
B
R

IC
S

N
S

-94-4
P.D

.M
osses

(ed.):
6th

N
ordic

W
orkshop

on
P

rogram
m

ing
T

heory

BRICS
Basic Research in Computer Science

Abstracts of the

6th Nordic Workshop on

PROGRAMMING THEORY

17–19 October 1994, Aarhus, Denmark

Peter D. Mosses (editor)

BRICS Notes Series NS-94-4

ISSN 0909-3206 October 1994

Copyright c© 1994, Peter D. Mosses (editor).
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/94/4/

Abstracts of the 6th Nordic Workshop on

PROGRAMMING THEORY

17–19 October 1994 — Aarhus, Denmark

Peter D. Mosses (editor)

Foreword

The main objective of this 6th Nordic Workshop on Programming Theory is to bring together
researchers from the Nordic and Baltic countries, in order to improve mutual contacts and
cooperation. The 63 registered participants come from: Norway (3), Sweden (11), Finland (5),
Latvia (1), Lithuania (2), Estonia (1), England (3), Germany (4), Denmark (33).

Presentations:
The following invited speakers are to give 60-minute presentations in plenary sessions: Matthew
Hennessy (University of Sussex), Bernhard Steffen (Universität Passau), and Ib Holm Sørensen
(B-Core (UK) Limited). The remainder of the workshop consists mainly of 30-minute presenta-
tions, selected on the basis of submitted abstracts, in parallel sessions. Moreover, four systems
are to be demonstrated, all closely related to talks to be given during the workshop.

Proceedings:
Selected participants, based on the quality and topic of the presentations at the workshop, will
be invited to submit a full paper after the workshop to the Nordic Journal of Computing.

Acknowledgements:
The 6th Nordic Workshop is financially supported by grants from BRICS1 and the Danish
Science Research Council. Technical and administrative support is provided by the Department
of Computer Science, University of Aarhus.

Programme Committee:

Kim G. Larsen Aalborg Univ., Denmark
Peter D. Mosses Univ. of Aarhus, Denmark
Ralph-Johan Back Åbo Akademi, Finland
Reino Kurki-Suoni Tampere Univ. of Tech., Finland
Sigurd Meldal Univ. of Bergen, Norway
Olaf Owe Univ. of Oslo, Norway
Bengt Jonsson SICS/Uppsala Univ., Sweden
Bengt Nordström Univ. of Göteborg/Chalmers Univ. of Tech., Sweden

Local Organization:

Peter D. Mosses, Janne K. Damgaard, Karen K. Møller

BRICS, Dept. of Computer Science
University of Aarhus
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

1Basic Research in Computer Science, a centre established in cooperation between the Danish National Re-
search Foundation and the Universities of Aarhus and Aalborg

ii

Contents

Foreword

Invited Talks

Higher-order processes and their models
M. Hennessy

1

Finite model checking and beyond
B. Steffen

2

The B-technologies: A system for computer aided programming
I. H. Sørensen

3

Submitted Talks

On dedicability of simulation and bisimulation for lossy channel systems
P. Abdullah, M. Kindahl

4

Cpo-model for GSOS languages
L. Aceto

5

Type and behaviour reconstruction
T. Amtoft

6

PMC: A process algebra for real-time systems
H. R. Andersen, M. Mendler

7

Specification and verification of real-time systems using timed modal logic
J. H. Andersen

8

A general framework for type inference
H. Askari, O. I. Hougaard, M. I. Schwartzbach

9

Exploring summation and product operators in the refinement calculus
R. J. R. Back, M. J. Butler

10

From branching to linear metric domains
F. van Breugel

11

A calculus of timed refinement
K. Čerāns

13

Petri nets, traces, and local model checking
A. Cheng

14

Introduction to ALF - a background
C. Coquand

15

iii

The comparison of two approaches to separate of an algorithm’s data dependency
from its computational aspect
V. Cyras, M. Haveraaen

16

Program separation in GCLA
G. Falkman

17

Algebras with structure
Ø. B. Fredriksen

18

Structural synthesis of programs using regular data structures
M. Harf, J. Penjam

19

G2-Algebras
C. Hintermeier, H. Kirchner

20

Boolean automata: a compact representation of synchronous reactive systems
L. Holenderski, A. Poigné

22

Bisimulations for a label-passing process calculus with asynchronous communication
H. Hüttel

23

Denotational semantics for value-passing calculi – late approach
A. Ingólfsdóttir

24

Interpreting broadcast communications in CCS with priority choice
C. T. Jensen

26

Polytypic programming
J. Jeuring

27

Synthesizing real time systems
K. G. Larsen

28

Reasoning with actions
S. B. Lassen

30

Introduction of ALF - an interactive proof editor
L. Magnusson

31

Preprocessing by program specialization
K. Malmkjær, O. Danvy

32

Static and dynamic processor allocation for higher-order concurrent languages
H. R. Nielson, F. Nielson

33

A proposal for a process logic
O. Owe

34

A type system equivalent to flow analysis
J. Palsberg

35

Specifying and verifying parametric processes
W. Paw lowski, P. Pa̧czkowski, S. Soko lowski

36

iv

Formal derivation of A FEAL processor
R. Ruks̆ėnas, K. Sere, Y. Zhao

37

Nonclausal resolution system for branching temporal logic
J. Sakalauskaitė

38

A graph-form for Gamma programs
D. Sands

39

Towards operational semantics of contexts in functional languages
D. Sands

40

Some results about the category of net computations
V. Sassone

41

Backward refinement for verifying distributed algorithms
K. Sere, M. Waldén

42

Strictness and totality analysis
K. L. Solberg, H. R. Nielson, F. Nielson

43

Functional logic programming in GCLA
O. Torgersson

44

Extensions of structural synthesis of programs
T. Uustalu

45

Algebra of broadcasting systems: Value passing and sequential composition
M. Weichert

46

A case study in timed modal specification
C. Weise

47

Termination of order-sorted rewriting
P. Ølveczky

48

Demonstrations

Demonstration of ALF
C. Coquand, L. Magnusson

49

Demonstration of Epsilon
J. Niedermann

50

High-level synthesis of heterogeneous analysis systems
B. Steffen, T. Margaria

51

Demonstration of the B-Toolkit
I. H. Sørensen

52

v

Higher-Order Processes and Their Models

Matthew Hennessy
University of Sussex

A higher-order process algebra in which processes can be sent and
received as data along channels is investigated. Using a simple operational
semantics two behavioural preorders are defined. The first, based on may
testing, is in terms of the ability of processes to offer communications on
channels while the second, based on must testing, depends on the
communications which processes can guarantee.

The first behavioural preorder can be modelled by a denotational semantics
which uses a notion of higher-order traces while for the second we develop
a denotational model using higher-order Acceptance Trees.

Finite Model Checking and Beyond

Bernhard Steffen
Universitiit Passau, Germany
steffenQfmi.uni-passau.de

Automated verification often relies on some kind of temporal logic as specification
language for systems and system properties. The modal mu-calculus is a particularly
flexible representative: not only may a number of other temporal logics be translated
into it, but it may also be used to encode various behavioral equivalences and preorders
for finite state systems. Moreover, it is a well-structured and convenient specification
language for other application areas where global constraints are of interest, like e.g.
dataflow analysis or software configuration. In fact, the modal mu-calculus uniformly
supports algebraic, operational, and logic-based approaches to verification. Model
checking, the central automatic verification technique associated with the modal mu-
calculus, is now well-established for finite-st ate system behaviors. More recent is the
development of techniques for infinite-state behaviours: Bradfield and Stirling observed
that tableaux-based model-checking covers general infinite-state systems, but their
method is not effective. Muller and Schupp proved that the Monadic Second Order
Logic is decidable for pushdown transition graphs, which are a strict generalization
of context-free processes with respect to bisimulation semantics. This implies the
decidability of the corresponding model checking problem for the full mu-calculus,
but their decision procedure is non-elementary and thus not applicable to practical
problems. More recently, practice-oriented model checking algorithms were developed
together with Burkart and Hungar for the alternation-free fragment of the modal
mu-calculus, which e.g. form the basis for the generation of efficient interprocedural
dataflow analysis algorithms from modal logic specifications.

This presentation focusses on the structure of iterative model checking techniques
depending on the generality of the model and the version of the modal mu-calculus
considered, together with their potential for optimization. The first part incrementally
develops an iterative algorithm for finite-state processes covering the full mu-calculus,
by successively extending an algorithm for uniform fixpoints to hierarchical and to
alternating fixpoints. The second part generalizes this development for context-free
or pushdown processes. The key to this generalization is its second order approach:
rather than determining properties for the states of a finite-state system, we compute
property transformers for the specific incomplete portions (fragments) of the considered
pushdown process, which describe the set of subformulas valid at the start state of
a fragment relative to the set of subformulas valid at the end states of the fragment.
We will see that this approach carries through all the way, although the correctness of
the model checker for the full mu-calculus obtained in this fashion is still a conjecture.
The development of the various algorithms is illustrated in the context of data flow
analysis, while focussing on their differences, complexity, and optimization potential.

On decidability of simulation
and bisimulat ion

for Lossy Channel Systems

Parosh Abdullah Mats Kindahl

By using an infinite-state system consisting of finite-state processes commu-
nicating via unbounded FIFO channels it is possible to model link protocols
like the Alternating Bit protocol , or the HDLC protocol. It is well known
that most interesting verification problems are undecidable for this class of
systems. We have previously shown that by altering the behaviour of the
channels so that they become lossy, several verification problems become de-
cidable. In this paper we develop algorithms for deciding strong bisimulation
equivalence and both weak and strong simulation preorder and prove their
correctness. Furthermore, we show that weak bisimulation equivalence is
undecidable.

Cpo-Models for GSOS Languages

Luca Aceto

BRICS, Aalborg University Centre

9220 Aalborg, Denmark

The meta-theory of process description languages like CCS, ACP and CSP has recently been

the object of considerable research effort in the literature. So far, this line of research has

produced a wealth of results which generalize and explain many of the congruence theorems

and complete axiomatizations for behavioural equivalences that have been proposed in the

literature. Most of this work is entirely based upon operational semantics, following a bias

towards operational methods in process theory that dates back to Milner's original development

of the theory of CCS. Notable exceptions to this trend are, among others, Abramsky's work on

a domain equation for synchronization trees that leads to a fully abstract semantics for SCCS,

and Ingolfsdottir's extension of Abrarnsky's model to a form of value-passing CCS.

In this talk, I plan to present a general way of giving denotational semantics to languages

equipped with an operational semantics that fits the GSOS format of Bloom, Istrail and Meyer.

The canonical model used for this purpose will be Abramsky's domain of synchronization

trees.

In the first part of the talk, I plan to show how to use GSOS rules to associate a labelled

transition system with divergence information with each GSOS language. This will be done in

such a way that the bisimulation preorder of Hennessy and Plotkin is a precongruence with

respect to all the operators in the language. In order to obtain the aforementioned substitutivity

result, care must be taken in interpreting negative premises in GSOS rules. In particular,

negative premises will only be interpreted over convergent (or fully specified) processes. I

believe that this is a natural choice and I shall argue for it by means of examples.

I shall then show how to automatically give a denotational semantics for a GSOS language in

terms of Abramsky's domain of synchronization trees. To this end, it is sufficient to endow

Abramsky's model with an appropriate continuous algebra structure. This I do by showing

how the GSOS rules defining the operational semantics of an operation f of the calculus can be

used to define a continuous function F over the domain of synchronization trees.

As a result of the general framework, I shall then show that the denotational semantics so

obtained is guaranteed to be in complete agreement with the chosen behavioural semantics.

More precisely, the denotational semantics produced by the general approach presented in the

talk is always fully abstract with respect to the finitary part of the bisimulation preorder.

This is joint work with Anna Ing61fsd6ttir.

Type and Behaviour Reconstruction

Torben Amtoft
Aarhus University

Dept. of Computer Science
Aarhus, Denmark

Email: tamtoft@daimi.aau.dk

The topic of this talk will be how to design a n algorithm for gaining
information about the type and the behaviour of CML programs, and how to
prove this algorithm sound and complete wrt. the inference system
presented by the Nielson's in POPL'94.

The algorithm is a n extension of the standard algorithm W, collecting a set
of constraints on behaviours. Due to the laws imposed on behaviours these do
not constitute a free algebra, and a consequence of this is that there seems to
be no notion of "principal solutions". In the presense of let-polymorphism,
this complicates matters significantly.

The talk describes ongoing work.

PMC:
A Process Algebra for Real-Time Systems

Henrik Reif Andersen and Michael Mendler

Department of Computer Science, Technical University of Denmark
Building 344, DK-2800 Lyngby, Denmark

E-mail: hra@id.dtu.dk

Abstract

Most timed process algebras view a real-time system as operating
under the regime of a global time parameter constraining the occur-
rence of actions. By the use of quantitative timing constraints they
aim at describing completely the global real-time behaviour of timed
systems in a fairly detailed fashion. Based on an industrial case study
we believe that these approaches are often overly realistic with dis-
advantages for both the specification and the modelling of real-time
systems. We propose a rather different, abstract approach to the spec-
ification and modelling of real-time systems that captures the qualzta-
tive aspects of timing constraints through the use of multiple clocks.
Clocks enforce global synchronization of actions without compromis-
ing the abstractness of time by referring to a concrete time domain.
Technically, we present the process algebra PMC as a non-trivial ex-
tension of CCS by multiple clocks with associated timeout and clock
ignore operators.

The talk will describe the object of investigation in the industrial
case study, a highly sophisticated instrument - the Briiel & Kjaer 2145
Frequency Analyzer - and show how the central real-time constraints
are expressed concisely in PMC. Focus will be on the actual speci-
fication of the instrument and the technical results that have been
obtained for PMC will only be touched briefly.

Specification and Verification of
Real-Time Systems using Timed Modal

Jgrgen Hedegaard Andersen
BRIGS

Aalborg University

There has been done a lot of work in developing formalisms for describing
real-time systems. A lot of the efforts have concentrated on extending
already existing algebras such as CCS and CSP with realtime. Such

rn - algebras have their strength in detailed descriptions of the communication
patterns. However, verification of these systems can be quite complicated
using miscellaneous equivalence and/or refinement relations. In addition,
it is impossible to express liveness properties. Also, process algebraic
specifictions tend to become quite extensive and very explicit. What a
logic offers in these situations is a degree of loseness so that one can
express properties of only parts of a system.

My talk will consist of the following:

An example introducing Timed CCS.

Examples of formulas in Timed Modal Logic. Both safety and live-
ness properties of the previous example are exhibited.

Implementation of Model Checker for Timed Modal Logic.

A General Framework
Inference

for

Hosein Askari, Ole I. Hougaard, Michael I. Schwartzbach

Abstract

Languages based on variations of the lambda calculus are designed
to permit the slick, unification-based technique for type inference,
which is by now a well-established discipline.

Other widely used languages have been created less by design and
more by coincidence and compromise. It seems therefore that the
question of type inference for such languages could be infeasible or
should at least permit only ad-hoc solutions.

In this paper we argue that there exists a uniform conceptual
framework for developing type inference algorithms, even for seem-
ingly ad-hoc languages. This framework provides a systematic cook-
book methodology for clarifying the concepts and crystallizing the
ultimate algorithmic problem that must be solved.

Specifically, we show how a number of important components of
the constraint-based approach to type inference each lie on a spectrum
that allows considerable generalizations. The components we deal
with include types, type equivalences, type variables, type constraints,
and polymorphism.

To demonstrate the viability of our framework, we develop a type
inference algorithm for a full version of the Turbo Pascal language. For
each of the components mentioned above we demonstrate how Turbo
Pascal is at one end and the ML language is at the opposite. However,
there are really more similarities than differences. The largest gap
arises in the final algorithmic problem, which we must solve from
scratch.

Exploring Summation and Product Operators in the Refinement
Calculus

R.J.R. Back and M.J. Butler
Dept. of Computer Science, Abo Akademi, Finland

Abstract
Dijkstra introduced weakest-precondition predicate transformers as a means of verifying total correctness
properties of sequential programs [3]. In the refinement calculus of Back and others, specifications
and programs are regarded uniformly as predicate transformers, and refinement laws are derived from
properties of predicate transformers [l, 5, 61.

The refinement calculus provides various choice and assignment operators that are generalisations of
Dijkstra's operators, and the applications of these operators are well-known. However, the applications
of an operator representing simultaneous execution of program statements are less well developed in the
refinement calculus. Such an operator was introduced by Naumann [7] and by Martin [4] using category
theoretic considerations. This product operator combines predicate transformers by forming the cartesian
product of their state spaces. We examine the product operator using the higher-order logic formalisation
of the refinement calculus of Back & von Wright [2]. We examine various distributivity and refinement
preserving properties of the operator and show that it can be used to model simultaneous execution and
to extend the state spaces of statements so they can be more easily matched with other statements. We
also generalise the definition of the product operator slightly to form what we call a fusion operator and
show that the product operator is a special case of the fusion operator. The fusion operator can also be
applied to conjoining or amalgamating specification statements. . The summation (or co-product) operator, which is the categorical dual of the product operator and
combines statements by forming the disjoint union of their state spaces, is also described in [7] and [4].
The summation operator is a form of choice operator and we show that it is a special case of the existing
choice operators of the refinement calculus. We show that this operator provides a simple yet powerful
model of dynamic binding, and that when combined with the product operator, provides an elegant model
of inheritance in an object-oriented programming langauge. Thus our exploration provides the basis for
a calculus of objects and inheritance.

References

[l] R.J.R. Back. Correctness Preserving Program Refinements: Proof Theory and Applications. Tract
131, Mathematisch Centrum, Amsterdam, 1980.

[2] R.J.R. Back and J. von Wright. Refinement concepts formalised in higher order logic. Formal Aspects
of Computing, 5:247-272, 1990.

[3] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[4] C.E. Martin. Preordered Categories and Predicate Transformers. D.Phi1. Thesis, Programming Re-
search Group, Oxford University, 1991.

[5] C.C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

[6] J.M. Morris. A theoretical basis for stepwise refinement and the programming calculus. Sci. Comp.
Prog., 9(3):298-306, 1987.

[7] D.A. Naumann. Two-Categories and Program Structure: Data Types, Refinement Calculi, and Pred-
icate Transformers. Ph.D. Thesis, University of Texas at Austin, 1992.

From Branching to Linear Metric Domains

Franck van Breugel

Vrije Universiteit
Department of Mathematics and Computer Science

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Besides partial orders, also metric spaces have turned out to be very useful to
give semantics to programming languages (see, e.g., [BR92] for an overview). In the
literature, one encounters two main categories of metric domains: linear domains,
characterizing trace equivalence, and branching domains, characterizing bisimilarity.
The metric linear domains are spaces of subsets of the Baire space. The study of
this Baire space belongs to the topological folklore of the twenties. Metric branching
domains have been introduced in, e.g., [BZ82], [BZ83], [GR83], and [Bre93].

In the presentation, I will discuss how one can abstract from the branching struc-
ture of branching domains arriving at linear domains. For that purpose I will present
various linearize operators. These linearize operators will be defined by means of metric
labelled transition systems. The theory of metric labelled transition systems has been
outlined in [Bre94a] and is further developed in [Bre94b]. One of the key observations
needed is that branching domains can be viewed as metric labelled transition systems
satisfying some generalized finiteness conditions (the observation that branching do-
mains can be viewed as labelled transition systems seems to originate with [Acz88]).
I will also point out that the additional metric structure of metric labelled transition
systems (with respect to labelled transition systems) is essential in the development.
Various properties of the linearize operators will be discussed (strengthening some of
the results of [BBKM84]). Furthermore, we will see that the theory is also applicable
to linearize the more involved branching domains-used to model object-oriented and
higher-order features-of [Rut901 and [BB93].

At the moment, I am investigating whether these linearize operators give rise to
(co)reflections between suitable categories of branching and linear domains (along the
lines of [WN94]).

References

[Acz88] P. Aczel. Non- Well-Founded Sets. Number 14 in CSLI Lecture Notes.
Centre for the Study of Languages and Information, Stanford, 1988.

[BB93] J.W. de Bakker and F. van Breugel. Topological Models for Higher Or-
der Control Flow. In S. Brookes, M. Main, A. Melton, M. Mislove, and
D. Schmidt, editors, Proceedings of the 9th International Conference on

Mathematical Foundations of Programming Semantics, volume 802 of Lec-
ture Notes in Computer Science, pages 122-142, New Orleans, April 1993.
Springer-Verlag.

[BBKM84] J.W. de Bakker, J.A. Bergstra, J.W. Klop, and J.-J.Ch. Meyer. Linear
Time and Branching Time Semantics for Recursion with Merge. Theoret-
ical Computer Science, 34(1/2):135-156, 1984.

J.W. de Bakker and J.J.M.M. Rutten, editors. Ten Years of Concurrency
Semantics, selected papers of the Amsterdam Concurrency Group. World
Scientific, Singapore, 1992.

F. van Breugel. Three Metric Domains of Processes for Bisimulation. In
S. Brookes, M. Main, A. Melton, M. Mislove, and D. Schmidt, editors,
Proceedings of the 9th International Conference on Mathematical Founda-
tions of Programming Semantics, volume 802 of Lecture Notes in Computer
Science, pages 103-121, New Orleans, April 1993. Springer-Verlag.

F. van Breugel. Generalizing Finiteness Conditions of Labelled Transition
Systems. In S. Abiteboul and E. Shamir, editors, Proceedings of the 21th
International Colloquium on Automata, Languages, and Progmmming, vol-
ume 820 of Lecture Notes in Computer Science, pages 376-387, Jerusalem,
July 1994. Springer-Verlag.

F. van Breugel. Topological Models in Comparative Semantics. PhD thesis,
Vrije Universiteit, Amsterdam, September 1994.

J . W. de Bakker and J.I. Zucker. Processes and the Denotationd Semantics
of Concurrency. Information and Control, 54(1/2):70-120, July/August
1982.

J.W. de Bakker and J.I. Zucker. Compactness in Semantics for Merge
and Fair Merge. In E. Clarke and D. Kozen, editors, Proceedings of 4th
Workshop on Logics of Programs, volume 164 of Lecture Notes in Computer
Science, pages 18-33, Pittsburgh, June 1983. Springer-Verlag.

W.G. Golson and W.C. Rounds. Connections between Two Theories of
Concurrency: Metric Spaces and Synchronization Trees. Information and
Control, 57(2/3):102-124, May/June 1983.

J.J.M.M. Rutten. Semantic Correctness for a Parallel Object-Oriented
Language. SIAM Journal of Computation, 19(2):341-383, April 1990.

G. Winskel and M. Nielsen. Models for Concurrency. Number 12 in BFUCS
Notes Series. University of Aarhus, Aarhus, May 1994. To appear in S.
Abrarnsky, Dov M. Gabbay and T.S.E. Maibaum, editors, Handbook of
Logic in Computer Science, Oxford University Press, Oxford.

A Calculus of Timed Refinement

Institute of Mathematics and Computtr Science.
Universit,y of Lat.via, Riga. Latvia,

E-mail: karlisfimii. l u . lv

A Calculus of Timed Refinement (CTR) is a process algebraic theory of loose specifications for real
time systems. The basic motivation behind CTR, as well as behind other similar theories (Timed
Modal Specifications by Ceriins, Godskesen and Larsen, or Timed Interval CCS by Daniels, and
others), is to provide means for expressing formally decisions in design of real tinit: syst.ihi i ib , which
do not constrain the external behaviour of the described system to a singlet,on set. modulo some
behavioural equivalence (e.g. Park's and Milner's bisiii~ulat.ion (quiva.leiice. or some other). In
particular, i t appears important to have a possibilit,y of specifying loosely the quantitative timing
constraints controlling the system behaviour.

For a theory of loose specifications t o be useful, it. requires a well defined notion of specihca-
tion - implementation relation, or nioro generally, a refiiii I I I W I I . relation which ilesribes when one
term of the calculus is a more general specification, t.han the oilier. I t . is natural to reqiiirv t l ia~.
this refinement obeys certain general mathematical properties (e.g., some suI)stit~ut~ivity properties.
being a preorder, etc). However, at. least equally important is to provide also a "proper" (prefer-
ably simple) semantical justification of the present.ed refinement relat.ion, shading a light. on t.he
pragmatical aspects of the use of t.he theory.

The C T R is designed with having all abovement.ioned principles in mind, furt,li(irniore pust.iila~-
ing a priori adherence to branching time process algebraic wmantics (in lini'ar t.ime wi~t?ii~.ics lh tw
is a well developped theory of (live) trace inclusion for t,iniecl aut.oi1iat.a due t.0 Alur, (~oureoulxtis
and Dill, et.al.). Having as a departure point. Milner's CCS (and Wangl ' i Timed CC'S), the main
novel construct of CTR is that. of t h e inttrval prefix: [n. q . P , wlicrc 1 1 . 11 ana iiar.iir;il iiiiiiilx~rs.
0 < a < b, possibly b = oo. Such a specification is intended t o describe all processes which iirsi.
delay for some quantity d ? [u , h] , and tlieii behave accordingly 1.0 some behaviour prescribed by
P.

We define a timed operational semantics for CTR terms (with the emphasis that it. is up
to the specification itself to decide internally, when an> of it,s delay prefixes [a ,b] is going to
expire). Based on this semantics the observational equivalence and refinement relations (iicuned
after "continuous bisiinulation" and "cont~inuous refinement") are defined and are sliown t,o olwy
the usual algebraic properties (equivalence/ preorder. subst it.ut.ivi t.y (coiigruence/pre-coiigriit~iice)).
Both the equivalence and refinement relations are decidable for finit.? control specifications (which
include, e.g., networks of regular specifications).

Furthermore, we show, how to modify the semant.ics of the already existing formalism of Timed
Modal Specifications to obtain ci calculus wit.11 exacdy l.lic r i i l t i i t . iiioi.lcIliiiii a.l)ilili('s ;IS (" 1 H . Wt*
believe, that the new semant,ics (obt,ained basically by not. allowing modalities for delay t.ransitions)
is also %ore natural" for TMS (this can be justdied l.iy at. least one very natural example).
Actually, the coincidence of the inodelling a,bilit.ies of ~lx.' t.wo obtained Ibrnialisiiiti allows one to
choose his/her preferable notation, still keeping work in the same model. The author believes that
the obtained resut.s are t40 some extent. clarifying the beha,viour of t,ransition modalities in a timed
framework.

Further work is to have a stronger focus on pragmatical aspects of the developped calculi,
what may include switching to other communica.tion disciplines amongst. thy components running
in parallel in a system. We plan to look also a t possibility of incorporating data aspects in our
refinement/design calculi, aiming a t providing in a long ran a general process algebra based user
friendly environment, for practical design of certified real time syst.ems.

Petri Nets, Traces, and Local Model Checking
Allan Chengl

Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Aarhus C, Denmark

e-mail:achengOdaimi. aau. dk
Phone: +45 8942 3188 Fax: +45 8942 3255

Abstract

Work on verification of algorithms in the field of multi programming and distributed programming has been
presented in e.g. [7, 3, 6, 10, 1, 41. One important aspect that distinguishes the work in e.g [I] from the one in
[lo] is that in the former, reasoning about an algorithm is done "by handn, whereas in the latter, verification is
performed automatically. Proofs "by handn can be intellectually much more challenging, demanding, and time
consuming than automatic verification. Both approaches have their advantage and disadvantage. E.g.: proofs "by
handn allows one to reason about systems where the number of processes is variable, while automatic verification
can mostly only been performed on finite state systems.

Both approaches have no serious problems handling safety properties. However, when it comes to liveness
properties, one often needs to take certain fairness assumptions into consideration. In the case of proofs "by
handn one simply takes these assumptions into account when constructing a proof. But in the case of automatic
verification matters can become complicated. In [3], for each system being considered specific fairness assumptions
are added to the model checking algorithm. In [2], examples of encodings of liveness properties in the propositional
modal mu-calculus are given. However these encodings are often hard to understand.

Recently attention has focused on behavioural views of concurrent systems in which concurrency or parallelism
is represented explicitly [8, 5, 11, 9, 121. This is is done by imposing more structure on models for concurrent
systems, in our case an independence relation on the transitions.

Our main objective is to explore the use of the extra structure of independence in the context of specification
logics.

We present a CTL-like logic which is interpreted over labeled 1-safe nets. The interpretation reflects the
desire to reason about these only with respect their progress fair behaviours. It turns out that Mazurkiewicz
trace theory provides a useful setting. Hence, the explicit notion of independence between transitions enables us
to incorporate fair progress assumptions in a uniform way. No encodings as formulas are needed.

We provide a set of proof rules and prove soundness and completeness with respect to the given interpretation
of OUT logic. As a result we obtain a local model checker, that is: automatic verification (of finite state systems)
taking fair progress into account.

keywords: automatic verification, fair progress, labeled 1-safe nets, local model checking, maximal traces, partial
orders, inevitability

References
[1] M. Ben-hi. Principles of Concurrent and Distributed Programming. Prentice-Hall, 1990.
[2] JulianBradfield. Verifying Temporal Properties of Systems with Applications to Petri Nets. PhD thesis, The University

of Edinburgh, 1991. PhD in computer science, report CST-83-91.
[3] Edmund M. Clarice, E. A. Emerson, and A. P. Sistla. Automatic verification of finite state concurrent system using

temporallogic. ACM Transactions on Pwgramming Languages and Systems, 8(2):244-263,1986.
[4] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer Verlag, 1992.
[5] Antoni Mazurkiewicz. Trace theory. In Petri Nets: Applications and Relationships to Other Models of Concurrency,

pages 279-324. Springer-Verlag (LNCS 255), 1986.
[6] Robin Milner. Communication and Concurrency. Prentice Hall International Series In Computer Science, C. A. R.

Hoare series editor, 1989.
[7] Susan S. Owidci and David Gries. Verifying properties of parallel programs: an axiomatic approach. Communications

of the ACM, 19(5):531-537,1976.
(81 Wolfgang Reisig. Petri Nets - An Introduction. EATCS Monographs in Computer Science Vol.4, 1985.
(91 Eugene W. Stark. Concurrent transition systems. Theoretical Computer Science, 64():221-269,1989.

[lo] Colin P. Stirling and David Walker. Local model checking in the modal mu-calculus. Technical Report ECS-LFCS-
89-78, Laboratory for Foundations of Computer Science, Department of Computer Science - University of Edinburgh,
May 1989.

[ll] Glynn Winskel. Event structures. In Petri Nets: Applications and Relationships to Other Models of Concurrency,
pages 325-390. Springer-Verlag (LNCS 255), 1986.

[12] Glynn Winskel and Mogens Nielaen. Models for concurrency. Technical Report DAIMI PB-429, Computer Science
Department, Aarhus University, November 1992. To appear as a chapter in the Handbook of Logic and the Foundations
of Computer Science, Oxford University Press.

'This work has been supported by The Danish Research Councils.

Introduction to ALF - a Background

Catarina Coquand

Chalmers Technical University

Inst. for Computer Science

Goteborg, Sweden

Email: catarina@cs.chalmers.se

We will give an introduction to type theory, focusing on its use as a logical framework

for proofs and programs. We will also discuss the use of inductive definition as

specifications and proofs by pattern matching. Many examples will be presented.

The basic idea behind using type theory for developing proofs and programs is the Curry-
Howard isomorphism between propositions and types. Take for example the proposition

(A implies B implies A). Looking at this proposition as a type we see that this is the type

of the K combinator. In type theory we then say that the K combinator proofs the

proposition (A implies B implies A).

The language that is used is a functional language with dependent types. Hence programs

and proofs can be described in the same language. We use inductive definitions for our

specifications. Introduction rules in logic corresponds to defining a type by its

constructors. Proofs are functions defined by pattern matching over these types. We shall

also mention how this can be extended to proofs about infinite objects.

The Comparison of two Approaches
to Separate of

an Algorithm's Data Dependency
&om its Computational Aspect

Vytautas Cyras* and Magne Haveraaen**
*Vilnius University, Lithuania, Email: Vytautas.Cyras@maf.vu.lt

**University of Bergen, Norway, Email: Magne.Haveraaen@i.uib.no

The data dependency pattern of the computation is essential when
expressing solvers for general recurrences. The comparison of two
approaches - Structural Blanks and Constructive Recursion - is presented.

The approach of Structural Blanks was first presented by Greshnev,
Lyubimskii and Cyras in 1985, and is investigated currently by Cyras. This
approach was developed to express solutions to general recurrences as
reusable program components. The approach distinguishes between
structural components (S-modules) and functional components (F-modules).
Examples of F- and S-modules on n-dimensional arrays are provided.

The approach of Constructive Recursion was presented in 1990-s. This
approach concerns: (1) the functional language to express recursion, (2)
avoiding exponential growth during the interpretation of a compiled
program, and (3) parallelizing. A recursive function is defined over a
regular data dependency graph. The separation of the data dependency
pattern is very useful in porting programs to, ,and between, parallel
machines.

Program Separation in GCLA*

Abstract

Department of Computing Science
Chalmers University of Technology

S412 96 Goteborg, Sweden
emaik falkrnan@cs.chalmers.se

In this paper I present a programming methodology which makes algorithms a more explicit part of declara-
tive programming. The work presented here is based on some earlier work on p g m separation in GCLA
[a.

The basic idea of the methodology is to separate programs into two parts:

(i) The part that describes the overall global structure of the algorithm.
(ii) The part that describes the possible connections between Werent points in the computation space gen-

erated by the algorithm.

It is natural to think of this separation as a separation of form and content. The k t part then gives the form
of the algorithm and the second part gives the speciiic content needed to compute a particular function.

In GCLA I use this separation as a basis for a definitional higher order programming methodology.

The programming system GCLA [I, 31 is based on the idea of viewing programs as definitions. A GCLA pro-
gram consists of two definitions, R and D, where D simply is referred to as the definition and R is called the
mle definition, since it defines the rules for how the definitions in D should be interpreted. The communication
between R and D is based upon a set of primitive notions which are entirely justified by the interpretation of
D as a definition. Among t h m notions, the most important ones are K(a)? which gives the definiens of a in K,
i.e. K(a) = {A I a = A E K} and Dom(K), which gives the domain of K, i.e. Dom(K) = {a I %(a = A E K) } .

The program separation scheme outlined above naturally translates into the two-level architecture of
GCLA programs; the first part, describing the form of the algorithm? corresponds to the rule definition and the
second part, describing the content of the algorithm, corresponds to the definition1. Thus, the basic idea of the
methodology can be reformulated as to separating progmns into two definitions:

(iii) The definition that abstractly defines the main rules, i.e. the form, of the algorithm using primitive oper-
ations on definitions, e.g. K(a), Dom(K) etc.

(iv) The definition that defines connections between the concrete representation of possible points in the com-
putation space generated by the algorithm, i.e. the specific content of the algorithm.

Since the communication between (iii) and (iv) only uses primitive operations on definitions it is possible to
define the rules in (iii) without referring to any specijic definition in (iv). The methodology is thexefore, in
some sense, a definitional higher order programming methodology.

References

1. M. Aronsson, GCLA, The Design, Use and Implemenfafion of a Program Devebpmenf Sysfem, Ph D thesis,
Department of Computer and Systems Sciences, University of Stockholm, 1993.

2. G. Fallman, L. Halh&, 0. Torgersson, Program Separation in GCLA, in: A. Momigliano, M. h a g h i (eds.)
Proceedings of the Post-Conference Workshop on Proof-Theoretical Extensions of Logic Programming, Sunfa
Margherifa Ligure, Italy, 18 June, 19%, pp 31-37, 1994.

3. P. Kreuger, GCLA JI, A Definitional Approach to Control, in: L-H. Eriksson, L. Halln&, P. Shroeder-Heister (eds.),
Exfensions of Logic Programming, Proceedings of the 2nd Infernafional Workshop heU af SICS, Sweden, 1991,
Springer Lecture Nofes in ArtGcial Intelligence, vol. 596, pp 239-297, Springer-Verlag, 1992.

*. This work has been supported by the Swedish Research Council for Engineering Sciences (TFR) and the Swedish Na-
tional Board for Industrial and Technical Development (NUTEK). It is part of the work done within the ESPRJT work-
h g group GENTZEN.
Actually the second part may correspond to several defiiitions, but since the GCLA system at present only can handle
one delinition at a time I have to "simulate" the use of multiple defiiitions within a single deffition.

Algebras with Structure

0yvind B. F'redriksen

University of Bergen
Department of Informatics

Abstract
This talk is based on the one we gave at the 5th Nordic Workshop

last year ([I]). The starting point of the work reported in that talk was
the host of Merent kinds of algebras that have been suggested in the
literature as models of algebraic specifications, among them

0 ordinary total algebras

0 partial algebras
0 ordered/monotonic algebras

0 continuous algebras
0 topological algebras.

The goal of the work was to unify as many as possible of these algebra
concepts into one.

In the talk we presented a partial solution to this problem, viz. a
general construction based on the following pammeters:

0 a Cartesian category c
0 functors

- F : Set-C preserving finite products
- G : C-Set

such that
- F+G
- F o G = Iset. (The composition is written in diagrammatical

order.)

F'rom these parameters we constructed

0 a category of algebras of a given signature
0 the subcategory of those satisfying a given set of equations.

We showed that the two categories had initial objects strongly related to
the ordinary term and quotient algebras, respectively. Finally, we showed
how to apply this general construction to obtain total and ordered alge-
bras.

However, we felt that the requirement that FOG = Iset was rather ad
hm. In the present talk we will show that thii restriction may be lifted,
on the (rather weak) condition that the category C be lodly small.

References
[I] 0yvind B. fiedriksen. Fkom sets with structure t o algebras with structure.

In R. J. R. Back and K. Sere, editors, Pmedings of the 5th Nordic Workshop
on Pmgmm Comtness , number 18 in Abo A M e m i Fieports on Computer
Science and Mathematics, Ser. B, pages 62-71, Abo Akademi University,
Dept. of Computer Science, Datacity, SF-20520 Abo, Finland, May 1994.

Structural Synthesis of Programs Using
Regular Data Structures

Mait HarfI Jaan Penjam
Dept. of Computer SoftwareI Institute of

CyberneticsI Tallinn.

Automatic program construction from logical specifications
is a way to obtain reliable software. Structural synthesis of programs
is a method to transform formal specifications into effective program8
via automatic proving solvability of the problem [I]. This technique
can be also treated as satisfaction of functional constraint network
using value propagation [2]. The method is powerful under certain
conditions (see [2]) but it can be optimized for several particular
caaes .

In this paper involving regular data structures is discussed.
Regular data structures like arraysI sequencesI vectorsI etc. appear
in many applications. The simulation of data parallel computations on
systolic arrays serves as an example of such systems. The formal theory
for synthesis of programs on regular data can be obtained by adding
inference rule which enables to construct cyclic programs for computing
i-th element of the sequence if j-th element of the sequence and the
regular relationship between neighbouring elements is known. The
completeness and soundness of the theory is introduced and proven.

The high order specification language which allows to define
regular structures is observed. Two special abstract elements of a
sequence "current1' and "nextl1 are invoked. Elements of a regular data
structure can have complicated internal structure including another
regular structure. The technique how to combine several one-dimensional
structures to specify two- and n-dimensional arrays is described.

The method for program construction described here is implemented
as a specific feature or the NUT programming system [3]. The paper
contains several examples of usage regular data in specifications in
NUT language as well as programs which can be synthesized for solving
problems on these structures.

Demonstration of the NUT system including program synthesis on
regular data structures is available.

Literature:

1. Tyugu E. Knowledge-Based Programming. - Addison-Wesleyf N.YSf 1988.

2. Tyugu E . I U ~ ~ t a l ~ T. Higher-Order Functional Constraint Networks.
In Constraint Programming. NATO AS1 Series I?: Computer and Systems
SciencesI (to appear) .

3 . Tyugu EeIMatskin M.IPenjam J.IEomois P. Nut - An Object-Oriented
Language. Computers and Artificial IntelligenceI v.SI No.6, 1986(
pp. 521-542.

Claus Hintermeier*, H616ne Kirchner

CRIN-CNRS & INRIA-Lorraine
BP239, F-54506 Vandoeuvre-lbNancy Cedex, France

E-mail: hinterme@loria.fr, hldrchne@loria.fr

G2-algebras are polymorphic, order-sorted algebras where sorts are terms in an
equational theory. GTalgebras are still first order and have the classical quotient
term algebra as initial model. They extend G-algebras [M&g90, HKK941 conserva-
tively and are close to a two level, hierarchical fragment of unified algebra [Mos89].

In G2-algebras, we distinguish between sorts (or types), used for the description
of possible arguments and range of a function, and combinators, which are algebraic
functions. Domains of functions can be rather complex to describe. E.g. the domain
of natural number substraction is the set of all pairs of natural numbers (x, y), s.t.
x > y. This is not a regular tree language and therefore, it is not possible to describe
this domain with the help of flat, linear function declarations only.

One way to describe this domain is to use term declarations and semantic sorts.
However, we want to calculate with the resulting definition of natural number sub-
straction in form of a decorated term rewriting system [HKK93]. In [HKK93], we
found that term declarations are hard to handle and underly strong restrictions
w.r.t. their form, if they can be interpreted freely. Another solution consists in the
use of sort functions. E.g., as shown in the following very simple example, we can
define sorts corresponding to natural numbers and intervals on them.

Example 1. Consider the following specification in pseudo-OBJ syntax, where we
distinguish between capital and small letters:

obj HATS
kind Hats
sorts zero : -> Hats

succ : Mats -> Hats
sort-var X : : Mats
ops 0 : -> zero

s : x -> succ(X).

In the initial algebra of this specification, which is unique up to isomorphism,
succn(zero) is interpreted as singleton {sn(0)} and Nats is the set of all such
singletons. Now intervals on natural numbers can be specified as follows:

obj H A T S
kind IMat s
import HATS
sorts leq : Hats -> IHats

geq : Hats -> IMats
between :Mats Hats -> IHats

sort-var X,Y : : Hats
subsorts X < leq(X) < leq(succ(X))

X < geq(X) > geq(succ(X)
X < between(X,X)
between(succ (X) , Y) < between(X, Y)
between(X, Y) < between(X, succ(Y)).

* Visiting Prof. P.D. Mosses at BRIGS 09-12/1994, partially supported by ESPRIT Basic
Research Working Group COMPASS

Now, substraction maybe defined a s follows:

ob j HAT-SUBSTRACTIOH
impor t IHATS
sort-vars X : : Hats
vars x::X, y::leq(X)

OPS - : X leq(X) -> geq(zero)
axioms x Ã 0 = x

s(x) - s(y) = x Ã y.

The great difference between the last axiom and a conditional specification like:

is the model notion. G2-models do not force Ã to be defined over all naturals, as
this is the case for models of many-sorted conditional specifications. They allow to
specify precisely the domain of a function.

Suppose now that we have an analogous specification module INTS for integers
ints, using an additional unary minus function -. Consequently, there may be two
combinator terms representing zero: 0 and -0, a situation very common in real life
computing. Addition can then easily be defined as follows:

o b j IHT-ADDITIOH
impor t IMTS
ops _+- : ints ints -> ints
vars x, y::ints
axioms x + 0 = x

x + -0 = x
x + s(y) = s(x + y)

Now, addition plus may be defined in the standard way on sorts, too, i.e. with only
one zero, namely zero. A kind of verification of the implementation of addition on
the integers results then in proving that x + y is of sort X plus Y by structural
induction.

We hope to get a compromise between the expressiveness of unified algebras
and the operational aspects of order-sorted algebras when using two levels of spec-
ification - the higher one being dedicated to specification, the lower one for imple-
mentation issues. This may provide a way to effectively compute with a fragment
of unified algebras using term rewriting systems. Comparisons and bigger examples
are currently under investigation.

References

[HKK93] C. Hintermeier, C. Kirchner, and H. Kirchner. Dynamically-typed computa-
tions for order-sorted equational presentations. research report, INRIA, Inria
Lorraine & Crin, November 1993.

[HKK94] C. Hintermeier, C. Kirchner, and H. Kirchner. Dynamically-typed compu-
tations for order-sorted equational presentations -extended abstract-. In
S. Abiteboul and E. Shamir, editors, Proc. 21 st International Colloquium on Au-
tomata, Languages, and Programming, volume 820 of Lecture Notes in Computer
Science, pages 450-461. Springer-Verlag, 1994.

[MkggO] Aristide Mkgrelis. Algebre galactique - Un procidi de calcul formel, relatif
aux semi-fonctions, ci l'inclusion et ci l'igaliti. These de Doctorat d'universitk,
Universitk de Nancy 1, 1990.

[Mos89] Peter D. Mosses. Unified algebras and institutions. In Proceedings 4th IEEE
Symposium on Logic in Computer Science, Pacific Grove, pages 304-312, 1989.

Boolean Automat a: a Compact Represent at ion
of Synchronous Reactive Systems

Leszek Holenderski, Axel Poigne

GMD-SET, Schloss Birlinghoven, D-53757 Sankt Augustin, Germany
August 1994

Boolean automata are compact representations of synchronous reactive systems. The
compactness manifests in avoiding the well-known "state explosion'' problem which
arises from representing parallel composition by a standard product construction.

In the computational model for synchronous reactive systems, time is assumed to
be discrete, i.e. divided into enumerable number of non-overlapping segments, called
instances of time. In every instance of time, a synchronous reactive system performs
a secalled reactzon step, which consists in fetching inputs, computing, and emitting
outputs. The fetch-comput+emit sequence is considered to be an atomic action which
takes exactly one instance of time. A system may consist of several reactive components,
running in parallel and communicating with each other. The components perform their
reaction steps simultaneously, i.e. in the same instance of time, and the outputs emitted
in one component are immediately available to all other components. Thus, communi-
cation is based on instantaneous broadcasting, used in the synchronous programming
langauges Esterel, Lustre and Argos, as opposed to instantaneous hand-shaking, used
in synchronous CCS.

In fact, we only consider pum synchronous reactive systems, i.e. those in which all
inputs and outputs are pure signals. A pure signal does not carry a value. It is either
present or absent, in every instance of time.

It is convenient to represent a pure synchronous reactive system (with signals S),
by a Mealy automaton whose transitions are labelled by pairs e/ef, where e, e' C S. A

e/el
transition u -of, where u and ut are states, describes a possible reaction step of the
system. It has the following intuitive reading: provided the system starts an instance
in state u and e is the set of all signals present during the instance, the system emits
signals e' and finishes the instance in state ut. In such a setting, parallel composition
of reactive systems is represented by a product of Mealy automata, which leads to the
well-known "state explosion'' problem.

It turns out that the transition relation of a pure synchronous reactive system can be
coded by two sets of Boolean functions. The h t one represents a set of (possibly recur-
sive) Boolean equations whose solutions represent pairs e/et. The second one represents
a set of simultaneous Boolean assignments which represent changes of states.

In the paper, we show how to compose such Boolean automata using typical oper-
ations, like sequential and parallel composition, choice, iteration and preemption. The
main result is that a Boolean automaton grows lineary with the growth of a reactive
synchronous system it represents.

Bisimulations for a Label-passing Process
Calculus with Asynchronous Communication

Hans Huttel
Department of Mathematics and Computer Science

Aalborg University

(This is joint work with Martin Hansen and Josva Kleist.)

In recent years a number of bisimulation equivalences have been proposed
for value-passing process calculi, the inspiration coming from the study of
the n-calculus. Milner, Parrow and Walker have distinguished between the
late and early bisimulation equivalences corresponding to differences in
binding time. It turns out that late bisimulation is a strictly finer notion than
that of early bisimulation. A similar distinction between late and early
binding can be made for the testing equivalences of Hennessy and De
Nicola; here however, it turns out that the late and early testing
equivalences coincide, as shown by I ngolf sdottir.

Most recently, Sangiorgi has proposed an even finer notion of
bisimulation, namely open bisimulation. A pleasant property of open
bisimilarity is that it has a sound and complete equational theory for finite
agents in the n-calculus

In this talk we consider Plain LAL, a label-passing process calculus which
differs from the n-calculus in that value communication is asynchronous in
the sense of e.g. the Linda programming paradigm of Gelernter et al. We
define the notions of early, late and open bisimulations and prove the
surprising result that in the Plain LAL calculus, the three bisimulation
equivalences coincide.

We next consider an extension of Plain LAL, namely LAL, a higher-
order calculus similar to CHOCSstudied by Thomsen and define the notions
of early, late and open bisimulation on LAL terms. It again turns out that the
three equivalences coincide. To the best of our knowledge, this is the first
such result for a higher-order (CHOCS-like) process calculus and the first
time that open bisimulation has been studied for such a calculus.

Finally, we use the fact that the three equivalences coincide to give a
sound and complete equational theory for finite Plain LAL agents.

Denotational Semantics for Value-Passing Calculi-Late Approach

A. Ingdfsd&tir, Alborg Universitet

1 Abstract

In the original work of Milner, [Mil80], on CCS and Hoare, [Hoa78], on CSP, processes are
allowed to exchange data in communications. In these original calculi the value-passing calculus
is interpreted in terms of the pure calculus in which communication is pure synchronization. A
prefixing with an input action, ~ (x) .p , is interpreted as a non-deterministic choice between pure
terms of the form &.p[v/x], where v ranges over the set of possible values, which in many cases
is infinite. In this approach, two processes that synchronize are both supposed to know each
other's channel and value, i.e. the data variable is instantiated by the potential input values
already when the process reports the willingness or ability to communicate on the channel c.

In a more recent work on the ~i-calculus, [MPW89], this semantic approach is referred to
as early semantics due to the early instantiation of the data variables as described above. Its
counterpart, the late semantics, is also introduced in the same reference. Here the idea is that
the processes only synchronize on the channel name and that the input process has to accept
whatever value the output process has to offer. This may be interpreted as if the result of the
reception of the value is delayed until the process has received the value. The input process
reports the willingness to communicate on a channel, c, by performing an action of the form

u E, and thereby evolves to a function which waits for the value the output counterpart in the
communication provides. Symmetrically the result of reporting the willingness to output an
uninterpreted value on the channel c is modelled by the action c. By performing this action the
process evolves to a term which basically consists of a data expression and a process expressions.

In a more recent version of the ~i-calculus, the Polyadic ~i-calculus in [Milgl], the outcome of
input and output actions are modelled by extending the syntax with the new constructions ab-
stractions and concretions. For further motivation for this approach see for instance [MPW89],
[Mil911 and [Ing93].

The aim of this talk is to develop a denotational semantics for languages with simple values
based on the late approach described above although I will use a slightly different notation.

The talk is divided into two main parts: a general theory to handle value-passing followed
by an application to a concrete definition. In the first part I will introduce both a general
syntax and a general class of mathematical models to model process algebras with values
which support the late semantic approach. This is a direct generalization of the standard S-
terms and S-domains that appear in [He881 to model the pure calculus. For this purpose I will
introduce the general notion of applicative signature (S, C) where S is a signature and C a
set (of channel names) and that of (S, C)-terms. This is basically the syntax of the Polyadic
~r-calculus presented in [Mil911 although I only allow simple values and allow S to be any set
of operators. I also introduce the general class of applicative (S, (7)-domains to model the
semantics of the (S, C)-terms. Here the late semantic approach is made explicit; the outcome
of an input action is modelled as a function which takes a value and returns an element of
the model, i.e. a processes whereas the outcome of an output action is modelled by a pair
consisting of the out-putted value and the resulting process.

After having defined our general class of models I will modify the definition of evaluation
mappings, i.e. the unique mapping from the process algebra into the domain known from

the theory for pure processes. As I want to be able to reason about a subset of the process
algebra, I will extend the definition slightly. For this purpose I will introduce the notion of
recursively closed subsets of a process algebra. This extension of the definition allows me to
reason about the compact elements of an algebraic cpo on the syntactic level. This enables me
to take advantages of the notion of algebraicity when comparing the semantics defined by the
model to other kinds of semantics such as behavioural or axiomatic semantics.

Next I will apply the general result for algebraic cpos ([Bar84]): functions which are mono-
tonic on the compact elements of an algebraic cpo can be extended to continuous functions
on the whole cpo in a unique way. This property enables me to turn an algebraic cpo into a
(E, C)-model by defining the operators on the compact elements and making sure that they
are monotonic. In this way I can take their unique extension to be their definition on the whole
domain.

Then a concrete language and its semantics is given. The language is a modification of the
original CCS according to the late approach. This is obtained as the (E, C)-terms where E is
instantiated with the standard operators of CCS. Then a concrete denotational model, Applica-
tive Communication Trees, is defined, an instantiation of the general class of (S, C)-domains.
The carrier, an ^algebraic cpo, is defined as a solution to a recursive domain equation, a
direct generalization of Abramsky's model for SCCS presented in [Abr92]. Then I will apply
the described theory to define the operators, i.e. by defining them as monotonic endofunctions
on the PO of compact elements and then extend them to the whole cpo.

Finally I will define a proof system to reason about our language and proof it's soundness
and completeness with respect to the denotational semantics derived from the model. The
w-algebraicity together with the construction of the operators enables me to reduce the proof
of the completeness and soundness to a proof of the same property for a sublanguage which
denotes exactly the compact elements of the model.

References

S. Abramsky: A Domain Equation For Bisirnulation, Information and Computation,
Vol. 92, pp 161-218, 1992.

Barendregt, H.P.: The Lambda Calculus, Its Syntax and Semantics, Studies in Logic
and the Foundation of Mathematics, Vol. 103, North-Holland, Amsterdam 1984.

Hennessy, M. Algebraic Theory of Processes. MIT Press, Cambridge, 1988.

Hoare, C.A.R. "Communicating Sequential Processesn, Comm. ACM, 21(8), 666-677
1978.

Ing6lfsd6ttir, A. Late and Early Semantics Coincide for Testing, Aalborg University
Technical Report, IR 93-2008, 1993.

Milner, R. A Calculus of Communicating Systems, Lecture Notes in Computer Sci-
ence 92. Springer-Verlag, Berlin, 1980.

R. Milner, Polyadic ~r-Calculus. A tutorial. Technical Report, CS-LFCS-91-180,
LFCS, Department of Computer Science, University of Edinburgh, 1991. To appear
Proceedings of the International Summer School on Logic and Algebra of Specifica-
tions, Marktoberdorf, 1991.

[MPW89] R. Milner, J. Parrow & D. Walker, "A Calculus of Mobile Processes" Part I+II,
Information and Computation, Vol. 100 no. 1, pp 1-77, 1992.

Interpreting -Broadcast Communication in CCS
with Priority Choice

Claw Torp Jensen
Computer Science Department

Chalmers University of Technology
Goteborg, Sweden

E-mail: ctjensen@cs..chalmers.se

CBS (Calculus of Broadcasting Systems) is a process calculus in which
broadcast is the fundamental communication paradigm. In a CBS system
every parallel sub-process participates in any action that the system may
perform. In that sense CBS is a synchronous calculus of the same type as
SCCS.

CCS on the other hand is an asynchronous calculus. At most two
subprocesses participate in any action of a particular parallel system.

' -
We show that by adding a priority choice operator to CCS, these two m e r e n t
views of communication and parallellism may be reconciled in the sense
that any CBS system may be translated to a term in CCS with priority choice.
A CBS synchronization must necessarily correspond to a sequence of
transitions in the CCS model, and the priority choice operator enables us to
ensure that such sequences terminate correctly. The translation of CBS
terms is correct in the sense that two CBS terms are strongly bisimilar if
their translations are weakly bisimilar. Due to the multiway
synchronizations in CBS this is the simplest relation between a term and its
translation that we can hope for.

Polytypic Programming

Johan Jeuring
Chalmers University of Technology and University of Goteborg

S-412 96 Goteborg, Sweden
email: johanj@cs.chalmers.se

There are many programming problems that can be formulated independent of a specific datatype. For
example, the pattern matching problem can be informally specified as follows: given a pattern and a text,
find the first occurrence of the pattern in the text. The pattern and the text may be both listsl or they may
be both trees, or they may be .both multidimensional arrays, etc. Many algorithms solving a programming
problem which is originally formulated on the datatype List have later been extended to solve 'the same'
problem on other datatypes.

I call a function that is defined on arbitrary datatypes a polytypic function, i.e., a polytypic function is a
function that is defined on lists, binary trees, and all other 'tree-like' datatypes. A familiar example of a
polytypic function is the function map, which takes a function f : a + b , and a value of some datatype D a
(for example lists over the type a or binary trees over the type a), and applies function f to all elements of
type a in the value, obtaining a value of type D b. Often a polytypic function is also polymorphic, but it
ueed I I G ~ be. An example of a polytypic function that is noL polymorphic is the .function that generalises
summing a list to arbitrary datatypes.

In this talk I discuss polytypic functions. I combine the polytypic functions that have been defined in the
Bird-Meertens calculus, a calculus for transformational programming developed over the last decadel with
inductive definitions of natural transformations to build new polytypic functions. Examples of such new
polytypic functions are the function s i ze , which generalises the function length defined on lists to arbitrary
datatypes, and the fnnction pat ternmatch, which generalises a version of the pattern-matching algorithm
of Knuth, Morris, and Pratt to arbitrary datatypes. firtherrnorel I discuss Hollum, an experimental
system that supports polytypic programming. Using Hollum it is possible to use functions like mapData,
and pa t t e rnma tchDa ta for every d a t a Data declared in the program. Hollum takes a program written in
the functional programming language Gofer, and returns the same program to which instances of polytypic
functions are added for each data declared in the original program.

This is joint work with Graham Hutton (Utrecht University) and Oege de Moor (Oxford University).

Synthesizing Real Time Systems

Kim Guldstrand Larsen
BRICS

Aalborg University

During the last few years the area of real time systems has received a lot of
attention from the research community. In particular, a variety of specification
formalisms has emerged allowing real time properties to be expressed explicitely.
These specification formalisms may roughly be divided into two groups, namely:
real time logics (e.g. [RT89, CHR911) and real time process algebras (e.g. [Y.W90,
N JV]).

Central to the ongoing research has been the construction of model-checking
algorithms; i.e. algorithms for deciding whether a given real time systems

,. satisfies a given formula. A number of model-checking algorithms exists for real - timed logics [ACDgO] and recently algorithms for model-checking in the setting
of real time process algebra has been given [Cer92, LW93].

In this paper, we deal with the more ambitious goal of model-construction; i.e.
given a real time specification (logical or process algebraic) we want to automat-
ically synthesize a real time system satis&ing the specification (if such a system
exists). We consider the model-construction problem in the setting of implicit
specifications, i.e. :

(A1 1 . . . lA.n 1 X) sat S

Here Al . . . An are given real time systems 3, S is the (given) overall specification
and the problem is to construct a solution for X which when put in parallel with
Al . . . An will satisfy S. We provide a generic model-construction algorithm for
(1) which will be applicable both for S being a logical specification as well as
a process algebraic specification '. Also, our notion of parallel composition is

Ired time system = timed automata [AD901 V TCCS agent [Y.W90] V . . .
21n process algebra model-checking consists in checking a suitable behavioural relationship

(bisimilarity, say) between the implementation and the specification.
3T0 be precise Al . . .An are one-clock real automatas or equivalently regular TCCS agents.
4 ~ n fact we introduce a real-time v-calculus.
5For S being a process algebraic specification our method allows sat to be either timed

bisimilarity or timeabstracting bisimilarity.

parameterized on a synchronization function allowing a range of existing notions
of parallel composition (CCS, CSP and ACP) to be obtained as instances.

Our work can be seen as a real time extension of existing model-constructing
algorithms for finitestate systems. For n = 0 the model-construction problem
for (1) extends classical model-construction methods. For S a process algebraic
specification the model-construction problem for (1) is a real time extension of
the equation solving problem studied in [LXgO]. For S a logical specification our
work is related to and extends the work on contexts as property transformers
studied in [LXgl]. The work reported is based on and extends that of [AKNP94].

References

[ACDgO] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for Real-Timne Sys-
tems. In Proceedzngs of Logzc in Computer Science, 1990.

[AD901 R. Alur and D. Dill. Automata for Modelling Real-Time Systems. Lecture
Notes zn Computer Sczence, 443, 1990. In Proceedings of ICALP.

[Cer92] K. Cerans. Decidability of Bisimulation Equivalences for Processes with Par-
allel Timers. In Proceedzngs of CAV'92, 1992.

[CHRgl] Z. Chmchen, C.A.R. Home, and A.P. Ravn. A Calculus of Durations. Infor-
matzon Processzng Letters, 40(5):269-276, 1991.

[LW93] K.G. Larsen and Y. Wang. Time Abstracted Bisimulation: Implicit Specifi-
cations and Decidability. In Proceedzngs of MFPS'93, 1993.

[LXgO] K.G. Larsen and L. Xinxinx. Equation Solving Using Modal Transition sys-
tems. In Proceedzngs of Logzc in Computer Sczence, 1990.

[LXgl] K.G. Larsen and L. Xinxin. Compositionality through an operational seman-
tics of contexts. J. Logzc Computat., 1(6):761-795, 1991.

[NJV X. Nicollin, J.L. Richierand J-Sifakis, and J. Voiron. ATP: an algebra for
timed processes, year = 1990. In Proceedings of the IFIP TC 2 Workzng
Conference on Programming Concepts and Methods.

[RT89] R.Alur and T.A.Henzinger. A Really Temporal Logic. In Proceedzng of IEEE
Symp. on Foundatzons of Computer Science, 1989.

[Y.W90] Y.Wang. A Calculus of Real Time Systems. Lecture Notes zn compute^
Sczence, 458, 1990. In Proceedings of CONCUR.

[AKNP94] J . Andersen, K. Kristoffersen, J. Niederman and J. Pedersen. Specification,
Verification and Construction of Real Time Systems. Master Theszs, 1994.
Aalborg University.

Reasoning with Actions

S. B. Lassen

BRICS*
Department of Computer Science

University of Aarhus
Ny Munkegade

DK-8000 Aarhus C, Denmark

email: thales@brics . aau . dk

This talk explores a new formulation of the semantics of actions, the specification
entities of action semantics. We specify a reduction semantics for actions and

. . investigate how this formalism enables us to reason directly about operational
equivalence of actions.

The reduction semantics is a small-step operational semantics defined as a
term rewriting system specified in terms of evaluation contexts. Intermediate in-
formation is represented syntactically during processing. The syntactic represen-
tation of configurations in the operational semantics forms a convenient starting
point for equational reasoning about operational equivalence.

Similar reduction semantics for Scheme- and ML-like functional languages
with imperative operations and control operators have formed the basis for pow-
erful operational reasoning in work by Matthias Felleisen, Ian Mason? Carolyn
Talcott, and others. This talk is essentially an attempt to fit actions into the
framework of Mason and Talcott and investigate whether it will prove as power-
ful a vehicle for action theory as it is in their functional setting.

The motivation for carrying over the techniques for operational reasoning to
the world of actions is that action semantics is a general semantic description
framework. Therefore, a strong equational theory for actions can be applied
more easily and more generally for reasoning about programs and programming
languages than previous work in the field based on various simple functional
languages.

* ~ a s i c &search in Computer science,
Centre of the Danish National Research Foundation.

Introduction to ALF - an Interactive Proof Editor

Lena Magnusson
Chalmers Technical University

Inst. for Computer Science
Goteborg, Sweden

Email: lena@cs.chalmers.se

We will give a description of incremental type checking, which is the main tool
for doing interactive proof development in ALF.

ALF is based on Martin-Lofs type theory, which is a logical framework in the
sense that the language can be extended with new definitions. The language is
a functional language with dependent function types, which can be extended
with datatypes, functions and constants as new definitions, in the spirit of
traditional functional languages. The dependent function type gives us a richer
type system, in which propositions and specifications of programs can be
represented. Thus, the relation

can denote a program e of type T or a proof e of proposition T. This relation is
decidable and the type (proof) checking algorithm is the core of the proof editor
ALF. However, the objective of ALF is to interactively build proof terms or
programs, in a flexible and safe way. For this purpose we have extended the
language with the notion of placeholders (meta variables) which denotes sub-
terms intended to be filled in. Hence, an incomplete proof term is a term
containing placeholders, and proof refinment corresponds to successively
replacing a placeholder by a (possibly incomplete) sub-term.

The type checking algorithm is extended to handle incomplete terms which
gives as result a unification problem, i.e. a set of equations and typing
restrictions of the placeholders occurring in the incomplete term. This set
corresponds to the requirements which must be satisfied in future
refinements. The unification problem can not always be solved, due to higher
order placeholders, and unsolved equations are left as constraints restricting
future instantiations of the placeholders. Correctness of a refinement is
established by type checking the refined (incomplete) proof term. Thus, proof.
refinement is reduced to type checking incomplete proof terms.

Preprocessing by Program Specialization *

Karoline Malmkjaer and Olivier Danvy
Aarhus University ^

September 1994

As is well-known, searching for a string in a given text can be linearized in the string
by preprocessing the text. Most preprocessing algorithms have been devised either top-down
by instantiating abstract properties on words (e.g., Knuth's derivation of the Knuth, Morris,
& Pratt linear string-matching algorithm from Cook's theorem), or bottom-up by observing
possible regularities in the structure of the text. The present work describes an alternative
approach to preprocessing that uses properties of a simple two-arguments matching program
to determine structures yielding linear matching. We mechanically deduce a one-argument
linear matching program and its tree-like data structures by specializing the two-arguments
program with respect to a text.

We consider the usual naive and quadratic solution: a string occurs in a text if it is a
prefix of one of the suffixes of the text.

We use program specialization, or partial evaluation: specializing a source program with
respect to part of its input yields a specialized version of the source program that, given the
rest of the input, yields the same result as the source program, given the whole input. The
correctness and the computability of program specialization stem from Kleene's SF-theorem.

The naive quadratic program expects any string and any text and returns the position of
that string in that text or -1. Specializing this source program with respect to the text "aba"

. . automatically yields a residual program that expects a string and returns the position of this
string in "aba" or -1. This residual program can be expressed graphically by representing
a successful test against the character a as the transition 3, and where each node 0 has
two implicit transitions: a success one if the pattern ends there, and a failure if no character
matches the explicit transitions. This yields the following tree (the left picture), which makes
it possible to match a string linearly.

Because it has to keep track of the positions, this tree grows quadratically with the text.
We first try to fold it by relaxing the requirement upon the source program to return the
position of a string in a text: we only want to know whether this string occurs in this text.
Specializing the corresponding source program with respect to the text "aba" automatically
yields a residual program that expects a string and determines whether this string occurs in
"aba" by traversing the string linearly. But this is not enough: the tree could be folded into
a direct acyclic word graph (the right picture). We conclude by showing how to obtain this
folded tree (a.k.a. a Weiner tree) by partial evaluation.

This approach generalizes the now traditional derivation of the Knuth, Morris, & Pratt
linear string-matching program by partial evaluation of a naive and quadradic string-matching
program.

*Submitted to the 6th Nordic Workshop on Programming Theory.
Computer Science Department, Ny Munkega.de, 8000 Aarhus C, Denmark. E-mail. (karoline, danvy)

daimi.aau.dk - Our work is supported by the DART project funded by The Danish Research Councils.

Static and Dynamic Processor Allocation

for Higher-Order Concurrent Languages

Hanne Riis Nielson, Flemrning Nielson

Computer Science Department, Aarhus University,
Bldg. 540, Ny Munlcegade, DK-8000 Aarhus C, Denmark.

e-mail : {hielson, fnielson}0daimi. aau. dk
phone:+45.89.42.32.76 . fax:+45.89.42.32.55

Abstract

Starting from the process algebra for Concurrent ML we develop two program analyses
that facilitate the intelligent placement of processes on processors. Both analyses are ob-
tained by augmenting an inference system for counting the number of channels created, the
number of input and output operations performed, and the number of processes spawned
by the execution of a Concurrent ML program. One analysis provides information useful
for statically determining for each fork operation on which processor all spawned processes
should reside, whereas the other provides information useful for dynamically deciding for
each newly spawned process which processor it should reside on. We prove the soundness of
all analyses and demonstrate how to implement them; the latter amounts to transforming
the syntax-directed inference problems to instances of syntax-free equation solving problems.

A Proposal for a Process Logic

Olaf Owe
Department of Informatics

University of Oslo

June 1994

Abstract

We develop a logic for reasoning about requirement specification of processes with
(internal and external) non-determinism. We try to achieve conceptual simplicity by
avoiding the use of infinite sequences, and by formulating a proof system within first or-
der logic, with a non-standard interpretation. In particular, non-deterministic processes
are specified by means of a simple event relation, called the ready relation, whereas the
underlying semantics is a set of models, each with a set of such relations.

By weakening the usual requirement of (sequence prefix) monotonicity, we obtain
an expressive specification language, enabling us to relate incompatible executions in
the same specification, without the risk of making meaningless or inconsistent specifi-
cations. It is possible to specify internal non-determinism without underspecification.
Our language is expressive enough to avoid he Brock-Ackennan anomaly and the merge
anomaly.

We present a sound and (relative) complete basic proof system. The classical rules
and axioms of first order logic with equality are sound. In addition, some rules and
axioms are needed for the ready relation and other process operators considered. Re-
finement may be done in two ways: By enriching a specification over a set of processes,
one may refine several processes (reducing the set of possible models). By the explicit
refinement operator, one may refine a single process (reducing the number of executions
in each model).

A Type System Equivalent to Flow Analysis

Jens Palsberg
Aarhus University

BRICS, Computer Science Dept.
Aarhus, Denmark

Flow-based safety analysis of higher-order languages has been studied by
Shivers, Palsberg, and Schwartzbach. Open until now is the problem of
finding a type system that accepts exactly the same programs as safety
analysis.

We have proved that Amadio and Cardellits type system with subtyping and
recursive types accepts the same programs as a certain safety analysis. The
proof involves mappings from types to flow information and back. As a
result, we obtain an inference algorithm for the type system, thereby
solving an open problem.

Specifying and Verifying Parametric
Processes

Wieslaw Pawlowski* Pawel ~ ~ c z k o w s k i t Stefan Sokolowski*

Abstract

A typical approach to software development is that of decomposition of large tasks
into smaller subtasks. In more formal terms, a task of providing a construction
that meets a given specification can be decomposed as follows:

1. provide sub-constructions that meet some sub-specifications into which the
original specification is decomposed, and

2. provide a parametric construction which yields an object that meets the
original specification when applied to sub-constructions described in point 1.

When the sub-constructions are again decomposed into smaller bits the param-
eters become parametric themselves and we have to deal with higher order pa-
rameters.

We apply the methodology sketched above in the context of concurrent process
specification and verification. As a starting point we adopt a process algebra and
logic for specifying processes proposed by E.-R. Olderog. However, rather than
considering mixed terms a s Olderog does, we introduce parametric processes that
contain process variables. We allow higher order parametricity, where process
variables can represent parametric processes. Technically speaking, Olderog's
process algebra is extended with abstraction and application primitives. This
leads to a formalism resembling a typed lambda calculus built on top of a process
algebra, where higher order specifications play the role of types. A proof system
for deriving judgements "a process meets a specification" is provided.

The developed formalism allows one to do a systematic book-keeping of pro-
cess dependencies that is useful in higher order constructions. At this stage of
our research no attempt was made to extend process algebra operators to higher
order constructions.

"Institute of Computer Science, PAS, Gdahsk, Poland; supported by ICS PAN, KBN grant
PB-1312/P3/92/02 and GRIT.

tchalmers Technical University, Goteborg, Sweden, and University of Gdahsk, G d h k ,
Poland; supported by GRIT and CONCUR2

Formal Derivation of A FEAL Processor

We present a method for formal derivation of asynchronous VLSI circuits. The proposed method
focuses on transformational style of design and it uses methods familiar from the design of parallel pro-
grams. Refinement calculus and action systems are used as a framework in the formal design process. The
refinement calculus and the stepwise refinement of parallel programs as action systems were introduced
in the papers of Back and Sere [I, 21.

A novel method exploiting parallel programming techniques for VLSI design was introduced by Martin
[3]. The method of Martin is, however, semi formal. Our goal is to formalize this method within the
refinement calculus thereby giving it a completely formal basis.

The second goal of our work is the mechanisation of the design process. The refinement calculus itself
has been formaliied within a mechanical theorem prover by von Wright [4]. Hence, each transformation
step can be expressed as a refinement rule and the entire circuit can be mechanically proved correct via
refinement calculus.

As a case study we look at the design of an asynchronous PEAL (Fast Encipherment Algorithm)
processor [5]. The synchronisation of communication between parts of the circuit is very tricky in its
design. Here, a recent add to the action systems, the procedures mechanism [6], was found extremely
useful .

References

1. R.J.R. Back. On the Correctness of Refinement in Program Development. Ph.D.thesis Report
A-1978-4, Department of Computer Science, University of Helsinki, 1978

2. R.J.R. Back, K. Sere. Stepwise Refinement of Action Systems. Structured Programming, 12:17-30,
1991

3. A.J. Martin. Synthesis of Asynchronous VLSI Circuits. California Institute of Technology, Tech-
nical Report Caltech-CS-TR-93-28, 1993

4. J. von Wright. Program Refinement by Theorem Prover. Abo Akademi Report on Computer Science
& Mathematics, Ser.A.No 146, 1994

5. S. Miyaguchi. The FEAL Cipher Family. EUROCRYPT'90,627-638, 1990

6. R.J.R. Back, A.J. Martin, K. Sere. Specification of a Microprocessor. Abo Akademi Report on
Computer Science & Mathematics, Ser.A.No 148, 1994

*Abo Akademi University, Department of Computer Science, FIN-20520 Turku, Finland
t~niversit~ of Kuopio, Department of Computer Science and Applied Mathematics, P.O.Box 1627, FIN-70211 Kuopio,

Finland

NONCLAUSAL RESOLUTION SYSTEM FOR
BRANCHING TEMPORAL LOGIC

Jurate Sakalauskaite
Institute of Mat hematics and Informatics

Akademijos 4, 2600 Vilnius, Lithuania
e-mail: jurate.saka1auskaite @mlats.rnii.lt

Temporal logic is an appropriate formalism to reason about concurrent
systems. We consider here the branching propositional temporal logic BPTL.
An underlying model of the logic is a tree like construction, i.e. any instant
of time may split into different possible futures. BPTL is a subsystem of
branching time logic introduced in [BPM]. The language of BPTL contains
the usual propositional connectives and the following temporal modalities

Â (here u ranges over formulas): QU ("u is true in each next state"), @u("u
is true in some next state), n u ("u is always true from now on ") ou("u is
eventually true").

In this paper we present nonclausal resolution proof system for BPTL.
Nonclausal resolution has the advantage over the classical clausal resolution
of not requiring formulas to be in clause form. We prove soundness and
completeness of the presented system. The proof of completeness uses tableau
construction for BPTL. The idea to use tableau construction in order to prove
completeness of nonclausal resolution proof system is adopted from [AM].

References
[AM] (1985) Abadi M. and Z.Manna, Nonclausal temporal deduction, Logics
of programs fed. R.Parikh), Springer-Verlag, LNCS 193.
[BPM] (1983) Ben-Ari M., A.Pnueli and Z.Manna, The temporal logic of
branching time, Acta Informatica 20, 207-226.

A Graph-Form for Gamma Programs

David Sands
DIKU, University of Copenhagen

The Gamma model is a minimal programming language based on local
multiset rewriting (with an elegant chemical reaction metaphor). A calculus
of Gamma programs has been studied for programs built from basic
'reactions", plus parallel and sequential composition operators. The salient
(and unusual) feature of the composition operators for Gamma programs is
that for termination, the parallel composition operator demands that its
operands must terminate synchronously.

In this talk we discuss a new static graph representation for Gamma
programs, and argue that it forms a better basis for the study of compositional
semantics, refinement, true concurrency and program logics. Operationally,
Gamma graphs are like flow-charts, where each node corresponds to a simple
form of loop. A node represents a set of reactions which are concurrently
active; an edge represents an internal termination step, where the child node
may inherit some reactions from the parent but adds some new active
reactions.

We compare this form with previous compositional semantics based on
'reactive traces" (a la Brookes 1 de Boer et al) derived from SOS rules, and show
that the refinement laws can be more easily obtained, with the help of a
compositional construction of Gamma graphs. We also show that reasoning
about relational properties using Gamma-graphs recovers the simplicity of
reasoning seen in Banatre and Le Metayer's original study.

Towards Operational Semantics of Contexts
in Functional Languages

David Sands
DIKU, University of Copenhagen

The idea of providing an operational semantics for contexts has been studied by

Larson (et al) for process algebras. In that setting, a context is an action
transducer which consumes actions provided by its internal processes (the
holes) and produces eternally observable actions.

We describe some initial steps towards providing an operational semantics for
contexts in a functional setting. In a functional language, the role of a n
"actiont' is played by a lazy data constructor, or a lambda term. Giving a full
operational semantics for contexts is difficult because:

contexts can consume without producing an observable;
contexts can duplicate holes;
contexts which consume an n-ary constructor must increase the number of
distinct holes by n;
contexts can capture variables by means of binding operators eg. lambda-
expressions.

As a first step toward an operational semantics for contexts in a functional
language, we study two restrictions:
a) a fall context semantics for a restricted first-order functional language with

recursive definitions and nullary and unary (lazy) constructors.
b) a context semantics for a restricted class of contexts (a form of guarded

contexts) for a higher-order language with binding operators and arbitrary
lazy constructors.

In case (a), the context semantics subsumes the usual call-by-name semantics
for expressions. We conjecture that for each derivation in the context
semantics, a derivation exists in which any judgement about a function call
can compositionally described in terms of the function context and the
argument part. The corresponding proof abstractly represents the amount of
computation performed in call-by-need computation.

The characterisation of contexts in case (b) finds immediate application to the
problem of correct folding in program transformation. It also provides an
applicative "bisimulation up to context" proof technique, a la Sangiorgi.

Some Results about the
Category of Net Computations

Vladimiro Sassone
BRIGS - Computer Science Dept., Aarhus University

KEYWORDS: Semantics, Semantics of Concurrency, Petri Nets, Categories.

In [I] the authors show that the non-interleaving behaviour of Petri nets can be
understood in terms of symmetric monoidal categories-where objects are states,
arrows processes, and the tensor product and the arrow composition model re-
spectively the operations of parallel and sequential composition of processes-
yielding in this way a unification of the process-oriented and the algebraic view
of net computations. A natural complement to the ideas of [I] is provided by [3],
which gives a purely categorical axiomatization of the category of the computa-
tions of a net, thus yielding a description of the causal behaviour of nets as an
essentially algebraic theory (whose models are monoidal categories). However,
this construction is somehow unsatisfactory, since it is not functorial. More
strongly, given a morphism between two nets, it may not be possible to identify
a corresponding monoidal functor between the respective categories of computa-
tions. This fact, besides showing that our understanding of the structure of Petri
nets is still incomplete, has also other drawbacks, the most relevant of which is
probably that it prevents us to identify the category (of the categories) of net
behaviours, i.e., to axiomatize the behaviour of Petri nets "in the large."

The talk presents an analysis of the problem and a possible solution based on
the newly introduced notion of strong concatenable processes. These are a slight
refinement of the standard notion of process: namely, they are non-sequential
processes whose minimal and maximal places are linearly ordered. We shall
prove that strong concatenable processes are, in a very precise sense, the least
refinement of non-sequential processes which can be expressed axiomatically in
the style of [l, 31 via a functorial construction. As a first consequence of this
result, we can formulate a possible definition of the catego y of net computations.

Although we are aware that this contribution is just a first attempt towards
the aims of a functorial algebraic semantics for nets and of an axiomatization
of net behaviours "in the large", we think that the results illustrated in the
talk help to deepen the understanding of the subject. In addition, from the
categorical viewpoint, our approach is quite natural and elegant.

These results appear also in [2, 41,

[I] P. DEGANO, J. MESEQUER, AND U. MONTANARI. Axiomatizing Net Computa-
tions and Processes. In Proceedings of the 4th LZCS Symposium, pp. 175-185,
IEEE, 1989.

[2] V. SASSONE. On the Semantics of Petri Nets: Processes, Unfoldings, and Infinite
Computations. PhD Thesis TD 6/94, Dipartimento di Informatica, University di
Pisa, March 1994.

[3] V. SASSONE. Some Remarks on Concatenable Processes.. Technical Report
TR 6/94, Dipartimento di Informatica, Universith di Pisa, April 1994.

[4] V. SASSONE. Strong Concatenable Processes of Petri Nets. To appear as technical
reports BRICS, Computer Science Dept., Aarhus University and Dipartimento di
Informatica, University di Pisa, 1994.

Backward Refinement for Verifying Distributed
Algorithms

K. Sere* M. Waldh**

We present a new verification method for distributed algorithms. The basic idea is
that an algorithm to be verified is stepwise transformed into a high level specification
through a number of correctness-preserving steps. At each step some mechanism
of the algorithm is identified and abstracted away while the basic computation in
the original algorithm is preserved. In this way the algorithm becomes more coarse-
grained. Only the essential parts of the algorithm are then left for final verification.

The method is formalized within the refinement calculus [I] using superposition
refinement [2] in a backward direction.

The idea is as follows. We verify an algorithm through a number of backward
refinement steps. Each step can be verified within the refinement calculus using the
superposition refinement rule. The correctness of the final algorithm is then easily
verified, thereby establishing the correctness of the original algorithm. An extensive
case study is described in [41. An additional contribution of the backward refinement
method is that the algorithm will be described as consisting of some basic computation
and a number of mechanisms added on top of this.

Our method is closely related to the reduction method of Lipton [3]. In contrast
to Lipton, the method presented here is based on a formal calculus, the refinement
calculus, for reasoning about programs. The main purpose of the refinement calculus
is to provide a basis for the stepwise refinement approach to program construction.
Our work shows how this calculus can be used to verify an algorithm.

References

[l] R. J. R. Back. On the correctness of refinement in program development. Ph.D.
thesis, Report A-1978-4, Department of computer science, University of Helsinki,
Finland, 1978.

[2] R. J. R. Back and K. Sere. Superposition refinement of Reactive Systems. Series
A-144, Reports on Computer Science and Mathematics, Abo Akademi Univer-
sity, Finland, 1993.

[3] R. J. Lipton. Reduction: A Method of Proving Properties of Parallel Programs.
Communications of th ACM 18, No 12, pages 717-721, 1975.

[4] K. Sere and M. Waldkn. Verification of a Distributed Algorithm due to Chu.
Manuscript, Department of Computer Science, Abo Akademi University, Turku,
Finland, 1994. Abstract presented at the 13th Symposium on Principles of Dis-
tributed Computing (PODC194), Los Angeles, USA.

'University of Kuopio, Department of Computer Science and Applied Mathematics, P.O.Box
1627, SF-70211 Kuopio, Finland, e-mail: Kaisa.Serefluku.f i

**Abo Akademi University, Department of Computer Science, SF-20520 Turku, Finland, e-mail:
mwalden0abo.fi

Strictness and Totality Analysis

Kirsten Lackner Solberg*
Hanne Riis Nielson and Flemming Nielson

Computer Science Dept .
Aarhus University, Denmark

e-mail : {kls , hrn, f n}@daimi . aau . dk

Strictness analysis has proved useful in the implementation of lazy functional
languages as Miranda, Lazy ML and Haskell: when a function is strict i t is safe
to evaluate its argument before performing the function call. Totality analysis is
equally useful but has not be adopted so widely: if the argument to a function is
known to terminate then it is safe to evaluate it before performing the function
call.

In this talk we present an inference system for performing strictness and
totality analysis. We restrict our attention to a simply typed lambda-calculus
with constants and a fixpoint operator. The inference system is an extension of
the usual type system in that we introduce three annotations on types t:

! t : the value has type t and it definitely 1,

Pt: the value has type t and is definitely not 1, and

! t : the value has type t and it can be any value.

Annotated types can be constructed using the function type constructor and
(top-level) conjunction. As an example a function may have the annotated type

(!"Int -+ P i n t) A (!"nt -+ !"nt) which means that given a terminating
argument the function will definitely terminate and given a non-terminating
argument it will definitely not terminate. Thus we capture the strictness as
well as the totality of the function. Strictness and totality information can also
be combined as in (^ i n t - ̂ P i n t -+ P i n t) A (P i n t -+ ^ i n t - ̂ P i n t)

A (lblnt -+ !^1nt -* !^1nt) which will be the annotated type of McCarthy's
ambiguity operator.

We give examples of its use and prove the correctness with respect to a
natural-style operational semantics.

*Dept. of Math. and Computer Science, Odense University, Denmark

Functional Logic Programming in GCLA*

Olof Torgersson

Department of Computing Science, Goteborg University
S-412 96 Goteborg, Sweden

oloft@cs.chalmers.se

1 Introduction

Through the years there have been numerous attempts to combine the two main declarative programming par-
adigms functional and logic programming into one framework providing the benefits of both. The proposed
methods varies from different kinds of translations, embedding one of the methods into the other, to more inte-
grated approaches such as Horn Clause Logic with equality [4] and Constraint Logic Programming [I].

A notion shared between functional and logic programming is that of a definition, we say that we define
functions and predicates. The programming language could then be seen as a formalism especially designed
to provide the programmer with an as clean and elegant way as possible to define functions and predicates
respectively. Of course these formalisms are not created out of thin air but are explained by an appropriate
theory.

In GCLA [5] we take a somewhat different approach, we do talk about definitions but these definitions are
not given meaning by mapping them on some theory about something else, but are instead understood through
a theory of definitions and their properties, the theory of Partial Inductive Definitions (PID) [31. This theory
is designed to express and study properties of definitions, so we look at the problem from a different angle and
try to answer the questions; what are the specific properties of function and predicate definitions and how can
they be combined and interpreted to give an integrated functional logic computational framework based on
Pro.

A GCLA program consists of two communicating partial, inductive definitions which we call the (object
level) definition and the rule definition respectively. The rule definition is used to give a meaning to the con-
ditions in the definition and it is also through this the user queries the definition. We present a rule definition
to the class of functional logic program definitions. This rule definition implicitly determines the structure of
function, predicate and integrated functional logic program definitions. We will also show how the knowledge
that a definition defines a functional logic program can be used to automatically generate better proof-search
strategies enhancing efficiency and enabling us to write more concise definitions. These rule definitions use
and develop ideas from [2].

We illustrate with an example. The definition below combines lazy evaluation of functions with indeter-
minism and backtracking into a generate and test program producing all subsets of set having a sum = K.

sum_of_subsets (Set,K) <= sum_eq(subset (Set), 0,K) .

sumeq(~l,Acc,K) <= (Acc = K)-> [I . % readA->Bas i f A thenB
sumeq([XIXsl ,Acc, K) <= (X+Acc=<K) -> [XI sumeq(Xs,X+Acc, K)] .

subset ([]) <= [] .
subset([XIXsl) <= [Xlsubset(Xs)l,subset(Xs). % read this I , ' as or

References

1. H. Alt-Kaci, A. Podelski, Towards a Meaning of Life, Journal of Logic Programming, vol 16, pp 195-
234,1993.

2. G. Falkman, 0. Torgersson, Programming Methodologies in GCLA, in, Extensions of Logic
Programming, Springer Lecture Notes in Artificial Intelligence, vol798,Springer Verlag 1994.

3. L. Hallnib, Partial Inductive Definitions, Theoretical Computer Science, vol87,pp 115-142,199 1.
4. M. Hanus, The Integration of Functions into Logic Programming; From Theory to Practice, Journal of

Logic Programming, ~0119120, pp 583-628,1994.
5. P. Kreuger, GCLA 11, A Definitional Approach to Control, in, Extensions of Logic Programming,

Springer Lecture Notes in Artificial Intelligence, vol. 596, pp 239-297, Springer Verlag, 1992.

* This work was carried out as part of the work in ESPRIT working group GENTZEN and was funded by the Swedish
National Board for Industrial and Technical Development (NUTEK).

Extensions of Structural Synthesis of Programs

Tarmo Uustalu
Dept of Teleinformatics, The Royal Institute of Technology

Electrum 204, S-164 40 Kista, Sweden
email tarmo@it . kth . se

fax +46 8 751 1793

Structural synthesis of programs (SSP) as proposed and described by Mints and Tyugu [MT90]
is an approach to deductive synthesis of functional programs using types as specifications and based
on the Curry-Howard correspondence and on a very intensional treatment of the notion of type. The
approach has a practical orientation and a feasible balance has been sought between expressiveness of
the specification language and efficiency of proof search. The work is related to automated software
engineering, programming in type theories, and automated theorem proving.

The proof search technique employed in SSP has been described in different formulations by a number
of authors: Maslov (the inverse method) [Ma64], Mints (generalized resolution) [Mi88], Stiilmarck (the
assure-method) [S90]. We like to think of the technique as a strategy of forward search in natural-
deduction calculi where conclusion generation is limited to sequents that potentially might participate in
a normal derivation of the goal formula and where conclusion generation under an extra hypothesis or
variable substitution is tried only if no new conclusions can be derived otherwise. Importantly, derivation
of proof-theoretically easy goal formulae (this notion is formalized!) is efficient and specifications one
usually would write in practice are proof-theoretically easy.

In the implemented systems of SSP, the underlying logic has been propositional. The proof search
technique, at the same time, is known to be applicable in first-order and modal logics. In the paper, we
show that such extensions of the underlying logic allow for a style of specification where the hierarchical ,

structure of the type world of the programming knowledge being specified is explicit and for proof
search that takes real advantage of this explicitness. We discuss the specification methodology and the
completeness and complexity of the appropriate proof search algorithms. The part concerning usage of
modal logics as medium for specifying and reasoning about concept hierarchies is related to the author's
earlier work [U92].

References

[Ma641 S. Yu. Maslov. The inverse method for establishing deducibility in classical predicate calculus.
Soviet Math. Doklady, 5:1420-1423, 1964.

[Mi901 G. Mints. Gentzen-type systems and resolution rule, Part I: Propositional logic. In Proc. Int'l
Conf on Computer Logic, COLOG-88, Tallinn, Dec 1988, pp 198-231, Berlin, Springer-Verlag,
1990. (LNCS, Vol 417.)

[MT90] G. Mints and E. Tyugu Propositional Logic Programming and the PRIZ System. J. Logic.
Programming, 1990, 9(2-3) : 179-1 93.

[S90] G. Stiilmarck. The Assure method: A proof procedure for propositional logic. Technical Report 1,
Logikkonsult NP AB, Stockholm, 1990.

[U92] T. Uustalu. Combining object-oriented and logic paradigms: A modal logic programming
approach. In Proc. European Conf on Object-Oriented Programming, ECOOP192, Utrecht,
June/July 1992, pp 98-113. Berlin, Springer-Verlag, 1992. (LNCS, Vol 615.)

Algebra of Broadcasting Systems:
Value Passing and Sequential Composition

Martin Weichert
Chalmers

Institute for Computer Science
Goteborg, Sweden

Email: martinw@cs.chalmers.se

This paper presents ACBS, Algebra of Broadcasting Systems, a process
calculus characterised by value passing + sequential composition + broadcast
communication.

ACBS is based on CBS, Calculus of Broadcasting Systems, a CCS-like calculus
with broadcast communication instead of handshake, and on ACP, Algebra of
Communicating Processes, a family of calculi built with sequential
composition.

Â Â

The paper presents a complete axiomatisation for non-recursive "pure" ACBS
processes with respect to strong bisimulation. The use of three different
merge" operators as in ACP makes finite axiomatisation possible. It then
proposes several extensions to the calculus, such as translation and
recursion, and discusses their effects on axiomatisation. An example
illustrates the equational style of reasoning provided by the axiomatisation.

The differences between prefixing and sequential composition, which are not
so drastic in the "pure" calculi, become quite apparent when value passing is
added. A section about value passing discusses how different programming
styles emerge from the different connectives in the calculi. Whereas sequential
composition leads to a n imperative-style semantics involving program
environments, prefixing more closely resembles evaluation in a functional-
style language.

Finally, the discussions from the preceding section lead to the presentation of
the value passing version of ACBS.

A Case Study in Timed Modal Specification

Carsten Weise
Lehrstuhl h e r Informatik I

University of Technology
52074 Aachen - Germany

Email: carsten@l.informatik.mth-aachen.de

We will specify processes by labelled modal transition system. The
transitions in modal transition systems come in two flavors: may- and must-
transitions. A refinement relation identifies the suitable implementations of
a specification. An implementation is a transition system with only one type
of transition (alternatively a modal transition system with only must-
transitions). Intuitively an implementation must
consist of all must-transitions and may (or may not) have the may-
transitions of the specification.

Instead of using a graphical representation (i.e. transition systems) one can.
also express the specification in logic formulae in the modal mu-calculus.

Time Modal Specifications (TMS) use a transition system with a time
domain. The chosen domain here will consist of the real numbers. Despite
the denseness of this domain, and therefore the typically infinitely large
transition systems, using methods from the theory of timed automaton,
namely timer regions, an automatic treatment of many problems (e.g. is P a
refinement of Q?) is possible.

The talk will demonstrate the usehlness of this approach by applying Timed
Modal Specifications to an example. The example is that of a lossy remote

procedure call, implemented on top of a reliable memory. In the talk a
specification of the remote procedure call and the memory component will be
given, and several properties of the specifications will be proved.

The results presented are joint work with Kim Guldstrand Larsen and
Bernhard Steffen.

Termination of order-sorted rewriting.
Abstract.

Peter 0lveczky
Department of Informatics,

University of Oslo
e-mail:peterol@ifi.uio.no

Order-sorted mwriting is often used in connection with order-sorted spec-
ifications (i.e. many-sorted specifications with subsort relations), e.g. in au-
tomated theorem proving. Termination and confluence are important prop-
erties of a rewrite system, but in general it is undecidable whether a rewrite
system satisfies these properties.

Numerous techniques have been developed that with varying degrees
of success may be used to prove termination of unsorted rewrite systems.
These techniques may also be used to prove termination of order-sorted
rewrite systems by simply ignoring the sort information, because an order-
sorted system always terminates whenever the corresponding unsorted sys-
tem terminates. These methods are not satisfactory, since there are many
terminating order-sorted rewrite systems that do not terminate if the sorts
are ignored.

We propose a stronger method for proving termination of an order-sorted
rewrite system by transforming it to an unsorted system, such that termi-
nation of the latter implies termination of the order-sorted system. We
can thus use the well-known techniques for proving unsorted termination to
prove order-sorted termination.

The main idea of our method is to label a function symbol with the sorts
of its arguments. If a function symbol f takes arguments with sorts s and
st , then fs and fsj are treated as distinct function symbols in the unsorted
system.

Our method, which can be used on non-sort-decreasing systems as well,
includes as special cases previously published methods, including the method
that just ignores sort information.

Demonstration of ALP

Catarina Coquand and k n a Magnusson

Chalmers Technical University

Inst. for Computer Science

Goteborg, Sweden

We refer to our abstracts on pages 15 and 3 1 for further information about the system to
be demonstrated.

Demo of EPSILON by Jesper Niederrnann

EPSILON is an automatic tool for analysing concurrent and non-deterministic
real-time systems. The specification formalisms underlying EPSILON are
Timed Modal Specifications (TMs) [I] and Timed Modal Logics. The cur-
rent version of EPSILON is a prototype tool subject to constant development.

EPSILON contains algorithms for deciding various equivalences and refine-
ments between specifications in TMS in particular diagnostic information is
offered in cases where a derived equivalence or refinement does not hold,
thus providing useful information in a subsequent debugging phase. Addi-
tionally EPSILON contains an algorithm for model checking with respect to
logical formulae (with explicit time requirements). Ongoing work includes
a procedure for constructing timed systems directly from logical formuhe,
an algorithm for transforming overall system properties into a property of a
single component, and viewing the transition system of a process graphically.

I will use a running example throughout the demo namely a model of a real-
time train crossing scenario [I]? and through this show some of the features
of EPSILON.

EPSILON is available by anonymous ftp from ftp.iesd.auc.dk and can be
found in ' /pub/pro j ect s/EPSILON/ ' in here is currently a version which
should run on most Sun machines, with any operating system7 a window
system is not a requirement.

References

[I] ~erZns, Kiklis and Godskesen7 Jens Christian and Larsen? Kim G.,
1993 Tzmed Modal Speczfimtion - The0 y and Tools

High-Level Synthesis of
Heterogeneous Analysis Systems

Bernhard Steffen and Tiziana Margaria*
Universit at Passau, Germany

steffen/tizima@fmi.mi-passau.de

Heterogenezt y becomes an increasingly central characteristic of environments, to incor-
porate a variety of analysis and verification methods, like e.g. abstract interpretations,
bisimulation checking, theorem proving and model checking. However, the combination
of various methods to application specific heterogeneous tools is usually not (explicitly)
supported. We present a practiceoriented environment for high-level synthesis of system-
level analysis tools, which is unique in 1) constituting a framework for the development
of application specific heterogeneous tools and 2) providing facilities for the automation
of the synthesis process. Thus it constitutes a system-level prototyping environment that
supports the rapid and reliable realization of efficient application-specific complex tools,
without a sophisticated user interaction.

Specification language is a modal logzc, SLTL, that uniformly and elegantly captures
type descriptions, specifications of (elementary) algorithms and ordering constraints.
Whereas the first two 'dimensions' are treated similarly by means of a simple logic over a
taxonomy of types and algorithms respectively, the third is expressed by means of modal-
ities. This allows an elegant and transparent specification of combinations of already
existing algorithms.

As SLTL specifications can automatically be transformed into an executable high level
functional program by means of a minimal model generator for the logic, this transfor-
mation can be seen as a specific form of software synthesis on top of a repository of
reusable software components. We illustrate the generality of this approach by synthesiz-
ing 1) special purpose tools in our analysis and verification environment, and 2) complex
parameter-correct UNIX commands from simple SLTL specifications.

*The work is joint with Burkhard F'reitag, Olaf Burkart, Andreas Classen and Ulrich Zukowski

5 1

Demonstration of the B-Toolkit
Ib Holm Sgrensen
B-Core Limited

Magdalen Centre, Oxford
England

Ernail: Ib.Sorensen@comlab.ox.ac.uk

The B-Toolkit is a suite of integrated programs which implement the B-Method for Software
Development
The B-Method is a collection of formal techniques which give a basis to those activities of
Software Development that range from technical software specification, through design and
integration, to code generation and into maintenance. The B-Method and the specification
language AMN (Abstract Machine Notation) are in many respects similar to other "model
oriented" formal methods. They imploy a conventional "pseudo" programming style.
The B-Tool is a language interpreter for the B Theory Language. This language is a special
purpose language for writing interactive and automatic proof assistants and other systems
where pattern matching, substitution and re-write mechanisms can be used. The B-Toolkit's
component tools are implemented in the B Theory Language and is interpreted by the B-Tool.

Description
The B-Toolkit, which supports the B-Method, underwent eight years of research and
development at the Programming Research Group in Oxford and British Petroleum Research,
and its commercial development is now continuing inside B-Core (UK) Ltd in Oxford. The B-
Toolkit is an integrated suite of computer programs, built partly on the B-Tool interpreter, and
covers many aspects of software engineering, including:

a) Syntax and type-checking of specification documents as well as low level design
documents, with comprehensive error reporting .

b) Verification condition generation (which generates the proof-obligations needed to guarantee
specification consistency and correctness of refinement). The refinement rules, which
originate from Oxford (Hoare, Sanders, He) and J-R Abrial's formulation in terms of
Predicate Transformers, are used within the tool.

c) Automatic & interactive provers for discharging the verification conditions. (Other provers
can be used in conjunction with B-Core (UK)'s B-Toolkit). Specification animation,
enabling the specification to be "run", validated and tested; pre-conditions, guards for
conditional statements, and the values of local and state variables may be inspected during
animation.)

d) A translator for translating low level design documents into C.
e) Code generation from declarative descriptions, facilitated by a re-usable library of code

modules.
f) A Library of reusable code modules, which are all accessed and used according to their

given specification.
g) Rapid prototyping, facilitated by an interface generator, built on the re-usable library.
h) Automatic Markup and Indexing of documentation of complete developments (requires

LaTeX).

Availability
The B-Toolkit is commercially available in a Trial version or through full release licences. The
B-Toolkit is delivered for IBMRS6000 running AIX and Sun Sparc running SunOS 4.1.x.
(5.x is also supported). The Toolkit requires 16Mbytes of RAM and approximately 20Mbytes
of Disc. The B-Tookit is highly portable, and will run under most Unix systems
implementations. The current B-Toolkit requires as a minimum a Unix Operating System, and
for full functionality it further requires LaTeX and a C-Compiler.

Recent BRICS Notes Series Publications

NS-94-4 Peter D. Mosses, editor.Abstracts of the 6th Nordic Workshop
on PROGRAMMING THEORY(Aarhus, Denmark, 17–19 Oc-
tober, 1994), October 1994. v+52 pp.

NS-94-3 Sven Skyum, editor. Complexity Theory: Present and Fu-
ture (Aarhus, Denmark, 15–18 August, 1994), September 1994.
v+213 pp.

NS-94-2 David A. Basin. Induction Based on Rippling and Proof Plan-
ning. Mini-Course. August 1994. 62 pp.

NS-94-1 Peter D. Mosses, editor.Proc. 1st International Workshop on
Action Semantics(Edinburgh, 14 April, 1994), May 1994. 145
pp.

	Foreword
	Contents
	Invited Talks
	Matthew Hennessy. Higher-Order Processes and Their Models
	Bernhard Steffen. Finite Model Checking and Beyond
	D.S. Neilson and I. H. Sorensen. The B-technologies: A system for computer aided programming

	Submitted Talks
	Parosh Abdullah and Mats Kindahl. On decidability of simulation and bisimulat ion for Lossy Channel Systems
	Luca Aceto. Cpo-Models for GSOS Languages
	Torben Amtoft. Type and Behaviour Reconstruction
	Henrik Reif Andersen and Michael Mendler. PMC: A Process Algebra for Real-Time Systems
	Jørgen Hedegaard Andersen. Specification and Verification of Real-Time Systems using Timed Modal Logic
	Hosein Askari, Ole I. Hougaard and Michael I. Schwartzbach. A General Framework Inference for Type Inference
	R.J.R. Back and M.J. Butler. Exploring Summation and Product Operators in the Refinement Calculus
	Franck van Breugel. From Branching to Linear Metric Domains
	Karlis Cerans. A Calculus of Timed Refinement
	Allan Cheng. Petri Nets, Traces, and Local Model Checking
	Catarina Coquand. Introduction to ALF - a Background
	Vytautas Cyras and Magne Haveraaen. The Comparison of two Approaches to Separate of an Algorithm's Data Dependency from its Computational Aspect
	Göran Falkman. Program Separation in GCLA
	Øyvind B. Fredriksen. Algebras with Structure
	Mait Harf and Jaan Penjam. Structural Synthesis of Programs Using Regular Data Structures
	Claus Hintermeier and Hélène Kirchner. G^2-Algebras
	Leszek Holenderski and Axel Poigne. Boolean Automat a: a Compact Represent at ion of Synchronous Reactive Systems
	Hans Hüttel. Bisimulations for a Label-passing Process Calculus with Asynchronous Communication
	A. Ingólfsdóttir. Denotational Semantics for Value-Passing Calculi-Late Approach
	Claw Torp Jensen. Interpreting -Broadcast Communication in CCS with Priority Choice
	Johan Jeuring. Polytypic Programming
	Kim Guldstrand Larsen. Synthesizing Real Time Systems
	S. B. Lassen. Reasoning with Actions
	Lena Magnusson. Introduction to ALF - an Interactive Proof Editor
	Karoline Malmkjaer and Olivier Danvy. Preprocessing by Program Specialization
	Hanne Riis Nielson, Flemrning Nielson. Static and Dynamic Processor Allocation for Higher-Order Concurrent Languages
	Olaf Owe. A Proposal for a Process Logic
	Jens Palsberg. A Type System Equivalent to Flow Analysis
	Wieslaw Pawlowski, Pawel Paczkowski and Stefan Sokolowski. Specifying and Verifying Parametric Processes
	R. Ruksenas, K. Sere and Y. Zhao. Formal Derivation of A FEAL Processor
	Juratè Sakalauskaite. NONCLAUSAL RESOLUTION SYSTEM FOR BRANCHING TEMPORAL LOGIC
	David Sands. A Graph-Form for Gamma Programs
	David Sands. Towards Operational Semantics of Contexts in Functional Languages
	Vladimiro Sassone. Some Results about the Category of Net Computations
	K. Sere and M. Waldén. Backward Refinement for Verifying Distributed Algorithms
	Kirsten Lackner Solberg, Hanne Riis Nielson and Flemming Nielson. Strictness and Totality Analysis
	Olof Torgersson. Functional Logic Programming in GCLA
	Tarmo Uustalu. Extensions of Structural Synthesis of Programs
	Martin Weichert. Algebra of Broadcasting Systems: Value Passing and Sequential Composition
	Carsten Weise. A Case Study in Timed Modal Specification
	Peter 0lveczky. Termination of order-sorted rewriting. Abstract.

	Demonstrations
	Catarina Coquand and Lena Magnusson. Demonstration of ALP
	 Jesper Niederrnann. Demo of EPSILON
	Bernhard Steffen and Tiziana Margari. High-Level Synthesis of Heterogeneous Analysis Systems
	Ib Holm Sørensen. Demonstration of the B-Toolkit

