ pp ′=pp ∧ pd ′=pd ;

TermP2
∆
= ps=compl ∧ ps ′=term ∧ pp ′=pp ∧ pd ′=pd ;

ResetP
∆
= ps in {ready,compl} ∧ ps ′=ready ∧ pp ′=p0 ∧ pd ′=pd ;

end ;

Fig. 12 Process ProdState of composed pattern DStartTermRes

Fig. 12 shows the process ProdState of DStartTermRes. It models a ‘producer’ with respect to its state
components and actions. The action StartP of ProdState contributes to StartP1 as well as to StartP2.
The actions StartC1 and StartC2 of DStartTermRes are joined by stuttering steps of ProdState.

Since the application Appl3 not yet has a marked process structure, we used the flat form of DStart-
TermRes for the ongoing refinement of the example application while the compositionality of the specifica-
tion style would support also that subpatterns of a pattern are integrated into processes of an application.
The result of the integration of DStartTermRes into Appl3 has been modified by simplification resulting
in Appl4 (Fig. 13).

process Appl4 ;
variables
id : aoi ; ic : 0 .. 6 ; ps : (idle, ready, term) ; od : aoi ;
oc : 0 .. 6 ; cs : (idle, ready) ;
buffer : queue of integer ; sts : set of (statp, statC) ;
.....

Init
∆
=

stc>0 ∧ ps=idle ∧ cs=idle ∧ sts={} ∧ rs={} ∧ ms=idle ;
actions
StartP1 (p : aoi)

∆
= buffer ′=buffer ∧ stc ′=stc ∧ od ′=od

∧ ps=idle ∧ ps ′=ready ∧ cs ′=cs ∧ ic ′=0 ∧ id ′=p
∧ oc ′=oc ∧ sts={} ∧ sts ′={statP} ∧ rs ′=rs ∧ ms ′=ms ;

StartP2 (p : aoi)
∆
= stc ′=stc ∧ buffer ′=empty ∧ ps=idle

∧ ps ′=ready ∧ ic ′=0 ∧ id ′=p ∧ oc ′=oc ∧ cs ′=cs
∧ buffer ′=empty ∧ sts={statC} ∧ sts ′={statP, statC}
∧ rs={} ∧ rs ′=rs ∧ ms=idle ∧ ms ′=ready;

Produce (p : integer)
∆
=

od ′=od ∧ stc ′=stc ∧ ic<6 ∧ p=id[ic]
∧ buffer ′=insert(buffer,p) ∧ ps=ready ∧ ps ′=ready
∧ ic ′=ic+1 ∧ id ′=id ∧ oc ′=oc ∧ cs ′=cs ∧ sts ′=sts
∧ rs 6={resatP} ∧ rs ′=rs ∧ ms=ready ∧ ms ′=ms ;

.....
WF : StartP1, StartP2, StartC1, StartC2, Produce, Consume,

ResetP2, ResetC2, TermP1, TermC1, TermC2, TermP2 ;
end ;

Fig. 13 System Appl4

6.5 Process splitting
split Appl4 ;

processes P has ps, id, ic ;
C has cs, od, oc ;
M has stc, buffer, rs, ms, sts ;

end ;

process P ;
variables id : aoi ; ic : 0 .. 6 ; ps : (idle, ready, term) ;
Init

∆
=ps=idle ;

actions

299

StartP1 (p : aoi)
∆
= 1

ps=idle ∧ ps ′=ready ∧ ic ′=0 ∧ id ′=p ;
StartP2 (p : aoi)

∆
=

ps=idle ∧ ps ′=ready ∧ ic ′=0 ∧ id ′=p ;
StartC1 (p : aoi)

∆
=

id ′=id ∧ ic ′=ic ∧ ps ′=ps ;
StartC2 (p : aoi)

∆
=

id ′=id ∧ ic ′=ic ∧ ps ′=ps ;
Produce (p : integer)

∆
= ic<6 ∧ p=id[ic]

∧ ps=ready ∧ ps ′=ready ∧ ic ′=ic+1 ∧ id ′=id ;
.....

WF : StartP1, StartP2, StartC1, StartC2, Produce, ;
end ;
process C ; process M ;
process SAppl5 ;

processes P : P ; C : C ; M : M ;
actions
StartP1(p : aoi)

∆
= P.StartP1(p) ∧ C.StartP1(p) ∧ M.StartP1(p);

StartP2(p : aoi)
∆
= P.StartP2(p) ∧ C.StartP2(p) ∧ M.StartP2(p);

Produce(p : integer)
∆
= P.Produce(p) ∧ C.Produce(p) ∧ M.Produce(p);

.....
end ;

Fig. 14 SAppl5 - Splitting of Appl4 and result

To exemplify process splitting, we split Appl4 (cf. Fig. 13) into three components: a producer process
P, a consumer process C, and a medium process M. Fig. 14 shows the corresponding split statement and
result. The integration of DStartTermRes (cf. page 9) introduced the structuring of the system into the
three processes. It also introduces a corresponding allocation of variables. The variables id, ic, and ps
represent the state of P, the variables od, oc, and cs the state of C. All other variables represent the state
of the medium M.

Note, that we introduced parameters p for the actions Produce, and Consume in Appl3 (cf. Fig. 11).
The parameter introduction supported the process splitting. Originally, the action Consume of IAppl3
contained the predicate od′ = od besides od[oc] = 2 ∗ front(buffer) which references private variables of C
as well as private variables of M. By means of the parameter p the predicate has been splitted equivalently
into the two predicates od′ = od besides od[oc] = 2∗p and p = front(buffer) which only reference private
variables of one process.

With respect to the distribution of actions, the splitting seems to fail. Each process contributes to
each system action by a component action while the process system intended shall provide for actions
which are local at one site (i.e., if P contributes to a system action, C has to perform a stuttering step).
We look more carefully to SAppl5. In fact, the actions StartC1, StartC2, Consume, ResetC1, ResetC2,
TermC1, and TermC2 of P are equivalent to stuttering steps of P. They can be replaced by P.Stutter
and removed in the definition of P.

The last problem concerns the two-phase execution of start and reset. Globally there is a sequence
of two actions, one action at producer’s site and one at consumer’s site. Locally, an application process
is not able to know, if it performs its local action at first or at second while the definition of P makes
a distinction between these two cases (e.g., two actions StartP1 and StartP2 are defined). We recognize
that the two actions are pairwise equivalent. Each pair can be merged to one action (e.g., StartP1 and
StartP2 can be replaced by one action StartP).

6.6 Communication service integration

The next two subsections illustrate the benefit of tool support when manipulating larger process patterns.
They also serve as an example for a productive pattern library utilization.

At next, the application shall use a special communication service. The service Transfer does not
directly comply with standards. However, it refers to the ISO/OSI-concepts of session service connections
and of unconfirmed respectively confirmed service elements. Service elements are represented in terms
of two respectively four service interface events ”request→indication” respectively ”request→indication,
confirmation←response” (cf. [11]).

A pattern TransferPCCS is used which describes a system consisting of a service provider Med, a
data packet producing client Cli, and a consuming server Ser. The integration of TransferPCCS into the
simplified result of process splitting (cf. Fig. 14) is performed by separately but consistently integrating

300

Med to M, Ser to C, and Cli to P. Since we assume an existing implementation of Transfer, the design
can concentrate on the two application processes. The resulting producer process P6, is shown in Fig. 15.
It is a producer process of our application as well as it is a user process of TransferPCCS.

process P6 ;
variables
s : (idle, nocon, incon, conn, inrel, term) ; id : aoi ; ic : 0..6;

Init
∆
= s=idle ;

actions
Start (p : aoi)

∆
= id ′=p ∧ s=idle ∧ s ′=nocon ∧ ic ′=0 ;

ConReq
∆
= id ′=id ∧ ic ′=ic ∧ s=nocon ∧ s ′=incon ;

ConCon
∆= id ′=id ∧ ic ′=ic ∧ s=incon ∧ s ′=conn ;

DatReq (p : usd)
∆
=

id ′=id ∧ ic<6 ∧ p=id[ic] ∧ ic ′=ic+1 ∧ s=conn ∧ s ′=conn;
RelReq

∆
= id ′=id ∧ ic ′=ic ∧ s=conn ∧ ic=6 ∧ s ′=inrel ;

RelCon
∆= id ′=id ∧ ic ′=ic ∧ s=inrel ∧ s ′=term ;

AboReq
∆
=

id ′=id ∧ ic ′=0 ∧ s in {nocon,incon,conn,inrel} ∧ s ′=nocon;
AboInd

∆
=

id ′=id ∧ ic ′=0 ∧ s in {nocon,incon,conn,inrel} ∧ s ′=nocon;
WF : Start, ConReq, ConCon, DatReq, RelReq, RelCon, AboInd ;

end ;

Fig. 15 Service using producer P6

We integrated a process pattern modelling the abstract communication pattern (abstract service) of
an implementation building block to be integrated in the next step. As the abstract service and the
implementation building block are formally related by a refinement, we are assuring that the correct
abstract behaviour neccessary is modelled as result of this step.

6.7 Application program interface integration

At last, the producer process of our example shall be refined into a process which applies a special appli-
cation program interface (API) to an implementation of the service Transfer. The application program
interface used has a procedure interface, the exchange of service events is represented by invocations and
returns of interface procedures. Events which are passed from the user process to the service implemen-
tation correspond to procedure calls, events which are passed in the opposite direction correspond to
returns of interface procedures, e.g., a call of the procedure Connect corresponds to a ConnectRequest
event, a return of Connect corresponds to ConnectConfirmation or if the connection is aborted during
establishment to AbortIndication. The procedure calls have to be parametrized by a data structure cb
which is used internally by the service implementation. Before any events can be exchanged, the user
process has to install cb by the invocation of the procedure Initiate.

The pattern ClientAPI is a refinement of the subpattern Cli of TransferPCCS. It describes the pos-
sible temporal orderings and parametrizations of API procedure calls and has been integrated to P6
(Fig. 15) resulting in P7 (Fig. 16). The new variables stem from ClientAPI: pins and pouts represent the
actual parameter values of procedure invocations, cproc and prsta document which procedure is called
respectively has returned.

P6 integrates the required properties of a producer of our example application as well as it assures
the correct integration of the local API. Since the API handling is described in detail, it is a suitable
starting point for the implementation.

process P7 (d : aoi ; apicbtype, adrtype : datatype ;
ownadr, peeradr : adrtype ; length : function) ;

variables
id : aoi ; ic : 0 .. 6 ;
s : (idle,wini,ready,wconn,conn,wsend,wrel,term,wtest,wabo) ;
cb : apicbtype ; pins, pouts : array cardinal of any ;
cproc : literal ; prsta : (called, returned) ;

Init
∆
= s=idle ∧ cproc=none ∧ prsta=returned ;

actions
InitiateCall

∆
= s=idle ∧ s ′=wini ∧ cb ′=cb

∧ cproc ′=INITIATE ∧ prsta ′=called
∧ pins[0] ′=cb ∧ pins[2] ′=ownadr ∧ id ′=d ∧ ic ′=0 ;

InitiateReturn
∆
= s=wini ∧ s ′=ready ∧ cproc ′=cproc

∧ prsta ′=returned ∧ cb ′=pouts[0] ∧ id ′=id ∧ ic ′=ic ;
ConnectCall

∆
= s=ready ∧ s ′=wconn ∧ cb ′=cb

301

∧ cproc ′=CONNECT ∧ prsta ′=called
∧ pins[0] ′=cb ∧ pins[1] ′=peeradr ∧ id ′=id ∧ ic ′=ic ;

ConnectReturnOk
∆
=

s=wconn ∧ s ′=conn ∧ cproc ′=cproc ∧ prsta ′=returned
∧ cb ′=pouts[0] ∧ pouts[1]=connected ∧ id ′=id ∧ ic ′=ic ;

ConnectReturnAbo
∆
=

s=wconn ∧ s ′=ready ∧ cproc ′=cproc ∧ prsta ′=returned
∧ cb ′=pouts[0] ∧ pouts[1]=aborted ∧ id ′=id ∧ ic ′=0 ;

.....
end ;

Fig. 16 Integration result P7

Due to integration of a process pattern modelling the correct driving of a special platform, we benefited
to be sure about the correct usage of this API in our resulting application.

7 Conclusion

We proposed operations for pattern integration and process splitting which support the computer as-
sisted construction and writing of specifications of distributed applications as well as the understanding
and verification of design steps. As the experience of the development of practical computer network
applications shows, the dominating design task is not the design of ’new’ algorithms, but the design
of consistent combinations of known algorithms. Moreover, the introduction of the detailed interface
mechanisms to application platforms is important. Both types of design steps correspond well to the
integration of process patterns. Furthermore tool support has been realized which mechanically produces
major parts of specification texts.

Until now, we studied the application of the approach by means of few ‘academic’ and two more
complex examples. With respect to assistance by tools, we resorted to a set of general TLA tools
[16] (editor, browser, interpreter/animator, refinement mapping searcher, refinement mapping checker,
model checker, frontend for a general automated predicate logic theorem prover). Additionally, we used
prototypical tools which perform the text manipulation operations (combine, integrate, compose, split
and refine).

Present work concentrates on the one hand on the extension of the libraries and the examples. While
large productive distributed applications are in the scope of our work (e.g., applications of computer
integrated manufacturing, administration, and commerce), we firstly collect experiences by means of
smaller applications. So, agents for the Internet applications FTP and SMTP are under development.

On the other hand, we want to enhance the tool support. During the construction of a specification,
information can be recorded which will be utilized to prepare the application of our TLA verification
tools, esp. the refinement mapping checker. Additionally, a tool is under development which performs
simplifications of finite state processes automatically in order to enhance the support of pattern integra-
tion. The tool utilizes process composition and process splitting. It firstly splits a system into a finite
state process and a ‘remainder’ process. The finite state process is analysed and simplified by reachability
graph and term rewriting methods. At last, a composition joins the processes.

Acknowledgements. Thanks to the anonymous referees for their helpful comments.

References
[1] Martin Abadi, Leslie Lamport. Conjoining Specifications. Research Report 118, Digital Equipment

Corporation, Systems Research Center, December 1993.

[2] Martin Abadi, Leslie Lamport. The existence of refinement mappings. Theoretical Computer Science,
82(2):253–284, May 1991.

[3] Friedrich Ludwig Bauer, Bernhard Möller, Helmut Partsch, Peter Pepper. Formal Program Construc-
tion by Transformations — Computer Aided, Intuition-Guided Programming. IEEE Transactions
on Software Engineering, 15(2):165–180, February 1989.

[4] T. Bolognesi (Ed.). Catalogue of LOTOS Correctness Preserving Transformations. Final report.
Deliverable Lo/WP1/T1.2/N0045/V03. ESPRIT Project 2304 (Lotosphere). January, 1992.

302

[5] T. Bolognesi, et al. Correctness Preserving Transformations for the early phases of software devel-
opment. to appear in: LOTOSphere – software development using LOTOS, Kluwer Academic.

[6] Ed Brinksma, Rom Langerak, Peter Broekroelofs. Functionality Decomposition by Compositional
Correctness Preserving Transformation. in: Costas Courcoubetis (Ed.), Proc. of the 5th Int. Conf.
Computer Aided Verification, CAV ’93, Elounda, Greece. 371–384, Springer, 1993.

[7] Citibank Distributed Processing Technology. Objtran Programmer’s Guide. Technical Document,
December, 1993.

[8] Claus Dendorfer, R. Weber. From Service Specification to Protocol Entity Implementation. in:
R.J. Linn,Jr. and M.Ü. Uyar (Eds.) Protocol Specification, Testing, and Verification XII. 163–178,
Elsevier, 1992.

[9] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns: Abstraction and
Reuse of Object-Oriented Design. in: O.M. Nierstrasz (Ed.) 7th European conference on Object
oriented programming, Kaiserslautern, Germany Springer, 1993.

[10] Peter Herrmann, Heiko Krumm. Compositional Specification and Verification of High-Speed Transfer
Protocols. to appear in: S.T. Vuong and S.T. Chanson (Eds.) Protocol Specification, Testing, and
Verification XIV. Chapman & Hall, 1994.

[11] ISO. International Standard: Basic Reference Model for Open Systems Interconnection. ISO: IS7498.

[12] ISO. LOTOS: Language for the temporal ordering specification of observational behaviour. Interna-
tional Standard ISO/IS 8807, 1987.

[13] R. Kurki-Suonio, H.-M. Järvinen. Action system approach to the specification and design of dis-
tributed systems. ACM Transactions on Programming Languages and Systems, 4(10):510–54, Octo-
ber 1988.

[14] Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Languages
and Systems, 16(3):872–923, May 1994.

[15] William Leddy, Arjun Khanna. DCE++: A C++ API for DCE. Technical Document 030-00209,
Hal Computer Systems, Inc. March, 1993.

[16] Arnulf Mester, Peter Herrmann. Tools for TLA-based Specifications. Universität Dortmund, Fach-
bereich Informatik, Lehrstuhl IV. Technical Report RvS-TLA-94/35, 1994.

[17] A. Mester, H. Krumm. Composition and Refinement Mapping Based Construction of Distributed
Applications. Universität Dortmund, Fachbereich Informatik. Research Report/Forschungsbericht
No. 548, 1994. WWW: http://ls4-www.informatik.uni-dortmund.de/RVS/Exports/FB_548.ps.Z,
FTP: ftp.informatik.uni-dortmund.de in /pub/ls04-info/research-reports

[18] Max Mühlhäuser, W. Gerteis, L. Heuser. DOCASE: A Methodic Approach to Distributed Program-
ming. Communications of the ACM, 36(9):127–138, Sept. 1993.

[19] Douglas C. Schmidt. The ADAPTIVE Communication Environment. Technical Report, Dept. ICS,
University of California, Irvine, 1994. also: ASX: an Object-Oriented Framework for Developing
Distributed Applications. in: USENIX C++ Technical Conference April, 1994.

303

Layers as Knowledge Transitions

in the Design of Distributed Systems ∗

(extended abstract)

Wil Janssen †
University of Oldenburg ‡

Abstract

Knowledge based logics allow to give generic specifications of classes of network
protocols. This genericity is combined with methods to derive sequentially structured
or layered implementations of distributed algorithms. Knowledge based logic is used
to specify layers in such algorithms as knowledge transitions. The resulting layered
implementations are transformed to distributed algorithms by means a transformation
rule based on the principle of communication closed layers.
In this way a class of solutions to a problem for different architectures can be derived
along the simultaneously. This design technique for distributed algorithms is applied to
a class of Two-Phase Commit protocols.

1 Introduction

The design and analysis of distributed systems is a complicated task. Many different pro-
cesses can be active simultaneously and communicate in a seemingly unstructured way,
communication protocols are intertwined with the basic program, and different system ar-
chitectures can result in completely different algorithms. In the last few years there have
been a number of attempts to solve problems concerning the specification and design of
distributed systems. One of the possible approaches is to remove all architectural deci-
sions from the specification language, in order to be able to concentrate on the algorithmic
aspects. This approach has been taken in, for example, action systems or IO-automata
[5, 16, 3, 19, 18].
A second approach is the use of knowledge-based or epistemic logics and language constructs
[10, 11, 20, 9]. The use of knowledge-based logics allows to express properties of systems
and actions in a more global way, abstracting away from communication structures and
architectural decisions. Moreover, it has been claimed that programs with knowledge based
programming constructs lead to more efficient programs and can still be interpreted [9, 21].
Finally, there has been a considerable amount of attention to the use of layered methods in
the design of distributed systems [8, 26, 27, 6, 17, 14, 30, 12]. It has been observed that
in many protocols in distributed systems the logical structure of the system is basically
a sequential one, whereas the actual structure is distributed and depends very much on
the details of the implementation architecture. By viewing the algorithm as a sequentially
structured system, analysis becomes much simpler and is more or less the same for larger
∗This work has been supported by Esprit/BRA Project 6021 (REACT).
†Most of the work reported on was done when the author was working at the University of Twente.
‡Fachbereich Informatik, Postfach 2503, D-26111 Oldenburg, Germany. Phone: + 49 441 7982362; E-

mail: Wil.Janssen@informatik.uni-oldenburg.de.

304

classes of protocols, instead of being applicable to a single algorithm only.
In this paper we combine the above observations. We use the fact that many systems can
be designed and analyzed in a layered fashion, plus the fact that knowledge-based logics
allow for a specification of such layers at an appropriate level of abstraction, that is, as
knowledge transitions.

Knowledge concerns facts that we associate a location or distribution with. Facts can be
known to a certain process or set of processes. Knowledge can exist in different ways:
distributed knowledge is knowledge of the group of processes as a whole. It concerns facts
that would be known is all processes would combine all of their information.
The strongest level of knowledge is common knowledge, which informally corresponds to
facts that are “publicly known.” For example, in systems with reliable communication, it
is common knowledge that no messages are lost. States of knowledge are expressed using
a set of modalities, K,D, S,E, and C. Let G be a group of processes, or agents as they
are usually called in this context. The expression Kiϕ states that process i knows the
proposition ϕ, that is, it can derive ϕ from its local state. SGϕ states that somebody in the
group G knows ϕ, and EGϕ gives that everybody in G knows ϕ. Finally, DGϕ states that it
is distributed knowledge in G that ϕ holds, which means that if we combine the knowledge
of every process i ∈ G we can derive ϕ, and CGϕ that it is common knowledge in G that ϕ
holds. In this paper common knowledge will not play an important role and is not discussed
further.

Protocols, distributed algorithms, and conceptual layers in them can often be described as
transitions from one state of knowledge to another. A transition

Φ ; Ψ

states that if we start in a state satisfying Φ, on termination we will be in a state satisfying
Ψ. Therefore, knowledge transitions can be viewed as a generalization of Hoare style pre-
conditions and postconditions to knowledge based assertions. For example, broadcasting
protocols can be specified as a transition from a state of knowledge where one process i
(the broadcaster) knows a fact ϕ to a state where all processes in the set G of participating
processes know the same fact. So it is a transition of the form

Kiϕ ; EGϕ.

If we do not know the identity of the broadcaster this would result in

SGϕ ; EGϕ.

(In fact, this is a simplification. There must also be some common knowledge in the system
for this to hold [10], but this is beyond the scope of this paper.) Often parts of protocols
are used to gather information of all processes to a single coordinating process. This means
that from a state where every process i knows some fact ϕi, the system evolves to a state
where a single process c knows all these facts:

∧i∈GKiϕi ; Kc(∧i∈Gϕi),
or stated differently:

DG(∧i∈Gϕi) ; Kc(∧i∈Gϕi).
Larger protocols can often also be specified in such a manner. Take for example atomic
commit protocols for distributed databases (see Bernstein, Hadzilacos and Goodman [4] for
an overview of this field). Informally speaking, the protocol has to make a decision for a set
of participating processes, based on the internal state of those processes. Every process Pi
can decide locally whether or not it can make the changes made in a transaction permanent.
The protocol decides to commit iff all processes can do so. If one or more processes cannot,
it should decide to abort in order to keep the data at the different processes consistent.

305

The decision should be made known to all processes which will then take the appropriate
actions. The internal state is reflected in a vote yes or no for every process i, such that
votei = yes iff changes can be made permanent. Such a protocol can be specified as the
following knowledge transition. Let total vote = yes iff ∧i∈Gvotei = yes.∧

i∈G
Kivotei ;

∧
i∈G

Ki(total vote ∧ (deci = commit⇔ total vote = yes)).

Here, Kivotei means that i knows the value of votei. This in fact abbreviates Ki(votei =
yes) ∨ Ki(votei = no). Note that all these specifications used only the set of processes
involved and local information.

The approach we introduce in this paper is the following. Given a (knowledge-based)
specification of a problem, we refine this specification to a sequence of knowledge transitions.
For example, the above transition can be split into three simpler transitions are follows:∧

i∈G
Kivotei ; Kctotal vote

; EGtotal vote
;

∧
i∈G

Ki(total vote ∧ (deci = commit⇔ total vote = yes)).

These knowledge transitions are then instantiated with protocol layers that are suited for
the architecture under consideration and implement the knowledge transitions specified.
The result of this is an algorithm that consists of a sequence of layers.
Such an algorithm can then be transformed to a parallel or distributed algorithm, us-
ing the techniques developed by Janssen, Poel and Zwiers as discussed in, for example,
[15, 24, 30, 12]. This transformation is based on the principle of communication closed
layers as introduced by Elrad and Francez [8], translated to an algebraic setting. After
some optimizations the transformed system results in an algorithm that solves the original
problem and is tailored to a certain implementation architecture.
In order to be able to take this approach, we give a classification of knowledge transitions,
and of the ways such transitions can be implemented for different architectures. As such, the
knowledge transitions serve as a vehicle for the abstract specification of protocol layers. By
taking different refinements of the problem specification using different transitions, different
implementations of the problem can be obtained along the same lines, thus emphasizing the
similarities and characteristics of the implementations.
The applicability of such layered approaches in general (not particularly using knowledge
transitions) has been shown by numerous examples, such as distributed minimum weight
spanning tree algorithms, parallel parsing, parts of caching algorithm, pipelining, real-time
mutual exclusion and minimal distance algorithms.

The outline of this paper is as follows. We first discuss our language, the knowledge based
logic, and a transformation principle for programs. Thereafter we introduce knowledge tran-
sitions and classify well-known communication structures for different networks as knowl-
edge transitions. Finally we explain how to derive algorithms as sequences of knowledge
transitions and apply this to different versions of the Two-Phase Commit protocol. A full
version of this paper, including some other examples as well, is available as [13].

2 Programs, communication closedness and knowledge

Many protocols and distributed algorithms are given in a setting of asynchronous message
passing. In this paper we restrict ourselves to this form of communication, in order to
simplify technical details that would divert the attention from the main issues of this paper.

306

Systems consist of a number of components with local variables that communicate using
send(c, e) and receive(c, x) actions, where c is a channel, e is an expression and x is a
variable. Channels connect two unique processes and are unidirectional. Often a channel is
therefore represented as a pair (v, v′) of nodes or processes. Channels are viewed as single
place buffers.
Besides communication actions and assignments x := e to local variables, our programming
language includes conditionals of the form if b then S else T fi. If T is omitted it is assumed
to be skip (do nothing). Actions can be composed by means of parallel composition “‖”
and sequential composition “ ; ”.

Any process that is composed out of the constructs above is called a layer. Layers can
be composed by means of layer composition “ • ”. Informally speaking, when we compose
two layers S and T by means of layer composition the resulting process S • T executes
actions a of S before actions b of T iff a and b are dependent. Two actions are dependent,
denoted by a! b, iff they access the same (local) variables, or access the same channel.
So layer composition can be seen as an intermediate between sequential composition, where
full ordering between S and T would be specified, and parallel composition, where ordering
between dependent actions of S and T can be in an arbitrary direction, not necessarily from
S to T . As such, layer composition cannot directly be translated in well-known program
constructs, but it serves as a specification construct in the initial and intermediate design
stages. Moreover, layer composition has nice algebraic properties that make it well-suited
for a transformational style of program derivation. Please refer to the work by Janssen,
Poel and Zwiers, for example [14, 30, 12], for detailed discussions thereof.

Layered programs and communication closed layers

One of the most important algebraic properties that relies on the use of layer composition
is the so-called ccl law. It is based on the principle of communication closed layers as
introduced by Elrad and Francez [8]. This law states that under a certain side condition,
a layered or sequentially structured system (P ‖ R) • (Q ‖ S) behave the same (has the
same semantics) as the parallel system (P •Q) ‖ (R •S). The side condition is that there
exist no “cross-dependencies” between components in different layers. Formally, assume for
processes P , Q, R, and S, that P and S are independent, and that Q and R are independent
(P 6! S and Q 6! R). Under this assumption we have

(P ‖ R) • (Q ‖ S) = (P •Q) ‖ (R • S) (ccl)

This law can be generalized to more processes and more layers of course.

The idea is to derive layered implementations that satisfy this side condition, and to trans-
form these to distributed implementations. In general this side condition does not hold for
systems consisting of a number of layers, as different layers can have common channels lead-
ing to cross-dependencies. In order to circumvent these problems, we temporarily introduce
virtual channels per layer, for example by replacing every channel C in layer l by a channel
Cl. The resulting process is equivalent to the original one. Thereafter the ccl law trivially
applies, as all dependencies are either within a single layer or between different layers but
within the same process.
After transforming the renamed system to a parallel system, we can replace the layer com-
position by sequential composition and replace the virtual channels by again a single channel
per edge by means of multiplexing techniques (see [12, 30]). These multiplexing techniques
do not always apply. In this setting a sufficient condition is to ensure that in every layer
every send is matched by a receive action for the same channel for every possible evaluation
of conditionals. Informally speaking this implies that channels are empty at the end of a
layer, and therefore receive actions in other layers will read the values sent in the layer

307

they belong to. Multiplexing and replacing layer composition by sequential composition
do not preserve semantic equality. They do however preserve the input/output behavior of
systems, that is, if viewed as pairs of initial and final states the systems are the same. The
is called IO equivalence.

The combined result of the above steps is summarized by the following transformation
principle.

Let S be a system consisting of a number of layers
S , L(0) •L(1) • · · · •L(n),

where every layer is of the form
L(l) , for i ∈ G par P (i, l) rof ,

with every send action matched by a receive action, for all possible
evaluations of the conditionals. Assume all components communicate by
means of asynchronous message passing only. Then S is IO-equivalent to the
system S ′

S ′ , for i ∈ G par P (i) rof ,
where

P (i) , P (i, 0) ; P (i, 1) ; · · · ; P (i, n).

Knowledge based logic

Knowledge based or epistemic logic [10, 9, 20] is a class of modal logics that allow to add
some notion of locality to formulae. We cannot only say that ϕ holds, but also that ϕ holds
for a process or agent i, or is a fact that holds for the combined states of a group G of
processes, so-called distributed or group knowledge.

The basic modality is K, which stands for knowledge. The formula Kiϕ states that process
i knows ϕ. Kiϕ holds in a states s such that the local state part si of s for process i
satisfies ϕ. Knowledge of different processes can be combined. We say that ϕ is distributed
knowledge for a group of processes G iff ϕ holds for the combined states of all processes
i ∈ G. For example, if Kix = 1 and Kjy = 2, then D{i,j}y = x + 1.
Formally speaking, we use the following logic. Assume a given non-empty set P of proposi-
tional constants and let A be a finite set of agents or processes. The set LA(P) of epistemic
formulae ϕ, ψ, . . . is the smallest set closed under

• If p ∈ P then p ∈ LA(P);

• If ϕ, ψ ∈ LA(P), then ϕ ∧ ψ ∈ LA(P) and ¬ϕ ∈ LA(P);

• If G ⊆ A, i ∈ A, ϕ ∈ LA(P), then Kiϕ ∈ LA(P), DGϕ ∈ LA(P).

As usual, we define implication “⇒” and disjunction “∨” as abbreviations. Also, true and
false abbreviate p0 ∨ ¬p0 and p0 ∧ ¬p0 for some constant p0 ∈ P respectively. Finally the
modalities “E” and “S” are defined as abbreviations as well. The modality EG states that
everybody in G knows a certain proposition, and the modality SG states that somebody in
G knows a certain proposition. They are defined as

EGϕ ≡
∧
i∈G

Kiϕ,

SGϕ ≡
∨
i∈G

Kiϕ.

The basic modalities are characterized by a number of axioms and rules. (See, for example,
Meyer, van der Hoek and Vreeswijk [20] or Fagin et al. [9] for detailed discussions.)

308

Kiϕ ⇒ ϕ
DGϕ ⇒ ϕ knowledge axioms

(Kiϕ ∧ Ki(ϕ⇒ ψ)) ⇒ Kiψ
(DGϕ ∧ DG(ϕ⇒ ψ)) ⇒ DGψ consequence closure

Kiϕ ⇒ KiKiϕ
DGϕ ⇒ DGDGϕ positive introspection

¬Kiϕ ⇒ Ki¬Kiϕ
¬DGϕ ⇒ DG¬DGϕ negative introspection

ϕ

Kiϕ, DGϕ
knowledge generalization

In the following we use a number of properties of the logic. Let i ∈ G, and let G be a subset
of G′.

Kiϕ ⇒ DGϕ,

Kiϕ ⇒ SGϕ,

DGϕ ⇒ DG′ϕ,

EG′ϕ ⇒ EGϕ,

EGϕ ⇒ SGϕ,

Ki(ϕ ∧ ψ) ⇔ Kiϕ ∧ Kiψ,

DG(ϕ ∧ ψ) ⇔ DGϕ ∧ DGψ,

Ki(ϕ ∨ ψ) ⇐ Kiϕ ∨ Kiψ.

Note that the latter implication is not an equivalence. As a counter example that Kitrue ,
which obviously holds. However, Kiϕ ∨ Ki¬ϕ is not a tautology. Process i need not know
whether ϕ holds or whether its negation holds.

We use Kix to state that i knows the value of x, which abbreviates
∨
v∈Val Kix = v, if x

takes its value from Val . The semantics of the logic and of the programming language are
both given as sets of partially ordered multisets. These are discussed in [13] and omitted
here due to space limitations.

3 Knowledge transitions and communication structures

We have discussed our programming language and knowledge based logic. In the introduc-
tion we have argued informally that protocols or protocol layers can sometimes be viewed
as transitions from one state of knowledge to another. In this section we give an overview of
possible knowledge transitions and classify well-known communication structures as knowl-
edge transitions.

Not all knowledge transitions make equally much sense. The transition Kiϕ ; EGϕ intu-
itively corresponds a broadcast-like protocol where ϕ is sent to all processes. A transition
such as Kiϕ ; DGϕ however makes less sense: if i ∈ G this is immediately fulfilled without
any communication.
In table 1 the transitions are summarized. Every entry in the table gives the relation

309

; Kjψ SG′ψ
V
G′ Kiψi EG′ψ DG′ψ

Kiϕ

i = j : ϕ⇒ ψ,
skip

i 6= j : ϕ⇒ ψ,
notify

i ∈ G′ :
ϕ⇒ ψ,

skip

ϕ⇒ ψi,
broadcast

ϕ⇒ ψ,
broadcast

i ∈ G′ :
ϕ⇒ ψ,

skip

SGϕ
ϕ⇒ ψ,
search

G ⊆ G′ :
ϕ⇒ ψ,

skip

ϕ⇒ ψi,
broadcast

G ⊆ G′ :
ϕ⇒ ψ,

broadcast

G ⊆ G′ :
ϕ⇒ ψ,

skip

V
GKiϕi

(∧Gϕi)⇒ ψ,
centralize

(∧Gϕi)⇒ ψ,
elect

G ⊆ G′ :
(∧Gϕi)⇒ ψi,

confer

G ⊆ G′ :
(∧Gϕi)⇒ ψ,

confer

G ⊆ G′ :
(∧Gϕi)⇒ ψ,

skip

EGϕ

j ∈ G :
ϕ⇒ ψ,

skip
j 6∈ G :
ϕ⇒ ψ,
notify

G ∩G′ 6= ∅ :
ϕ⇒ ψ,

skip
G ∩G′ = ∅ :
ϕ⇒ ψ,
notify

G′ ⊆ G :
ϕ⇒ ψi,

skip
G′ 6⊆ G :
ϕ⇒ ψi,

distribute

G′ ⊆ G :
ϕ⇒ ψ,

skip
G′ 6⊆ G :
ϕ⇒ ψ,

distribute

G ∩ G′ 6= ∅ :
ϕ⇒ ψ,

skip

DGϕ
ϕ⇒ ψ,

centralize
ϕ⇒ ψ,

elect

G ⊆ G′ :
ϕ⇒ ψi,
confer

ϕ⇒ ψ,
confer

G ⊆ G′ :
ϕ⇒ ψ,

skip
G 6⊆ G′ :
ϕ⇒ ψ,

centralize

Table 1: Knowledge transitions

between ϕ and ψ for which that knowledge transition makes sense for different relations
between i, j, G and G′. In the general case, protocol layers will also lead to an increase in
knowledge due to the fact that, for example, a process knows from whom it has received
messages. This increase in knowledge is not reflected in this table, only the way ϕ directly
relates to ψ is given. Transitions that have a non-trivial implementation are named in this
table. The entry “skip” means that the transition is trivially satisfied by doing nothing.

The roles of ∧Ki and of EG are often similar, due to the similarities in their definitions.
Furthermore there is a correspondence between DG and ∧Ki, as we can observe in the table.
We can roughly distinguish four different types of transitions:

• Broadcast, distribute or notify transitions. These distribute information that is known
for a certain process or set of processes to a larger set of processes, possibly all pro-
cesses.

• Centralize or search transitions. In this case different information of different processes
is gathered to a single process or other set of processes.

• Elect transitions. In this case again distributed information is gathered, but resulting
not towards a certain process or set of processes, but leading to an in general unknown
“winner.”

• Confer transitions. For confer transitions distributed information is made known to
all or to a larger set of processes.

We would like to give instantiations of all non-trivial knowledge transitions with layers that
implement that transition for a certain architecture. Some transitions are more difficult to
implement than others for certain architectures. Take, for example, the transition Kiϕ ;

EGϕ. In a fully connected network a single round of send actions suffices. In an arbitrary
network one needs message diffusion or other more complicated algorithms.
Also, some knowledge transitions can be built up from other transitions. In order to confer

310

one can, for example, combine a centralizing phase with a distribution phase. Here we
restrict ourselves to a few characteristic transitions, needed in the examples.

From the literature many communication structures are known. Broadcasts, waves, phases,
heartbeats, logic pulsing, rooted tree communication, message diffusion all correspond to
certain types of protocols for different network architectures. (See Raynal and Helary [25]
and Andrews [1] for overviews.) Such protocols or protocol layers correspond to (sequences
of) knowledge transitions. We give a classification of such layers for different architectures.
This classification is by no means complete; not all communication structures are discussed.
It should however be possible to classify other communication structures along the same
lines. Proof rules to do so are given at the end of this section.

We discuss two different types of network architectures: rooted trees or sets of rooted trees,
and connected graphs. Other architectures, such as linear lists or fully connected graphs,
are special cases of these two.
Assume we have a finite set of nodes V , and a subset Root ⊆ V of root nodes. Let
root(v) ≡ v ∈ Root . Every node v has a set of directed downward edges down(v) and a
set of successor nodes S(v), and every non-root node v has an upward edge up(v) pointing
towards its root node. We discuss some generic instantiations of knowledge transitions,
going from top-left to bottom-right in the table. For exact implementations we refer to [13]
or to the literature mentioned.

Kiϕ ; Kjϕ. This is the most elementary transition. A process i notifies some process j of
a certain fact known to i. If there exists an edge from i to j it can be implemented by
a pair of communication actions. If not, some kind of relaying or forwarding protocol
is to be used.
In general, this transition can be implemented abstractly by a so-called notify action
as proposed by Moses and Kislev [21]. An action notify(j, ϕ) by process i ensures that
eventually j knows ϕ. However, such a notify action only specifies what should be
done, but not how this result can be obtained.

Kvϕ ; EV ϕ. This coincides with Kvϕ ; ∧Kvψv for ϕ ⇒ ψv. Under this category fall
broadcast protocols for arbitrary graphs, and direct distribution layers for fully con-
nected graphs and two-level trees with a single root. Broadcast algorithms in general
are more complicated. See Cristian et al. [7] or Mullender [22] for more details.∧

GKiϕi ; Kjψ. Centralizers captured by the transition above occur frequently in proto-
cols. Information that is located at different nodes is to be gathered to a single node.
For tree-structured networks this can be done by means of the so-called wave concept.
(See Raynal and Helary, [25].) The root node initiates a request wave down the tree,
which is returned from the leaves upwards, gathering the information. The first phase
of a wave is called a downward wave, whereas the second phase is called the upward
wave. If all nodes know that the information is to be sent, the downward part can be
omitted. The downward part can also be used to broadcast information throughout
the tree.
Fully connected networks can handled similarly, as if they were two-level trees.∧

GKiϕi ; EGψ. This transition can be implemented by adding the downward part of a
wave to a full wave for tree-structured networks. For fully connected graphs this can
be implemented much simpler: every node sends its information to every other node.
This is, for example, used in decentralized Two-Phase Commit algorithms [4].

DGϕ ; Kjϕ. This transition is a special case of the centralizer transition ∧GKiϕi ; Kjψ
if ϕi is the information of node i to compute ϕ. It should therefore be known in what
way the information to compute ϕ is distributed over the nodes.

311

DGϕ ; EGϕ. Again this case is similar to the case for ∧GKiϕi ; EGψ.

How to classify layers?

Above we have given a classification of certain layers as knowledge transitions. An intuitive
explanation has been given of why those layers belong to that transition class. In principle
we have to prove that an algorithm satisfies a certain specification or knowledge transition.
To give such a prove we would like stay as much as possible within the limits of well-
known proof systems for parallel algorithms, such as Owicki-Gries style proofs [23, 2]. The
programs we use in this paper can be treated as programs with an await construct to
implement send and receive actions, and channels plus disjoint sets of variables. Thus
we can give (non-knowledge based) proof outlines for programs in the usual way (see Apt
and Olderog [2] for a extensive overview, and Janssen [13] for a discussion of the rules in
our setting). In order to be able to prove knowledge based properties of programs we add
the following rule, based on proof outlines for parallel programs, the rule for knowledge
generalization, and the definition of Kiϕ. Let ϕi and ψi be basic (not using the knowledge
modalities) assertions, and let S ` Φ ; Ψ denote that program S satisfies the knowledge
transition Φ ; Ψ. We have the following proof rule.

{ϕi}Si{ψi}, for all 1 ≤ i ≤ n,
There exist valid proof outlines {ϕi}S†i {ψi} that
are interference free,
S1 ‖ · · · ‖ Sn `

∧
1≤i≤nKiϕi ;

∧
1≤i≤nKiψi

(knowledge and parallelism)

Using rules for disjunction and conjunction, and the properties of our modalities, we can
give derived rules for the other modalities, such as DG and SG. Soundness of the knowledge
based rules follows in a rather straightforward way from the soundness of the rule for
parallelism and the definition of validity of Ki [13].

4 Two-Phase Commit

The Two Phase Commit protocol is an example of atomic commit protocols that are used
in distributed databases to guarantee consistency of the database. A distributed database
consists of a number of sites connected by some network, where every site has a local
database. Data are therefore distributed over a number of sites. In such a distributed
database system transactions, consisting of a series of read and write actions, are executed.
Reading and writing database items is be done by forwarding the action to the site where
the item is stored. Terminating the transaction however involves all sites accessed in the
transaction, as all sites must agree on the decision to be taken—which is either to commit
or to abort—in order to guarantee consistency. In the case of an abort all changes made
by the transaction are discarded, in the case of a commit they are made permanent. A
protocol that guarantees such consistency is called an atomic commit protocol (ACP). We
refer to Bernstein, Hadzilacos and Goodman [4] for more details.
In an ACP every participating process has one vote: yes or no, and every process can
reach one out of two decisions: commit or abort. Here we do not take into account the
possibility of communication failures or site failures, that is, we assume that every message
sent is eventually delivered and that sites are working correctly.

First of all we should give a specification of the atomic commit problem as a knowledge
transition. Thereafter we refine this transition to a sequence of (simpler) transitions. As
we do not take failures into account the requirements can be phased as follows: Given the
votes of every participating process, each process should decide to commit iff every process

312

has voted yes. This is represented by the following knowledge transition. Let G be the set
of participating processes and define total vote = yes iff ∧i∈Gvotei = yes. So total vote is
not a variable but represents the combined values of all local variables votei.∧

i∈G
Kivotei ;

∧
i∈G

Ki(total vote ∧ (deci = commit⇔ total vote = yes)).

Using the definitions of DG and total vote (given the distribution of the variables over the
processes) this can be rewritten to

DGtotal vote ;
∧
i∈G

Ki(total vote ∧ (deci = commit⇔ total vote = yes)).

Deriving layered implementations

To derive implementations for knowledge transitions the following strategy is employed. We
first check whether the transition under consideration has an immediate implementation for
a certain network architecture. If this is the case, we’re done. If not so we split the transition
into two or more smaller transitions and continue with them. This “transition splitting”
is in fact a real design step which can have consequences for the eventual implementation.
The resulting layered algorithm is thereafter transformed to a distributed system using the
transformation principle discussed in section 2.

In order to simplify matters, we first split of a transition “ 2
;,” to be implemented by a

final layer TPC2 from the transition specified, where the decision is “executed,” from the
rest. In this final layer only local changes need to be performed, so its implementation is
straightforward. This results in the following two transitions.

DGtotal vote 1
; EGtotal vote
2
;

∧
i∈G

Ki(total vote ∧ (deci = commit⇔ total vote = yes)).

The first transition is a confer transition (see table 1), and can immediately be implemented
for fully connected networks, by means of sending the votes to all other nodes, as was
mentioned in the previous section. This would result in the following layer implementing
“ 1
;.”

TPC1 ,
{DGtotal vote}
for i ∈ G par

for i′ ∈ G− {i} par send((i, i′), votei) rof ;
for i′ ∈ G− {i} par receive((i, i′), voteii′) rof

rof
{EGtotal vote}

A second possibility is that we do not have a fully connected network, but some kind of
tree structured network. In that case there is no apparent immediate solution to the above
transition. So we split the transition again, and do so in the following way. Let c ∈ G be
some participating process.

DGtotal vote 3
; Kctotal vote 4

; EGtotal vote .

The question now is what a sensible choice for c would be. Under the given assumption
that we have a tree structured network an obvious choice is to take for c the root of the
tree. There is however—under additional conditions—a second possibility. For a linear tree
or chain, that is, a tree where every node has at most one downward edge, we can also take
the (unique) leaf of the tree! We assume that the tree has at least two nodes. We first

313

discuss the former possibility.
To obtain a DGtotal vote ; Kctotal vote transition, which is a centralize transition, we
can use a full wave as discussed in the previous section. This would result in the following
implementation.

TPC3 ,
{DGtotal vote}
for i ∈ G par

if ¬root(i) then receive(up(i), req i) fi ;
for j ∈ down(i) par send(j, reqi) rof ;
for j = (i, i′) ∈ down(i) par receive(j, voteii′) rof ;
if (∀i′ 6= i ∈ S(i). voteii′ = yes) ∧ votei = yes then repi := yes else repi := no fi ;
if ¬root(i) then send(up(i), repi) fi

rof
{Kctotal vote}

The value of total vote is stored in repc.
In the linear case we have the following implementation. Let here down(i) denote the
unique edge downward for every node i. For the leaf of the linear tree this is nil, and
send(nil, e) def= skip .

TPC3′ ,
{DGtotal vote}
for i ∈ G par

if ¬root(i) then receive(up(i), vi) fi ;
if (root(i) ∧ votei = yes) ∨ (vi = yes ∧ votei = yes) then send(down(i),yes)

else send(down(i),no) fi
rof
{Kctotal vote}

The total vote follows in this case from the values of vc and votec.

To implement the second transition in this layer, “ 4
;”, we can use a downward wave for

the first case, and an upward wave in the linear case, as it is a broadcast transition, leading
to the following implementations:

TPC4 ,
{Kctotal vote}
for i ∈ G par

if ¬root(i) then receive(up(i), repi) fi ;
for j ∈ down(i) par send(j, repi) rof

rof ,
{EGtotal vote}

TPC4′ ,
{Kctotal vote}
(if vc = yes ∧ votec = yes then repc := yes else repc := no fi ;
send(up(c), repc)) ‖

for i ∈ G− {c} par
receive(down(i), repi) ;
send(up(i), repi)

rof
{EGtotal vote}

The first two lines of TPC4′ correspond to the process for the leaf node c.
A third possible network configuration is a special case of general networks: the ring. In
this case we could again take a similar approach as in the previous case by appointing one
node to gather all votes, and send the result through the ring (see [13]).

314

Transforming sequences of layers to parallel processes

We have derived a number of layered implementations for the Two-Phase Commit pro-
tocol consisting of two or three layers, where every layer is a parallel composition over
all participants. The actual implementation we should arrive at must be of the form
for i ∈ G par P (i) rof , that is, a single (sequential) process for every participant. The
transformation from the layered to the distributed structure can be carried out using the
ccl law, or more precisely, the transformation principle discussed in section 2. Using this
principle we transform the layered implementations given above. As an example take the
layered implementation for tree-structured networks. This layered implementation is

TPCl , TPC3 • TPC4 •TPC2.

Transforming this system immediately results in the distributed process TPC given below,
which is IO-equivalent to the layered implementation. Therefore it satisfies the same initial
knowledge transition specification.

TPC ,
for i ∈ G par

if ¬root(i) then receive(up(i), req i) fi ;
for j ∈ down(i) par send(j, reqi) rof ;
for j = (i, i′) ∈ down(i) par receive(j, voteii′) rof ;
if (∀i′ 6= i ∈ S(i). voteii′ = yes) ∧ votei = yes then repi := yes else repi := no fi ;
if ¬root(i) then send(up(i), repi) fi ;
if ¬root(i) then receive(up(i), repi) fi ;
for j ∈ down(i) par send(j, repi) rof ;
if repi = yes then deci := commit else deci := abort fi

rof .

This algorithm can be optimized by combining the two conditionals in the sixth and seventh
line, but the basic structure remains the above.

Similarly, we can transform the layered implementation of the linear algorithm,

TPC′l , TPC3′ • TPC4′ • TPC2,

using the transformation rule to the following distributable algorithm TPC′.

TPC ′ ,
(if ¬root(c) then receive(up(c), vc) fi ;
if vc = yes ∧ votec = yes then repc := yes else repc := no fi ;
send(up(c), repc) ;
if repc = yes then deci := commit else deci := abort fi

)
‖
for i ∈ G− {c} par

if ¬root(i) then receive(up(i), vi) fi ;
if (root(i) ∧ votei = yes) ∨ (vi = yes ∧ votei = yes) then send(down(i),yes)

else send(down(i),no)
fi ;
receive(down(i), repi) ;
send(up(i), repi) ;
if repi = yes then deci := commit else deci := abort fi

rof .

Note that for the networks under consideration, which have at least two participants, the
first guard (¬root(c)) always evaluates to true and can therefore be removed.

315

These protocols correspond to a generalization of the decentralized Two-Phase Commit and
the linear Two-Phase Commit as they are known from the literature. The result for the
fully connected network is known as centralized Two-Phase Commit.

The same derivation style can be applied to other systems that have an underlying logical
structure that is layered. In the full report some other examples are discussed as well,
such as waves as sequences of layers, and an algorithm for computing minimal distances in
networks.

5 Concluding remarks

In this paper we have discussed how to use knowledge based logics in the layered design of
distributed systems. The contribution of this paper is twofold. First of all we have given a
classification scheme for protocol layers as knowledge transitions. Secondly we have shown
how such knowledge transitions can be used to derive layered implementations of protocols.
Thus we have use knowledge based logics to give generic specifications of program layers
and protocols.
We have shown that this design principle applies to a number of algorithms. In principle,
any algorithm that can be viewed as a layered system should fit in this framework, which
concerns a substantial class of algorithms. There exist however algorithms that cannot be
written as layered systems, for example, highly interactive systems such as memories, or
so-called retro-active systems (see Janssen [12] for a discussion of these problems).

The role of the logic has been limited to the specification of knowledge transitions. It might
be interesting to use that logic to prove the layers correct themselves, possible in the style
of van Hulst and Meyer [28]. Possibly such ideas would allow the approach presented to
be extended to non-layered systems as well. The advantage of the approach presented here
however is that the extensions to well-known techniques for program verification needed in
this approach are rather limited.
We have used epistemic logic primarily as a logic to express locality of information. In
[29] Wieczorek proposes a logic with modalities that directly express location. This logic
however is weaker in the sense that it does not allow to combine information of different
locations using the properties of the knowledge modalities.

Another interesting approach using knowledge based logics is to use program constructs
that allow for the use of knowledge based expressions. The notify constructs as introduced
by Moses and Kislev [21] is an example thereof. Furthermore one can use actions guarded
by knowledge based expressions instead of normal boolean guards. Such programs are
discussed by Fagin et al. in [9] and Moses and Kislev [21]. One of the difficulties with
these programs is however that the transition of a knowledge based program to an ordinary
program has not yet been formalized. Possibly classification schemes as introduced here
combined with layered derivation can be of help to formalize this transition.

Acknowledgements. The author would like to thank Mannes Poel for detailed reading of
the manuscript, and Yoram Moses, Wim Koole and John-Jules Meyer for useful comments
on this work.

References

[1] G. Andrews. Concurrent Programming — Principles and Practice. The Ben-
jamin/Cummings Publishing Company, 1991.

316

[2] K. Apt and E.-R. Olderog. Verification of sequential and concurrent programs.
Springer-Verlag, 1991.

[3] R. Back and K. Sere. Stepwise refinement of action systems. Structured Programming,
12:17–30, 1991.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[5] R. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[6] C. Chou and E. Gafni. Understanding and verifying distributed algorithms using strat-
ified decomposition. In Proceeding 7th ACM Symposium on Principles of Distributed
Computing, 1988.

[7] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple mes-
sage diffusion to byzantine agreement. In Proceedings 15th International Symposium
on Fault-Tolerant Computing, 1985.

[8] T. Elrad and N. Francez. Decomposition of distributed programs into communication
closed layers. Science of Computer Programming, 2:155–173, 1982.

[9] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowledge. MIT
Press, 1995. To appear.

[10] J. Halpern and Y. Moses. Knowledge and common knowledge in a distributed envi-
ronment. Journal of the ACM, 37(3):549–587, 1990.

[11] J. Halpern and L. Zuck. A little knowledge goes a long way: Knowledge-based deriva-
tions and correctness proofs for a family of protocols. Journal of the ACM, 39(3):449–
478, 1992.

[12] W. Janssen. Layered Design of Parallel Systems. PhD thesis, University of Twente,
1994.

[13] W. Janssen. Layers as knowledge transitions in the design of distributed systems.
Technical Report 94-71, University of Twente, 1994.

[14] W. Janssen, M. Poel, and J. Zwiers. Action systems and action refinement in the
development of parallel systems. In Proceedings of CONCUR ’91, LNCS 527, pages
298–316. Springer-Verlag, 1991.

[15] W. Janssen and J. Zwiers. Protocol design by layered decomposition, a compositional
approach. In J. Vytopil, editor, Proceedings Formal Techniques in Real-Time and
Fault-Tolerant Systems, LNCS 571, pages 307–326. Springer-Verlag, 1992.

[16] B. Jonsson. Modular verification of asynchronous networks. In Proceedings 6th ACM
Symposium on Principles of Distributed Computing, pages 152–166, 1987.

[17] S. Katz and D. Peled. Verification of distributed programs using representative inter-
leaving sequences. Distributed Computing, 6(2), 1992.

[18] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan Kauf-
man Publishers, 1994.

[19] N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings 6th ACM Symposium on Principles of Distributed Computing, pages
137–151, 1987.

317

[20] J.-J. Meyer, W. van der Hoek, and G. Vreeswijk. Epistemic logic for computer science:
A tutorial. Bulletin of the EATCS, numbers 44 and 45, 1991.

[21] Y. Moses and O. Kislev. Knowledge-oriented programming, (extended abstract). In
Proceedings 12th ACM Symposium on Principles of Distributed Computing, pages 261–
270. ACM, 1993.

[22] S. Mullender, editor. Distributed Systems. Addison-Wesley, second edition, 1993.

[23] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6:319–340, 1976.

[24] M. Poel and J. Zwiers. Layering techniques for development of parallel systems. In
G. v. Bochmann and D. Probst, editors, Proceedings Computer Aided Verification,
LNCS 663, pages 16–29. Springer–Verlag, 1992.

[25] M. Raynal and J.-M. Helary. Synchronization and control of distributed systems and
programs. John Wiley & Sons, 1990.

[26] F. Stomp and W.-P. de Roever. A correctness proof of a distributed minimum-weight
spanning tree algorithm (extended abstract). In Proceedings of the 7th ICDCS, 1987.

[27] F. Stomp and W.-P. de Roever. A principle for sequential reasoning about distributed
systems. Formal Aspects of Computing, 6(6):716–737, 1994.

[28] M. van Hulst and J.-J. Meyer. An epistemic proof system for parallel processes. In
R. Fagin, editor, Proceedings 5th TARK, pages 243–254. Morgan Kaufmann, 1994.

[29] M. Wieczorek. Locative Temporal Logic and Distributed Real-Time Systems. PhD
thesis, Catholic University of Nijmegen, 1994.

[30] J. Zwiers and W. Janssen. Partial order based design of concurrent systems. In
J. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Proceedings of the REX
School/Symposium “A Decade of Concurreny”, Noordwijkerhout, 1993, LNCS 803,
pages 622–684. Springer-Verlag, 1994.

318

Parallelism for Free:
Efficient and Optimal Bitvector Analyses for Parallel Programs∗

Jens Knoop † Bernhard Steffen∗ Jürgen Vollmer ‡

Abstract

In this paper we show how to construct optimal bitvector analysis algorithms for parallel
programs with shared memory that are as efficient as their purely sequential counterparts,
and which can easily be implemented. Whereas the complexity result is rather obvious,
our optimality result is a consequence of a new Kam/Ullman-style Coincidence Theorem.
Thus using our method, the standard algorithms for sequential programs computing liveness,
availability, very business, reaching definitions, definition-use chains, or performing partially
redundant expression and assignment elimination, partial dead code elimination or strength
reduction, can straightforward be transferred to the parallel setting at almost no cost.

Keywords: Parallelism, interleaving semantics, synchronization, program optimization,
data flow analysis, bitvector problems, definition-use chains, partially redundant expression
elimination, partial dead code elimination.

1 Motivation

Parallel implementations are of growing interest, as they are more and more supported by
modern hardware environments. However, despite its importance [SHW, SW, WS], there is
currently very little work on classical data flow analysis for parallel languages. Probably, the
reason for this deficiency is that a naive adaptation fails [MP] and the straightforward correct
adaptation needs an unacceptable effort, which is caused by considering all interleavings that
manifest the possible executions of a parallel program.

Thus, either heuristics are proposed to avoid the consideration of all the interleavings [McD],
or restricted situations are considered, which do not require to consider the interleavings at
all. E.g., in [GS] data independence of parallel components is required. Thus the result of a
parallel execution does not depend on the particular choice of the interleaving, which is exploited
for the construction of an optimal and efficient algorithm determining the reaching-definition
information. Completely different is the approach of abstract interpretation-based state space
reduction proposed in [CH1, CH2], which allows general synchronization mechanisms but still
requires the construction of an appropriately reduced version of the global state space which is
often still unmanageable.

In this paper we show how to construct arbitrary bitvector analysis algorithms for parallel
programs with shared memory that

1. optimally cover the phenomenon of interference

2. are as efficient as their sequential counterparts and
∗For an extended version of this paper see [KSV1].
†Fakultät für Mathematik und Informatik, Universität Passau, Innstrasse 33, D-94032 Passau, Germany. E-

mail: {knoop,steffen}@fmi.uni-passau.de
‡Institut für Programm- und Datenstrukturen, Universität Karlsruhe, Vincenz-Prießnitz-Straße 3, D-76128

Karlsruhe, Germany. E-mail: vollmer@ipd.info.uni-karlsruhe.de

319

3. easy to implement.

The first property is a consequence of a Kam/Ullman-style ([KU]) Coincidence Theorem for
bitvector analyses stating that the parallel meet over all paths (PMOP) solution, which speci-
fies the desired properties, coincides with our parallel bitvector maximal fixed point (PMFPBV)
solution, which is the basis of our algorithm. This result is rather surprising, as it states that
although the various interleavings of the executions of parallel components are semantically dif-
ferent, they need not be considered during bitvector analysis, which is the key observation of
this paper.

The second property is a simple consequence of the fact that our algorithms behave like
standard bitvector algorithms. In particular, they do not require the consideration of any kind
of global state space. This is important, as even the corresponding reduced state spaces would
usually still be exponential in size.

The third property is due to the fact, that only a minor modification of the sequential
bitvector algorithm needs to be applied after a preprocess consisting of a single fixed point
routine (cf. Section 3.4).

Thus all the well-known algorithms for liveness, availability, very business, reaching definitions,
definition-use chains (cf. [He]), partially redundant expression elimination (cf. [DRZ, KRS1,
MR]), partial dead code elimination (cf. [KRS3]), partially redundant assignment elimination
(cf. [KRS4]), or strength reduction (cf. [Dh, JD, KRS2]) can be adapted for parallel programs
at almost no cost on the runtime and the implementation side.

The next section will recall the sequential situation, while Section 3 develops the corre-
sponding notions for parallel programs. Subsequently, Section 4 sketches some applications
of our algorithm and Section 5 contains our conclusions. The Appendix, finally, contains the
detailed algorithm.

2 Sequential Programs

In this section we summarize the sequential setting of data flow analysis.

2.1 Representation

In the sequential setting it is common to represent procedures as directed flow graphs G =
(N,E, s, e) with node set N and edge set E (cf. [He]). Nodes n ∈ N represent the statements,
edges (n,m) ∈ E the nondeterministic branching structure of the procedure under consider-
ation, and s and e denote the unique start node and end node of G, which are assumed
to possess no predecessors and successors, respectively, and to represent the empty statement
skip. predG(n)=df {m | (m, n) ∈ E } and succG(n)=df {m | (n,m) ∈ E } denote the set of
all immediate predecessors and successors of a node n, respectively. A finite path in G is a
sequence (n1, . . . , nq) of nodes such that (nj , nj+1) ∈ E for j ∈ {1, . . . , q − 1}. PG[m, n]
denotes the set of all finite paths from m to n, and PG[m, n[the set of all finite paths from m
to a predecessor of n. Moreover, λ(p) denotes the number of node occurrences of p, and ε the
unique path of length 0. Finally, every node n ∈ N is assumed to lie on a path from s to e.

2.2 Data Flow Analysis

Data flow analysis (DFA) is concerned with the static analysis of programs in order to support
the generation of efficient object code by “optimizing” compilers (cf. [He, MJ]). For imperative
languages, DFA provides information about the program states that may occur at some given
program points during execution. Theoretically well-founded are DFAs that are based on abstract

320

interpretation (cf. [CC1, Ma]). The point of this approach is to replace the “full” semantics by
a simpler more abstract version, which is tailored to deal with a specific problem. Usually, the
abstract semantics is specified by a local semantic functional

[[]] : N→ (C→C)
which gives abstract meaning to every program statement in terms of a transformation function
from a complete lattice (C,u,v,⊥,>) into itself, where the elements of C express the DFA-
information of interest.1

Since s and e are assumed to represent the empty statement skip they are associated with
the identity IdC on C. A local semantic functional [[]] can easily be extended to cover finite
paths as well. For every path p= (n1, . . . , nq) ∈ PG[m, n], we define:

[[p]] =df

{
IdC if p ≡ ε
[[(n2, . . . , nq)]] ◦ [[n1]] otherwise

2.2.1 The MOP -Solution of a DFA

The MOP -solution — the solution of the meet over all paths (MOP) strategy in the sense of
Kam and Ullman [KU] — defines the intuitively desired solution of a DFA. This strategy directly
mimics possible program executions in that it “meets” (intersects) all informations belonging to
a program path reaching the program point under consideration.

The MOP -Solution: ∀n ∈ N ∀ c0 ∈ C. MOP (G,[[]])(n)(c0) =u{ [[p]](c0) | p ∈ PG[s, n[}

In fact, this directly reflects our desires, but is in general not effective.

2.2.2 The MFP -Solution of a DFA

The point of the maximal fixed point (MFP) strategy in the sense of Kam and Ullman [KU]
is to iteratively approximate the greatest solution of a system of equations which specifies the
consistency between pre-conditions expressed in terms of C:

Equation System 2.1

pre(n) =

{
c0 if n = s
u{ [[m]](pre(m)) |m ∈ predG(n) } otherwise

Denoting the greatest solution of Equation System 2.1 with respect to the start information
c0 ∈ C by prec0 , the solution of the MFP -strategy is defined by:

The MFP -Solution: ∀n ∈ N ∀ c0 ∈ C. MFP (G,[[]])(n)(c0) = prec0

For monotonic functionals,2 this leads to a suboptimal but algorithmic description (see Algo-
rithm A.1 in Appendix A). The question of optimality of the MFP -solution was elegantly
answered by Kam and Ullman [KU]:

Theorem 2.2 (The (Sequential) Coincidence Theorem)
Given a flow graph G= (N,E, s, e), the MFP -solution and the MOP -solution coincide, i.e.
∀n ∈ N ∀ c0 ∈ C. MOP (G,[[]])(n)(c0) =MFP (G,[[]])(n)(c0), whenever all the semantic functions
[[n]], n ∈ N , are distributive.3

1In the following C will always denote a complete lattice.
2A function f : C→C is called monotonic iff ∀ c, c′ ∈ C. c v c′ implies f(c) v f(c′).
3A function f : C→C is called distributive iff ∀C′ ⊆ C. f(uC′) = u {f(c) | c ∈ C′}. It is well-known

that distributivity is a stronger requirement than monotonicity in the following sense: A function f : C→C is
monotonic iff ∀C′ ⊆ C. f(uC′) v u {f(c) | c ∈ C′}.

321

2.2.3 The Functional Characterization of the MFP -Solution

From interprocedural DFA, it is well-known that the MFP -solution can alternatively be defined
by means of a functional approach [SP]. Here, one iteratively approximates the greatest solution
of a system of equations specifying consistency between functions [[[n]]], n ∈ N . Intuitively, a
function [[[n]]] transforms data flow information that is assumed to be valid at the start node
of the program into the data flow information being valid before the execution of n.

Definition 2.3 (The Functional Approach)
The functional [[[]]] : N→ (C→C) is defined as the greatest solution of the equation system given
by:

[[[n]]] =

{
IdC if n= s
u{[[m]] ◦ [[[m]]] |m ∈ predG(n)} otherwise

The following equivalence result is important [KS]:

Theorem 2.4 ∀n ∈ N ∀ c0 ∈ C. MFP (G,[[]])(n)(c0) = [[[n]]](c0)

The functional characterization of the MFP -solution will be the (intuitive) key for computing
the parallel version of the maximal fixed point solution. As we are only dealing with Boolean
values later on, this characterization can easily be coded back into the standard form.

3 Parallel Programs

As usual, we consider a parallel imperative programming language with an interleaving seman-
tics. Formally, this means that we view parallel programs semantically as ‘abbreviations’ of
usually much larger nondeterministic programs, which result from a product construction be-
tween parallel components (cf. [CC2, CH1, CH2]). In fact, in the worst case, the size of the
nondeterministic ‘product’ program grows exponentially in the number of parallel components
of the corresponding parallel program. This immediately clarifies the dilemma of data flow
analysis for parallel programs: even though it can be reduced to standard data flow analysis
on the corresponding nondeterministic program, this approach is unacceptable in practice for
complexity reasons. Fortunately, as we will see in Section 3.3, bitvector analyses, which are
most relevant in practice, can be performed as efficiently on parallel programs as on sequential
programs.

The following section establishes the notational background for the formal development and
the proofs. One could therefore try to immediately continue with Section 3.3 and to ‘backtrack’
to Section 3.1 at need.

3.1 Representation

Syntactically, parallelism is expressed by means of a par statement whose components are as-
sumed to be executed independently and in parallel on a shared memory.4 As usual, we assume
that there are neither jumps leading into a component of a par statement from outside nor vice
versa.

Similarly to [GS], we represent a parallel program by a nondeterministic parallel flow graph
G∗ = (N ∗, E∗, s∗, e∗) with node set N ∗ and edge set E∗. Except for subgraphs representing
par statements a parallel flow graph is a nondeterministic flow graph in the sense of Section 2,

4Integrating a replicator statement in order to allow a dynamical process creation is straightforward (cf.
[CH2, Vo2]).

322

i.e., nodes n ∈ N ∗ represent the statements, edges (m, n) ∈ E∗ the nondeterministic branching
structure of the procedure under consideration, and s∗ and e∗ denote the distinct start node
and end node, which are assumed to possess no predecessors and successors, respectively. As in
Section 2, we assume that every node n ∈ N ∗ lies on a path from s∗ to e∗, and that the start
and the end nodes of parallel flow graphs represent the empty statement skip. Additionally,
predG∗(n)=df {m | (m, n) ∈ E∗ } and succG∗(n)=df {m | (n,m) ∈ E∗ } denote the set of all
immediate predecessors and successors of a node n ∈ N ∗, respectively.

G*

1

2 3

4

5

6

7

8 9

12

12

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

34

33

35

36

37

38

39

40

41

42

43

44

45 46

47

48

49

50

51

Figure 1: The Parallel Flow Graph G∗

A par statement as well as every of its components are also considered parallel flow graphs
(cf. Figure 1 for illustration). The start node and the end node of a graph representing a par
statement have the start nodes and the end nodes of the component flow graphs as their only
successors and predecessors, respectively. The set of all subgraphs of G∗ representing a par
statement is denoted by GP(G∗). Additionally,

GmaxP (G∗)=df {G ∈ GP(G∗) | ∀G′ ∈ GP(G∗). G ⊆ G′⇒G = G′ }

denotes the set of maximal graphs of GP(G∗).5 Moreover, for G′ ∈ GP(G∗), GC(G′) denotes
the set of component flow graphs of G′, and CpNodes(G′)=df N

′\{s′, e′} the set of nodes of its
component flow graphs.6 It is worth noting that for G ∈ GP(G∗) every component flow graph
G′ ∈ GC(G) and also G itself is a single-entry/single-exit region of G∗. Moreover, we introduce
the following abbreviations for the sets of start nodes and end nodes of graphs of GP(G∗):

N ∗N=df { s |G ∈ GP(G∗) } and N ∗X=df { e |G ∈ GP(G∗) }
5For parallel flow graphs G and G′ we define: G ⊆ G′ if and only if N ⊆ N ′ and E ⊆ E′.
6We use the convention that the node set and the edge set, and the start node and the end node of a flow

graph carry the same marking as the flow graph itself. Hence, G and G′ stand for the expanded versions
G = (N,E, s, e) and G′ = (N ′, E′, s′, e′), respectively.

323

Additionally, we need the functions Nodes, start , end, pfg , and cfg . The functions Nodes,
start and end map a flow graph to its node set, and its start node and end node, respectively.
The function pfg maps a node n occurring in some flow graph G′ ∈ GP(G∗) to the smallest
flow graph of GP(G∗) containing n; and it maps the remaining nodes n of N ∗ to G∗, i.e.,

pfg(n)=df

{ ⋂{G′ ∈ GP(G∗) |n ∈ Nodes(G′) } if n ∈ Nodes(GmaxP (G∗))
G∗ otherwise

Similarly, the function cfg maps a node n occurring in a component flow graph of some graph
G ∈ GP(G∗) to the smallest component flow graph containing n; and it maps the remaining
nodes n of N ∗ to G∗, i.e.,

cfg(n)=df

{ ⋂{G′ ∈ GC(GP(G∗)) |n ∈ Nodes(G′) } if n ∈ CpNodes(GmaxP (G∗))
G∗ otherwise

Both pfg and cfg are well-defined, since par statements in a program are either unrelated or
properly nested.

Finally, given a parallel flow graph G we define an associated sequential flow graph Gseq,
which results from G by replacing all nodes belonging to a component flow graph of some graph
G′ ∈ GmaxP (G) together with all edges starting or ending in such a node by an edge leading from
start(G′) to end(G′). Note that Gseq is a nondeterministic sequential flow graph in the sense of
Section 2. This is illustrated in Figure 2, which shows the sequentialized version of the parallel
flow graph of Figure 1.

G*
seq

1

50

51

2 3

4

5

Figure 2: G∗seq

Interleaving Predecessors

Given a sequential flow graph G, the set of nodes that might dynamically precede a node n
is precisely given by the set of its static predecessors predG(n). Given a parallel flow graph,
however, the interleaving of statements of parallel components must be taken care of. In fact,
nodes n occurring in a component of some par statement additionally can have all nodes as
dynamic predecessors, whose execution may be interleaved with that of n. For example, in
the program of Figure 1 the execution of node 24, whose only static predecessor is node 23,
may be interleaved with the execution of the nodes 20, 21, and 30, . . ., 49. We denote these
‘potentially parallel’ nodes as interleaving predecessors. The set of all interleaving predecessors
of a node n ∈ N∗ is recursively defined by means of the function Pred ItlvgG∗ : N ∗→P(N ∗), where
P denotes the power set operator and mpe-pfg a function, which maps a node n ∈ N ∗ to its

324

minimal properly enclosing graph of GP(G∗) ∪ {G∗}:

PredItlvgG∗ (n)=df

∅ if N ∗\CpNodes(GmaxP (G∗))

CpNodes(mpe-pfg(n))\Nodes(cfg(n)) ∪
PredItlvgG∗ (start(cfg(start(mpe-pfg(n))))) otherwise

where mpe-pfg is defined by:

mpe-pfg(n)=df

pfg(start(cfg(n))) if n ∈ N ∗N ∪N ∗X

pfg(n) otherwise

Program Paths of Parallel Programs

As mentioned already, the interleaving semantics of an imperative parallel programming lan-
guage can be defined via a translation that reduces parallel programs to (much larger) nondeter-
ministic programs. However, there is also an alternative way to characterize the node sequences
constituting a parallel (program) path, following in spirit the definition of an interprocedural
program path as proposed by Sharir and Pnueli [SP]. They start by interpreting every branch
statement purely nondeterministically, which allows to simply use the definition of finite path
as introduced in Section 2. This results in a superset of the set of all interprocedurally valid
paths, which they now define by means of an additional consistency condition. In our case, we
are forced to define our consistency condition on arbitrary node sequences, as the considera-
tion of interleavings invalidates the first step. Here, the following notion of well-formedness is
important.

Definition 3.1 (G-Well-Formedness)
Let G be a (parallel) flow graph, and p=df (n1, . . . , nq) be a sequence of nodes. Then p is
G-well-formed if and only if

1. the projection p↓Gseq of p onto Gseq lies in PGseq [start(Gseq), end(Gseq)]

2. for all node occurrences ni ∈ N ∗N of the sequence p there exists a j ∈ {i+1, . . . , q} such
that

(a) nj ∈ N ∗X,

(b) nj is the successor of ni on p↓Gseq and

(c) the sequence (ni+1, . . . , nj−1) is G′-well-formed for all G′ ∈ GC(pfg(ni)).

Now the set of parallel paths is defined as follows.

Definition 3.2 (Parallel Path)
Let G∗ = (N ∗, E∗, s∗, e∗) be a parallel flow graph, and p=df (n1, . . . , nq) be a sequence of nodes
of N ∗. Then:

1. p is a parallel path from s∗ to e∗ if and only if p is G∗-well-formed.

2. p is a parallel path from n1 to nq if it is a subpath of some parallel path from s∗ to e∗.

PPG∗ [m, n] denotes the set of all parallel paths from m to n, and PPG∗ [m, n[the set of all
parallel paths from m to a (static or interleaving) predecessor of n, defined by

PPG∗ [m, n[=df {(n1, . . . , nq) | (n1, . . . , nq, nq+1) ∈ PPG∗ [m, n]}

325

3.2 Data Flow Analysis of Parallel Programs

As for a sequential program, a DFA for a parallel program is completely specified by means of
a local semantic functional

[[]] : N ∗→ (C→C)
which gives abstract meaning to every node n of a parallel flow graph G∗ in terms of a function
from C to C.

As in the sequential case it is straightforward to extend a local semantic functional to cover
also finite parallel paths. Thus, given a node n of a parallel program G∗, the parallel version
of the MOP -solution is clear, and as in the sequential case, it marks the desired solution to the
considered data flow problem:

The PMOP -Solution:

∀n ∈ N ∗ ∀ c0 ∈ C. PMOP (G∗,[[]])(n)(c0) =u{ [[p]](c) |p ∈ PPG∗ [s∗, n[}

Referring to the nondeterministic ‘product program’, which explicitly represents all the possible
interleavings, would allow us to straightforward adapt the sequential situation and to state a
Coincidence Theorem. However, this would not be of much practical use, as this approach would
require to define the MFP -solution relative to the potentially exponential product program.
Fortunately, as we will see in the next section, for bitvector algorithms there exists an elegant
and efficient way out.

3.3 Bitvector Analyses

Bitvector problems can be characterized by the simplicity of their local semantic functional

[[]] : N ∗→ (B→B)

which specifies the effect of a node n on a particular component of the bitvector (see Section 4
for illustration). Here B is the lattice ({ff , tt},u,v) of Boolean truth values with ff v tt and
the logical ‘and’ as meet operation u, or its dual counterpart with tt v ff and the logical ‘or’
as meet operation u.

Despite their simplicity, bitvector problems are highly relevant in practice, as they include
problems like liveness, availability, very business, reaching definitions, definition-use chains,
partially redundant expression and assignment elimination, partial dead code elimination or
strength reduction.

We are now going to show, how to optimize the effort for computing the PMOP -solution.
This requires the consideration of the semantic domain FB consisting of the monotonic Boolean
functions B→B. Obviously we have:

Proposition 3.3 1. FB simply consists of the constant functions Const tt and Constff ,
together with the identity IdB on B.

2. FB, together with the pointwise ordering between functions, forms a complete lattice with
least element Constff and greatest element Consttt , which is closed under function com-
position.

3. All functions of FB are distributive.

The key to the efficient computation of the ‘interleaving effect’ is based on the following simple
observation, which pinpoints the specific nature of a domain of functions M→M , M any set,
that only consists of constant functions and the identity.

326

Lemma 3.4 (Main-Lemma)
Let fi : FB→FB, 1 ≤ i ≤ q, q ∈ IN , be functions from FB to FB. Then we have:

∃ k ∈ {1, . . . , q}. fq ◦ . . . ◦ f2 ◦ f1 = fk ∧ ∀ j ∈ {k + 1, . . . , q}. fj = IdB

The essence of this lemma for our application is that it restricts the way of possible interference
within a parallel program: if there is any interference than this interference is due to a single
statement within a parallel component. Combining this observation with the fact that for
m ∈ Pred ItlvgG∗ (n), there exists a parallel path leading to n whose last step requires the execution
of m, we obtain that the potential of interference, which in general would be given in terms
of paths, is fully characterized by the set PredItlvgG∗ (n). In fact, considering the computation of
universal properties that are described by maximal fixed points (the computation of minimal
fixed points requires the dual argument), the obvious existence of a path to n that does not
require the execution of any statement of PredItlvgG∗ (n) implies that the only effect of interference
is ‘destruction’. This motivates the introduction of the following predicate:

NonDestructed : N ∗→B defined by

∀n ∈ N ∗. NonDestructed(n)=df
∧{ [[m]](tt) | m ∈ PredItlvgG∗ (n) }

which indicates that no node of a parallel component destroys the property under consideration,
i.e. [[m]] 6= Constff for all m ∈ PredItlvgG∗ (n). Note that only the constant function induced by
this predicate is used in Definition 3.7 to model interference, and in fact, Theorem 3.8 guarantees
that this modelling is sufficient. Obviously, this predicate is easily and efficiently computable.
Algorithm B.1 computes it as a side result.

Besides taking care of possible interference, we also need to take care of the synchronization
required by nodes in N∗X : in order to leave a parallel statement, all parallel components are
required to terminate. The information that is necessary to model this effect can be computed
by a hierarchical algorithm that only considers purely sequential programs. The central idea
coincides with that of interprocedural analysis [KS]: we need to compute the effect of complete
subgraphs, or in this case of complete parallel components. This information is computed in
an ‘innermost’ fashion and then propagated to the next surrounding parallel statement. The
following definition describes the complete three-step procedure:

1. Terminate, if G does not contain any parallel components. Otherwise, select successively
all maximal flow graphs G′ ∈ GP(G) that do not contain a parallel statement, and deter-
mine the effect [[[G′]]] of this (purely sequential) graph according to the equational system
of Definition 2.3 with respect to the local semantic functional [[]]′seq : N ′seq→FB given by

[[n]]′seq=df

IdB u ConstNonDestructed (n) if n ∈ N ∗N
[[[pfg(n)]]]∗ if n ∈ N ∗X
[[n]] otherwise

2. Compute the effect [[[G′′]]]∗ of the innermost parallel statements G′′ of G by

[[[G′′]]]∗ =u{ [[[end(G′seq)]]] | G′ ∈ GC(G′′) }

3. Transform G by replacing all innermost parallel statements G′′ = (N ′′, E ′′, s′′, e′′) by
({s′′, e′′}, {(s′′, e′′)}, s′′, e′′), and replace the local semantics of s′′ and e′′ by IdBuu{ [[n]] |
n ∈ N ′′} and [[[G′′]]]∗, respectively. Continue with step 1.

327

This three step algorithm is a straightforward hierarchical adaptation of the algorithm for com-
puting the functional version of the MFP -solution for the sequential case. Only the third step
realizing the synchronization at nodes in N ∗X needs some explanation, which is summarized in
the following lemma.

Lemma 3.5 The PMOP -solution of a parallel flow graph G that only consists of purely se-
quential parallel components G1, . . . , Gk is given by:

PMOP (G,[[]])(end(G)) =u{ [[[end(Gi)]]] | 1 ≤ i ≤ k }

Also the proof of this lemma is a consequence of the Main Lemma 3.4. As a single statement
is responsible for the entire effect of a path, the effect of each complete path through a parallel
statement is already given by some path through one of the parallel components (the one con-
taining the vital statement). Thus in order to model the effect (or PMOP -solution) of a parallel
statement, it is sufficient to meet the effects of all paths that are local to one of the components,
and it is exactly this fact, which is formalized in Lemma 3.5.

Now the following theorem can be proved by means of a straightforward inductive extension
of the functional version of the sequential Coincidence Theorem 2.2, which is tailored to cover
complete paths, i.e. paths going from the start to the end of a parallel statement:

Theorem 3.6 (The Hierarchical Coincidence Theorem)
Let G ∈ GP(G∗) be a parallel flow graph, and [[]] : N ∗→FB a local semantic functional. Then
we have:

PMOP (G,[[]])(end(G)) = [[[G]]]∗

After this hierarchical preprocess the following modification of the equation system for sequential
bitvector analyses is optimal:

Definition 3.7 The functional [[[]]] : N∗→FB is defined as the greatest solution of the equation
system given by:7

[[[n]]] =

IdB if n= s∗

[[[pfg(n)]]]∗ ◦ [[[start(pfg(n))]]] uConstNonDestructed (n) if n ∈ N ∗X

u{ [[m]] ◦ [[[m]]] |m ∈ predG∗(n)} u ConstNonDestructed (n) otherwise

This allows us to define the PMFPBV -solution, a fixed point solution for the bitvector case, in
the following fashion:

The PMFPBV -Solution:

PMFPBV (G∗,[[]]) : N ∗→FB defined by ∀n ∈ N ∗ ∀ b ∈ B. PMFPBV (G∗ ,[[]])(n)(b) =[[[n]]](b)

As in the sequential case the PMFPBV -strategy is practically relevant, because it can efficiently
be computed (see Algorithm B.1 in Appendix B). The following theorem, whose proof can be
found in [KSV1], now establishes that it also coincides with the desired PMOP -solution.

Theorem 3.8 (The Parallel Bitvector Coincidence Theorem)
Let G∗= (N ∗, E∗, s∗, e∗) be a parallel flow graph, and [[]] : N ∗→FB a local semantic functional.
Then we have that the PMOP -solution and the PMFPBV -solution coincide, i.e.,

∀n ∈ N ∗. PMOP (G∗,[[]])(n) =PMFPBV (G∗,[[]])(n)
7Note that [[[]]] is the straightforward extension of the functional defined in Definition 2.3. Thus the overloading

of notation is harmless, as no reference to the sequential version is made in this definition.

328

3.4 Performance and Implementation

Our algorithm is based on a functional version of an MFP -solution, as it is common for interpro-
cedural analyses. However, as bitvector algorithms only deal with Boolean values, proceeding
argument-wise, would simply require to apply a standard bitvector algorithm twice. In particu-
lar, for regular program structures, all the nice properties of bitvector algorithms apply. In fact,
for the standard version of Algorithm B.1 a single execution is sufficient, as we can start here
with the same start information as the standard sequential analysis. Thus, even if we count the
effort for computing the predicate NonDestructed separately, our analysis would simply be a
composition of four standard bitvector analyses. In practice, however, our algorithm behaves
much better, as the existence of a single destructing statement allows us to skip the analysis of
large parts of the program. In fact, in our experience, the parallel version often runs faster than
the sequential version on a program of similar size.

The same argumentation also indicates a way for a cheap implementation on top of existing
bitvector algorithms. However, we recommend the direct implementation of the functional
version, which to our experience, runs even faster than the decomposed standard version. This
is not too surprising, as the functional version only needs to consider one additional value and
does not require the argumentwise application.

4 Applications

As mentioned in Section 1 and Section 3.3, bitvector problems have a broad scope of appli-
cations. In this section we present the local semantic functionals of four bitvector problems
in order to give the flavour of a typical bitvector analysis. Moreover, these analyses are all
practically relevant, since they are the central components of two algorithms for the computa-
tionally optimal placement of computations and assignments in a program, which eliminate all
partially redundant expressions [KRS1] and all partially dead assignments in a program [KRS3],
respectively.

According to [KRS1] a computationally optimal placement of computations in a program
requires to compute the set of program points where a computation is up-safe, i.e., where it has
been computed on every program path reaching the program point under consideration, and
down-safe, i.e., where it will be computed on every program continuation reaching the end node
of the program.8 The DFA-problems for up-safety and down-safety are specified by the local
semantic functionals [[n]]us and [[n]]ds, respectively:

[[n]]us=df

 Const tt if Transp(n)∧Comp(n)
IdB if Transp(n)∧¬Comp(n)
Constff if ¬Transp(n)

[[n]]ds=df

 Const tt if Comp(n)
IdB if ¬Comp(n)∧Transp(n)
Constff if ¬(Comp(n)∨Transp(n))

Details on the complete placement transformation for parallel programs can be found in [KSV2].
According to [KRS3] all partially dead assignments in a program can be eliminated by

successively moving assignments as far as possible in the direction of the control flow and by
subsequently removing all assignments whose left hand side variable is dead after the execution
of the assignment under consideration. In order to capture the second order effects of partial
dead code elimination, this two step procedure is repeated until the programs eventually sta-
bilizes. Below the local semantic functionals specifying the DFA-problems for the sinking of
assignments [[n]]dl and the detection of dead variables [[n]]dd are presented, which are the
central components of the algorithm of [KRS3]:

8Up-safety and down-safety are also known as availability and anticipability (very business), respectively.

329

[[n]]dd=df

 Const tt if ¬Used(n)∧Mod(n)
IdB if ¬(Used(n)∨Mod(n))
Constff if Used(n)

[[n]]dl=df

 Const tt if LocDelay(n)
IdB if ¬(LocDelay ∨LocBlock(n))
Constff if ¬LocDelay ∧LocBlock(n)

5 Conclusions

We have shown how to construct optimal bitvector analysis algorithms for parallel programs with
shared memory that are as efficient as their purely sequential counterparts, and which can easily
be implemented. At the first sight, the existence of such an algorithm is rather surprising, as the
interleaving semantics underlying our programming language is an indication for an exponential
effort. However, the restriction to bitvector analysis constrains the possible ways of interference
in such a way that we could construct a fixed point algorithm that directly works on the parallel
program without taking any interleavings into account. The algorithm is implemented on the
Fixpoint Analysis Machine of [SCKKM]. Moreover, a variant of the computationally optimal
placement algorithm for computations sketched in Section 4 is implemented in the ESPRIT
project COMPARE [Vo1, Vo2].

References

[CC1] Cousot, P., and Cousot, R. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Conference Record of the 4th

International Symposium on Principles of Programming Languages (POPL’77), Los Angeles,
California, 1977, 238 - 252.

[CC2] Cousot, P., and Cousot, R. Invariance proof methods and analysis techniques for parallel
programs. In Biermann, A. W., Guiho, G., and Kodratoff, Y. (eds.) Automatic Program Con-
struction Techniques, chapter 12, 243 - 271, Macmillan Publishing Company, 1984.

[CH1] Chow, J.-H., and Harrison, W. L. Compile time analysis of parallel programs that share mem-
ory. In Conference Record of the 19th International Symposium on Principles of Programming
Languages (POPL’92), Albuquerque, New Mexico, 1992, 130 - 141.

[CH2] Chow, J.-H., and Harrison, W. L. State Space Reduction in Abstract Interpretation of Parallel
Programs. In Proceedings of the International Conference on Computer Languages, (ICCL’94),
Toulouse, France, May 16-19, 1994, 277-288.

[Dh] Dhamdhere, D. M. A new algorithm for composite hoisting and strength reduction optimisation
(+ Corrigendum). Internat. J. Computer Math. 27 , (1989), 1 - 14 (+ 31 - 32).

[DRZ] Dhamdhere, D. M., Rosen, B. K., and Zadeck, F. K. How to analyze large programs efficiently
and informatively. In Proceedings of the ACM SIGPLAN’92 Conference on Programming Lan-
guage Design and Implementation (PLDI’92), San Francisco, California, SIGPLAN Notices
27 , 7 (1992), 212 - 223.

[GS] Grunwald, D., and Srinivasan, H. Data flow equations for explicitely parallel programs.
In Proceedings of the ACM SIGPLAN Symposium on Principles of Parallel Programming
(PPOPP’93), SIGPLAN Notices 28 , 7 (1993).

[He] Hecht, M. S. Flow analysis of computer programs. Elsevier, North-Holland, 1977.

[JD] Joshi, S. M., and Dhamdhere, D. M. A composite hoisting-strength reduction transformation
for global program optimization. Part I & II. Internat. J. Computer Math. 11 , (1982), 21 - 41,
111 - 126.

[KRS1] Knoop, J., Rüthing, O., and Steffen, B. Optimal code motion: Theory and practice. Transac-
tions on Programming Languages and Systems 16 , 4 (1994), 1117 - 1155.

330

[KRS2] Knoop, J., Rüthing, O., and Steffen, B. Lazy strength reduction. Journal of Programming
Languages 1 , 1 (1993), 71 - 91.

[KRS3] Knoop, J., Rüthing, O., and Steffen, B. Partial dead code elimination. In Proceedings of
the ACM SIGPLAN’94 Conference on Programming Language Design and Implementation
(PLDI’94), Orlando, Florida, SIGPLAN Notices 29 , 6 (1994), 147 - 158.

[KRS4] Knoop, J., Rüthing, O., and Steffen, B. The power of assignment motion. To appear in Pro-
ceedings of the ACM SIGPLAN’95 Conference on Programming Language Design and Imple-
mantion (PLDI’95), La Jolla, California, June 18 - 21, 1995.

[KS] Knoop, J., and Steffen, B. The interprocedural coincidence theorem. In Proceedings of the 4 th

International Conference on Compiler Construction (CC’92), Paderborn, Germany, Springer-
Verlag, LNCS 641 (1992), 125 - 140.

[KSV1] Knoop, J., Steffen, B., and Vollmer, J. Parallelism for free: Efficient and optimal bitvector
analyses for parallel programs. Fakultät für Mathematik und Informatik, Universität Passau,
Germany, MIP-Bericht Nr. 9409 (1994), 29 pages.

[KSV2] Knoop, J., Steffen, B., and Vollmer, J. Optimal code motion for parallel programs. To appear
in Proceedings of the 12th Workshop on “Alternative Konzepte für Sprachen und Rechner”,
Physikzentrum Bad Honnef, Germany, May 2 - 4, 1995.

[KU] Kam, J. B., and Ullman, J. D. Monotone data flow analysis frameworks. Acta Informatica 7 ,
(1977), 309 - 317.

[Ma] Marriot, K. Frameworks for abstract interpretation. Acta Informatica 30 , (1993), 103 - 129.

[McD] McDowell, C. E. A practical algorithm for static analysis of parallel programs. Journal of
Parallel and Distributed Computing 6 , 3 (1989), 513 - 536.

[MJ] Muchnick, S. S., and Jones, N. D. (Eds.). Program flow analysis: Theory and applications.
Prentice Hall, Englewood Cliffs, New Jersey, 1981.

[MR] Morel, E., and Renvoise, C. Global optimization by suppression of partial redundancies. Com-
munications of the ACM 22 , 2 (1979), 96 - 103.

[MP] Midkiff, S. P., and Padua, D. A. Issues in the optimization of parallel programs. In Proceedings
of the International Conference on Parallel Processing, Volume II , St. Charles, Illinois, (1990),
105 - 113.

[SCKKM] Steffen, B., Claßen, A., Klein, M., Knoop, J., and Margaria, T. The fixpoint analysis ma-
chine. To appear in Proceedings of the 6th International Conference on Concurrency Theory
(CONCUR’95), Philadelphia, Pennsylvania, USA, August 21-24, 1995.

[SHW] Srinivasan, H., Hook, J., and Wolfe, M. Static single assignment form for explicitly parallel
programs. In Conference Record of the 20th ACM SIGPLAN Symposium on Principles of
Programming Languages (POPL’93), Charleston, South Carolina, 1993, 260 - 272.

[SP] Sharir, M., and Pnueli, A. Two approaches to interprocedural data flow analysis. In [MJ],
(1981), 189 - 233.

[SW] Srinivasan, H., and Wolfe, M. Analyzing programs with explicit parallelism. In Proceedings of
the 4th International Conference on Languages and Compilers for Parallel Computing, Santa
Clara, California, Springer-Verlag, LNCS 589 (1991), 405 - 419.

[Vo1] Vollmer, J. Data flow equations for parallel programs that share memory. Tech. Rep. 2.11.1
of the ESPRIT Project COMPARE (1994), Fakultät für Informatik, Universität Karlsruhe,
Germany.

[Vo2] Vollmer, J. Data flow analysis of parallel programs. To appear in Proceedings of the Inter-
national Conference on Parallel Architectures and Compilation Techniques (PACT’95), 1995.
Extended version available as: Interner Bericht 19/95 (1995), 28 pages, Fakultät für Informatik,
Universität Karlsruhe, Germany.

[WS] Wolfe, M, and Srinivasan, H. Data structures for optimizing programs with explicit paral-
lelism. In Proceedings of the 1st International Conference of the Austrian Center for Parallel
Computation, Salzburg, Austria, Springer-Verlag, LNCS 591 (1991), 139 - 156.

331

A Computing the MFP -Solution

Algorithm A.1 (Computing the MFP-Solution)

Input: A flow graph G = (N,E, s, e), a local semantic functional [[]] : N→FB, and a function
finit ∈ FB reflecting the assumptions on the context in which the procedure under consideration is called.
Usually, finit is given by IdB.

Output: An annotation of G with functions [[[n]]] ∈ FB, n ∈ N , representing the greatest solution
of the equation system of Definition 2.3. In fact, after termination of the algorithm the functional [[[]]]
satisfies: ∀n ∈ N. [[[n]]]=MFP (G,[[]])(n) =MOP (G,[[]])(n)

BEGIN MFP(G, [[]], finit) END.

where

PROCEDURE MFP (G = (N,E, s, e) : SequentialF lowGraph;
[[]] : N→FB : LocalSemanticFunctional; fstart : FB);

VAR f : FB;
BEGIN

(Initialization of the annotation array gtr and the variable workset)
FORALL n ∈ N\{s} DO [[[n]]] := Const tt OD;
[[[s]]] := fstart; workset := {n |n= s ∨ [[n]] = Constff };
(Iterative fixed point computation)
WHILE workset 6= ∅ DO

LET n ∈ workset
BEGIN

workset := workset\{n }; f := [[n]] ◦ [[[n]]];
FORALL m ∈ succG(n) DO

IF [[[m]]] = f THEN [[[m]]] := f ; workset := workset ∪{m }FI OD END
OD

END.

B Computing the PMFPBV -Solution

Algorithm B.1 (Computing the PMFPBV -Solution)

Input: A parallel flow graph G∗ = (N∗, E∗, s∗, e∗), a local semantic functional [[]] : N∗→FB, a
function finit ∈ FB and a Boolean value binit ∈ B, where finit and binit reflect the assumptions on the
context in which the procedure under consideration is called. Usually, finit and binit are given by IdB
and ff , respectively.

Output: An annotation of G∗ with functions [[[G]]]∗ ∈ FB, G ∈ GP(G∗), representing the semantic
functions computed in step 2 of the three step procedure of Section 3.3, and with functions [[[n]]] ∈ FB, n ∈
N∗, representing the greatest solution of the equation system of Definition 3.7. In fact, after the termina-
tion of the algorithm the functional [[[]]] satisfies: ∀n ∈ N∗. [[[n]]] =PMFPBV (G∗,[[]])(n) =PMOP (G∗,[[]])(n)

Remark: The global variables [[[G]]]∗, G ∈
⋃
{GC(G′) |G′ ∈ GP(G∗) }, each of which is storing a

function of FB, are used during the hierarchical computation of the PMFPBV -solution for storing the
global effect of graphs that are a component of some graph G ∈ GP(G∗). Additionally, the global variables
harmful(G), G ∈

⋃
{ GC(G′) |G′ ∈ GP(G∗) }, store whether G contains a node n with [[n]] = Constff .

These variables are used to compute the value of the predicate NonDestructed of Section 3.3. Finally,
every flow graph G ∈ GP(G∗) is assumed to have a rank, which is recursively defined by:

rank(G)=df

{
0 if G ∈ GminP (G∗)
max{ rank(G′) |G′ ∈ GP(G∗) ∧ G′ ⊂ G }+ 1 otherwise

where GminP (G∗)=df {G ∈ GP(G∗) | ∀G′ ∈ GP(G∗). G′ ⊆ G⇒G′ = G } denotes the set of minimal graphs
of GP(G∗).

332

BEGIN
GLOBEFF(G∗, [[]]); (Synchronization: Computing [[[G]]]∗ for all G ∈ GP(G∗))
PMFPBV (G∗, [[]], finit, binit) (Interleaving: Computing the PMFPBV -Solution [[[n]]] for all n ∈ N∗)

END.

where

PROCEDURE GLOBEFF (G = (N,E, s, e) : ParallelF lowGraph;
[[]] : N→FB : LocalSemanticFunctional);

VAR i : integer ;
BEGIN

FOR i := 0 TO rank(G) DO
FORALL G′ ∈ {G′′ |G′′ ∈ GP(G) ∧ rank(G′′) = i } DO

FORALL G′′ ∈ {G′′′seq |G′′′ ∈ GC(G′)} where G′′ = (N ′′, E′′, s′′, e′′) DO

LET ∀n ∈ N ′′. [[n]]′′ =

IdB u Const∀ Ḡ∈GC(pfg(n)). ¬harmful(Ḡ) if n ∈ N∗N
[[[pfg(n)]]]∗ if n ∈ N∗X
[[n]] otherwise

BEGIN
harmful(G′′) := (| {n ∈ N ′′ | [[n]]′′ = Constff } | ≥ 1);
MFP(G′′, [[]]′′, IdB); [[[G′′]]]∗ := [[[end(G′′)]]]∗

END OD;
[[[G′]]]∗ :=u{ [[[G′′]]]∗ |G′′ ∈ GC(G′) } OD OD

END.

PROCEDURE PMFPBV (G = (N,E, s, e) : ParallelF lowGraph;
[[]] : N→FB : LocalSemanticFunctional; fstart : FB; harmful : B);

VAR f : FB;
BEGIN

IF harmful THEN FORALL n ∈ N DO [[[n]]] := Constff OD
ELSE

(Initialization of the annotation arrays [[[]]] and the variable workset)
FORALL n ∈ N\{s} DO [[[n]]] := Const tt OD;
[[[s]]] := fstart; workset := {n |n= s ∨ [[n]] = Constff };
(Iterative fixed point computation)
WHILE workset 6= ∅ DO

LET n ∈ workset
BEGIN

workset := workset\{n };
IF n ∈ N\N∗N

THEN
f := [[n]] ◦ [[[n]]];
FORALL m ∈ succG(n) DO

IF [[[m]]] = f THEN [[[m]]] := f ; workset := workset ∪{m }FI OD
ELSE

FORALL G′ ∈ GC(pfg(n)) DO
PMFPBV (G′, [[]], [[[n]]],

∑
G′′∈GC(pfg(n))\{G′}

harmful(G′′)) OD;

f := [[[pfg(n)]]]∗ ◦ [[[n]]];
IF [[[end(pfg(n))]]] = f

THEN [[[end(pfg(n))]]] := f ; workset := workset ∪{ end(pfg(n)) } FI FI
END OD FI

END.

Let [[[n]]]alg, n ∈ N ∗, denote the final values of the corresponding variables after the termination
of Algorithm B.1, and [[[n]]], n ∈ N ∗, the greatest solution of the equation system of Definition
3.7, then we have: ∀n ∈ N ∗. [[[n]]]alg = [[[n]]]

333

Author Index

Bodeveix, J., 159
Bohn, J., 275
Bossche, D. J., 119

Charpentier, M., 131
Chetali, B., 174
Cleaveland, R., 201

Damm, W., 230

Engberg, U. H., 89

Fantechi, A., 260
Filali, M., 159
Francesco, N. D., 260

Gardiner, P., 187
Gnesi, S., 260
Goldsmith, M., 187
Gribomont, P., 216
Grumberg, O., 230

Hadri, A. E., 131
Henriksen, J. G., 58
Henzinger, T., 29
Ho, P.-H., 29
Hulance, J., 187
Hungar, H., 230

Inverardi, P., 260

Jackson, D., 187
Janssen, W., 304
Jensen, O. J. L., 58
Jørgensen, M. E. , 58

Klarlund, N., 58
Knoop, J., 319
Krumm, H., 290

Larsen, K. G., 13
Larsen, K. S., 89

Lin, H., 104

Madelaine, E., 201
Mader, A., 44
Matthews, S., 146
Matz, O., 74
Mester, A., 290
Müller, O., 1

Nipkow, T., 1

Padiou, G., 131
Paige, R., 58
Ponse, A., 119
Potthoff, A., 74

Rauhe, T., 58
Rössig, S., 275
Roscoe, A., 187
Rossetto, D., 216

Sandholm, A. B., 58
Scattergood, J., 187
Sims, S., 201
Steffen, B., 13, 319

Tofts, C., 245

Vollmer, J., 319

Weise, C., 13

334

Recent Publications in the BRICS Notes Series

NS-95-2 Uffe H. Engberg, Kim G. Larsen, and Arne Skou, editors.
Proceedings of the Workshop on Tools and Algorithms for
The Construction and Analysis of Systems, TACAS(Aarhus,
Denmark, 19–20 May, 1995), May 1995. vi+334pp.

NS-95-1 Igor Walukiewicz. Notes on the Propositionalµ-calculus:
Completeness and Related Results. February 1995. 54 pp.

NS-94-6 Uffe H. Engberg, Kim G. Larsen, and Peter D. Mosses, ed-
itors. Proceedings of the 6th Nordic Workshop on Program-
ming Theory (Aarhus, Denmark, 17–19 October, 1994),
December 1994. v+483pp.

NS-94-5 Andrew M. Pitts. Some Notes on Inductive and Co-
Inductive Techniques in the Semantics of Functional Pro-
grams,DRAFT VERSION. December 1994. vi+135 pp.

NS-94-4 Peter D. Mosses, editor.Abstracts of the 6th Nordic Work-
shop on PROGRAMMING THEORY(Aarhus, Denmark,
17–19 October, 1994), October 1994. v+52 pp.

NS-94-3 Sven Skyum, editor.Complexity Theory: Present and Fu-
ture (Aarhus, Denmark, 15–18 August, 1994), September
1994. v+213 pp.

NS-94-2 David Basin.Induction Based on Rippling and Proof Plan-
ning. Mini-Course. August 1994. 62 pp.

NS-94-1 Peter D. Mosses, editor.Proc. 1st International Workshop
on Action Semantics(Edinburgh, 14 April, 1994), May
1994. 145 pp.

	Foreword
	Addresses
	Contents
	Combining Model Checking and Deduction for I/O-Automata
	A Constraint Oriented Proof Methodology based on Modal Transition Systems
	HyTech : The Cornell HYbrid TECHnology
	The Modal µ-Calculus, Model Checking, Equation Systems and Gau Elimination
	MONA: Monadic Second-Order Logic in Practice
	Computing Small Nondeterministic Finite Automata
	Efficient Simplification of Bisimulation Formulas
	On Implementing Unique Fixpoint Induction for Value-passing Processes
	Translating a Process Algebra with Symbolic Data Values to Linear Format
	A UNITY-based Algorithm Design Assistant
	Implementing FS0 in Isabelle: adding structure at the metalevel
	A framework for parallel program re nement
	Formal Veri cation of Concurrent Programs using the Larch Prover
	Hierarchical compression for model-checking CSP or How to check 10^20 dining philosophers for deadlock
	A Front-End Generator for Veri cation Tools
	CAVEAT: technique and tool for Computer Aided VEri cation And Transformation
	What if Model Checking Must Be Truly Symbolic
	Analytic and locally approximate solutions to properties of probabilistic processes
	Model Checking of non- nite state processes by Finite Approximations
	On Automatic and Interactive Design of Communicating Systems
	Composition and Re nement Mapping based Construction of Distributed Applications
	Layers as Knowledge Transitions in the Design of Distributed Systems
	Parallelism for Free: E cient and Optimal Bitvector Analyses for Parallel Programs
	Author Index

