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Foreword

The main objective of this 6th Nordic Workshop on Programming Theory is to bring together
researchers from the Nordic and Baltic countries, in order to improve mutual contacts and
cooperation. The 63 registered participants come from: Norway (3), Sweden (11), Finland (5),
Latvia (1), Lithuania (2), Estonia (1), England (3), Germany (4), Denmark (33).

Presentations:
The following invited speakers are to give 60-minute presentations in plenary sessions: Matthew
Hennessy (University of Sussex), Bernhard Steffen (Universität Passau), and Ib Holm Sørensen
(B-Core (UK) Limited). The remainder of the workshop consists mainly of 30-minute presenta-
tions, selected on the basis of submitted abstracts, in parallel sessions. Moreover, four systems
are to be demonstrated, all closely related to talks to be given during the workshop.

Proceedings:
Selected participants, based on the quality and topic of the presentations at the workshop, will
be invited to submit a full paper after the workshop to the Nordic Journal of Computing.

Acknowledgements:
The 6th Nordic Workshop is financially supported by grants from BRICS1 and the Danish
Science Research Council. Technical and administrative support is provided by the Department
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Higher-Order Processes and Their Models 

Matthew Hennessy 
University of Sussex 

A higher-order process algebra in which processes can be sent and 
received as data along channels is investigated. Using a simple operational 
semantics two behavioural preorders are defined. The first, based on may 
testing, is in terms of the ability of processes to offer communications on 
channels while the second, based on must testing, depends on the 
communications which processes can guarantee. 

The first behavioural preorder can be modelled by a denotational semantics 
which uses a notion of higher-order traces while for the second we develop 
a denotational model using higher-order Acceptance Trees. 



Finite Model Checking and Beyond 

Bernhard Steffen 
Universitiit Passau, Germany 
steffenQfmi.uni-passau.de 

Automated verification often relies on some kind of temporal logic as specification 
language for systems and system properties. The modal mu-calculus is a particularly 
flexible representative: not only may a number of other temporal logics be translated 
into it, but it may also be used to encode various behavioral equivalences and preorders 
for finite state systems. Moreover, it is a well-structured and convenient specification 
language for other application areas where global constraints are of interest, like e.g. 
dataflow analysis or software configuration. In fact, the modal mu-calculus uniformly 
supports algebraic, operational, and logic-based approaches to verification. Model 
checking, the central automatic verification technique associated with the modal mu- 
calculus, is now well-established for finite-st ate system behaviors. More recent is the 
development of techniques for infinite-state behaviours: Bradfield and Stirling observed 
that tableaux-based model-checking covers general infinite-state systems, but their 
method is not effective. Muller and Schupp proved that the Monadic Second Order 
Logic is decidable for pushdown transition graphs, which are a strict generalization 
of context-free processes with respect to bisimulation semantics. This implies the 
decidability of the corresponding model checking problem for the full mu-calculus, 
but their decision procedure is non-elementary and thus not applicable to practical 
problems. More recently, practice-oriented model checking algorithms were developed 
together with Burkart and Hungar for the alternation-free fragment of the modal 
mu-calculus, which e.g. form the basis for the generation of efficient interprocedural 
dataflow analysis algorithms from modal logic specifications. 

This presentation focusses on the structure of iterative model checking techniques 
depending on the generality of the model and the version of the modal mu-calculus 
considered, together with their potential for optimization. The first part incrementally 
develops an iterative algorithm for finite-state processes covering the full mu-calculus, 
by successively extending an algorithm for uniform fixpoints to hierarchical and to 
alternating fixpoints. The second part generalizes this development for context-free 
or pushdown processes. The key to this generalization is its second order approach: 
rather than determining properties for the states of a finite-state system, we compute 
property transformers for the specific incomplete portions (fragments) of the considered 
pushdown process, which describe the set of subformulas valid at the start state of 
a fragment relative to the set of subformulas valid at the end states of the fragment. 
We will see that this approach carries through all the way, although the correctness of 
the model checker for the full mu-calculus obtained in this fashion is still a conjecture. 
The development of the various algorithms is illustrated in the context of data flow 
analysis, while focussing on their differences, complexity, and optimization potential. 





On decidability of simulation 
and bisimulat ion 

for Lossy Channel Systems 

Parosh Abdullah Mats Kindahl 

By using an infinite-state system consisting of finite-state processes commu- 
nicating via unbounded FIFO channels it is possible to model link protocols 
like the Alternating Bit protocol , or the HDLC protocol. It is well known 
that most interesting verification problems are undecidable for this class of 
systems. We have previously shown that by altering the behaviour of the 
channels so that they become lossy, several verification problems become de- 
cidable. In this paper we develop algorithms for deciding strong bisimulation 
equivalence and both weak and strong simulation preorder and prove their 
correctness. Furthermore, we show that weak bisimulation equivalence is 
undecidable. 



Cpo-Models for GSOS Languages 

Luca Aceto 

BRICS, Aalborg University Centre 

9220 Aalborg, Denmark 

The meta-theory of process description languages like CCS, ACP and CSP has recently been 

the object of considerable research effort in the literature. So far, this line of research has 

produced a wealth of results which generalize and explain many of the congruence theorems 

and complete axiomatizations for behavioural equivalences that have been proposed in the 

literature. Most of this work is entirely based upon operational semantics, following a bias 

towards operational methods in process theory that dates back to Milner's original development 

of the theory of CCS. Notable exceptions to this trend are, among others, Abramsky's work on 

a domain equation for synchronization trees that leads to a fully abstract semantics for SCCS, 

and Ingolfsdottir's extension of Abrarnsky's model to a form of value-passing CCS. 

In this talk, I plan to present a general way of giving denotational semantics to languages 

equipped with an operational semantics that fits the GSOS format of Bloom, Istrail and Meyer. 

The canonical model used for this purpose will be Abramsky's domain of synchronization 

trees. 

In the first part of the talk, I plan to show how to use GSOS rules to associate a labelled 

transition system with divergence information with each GSOS language. This will be done in 

such a way that the bisimulation preorder of Hennessy and Plotkin is a precongruence with 

respect to all the operators in the language. In order to obtain the aforementioned substitutivity 

result, care must be taken in interpreting negative premises in GSOS rules. In particular, 

negative premises will only be interpreted over convergent (or fully specified) processes. I 

believe that this is a natural choice and I shall argue for it by means of examples. 

I shall then show how to automatically give a denotational semantics for a GSOS language in 

terms of Abramsky's domain of synchronization trees. To this end, it is sufficient to endow 

Abramsky's model with an appropriate continuous algebra structure. This I do by showing 

how the GSOS rules defining the operational semantics of an operation f of the calculus can be 

used to define a continuous function F over the domain of synchronization trees. 

As a result of the general framework, I shall then show that the denotational semantics so 

obtained is guaranteed to be in complete agreement with the chosen behavioural semantics. 

More precisely, the denotational semantics produced by the general approach presented in the 

talk is always fully abstract with respect to the finitary part of the bisimulation preorder. 

This is joint work with Anna Ing61fsd6ttir. 



Type and Behaviour Reconstruction 

Torben Amtoft 
Aarhus University 

Dept. of Computer Science 
Aarhus, Denmark 

Email: tamtoft@daimi.aau.dk 

The topic of this talk will be how to design a n  algorithm for gaining 
information about the type and the behaviour of CML programs, and how to 
prove this algorithm sound and complete wrt. the  inference system 
presented by the Nielson's in POPL'94. 

The algorithm is a n  extension of the standard algorithm W, collecting a set 
of constraints on behaviours. Due to the laws imposed on behaviours these do 
not constitute a free algebra, and a consequence of this is that there seems to 
be no notion of "principal solutions". In the presense of let-polymorphism, 
this complicates matters significantly. 

The talk describes ongoing work. 



PMC: 
A Process Algebra for Real-Time Systems 

Henrik Reif Andersen and Michael Mendler 

Department of Computer Science, Technical University of Denmark 
Building 344, DK-2800 Lyngby, Denmark 

E-mail: hra@id.dtu.dk 

Abstract 

Most timed process algebras view a real-time system as operating 
under the regime of a global time parameter constraining the occur- 
rence of actions. By the use of quantitative timing constraints they 
aim at describing completely the global real-time behaviour of timed 
systems in a fairly detailed fashion. Based on an industrial case study 
we believe that these approaches are often overly realistic with dis- 
advantages for both the specification and the modelling of real-time 
systems. We propose a rather different, abstract approach to the spec- 
ification and modelling of real-time systems that captures the qualzta- 
tive aspects of timing constraints through the use of multiple clocks. 
Clocks enforce global synchronization of actions without compromis- 
ing the abstractness of time by referring to a concrete time domain. 
Technically, we present the process algebra PMC as a non-trivial ex- 
tension of CCS by multiple clocks with associated timeout and clock 
ignore operators. 

The talk will describe the object of investigation in the industrial 
case study, a highly sophisticated instrument - the Briiel & Kjaer 2145 
Frequency Analyzer - and show how the central real-time constraints 
are expressed concisely in PMC. Focus will be on the actual speci- 
fication of the instrument and the technical results that have been 
obtained for PMC will only be touched briefly. 



Specification and Verification of 
Real-Time Systems using Timed Modal 

Jgrgen Hedegaard Andersen 
BRIGS 

Aalborg University 

There has been done a lot of work in developing formalisms for describing 
real-time systems. A lot of the efforts have concentrated on extending 
already existing algebras such as CCS and CSP with realtime. Such 

rn - algebras have their strength in detailed descriptions of the communication 
patterns. However, verification of these systems can be quite complicated 
using miscellaneous equivalence and/or refinement relations. In addition, 
it is impossible to express liveness properties. Also, process algebraic 
specifictions tend to become quite extensive and very explicit. What a 
logic offers in these situations is a degree of loseness so that one can 
express properties of only parts of a system. 

My talk will consist of the following: 

An example introducing Timed CCS. 

Examples of formulas in Timed Modal Logic. Both safety and live- 
ness properties of the previous example are exhibited. 

Implementation of Model Checker for Timed Modal Logic. 



A General Framework 
Inference 

for 

Hosein Askari, Ole I. Hougaard, Michael I. Schwartzbach 

Abstract 

Languages based on variations of the lambda calculus are designed 
to permit the slick, unification-based technique for  type inference, 
which is by now a well-established discipline. 

Other widely used languages have been created less by design and 
more by coincidence and compromise. It seems therefore that the 
question of type inference for such languages could be infeasible or 
should at least permit only ad-hoc solutions. 

In this paper we argue that there exists a uniform conceptual 
framework for developing type inference algorithms, even for seem- 
ingly ad-hoc languages. This framework provides a systematic cook- 
book methodology for clarifying the concepts and crystallizing the 
ultimate algorithmic problem that must be solved. 

Specifically, we show how a number of important components of 
the constraint-based approach to  type inference each lie on a spectrum 
that allows considerable generalizations. The components we deal 
with include types, type equivalences, type variables, type constraints, 
and polymorphism. 

To demonstrate the viability of our framework, we develop a type 
inference algorithm for a full version of the Turbo Pascal language. For 
each of the components mentioned above we demonstrate how Turbo 
Pascal is at one end and the ML language is at the opposite. However, 
there are really more similarities than differences. The largest gap 
arises in the final algorithmic problem, which we must solve from 
scratch. 



Exploring Summation and Product Operators in the Refinement 
Calculus 

R.J.R. Back and M.J. Butler 
Dept. of Computer Science, Abo Akademi, Finland 

Abstract 
Dijkstra introduced weakest-precondition predicate transformers as a means of verifying total correctness 
properties of sequential programs [3]. In the refinement calculus of Back and others, specifications 
and programs are regarded uniformly as predicate transformers, and refinement laws are derived from 
properties of predicate transformers [l, 5, 61. 

The refinement calculus provides various choice and assignment operators that are generalisations of 
Dijkstra's operators, and the applications of these operators are well-known. However, the applications 
of an operator representing simultaneous execution of program statements are less well developed in the 
refinement calculus. Such an operator was introduced by Naumann [7] and by Martin [4] using category 
theoretic considerations. This product operator combines predicate transformers by forming the cartesian 
product of their state spaces. We examine the product operator using the higher-order logic formalisation 
of the refinement calculus of Back & von Wright [2]. We examine various distributivity and refinement 
preserving properties of the operator and show that it can be used to model simultaneous execution and 
to  extend the state spaces of statements so they can be more easily matched with other statements. We 
also generalise the definition of the product operator slightly to form what we call a fusion operator and 
show that the product operator is a special case of the fusion operator. The fusion operator can also be 
applied to conjoining or amalgamating specification statements. . The summation (or co-product) operator, which is the categorical dual of the product operator and 
combines statements by forming the disjoint union of their state spaces, is also described in [7] and [4]. 
The summation operator is a form of choice operator and we show that it is a special case of the existing 
choice operators of the refinement calculus. We show that this operator provides a simple yet powerful 
model of dynamic binding, and that when combined with the product operator, provides an elegant model 
of inheritance in an object-oriented programming langauge. Thus our exploration provides the basis for 
a calculus of objects and inheritance. 

References 

[l] R.J.R. Back. Correctness Preserving Program Refinements: Proof Theory and Applications. Tract 
131, Mathematisch Centrum, Amsterdam, 1980. 

[2] R.J.R. Back and J. von Wright. Refinement concepts formalised in higher order logic. Formal Aspects 
of Computing, 5:247-272, 1990. 

[3] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. 

[4] C.E. Martin. Preordered Categories and Predicate Transformers. D.Phi1. Thesis, Programming Re- 
search Group, Oxford University, 1991. 
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From Branching to Linear Metric Domains 

Franck van Breugel 

Vrije Universiteit 
Department of Mathematics and Computer Science 

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands 

Besides partial orders, also metric spaces have turned out to be very useful to 
give semantics to programming languages (see, e.g., [BR92] for an overview). In the 
literature, one encounters two main categories of metric domains: linear domains, 
characterizing trace equivalence, and branching domains, characterizing bisimilarity. 
The metric linear domains are spaces of subsets of the Baire space. The study of 
this Baire space belongs to the topological folklore of the twenties. Metric branching 
domains have been introduced in, e.g., [BZ82], [BZ83], [GR83], and [Bre93]. 

In the presentation, I will discuss how one can abstract from the branching struc- 
ture of branching domains arriving at  linear domains. For that purpose I will present 
various linearize operators. These linearize operators will be defined by means of metric 
labelled transition systems. The theory of metric labelled transition systems has been 
outlined in [Bre94a] and is further developed in [Bre94b]. One of the key observations 
needed is that branching domains can be viewed as metric labelled transition systems 
satisfying some generalized finiteness conditions (the observation that branching do- 
mains can be viewed as labelled transition systems seems to originate with [Acz88]). 
I will also point out that the additional metric structure of metric labelled transition 
systems (with respect to labelled transition systems) is essential in the development. 
Various properties of the linearize operators will be discussed (strengthening some of 
the results of [BBKM84]). Furthermore, we will see that the theory is also applicable 
to linearize the more involved branching domains-used to model object-oriented and 
higher-order features-of [Rut901 and [BB93]. 

At the moment, I am investigating whether these linearize operators give rise to 
(co)reflections between suitable categories of branching and linear domains (along the 
lines of [WN94]). 

References 
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A Calculus of Timed Refinement 

Institute of Mathematics and Computtr Science. 
Universit,y of Lat.via, Riga. Latvia, 

E-mail: karlisfimii.  l u .  lv 

A Calculus of Timed Refinement (CTR) is a process algebraic theory of loose specifications for real 
time systems. The basic motivation behind CTR,  as well as behind other similar theories (Timed 
Modal Specifications by Ceriins, Godskesen and Larsen, or Timed Interval CCS by Daniels, and 
others), is to  provide means for expressing formally decisions in design of real tinit: syst.ihi i ib ,  which  
do not constrain the external behaviour of the described system to a singlet,on set. modulo some 
behavioural equivalence (e.g. Park's and Milner's bisiii~ulat.ion (quiva.leiice. or some other). In 
particular, i t  appears important to have a possibilit,y of specifying loosely the quantitative timing 
constraints controlling the system behaviour. 

For a theory of loose specifications t o  be useful, it. requires a well defined notion of specihca- 
tion - implementation relation, or nioro generally, a refiiii I I I W I I .  relation which ilesribes when one 
term of the  calculus is a more general specification, t.han the oilier. I t .  is natural to reqiiirv t l ia~. 
this refinement obeys certain general mathematical properties (e.g., some suI)stit~ut~ivity properties. 
being a preorder, etc). However, at. least equally important is to provide also a "proper" (prefer- 
ably simple) semantical justification of the present.ed refinement relat.ion, shading a light. on t.he 
pragmatical aspects of the use of t.he theory. 

The  C T R  is designed with having all abovement.ioned principles in mind, furt,li(irniore pust.iila~- 
ing a priori adherence to  branching time process algebraic wmantics (in lini'ar t.ime wi~t?ii~.ics lh tw 
is a well developped theory of (live) trace inclusion for t,iniecl aut.oi1iat.a due t.0 Alur, (~oureoulxtis 
and Dill, et.al.). Having as a departure point. Milner's CCS (and Wangl ' i  Timed CC'S), the main 
novel construct of CTR is that. of t h e  inttrval prefix: [n.  q . P ,  wlicrc  1 1 .  11 ana iiar.iir;il iiiiiiilx~rs. 
0 < a < b,  possibly b = oo. Such a specification is intended t o  describe all processes which iirsi. 
delay for some quantity d ? [ u , h ] ,  and tlieii behave accordingly 1.0 some behaviour prescribed by 
P. 

We define a timed operational semantics for CTR terms (with the emphasis that it. is up 
to  the specification itself to decide internally, when an> of it,s delay prefixes [ a ,b ]  is going to 
expire). Based on this semantics the observational equivalence and refinement relations (iicuned 
after "continuous bisiinulation" and "cont~inuous refinement" ) are defined and are sliown t,o olwy 
the usual algebraic properties (equivalence/ preorder. subst it.ut.ivi t.y (coiigruence/pre-coiigriit~iice)). 
Both the equivalence and refinement relations are decidable for finit.? control specifications (which 
include, e.g., networks of regular specifications). 

Furthermore, we show, how to modify the semant.ics of the already existing formalism of Timed 
Modal Specifications to obtain ci calculus wit.11 exacdy l.lic r i i l t i i t .  iiioi.lcIliiiii a.l)ilili('s ;IS ( " 1 H .  Wt* 
believe, that the new semant,ics (obt,ained basically by not. allowing modalities for delay t.ransitions) 
is also %ore natural" for TMS (this can be justdied l.iy at. least one very natural example). 
Actually, the coincidence of the inodelling a,bilit.ies of ~lx.' t.wo obtained Ibrnialisiiiti allows one to 
choose his/her preferable notation, still keeping work in the same model. The author believes that 
the obtained resut.s are t40 some extent. clarifying the beha,viour of t,ransition modalities in a timed 
framework. 

Further work is to have a stronger focus on pragmatical aspects of the developped calculi, 
what may include switching to other communica.tion disciplines amongst. thy  components running 
in  parallel in a system. We plan to look also a t  possibility of incorporating data  aspects in our 
refinement/design calculi, aiming a t  providing in a long ran a general process algebra based user 
friendly environment, for practical design of certified real time syst.ems. 
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Abstract 

Work on verification of algorithms in the field of multi programming and distributed programming has been 
presented in e.g. [7, 3, 6, 10, 1, 41. One important aspect that distinguishes the work in e.g [I] from the one in 
[lo] is that in the former, reasoning about an algorithm is done "by handn, whereas in the latter, verification is 
performed automatically. Proofs "by handn can be intellectually much more challenging, demanding, and time 
consuming than automatic verification. Both approaches have their advantage and disadvantage. E.g.: proofs "by 
handn allows one to reason about systems where the number of processes is variable, while automatic verification 
can mostly only been performed on finite state systems. 

Both approaches have no serious problems handling safety properties. However, when it comes to liveness 
properties, one often needs to take certain fairness assumptions into consideration. In the case of proofs "by 
handn one simply takes these assumptions into account when constructing a proof. But in the case of automatic 
verification matters can become complicated. In [3], for each system being considered specific fairness assumptions 
are added to the model checking algorithm. In [2], examples of encodings of liveness properties in the propositional 
modal mu-calculus are given. However these encodings are often hard to understand. 

Recently attention has focused on behavioural views of concurrent systems in which concurrency or parallelism 
is represented explicitly [8, 5, 11, 9, 121. This is is done by imposing more structure on models for concurrent 
systems, in our case an independence relation on the transitions. 

Our main objective is to explore the use of the extra structure of independence in the context of specification 
logics. 

We present a CTL-like logic which is interpreted over labeled 1-safe nets. The interpretation reflects the 
desire to reason about these only with respect their progress fair behaviours. It turns out that Mazurkiewicz 
trace theory provides a useful setting. Hence, the explicit notion of independence between transitions enables us 
to incorporate fair progress assumptions in a uniform way. No encodings as formulas are needed. 

We provide a set of proof rules and prove soundness and completeness with respect to the given interpretation 
of OUT logic. As a result we obtain a local model checker, that is: automatic verification (of finite state systems) 
taking fair progress into account. 

keywords: automatic verification, fair progress, labeled 1-safe nets, local model checking, maximal traces, partial 
orders, inevitability 
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We will give an introduction to type theory, focusing on its use as a logical framework 

for proofs and programs. We will also discuss the use of inductive definition as 

specifications and proofs by pattern matching. Many examples will be presented. 

The basic idea behind using type theory for developing proofs and programs is the Curry- 
Howard isomorphism between propositions and types. Take for example the proposition 

(A implies B implies A). Looking at this proposition as a type we see that this is the type 

of the K combinator. In type theory we then say that the K combinator proofs the 

proposition (A implies B implies A). 

The language that is used is a functional language with dependent types. Hence programs 

and proofs can be described in the same language. We use inductive definitions for our 

specifications. Introduction rules in logic corresponds to defining a type by its 

constructors. Proofs are functions defined by pattern matching over these types. We shall 

also mention how this can be extended to proofs about infinite objects. 
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The data dependency pattern of the computation is essential when 
expressing solvers for general recurrences. The comparison of two 
approaches - Structural Blanks and Constructive Recursion - is presented. 

The approach of Structural Blanks was first presented by Greshnev, 
Lyubimskii and Cyras in 1985, and is investigated currently by Cyras. This 
approach was developed to express solutions to general recurrences as 
reusable program components. The approach distinguishes between 
structural components (S-modules) and functional components (F-modules). 
Examples of F- and S-modules on n-dimensional arrays are provided. 

The approach of Constructive Recursion was presented in 1990-s. This 
approach concerns: (1) the functional language to express recursion, (2) 
avoiding exponential growth during the interpretation of a compiled 
program, and (3) parallelizing. A recursive function is defined over a 
regular data dependency graph. The separation of the data dependency 
pattern is very useful in porting programs to, ,and between, parallel 
machines. 
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In this paper I present a programming methodology which makes algorithms a more explicit part of declara- 
tive programming. The work presented here is based on some earlier work on p g m  separation in GCLA 
[a. 

The basic idea of the methodology is to separate programs into two parts: 

(i) The part that describes the overall global structure of the algorithm. 
(ii) The part that describes the possible connections between Werent points in the computation space gen- 

erated by the algorithm. 

It is natural to think of this separation as a separation of form and content. The k t  part then gives the form 
of the algorithm and the second part gives the speciiic content needed to compute a particular function. 

In GCLA I use this separation as a basis for a definitional higher order programming methodology. 

The programming system GCLA [I, 31 is based on the idea of viewing programs as definitions. A GCLA pro- 
gram consists of two definitions, R and D, where D simply is referred to as the definition and R is called the 
mle definition, since it defines the rules for how the definitions in D should be interpreted. The communication 
between R and D is based upon a set of primitive notions which are entirely justified by the interpretation of 
D as a definition. Among t h m  notions, the most important ones are K(a)? which gives the definiens of a in K, 
i.e. K(a) = {A I a = A  E K} and Dom(K), which gives the domain of K, i.e. Dom(K) = {a I %(a = A  E K ) } .  

The program separation scheme outlined above naturally translates into the two-level architecture of 
GCLA programs; the first part, describing the form of the algorithm? corresponds to the rule definition and the 
second part, describing the content of the algorithm, corresponds to the definition1. Thus, the basic idea of the 
methodology can be reformulated as to separating progmns into two definitions: 

(iii) The definition that abstractly defines the main rules, i.e. the form, of the algorithm using primitive oper- 
ations on definitions, e.g. K(a), Dom(K) etc. 

(iv) The definition that defines connections between the concrete representation of possible points in the com- 
putation space generated by the algorithm, i.e. the specific content of the algorithm. 

Since the communication between (iii) and (iv) only uses primitive operations on definitions it is possible to 
define the rules in (iii) without referring to any specijic definition in (iv). The methodology is thexefore, in 
some sense, a definitional higher order programming methodology. 
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Abstract 
This talk is based on the one we gave at the 5th Nordic Workshop 

last year ([I]). The starting point of the work reported in that talk was 
the host of Merent kinds of algebras that have been suggested in the 
literature as models of algebraic specifications, among them 

0 ordinary total algebras 

0 partial algebras 
0 ordered/monotonic algebras 

0 continuous algebras 
0 topological algebras. 

The goal of the work was to unify as many as possible of these algebra 
concepts into one. 

In the talk we presented a partial solution to this problem, viz. a 
general construction based on the following pammeters: 

0 a Cartesian category c 
0 functors 

- F : Set-C preserving finite products 
- G :  C-Set 

such that 
- F+G 
- F o G = Iset. (The composition is written in diagrammatical 

order.) 

F'rom these parameters we constructed 

0 a category of algebras of a given signature 
0 the subcategory of those satisfying a given set of equations. 

We showed that the two categories had initial objects strongly related to 
the ordinary term and quotient algebras, respectively. Finally, we showed 
how to apply this general construction to obtain total and ordered alge- 
bras. 

However, we felt that the requirement that FOG = Iset was rather ad 
hm. In the present talk we will show that thii restriction may be lifted, 
on the (rather weak) condition that the category C be lodly  small. 
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Automatic program construction from logical specifications 
is a way to obtain reliable software. Structural synthesis of programs 
is a method to transform formal specifications into effective program8 
via automatic proving solvability of the problem [I]. This technique 
can be also treated as satisfaction of functional constraint network 
using value propagation [2]. The method is powerful under certain 
conditions (see [2]) but it can be optimized for several particular 
caaes . 

In this paper involving regular data structures is discussed. 
Regular data structures like arraysI sequencesI vectorsI etc. appear 
in many applications. The simulation of data parallel computations on 
systolic arrays serves as an example of such systems. The formal theory 
for synthesis of programs on regular data can be obtained by adding 
inference rule which enables to construct cyclic programs for computing 
i-th element of the sequence if j-th element of the sequence and the 
regular relationship between neighbouring elements is known. The 
completeness and soundness of the theory is introduced and proven. 

The high order specification language which allows to define 
regular structures is observed. Two special abstract elements of a 
sequence "current1' and "nextl1 are invoked. Elements of a regular data 
structure can have complicated internal structure including another 
regular structure. The technique how to combine several one-dimensional 
structures to specify two- and n-dimensional arrays is described. 

The method for program construction described here is implemented 
as a specific feature or the NUT programming system [3]. The paper 
contains several examples of usage regular data in specifications in 
NUT language as well as programs which can be synthesized for solving 
problems on these structures. 

Demonstration of the NUT system including program synthesis on 
regular data structures is available. 
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G2-algebras are polymorphic, order-sorted algebras where sorts are terms in an 
equational theory. GTalgebras are still first order and have the classical quotient 
term algebra as initial model. They extend G-algebras [M&g90, HKK941 conserva- 
tively and are close to a two level, hierarchical fragment of unified algebra [Mos89]. 

In G2-algebras, we distinguish between sorts (or types), used for the description 
of possible arguments and range of a function, and combinators, which are algebraic 
functions. Domains of functions can be rather complex to describe. E.g. the domain 
of natural number substraction is the set of all pairs of natural numbers (x, y), s.t. 
x > y. This is not a regular tree language and therefore, it is not possible to describe 
this domain with the help of flat, linear function declarations only. 

One way to describe this domain is to use term declarations and semantic sorts. 
However, we want to calculate with the resulting definition of natural number sub- 
straction in form of a decorated term rewriting system [HKK93]. In [HKK93], we 
found that term declarations are hard to handle and underly strong restrictions 
w.r.t. their form, if they can be interpreted freely. Another solution consists in the 
use of sort functions. E.g., as shown in the following very simple example, we can 
define sorts corresponding to natural numbers and intervals on them. 

Example 1. Consider the following specification in pseudo-OBJ syntax, where we 
distinguish between capital and small letters: 

obj HATS 
kind Hats 
sorts  zero : -> Hats 

succ : Mats -> Hats 
sort-var X : : Mats 
ops 0 : -> zero 

s : x -> succ(X). 

In the initial algebra of this specification, which is unique up to isomorphism, 
succn(zero) is interpreted as singleton {sn(0)} and Nats is the set of all such 
singletons. Now intervals on natural numbers can be specified as follows: 

obj H A T S  
kind IMat s 
import  HATS 
sorts  leq : Hats -> IHats 

geq : Hats -> IMats 
between :Mats Hats -> IHats 

sort-var X,Y : : Hats 
subsorts X < leq(X) < leq(succ(X)) 

X < geq(X) > geq(succ(X) 
X < between(X,X) 
between(succ (X) , Y) < between(X, Y) 
between(X, Y) < between(X, succ(Y) ). 

* Visiting Prof. P.D. Mosses at BRIGS 09-12/1994, partially supported by ESPRIT Basic 
Research Working Group COMPASS 



Now, substraction maybe defined a s  follows: 

ob j HAT-SUBSTRACTIOH 
impor t  IHATS 
sort-vars X : : Hats 
vars x::X, y::leq(X) 

OPS - : X leq(X) -> geq(zero) 
axioms x Ã 0 = x 

s(x) - s(y) = x Ã y. 

The great difference between the last axiom and a conditional specification like: 

is the model notion. G2-models do not force Ã to be defined over all naturals, as 
this is the case for models of many-sorted conditional specifications. They allow to 
specify precisely the domain of a function. 

Suppose now that we have an analogous specification module INTS for integers 
ints, using an additional unary minus function -. Consequently, there may be two 
combinator terms representing zero: 0 and -0, a situation very common in real life 
computing. Addition can then easily be defined as follows: 

o b j  IHT-ADDITIOH 
impor t  IMTS 
ops  _+- : ints ints -> ints 
vars x, y::ints 
axioms x + 0 = x 

x + -0 = x 
x + s(y) = s(x + y) 

Now, addition plus may be defined in the standard way on sorts, too, i.e. with only 
one zero, namely zero. A kind of verification of the implementation of addition on 
the integers results then in proving that x + y is of sort X plus Y by structural 
induction. 

We hope to get a compromise between the expressiveness of unified algebras 
and the operational aspects of order-sorted algebras when using two levels of spec- 
ification - the higher one being dedicated to specification, the lower one for imple- 
mentation issues. This may provide a way to effectively compute with a fragment 
of unified algebras using term rewriting systems. Comparisons and bigger examples 
are currently under investigation. 
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Boolean automata are compact representations of synchronous reactive systems. The 
compactness manifests in avoiding the well-known "state explosion'' problem which 
arises from representing parallel composition by a standard product construction. 

In the computational model for synchronous reactive systems, time is assumed to 
be discrete, i.e. divided into enumerable number of non-overlapping segments, called 
instances of time. In every instance of time, a synchronous reactive system performs 
a secalled reactzon step, which consists in fetching inputs, computing, and emitting 
outputs. The fetch-comput+emit sequence is considered to be an atomic action which 
takes exactly one instance of time. A system may consist of several reactive components, 
running in parallel and communicating with each other. The components perform their 
reaction steps simultaneously, i.e. in the same instance of time, and the outputs emitted 
in one component are immediately available to all other components. Thus, communi- 
cation is based on instantaneous broadcasting, used in the synchronous programming 
langauges Esterel, Lustre and Argos, as opposed to instantaneous hand-shaking, used 
in synchronous CCS. 

In fact, we only consider pum synchronous reactive systems, i.e. those in which all 
inputs and outputs are pure signals. A pure signal does not carry a value. It is either 
present or absent, in every instance of time. 

It is convenient to represent a pure synchronous reactive system (with signals S), 
by a Mealy automaton whose transitions are labelled by pairs e/ef, where e, e' C S. A 

e/el 
transition u -of, where u and ut are states, describes a possible reaction step of the 
system. It has the following intuitive reading: provided the system starts an instance 
in state u and e is the set of all signals present during the instance, the system emits 
signals e' and finishes the instance in state ut. In such a setting, parallel composition 
of reactive systems is represented by a product of Mealy automata, which leads to the 
well-known "state explosion'' problem. 

It turns out that the transition relation of a pure synchronous reactive system can be 
coded by two sets of Boolean functions. The h t  one represents a set of (possibly recur- 
sive) Boolean equations whose solutions represent pairs e/et. The second one represents 
a set of simultaneous Boolean assignments which represent changes of states. 

In the paper, we show how to compose such Boolean automata using typical oper- 
ations, like sequential and parallel composition, choice, iteration and preemption. The 
main result is that a Boolean automaton grows lineary with the growth of a reactive 
synchronous system it represents. 
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In recent years a number of bisimulation equivalences have been proposed 
for value-passing process calculi, the inspiration coming from the study of 
the n-calculus. Milner, Parrow and Walker have distinguished between the 
late and early bisimulation equivalences corresponding to differences in 
binding time. It turns out that late bisimulation is a strictly finer notion than 
that of early bisimulation. A similar distinction between late and early 
binding can be made for the testing equivalences of Hennessy and De 
Nicola; here however, it turns out that the late and early testing 
equivalences coincide, as shown by I ngolf sdottir. 

Most recently, Sangiorgi has proposed an even finer notion of 
bisimulation, namely open bisimulation. A pleasant property of open 
bisimilarity is that it has a sound and complete equational theory for finite 
agents in the n-calculus 

In this talk we consider Plain LAL, a label-passing process calculus which 
differs from the n-calculus in that value communication is asynchronous in 
the sense of e.g. the Linda programming paradigm of Gelernter et al. We 
define the notions of early, late and open bisimulations and prove the 
surprising result that in the Plain LAL calculus, the three bisimulation 
equivalences coincide. 

We next consider an extension of Plain LAL, namely LAL, a higher- 
order calculus similar to CHOCSstudied by Thomsen and define the notions 
of early, late and open bisimulation on LAL terms. It again turns out that the 
three equivalences coincide. To the best of our knowledge, this is the first 
such result for a higher-order (CHOCS-like) process calculus and the first 
time that open bisimulation has been studied for such a calculus. 

Finally, we use the fact that the three equivalences coincide to give a 
sound and complete equational theory for finite Plain LAL agents. 



Denotational Semantics for Value-Passing Calculi-Late Approach 
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1 Abstract 

In the original work of Milner, [Mil80], on CCS and Hoare, [Hoa78], on CSP, processes are 
allowed to exchange data in communications. In these original calculi the value-passing calculus 
is interpreted in terms of the pure calculus in which communication is pure synchronization. A 
prefixing with an input action, ~ (x) .p ,  is interpreted as a non-deterministic choice between pure 
terms of the form &.p[v/x], where v ranges over the set of possible values, which in many cases 
is infinite. In this approach, two processes that synchronize are both supposed to know each 
other's channel and value, i.e. the data variable is instantiated by the potential input values 
already when the process reports the willingness or ability to communicate on the channel c. 

In a more recent work on the ~i-calculus, [MPW89], this semantic approach is referred to 
as early semantics due to the early instantiation of the data variables as described above. Its 
counterpart, the late semantics, is also introduced in the same reference. Here the idea is that 
the processes only synchronize on the channel name and that the input process has to accept 
whatever value the output process has to offer. This may be interpreted as if the result of the 
reception of the value is delayed until the process has received the value. The input process 
reports the willingness to communicate on a channel, c, by performing an action of the form 

u E, and thereby evolves to a function which waits for the value the output counterpart in the 
communication provides. Symmetrically the result of reporting the willingness to output an 
uninterpreted value on the channel c is modelled by the action c. By performing this action the 
process evolves to a term which basically consists of a data expression and a process expressions. 

In a more recent version of the ~i-calculus, the Polyadic ~i-calculus in [Milgl], the outcome of 
input and output actions are modelled by extending the syntax with the new constructions ab- 
stractions and concretions. For further motivation for this approach see for instance [MPW89], 
[Mil911 and [Ing93]. 

The aim of this talk is to develop a denotational semantics for languages with simple values 
based on the late approach described above although I will use a slightly different notation. 

The talk is divided into two main parts: a general theory to handle value-passing followed 
by an application to a concrete definition. In the first part I will introduce both a general 
syntax and a general class of mathematical models to model process algebras with values 
which support the late semantic approach. This is a direct generalization of the standard S- 
terms and S-domains that appear in [He881 to model the pure calculus. For this purpose I will 
introduce the general notion of applicative signature (S, C) where S is a signature and C a 
set (of channel names) and that of (S, C)-terms. This is basically the syntax of the Polyadic 
~r-calculus presented in [Mil911 although I only allow simple values and allow S to be any set 
of operators. I also introduce the general class of applicative (S, (7)-domains to model the 
semantics of the (S, C)-terms. Here the late semantic approach is made explicit; the outcome 
of an input action is modelled as a function which takes a value and returns an element of 
the model, i.e. a processes whereas the outcome of an output action is modelled by a pair 
consisting of the out-putted value and the resulting process. 

After having defined our general class of models I will modify the definition of evaluation 
mappings, i.e. the unique mapping from the process algebra into the domain known from 



the theory for pure processes. As I want to be able to reason about a subset of the process 
algebra, I will extend the definition slightly. For this purpose I will introduce the notion of 
recursively closed subsets of a process algebra. This extension of the definition allows me to 
reason about the compact elements of an algebraic cpo on the syntactic level. This enables me 
to take advantages of the notion of algebraicity when comparing the semantics defined by the 
model to other kinds of semantics such as behavioural or axiomatic semantics. 

Next I will apply the general result for algebraic cpos ([Bar84]): functions which are mono- 
tonic on the compact elements of an algebraic cpo can be extended to continuous functions 
on the whole cpo in a unique way. This property enables me to turn an algebraic cpo into a 
(E, C)-model by defining the operators on the compact elements and making sure that they 
are monotonic. In this way I can take their unique extension to be their definition on the whole 
domain. 

Then a concrete language and its semantics is given. The language is a modification of the 
original CCS according to the late approach. This is obtained as the (E, C)-terms where E is 
instantiated with the standard operators of CCS. Then a concrete denotational model, Applica- 
tive Communication Trees, is defined, an instantiation of the general class of (S, C)-domains. 
The carrier, an ^algebraic cpo, is defined as a solution to a recursive domain equation, a 
direct generalization of Abramsky's model for SCCS presented in [Abr92]. Then I will apply 
the described theory to define the operators, i.e. by defining them as monotonic endofunctions 
on the PO of compact elements and then extend them to the whole cpo. 

Finally I will define a proof system to reason about our language and proof it's soundness 
and completeness with respect to the denotational semantics derived from the model. The 
w-algebraicity together with the construction of the operators enables me to reduce the proof 
of the completeness and soundness to a proof of the same property for a sublanguage which 
denotes exactly the compact elements of the model. 
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CBS (Calculus of Broadcasting Systems) is a process calculus in which 
broadcast is the fundamental communication paradigm. In a CBS system 
every parallel sub-process participates in any action that the system may 
perform. In that sense CBS is a synchronous calculus of the same type as 
SCCS. 

CCS on the other hand is an asynchronous calculus. At most two 
subprocesses participate in any action of a particular parallel system. 

' - 
We show that by adding a priority choice operator to CCS, these two m e r e n t  
views of communication and parallellism may be reconciled in the sense 
that any CBS system may be translated to a term in CCS with priority choice. 
A CBS synchronization must necessarily correspond to a sequence of 
transitions in the CCS model, and the priority choice operator enables us to 
ensure that such sequences terminate correctly. The translation of CBS 
terms is correct in the sense that two CBS terms are strongly bisimilar if 
their translations are  weakly bisimilar. Due to the multiway 
synchronizations in CBS this is the simplest relation between a term and its 
translation that we can hope for. 
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There are many programming problems that can be formulated independent of a specific datatype. For 
example, the pattern matching problem can be informally specified as follows: given a pattern and a text, 
find the first occurrence of the pattern in the text. The pattern and the text may be both listsl or they may 
be both trees, or they may be .both multidimensional arrays, etc. Many algorithms solving a programming 
problem which is originally formulated on the datatype List have later been extended to solve 'the same' 
problem on other datatypes. 

I call a function that is defined on arbitrary datatypes a polytypic function, i.e., a polytypic function is a 
function that is defined on lists, binary trees, and all other 'tree-like' datatypes. A familiar example of a 
polytypic function is the function map, which takes a function f : a + b ,  and a value of some datatype D a 
(for example lists over the type a or binary trees over the type a), and applies function f to all elements of 
type a in the value, obtaining a value of type D b. Often a polytypic function is also polymorphic, but it 
ueed I I G ~  be. An example of a polytypic function that is noL polymorphic is the .function that generalises 
summing a list to arbitrary datatypes. 

In this talk I discuss polytypic functions. I combine the polytypic functions that have been defined in the 
Bird-Meertens calculus, a calculus for transformational programming developed over the last decadel with 
inductive definitions of natural transformations to build new polytypic functions. Examples of such new 
polytypic functions are the function s i ze ,  which generalises the function length  defined on lists to arbitrary 
datatypes, and the fnnction pat ternmatch,  which generalises a version of the pattern-matching algorithm 
of Knuth, Morris, and Pratt to arbitrary datatypes. firtherrnorel I discuss Hollum, an experimental 
system that supports polytypic programming. Using Hollum it is possible to use functions like mapData, 
and pa t t e rnma tchDa ta  for every d a t a  Data declared in the program. Hollum takes a program written in 
the functional programming language Gofer, and returns the same program to which instances of polytypic 
functions are added for each data declared in the original program. 

This is joint work with Graham Hutton (Utrecht University) and Oege de Moor (Oxford University). 



Synthesizing Real Time Systems 
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During the last few years the area of real time systems has received a lot of 
attention from the research community. In particular, a variety of specification 
formalisms has emerged allowing real time properties to be expressed explicitely. 
These specification formalisms may roughly be divided into two groups, namely: 
real time logics (e.g. [RT89, CHR911) and real time process algebras (e.g. [Y.W90, 
N JV]). 

Central to the ongoing research has been the construction of model-checking 
algorithms; i.e. algorithms for deciding whether a given real time systems 

,. satisfies a given formula. A number of model-checking algorithms exists for real - timed logics [ACDgO] and recently algorithms for model-checking in the setting 
of real time process algebra has been given [Cer92, LW93]. 

In this paper, we deal with the more ambitious goal of model-construction; i.e. 
given a real time specification (logical or process algebraic) we want to automat- 
ically synthesize a real time system satis&ing the specification (if such a system 
exists). We consider the model-construction problem in the setting of implicit 
specifications, i.e. : 

(A1 1 . . . lA.n 1 X) sat S 

Here Al . . . An are given real time systems 3, S is the (given) overall specification 
and the problem is to construct a solution for X which when put in parallel with 
Al . . . An will satisfy S. We provide a generic model-construction algorithm for 
(1) which will be applicable both for S being a logical specification as well as 
a process algebraic specification '. Also, our notion of parallel composition is 

Ired time system = timed automata [AD901 V TCCS agent [Y.W90] V . .  . 
21n process algebra model-checking consists in checking a suitable behavioural relationship 

(bisimilarity, say) between the implementation and the specification. 
3T0 be precise Al . . .An are one-clock real automatas or equivalently regular TCCS agents. 
4 ~ n  fact we introduce a real-time v-calculus. 
5For S being a process algebraic specification our method allows sat to be either timed 

bisimilarity or timeabstracting bisimilarity. 



parameterized on a synchronization function allowing a range of existing notions 
of parallel composition (CCS, CSP and ACP) to be obtained as instances. 

Our work can be seen as a real time extension of existing model-constructing 
algorithms for finitestate systems. For n = 0 the model-construction problem 
for (1) extends classical model-construction methods. For S a process algebraic 
specification the model-construction problem for (1) is a real time extension of 
the equation solving problem studied in [LXgO]. For S a logical specification our 
work is related to and extends the work on contexts as property transformers 
studied in [LXgl]. The work reported is based on and extends that of [AKNP94]. 
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This talk explores a new formulation of the semantics of actions, the specification 
entities of action semantics. We specify a reduction semantics for actions and 

. . investigate how this formalism enables us to reason directly about operational 
equivalence of actions. 

The reduction semantics is a small-step operational semantics defined as a 
term rewriting system specified in terms of evaluation contexts. Intermediate in- 
formation is represented syntactically during processing. The syntactic represen- 
tation of configurations in the operational semantics forms a convenient starting 
point for equational reasoning about operational equivalence. 

Similar reduction semantics for Scheme- and ML-like functional languages 
with imperative operations and control operators have formed the basis for pow- 
erful operational reasoning in work by Matthias Felleisen, Ian Mason? Carolyn 
Talcott, and others. This talk is essentially an attempt to fit actions into the 
framework of Mason and Talcott and investigate whether it will prove as power- 
ful a vehicle for action theory as it is in their functional setting. 

The motivation for carrying over the techniques for operational reasoning to 
the world of actions is that action semantics is a general semantic description 
framework. Therefore, a strong equational theory for actions can be applied 
more easily and more generally for reasoning about programs and programming 
languages than previous work in the field based on various simple functional 
languages. 

* ~ a s i c  &search in Computer science, 
Centre of the Danish National Research Foundation. 
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We will give a description of incremental type checking, which is the main tool 
for doing interactive proof development in ALF. 

ALF is based on Martin-Lofs type theory, which is a logical framework in the 
sense that the language can be extended with new definitions. The language is 
a functional language with dependent function types, which can be extended 
with datatypes, functions and constants as new definitions, in the spirit of 
traditional functional languages. The dependent function type gives us a richer 
type system, in which propositions and specifications of programs can be 
represented. Thus, the relation 

can denote a program e of type T or a proof e of proposition T. This relation is 
decidable and the type (proof) checking algorithm is the core of the proof editor 
ALF. However, the objective of ALF is to interactively build proof terms or 
programs, in a flexible and safe way. For this purpose we have extended the 
language with the notion of placeholders (meta variables) which denotes sub- 
terms intended to  be filled in. Hence, an incomplete proof term is a term 
containing placeholders, and proof refinment corresponds to  successively 
replacing a placeholder by a (possibly incomplete) sub-term. 

The type checking algorithm is extended to handle incomplete terms which 
gives as result a unification problem, i.e. a set of equations and typing 
restrictions of the placeholders occurring in the incomplete term. This set 
corresponds to  the requirements which must be satisfied in future 
refinements. The unification problem can not always be solved, due to higher 
order placeholders, and unsolved equations are left as constraints restricting 
future instantiations of the placeholders. Correctness of a refinement is 
established by type checking the refined (incomplete) proof term. Thus, proof. 
refinement is reduced to type checking incomplete proof terms. 



Preprocessing by Program Specialization * 
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As is well-known, searching for a string in a given text can be linearized in the string 
by preprocessing the text. Most preprocessing algorithms have been devised either top-down 
by instantiating abstract properties on words ( e.g., Knuth's derivation of the Knuth, Morris, 
& Pratt linear string-matching algorithm from Cook's theorem), or bottom-up by observing 
possible regularities in the structure of the text. The present work describes an alternative 
approach to preprocessing that uses properties of a simple two-arguments matching program 
to determine structures yielding linear matching. We mechanically deduce a one-argument 
linear matching program and its tree-like data structures by specializing the two-arguments 
program with respect to a text. 

We consider the usual naive and quadratic solution: a string occurs in a text if it is a 
prefix of one of the suffixes of the text. 

We use program specialization, or partial evaluation: specializing a source program with 
respect to part of its input yields a specialized version of the source program that, given the 
rest of the input, yields the same result as the source program, given the whole input. The 
correctness and the computability of program specialization stem from Kleene's SF-theorem. 

The naive quadratic program expects any string and any text and returns the position of 
that string in that text or -1. Specializing this source program with respect to the text "aba" 

. . automatically yields a residual program that expects a string and returns the position of this 
string in "aba" or -1. This residual program can be expressed graphically by representing 
a successful test against the character a as the transition 3, and where each node 0 has 
two implicit transitions: a success one if the pattern ends there, and a failure if no character 
matches the explicit transitions. This yields the following tree (the left picture), which makes 
it possible to match a string linearly. 

Because it has to keep track of the positions, this tree grows quadratically with the text. 
We first try to fold it by relaxing the requirement upon the source program to return the 
position of a string in a text: we only want to know whether this string occurs in this text. 
Specializing the corresponding source program with respect to the text "aba" automatically 
yields a residual program that expects a string and determines whether this string occurs in 
"aba" by traversing the string linearly. But this is not enough: the tree could be folded into 
a direct acyclic word graph (the right picture). We conclude by showing how to obtain this 
folded tree (a.k.a. a Weiner tree) by partial evaluation. 

This approach generalizes the now traditional derivation of the Knuth, Morris, & Pratt 
linear string-matching program by partial evaluation of a naive and quadradic string-matching 
program. 

*Submitted to the 6th Nordic Workshop on Programming Theory. 
Computer Science Department, Ny Munkega.de, 8000 Aarhus C, Denmark. E-mail. (karoline, danvy) 

daimi.aau.dk - Our work is supported by the DART project funded by The Danish Research Councils. 
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Abstract 

Starting from the process algebra for Concurrent ML we develop two program analyses 
that facilitate the intelligent placement of processes on processors. Both analyses are ob- 
tained by augmenting an inference system for counting the number of channels created, the 
number of input and output operations performed, and the number of processes spawned 
by the execution of a Concurrent ML program. One analysis provides information useful 
for statically determining for each fork operation on which processor all spawned processes 
should reside, whereas the other provides information useful for dynamically deciding for 
each newly spawned process which processor it should reside on. We prove the soundness of 
all analyses and demonstrate how to implement them; the latter amounts to transforming 
the syntax-directed inference problems to instances of syntax-free equation solving problems. 
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Abstract 

We develop a logic for reasoning about requirement specification of processes with 
(internal and external) non-determinism. We try to achieve conceptual simplicity by 
avoiding the use of infinite sequences, and by formulating a proof system within first or- 
der logic, with a non-standard interpretation. In particular, non-deterministic processes 
are specified by means of a simple event relation, called the ready relation, whereas the 
underlying semantics is a set of models, each with a set of such relations. 

By weakening the usual requirement of (sequence prefix) monotonicity, we obtain 
an expressive specification language, enabling us to relate incompatible executions in 
the same specification, without the risk of making meaningless or inconsistent specifi- 
cations. It is possible to specify internal non-determinism without underspecification. 
Our language is expressive enough to avoid he Brock-Ackennan anomaly and the merge 
anomaly. 

We present a sound and (relative) complete basic proof system. The classical rules 
and axioms of first order logic with equality are sound. In addition, some rules and 
axioms are needed for the ready relation and other process operators considered. Re- 
finement may be done in two ways: By enriching a specification over a set of processes, 
one may refine several processes (reducing the set of possible models). By the explicit 
refinement operator, one may refine a single process (reducing the number of executions 
in each model). 



A Type System Equivalent to Flow Analysis 
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Flow-based safety analysis of higher-order languages has been studied by 
Shivers, Palsberg, and Schwartzbach. Open until now is the problem of 
finding a type system that accepts exactly the same programs as safety 
analysis. 

We have proved that Amadio and Cardellits type system with subtyping and 
recursive types accepts the same programs as a certain safety analysis. The 
proof involves mappings from types to flow information and back. As a 
result, we obtain an inference algorithm for the type system, thereby 
solving an open problem. 



Specifying and Verifying Parametric 
Processes 

Wieslaw Pawlowski* Pawel ~ ~ c z k o w s k i t  Stefan Sokolowski* 

Abstract 

A typical approach to software development is that of decomposition of large tasks 
into smaller subtasks. In more formal terms, a task of providing a construction 
that meets a given specification can be decomposed as follows: 

1. provide sub-constructions that meet some sub-specifications into which the 
original specification is decomposed, and 

2. provide a parametric construction which yields an object that meets the 
original specification when applied to sub-constructions described in point 1. 

When the sub-constructions are again decomposed into smaller bits the param- 
eters become parametric themselves and we have to deal with higher order pa- 
rameters. 

We apply the methodology sketched above in the context of concurrent process 
specification and verification. As a starting point we adopt a process algebra and 
logic for specifying processes proposed by E.-R. Olderog. However, rather than 
considering mixed terms a s  Olderog does, we introduce parametric processes that 
contain process variables. We allow higher order parametricity, where process 
variables can represent parametric processes. Technically speaking, Olderog's 
process algebra is extended with abstraction and application primitives. This 
leads to a formalism resembling a typed lambda calculus built on top of a process 
algebra, where higher order specifications play the role of types. A proof system 
for deriving judgements "a process meets a specification" is provided. 

The developed formalism allows one to  do a systematic book-keeping of pro- 
cess dependencies that is useful in higher order constructions. At this stage of 
our research no attempt was made to  extend process algebra operators to higher 
order constructions. 

"Institute of Computer Science, PAS, Gdahsk, Poland; supported by ICS PAN, KBN grant 
PB-1312/P3/92/02 and GRIT. 

tchalmers Technical University, Goteborg, Sweden, and University of Gdahsk, G d h k ,  
Poland; supported by GRIT and CONCUR2 



Formal Derivation of A FEAL Processor 

We present a method for formal derivation of asynchronous VLSI circuits. The proposed method 
focuses on transformational style of design and it uses methods familiar from the design of parallel pro- 
grams. Refinement calculus and action systems are used as a framework in the formal design process. The 
refinement calculus and the stepwise refinement of parallel programs as action systems were introduced 
in the papers of Back and Sere [I, 21. 

A novel method exploiting parallel programming techniques for VLSI design was introduced by Martin 
[3]. The method of Martin is, however, semi formal. Our goal is to formalize this method within the 
refinement calculus thereby giving it a completely formal basis. 

The second goal of our work is the mechanisation of the design process. The refinement calculus itself 
has been formaliied within a mechanical theorem prover by von Wright [4]. Hence, each transformation 
step can be expressed as a refinement rule and the entire circuit can be mechanically proved correct via 
refinement calculus. 

As a case study we look at the design of an asynchronous PEAL (Fast Encipherment Algorithm) 
processor [5]. The synchronisation of communication between parts of the circuit is very tricky in its 
design. Here, a recent add to the action systems, the procedures mechanism [6], was found extremely 
useful . 
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Temporal logic is an appropriate formalism to reason about concurrent 
systems. We consider here the branching propositional temporal logic BPTL. 
An underlying model of the logic is a tree like construction, i.e. any instant 
of time may split into different possible futures. BPTL is a subsystem of 
branching time logic introduced in [BPM]. The language of BPTL contains 
the usual propositional connectives and the following temporal modalities 

Â (here u ranges over formulas): QU ( "u is true in each next state"), @u("u 
is true in some next state), n u  ("u is always true from now on ") ou("u is 
eventually true"). 

In this paper we present nonclausal resolution proof system for BPTL. 
Nonclausal resolution has the advantage over the classical clausal resolution 
of not requiring formulas to be in clause form. We prove soundness and 
completeness of the presented system. The proof of completeness uses tableau 
construction for BPTL. The idea to use tableau construction in order to prove 
completeness of nonclausal resolution proof system is adopted from [AM]. 
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A Graph-Form for Gamma Programs 

David Sands 
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The Gamma model is a minimal programming language based on local 
multiset rewriting (with an elegant chemical reaction metaphor). A calculus 
of Gamma programs has been studied for programs built from basic 
'reactions", plus parallel and sequential composition operators. The salient 
(and unusual) feature of the composition operators for Gamma programs is 
that for termination, the parallel composition operator demands that its 
operands must terminate synchronously. 

In this talk we discuss a new static graph representation for Gamma 
programs, and argue that it forms a better basis for the study of compositional 
semantics, refinement, true concurrency and program logics. Operationally, 
Gamma graphs are like flow-charts, where each node corresponds to a simple 
form of loop. A node represents a set of reactions which are concurrently 
active; an edge represents an internal termination step, where the child node 
may inherit some reactions from the parent but adds some new active 
reactions. 

We compare this form with previous compositional semantics based on 
'reactive traces" (a la Brookes 1 de Boer et al) derived from SOS rules, and show 
that the refinement laws can be more easily obtained, with the help of a 
compositional construction of Gamma graphs. We also show that reasoning 
about relational properties using Gamma-graphs recovers the simplicity of 
reasoning seen in Banatre and Le Metayer's original study. 



Towards Operational Semantics of Contexts 
in Functional Languages 
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The idea of providing an operational semantics for contexts has been studied by 

Larson (et al) for process algebras. In that setting, a context is an action 
transducer which consumes actions provided by its internal processes (the 
holes) and produces eternally observable actions. 

We describe some initial steps towards providing an operational semantics for 
contexts in a functional setting. In a functional language, the role of a n  
"actiont' is played by a lazy data constructor, or a lambda term. Giving a full 
operational semantics for contexts is difficult because: 

contexts can consume without producing an observable; 
contexts can duplicate holes; 
contexts which consume an n-ary constructor must increase the number of 
distinct holes by n; 
contexts can capture variables by means of binding operators eg. lambda- 
expressions. 

As a first step toward an operational semantics for contexts in a functional 
language, we study two restrictions: 
a) a fall context semantics for a restricted first-order functional language with 

recursive definitions and nullary and unary (lazy) constructors. 
b) a context semantics for a restricted class of contexts (a form of guarded 

contexts) for a higher-order language with binding operators and arbitrary 
lazy constructors. 

In case (a), the context semantics subsumes the usual call-by-name semantics 
for expressions. We conjecture that  for each derivation in the context 
semantics, a derivation exists in which any judgement about a function call 
can compositionally described in terms of the function context and the 
argument part. The corresponding proof abstractly represents the amount of 
computation performed in call-by-need computation. 

The characterisation of contexts in case (b) finds immediate application to the 
problem of correct folding in program transformation. It also provides an 
applicative "bisimulation up to context" proof technique, a la Sangiorgi. 
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In [I] the authors show that the non-interleaving behaviour of Petri nets can be 
understood in terms of symmetric monoidal categories-where objects are states, 
arrows processes, and the tensor product and the arrow composition model re- 
spectively the operations of parallel and sequential composition of processes- 
yielding in this way a unification of the process-oriented and the algebraic view 
of net computations. A natural complement to  the ideas of [I] is provided by [3], 
which gives a purely categorical axiomatization of the category of the computa- 
tions of a net, thus yielding a description of the causal behaviour of nets as an 
essentially algebraic theory (whose models are monoidal categories). However, 
this construction is somehow unsatisfactory, since it is not functorial. More 
strongly, given a morphism between two nets, it may not be possible to identify 
a corresponding monoidal functor between the respective categories of computa- 
tions. This fact, besides showing that our understanding of the structure of Petri 
nets is still incomplete, has also other drawbacks, the most relevant of which is 
probably that it prevents us to identify the category (of the categories) of net 
behaviours, i.e., to axiomatize the behaviour of Petri nets "in the large." 

The talk presents an analysis of the problem and a possible solution based on 
the newly introduced notion of strong concatenable processes. These are a slight 
refinement of the standard notion of process: namely, they are non-sequential 
processes whose minimal and maximal places are linearly ordered. We shall 
prove that strong concatenable processes are, in a very precise sense, the least 
refinement of non-sequential processes which can be expressed axiomatically in 
the style of [l, 31 via a functorial construction. As a first consequence of this 
result, we can formulate a possible definition of the catego y of net computations. 

Although we are aware that this contribution is just a first attempt towards 
the aims of a functorial algebraic semantics for nets and of an axiomatization 
of net behaviours "in the large", we think that the results illustrated in the 
talk help to deepen the understanding of the subject. In addition, from the 
categorical viewpoint, our approach is quite natural and elegant. 

These results appear also in [2, 41, 

[I] P. DEGANO, J. MESEQUER, AND U. MONTANARI. Axiomatizing Net Computa- 
tions and Processes. In Proceedings of the 4th LZCS Symposium, pp. 175-185, 
IEEE, 1989. 

[2] V. SASSONE. On the Semantics of Petri Nets: Processes, Unfoldings, and Infinite 
Computations. PhD Thesis TD 6/94, Dipartimento di Informatica, University di 
Pisa, March 1994. 

[3] V. SASSONE. Some Remarks on Concatenable Processes.. Technical Report 
TR 6/94, Dipartimento di Informatica, Universith di Pisa, April 1994. 

[4] V. SASSONE. Strong Concatenable Processes of Petri Nets. To appear as technical 
reports BRICS, Computer Science Dept., Aarhus University and Dipartimento di 
Informatica, University di Pisa, 1994. 



Backward Refinement for Verifying Distributed 
Algorithms 

K. Sere* M. Waldh** 

We present a new verification method for distributed algorithms. The basic idea is 
that an algorithm to be verified is stepwise transformed into a high level specification 
through a number of correctness-preserving steps. At each step some mechanism 
of the algorithm is identified and abstracted away while the basic computation in 
the original algorithm is preserved. In this way the algorithm becomes more coarse- 
grained. Only the essential parts of the algorithm are then left for final verification. 

The method is formalized within the refinement calculus [I] using superposition 
refinement [2] in a backward direction. 

The idea is as follows. We verify an algorithm through a number of backward 
refinement steps. Each step can be verified within the refinement calculus using the 
superposition refinement rule. The correctness of the final algorithm is then easily 
verified, thereby establishing the correctness of the original algorithm. An extensive 
case study is described in [41. An additional contribution of the backward refinement 
method is that the algorithm will be described as consisting of some basic computation 
and a number of mechanisms added on top of this. 

Our method is closely related to the reduction method of Lipton [3]. In contrast 
to Lipton, the method presented here is based on a formal calculus, the refinement 
calculus, for reasoning about programs. The main purpose of the refinement calculus 
is to provide a basis for the stepwise refinement approach to program construction. 
Our work shows how this calculus can be used to verify an algorithm. 
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Strictness analysis has proved useful in the implementation of lazy functional 
languages as Miranda, Lazy ML and Haskell: when a function is strict i t  is safe 
to  evaluate its argument before performing the function call. Totality analysis is 
equally useful but has not be adopted so widely: if the argument to a function is 
known to terminate then it  is safe to evaluate it before performing the function 
call. 

In this talk we present an inference system for performing strictness and 
totality analysis. We restrict our attention to a simply typed lambda-calculus 
with constants and a fixpoint operator. The inference system is an extension of 
the usual type system in that we introduce three annotations on types t: 

! t :  the value has type t and it definitely 1, 

Pt:  the value has type t and is definitely not 1, and 

! t :  the value has type t and it can be any value. 

Annotated types can be constructed using the function type constructor and 
(top-level) conjunction. As an example a function may have the annotated type 

(!"Int -+ P i n t )  A (!"nt -+ !"nt) which means that given a terminating 
argument the function will definitely terminate and given a non-terminating 
argument it  will definitely not terminate. Thus we capture the strictness as 
well as the totality of the function. Strictness and totality information can also 
be combined as in ( ^ i n t  -  ̂ P i n t  -+ P i n t )  A ( P i n t  -+ ^ i n t  -  ̂ P i n t )  

A ( lblnt  -+ !^1nt -* !^1nt) which will be the annotated type of McCarthy's 
ambiguity operator. 

We give examples of its use and prove the correctness with respect to  a 
natural-style operational semantics. 

*Dept. of Math. and Computer Science, Odense University, Denmark 



Functional Logic Programming in GCLA* 

Olof Torgersson 

Department of Computing Science, Goteborg University 
S-412 96 Goteborg, Sweden 

oloft@cs.chalmers.se 

1 Introduction 

Through the years there have been numerous attempts to combine the two main declarative programming par- 
adigms functional and logic programming into one framework providing the benefits of both. The proposed 
methods varies from different kinds of translations, embedding one of the methods into the other, to more inte- 
grated approaches such as Horn Clause Logic with equality [4] and Constraint Logic Programming [I]. 

A notion shared between functional and logic programming is that of a definition, we say that we define 
functions and predicates. The programming language could then be seen as a formalism especially designed 
to provide the programmer with an as clean and elegant way as possible to define functions and predicates 
respectively. Of course these formalisms are not created out of thin air but are explained by an appropriate 
theory. 

In GCLA [5] we take a somewhat different approach, we do talk about definitions but these definitions are 
not given meaning by mapping them on some theory about something else, but are instead understood through 
a theory of definitions and their properties, the theory of Partial Inductive Definitions (PID) [31. This theory 
is designed to express and study properties of definitions, so we look at the problem from a different angle and 
try to answer the questions; what are the specific properties of function and predicate definitions and how can 
they be combined and interpreted to give an integrated functional logic computational framework based on 
Pro. 

A GCLA program consists of two communicating partial, inductive definitions which we call the (object 
level) definition and the rule definition respectively. The rule definition is used to give a meaning to the con- 
ditions in the definition and it is also through this the user queries the definition. We present a rule definition 
to the class of functional logic program definitions. This rule definition implicitly determines the structure of 
function, predicate and integrated functional logic program definitions. We will also show how the knowledge 
that a definition defines a functional logic program can be used to automatically generate better proof-search 
strategies enhancing efficiency and enabling us to write more concise definitions. These rule definitions use 
and develop ideas from [2]. 

We illustrate with an example. The definition below combines lazy evaluation of functions with indeter- 
minism and backtracking into a generate and test program producing all subsets of set having a sum = K. 

sum_of_subsets (Set,K) <= sum_eq(subset (Set), 0,K) . 

sumeq(~l,Acc,K) <= (Acc = K)-> [ I .  % readA->Bas i f A  thenB 
sumeq( [XIXsl ,Acc, K) <= (X+Acc=<K) -> [XI sumeq(Xs,X+Acc, K )  ] . 

subset ( [ ] ) <= [ ] . 
subset([XIXsl) <= [Xlsubset(Xs)l,subset(Xs). % read this I , '  as or 

References 

1. H. Alt-Kaci, A. Podelski, Towards a Meaning of Life, Journal of Logic Programming, vol 16, pp 195- 
234,1993. 

2. G. Falkman, 0. Torgersson, Programming Methodologies in GCLA, in, Extensions of Logic 
Programming, Springer Lecture Notes in Artificial Intelligence, vol798,Springer Verlag 1994. 

3. L. Hallnib, Partial Inductive Definitions, Theoretical Computer Science, vol87,pp 115-142,199 1. 
4. M. Hanus, The Integration of Functions into Logic Programming; From Theory to Practice, Journal of 

Logic Programming, ~0119120, pp 583-628,1994. 
5. P. Kreuger, GCLA 11, A Definitional Approach to Control, in, Extensions of Logic Programming, 

Springer Lecture Notes in Artificial Intelligence, vol. 596, pp 239-297, Springer Verlag, 1992. 

* This work was carried out as part of the work in ESPRIT working group GENTZEN and was funded by the Swedish 
National Board for Industrial and Technical Development (NUTEK). 



Extensions of Structural Synthesis of Programs 

Tarmo Uustalu 
Dept of Teleinformatics, The Royal Institute of Technology 

Electrum 204, S-164 40 Kista, Sweden 
email tarmo@it . kth  . se 

fax +46 8 751 1793 

Structural synthesis of programs (SSP) as proposed and described by Mints and Tyugu [MT90] 
is an approach to deductive synthesis of functional programs using types as specifications and based 
on the Curry-Howard correspondence and on a very intensional treatment of the notion of type. The 
approach has a practical orientation and a feasible balance has been sought between expressiveness of 
the specification language and efficiency of proof search. The work is related to automated software 
engineering, programming in type theories, and automated theorem proving. 

The proof search technique employed in SSP has been described in different formulations by a number 
of authors: Maslov (the inverse method) [Ma64], Mints (generalized resolution) [Mi88], Stiilmarck (the 
assure-method) [S90]. We like to think of the technique as a strategy of forward search in natural- 
deduction calculi where conclusion generation is limited to sequents that potentially might participate in 
a normal derivation of the goal formula and where conclusion generation under an extra hypothesis or 
variable substitution is tried only if no new conclusions can be derived otherwise. Importantly, derivation 
of proof-theoretically easy goal formulae (this notion is formalized!) is efficient and specifications one 
usually would write in practice are proof-theoretically easy. 

In the implemented systems of SSP, the underlying logic has been propositional. The proof search 
technique, at the same time, is known to be applicable in first-order and modal logics. In the paper, we 
show that such extensions of the underlying logic allow for a style of specification where the hierarchical , 

structure of the type world of the programming knowledge being specified is explicit and for proof 
search that takes real advantage of this explicitness. We discuss the specification methodology and the 
completeness and complexity of the appropriate proof search algorithms. The part concerning usage of 
modal logics as medium for specifying and reasoning about concept hierarchies is related to the author's 
earlier work [U92]. 
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This paper presents ACBS, Algebra of Broadcasting Systems, a process 
calculus characterised by value passing + sequential composition + broadcast 
communication. 

ACBS is based on CBS, Calculus of Broadcasting Systems, a CCS-like calculus 
with broadcast communication instead of handshake, and on ACP, Algebra of 
Communicating Processes, a family of calculi built with sequential 
composition. 

Â Â 

The paper presents a complete axiomatisation for non-recursive "pure" ACBS 
processes with respect to strong bisimulation. The use of three different 
merge" operators as in  ACP makes finite axiomatisation possible. It then 
proposes several extensions to the  calculus, such as translation and  
recursion, and discusses their effects on axiomatisation. An example 
illustrates the equational style of reasoning provided by the axiomatisation. 

The differences between prefixing and sequential composition, which are not 
so drastic in the "pure" calculi, become quite apparent when value passing is 
added. A section about value passing discusses how different programming 
styles emerge from the different connectives in the calculi. Whereas sequential 
composition leads to a n  imperative-style semantics involving program 
environments, prefixing more closely resembles evaluation in a functional- 
style language. 

Finally, the discussions from the preceding section lead to the presentation of 
the value passing version of ACBS. 



A Case Study in Timed Modal Specification 

Carsten Weise 
Lehrstuhl h e r  Informatik I 

University of Technology 
52074 Aachen - Germany 

Email: carsten@l.informatik.mth-aachen.de 

We will specify processes by labelled modal transition system. The 
transitions in modal transition systems come in two flavors: may- and must- 
transitions. A refinement relation identifies the suitable implementations of 
a specification. An implementation is a transition system with only one type 
of transition (alternatively a modal transition system with only must- 
transitions). Intuitively an implementation must 
consist of all must-transitions and may (or may not) have the may- 
transitions of the specification. 

Instead of using a graphical representation (i.e. transition systems) one can. 
also express the specification in logic formulae in the modal mu-calculus. 

Time Modal Specifications (TMS) use a transition system with a time 
domain. The chosen domain here will consist of the real numbers. Despite 
the denseness of this domain, and therefore the typically infinitely large 
transition systems, using methods from the theory of timed automaton, 
namely timer regions, an automatic treatment of many problems (e.g. is P a 
refinement of Q?) is possible. 

The talk will demonstrate the usehlness of this approach by applying Timed 
Modal Specifications to an example. The example is that of a lossy remote 

procedure call, implemented on top of a reliable memory. In the talk a 
specification of the remote procedure call and the memory component will be 
given, and several properties of the specifications will be proved. 

The results presented are joint work with Kim Guldstrand Larsen and 
Bernhard Steffen. 
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Order-sorted mwriting is often used in connection with order-sorted spec- 
ifications (i.e. many-sorted specifications with subsort relations), e.g. in au- 
tomated theorem proving. Termination and confluence are important prop- 
erties of a rewrite system, but in general it is undecidable whether a rewrite 
system satisfies these properties. 

Numerous techniques have been developed that with varying degrees 
of success may be used to prove termination of unsorted rewrite systems. 
These techniques may also be used to prove termination of order-sorted 
rewrite systems by simply ignoring the sort information, because an order- 
sorted system always terminates whenever the corresponding unsorted sys- 
tem terminates. These methods are not satisfactory, since there are many 
terminating order-sorted rewrite systems that do not terminate if the sorts 
are ignored. 

We propose a stronger method for proving termination of an order-sorted 
rewrite system by transforming it to an unsorted system, such that termi- 
nation of the latter implies termination of the order-sorted system. We 
can thus use the well-known techniques for proving unsorted termination to 
prove order-sorted termination. 

The main idea of our method is to label a function symbol with the sorts 
of its arguments. If a function symbol f takes arguments with sorts s and 
st ,  then fs and fsj are treated as distinct function symbols in the unsorted 
system. 

Our method, which can be used on non-sort-decreasing systems as well, 
includes as special cases previously published methods, including the method 
that just ignores sort information. 



Demonstration of ALP 
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We refer to our abstracts on pages 15 and 3 1 for further information about the system to 
be demonstrated. 



Demo of EPSILON by Jesper Niederrnann 

EPSILON is an automatic tool for analysing concurrent and non-deterministic 
real-time systems. The specification formalisms underlying EPSILON are 
Timed Modal Specifications (TMs) [I] and Timed Modal Logics. The cur- 
rent version of EPSILON is a prototype tool subject to constant development. 

EPSILON contains algorithms for deciding various equivalences and refine- 
ments between specifications in TMS in particular diagnostic information is 
offered in cases where a derived equivalence or refinement does not hold, 
thus providing useful information in a subsequent debugging phase. Addi- 
tionally EPSILON contains an algorithm for model checking with respect to 
logical formulae (with explicit time requirements). Ongoing work includes 
a procedure for constructing timed systems directly from logical formuhe, 
an algorithm for transforming overall system properties into a property of a 
single component, and viewing the transition system of a process graphically. 

I will use a running example throughout the demo namely a model of a real- 
time train crossing scenario [I]? and through this show some of the features 
of EPSILON. 

EPSILON is available by anonymous ftp from ftp.iesd.auc.dk and can be 
found in ' /pub/pro j ect s/EPSILON/ ' in here is currently a version which 
should run on most Sun machines, with any operating system7 a window 
system is not a requirement. 
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Heterogenezt y becomes an increasingly central characteristic of environments, to incor- 
porate a variety of analysis and verification methods, like e.g. abstract interpretations, 
bisimulation checking, theorem proving and model checking. However, the combination 
of various methods to application specific heterogeneous tools is usually not (explicitly) 
supported. We present a practiceoriented environment for high-level synthesis of system- 
level analysis tools, which is unique in 1) constituting a framework for the development 
of application specific heterogeneous tools and 2) providing facilities for the automation 
of the synthesis process. Thus it constitutes a system-level prototyping environment that 
supports the rapid and reliable realization of efficient application-specific complex tools, 
without a sophisticated user interaction. 

Specification language is a modal logzc, SLTL, that uniformly and elegantly captures 
type descriptions, specifications of (elementary) algorithms and ordering constraints. 
Whereas the first two 'dimensions' are treated similarly by means of a simple logic over a 
taxonomy of types and algorithms respectively, the third is expressed by means of modal- 
ities. This allows an elegant and transparent specification of combinations of already 
existing algorithms. 

As SLTL specifications can automatically be transformed into an executable high level 
functional program by means of a minimal model generator for the logic, this transfor- 
mation can be seen as a specific form of software synthesis on top of a repository of 
reusable software components. We illustrate the generality of this approach by synthesiz- 
ing 1) special purpose tools in our analysis and verification environment, and 2) complex 
parameter-correct UNIX commands from simple SLTL specifications. 

*The work is joint with Burkhard F'reitag, Olaf Burkart, Andreas Classen and Ulrich Zukowski 
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The B-Toolkit is a suite of integrated programs which implement the B-Method for Software 
Development 
The B-Method is a collection of formal techniques which give a basis to those activities of 
Software Development that range from technical software specification, through design and 
integration, to code generation and into maintenance. The B-Method and the specification 
language AMN ( Abstract Machine Notation ) are in many respects similar to other "model 
oriented" formal methods. They imploy a conventional "pseudo" programming style. 
The B-Tool is a language interpreter for the B Theory Language. This language is a special 
purpose language for writing interactive and automatic proof assistants and other systems 
where pattern matching, substitution and re-write mechanisms can be used. The B-Toolkit's 
component tools are implemented in the B Theory Language and is interpreted by the B-Tool. 

Description 
The B-Toolkit, which supports the B-Method, underwent eight years of research and 
development at the Programming Research Group in Oxford and British Petroleum Research, 
and its commercial development is now continuing inside B-Core (UK) Ltd in Oxford. The B- 
Toolkit is an integrated suite of computer programs, built partly on the B-Tool interpreter, and 
covers many aspects of software engineering, including: 

a) Syntax and type-checking of specification documents as well as low level design 
documents, with comprehensive error reporting . 

b) Verification condition generation (which generates the proof-obligations needed to guarantee 
specification consistency and correctness of refinement). The refinement rules, which 
originate from Oxford (Hoare, Sanders, He) and J-R Abrial's formulation in terms of 
Predicate Transformers, are used within the tool. 

c) Automatic & interactive provers for discharging the verification conditions. (Other provers 
can be used in conjunction with B-Core (UK)'s B-Toolkit). Specification animation, 
enabling the specification to be "run", validated and tested; pre-conditions, guards for 
conditional statements, and the values of local and state variables may be inspected during 
animation.) 

d) A translator for translating low level design documents into C. 
e) Code generation from declarative descriptions, facilitated by a re-usable library of code 

modules. 
f) A Library of reusable code modules, which are all accessed and used according to their 

given specification. 
g) Rapid prototyping, facilitated by an interface generator, built on the re-usable library. 
h) Automatic Markup and Indexing of documentation of complete developments (requires 

LaTeX). 

Availability 
The B-Toolkit is commercially available in a Trial version or through full release licences. The 
B-Toolkit is delivered for IBMRS6000 running AIX and Sun Sparc running SunOS 4.1.x. 
(5.x is also supported). The Toolkit requires 16Mbytes of RAM and approximately 20Mbytes 
of Disc. The B-Tookit is highly portable, and will run under most Unix systems 
implementations. The current B-Toolkit requires as a minimum a Unix Operating System, and 
for full functionality it further requires LaTeX and a C-Compiler. 
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