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Preface

These “proceedings” contain slides, overviews and papers on which the con-
ference talks were based.

The conference was a byproduct of a longer meeting for a relatively small
number of researchers in complexity theory, hosted by BRICS, which took
place in Aarhus during the months of August and September, 1994.

On Friday, August 12, two preconference lectures were given, aimed at those
who were not complexity theory experts, and introducing the listener to areas,
methods and concepts of the field.

During the actual conference (August 15-18) there were two main talks each
day followed by a session with talks on more specific subjects.

We would like to thank Shmuel Safra, Hebrew University, Jerusalem, who took
the initiative to the meeting and with whom we co-organized the meeting. Fi-
nally we would like to thank Karen Kjær Møller for extra- ordinary engagement
in organizing the meeting and the conference.

Sven Skyum
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Complexity theory - Present and Future

Preconference Lectures

Friday, August 12 page

10.15-12.00 Noam Nisan, The Hebrew University, Jerusalem, Israel 1-11

Communication Complexity: an Introduction

Abstract:
Yao’s model of two-party communication complexity aims to
capture, in the simplest way, a situation where communication
plays a role. We will define the model and then concentrate
on how to analyse complexity in this model. We will present
basic techniques for lower bounds and will study the power
of nondeterminism and of randomization. We will also give
applications to Turing machines and to circuits.

The talk will be of a tutorial nature; it will require no prior knowl-
edge, but will assume a mathematically-oriented audience.

14.15-15.15 Avi Wigderson, The Hebrew University, Jerusalem, Israel 13-27

The wonders of the digital envelope - a crash course in modern
cryptography

Abstract:
The “One-way function” (or “digital envelope”) was suggested
15 years ago as means for solving the most basic cryptographic
tasks - secret communication. Since then it was gradually discov-
ered that this simple device is in fact universal, and can be used
to solve essentially ANY cryptographic task with given secrecy
and fault-tolerant constraints. In this talk I will try to survey the
key ideas that led to this understanding, including (naturally) a
“zero-knowledge proof” demonstration.
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Program

Monday, August 15 page

10.30 Opening

10.35-12.00 Allan Borodin, Toronto University 29-41
Trade offs between time and space

12.00-13.30 Lunch

13.30-15.00 Adi Shamir, Weizmann Institute, Rehovot 43
Open problems in cryptocomplexity

15.00-15.30 Coffee

15.30- Dexter Kozen, Cornell University, Ithaca 45-55
Efficient average-case algorithms for the modular group

Tuesday, August 16

10.30-12.00 Noam Nisan, The Hebrew University, Jerusalem 57-69
Direct sums, products, and help bits in circuits and decision trees

12.00-13.30 Lunch

13.30-15.00 Alexander Razborov, Steklov Institute, Moscow 71-112
Independence results in bounded arithmetic and natural proofs

15.00-15.30 Coffee

15.30- Russell Impagliazzo, Univ. of California at San Diego 113-119
Hard core distributions for somewhat hard functions

Amnon Ta-Shma, The Hebrew University, Jerusalem 121-139
Symmetric Log-space is closed under complement
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Wednesday, August 17 page

10.30-12.00 Peter Bro Miltersen, BRICS 141-166
On cell probe complexity

12.00-13.30 Lunch

13.30-15.00 Michael Ben-Or, The Hebrew University, Jerusalem 167
On algebraic complexity theory

15.00-15.30 Coffee

15.30- Christoph Meinel, University of Trier 169-184
Modular communication complexity of UCON

Søren Riis, BRICS 185-189
Complexity of counting principles

Thursday, August 18

10.30-12.00 Mark Jerrum, University of Edinburgh 191-205
Approximation via semidefinite programming relaxations

12.00-13.30 Lunch

13.30-15.00 Avi Wigderson, The Hebrew University, Jerusalem 207-213
On rank and communication complexity

15.00-15.30 Coffee

15.30- Discussions

v
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Efficient Average- Case Algorithms 
for the Modular Groun* 

Jin-Yi Cai 
SUNY Buffalo 

caiQcs.buffalo.edu 

Dexter Kozen 
Cornell University 

kozenQcs.cornell.edu 

Abstract 

The modular group occupies a central position in 
many branches of mathematical sciences. In this paper 
we give average polynomial-time algorithms for the un- 
bounded and bounded membership problems for finitely 
generated subgroups of the modular group. The latter 
result affirms a conjecture of Gurevich [5]. 

1 Introduction 

1.1 The Modular Group 

The modular group F is a remarkable mathematical 
object. It has several equivalent characterizations: 

SL2(Z)/Â I, the quotient of the group SL2(Z) of 
2 x 2 integer matrices with determinant 1 modulo 
its central subgroup {Â±I} 

the group of complex fractional linear transfor- 
mations 

with integer coefficients satisfying ad - be = 1; 

the free product of cyclic groups of order 2 and 3; 
i .e.,  the group presented by generators R, S and 
relations R2 = S3 = 1; 

the group of automorphisms of a certain regular 
tesselation of the hyperbolic plane (Figure 1); 

*Proc. 35th IEEE Symp. Foundations of Computer Science, 
Nov. 1994, to appear. 

Wolfgang H. Fuchs 
Cornell University 

fuchsQmath.cornell.edu 

Zicheng Liu 
Princeton University 
zlQcs.princeton.edu 

Figure 1: A tesselation of the hyperbolic plane1 

(v) the group of sense-preserving automorphisms of 
the undirected cubic plane tree (Figure 2). 

The modular group is intimately connected with 
the theory of elliptic curves, modular functions and 
modular forms, hyperbolic geometry, and number the- 
ory PI. 

For instance, it is known that elliptic curves can 
be uniformly parametrized by the Weierstrass p func- 
tion. This function is invariant under the action of a 
group of transformations of the plane isomorphic to 
Z x Z. This action gives rise to a discrete Euclidean 
tesselation of the plane. In contrast, a hyperbolic uni- 
formizatzon is a uniform parametrization of the ellip- 
tic curve by functions that are invariant under the 

'Reproduced from Klein (1879) [9]. 



Figure 2: The undirected cubic plane tree 

modular group F or some subgroup of it. Here the 
so-called congruence subgroups of I? play a dominant 
role. The Taniyama- Wed  conjecture states that all 
elliptic curves with rational coefficients admit such a 
uniformization by functions invariant under some con- 
gruence subgroup of F. It is known that a counterex- 
ample to Fermat's Last Theorem would invalidate this 
conjecture. While some difficulties remain, it appears 
that Andrew Wiles has made a significant advance to- 
wards resolving this conjecture. 

The modular group is also deeply connected with 
many algorithmic issues. For instance, the ordinary 
Euclidean integer gcd algorithm can be understood in 
terms of a basis reduction algorithm on 2 x 2 integer 
matrices, where the reducing operations are elements 
of the modular group in the form (i) above. This con- 
nection allows us to apply a result of Yao and Knuth 
[17] concerning the integer gcd algorithm in our anal- 
ysis. 

Some algorithms of Schonhage [14, 151 can be best 
understood in light of the modular group. 

A recent paper by Yap [I$] is concerned with the 
modular group and its connection with lattice basis 
reduction algorithms. The basis reduction algorithms 
of Lenstra, Lenstra and Lovbz [lo] have had consid- 
erable impact on algorithm design and analysis, rang- 
ing from integer programming to polynomial factor- 
ization. 

Finally, we note that the modular group has found 
applications in computational learning theory [3]. 

1.2 Subgroup Membership 

In this paper we consider four natural decision 
problems for the modular group F: 

T h e  Unbounded Subgroup Membership Prob-  
lem Given a finite subset S C I' and an element 
x 6 l?, is x contained in the subgroup of I' generated 
by S? 

The Bounded Subgroup Membership Prob lem 
Given a finite subset S C F, an element x T, and 
n > 0 in unary, can x be expressed as a product of at  
most n elements of S and their inverses (repetitions 
allowed)? 

The Unbounded Submonoid Membership  
Problem Given a finite subset S C T and an el- 
ement x â F, is x contained in the submonoid of F 
generated by S? 

T h e  Bounded Submonoid Membership Prob- 
lem Given a finite subset S C F, an element x G F, 
and n > 0 in unary, can x be expressed as a product 
of at most n elements of S (repetitions allowed)? 

The only difference between the subgroup and sub- 
monoid membership problems is that in the subgroup 
membership problems, inverses are allowed. The sub- 
group membership problems reduce to the submonoid 
membership problems by simply including the inverses 
in the set S. 

We assume that these problems are presented in the 
form (i) of $1.1; that is, as 2 x 2 integer matrices with 
entries written in binary. 

1.3 Average-Case Complexity 

The study of NP-hard problems that are hard on 
average was initiated by Levin [ll] and generated con- 
siderable subsequent interest [2, 6, 5, 8, 161. 

Suppose the inputs to an algorithm occur randomly 
according to a distribution with the property that the 
probability that the input size is n is either zero or 
at least n k  for some fixed k. Such a distribution is 
called regular. (For definiteness, Gurevich [5] takes 
the probability of the event 1x1 = n to be proportional 
to n 1  (log n)'"2, but any regular distribution will do.) 

A deterministic algorithm runs in polynomial time 
on average if there exists an e > 0 such that 

where T(x) is the running time of the algorithm on 
input x. For regular distrubutions, it suffices to show 
that there exists an e > 0 such that for all n, 

where Prn(x) denotes the conditional probability that 
x occurs given that the size of the input instance is n 

[6, 51. 



Gurevich [5] applied this notion to several algebraic 
problems. In particular, he showed that certain matrix 
decomposition problems involving the modular group 
are hard on average. 

Gurevich defined the bounded subgroup member- 
ship problem stated in 51.2 and conjectured that it 
was polynomial time on average. 

1.4 Main Results 

In this paper we show: 

Theorem 1.1 The bounded and unbounded member- 
ship problems for finitely generated subgroups and sub- 
monoids of the modular group can be solved in polyno- 
mial t ime on average. 

This affirms Gurevich's conjecture. 
We do not know whether the subgroup membership 

problems are NP-hard. However, the semigroup mem- 
bership problems are quite easily shown to be NP-hard 
by a straightforward encoding of the subset sum prob- 
lem. 

1.5 Overview 

Our approach is to convert x and every element 
in S to the representation (iii) of 51.1 ( i .e . ,  words in 
{R, S}* reduced modulo the identities R2 = S3 = I),  
and work in that representation. 

This will be of little use if the representation (iii) is 
too long or if it is hard to compute from the represen- 
tation (i). It turns out that it is easy to compute, but 
may be exponentially long in the worst case. However, 
it is short on average. 

Our analysis makes use of an intermediate repre- 
sentation (2.3), which is similar to (iii), but for which 
a polynomial bound on the average length is known. 
The lengths of minimal representations in (iii) and 
(2.3) are mutually proportional. 

Our analysis proceeds in two steps: 

(i) In 54, we give deterministic polynomial-time al- 
gorithms in representation (iii) for the bounded 
and unbounded membership problems. These 
algorithms reduce the problems to a certain 
automata-theoretic reachability problem. 

(ii) In 55 we show that the process of converting an 
input instance from representation (i) to repre- 
sentation (iii) and then executing the algorithm 
of 54 on the resulting data gives an average-case 
polynomial-time algorithm. This part of the ar- 
gument relies on an estimate of Yao and Knuth 
1171. 

The same techniques also handle other related 
groups such as SLy(Z) or the congruence subgroups 
of I'. We do not treat these cases in this paper. 

2 Representations of I' 

To understand this work, one must first understand 
the relationships among the different representations 
(i)-(v) of I' described in 51.1. See [I, 13, 12, 41 for 
details. 

In the representation (i), elements of I' are repre- 
sented as 2 x 2 matrices with integer entries. The 
group I' is generated by the matrices 

Any two of these three matrices generate F. 
These matrices correspond to the fractional linear 

transformations 

on C, respectively. The matrices (2.1) represent 
the transformations (2.2) in homogeneous coordinates, 
viewing them as linear transformations on the projec- 
tive complex line. This gives the relationship between 
the representations (i) and (ii). 

Note that R is of order 2 and S is of order 3 (recall 
we are working modulo & I ) .  In fact I' is the free 
product of the cyclic groups generated by R and S. 
This gives the relationship with representation (iii). 

To see the relationship with (iv), observe that the 
transformations (2.2) preserve the upper half plane H. 
H can be regarded as a model of hyperbolic geometry, 
where geodesic lines are semicircles or lines perpendic- 
ular to the real axis. Under the appropriate metric, I' 
is a group of isometrics of H. The region 

is a fundamental region for the action of r, and its 
orbit gives a tesselation of H. This region corresponds 
to the union of the two uppermost central regions, one 
shaded and one not, shown in Figure 1. Several works 
by M. C. Escher are based on this universe. 

To understand the connection to (v), we observe 
that the infinite undirected cubic plane tree shown in 
Figure 2 is embedded in Figure 1 by considering the 



segment of the circle of radius 1 centered at 0 from 
eZTil3 to eiri13 as a directed edge E, then taking the 
orbit of this edge under the action of the group. Every 
element of F is uniquely identified with a directed edge 
produced in this way. 

With this identification, observe that R reverses the 
direction of E, T corresponds to a left turn out of E, 
and S = T R  rotates about the vertex at the head of 
E. In any product XI - - - Xn G {T, R, S}* applied in 
order from right to left, the destination of E can be 
calculated by reading the string XI . - . Xn from left to 
right and interpreting T as "turn left", R as "reverse 
direction", and S as "rotate clockwise about the ver- 
tex before you". We can also define U = ST ("turn 
right"). 

The group I? has the following presentation in terms 
of T (turn left), U (turn right), and R (reverse): 

TRU = URT = R 

TRT = U URU = T P.3) 

The equations (2.3) can be applied as term rewrit- 
ing rules to reduce any string in {R,T, U}* to nor- 
mal form (R + e)(T + U)*(R + 6). Every element 
of F can be expressed uniquely as a product of this 
form, and the length of any expression of this form 
is within two of minimal among all expressions in 
{R,T,U, R""l,T""l,U"l}* denoting the same group 
element. This is a consequence of the fact that short- 
est paths in the graph of Figure 2 are unique. A sim- 
ilar statement holds for the presentation (iii); in this 
case, normal forms are strings in {R, S}* with no oc- 
currence of two consecutive R's or three consecutive 
S's. 

The presentations (2.3) and (iii) are interderivable 
using the facts T = SR, U = SSR, S = TR. More- 
over, these relations show that for any group element, 
the lengths of the minimal representations in {R, S}* 
and {R,T, U}* differ by at most a factor of three. 

In terms of representation (i), the left and right 
turns are 

respectively. Note that elementary row and column 
operations on 2 x 2 matrices (adding a row or column 
to the other) are effected by multiplying on the left 
or right by T or U. In this interpretation, the signifi- 
cance of the normal form (R+e)(T+U)*(R+c) is that 
for any matrix, we can multiply by R on the left or 
right if necessary to make all entries nonnegative, and 

then there is a unique sequence of column operations 
to bring the matrix to I while keeping entries non- 
negative. The same is true for row operations. This 
gives us an effective method for converting between 
the represent ations (i) and (2.3). 

2.1 Integer GCD 

The matrices T and U have the following signifi- 
cance regarding integer gcd. Let s(m, n) be the num- 
ber of steps in the following subtractive Euclidean al- 
gorithm for finding the gcd of m and n: replace the 
larger number by the difference of the two numbers 
until both are equal. Note that s(m, n) is one less 
than the sum of all partial quotients in the contin- 
ued fraction representation of m/n, 1 < m < n. For 
example, 

7 1 

and s(7,16) = (2 + 3 + 2) - 1 = 6. 
The matrices T and U correspond to the basic op- 

erations of the subtractive gcd algorithm in the sense 
that if m and n are relatively prime and appear in the 
top row of a matrix A ? F, then and u 1  applied 
on the right hand side effect the column operations 
corresponding to the steps of the subtractive gcd al- 
gorithm. It follows that the length of the unique ex- 
pression in {T, U}* equivalent to A is exactly s(m, n). 

3 Length of Representations 

Gurevich showed that the size of any element A F 
in representation (2.3) is polynomial in the size of A in 
representation (i) on average [5, Lemma 4.21. Our ob- 
servation that minimal-length representations in (2.3) 
and (iii) are mutually proportional implies that the 
size of A in representation (iii) is also polynomial in 
the size of A in representation (i) on average. This 
result, together with the polynomial time algorithm 
of the next section, do not immediately imply an av- 
erage polynomial-time complexity of the membership 
problems, since the number of input matrices is not 
fixed. 

Gurevich's argument is based on the following esti- 
mate of Yao and Knuth: 

Lemma 3.1 (Yao a n d  Knuth  [17]) 

6 = -n(log n)' + 0 ( n  log n(log log n)') 
7r2 



It follows immediately that for fixed n, the aver- 
age value of s(m, n), where m is chosen uniformly at 
random among all positive integers less than and rel- 
atively prime to n, is at most 

o(n(:g)2 ) < ~ ( ( l o ~ n ) ~  log log n) , (3.4) 

where y(n) is the Euler totient function. The in- 
equality (3.4) follows from the estimate y(n) = 
Q(n/ log log n) [7, Theorem 3281. 

Except for I, T, and U, if A ? F has nonnegative en- 
tries and maximumentry n, and if m is the other entry 
in the same row as n, then 1 < m < n, (m, n) = 1, and 
the rest of A is uniquely determined by the constraint 
on the determinant of A. Since there are four ways 
to choose the position of the maximal entry n in A, 
such matrices are in four-to-one correspondence with 
the pairs m, n such that 1 5 m < n and (m, n) = 1. 
It follows that the length of the unique expression in 
{T, U}* corresponding to A F is also polynomial on 
average. 

4 Deterministic Algorithms 

In this section we give deterministic polynomial- 
time algorithms for the unbounded and bounded mem- 
bership problems when the input is given in represen- 
tation (iii) of $1.1, i.e. in terms of generators R, S and 
relations R~ = S3 = 1. 

Consider the term rewriting system over strings in 
{R, S}* consisting of reduction rules R2 --+ e, S3 --+ e. 
We write x -+ y if the string x reduces to the string y in 
zero or more steps. A string is said to be reduced or in 
normal form if no reduction rule applies. This system 
has nonoverlapping redexes (the redexes are R2 and 
S3), thus it follows from term rewriting theory that 
normal forms are unique, and x z y iff x and y have 
a common normal form. 

Suppose now we are given a set S of reduced strings 
in {R, S}*, a reduced string x E {R, S}*, and (for the 
bounded membership problem) an integer n in unary. 
Let S* denote the submonoid of {R, S}* generated 
by S. The unbounded membership problem is to de- 
termine whether there exists a string y ? S* such that 
y -+ x. For the bounded membership problem, we re- 
quire in addition that y ? Sm for some m < n. We 
will give an algorithm that runs in time polynomial in 
n and the sum of the lengths of x and the elements of 
s. 

Note that this formulation of the problem asks for 
membership of x in a finitely generated submonoid of 

r. If we wish to determine membership in a finitely 
generated subgroup, we can simply include the in- 
verses of elements of S. 

In a fixed reduction sequence x -+ y, we say that 
an occurrence of a letter a in y comes from an occur- 
rence of a in x if x = uav and y = zaw, where the 
mentioned occurrences of a in x and y are as shown, 
and the appropriately chosen subsequences of the re- 
duction sequence give u + z and v + w. For a fixed 
reduction sequence x + y, every letter of y comes from 
a unique letter of x. The remaining letters of a; must 
eventually become part of a redex and disappear. 

For any set H of strings, we denote by H/G the 
set of strings =-equivalent to some string in H.  Thus 
S*/= denotes the set of strings representing elements 
of the submonoid of I' generated by S. This notation is 
slightly nonstandard but convenient for our purposes. 
Our task is to find an efficient membership test for 
S*/ = for the unbounded membership problem and 
Urn<,, Sm/= for the bounded membership problem. 

4.1 An Automata-Theoretic Characteri- 
zation 

Let M be the finite automaton with states 

start and final state e (the null string), and transitions 

a u - ^ - u ,  a ? { R , S } ,  

u Ã‘> v , u - v  â S / =  . 

We will show below that for any reduced x, x (E 

S * / z  iff x is accepted by M. Note that M has linearly 
many states and the e edges are transitive. Once we 
construct the automaton for a given set of generators 
S, we can test membership in S*/ =. of any string 
efficiently by reducing to normal form and then testing 
whether the resulting string is accepted by M. This 
will give us an efficient algorithm for the unbounded 
membership problem. 

For the bounded membership problem, we will need 
a slightly stronger formulation. Define 

for any string x. Note x ? S*/= iff A(x) # 0. Label 
each e-transition u Ã‘?- v in M with the nonempty set 
A(ulv) .  Let + denote setwise addition: 



For any computation path u : u Ã‘Ã v in the automa- 
ton M,  let A(u) denote the sum of the sets labeling 
the e-transitions along the path u. More formally, 

A(u) = {O} , if u is of length 0 

A(u - (au -% u)) = A(u) 

A(u - (u -̂  v)) = A(u) + A(U-lv) . 
Theorem 4.1 For any reduced x and n > 0, x 6 
Sn/= if and only if there is an accepting computation 
path u : e -% e with n 6 A(u). In other words, for 
any reduced x, 

Proof. (+) We show by induction on the length of u 
that if u : e -% u and n E A(u) then xu 6 Sn/=. The 
result follows by taking u = e. If u is of length zero, 
thenA(u) = {O}andx = e ? S O .  I f u =  r - ( a u %  u), 
then x = ya, T : e Ã‘ au, and n E A(r) = A(u). 
By the induction hypothesis, xu = (ya)u = y(au) E 
8%. Finally, if u = r . (v -̂  u) where r : e -% v, 
then n = k + m for some k E A(r) and m G A ( v l u ) .  
Then v l u  E Sm/=, and by the induction hypothesis, 
xu ? Sk/=. Thus xu =. xvv^u E Sn/=. 

(-+) If x 6 So/=, then x = e since x is reduced. 
In this case take u to be the null path e Ã‘ e and 
we are done. Otherwise, we show by induction that if 
r E S n l ,  st ? S ,  and r s  -+ y where y is reduced, then 
there is a computation path u : e -!'-̂  t with n 6 A(u). 
The result then follows by taking t = e. 

For n = 1, we have r = e. Then y = s since s is 
reduced, and there is a computation path r : c Ã‘ st 
of length one with 1 E A(r) = A(st). Combining this 
with Is1 transitions of the form au Ã‘ u, we obtain a 
computation path u : e Ã‘> t with 1 6 A(u). 

Now suppose n > 2. If s = c, we have y = r 6 
Sn^S and t  ? S. Then 1 6 A(<) and by the induction 

Y hypothesis, we have a computation path r : e - e 
with n - 1 E A(r). Combining this with the transition 
e Ã‘> t ,  we obtain a path u : c Ã‘Â t with n ? A(u). 

If s # e and the last symbol of y comes from the 
last symbol of s in the reduction rs -+ y, then s = ua, 
y = va, and ru  -+ v for some u,v. By the induction 
hypothesis, we have a computation path r : e A at  
with n ? A(r). Combining this with the transition 

Y at Ã‘ t ,  we obtain a computation path u : e - t 
with n E A(u). 

Finally, if the last symbol of y does not come from 
the last symbol of s ,  then the last symbol of y cannot 
come from any symbol of s, since s is reduced. Thus 

we can write r = upqv where u 6 ski v ? Sm, pq ? S, 
the last symbol of y comes from the last symbol of p, 
and qvs = e. Then up = upqvs = r s  = y. Since y 
is reduced, up -+ y. By the induction hypothesis, we 
have a computation path r : e 4 q with k+ l  ? A(r). 
Moreover, since qvs = e, we have q l t  = vst 6 Sm+l, 
thus m+1 G A ( q l t ) .  Combiningr with the transition 
q Ã‘?- t ,  we obtain a computation path u : e Ã‘ t with 
n =  k + m + 2 ? A ( u ) .  

Corollary 4.2 For any reduced x, x 6 S*/z if and 
only if M accepts x. 

4.2 Construction of M 

We have reduced the problem of determining rnem- 
bership in S*/= of arbitrary strings x to the prob- 
lem of determining membership in S*/= of u l v  for 
u, v ? Q. We now give an efficient algorithm for this 
problem. 

Let N be the set of normal forms of strings u l v  
for u, v ? Q. Note S s N and N is finite. Let B(x), 
x ? N, be the smallest family of sets closed under the 
following rules: 

(i) 0 ? B(e) 

(ii) 1 ? B(x), x E S 

(iii) B(x) + B(y) B(z), where z = xy. 

If x is not reduced but x -+ y ? N, we define B(x) = 
B(Y). 

We show below that A(x) = B(x) for x E N. This 
gives a simple inductive method for determining the e- 
transitions of M: mark e and all x E S as required by 
rules (i) and (ii), then mark z ? N whenever x, y ? N 
are marked and xy -+ z. Then u Ã‘ v iff the normal 
form of u l v  is marked. 

Lemma 4.3 If u 6 Q, pq E S, r 6 Sn, and urp = e, 
then n + 1 ? B(u-lq). 

Proof. If n = 0, then u l q  = pq, and the conclusion 
follows from rule (ii). 

If n > 1 and u = e, then we can write r = vs with 
v ? S, s ? Sn-l, and vsp -+ e. Then 1 ? B ( u l v ) ,  
and by the induction hypothesis, n E B ( v l  q), there- 
fore n + 1 ? B ( u l ^ )  by rule (iii). 

Similarly, if p = e, then we can write r = sv with 
s ? Sn-l, v ? S, and usv -+ e. Then 1 E B(e-lv), 
and by the induction hypothesis, n 6 B ( u l e ) ,  there- 
fore n + 1 6 B ( u l q )  by rule (iii). 



Assume now that n > 1 and both u and p are non- 
null. The proof proceeds by induction on the length 
of the reduction sequence urp Ã‘ e. 

If urp can be expressed as the concatenation of two 
nonnull strings, each of which reduces to el then the 
first of these cannot be a substring of u and the second 
cannot be a substring of p, since u and p are reduced. 
Thus we can write r = stxy where tx E S, s (=. Sk, y 6 
Sm, m + k + 1 = n, ust =. xyq = e. By the induction 
hypothesis, k + 1 6 B ( u l x )  and m + 1 E B ( x l q ) .  
By rule (iii), n +  1 = m+ k + 2 ?  B(u^q). 

If urp has no such decomposition, then in the re- 
duction urp Ã‘ e, if the last reduction rule applied is 
RR Ã‘ e, the first R must come from the leftmost sym- 
bol of u and the second must come from the rightmost 
symbol of p, otherwise we would have a decomposi- 
tion as in the previous case. Thus u = Rx, p = yR, 
and xry + e. By the induction hypothesis, we have 
n + 1 Î  B(x-l Rq) T u - l q ) .  

If the last reduction rule applied is SSS --+ e, then 
again the first S must come from the leftmost sym- 
bol of u and the third must come from the rightmost 
symbol of p. 

If the second S comes from u, then we have u = 
SSx and p = yS, where xry Ã‘ e. By the induction 
hypothesis we have n + 1 E B ( x l S q )  = B(ulq) .  

If the second S comes from p, then we have u = 
Sx and p = ySS, where xry Ã‘ e. By the induction 
hypothesis we have n + 1 E B ( x l S S q )  = B(ulq) .  

Finally, if the second S comes from r, then we have 
u = Sx, r = yzSws, and p = tS,  where zSw E S, 
y E Sk, s E Sm, and xyz = wst = e. By the induction 
hypothesis we have k + 1 E B ( x l S w )  and m + 1 ? 
B(wlSq) ,  therefore by rule (iii) we have n + 1 = 
m + k + 2 Î  B(x-'SSq) = B(u-lq). D 

Theorem 4.4 A(x) = B(x) for x E N 

Proof. We argue first that the sets A(x) satisfy all 
the rules (i)-(iii) for x E N, thus B(x) C A(x). The 
rule (i) just says e 6 So, (ii) just says that x E S1 for 
x E S, and (iii) says that if x in Sm and y ? Sn, then 
x y E s m + n  . 

For the reverse inclusion, we show by induction on 
n that for all u,v ? Q, if n E A ( u l v )  then n 6 
B(u^v). If n = 0, then u-lv = el and 0 ? B(u-lv) 
by rule (i). If n = 1, then u l v  = x E S, and 1 E 
B(u-lv) by rule (ii). 

Assume now that n > 2. Let u^v s r E Sn. Then 
ur = v, and since v is reduced, we have ur Ã‘ v. 

We proceed by induction on the length of v. If 
v = e, then writing r = st with s 6 S n l  and t (:. S, 
we have ust el so n 6 B ( u l v )  by Lemma4.3. 

Suppose now that v is nonnull. If the first letter of 
v comes from u in the reduction ur + v, then i t  must 
come from the first letter of u, since u is reduced. 
Thus u = ay, v = aw, and yr Ã‘ w. By the induction 
hypothesis, n 6 B(y-lw) = B(u-lv). 

If the first letter of v comes from r, then we can 
write r = styz where s E S k  z E Sm, ty ? S,  and the 
first letter of v comes from the first letter of y. Then 
ust Ã‘ e and yz Ã‘ v. By Lemma4.3, k+l ? B ( u l y ) ,  
and by the induction hypothesis, m ? B ( y l v ) .  By 
rule (iii), n = m + k + 1 ? B(u^ v). 0 

4.3 Unbounded Membership 

Once we have constructed the automaton M for a 
given set of generators S ,  we can solve the unbounded 
membership problem for a given string efficiently by 
reducing to normal form and then testing whether the 
resulting string is accepted by M. Corollary 4.2 as- 
serts the correctness of this procedure. 

4.4 Bounded Membership 

One approach to solving the bounded membership 
problem is to observe that the closure rules (i)-(iii) 
are essentially equivalent to the following context-free 
grammar over a single-letter alphabet {a} and nonter- 
minals Ax, x 6 N: 

Then for a; ? N,  A(x) is the set of lengths of strings in 
{a}* generated from the nonterminal Ax. By Parikh's 
Theorem, this is a regular set, and we can deter- 
mine membership in A(x) efficiently using known al- 
gorithms for context-free language recognition. 

However, for the purpose of deciding whether there 
exists an accepting computation path a : e -'Ã‘> e with 
m 6 A(u) and m <_ n, we do not need to know the 
entire set A ( u l v )  but only its smallest element. In- 
deed, if A ( u l v )  is nonempty but its smallest element 
is greater than n, then we might as well delete the 
edge u Ã‘ v, since it cannot contribute to such an 
accepting computation path. 

Let r be the number of relations x = yz that hold 
among elements of N. Here is an O(nr) algorithm 
for determining all the minimum elements of A(x) for 
x E N. For each x E N we have an integer variable 
Â¥ni that holds a current estimate of min A(x). We ini- 
tialize mx to n + 1, which we regard as oo. We assume 
that for each x E N we have a list Lx of all relations 



z = xy or z = yx that hold among the elements of N 
with x on the right hand side. The combined length 
of all the lists L,. is at most 2r. 

Now min A(â‚ = 0 and minA(x) = 1 for x ? S, so 
we set me := 0 and mx := 1 for x E S and put e and all 
x E S in a bag for further processing. We then repeat 
the following procedure until the bag becomes empty. 
Take the next x out of the bag and scan through the 
list LX. For each relation z = xy or z z yx on the 
list, check whether m̂  > m  ̂+ my. If so, set mz := 
mx + my and put z in the bag. 

Each x taken out of the bag takes O(lLrl) time to 
process, and a particular x can enter the bag at most n 
times, since mx is decremented each time. This gives 
O(nr) in all. 

Once we have computed the minimum element of 
A ( u l v )  for each pair u, v 6 Q, we can weight the e- 
transition u Ã‘> v with this quantity and weight the 
other transitions au Ã‘ u zero. Then to compute the 
minimum element of A(%) for a given reduced x, we 
can use a variant of Dijkstra's shortest path algorithm 
to find a minimum-weight computation path e e 
and check that its weight is at most n. The correctness 
of this method is given by Theorem 4.1. This solves 
the bounded membership problem. 

5 Average Case Algorithms 

In this section we prove Theorem 1.1, which states 
that the bounded and unbounded subgroup and sub- 
monoid membership problems are polynomial-time on 
aver age. 

For a positive integer m, we take the size of m to 
be logm, the base 2 logarithm of m. For a sequence - m of positive integers, we take the size of iii, denoted 
lIiii[l, to be the sum of the sizes of its components. 

An instance of the unbounded subgroup or sub- 
monoid membership problem of $1.2 is a sequence S 
of 2 x 2 integer matrices with determinant one and 
entries written in binary. An instance of the bounded 
subgroup or submonoid membership problem is a pair 
(S, n) where S is as above and n is a positive inte- 
ger. For our analysis, we will measure the size of 
such instances as follows. For a matrix with entries 
a ,  b, c, d, we take p(A) = max{lal, 161, lcl, \d\}, where 
a1 denotes the absolute value of a. Let p(S) be the 
sequence @(A) 1 A E S). We define the size of 
an instance S of the unbounded membership prob- 
lem to be IISII = llp(S)ll, and the size of an in- 
stance (S, n) of the bounded membership problem to 
be 11(S, n)ll = IISII + n. 

Let u(S) denote the sum of the lengths of the R, S 
representations of the matrices in S, as described in 
$2. 

Lemma 5.1 Let iii = (mi, .  . . , mk). For d > 1 ,  the 
quantity y^kl(1ogmi)^ is maximized subject t o  the 

k constraints 1 5 mi, 1 <: i <: k, and fli=i mi = n 
at the extremes mi = n and mj = 1, j # i. 

Proof. Taking a, = log mi/ log n, the problem is 
equivalent to maximizing af subject to the con- 
straints 0 < a,, 1 < i < k, and '& a, = 1. This 
occurs at the extremes, since the function is convex 
and symmetric. 

Proof of Theorem 1.1. We treat the unbounded 
membership problems first. As remarked in $1.3, we 
need only show that there exists an e > 0 such that 

where T(S) is the running time of the algorithm on in- 
put S and Prn(S) denotes the conditional probability 
that S occurs given that the size of the input instance 
is n. 

By results of $4, we have T(S) = 4 s ) '  for some 
constant c.  Since all instances of size n are equally 
likely, P r n S  = \{S \ [[SlI = n}I-I for S of size n, 
where 1x1 denotes the cardinality of the set X. Taking 
e = 1/c, (5.5) becomes 

We now establish (5.6). For i = ( t i , .  . . , tk)  and - m = ( m l  ,..., r n k ) , ~ < i i i m e a n s t h a t ~ i  < m i ,  1 < i s  

k ,  and ( 2 , ~ )  = 1 means that 4 and mi are relatively 
prime, 1 5 i < k. The numerator of (5.6) is 

and for iii E N*', 



The coefficient 12k reflects the number of ways of 
choosing the positions of the largest elements of the 
matrices in S and the factor bounding the lengths of 
the R, S and R, T, U representations as discussed in 
$2. The vectors 2 represent the possible entries in the 
same row as the largest entry of each matrix in S. As 
discussed in $2.1, once that row is given, the rest of 
the matrix is uniquely determined, and the length of 
the R, T, U representation of the ith matrix in S is 
s(4,  mi) - 

Changing the order of summation in (5.8), we have 

Step (5.9) uses Lemma 3.1 and step (5.10) uses the 
estimate y(m) > Q(m/ log log m) [7, Theorem 3281. 
Thus (5.7) is bounded by 

Umll= n 

The inequality (5.11) follows from Lemma 5.1. 
The denominator of (5.6) is 

Dividing the upper bound (5.11) for the numerator of 
(5.6) by the lower bound (5.12) for the denominator of 
(5.6), we obtain the polynomial bound 0(n4) for the 
quotient. 

Thus the condition (5.5) is fulfilled, and the algo- 
rithm is polynomial time on average. 

For the bounded membership problems, as above 
we need to show for each n that 

But the left hand side is bounded by 

which by (5.6) is polynomial in n. 
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Abstract 

Products and Help Bits in Decision Trees 

Noam Nisan * Steven Rudich ^ Michael Saks ^ 

We investigate two problems concerning the complex- 
ity of evaluating a function f at a k-tuple of unrelated 
inputs by k parallel decision tree algorithms. 

In the product problem, for some fixed depth bound 
d, we seek to maximize the fraction of input k-tuples 
for which all k decision trees are correct. Assume that 
for a single input to f ,  the best decision tree algorithm 
of depth d is correct on a fraction p of inputs. We 
prove that the maximum fraction of k-tuples on which 
k depth d algorithms are all correct is at  most p k ,  
which is the trivial lower bound. We show that if we 
replace the depth d restriction by "expected depth d", 
then this result fails. 

In the help-bit problem, we are permitted to ask 
k - 1 arbitrary binary questions about the k-tuple of 
inputs. For each possible k - 1-tuple of answers to 
these queries we will have a k-tuple of decision trees 
which are supposed to correctly compute all functions 
on k-tuples that are consistent with the particular an- 
swers. The complexity here is the maximum depth 
of any of the trees in the algorithm. We show that 
for all k sufficiently large, this complexity is equal to 
degS(f) which is the minimum degree of a multivariate 
polynomial whose sign is equal to f .  

Finally, we give a brief discussion of these problems 
in the context of other complexity models. 
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1 Introduction 

Pick your favorite computation model and complex- 
ity measure, e.g. boolean circuit size, communica- 
tion complexity, decision tree depth, interactive proof 
length, tensor rank, etc. Any attempt to understand 
such a model and complexity measure requires under- 
standing the ways that an "unreasonable" computa- 
tion can be more efficient than a "reasonable" one. 
Of course, what is "reasonable" changes as our under- 
st anding of the model improves. 

Suppose we are given several unrelated instances of 
a problem to solve. The "reasonable" approach is to 
solve each instance separately; intuitively, any com- 
putation that is useful for solving one instance is ir- 
relevant to any of the others. To what extent is this 
intuition valid in a given model? The following ques- 
tion is the most common way of formalizing this. 
The Direct-sum problem: Suppose that the com- 
plexity of computing some function f is c. Is i t  true 
that computing f twice, on two unrelated inputs re- 
quires complexity 2c? How about computing f on k 
unrelated inputs? 

This question was first studied in the context of 
Boolean circuits [Ulig, Paul, GF]. Subsequent work 
has concerned bilinear circuits [J, Bsh], Boolean cir- 
cuits [FKN], and communication complexity [KRW]. 
In this paper we consider two related problems of a 
similar flavor: 

The Product Problem: Let f be a function and 
suppose that for any complexity c computation, the 
fraction of inputs on which it correctly computes f 
is at most p. Suppose that we have two independent 
computations, each taking as input an ordered pair a ,  b 
of inputs to f ,  where the first computation is trying 
to compute /(a) and the second is trying to compute 
f(b). If each of the two computations has complexity 
at most c, can the fraction of input pairs a, b on which 
both are correct exceed p2? What about the analo- 
gous question for k independent computations and k 
inputs? 

If the first computation only uses the input a and 



the second only uses the input b, then the p2 upper 
bound is trivial. Intuition suggests that there is no 
advantage in having each computation access the oth- 
ers input. A variant of this problem, in which we seek 
to compute f on the two inputs by a single computa- 
tion was studied recently in [IRW]. 

The Help-bit Problem: Suppose that the complex- 
ity of computing the boolean function f is c. Suppose 
that one wishes to compute f on two inputs a and b,  
and is allowed for free one "help-bit" , i.e. an arbitrary 
function of the two inputs. Is it possible to choose 
this help-bit function so that, given the help-bit, f(a) 
and f(b) can each be computed by a computation of 
complexity less than c, and if so, by how much? How 
about computing f on k inputs with k - 1 help bits? 

The help-bit problem was introduced (to our knowl- 
edge) in the context of const ant depth circuits in [Cat], 
and was also studied in the context of boolean circuits 
in [ABG]. The point here is that if we have k inputs, 
then with k help bits we can use them to obtain the 
value of f on each of the inputs, and no further com- 
putation is necessary. With only k - 1 help bits, we 
can for instance obtain the value off  at k - 1 inputs, 
but then we still need complexity c to compute f on 
the last input. Is there a more effective use of the help 
bits? 

In this paper we consider these problems in the con- 
text of the boolean decision tree complexity - perhaps 
the simplest computational model. The cost of a com- 
putation (decision tree) is simply the number of input 
variables that are read (the depth of the decision tree); 
a more precise definition is given in Section 2. While 
it is an easy exercise to see that "direct-sum" holds 
for decision tree depth, the other two problems are 
more difficult. Our answer for the product problem is 
a qualified "Yes" : 

Theorem 1 Let f be an n-variable boolean function 
and suppose that any depth d decision tree computes 
f correctly on a fraction at most p of the inputs. Let 
TI, Ty, . . . , Tk be decision trees that each access a set of 
nk variables corresponding to a k-tuple a l l  02, . . . , afc 
of inputs to f .  If each of the T, have depth at most 
d, then the fraction of k-tuples a l ,  02,. . . , ak on which 
each Ti correctly outputs f (ai) is at most pk. 

The theorem seems completely obvious; however, 
the reader might test her intuition on the following 
variation. Suppose that, in the above Theorem we 
change the complexity measure from "depth" to "av- 
erage depth" , i.e, the average over all inputs of the 

depth of the leaf reached by the input. This modi- 
fied statement of the Theorem seems similarly obvi- 
ous, but, as we will see, it is false. 

The recent work of [IRW], which was done inde- 
pendently of ours, includes a (substantially different) 
proof of a weaker variant of this theorem, namely that 
a single depth d tree that tries to compute all k func- 
tions can be correct on at most a pk fraction of the 
inputs. Our result shows that even if we use k parallel 
decision trees then we can't do better than this. 

For the help bit problem, the answer is more com- 
plicated. Nathan Linial [Lin] has shown that the com- 
plexity of computing f on two inputs with one help 
bit is at least deg(f), the degree of the (unique) multi- 
linear real polynomial that is equal to f .  Since almost 
all boolean functions on n-variables have deg(f) = n, 
this says that help bits don't help for most functions. 
This result does not seem to extend to k > 3. In 
fact, for sufficiently large k our results imply that it is 
false. We manage to prove a lower bound that holds 
for all k, and is always tight when k, the number of 
instances to be solved, is sufficiently large. We need 
the following definitions. If f is an n-variate boolean 
function, we say that the n-variate real polynomial p 
sign-represents f if for all inputs a,  /(a) = sgn(p(a)) 
where sgn(z) = 1 if z > 0 and sgn(z) = -1 otherwise 
(here we are taking our Boolean set to be {-I, 1)). 
The sign-degree of f ,  degs( f) ,  is the minimum degree 
of a polynomial that sign represents f .  

Theorem 2 Let f be an n-variate boolean function, 
and suppose that the optimal decision tree that com- 
putes f has depth d. Then for all k > 1, any solution 
to the help bit problem for f for k inputs and k - 1 
help bits requires depth at least degs(f). Furthermore, 
for all sufficiently large k, there is a decision tree al- 
gorithm with k - l help bits whose depth is degs (f). 

In the case that f is equal to the product of n 
variables (which corresponds to the parity function 
for {O, 1)-valued variables), degs(f) = n and so, the 
lower bound implies that help-bits don't help in this 
case. Actually, this function and its negative are the 
only functions with degs(f) = n. Since the ordinary 
decision tree complexity of most boolean functions is 
n, this means that for large enough k ,  the complex- 
ity of k instances given k - 1 help bits is less than 
the ordinary decision tree complexity for most func- 
tions. In particular, i ff  is the majority function, then 
degS(f) = 1, and the lower bound is vacuous, while 
the upper bound says that for k sufficiently large, it is 
possible to ask k- 1 binary questions so that, given the 
answers, the value of the function on any one of the 



k inputs can be computed by probing just one vari- 
able. This remarkable savings is not typical, it was 
recently shown [RR] that almost all functions satisfy 
dega(f) > n/20. 

In the next section, we review the decision tree 
model. In Section 3 we give a general formulation 
for the product problem in decision trees, and prove 
a generalization (Theorem 3.1) of Theorem 1. In Sec- 
tion 4, we discuss the help bits problem and prove 
Theorem 2. Most proofs are in the appendices. 

While some of the techniques we develop apply only 
to the decision tree model, some of them may be ap- 
plied to other models as well, and in fact suffice for 
obtaining many of the known results in the boolean 
circuit model. We sketch these applications in the 
last section. 

2 preliminaries 

In this section we present some basic definitions and 
notation. Most of the notions discussed here are 
very familiar, but in some cases our notation is non- 
standard. 

2.1 Boolean functions 

For purposes of this paper it will be convenient to use 
B = {- 1, l} as our Boolean domain, instead of {O, I}. 
If X is a set, a boolean assignment to X is a map 
a from X to B. The set of boolean assignments to 
X is denoted BX. We refer to the elements of X as 
variables. We will consider probability distributions 
over the set of assignments. For a specified distribu- 
tion Dl a random assignment chosen according to D 
is denoted by placing a - above the identifier, e.g., 5 .  
A boolean function over the variable set X and range 
R, or (X, R)-function is a function from Bx to R. In 
this paper, the range R is always equal to Bk for some 
integer k. 

2.2 Decision Trees 

All trees in this paper are rooted, ordered, binary 
trees. For such a tree T every internal node v has 
exactly two children, and the two children are distin- 
guished as the (-1)-child and (+l)-child of v. The 
depth dT(v) of a node v is, as usual, the number of 
edges along the path from v to the root and the depth 
dT of T is the maximum depth of any node in T.  

Formally, a decision tree over the variable set X 
with range R or (X, R)-decision tree is a triple (T, p, a) 

where T is a rooted binary tree, p is a map that asso- 
ciates to each internal node v a variable x = p,, in the 
set X ,  and a is a map that associates each leaf v to 
an element av of R. The label pv is called the query 
associated to v, and node v is said to probe variable 
p,, . We will generally say that T is an (X, R)-decision 
tree, keeping the maps p and a implicit. The set of 
(X, R)-decision trees over X is denoted T(X, R), or 
simply 7. 

Let T be an (X, R)-decision tree. If a is any assign- 
ment in Bx , the computation of T on a, is the unique 
path vO, vl, v2, . . . , v8 from the root of T to some leaf 
vs = lT(a) as follows: start from the root vO and 
inductively define define vi+' for i > 0 as the a(pui)- 
child of vi. The output of the computation is the label 
aly(a). Thus T can be viewed as a boolean function 
over X with range R. Trivially, every (X, R)-function 
f is computed by some (X, R)-decision tree. 

The usual cost function for the computation per- 
formed by T on a is the length (number of internal 
nodes) of the computation path, denoted C(T, a). The 
worst case complexity C(T) is the maximum over a 
of C(T, a). C( f) ,  the decision tree depth of f ,  is the 
minimumof C(T) over all decision trees that compute 
f .  For a distribution D on assignments, the distribu- 
tional complexity CD(T) is the average of C(T, 5 )  with 
respect to the distribution D. 

For a given (X, R)- function f ,  and a complexity 
bound b (with respect to some complexity measure), 
we are interested in how well f can be approximated 
by a tree of complexity at most b. The closeness of 
approximation is defined with respect to a probability 
distribution D on boolean assignments to X .  Thus for 
each (X, R)-decision tree T, the agreement probability 
qD(f; T) of T with f relative to Dl  is the probabil- 
ity that T(G) = f(&), with respect to the random 
assignment G chosen according to D. The decision 
tree approximation problem for (f, D, U) where f is an 
(X, R)-function, D is a distribution over boolean as- 
signments to X ,  and U is a set of decision trees is to 
determine qD(f;U), which is defined to be the maxi- 
mum agreement probability qD( f ;  7') over all T G U. 
Of particular interest is the case that U is the set 
Td(X, R) of decision trees of depth at most d. 

Finally, a decision forest F over X and ranges 
Rl, R2, . . . , Rk is an ordered sequence TI, T2, . . . , Tk, 
where T, is an (X, R,)-decision tree. F computes a 
boolean function from B~ to R = Ri x R2 x . . . x Rk. 



3 The Product Problem 

Let XI , Xi, . . . , Xk be pairwise disjoint sets of vari- 
ables, and let Dl ,  D2, . . . , Dk be, respectively, dis- 
tributions over assignments to Xi,X2, . . . , Xk. Let 
X = Xi U X2 U . . . U Xk . A boolean assignment /? for 
X will be viewed as a k-tuple (/?I, /?2, . . . , /?k) where 
/?j is an assignment for Xi. Let D denote the distribu- 
tion over assignments to X given by P r o b o ( 0  = /?) = 
nf=l P r o b ~ ~ ( 0 j  = b), i.e., the product distribution 
Dl x D2 x . . .x  Dk. 

Now suppose that we have k decision tree approxi- 
mation problems 
( f i , D i , ~ i ) , ( f z 1 ~ 2 , ~ z ) , .  ..,(fk,Dk,Uk), where for 
each i ,  f j  is a (Xi, &)-function, and let qj = qDj( fj; Ui) 
be the optimal agreement probability for Uj with 
f j  relative to Dj. I t  will be convenient some- 
times to view f j  as a function of the entire vari- 
able set X that ignores all variables except those in 
Xi. We consider the problem of simultaneously ap- 
proximating f l ,  fa , . .  . , fk  by a decision forest F = 
(TI, T2, . . . , Tk) where T{ ? Uj. The simultaneous 
agreement probability q o ( f ~ , f z ,  ..., fk;Tl,T2,.. . ,Tk) 
for Ti, T2, . . . ,Tk with fl, fa,. . . , f k  denotes the prob- 
ability, for 0 chosen according to D l  that (Ti(&) = 
fi(0)) A (T2(0) = fz(5)) A - . -  A (Tk(0) = fk(0)). 
For Ul, 2.42, . . . , Uk where Ui is a family of (X, fi,)- 
trees, qo(f1, f2, ..., fk;U1,U2, . . . ,~k)  denotes the 
maximum of qo(f1, f2, . . . , fk; TI, T2, . . . , T , )  over all 
choices of trees with 7,- 6 Uj. 

Now, since f j  only depends on Xi and D chooses 
the assignments 01, 02, . . . lit to Xi, X2, . . . , Xk in- 
dependently, it would 
seemthat qo(fll  f2 ,..., fk;TllT2, ..., Tk) shouldjust 
be the product of the probabilities qDi(fi; Ti). This is 
clearly the case if each tree Tj only queries variables 
in Xi. However (as shown by the examples in below), 
if T{ is allowed to query variables outside of Xi, then 
this need not be the case. Intuitively, it would seem 
that variables outside of Xj  could not help to approxi- 
mate f j  and indeed this is trivially true, if we are only 
trying to approximate f j .  But when we seek to ap- 
proximate all of the functions simultaneously, it is no 
longer obvious that such "cross-queries" are irrelevant. 

Nevertheless, one might expect that for "reason- 
able" classes 241 , U2, . . . , Uk of decision trees, the op- 
timal simultaneous agreement probability is attained 
by a sequence of trees Ti, Tz, . . . , Tk with T, querying 
variables only in Xi, and is thus equal to the prod- 
uct of the individual optimal agreement probabilities. 
The main result of this section is to prove this in the 
case that for each i, Uj is the set of trees of some fixed 

depth dj. 

Theorem 3.1 Let f l l f 2 , . . . , f k  and 
Dl1D2, ..., D k , D  be as above. Let dl1d2, ..., d k  be 
nonnegative integers. Then 

Note that Theorem 1 is a special case of the above. 
Before giving the proof we present two examples to  
show that multiplicativity fails for some natural alter- 
native choices of the classes U\ , U2 , . . . , Uk . 

Example  3.1 Theorem 3.1 fails i f  we replace the 
class Trfi by the class S i  of trees that are restricted 
to query at most dj variables from Xi along any path, 
but can query variables outside Xj for free. Consider 
the following trivial example. Let k = 2 and let XI = 
{x1},X2 = {x^}. The distribution Dl assigns a;l to 
1 with probability 1/2, and D2 assigns x2 to 1 with 
probability 1/2. The functions fl and f2 are given by 
fl(xl) = XI, f2(x2) = x2. Now let dl = d2 = 0. This 
means that we do not allow TI to look at any variables 
in XI and we do not allow T g  to look at any variable in 
X2. Clearly qoi(fi,S^) = q ~ ~ ( f 2 ,  S2, 0) = 112. How- 
ever, we can achieve simultaneous agreement probabil- 
ity better than 1/4. Let Ti be the tree that queries x-> 
and outputs xz and T2 be the tree that queries XI and 
outputs xi.  Then, the probability that both Ti and f1 
agree and T2 and f2 agree is just the probability that 
x l  and x2 are assigned the same value, which is 1/2. 

A somewhat more subtle example is given by: 

Example  3.2 F o r  a distribution D over B ~ ,  let 7f 
be the class of trees whose expected depth with respect 
to D is dl i.e., T ? 7j if the average number of vari- 
ables queried, with respect to 0 chosen from D is at 
most d. Then the above theorem is false if we replace 
Tdi by 71i. To see this, let X be a set of four vari- 
ables, and f be the parity function on X .  Let U be 
the uniform distribution over assignments to X and 
let d = 3. First we show that the maximum agreement 
probability with f attained by a decision tree S of ex- 
pected depth at most 3, is equal to 3/4. Agreement 
probability 3/4 is attained by the tree S that queries 
a particular variable x, and if H is 0, then it returns 
0, and otherwise it queries the remaining three vari- 
ables and returns the parity of them. To see that this 
is best possible, note that if T is any decision tree al- 
gorithm, then for each leaf l in T of depth less than 
4 T will agree with f on exactly half of the inputs 



that reach 1. Thus, i f  pi is the probability that a ran- 
dom input & ends up at a leaf of depth i, then the 
agreement probability qD(f; T) can be bounded above 
by p4 + 1/2(lÃ p4); it suffices to  show that p4 < 1/2. 
Now pi either equals 0, 112 or 1. I f  pi > 0 then 
p4 < 112. If  pl = 0, then the expected depth of the 
tree is at least 4p4 + 2(1- p4) = 2 + 2p4, which means 
that p4 < 112. 

Now let XI, fl, Dl and X2, f2, D2 be copies of 
X, f ,  U on disjoint variable sets. W e  show that it 
is possible t o  choose decision trees TI, T2 each of ex- 
pected depth at most 3, whose agreement probabdity 
exceeds 9/16 = (3/4)2. Let Ti be the S described 
above and let xl denote the variable in  Xl probed first 
by TI. Let T2 be the following tree: first probe XI 

(an Xi). If  it is 0, output 0. If it is one, then read 
all four variables in X2 and output their parity. The 
expected depth of this tree is 3, since half the paths 
have depth one and half the paths have depth five. 
Now, let us consider the probability of the event A 
that both TI(&) = fl(S) and T2(&) = T2(S). Then 
P r o b ~ ( A )  = l/2(ProbD(Alxl = 0) + Prob(Alxl = 
1). The conditional probability of A given $1 = 0 is  
1 / 4 .  If XI  = 1 then Ti must agree with fl, and Tt 
must agree with fa. Thus the probability of simultane- 
ous agreement is 518 = 10/16. 

What happens in the above example is that the 
variable xi acts as a shared random coin that par- 
tially coordinates the two computations so that they 
are more likely to be simultaneously correct. 

Proof of Theorem 3.1 Fix a sequence Ti, T2, . . . , Tk 
of decision trees with Ti of depth at most di. For 
I C [k] = { l ,2 , .  . ., k}, let C(I) denote the event 
Aie/(Tf = fj(xi), i-e., the event that all of the trees 
indexed by I evaluate their respective functions cor- 
rectly. We seek to prove that Prob[C([k])] is bounded 

k 
above by T(ii). 

The proof is by induction on k, and for fixed k by 
induction on the k-tuple dl + d2 + . . . + dk. The result 
is vacuous if k = 1. 

So assume that k > 2. Consider first the case that 
di = 0 for some i. We may assume that dk = 0. Thus, 
the k^ party must guess the value of fk(Sk) without 
looking at any variables, so Tk consists of a single leaf 
labeled -1 or 1. Now, by conditioning on the value of 
the vector Sk, the probability, P* that C([k]) holds 
can be written: 

Now let 7 be the assignment of Sk that maximizes 
the probability in the last expression. For each i be- 
tween 1 and k - 1, define the tree Ui by contract- 
ing Ti using Gk = 7. Then we may rewrite the 
last term as Prob[(Ul (6) = fl (6)) A . . . (Uk- = 
fk-I(&))] qDk(fk,O). 

Each tree Ui has depth at most dj, and so we may 
bound the first factor by 
q ~ ( f 1 ,  f2, . - .  , fk-I; rfdJd2, . . which by the 
induction hypothesis equals q ~ ;  (fi , Td,). Thus 
the desired result follows. 

Now we assume that di > 0 for all i. Define a 
directed graph on {I, 2, ..., k} with an edge from i to 
j  if the first variable probed by Tf is an input t o  f,. 
Since this directed graph has out-degree one, it has a 
directed cycle. Let j > 1 be the length of the cycle. 
Let us rename the set of indices in the cycle by the set 
[?'I = {I, 2,.  . ., j }  in such a way that for each i < j ,  
the first probe of T, is a variable, denoted xi+l, in 

and the first probe of T, is a variable, denoted 
X I ,  in Xi. 

The intuition behind the rest of the proof is that 
for i E [j], it is possible to replace each tree 7,- by 
trees of the same depth in which the first probe in T, is 
xi, without decreasing the probability of simultaneous 
agreement. 

For b E B, let ft denote the function obtained from 
fi by fixing x\ = b. Also, let D: be the distribution 
on the set Xi - xi obtained from Dj by conditioning 
on x\ = b. 

Now, for b = (61, b 2 , .  . . , bj) ? Bj  let A(b) denote 
the event that (Sl(xl) = bl) A .. . A  (Sj(xj) = 6,). We 
can write the probability that all of the T{ compute 
correctly by conditioning on b as follows: 

We seek to upper bound this expression by: 



i=l 

To do this we show: 

Claim. For each b ? BE], the conditional probability 
of C([k]) given A(b) is at most: 

Assuming the claim for the moment, we can then 
substitute into the expression (1) to obtain the follow- 
ing bound on the probability that all of the trees are 
correct: 

The sum can be rewritten as: 
(3) 

which is equal to: 

Now, the ith term in this product corresponds to 
the probability of correctly computing f; if we first 
probe xi and then, depending on the outcome, use 
the optimal depth di - 1 tree to evaluate the residual 
function. Thus, we can upper bound this term by 
p( fi, Di, 4). But then, the expression (3) is upper 
bounded by the expression (2) as required. 

So it suffices to prove the claim. ~ e f i n e  ff(b) to 
be the function f,?' for i < j and to be f; otherwise. 

Similarly, the distribution D ? )  is equal to D,6' for 
i < j and to Di otherwise. Observe that, by the mutual 
independence o f & ,  a2, . . . , G k ,  their joint distribution 

given A(b) is the product distribution of Df for i 
between 1 and k. 

Let pb) be the tree obtained from contracting 
T, under the assumption that A(b) holds. Then the 
conditional probability that 7,- = /;(xi) for all i, given 

A(b) is equal to the probability (with respect t o  the 

product distribution on D P )  that for all i, if-^ = 
ff^. Now for each i the depth of qA^ ha, at  most 
d; - 1 if i < j, and is at most d; for I > j ,  so we 
may apply induction to say that the probability with 

respect to the product distribution on D:() that  for 

all i, e(b) = fF is at most: 

which is equal to the expression in the claim. This 
proves the claim and the Theorem. 

Remark. The proof of the Theorem can be extended 
to a more general model of decision tree computation. 
For this model, in the case of a single function we 
are given a function f from an arbitrary domain S to 
R, and want to compute f(s) for an unknown input 
s ?. S. We are further given a set Q of admissible 
queries, where each query q 6 Q is a partition of S 
into sets (Sf,  S l ,  . . -5'9). The response to query q is 
the index i such that s ? Sf .  The nodes of a decision 
tree are labeled by queries, and the branches out of 
the node correspond to the answers to the query. For 
a collection of functions f; on disjoint domains S;, the 
formulation of the product problem generalizes to  this 
model. The statement and proof of the Theorem now 
go through assuming: (1) That the any allowed query 
depends only on variables from one function and (2) 
The distributions D; are independent. 

4 Help Bits 

In the help bits problem, We have k boolean 
functions fl , f 2 , .  . . , fk  over disjoint variable sets 
Xi,  X2,.  . . , Xk,  Given an unknown assignment a to 
the variables of the set X = XI U . . . U Xk, we want 
to evaluate f;(a;) for all i, by a decision forest. We 
are allowed to ask, "for free", an arbitrary set of I 
binary questions about the assignment a. The an- 
swer to these 1 questions is a vector a ? B1. For 
each such a we will have a decision forest Fa = 
(Tf , TF, . . . , T?), where we require that Fa(a) agrees 
with (fl(ai), . . . , fk(ak)) for every assignment a thai- 
is consistent with a .  

Thus, such an algorithm is specified by 1 arbitrary 
boolean functions hi ,  h2, . . . , hi (the help bits) on vari- 
able set X, together with 2' decision forests. The com- 
plexity of the algorithm is the maximum depth of any 



of the 2'k decision trees in these forests. In general, 
the decision tree Tr that computes fi(cn} for a consis- 
tent with a is allowed to probe variables outside of Xi. 
This is conceivably useful, because together with the 
help bits, such probes could imply information about 
the variables in Xi. For instance if one of the help 
bit functions is (fi(ai) x aj(x)) where x is a variable 
in Xj, then by probing the variable x, we can deduce 
/,(ai). If only probes variables in Xi we say that 
it is pure. If each of the 2'k decision trees are pure, 
the algorithm is pure. 

In this paper, we will restrict attention to the case 
that, for some variable set X and boolean function 
f over X ,  each of the Xi are copies of X and the 
functions fi are copies of f .  The help bits problem 
Hk$'(f) is to evaluate k copies of f given 1 help bits. 
Define Ck"(f) to be the complexity of the optimal 
algorithm that solves it. We also define the problem 
H g e ( f )  to be the same as ffk~'(f) except that we 
require that the algorithm be pure. Define Ĉ f̂) t o  
be the complexity of the optimal pure algorithm. Our 
goal is to obtain bounds on Ckp'(f) and C x e ( f ) .  The 
mainresult of this section (which is a slight refinement 
of Theorem 2), is: 

Theorem 4.1 For any boolean function f on n vari- 
ables and any positive integer k, 

If k is sufficiently large, then 

We first reformulate the problems Hk*'( f )  and 
Hzre(f ) .  Given functions fi, f2, . . . , fk as above, 
and a decision forest F, we say that F covers the 
assignment a of X, with respect to fl, f2 , .  . ., f k ,  if 
F (a )  = (f i(a) ,  fz(a), . . . ,A(&)). Let rk(f ,  d) be the 
minimum number of forests, each consisting of trees 
of depth at most dl needed to cover all inputs with re- 
spect to f .  Let ~-i~,.~(f, d) be the corresponding mini- 
mum when we restrict to forests that are pure. 

Proposition 4.1 Let f be a boolean function and 
k, I, d be nonnegative integers. Then: 

1. CkJ(f)  < d if and only if rk ( f ,  d) < 2', 

2. Czre( f )  < d if and only if r^f, d) < 2' 

In other words, Pog2 ~ ~ ( f ,  d)l is the minimum I such 
that Hkl' can be solved with trees of depth d, and 
flog2 ~*~ ,^f ,  d)l is the minimum I such that H z e  
can be solved with trees of depth d.  

Proof. We prove the first assertion; the proof of 
the second is completely analogous. If Ckv'(f) < d, 
then the 2' forests given by the algorithm are also a 
cover and rk(f  , d) < 2'. Now suppose @( f , d) < 2'. 
Then there is a collection of 2' forests that cover all 
assignments of X. Index these forest as Fz where 
z ranges over B'. Order the forests lexicographi- 
cally, and define A(z) to be the set of assignments 
that are covered by Fz but not covered by F^ for 
any y < z. Then the sets {A(z) : z E Bk} parti- 
tion the set of all assignments of X. Now define the 
help bit functions hi,, h2,. . . , hi so that for each a, 
(hl(a), h2(a), . . . , hk (a)) is the unique index z such 
that a ? A(z). Then these functions together with 
{FZ : z G B'} solves HkJ.  I 

So we now concentrate on obtaining bounds on 
rk(f ,  d) and riUre(f, d). For this we need yet an- 
other definition. A randomized (X, R)-decision tree 
algorithm is a probability distribution Q over (X, R)- 
decision trees. Such an algorithm is said to approxi- 
mate f with probability p if for each assignment a, if 
is a random decision tree chosen according to Q, then 
the probability that ?(a) = f (a)  is at least p. We 
define p( f ,  d) to be the maximum p such that there 
is a distribution Q over the set of decision trees of 
depth at most d that approximates f with probability 
p. It is easy to see that p(f, d) > 112. and that if 
d = C(f), the ordinary decision tree complexity of f ,  
then p( f ,  d) = 1. The following result relates r( f ,  d) 
to P(f 1 4 .  

Lemma 4.1 For any boolean function f on n vari- 
ables and k, d > 0, we have: 

Proof. The middle inequality is trivial. For the last 
inequality, we use a standard probabilistic argument 
to show that there is family of at most f*l pure 
forests of depth at most d that cover all of the assign- 
ments. Let Q be the distribution over (Y, R)-decision 
trees of depth at  most d that approximates f with 
probability p(f, d). For i 5 k, let Qi be the cor- 
responding distribution over the set of (Xi, R) deci- 
sion trees; Qi approximates fi with probability p(f, d). 
Consider the distribution P = Qi x . . . x Qk over .. 

forests. Suppose we select t forests Fi, F2, . . . , Ft ac- 
cording to P. For a given assignment a and j < t ,  
the probability that Fj covers a is at least p( f ,  d)k. 
Thus the probability that none of the forests cover a 
is at most (1 -p( f ,  d))$, and the probability that there 



exists an assignment a that is covered by none of the 
forests is at most 2nk(l - p(f, d)k)t < 2"*e-~(f9'^)*. If 
t = [(nk In 2)/p(f, d)*1 then this expression is at most 
1, so there is a positive probability that the forest cov- 
ers all assignments, and so there must be a collection 
of t forests of depth d that cover all assignments. 

Now we turn to the lower bound on r(f,d). For 
this, we need the following relationship between p( f ,  d) 
and the agreement probability qa(f, d) with respect to 
a particular distribution D on assignments. 

Lemma 4.2 For any (Y, R)-boolean function f and 
integer d > 0, there exists a distribution D on assign- 
ments to Y such that qn(f,d) =p(f,d). 

This is a variant of a fundamental observation of 
Yao [Yl], and follows from the min-max theorem for 
two person zero sum games. 

Let D be the distribution of the lemma. Sup- 
pose that Fll F2,. . . , Ft is a family of forests that 
cover all assignments a to X. Consider the distri- 
bution P over all assignments a which is the prod- 
uct Dl x D2 x . . . x Dk, where D, is the copy of 
D on Xi. Then, by Theorem 3.1, for any forest Fi, 
the probability that it covers 6 is at most p(f, @. 
Then the expected number of assignments covered by 
Fl, F2,. . . ,Ft is at most tp(f, d)*. Since Fll Ft, . . . , F k  

covers all assignments, this expectation must be at 
l e a s t l , s ~ t > l / p ( f , d ) ~ .  1 

As an immediate corollary of the above lemma and 
proposition 4.1 we get the following bounds on the 
complexity of the help bits problem: 

Corollary 4.1 For any boolean function f on n vari- 
ables and integers k, l ,  d > 0: 

1. If 2' < l/p(f,d)k then ~ * ? ' ( f )  > d. 

2. If 2' > nk/p(f, d)* then Cgre(f )  < d. 

Next we need to connect the quantity p(f, d) to the 
sign-degree degs ( f )  . 

Proposition 4.2 For 
any boolean function f ,  p(f, d) > 112 if and only if 
d > degs(f). 

Proof. Let d > degs(f). Then there is an n-variate 
polynomial p(xi, x2,. . . , xn) of degree at most d such 
that g(a) > 0 if and only if /(a) = 1. By shifting 

the polynomial by a small constant we may assume 
that g(a) is never 0. We may assume without loss of 
generality that the sum of the absolute values of the 
coefficients of g is 1. Consider the following random- 
ized decision tree algorithm: choose a monomial of g 
at random, where the probability a given monomial is 
chosen is the absolute value of its coefficient. Probe 
the variables of the monomial and output the product 
of the values. It is easily seen that for any assignment 
a, the probability of correctly evaluating f (a)  minus 
the probability of incorrectly evaluating f (a)  is equal 
to lg(a)l > 0 (here we use that our domain is {-I, 1)). 
Thus for any a this algorithm correctly evaluates f (a)  
with probability exceeding 112. 

Now suppose p(f,d) > 112. There must exist 
a randomized decision tree algorithm Q on depth d 
trees that evaluates f (a)  correctly with probability 
exceeding 1/2. Now, it is well known, and easy to 
see (by induction on dl looking at the two subtrees 
of the root) that if T is a decision tree of depth d 
on variables {Q, . . . , xn} then there is a polynomial 
g T ( ~ l , . .  . , xn) of degree d such that gT(a) = T(a)  for 
all assignments a. Define the polynomial g(xl,. . . , xn) 
to be the sum of Q(T)(gT - 1/2) where the sum is 
over all trees of depth d and Q(T) is the probability 
that T is selected under the distribution Q. Then 
g(ai,. . . , a n )  = probQIT(a) = 11 - 112. By the 
choice of Q, this latter term is positive if and only 
i f f ( a ) = l .  1 

Theorem 4.1 now follows easily. 

Proof of Theorem 4.1. By Corollary 4.1, 
~ ^ - l ( f )  < degs(f) would follow from 2*-' > 
nkIp( f , degs( f))k.  This holds for all sufficiently large 
k since p(f, dega(f)) > 112, by Proposition 4.2. 

Also, by Corollary 4.1, to show C z l ( f )  > 
degs(f)-1, it suffices to show 2*-l < l/p(f, degs(f)- 
I ) ~  for all k ,  which follows immediately from the fact, 
by Proposition 4.2, that p( f ,  degs(f) - 1) = 112. 1 

Remark 1. It is interesting to note that, for k large 
enough, it is possible to construct to obtain an opti- 
mal algorithm in which all of the decision trees have a 
particularly simple form. The randomized algorithm 
in the proof of Proposition 4.2 uses only decision trees 
that correspond to computing monomials of g. Using 
this randomized algorithm in the proof of the upper 
bound of lemma4.1 the decision trees used in the help- 
bits algorithm are all of the same form. 



Remark 2. As noted in the introduction, i f f  is the 
majority function the deg8(f) = 1 and so the deci- 
sion trees used in the optimal algorithm for Hktk-l for 
large k all have depth 1. In the case that f is the ma- 
jority function on three variables, Manuel Blum gave 
the following constructive protocol to solve 
Enumerate the subsets of [k] having size at least 2k/3. 
The number of these sets is 2Ck for some c < 1. Fix an 
encoding of these sets by ck bits. Now given k sepa- 
rate inputs to the majority-of-3 function, and imagine 
the inputs arranged in a k x 3 array. In each row, at  
least two of the three entries agree with the majority 
value, so there is a column in which at least 2k/3 of 
the entries agree with the function value on that col- 
umn. For the help bits, we ask for the lowest index of 
such a column (requiring 2 bits) and then the set S 
of rows for which this column gives the function value 
(requiring ck bits.) Armed with this information, the 
value of the function on row r is equal to the entry in 
that row and the designated column if r E S and is 
the negative of the entry otherwise. 

Remark 3. In the proof of the lower bound in Lemma 
4.1, we used Theorem 3.1 in order to deduce that for 
any forest F of depth at most dl the probability with 
respect to a particular distribution P on assignments 
F is correct for all k functions is at most p(f, d)k. In 
the special case d = degs(f) - 1, which is the relevant 
case for proving that > degs(f) - 1 in Theo- 
rem 4.1, there is an alternative argument. We sketch 
this argument, which has the benefit that it extends to 
other models besides decision trees, as will be seen in 
the next section. As noted above, for d = degs(f) - 1, 
we have p(f, d) = 112, and thus for 6 selected from 
D (the distribution of Lemma 4.2) any decision tree 
of depth d agrees with f with probability exactly 112. 
In particular, this can be shown to imply that if we 
fix the values of any d variables then either that par- 
tial assignment occurs with probability 0 under D, or 
that the value o f f  conditioned on this assignment is 
unbiased. 

Now, define the random variable cj to be 0 if 
Ti(&) = fi(&) and 1 otherwise. We want to show 
that the probability that cj = 0 for all i is at most 
l/2k. In fact, the distribution on (cl, ~ 2 , .  . . , ck) is 
uniform on {O, I } ~ .  By the XOR lemma of [Vaz] (see 
also [CGHFRS]) a distribution over {O, I}* is uniform 
if for any subset J of [k], the random variable CJ de- 
fined to be the XOR of the cj for i E J is unbiased. Let 
SJ be the probability that CJ = 0. The event CJ = 0 
is the same as the event that Tj(&)(= nip w&)) 
is equal to fj(&)(= [ljg fi(&)). Now by combining 

the decision trees {Ti\i J} we can get a single de- 
cision tree of depth at most IJId that computes T j .  
We claim that such a decision tree must agree with f j  
with probability exactly 112, which is enough t o  finish 
the argument. We prove the claim by showing that  for 
each leaf of the tree TJ that is reached with nonzero 
probability, f ~ ( & )  conditioned on & reaching the leaf 
is unbiased. For each such leaf of the tree, there is 
an i ? J such that at most d variables of Xi appear 
on the path. Recall that the value of f j  is unbiased 
when conditioned on the values of these d variables. 
If we further condition the value of f~ by the values 
of all variables not in Xi, then fj is still unbiased and 
therefore so is f J . 

Remark 4. One implication of Theorem 4.1 is that 
for large enough k, the best algorithm for f f k l k l ( f )  
uses pure trees. It is reasonable to speculate that this 
is the case for Hk'l(f) for all k and I ,  and this is open. 
For the case k = 2, it is interesting to note that  for 
the case k = 2 and I = 1, it is not hard to show 
that pure tree algorithm can not do better than C(f), 
the ordinary decision tree complexity off .  To see this, 
note that the help bit partitions the set of assignments 
of X = Xi U X2 into two groups A1 and A2. I t  is not 
hard to see that either the set of assignments on XI 
induced by Ai is all of Bxl , or the set of assignments 
on X2 induced by A2 must be all of B^. In the first 
case, then given Al, a pure tree computation for f on 
XI is as hard as the problem without the help bits, 
and in the second case, then given As, a pure tree 
computation for f on X2 is as hard as the problem 
without the help bits. 

5 Other Models 
Some of the ideas used so far are also relevant to other 
models of computation. We can get results for these 
models that are similar to but neither as precise or 
as strong as what we obtain for decision trees. It is 
convenient to describe our results in the following very 
general framework. We fix some computational model 
for computing a function f on input a ? X, and some 
class, FEAS, of "feasible" algorithms. 

Our results will only hold for classes having cer- 
tain closure properties. A class FEAS is closed un- 
der k-counting if for any k algorithms in FEAS, any 
algorithm that runs all k of these algorithms on the 
input and accepts or rejects based on the number of 
computations out of k that accept, is also in FEAS. 
Examples of such classes are polynomial size circuits, 
which are closed under poly-counting, and polylog-bit 



communication complexity protocols which are closed 
under polylog-counting. 

/.From such a class we define when a multi-input 
algorithm is feasible. An algorithm for computing a 
function f on a pair of inputs all a 2  E D2 is said to 
be rectangularly-feasible, in FEAS*, if for every fixed 
value of a1 the induced algorithm for f is in FEAS, 
and for every fixed value of a 2  the induced algorithm 
for f is in FEAS. Notice that for the two examples 
mentioned above (and essentially any model one may 
think of), FEAS C FEAS*. Thus, for example, for 
the case of poly-size circuits, the lower bounds given 
below for two-input algorithms apply to all poly-size 
circuits as well. 

5.1 Products 

A product theorem in such a setting may be proven us- 
ing Yao's XOR-lemma [Y2], which we observe applies 
in this general setting. Let Dl, D2 distributions, and 
denote PI = q ~ ~ ( f i ;  FEAS), pi  = q ~ ~ ( f 2 ;  FEAS). 

Lemma 5.1 (Yao) Assume that F E A S  is closed un- 
der k-counting. Then 
<l~ixDz(fl(ai)@f2(a2); FEAS*) < pip2+(1 -pi)(l- 
p2) + 

/.From this one can deduce an "approximate prod- 
uct theorem". 

Theorem 5.1 Assume that F E A S  is closed under k- 
counting. Then 

Proof. Fix an algorithm A in FEAS*, and denote by 
pyy the probability that it is correct on both inputs, 
by PNN the probability that it is incorrect on both, by 
p y ~  the probability that it is correct only on the first 
input and by p ~ y  the probability that it is correct 
only on the second input. Since for every fixed value 
of a1 the probability that A is correct on f2 is at 
most p2, then by averaging over all a1 , we have py y + 
p ~ y  < p2. Similarly, pyy + p y ~  < pi. Finally, Yao's 
xor-lemma implies pyy + ~ N N  < plp2 + (1 - pi)(l - 
p2) + l/kn(l). These inequalities, together with the 
fact that pyy + p y ~  + p ~ y  + PNN = 1 , directly imply 
pyy < pip2 + l/k"(l), which proves the lemma. 1 

5.2 Help Bits 

We can use the approximate product theorem to get 
help-bit results for randomized algorithms. Given a 

class of "feasible algorithms" FEAS, We say that  a 
function is randomly feasibly computable, in R F C ,  if 
there exists a probability distribution on algorithms in 
FEAS such that for any input, an algorithm chosen 
from this distribution will be be correct on f with 
probability of at  least 213. The constant 213 is not 
important as the usual "amplification" lemmas work 
in this general case. 

Lemma 5.2 If FEAS is closed under k-counting 
then the constant 213 can be replaced by 112 + I l k  
(or by 2 k )  without changing the class RFC. 

For the case where FEAS is the class of polyno- 
mial size circuits, it is known that randomization does 
not increase power, and thus R F C  is exactly equal 
to the functions computable by deterministic poly- 
size circuits. For the case where FEAS is polylog- 
bit communication protocols, R F C  is the functions 
computable by randomized polylog-bit protocols with 
two-sided error. 

Let us define what is feasible computation with a 
help-bit. Let FEAS be a given class of algorithms. 
A 1-help-bit-feasible algorithm, in FEAS1, is a set 
of two algorithms AbA1 in FEAS, and a boolean 
function h, whose value on input a is the output of 
Ah(?. A function is in RFC1 if there is a FEAS} 
algorithm for computing two copies of f ,  which on 
every pair of inputs is correct on both with probability 
of at least 213. We then can prove a randomized help- 
bit theorem. 

Theorem 5.2 If FEAS is closed under O(1)- 
counting then RFC1 = RFC. 

Proof. Assume that f $Z R F C  then, amplifying and 
similarly to lemma 4.2, there exists a distribution D 
such that qD(f; FEAS) < 0.51. Using the approxi- 
mate product theorem, any FEAS* algorithm for two 
copies off  can be correct on at most O.5l2+o(l) frac- 
tion of inputs (under distribution D x D). If follows 
that any FEAS; algorithm can be correct with prob- 
ability at most twice that, a probability smaller than 
213 (again probability taken over a pair of inputs cho- 
sen from D x D.) This in turn implies that f <i RFC1. 
I 

For the case of boolean circuits, this was proven in 
[ABG] . 

5.3 The log k Barrier 

The "approximate product" theorem and the "ran- 
domized help-bit" theorem can be naturally general- 



ized to up to log k functions where the family F E A S  is 
closed under k-counting. After that, these techniques 
break down. It is unknown for example whether a 
polynomial size circuit using n help-bits can compute 
n+ 1 copies of function which doesn't have polynomial 
size circuits. One can show that in a black box model, 
alternatively, relative to a particular oracle, that the 
generalizations are false using w(1og k) functions. 

Consider the model of polynomial-size circuits each 
with access to the same black-box. 

Theorem 5.3 There is a black-box so that there ex- 
ists a Boolean function f which can't be computed by 
a polynomial-sized circuit family, but l(n) = w(1ogn) 
help-bits will allow a polynomial-sized circuit to always 
compute the answer to n disjoint copies off, where n 
is the input size to f .  

Proof. It is well know that a fandomf can't 
be computed by a polynomial-sized circuit. Fix 
such an f .  A successful circuit would take in- 
puts X^,X2, ...,Xk and output the vector V =< 
f (Xl), f (X2), ..., f (Xk) >. We "hide" V in the black- 
box in such a way that a circuit without help-bits can't 
find it, but a circuit with help-bits goes directly to it. 
Let n be the size of each Xi and choose k = n. For 
each input tuple, and output V do the following: Let 
s be a random l(n)-bit string. Place V in the loca- 
tion indexed by Xi ,  X2, ...,X,,, s. For t # s, place a 
"SORRY1 in location Xi ,  X2, ..., X,,, t. By a standard 
counting argument, one can show that no polynomial- 
sized circuit family (with access to the black box) can 
answer correctly on all n-tuples of inputs. However, 
given 1 help-bits, it is easy to query the oracle at the 
location revealing the answer tuple. 1 

It is interesting to note that the Yao XOR lemma 
fails relative to this black-box in the sense that once we 
XOR more than l(n) variables the parity stops getting 
harder to compute. In other words, the XOR lemma 
has the same logn barrier as above. 
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1. Introduction 

Proving lower bounds on the complexity of explicitly given Boolean functions is one of the 
most challenging tasks in the computational complexity. This theory met with a remarkable 
success at least twice: in the 60's (see e.g. [34, 29, 30, 35, 361) and in more recent time 
([ll, 1, 26, 12, 31, 32, 27, 2, 24, 28, 33, 21, 4, 15, 171). Both times, however, the period 
of enthusiasm was followed by understanding that it is not quite clear to which extent the 
methods developed so far can be useful for attacking central open problems in Boolean 
complexity. 

A logical analysis of this situation should start with understanding what is the right 
"minimal" fragment of ZFC which is really needed for formalizing all these methods, and 
this question was raised in [19]. It was argued there that the conceivable answer is the 
second order theory of Bounded Arithmetic K1, and no example of a lower bound for 
explicit function not provable in has been found since that. The next goal is to develop 
machinery for understanding whether can prove superpolynomial lower bounds on the 
size of unrestricted circuits or not. 

In this paper we present first partial results in this direction. Namely, we show that the 
existence of a pseudorandom generator secure against the attack by circuits of size 2"' (for 
some fixed e > 0) implies that for any explicit Boolean function fÃ and any integer-valued 
t(n) such that t(n) > nu('), the theory Si(a) can not refute that a encodes a Boolean 
circuit of size t(n) for fn. For the theory Sza) the same statement holds under the weaker 
assumption of the existence of a generator secure against nC-depth circuits. 

A few remarks concerning these results should be made immediately. 

Following [19], we work in the strongest possible framework in which a includes en- 
coding~ of truth-tables of all Boolean functions appearing in the circuit as intermediate 
results. 

We do not require that Bounded Arithmetic would prove t(n) > nu('), we only need 
this to be true on integers. Thus, our results are still applicable to e.g. tin) = dog*  ". 

Since we are mostly interested in the provability in q, this is also natural to consider 
the hierarchy of its subtheories and wonder whether we can do better for them. The 
strongest theory in this hierarchy to which our method applies is IEl(f)  (see [25] 
for the definition of IEl), and for this theory we indeed can prove a slightly stronger 
result. Namely, we may replace t(n) by nk for a fixed constant k > 0 depending only 
on the quality of the generator. This improvement, however, is really marginal, so 
we prefer to work all the time in the language Ly containing the smash function #. 



Figure 1: The framework for split versions 

For proving these results we define the split version S(Ŝ ) of S2 as the theory in the 
language L2(a, /3) which allows induction on arbitrary bounded formulae in L2(a) and 
arbitrary bounded formulae in L2(/3). We consider the pair (a, /3) as an encoding of a 
Boolean circuit with the PARITY gate at the top so that a encodes the left-hand side of 
the rest, and /? encodes the right-hand side (see Figure 1). 

S(S2) proves in this framework exponential lower bounds on the size of constant-depth 
circuits over the standard basis. We show that on the other hand it can not prove super- 
polynomial lower bounds for depth-3 circuits with PARITY gates. We derive the above- 
mentioned results about Saa) and Sg(a) as direct consequences of similar statements 
concerning w) appended with the corresponding induction schemes. 

The proofs consist of several fairly independent pieces. One of essential ingredients is the 
characterization of the circuit depth by a communication game [15], and a characterization 
of the circuit size in these terms based upon local search problems (Theorem 3.1 of this 
paper). These characterizations are non-uniform in their very nature, and this suggests 



that our results might be extended to stronger theories allowing more computational power 
for both players. 

To this end we define the split version S(&) of the second order theory V2 in the same 
fashion as S(S2), and extend our three results to this theory (appended with the appropriate 
induction scheme for the first two). These extensions follow from general interpolation- 
like theorems, and this is a close indication that s(&) and its extensions exactly capture 
Karchmer-Wigderson game and its analogue for the circuit size. Unfortunately, these 
second order versions are somewhat technical. Thus, for the convenience of the reader 
interested only in classical fragments of Bounded Arithmetic, we start with the simpler 
first order case. 

The paper is organized as follows. In Section 2 we recall necessary definitions from 
Complexity Theory. In Section 3 we present the new characterization of the circuit size 
(Theorem 3.1). In Section 4 we briefly survey results from Bounded Arithmetic needed 
for our purposes. In Section 5 we recall the framework from [19] and introduce its split 
variant. In Section 6 we present first order versions of our main results, and in Section 
7 show that they can be actually derived as corollaries of interpolation-like theorems for 
split versions of second order theories. The paper is concluded by some remarks and open 
problems in Section 8. 

2. Background from Complexity Theory 

In this section we recall necessary definitions and facts from Complexity Theory. 

2.1. Boolean Complexity 

We address the reader to [5] for an excellent treatment of the subject; the sole purpose of 
this section is to agree upon notation. 

We denote by Fn the set of all Boolean functions in n variables x i , .  . . , xn. Let x] + xi 
and xy ^Â (--xi). Most of the time, it will be convenient to think of fn ? Fn as of a 
binary string of length 2" called the truth-table of fn. We will denote by S( fn )  the circuit 
size of fn (over the standard basis {A, V, --} with negations appearing only at variables; 
all computational nodes must have fan-in 2). D(fn) is the minimal depth needed for 
computing fn in the same model. Smon(fn) and Dmon(fn) are, respectively, the monotone 
circuit size and the monotone depth of a monotone fn. Sd(fn) is the circuit size with 
respect to depth-d (unbounded fan-in) circuits. S^fn) is the same as Sd( fn) ,  only now we 
additionally allow PARITY gates. 





2.3. Polynomial local search problems 

This concept was originally considered in [13]. We reproduce here the variant of the  
definition given in [8]. 

Definition 2.3. A local search problem L consists of a set FL(x)  2 N of solutions for 
every instance x G N, an integer-valued cost function cL(s, x )  and a neighborhood function 
NL(s,  x )  such that: 

b) for all s G FL ( x )  , Nh(s, x )  E FL(x); 

c )  for all s G FL(x),  if N L ( s l x )  # s then c ~ ( s , x )  < CL(NL(S ,X ) ,X ) .  

A local optimum for the problem L on x is an s such that s G FL(x) and NL(s,  x )  = s. 
A local search problem L is polynomial if the binary predicate s 6 FL(x) and the functions 
C L ( S ,  x ) ,  NL(s ,  x )  are polynomially time computable, and also there exists a polynomial 
p L ( n )  such that \s\ < ~ ~ ( 1 x 1 )  for all s G FL(x).  

Note that the concept of a polynomial local search (PLS) problem can be relativized 
in a standard way. 

2.4. Natural proofs 
This concept was introduced in [20]. 

Let I? and A be complexity classes. Slightly altering the notation from [20], we call a 
sequence {Cn 1 n ? w }  of subsets Cn Fn a I?-natural combinatorial property useful against 
A if it satisfies the following three conditions: 

1 
Constructivity: The predicate fn  G Cn is computable in I? (note that the bit size of an 

input to this problem is 2" which will be denoted further on by N), 

Usefulness: For any sequence of functions fn â Cni { fn}  # A 

(our Cn corresponds to C; from [20]). A lower bound proof that some explicit function 
is not in A is called I?-natural against A if it leads to a I?-natural combinatorial property 
which is useful against A. 



For a pseudo-random generator Gn : {O, I}" Ã‘ {O, define its hardness H(Gn) as 
the minimal S for which there exists a circuit C of size < S with the property 

Here x is taken at random from {O, I}", and y is taken at random from {O, 
The following is a minor improvement on [20, Theorem 4.11 which is proved in the same 

way: 

Proposition 2.4. Assume that there exists a S I Z E  (2(10g~)0(1)) -natural combinatorial 

property which is useful against P/poly (=  SIZE(^'^))). Then for every polynomial 
k 4 )  time computable Gk : {O, 1lk - { O ,  I}^, H(Gk) < 2 . 

We define depth hardness DH(Gn) of Gn as the minimal S for which there exists a 
circuit C of depth < log, S such that (2) holds. The following is analogous to Proposition 
2.4: 

Proposition 2.5. Assume that there exists a D E P T H  ((log N)'(')) -natural combinato- 
rial property which is useful against P/poly. Then for every polynomial time computable 
Gk : {O, 1}k - {o, I},~, DH(Gk) < 2^". 

Note that the classes S I Z E  (2(10giv)0(1)), D E P T H  ((log N)'(')) appearing in the above 
two propositions are simply non-uniform analogues of quasipolynomial time and POLY- 
LOGSPACE, respectively. 

Finally, we improve along the same lines upon [20, Theorem 4.31: 

Proposition 2.6. There is no DEPTH, S I Z E  ( ~ ( l ) ,  2(10g")0(1)) -natural combinatorial 
property useful against AC0*3[2]. 

3. A new characterization of circuit size 

Let (7, V, I be finite sets, and R c U x V x I be a ternary relation such that (1) holds. We 
will be considering those local search problems whose instances x are (encodings of) pairs 
(u, v); u ? u, v Â V. 

For any such problem L =< FL, cL, NL >, let C(FL, cL) be the communication com- 
plexity of computing simultaneously the predicate s E FL(ul v) and the function cL(s, u, v) 



in the model when the first player gets (s, u), and the second gets (s, v) (thus, s is in the  
public domain). C(NL) is defined similarly. The size of L, by definition, is 

(the meaning of the coefficient 2 in front of C(FL, ci,} will become clear from the proof of 
Theorem 3.1). 

We say that R reduces to L if there exists a function p : N Ã‘ I such that for any 
(u, v) E U x V and any local optimum s for L on (u, v), we have (u, v, p(s)) E R. We define 
size(R) as 

min { size(L) \ R reduces to L } . 

Theorem 3.1. a) For every partial Boolean function f ,  size(Rf) = 0(S(f)), 

b) For every monotone partial Boolean function f ,  s i ze (Ton)  = O(Smon(, f )). 

Proof. Since the proofs of the two parts are practically identical, we prove only part a). 

Let f be a partial Boolean function in n variables, let t Â¥  ̂S(f), and let C be a size-t 
circuit computing f .  Denote /-YO) by U ,  and f "'(1) by V. We want to reduce Rf to a 
local search problem L of size 0(t). Disregarding all inessential variables not appearing in 
C, we may assume w.1.o.g. that 

t > n - 1 .  (3) 

We arrange nodes w ~ ,  . . . , wt of the circuit C in such a way that a wire can go from wu. 
to wv only when p < v. Let f v  be the function computed at wv. Note for the record that 
ft is an extension of f that is ft{u) = 0, ft(v) = 1 for all u E U, v E V. 

We construct L as follows. Encode nodes wl, . . . , wt by integers nl, . . . , nt so that nt = 0 
and {I, .  . . , n} n {nil . .  . , nt} = 0. Let 

2 FL(u,v) - { i l l < i < n & u ~ # ~ i } U { n ~ 1 1  - -  < v < t &  f u ( u ) = O & f v ( ~ ) = l } ,  

cL(i, u, v) + 0 for 1 < i <: n, 

NL(i, u, v) + i for 1 < i < n, 

cL(nv, u,v) + v for 1 < v < t. 
NL(nu, u, v) is defined as follows. If nu $! FL(u, v), let NL(nU , u, v) + 0. Otherwise, that is 
when fv(u) = 0 and fv(v) = 1, we choose one of the two sons of the node wU for which this 



property is preserved. If this son is a computational node wK, we let NL(nv, u, v) + nn; if 
this is a leaf xz, we let NL(nv,u,v) + i. 

It is straightforward to check that so defined L is a local search problem, and that Rf 
reduces to L. Also, C(FL, CL) < 2 and ( ~ ( N L )  < 3. Hence size(L) <: 0 ( n  + 1) which is 
0 ( t )  due to (3). 

For another (non-trivial) direction, assume that Rf reduces via a function p to a 
local search problem L. Let ho + 2C(F~7CL) and hi + 2Â¡̂ Then for every fixed 
s E Uueu FL(u, v)  we have a communication protocol Ps for computing the binary rela- 

vev 
tion s 6 FL(u, v) and the cost function cL(s, u, v)  which has at most ho different histories. 
These histories define a partition of U x V into rectangles Us,l x Vs,l; . . . ; Us,ho x Vsho 
such that FL, CL are fully determined on Usti x V&. That is to say, for some predicates 
as C [ho] and some functions ifs : [ho] Ã‘ N the following is true for all i E [ho] and for 
all (u,v) E Us,, x V;,.: 

s E FL(u,v) iff i E as 

We call those rectangles Usti x K i  for which i 6 as good. We call rjs(i) the cost of rectangle 
Us+ x k. We order all good rectangles in such a way that their costs are non-decreasing: 

Here Ho < U u E u  FL(U, v )  - ho. 
vev 

We construct by induction on v < Ho a circuit Cv which has the following property. 
For every f t  < v there exists a node wP of Cv computing a function fn such that fn \m. 7 0 
and fV- lvIt = 1. Assume that we already have Cv-\- Cv will be obtained from it by adding 
at most hohl new nodes for computing a fv  with required properties from already available 
f1,- v f v - 1 -  

Let Uv x V = UsYi x Vs,& Consider the following communication protocol P* of 
complexity at most C(FL, cL) + C(NL) . First we run the optimal protocol for computing 
NL(s, u, v). Let s' + NL(s, u, v)  be its outcome. Then we run Pst . 

We introduce Boolean variables yl, . . . , y~ for those histories of P* which actually corre- 
spond to at least one instance (u, v) (E Us,i x K,i. For every u E Us,, let ii be the assignment 
on { O ,  l}H defined by letting iih be 0 if there exists v E K i  such that the computation of 
P* on (u, v) develops according to the history h, and 1 otherwise. Dually, E/i = 1 iff there 
exists u E Us,+ so that the pair (u, v) leads to the history h. For every pair (u, v) (E Us,+ x K,, 



we have & = 0, i&,, = 1, where h is the history of P* corresponding to this pair. Hence, 
the partial Boolean function . . . , yH) outputting 0 on { ii \ u E Us,i 1, outputting 1 on 
{G 1 v ? l4,i } and undefined elsewhere, is monotone, and, moreover, the protocol P,* finds 
a solution to B""". f,, Hence, by Proposition 2.1 b), ~ ~ ~ ~ ( f ~ )  < C(FL, cL) + C(NL), and the . - 
same bound holds for some total monotone extension /iu of ft'. Note for the record that 
this implies Smon(fv) < hohl. 

Consider now a particular history of P,* h. Let (st, j) be the corresponding output (here 
st is the output of computing Nh and j is the subhistory corresponding to the subprotocol 
Psi). By Definition 2.3 b), the rectangle x Vsi, is good. By part c) of this definition, 
either st = s or the cost of UslYj x is strictly less than the cost of UsTi x Ki.  

In the first case s is a local optimum for L on every (u,v) ? Usi x X i  belonging to 
the non-empty rectangle which corresponds to h. Since Rf reduces to L, this means that 

" ~ ( 4  # vpfs} for every such pair, and this implies that actually upis) = e, upis\ = (-x) for 
(-4 some fixed e E {O, I}. Let y{ ^Â x ~ ( ~ ) .  

In the second case Usij x VSi,j = U ^  x Vp for some p < v. Let y p  fu,. 
Finally, let fÃ + fv (YL . . . , yk). fu  can be computed by appending to at  most 

ha hi new nodes. 
Since for every u 6 Uu, 5 (til,. . . , G) = 0, and 5 is monotone, in order to check that 

M u )  = 0 for u e Uv, we only have to check that y!,(u) < Ufi for any history h. For doing 
this simply note that if Ufi = 0, then for some v G V the computation on (u, v) proceeds 
along h,  which, due to our choice of y!,, implies y w  = 0. By the dual argument, fu(v) = 1 
for all v E Vu. 

This completes the construction of Cu. 
Now, CHo has size at most Ho ho hl. Also, due to Definition 2.3 a), all rectangles UOi x h i  

are good. ~ h u s ,  applying the same argument as above and adding to CH,, at most ho new 
nodes, we finally compute f by a circuit of size O(size(L)). This completes the proof of 
Theorem 3.1.1 

4. Background from Bounded Arithmetic 
We assume the familiarity with [6] and use the now-standard notation for denoting various 
hierarchies and fragments of Bounded Arithmetic from that book. We denote by L2 Buss's 
first order language which consists of the constant 0, function symbols S, +, -, [SJ, 1x1, x#y 
and of the predicate symbol <. BASIC2 is the set of 32 open axioms in the language L2 
from [6, 82.21 describing basic properties of its symbols. Eb ?=" Ui>o is the set of all 



(first-order) bounded formulae of L2. 
In [I91 a convenient technical notion of a regular theory was introduced. The meaning 

of this notion is that many proofs in Bounded Arithmetic which do not involve the smash 
function # can be generalized to arbitrary regular theories. In this paper we need a stronger 
notion which is good also for #-involving proofs. 

Definition 4.1. A first order theory R in a language L 2 L2 is strongly regular if it 
possesses the following properties: 

b) R can be axiomatized by S$formulae, 

c )  every function symbol (and hence every term) of the language L can be bounded 
from above in the theory R by a term of the language L2. 

For a strongly regular theory R in a language L we denote by Si the theory R + L) - 
PIND,  and by T i  the theory R + TZL) - IND. Let also SR + UiZo S i ;  this is the same 
theory as TR + Ui=:o TA. 

If L = L2 and R = BASIC2 then Si is simply Si, and T i  is Ti. Another important 
example is L = L2(7), R = BASIC2 (7 is a new predicate variable). In this case Si and 
T i  coincide with ordinary theories S\{̂ } and T'(7). A less trivial example is provided by 
L = Lpv, R = "BASIC2 + II:-defining axioms for PV-symbols" (see [6, 36-21)) where P V  
is Cook's equational system [lo]. In this case Sp̂  is the theory S i (Lpv )  as defined in [6]. 
One more example of this sort will be given in Section 6. 

As we already mentioned, the meaning of this definition is that many (if not all) results 
proven for S& T; relativize to arbitrary strongly regular theories R. For example, the 
(weaker form of) the main theorem from [6] in this setting looks like this: 

Proposition 4.2. Let R be a strongly regular theory in a language L extending L2. Sup- 
pose Sk I- 3y A(;, y ) ,  where A(;, b) is a s~(L)-formula with all its free variables displayed. 
Then there is a polynomial time oracle Turing machine M allowed to ask queries of the 

,, 

form ii ? P or f (Z) =?, where P is a predicate symbol of L\ Liz, and f is a function symbol 
of L \ L2, such that the following holds. 

For every model (N, 0) of the theory R expanding the standard model of BASIC2 and 
every tuple ii ? N ,  

(N, 0) I= A (6 ~ ~ ( 3 )  - 
Here fl is the interpretation of symbols from L \ L2, and M"(Z) is the result of the com- 
putation of M on ii when M is fed with the oracle 0. 



We also need the following conservation result from [7]: 

Proposition 4.3. For any strongly regular theory R in a language L 2 L2, Si is 22%~)- 
conservative over Tv. 

Finally, we recall the characterization of Ei-defined in Tl  functions in terms of PLS- 
problems [8]. Once again, we present the relativized version. 

Proposition 4.4. Let R be a strongly regular theory in a language L 2 L2. Suppose 
TA I- 3y A(a, y), where A(a, 6 )  is a S3L)-formula with all its free variables displayed. Then 
there is an oracle PLS-problem K,  where the associated oracle computations of FK, cK1 NK 

? 

are allowed to ask queries of the form ii G P or f(ii) =?; P, f being symbols of L \ L2, and 
a (polynomial-time computable) function p(s) such that the following holds. 

For every model (N, 0) of the theory R expanding the standard model of BASICt, every 
x 6 N, and every local optimum s for K Q  on x, 

5. Boolean Complexity and Bounded Arithmetic: 
split framework 

In our formalization of problems studied in Boolean complexity within the framework 
provided by Bounded Arithmetic we follow [19, Appendix A]. Namely, let Circuit(t, N, 7) 
be a Sb(y)-formula asserting that 7 encodes the protocol of computation by a circuit of size 
t in \N\ variables. Similarly, for a fixed d > 0, let Circuitd(t, N, 7) and Circu@(t, N, 7)  
assert that Circuit(t, N,7) and, moreover, 7 is a depth-d circuit or depth-d circuit with 
PARITY gates, respectively. Let Output(t, N, x, 7) be a Sb(7)-formula which represents 
the output of 7 (viewed as a circuit of size t in \N\ variables) on a Boolean string x. 
The exact details of these encodings are unimportant; the only extra property which we 
require (and which is shared by all reasonable schemes) is that we can easily combine in 
this framework two circuits to compute PARITY of their outputs as shown on Figure 1. 
More precisely, we require that there exists a Ai(a, /?) (with respect to Sxa ,  /?)) abstract 



PARITY(t , N, a, ft) such that 

Like in [19], we are mostly interested in the provability of the formula 

'Ã 

Si(a, ft) t- ( ~ i r c u i t ( [ ( t 4 ) / 4 ~ ,  N, a )  A Circuit(L(t-3)/4J, N, ft)) 3 

(~ i r cu i t ( t ,  N, PARITY(t, N, a, ft)) A Vx E {O, I}!"! 

(Output([(tz3)/4], N, x, a )  @ Output([(t-3)/4], N, x, ft) = 
Output(t, N, x, PARITY(t, N, a, ft)))) . 

./ 

Circuit(t(N), N, 7) 3 3x E {O, l}INI(0utPut(t(~), N, x, 7) $ S(N, x)), (5) 

(4) 

where t(N) is a Eb-definable function such that N [= t(N) > (log N)"(~), and S(N, a) 
is in Eb. (5) asserts that there is no circuit of size t(N) (remember that N w 2"') 
computing the Boolean function {x}S(N,x); we denote this formula by LB(t,S,y). 
L Bd(t , S, 7) and LBfit , S, 7) are obtained from LBd (t, S, 7) after replacing Circuit (t , N, y) 
by Circuitd(t, N, 7) and Circuite(t, N, 7), respectively. 

One of the main results of this paper (Corollary 6.5) says that if sufficiently strong 
pseudorandom generators exist, then S$(y) If LB(t, S, 7) for any choice of t,  S with the 
above properties. We can, however, prove a stronger result at the same cost and better 
explain the mechanism of the proof if we split our circuit into two pieces as shown on 
Figure 1. The corresponding statement, denoted by SLB(t, 5') a, 0) is 

(Circuit(t(N), N, a )  A Circuit(t(N), N ,  ft)) 3 
3~ e {o, i } I N I ( o ~ t p ~ t ( t ( ~ ) ,  N, X, a )  l~ o u t p u t ( t ( ~ ) ,  N, x, 0 )  $ S(N, x)). 

S Lwt, S, a,  0)  and S L ~?{t, S, a, /3) have the obvious meaning. 
We are going to allow unlimited reasoning about each of the two halves a, ft  alone. In 

this and the next section we do as much as we can within the first order framework, and, 
with this restriction, we implement our idea as follows. 

Denote by S(L2) the language L2 (a, ft)  obtained from L2 by appending to it two new 
unary predicate variables a and 8, and define the split hierarchy STi;  S q  of bounded 
formulae in this language similarly to the ordinary hierarchy E;, 11: (see [6, $2.11) with the 
exception of the base case. Namely, Sg = SII; is the set of all bounded formula in the 
language L2(a) plus the set of all bounded formulae in L̂ }. The inductive definition of 
SE',, SI$+, is the same as for ES+,,II~+,. Note that S E ~  is not closed under applying 



the connectives A, V or sharply bounded quantifiers although all SS!, SII! for i > 0 are so 
closed. 

Our "base" theory S(S2) is the theory in the language S(L2) with the set of axioms 
BASIC2 + SS; - I ND. Another, more expressive description of S(S2) (which also justifies 
the notation) is that it is axiomatized by S2(a) + S2(ft). 

We conclude this section by showing that 8(S2) is already capable of proving some 
non-trivial lower bounds. 

Theorem 5.1. For every fixed d > 2, 

Proof. Arguing informally in S(S2), let a and /3 be depth-d circuits of size at most t(N). 
Since Hbtad Switching Lemma is available in S2(a) (see [19, Appendix E.41)) we can find 
a restriction p assigning at least ~ I N I *  stars and reducing the output of ex to a constant. 
p, however, is coded by an integer, thus we can apply in S(S2) the same argument to /3\n 
and find an extension p' of p assigning at least two stars and reducing f t  to a constant as 
well. Now we take any two adjacent inputs compatible with p'; one of them will satisfy 
Output(t(N), N, x, a) @ Output(t(N), N, x, f t )  $ XI @ - - - @ x 1 ~ l . i  

6. Main results: first order versions 

Throughout the rest of the paper, t(N) will stand for a ^-definable in S2 function such 
that N [= t(N) > (log N)~( ') ,  and S(N, a) will stand for an arbitrary bounded formula. 

We start with our base theory S(S2) and show that it can not prove superpolynomial 
lower bounds for depth-3 circuits allowing PARITY gates. This, together with Theorem 
5.1, provides some formal evidence toward the remark made in [20, Section 3.21 that [33, 
21, 41 had to require arguments from a stronger class than those of [11, 26, 121. 

Theorem 6.1. For any t(N), S(N, a) with the above properties, 

The next theory of interest to us is S(S2) + SS! - P I N D .  



Theorem 6.2. Assume that there exists a polynomial time computable generator Gk : 
{O, I}' - { O ,  with DH(Gk) > 2*"". Then for my t(N), S(N, a) as above, 

S(s2) + S-S[ - P I N D  \f SLB(t, S, a, Q). 

Corollary 6.3. Under the same assumption as in Theorem 6.2, 

Proof of Corollary 6.3 from Theorem 6.2. Assume the contrary, that is Si(a)  I- 
LB(t, S, a). Substitute in this proof the ~ g a ,  /?)-abstract PARITY(t(N), N, a, Q) for 
a. Then we will have SKa1 Q) I- SLB(tf, S, a, f i  where tr(N) + L(t(N)-3)/4J. This 
contradicts Theorem 6.2 (applied to t := t') since Ŝ {oc, /?) is a subtheory of S(S2) + <?xi - 
PIND.w 

Our main result is similar to Theorem 6.2. 

Theorem 6.4. Assume that there exists a polynomial time computable generator Gk : 
(0, I}* --+ (0, l}2k with BIGk) > 2ka(1). Then for any t(N), S(N,a) with the properties 
stated in the beginning of this section, 

S(S2) + - P I N D  \f SLB(t, S, a, Q). 

Corollary 6.5. Under the same assumption as in Theorem 6.4, 

Proof is the same as that of Corollary 6 . 3 . ~  

We begin proving these results with a straightforward definition of the skolemization - 
S2(7) of the theory S2(y). Firstly, we define the language L2(7) as the extension of L2(7) 

4 

obtained by recursively appending to it new function symbols fAt (b)  for every open formula 
A(a, b) and term t(b) of the language L2(7); all occurrences of free variables in A, t are 
explicitly displayed. - 

st(^) is the open theory in the language L2(7) axiomatized by BASIC2 and the fol- 
lowing defining axioms for fAtt: 



Thus, the intended meaning of f ~ , t ( Q  is simply fix < t ( b ) ~ ( x ,  6). The following summarizes 
some easy properties of this theory: 

Lemma 6.6. a)  For every A 6 Eb(7) there exists A' E Open ( ~ 7 7 ) )  such that s,(f} t- 
A = A', and vice versa; 

b) ,577) is a strongly regular open extension of s2(7) by definitions. 

We define the extension s(L2) of S(L2) as L ~ )  + L a ) ,  where we assume, of course, 
that all non-logical symbols symbols in L2(a\ and L ~ P )  other than those of L2 are pairwise .. , 

distinct. ~ i n a i ~ ,  let S(s2) bethe theory SZ)+S~) in the language S(L2). The following 
properties are inherited from Lemma 6.6: 

Lemma 6.7. a) For every A 6 SE; there exists A' e Open ( L ~ ) )  U Open (L@)) 
such that $is2) I- A = A', and vice versa; 

b) S(s2)  is a strongly regular open extension of S(s2) by definitions. Thus, S(S^) i s  
conservative over S(S2), and every model of S(S2) has an unique extension to a 
model of $(s2). 

The following observation provides a crucial link between the theory $(s2) and the 
communication game from Section 2.2. 

Lemma 6.8. Let s(ai, .  . . , ar, a ,  /3) be a term of the language S(L2) with all its free 
variables displayed. Consider the following communication problem: player I receives 
n ~ ,  . . . , nr 6 N and a language A C N; player 11 receives the same nl . . , , nr and B C N, 
and they want to compute s (n l ,  . . . , nr ,  A, B)  in the extension of the model (N, A, B) of 
S(S2) to a model of S(S~). Then there exists a constant d depending only on the term s 
and a d-round communication protocol solving this problem whose complexity is polynomial 
in \nil + - - -  + Inr[. 

Proof. Obvious induction on the logical depth of s (every function symbol of the language 
S(L~) can be evaluated by one of the two players alone, and results of all intermediate 
evaluations are of polynomial length). rn 

Now we are ready to prove the results stated in the beginning of this section. 

Proof of Theorem 6.1. Assume the contrary, that is S(S2) I- SLBF(t, S, a, /?). 
Then also 3(s2j t SLBf(t, S, a, /I). But the theory S(S~) is open, and, by Lemma 6.7 



a), the formulae Circuitf(t(N), N, a), Circuitf(t(N), N, /?), Output(t(N), N, x, a) and 
Output(t(N), N, x, /?) are equivalent in to open formulae. Thus, by Herbrand's the- 
orem, there exist terms sl(N, a, /?), . . . , sr(N, a, /?) of the language S(L~) such that 

Let n be an integer, and N + 2" - 1. By Lemma 6.8, there exists a communication protocol 
in which the first player receives n and a depth-3 size-t(N) circuit Cl in n variables allowing 
PARITY gates, the second player receives n and a circuit C2 of the same kind, and they 
produce an input string x such that 

within O(1) rounds and no(') bits exchanged. For doing this they simply compute 

and find among this list some x satisfying (6). 
But this protocol also gives raise to a similar protocol in which the players, instead of 

circuits, receiveonly Boolean functions fl, f2 E Fn such that Sf(fl) < t(N) and Sf(f2) 5 
t(N). In fact, the players, using their unlimited power, simply reconstruct some Cl, C2 
computing fl and f2, respectively, and then run the protocol above. 

Let us now consider the partial Boolean function Tn, in 2" variables (we will call it a 
functional) which outputs a 1 on f if Sp(f) < t(N), outputs a 0 if Sf(f @ sn) < t (N) 
(here s ~ ( x )  * S(N, x)) and is undefined elsewhere. Then our protocol for every fl, f2 

such that Fn(fl) = 1 and ^{ft) = 0 finds a position x where fl(x) # f2(x) (note 
that the second player should modify his f2  to fz 9) sn before entering the protocol 
from the previous paragraph). Hence, by Proposition 2.2, there exists En & in 
DEPTH, S I Z E  ( ~ ( l ) ,  2(10'"^1)) such that F,'(l) & En and F ~ l ( 0 )  n En = 0. If 

I En 1 2 p n  then En @ sn makes a DEPTH, S I Z E  ( ~ ( l ) ,  2(10gN)0(1)) -natural combina- 

torial property useful against ACOT~[~] since t(N) > n^ and for every fn G En 9) sn we 
have the bound Sf(fn) > t(N). Otherwise, Fn \ En is such a property. We have arrived 
at a contradiction with Proposition 2 . 6 . ~  



Proof of Theorem 6.2. Suppose SfSy) + Sg - P I N D  I- SLB(t, S, a, 13). By Lemma 
6.7 a), the class of SSS-formulae is equivalent in S(s2) to the class of (g(~2))-formulae. 

Denoting 3 ( s2 )  by R, we see that S(S;) + S S ~  - F I N D  is actually equivalent to S;. In 
particular, S}, I- SLB(t, S, a, p). But R is strongly regular by Lemma 6.7 b), hence we 
can apply to it Proposition 4.2. We find a polynomial time (in n) oracle Turing machine 
M asking queries which depend either only on Cl or only on C2; Cl, C2 being this time 
size-t(N) circuits, and producing a length n string x with the property (6). But the two 
players, one holding (n, Cl) and another holding (n, Ci). can simulate M exchanging only 
re0(l) bits between each other. Now the proof is completed by the same argument as in the 
proof of Theorem 6.1 on the base of Propositions 2.1 a) and 2.5.1 

Proof of Theorem 6.4. Suppose S(S2) + a - P I N D  I- SLB(t, S, a, /?). Let, 
once again, R + w2). Then S(S2) + S& - P I N D  is equivalent to Sf,, and Sf, t 
SLB(t, S, a, p). By Proposition 4.3, Tk I- SLB(t, 5, a, /3). By Proposition 4.4, there is an 
oracle PLS-problem K and a function p(s) such that for any two circuits Cl, C2 of size at  
most t(N), and any local optimum s for Kc1tc2 on N, p(s) is a binary string x of length 
n for which (6) holds. 

Now we change our view and consider Cl, C2 simply as extra inputs to K rather than as 
oracles, and let Kn be its subproblem obtained by fixing n to a particular value. Then the 
relation R y  corresponding to Fn (Fn is the functional defined as in the proof of Theorem 
6.1) reduces to Kn if we encode a pair (fiifi) by (Cl, C2), where Cl is a size-t(N) circuit 
computing f l y  and C2 is a size-t(N) circuit computing fa @ sn. Also, size(Kn) <: 2(10gN^0(1). 
Thus, by Theorem 3.1, .En is computable by circuits of size 2(10gN)01), and we can apply 
Proposition 2.4 to complete the proof.= 

7. Interpolat ion-like theorems in the second order 
setting 

The proof of Proposition 2.1, as well as of Theorem 3.1 in the non-trivial direction involves 
a highly non-constructive step of deciding whether a rectangle is empty (cf. the sentence 
"those histories of P* which actually correspond to at least one instance (u, v) E Usi x hi" 
on page 9). This step seems to be intractable if we want to prove syntactic analogues of 
the results from the previous section within the framework provided by first order theories. 
In this section we briefly outline how to extend this framework to second order theories, 



and present in this more general setting interpolation-like theorems which actually imply 
these results. 

Let & be the second order extension of Â£ obtained by augmenting it with second order 
variables 71,72,. . . (for simplicity we allow only unary variables). Let S(L2) be the second 
order language which has one sort for first order variables and two different sorts for second 
order variables. We will be denoting second order variables of the first sort by a1, a 2 , .  . . 
(free variables) and $1, $2,. . . (bound variables); second order variables of the second sort 
will be denoted by A, A, . . . , $1, &, . . . We fix the notation ,C; [ r f ]  for the sublanguage 
of S(&) (isomorphic to C2) which allows second order variables only of the first sort [of 
the second sort, respectively]. For a formula A(y1, . . . , yT) of Â£ with all free second order 
variables displayed, we denote by Aa(ai, . . . , ~ . r )  and A^(&, . . . , PT) its isomorphic copies 
in L; and ,Ĉ , respectively. 

We form the hierarchy ~ 7 '  of second order bounded formulae similarly to the ordinary 
hierarchy ~ 1 ' ~  (see [6, $9.11) with the exception that the forming rule "if A is in Â£1' then 
(Vx 5 t)A is in E y "  is weakened to "if A is in SY1' then (Vx ]tl)A is in Syl""', 
and similarly for the dual case. In plain words, we allow sharply bounded first order 
quantifiers for free, whereas all other first order quantifiers are counted exactly as second 
order quantifiers. 

We define the split versions SB?" similarly to Sff. That is, 5~;" '~ ?* 5c1"' ?s 

(S1vb)' U and the inductive definition of 322,5112;' is the same as for 

S?;', (the case (37/)A gets split into two, depending on the sort of the second order 
bound variable T ) ) .  

Definition 7.1. For a class of bounded formulae in &, we denote by - S I M  the 
following principle: 

where A(71, . . . ,7,.) is in a. 
Let Clf be the class of bounded formulae without free second order variables. Note 

that C12 - S I M  is simply A" = A^, where A G C12. This principle states that isomorphic 
internal computations run by the two parties (whatever complex) lead to the same result. 

Our base theory, S(&) in the language S(C2) is, by definition, axiomatized by (Wff + 
(&)^ + C\i - SIM. 

For a class $ of formulae in the language Â£ we denote by @+ the closure of under 
the operation of substituting Cb-abstracts for second order variables. 



Lemma 7.2. S(V2) I- (Eiyb)' - S I M .  

Proof* Let A(71,. . . ,7,, Vi, . . . , K) E (E;'")+, where A('yl,. . . , y,, 'y,+l,. . . ,?,+.) is in 
xi", and Vi,. . . , K are C12-abstracts. In order to show A(-yl,. . . ,7,, K , .  . . , K) - SIM, 
we apply an obvious induction on the logical complexity of A; C12 - S I M  takes care of 
the base case A = yi(t); r + 1 < i < r + s.i 

Lemma 7.3. S(V2) + SEf* - P I N D  t (A;"(U;~))' - S I M ,  where A; '~ (u~)  is the set 

of formulae which are A:' with respect to Ui .  

Proof. It is an immediate corollary of the main result in [19] that every A(G,y) in 
A~'~(U;)  is equivalent to the result of evaluating a Ey-definable circuit 8(Z,^} of depth 
\SI0('). Thus, we only have to show in S(&)+SE:~'"- FIND that AiVx(ai(x) = fi(x)) 3 

-+ + 
P ( s ,  S, V) = 8"G, f t ,  v)) for any circuit 8 of this kind and any abstracts V in C12. This 

is done by SII:~' - P I N D  on d applied to the formula "every node of 8 at the dth level 
-+ -+ 

outputs the same value in P(G, 5, V) and in @(a, /?, V)".. 

The following is proved in exactly the same way. 

Lemma 7.4. S(&) + 5 ~ : ~ ' ~  - I N D  I- (A:"(K'))+ - SIM.  

Now we are in position to formulate and prove interpolation-like theorems generalizing 
the results of the previous section. 

Theorem 7.5. Let A(?), B(7/), C(a, y), D(a, 7)  be ~~*~- fo rmulae ,  where all occurences of 
a and of all free second order variables are explicitly displayed. Then S(V2) proves the 

if and only if then exists E(7) e ( ~ i * ~ ) '  such that 



Theorem 7.6. Let A, B,C, D have the same meaning as in Theorem 7.5. Then the 
formula (7) is provable in w) + S E - ~  - P I N D  if and only if there exists E(7) E 

(A: '~(U~))^ with the properties (8), (9 ) .  

Theorem 7.7. For the same A, B, C, D, 5(%) + 5~:~" - P I N D  proves (7) if and only 

if there exists E(7) E (A;"(v;,~)) satisfying (8), (9). 

These theorems, combined with the material from Section 2.4, indeed generalize the re- 
sults of the previous section if we notice that E(y) with properties (8)) (9) encodes a circuit 
from the class needed in each of the three cases separating functions { {x}C(x, 6) 1 A(a) } 
from functions { {x}D(x, jf) \ B(f3)). The output of this circuit corresponds to En in the 
proof of Theorem 6.1, and the C12-abstracts provide non-uniformity. 

The proofs of Theorems 7.5, 7.6, 7.7 in the easy direction are based on Lemmas 7.2, 
7.3, 7.4, respectively. Namely, assume that we have (8)) (9) for some E(y) from the class 
@ prescribed in each of the three cases. We lift these proofs to (w and (w, and find 
that S (K)  I- v&$ ((A'{&) A ~ p ( f ) )  3 (E({x}Cff (x, 4)) $ ~ ( { x }  DP(X, f)))) . Now we 
only have to apply $ - SIM to the formula E ("/\ 

The proofs in another direction can be viewed as formalized analogues of Propositions 
2.2, 2.1 and Theorem 3.1. In the rest of this section we briefly outline those aspects of this 
formalization which may appear less obvious. 

Firstly, we, similarly to [18L treat V2 simply as a two-sorted first order theory. This 
allows us to define a language Â£ and the skolemization Vt of & in this language similarly 
to L2(7), S2(7). Namely, behind function symbols already known to us from the 

+ 

previous section, we introduce function symbols OA(b, '7) and 7rB(6, 7) taking values in the 
sort for second order variables with the intended meaning 04;) 7) = p#A(#, 6,7) and 
^(6, 3 s {x} B(x, 6, 7). Here A(70, 6,7), B(a, 6,T) are in Open (G) , and the operator 
p corresponds to the ordering of second order objects 7 given by 7 I+ 2"7(n).  The 

-+ 
definition of OA makes sense in since there always exists a term tA(b) such that 1- 
V i  < tA(Q (70(x) = $,(x)) 3 (A('yo, 6, 7)  zz A(7;, 6 , ~ .  We omit the exact details. 

Then we define S(&) and Â¤(% analogously to S(L2) and mi). We will be denoting 
terms of S[C.~) taking values in the second order variables of the first sort by Al, &, . . ., 
and terms taking values in the second order variables of the second sort by Bl, B f ,  . . . 

Now, suppose S{Vt) proves (7). Then S(&) also proves this formula. Applying Her- 
brand's theorem (for the three-sorted case) as in the proof of Theorem 6.1, we find witnesses 



~ ~ ( 5 ,  /?), . . . , sr(5,/?) to this fact, and it is easy to see that actually they can be combined 
into one term s (5 ,6}  such that 

Next, we make an easy observation that the term s(5, /3)  can be represented in an 
-+ 

equivalent form s'(A(6)) m)), where all occurences of second order variables are explicitly 
displayed, and s l (a ,  /5) is a term of S(L^). 

In order to find E (7) 6 ( S ; ' )  + with the required properties (8)) (9), we apply induction 
on the logical complexity of s'. 

Base case s' = a. We have S(&) t (Aff  (a ,  6 )  A ~ " ( a ,  3)) 3 ( C a ( a ,  6 )  ,t D"(a, /?)). 
Applying the sort-erasing interpretation, we find 

The formula E ( a ,  7) defined by 

I ~ ( a )  =E 3 & ~ ( a ,  ?) A C ( a ,  6)) if 3&4(a, 4) A 3 < ? ~ ( a ,  $1 
T if $ ~ ( a ,  4) A v^B<a,  f )  
-L if v & A ( ~ ,  4) A 3<?B(a, 6) 
arbitrary if V & A ( ~ ,  $) A v & B ( ~ ,  <?) 

has the required properties. Note that the case analysis in the definition of E ( a ,  7 )  is 
exactly the place where we use the power of our base theory not available in the first order 
setting. 

Inductive step. s l (a ,  /3) = s" ( f f f  (a) ,  a, /5), where f  (7) is a function symbol of L2 ( y ) ,  
and we are guaranteed the existence of E with the desired properties anytime when (10)  
is true for the term s"(a, A(6), ~(3 ) )  and any choice of A, 5, (7, D. 

(10) implies 

and we can use our inductive assumption (with A ( a ,  6 )  := A(6) A f (A(5)) = a )  to find 

E1(a ,7 )  e (I$')+ such that 



We simply set E(7 )  + Eb <: t E'(x,^), where t is a term such that V, I- f(a) < t. This 
completes the inductive step and the proof of Theorem 7.5. 

Coming to Theorem 7.6, we notice that in the theory S(V,) + Sz - P I N D  every 
~Eyl*~-formula is equivalent to a E; (g(,C2))-formula of the form 3x $ t (Aa(x) A B ~ x ) ) ,  
where A(a), B(a) E Indeed, the class of such formulae is closed under applying second 
order quantifiers: 

and (in the presence of S! (S(,C2)) - P I N D )  under applying sharply bounded universal 

Thus, S ( G )  + SEyl" - P I N D  is equivalent to S(V,) + E; (-2)) - PIND.  But it is 

straightforward to establish for S(&) + E; (S(,C2)) - P I N D  the cut elimination theorem 
and extend to it the syntactic version of Proposition 4.2; in fact, this theory more resembles 
the first order theory So for what might be called "a many-sorted strongly regular theory 
R, where no quantifiers other than those on first order variables are allowed" than a second 
order theory. We skip the details. 

The proof of Theorem 7.6 is completed by formalizing the standard proof of Proposition 
2.1 in the same fashion as we did above with the proof of Proposition 2.2. We omit exact 
and somewhat tedious details. 

The same ideas work for the weaker version of Theorem 7.7 in which 5 ~ ; "  - P I N D  
is replaced by SE?' - IND: extending the syntactic variant of Proposition 4.4 to this 
case and formalizing the proof of Theorem 3.1 is more or less straightforward. 

The analogue of Proposition 4.3 is, however, much less straightforward since we in 
general can not eliminate second order quantifiers from S ~ , ~ ~ - f o r m u l a e .  We circumvent 
this as follows. 

to avoid collision with another usage of /?, we denote the ith member of a sequence w by (w), rather 
than by /3(i, w) 



2 M  For A(;, a, i)) E 5Ey1' we introduce a family W i  ' ' of witnessing formulae 

W i t n e s s F ' ( w ,  S, a, ,J) E; (S(Â£Z) u 11; (S(&)) 
rather than a single formula. All old cases in the standard definition of Witness  (see [7, 

2oa0 Section 41) are modified in an obvious way, e.g. we say "if A is B A C then W i  ' ' consists 
+ + -  2aaQ of all formulae of the form ~ i t n e s s 2 y " ~ ' ~ ( ( w \ ,  2, a, / ? ) f \ ~ i t n e s s c  ' ' ( ( w ) ~ ,  S, 6, i)), where 

2 @  z o a h  Witness"BGa"(w, S, 6,  i)) c wF, and Witness6 ' ' (w ,  3, a, ft E W e  ' . 
The only case when the branching really occurs is the following new case: 

+ + -  

(8) I f  A 6 E; (S(,C2)) u II; (3(,C2)) and A is 34 B (S ,  a,$, /?) then ~ ~ ' " ' % o n s i s t s  of  ail 

formulae ~ i t n e s s y ^ ? ~ ( w ,  ti, 5, i)) of the form 

where ( ( 2 )  and A(& w,  a, 8} run over all terms of  the language 3(,C2), and 

Due to the very limited nature of witnessing second order variables, we can not hope to 
reverse this implication in any reasonable sense. But we actually do not need this. We 
simply show the straightforward analogue of [7, Theorem 171 in the following form: 

if 
S(V,)  + SS';"" - P I N D  t G(Z, 6,  /?) 3 H(S,  a, i)), 

* *  - 2 m  where G ,  H are in 5EF7 '  then for every ~ i t n e s s p " ( w ,  S,  6,8} Wd ' ' there exist 
4 - -  ~ a d  W i t n e s s ~ ~ ~ ~ ( w ,  S, 6 ,  i)) c Wd ' and a Q2-defined function f ( w ,  S, 6, /?) of 3 ( ~ 2 )  + 

(5(,C2)) - I N D  such that 

 witness^^'^( f ( w ,  S, a, i)), S, 6,  B). 
This allows us to conclude that m) + 5 ~ : '  - P I N D  is 5~;"'"-conservative over 

~ ( v z )  + Ei (s(~2)) - I N D  and complete the proof of Theorem 7.7. 



8. Conclusion 

Naturally, the most interesting question is to which extent the techniques developed i n  
this paper can advance us toward the main goal of understanding the strength of q. Let 
us first point out that the hierarchy of second order theories introduced in the previous 
section collapses already at the next level. Indeed, 

31%) + SE;"" - I N D  I- V q E l ~  <: t@(x) = Mx)) A V$3q5Vx $ t(+(x) = $(a;)). 

Thus, at least with respect to bounded formulae, S(V~)+S'Z,:'- IND is simply equivalent 
to V2. So, we restrict our discussion to first order theories. 

What we actually did in the proof of Theorem 6.4 (this is also a direct corollary of 
Theorem 7.7) was to show the following separation theorem. Whenever 

where R = S(S2), the sets { {x}C(N, x, a )  \ A(N, a}} and { {x} D(N, x, ,f?) \ B(N, /?)} can 
be separated by a size-2(10gN)0^ circuit. An informal reformulation of this is that every two 
NP-sets which are provably disjoint in Sk can actually be separated by a set computable 
in quasipolynomial time. Is it possible to improve this by replacing Si in (11) with a 

Sdq@), U\ or h l ?  This seems to be open even under any stronger theory like To, 
reasonable complexity assumption. Note for the comparison that even for the case of V;, 
the affirmative answer to a similar question in which we are interested in separating co- N P  
sets is a straightforward corollary of Proposition 4.2 and RSUV-isomorphism [22, 23, 181. 

There are several examples showing that for NP-sets the situation may be different. 
A couple of them originated from a discussion with Steven Rudich are based upon the 
lower bound proof for voting polynomials [3] and one-way functions, respectively. In these 
examples, however, in order to prove the formula (11) one apparently needs at least the 
strength of U:. Also, their impact on the future research in this direction is still to be 
understood. Thus, we confine ourselves here with a simpler combinatorial example which 
gives a new unexpected proof of a known result from [9] and raises several immediate open 
questions. 

Example 1. The proof of the separation theorem works for the monotone case as well. 
That is to say, if 



then there exists a monotone size-2(10gN)0(1) circuit outputting 1 on all {x}C(N) xl a) with 
A(Nl a)) and outputting 0 on all {x}D(N) xl p) with B(Nl p). We will show that this is 
no longer the case if we replace Si with Ti. 

Indeed) denote by WPHP(f)  the weak pigeon hole principle taken in the following 
form: 

Note that) contrary to the common belief) it is open whether T;(f) I- WPHP(f) .  But 
the proof in [16] lets us conclude at least that T;(f) I- WPHP(f) )  and this (naturally) 
extends to showing that Ti(f)  t WPHP(f)  for every xi-definable f.  

Nowl let A(N) fa) say "fa is an injective mapping from [N2] to [N4]". Let B(N) f p )  
say " fo is a mapping from [N4] to [N]". Then) applying WPHP(fp o fa) (available in Ts), 
we see that 

But {xll x2} (xl < x2 < N4 A XI)  x2 E im(fa)) taken over all possible injective fa : [N2] -+ 
[N4] is simply the set of all N2-cliques. {xll x2} (xl < x2 < N4 A fp(xl) = f0(x2)) is the 
set of all N-partite complete subgraphs. These two sets can not be separated by a subex- 
ponential size monotone circuit [2]. 

This example suggests several open questions. Is it true that Ti( f )  I- WPHP(  f)? Is 
it true that Ti (  f )  t WPHP(  fp o fa)? Is the monotone version of the separation theorem 
true for Ti?  

In connection with the last question the following observation made by J. ~ r a j k e k  may 
turn out useful. Let the weaker principle WPHPl(f)g) state that f and g do not form two 
inverse bijections between [a2] and [a]) for a 2 2. Then this principle is  already provable 
in T;(f). 

In general) we lack a decent characterization of xi-theorems of Ti. In particular) it 
is still open whether S2(a) is Ei(a)-conservative over T;(a) or not. Obtaining such a 
characterization and understanding its meaning in the context of split versions seems to 
be the most immediate accessible question. The first part of this question is undoubtedly 
interesting in its own right) irrespectively of the application to particular problems from 
Boolean complexity. 

It is also worth noting that the reasoning in Example 1 can be reversed: since we 
have the monotone separation theorem for Si) we also have the independence result S i  If 
WPHP(fP o fa). This implies the result from [9] that Si(f) WPHP(f) .  



In the formal sense) Example 1 can not be used for refuting the separation theorem for 
nonmonotone circuits. Indeed) E. Tardos 1241 noticed that the classes of graphs G with 
w(G) 2 s and of graphs G with x(G) < s can be separated by (non-monotone) polynomial 
size circuits. Still) her proof involves highly nontrivial combinatorial argument known as 
Lovasz lower bound for Shannon capacity) and it hardly can be expected that this argument 
would follow from a separation theorem in Bounded Arithmetic. 
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Abstract  ' 

This work is motivated by the following general problem also looked 
at under various models by many others (see the bibliography for a small 
sample.) If you have a problem that is difficult for a certain model on 
a certain input distribution, in that any algorithm in the model taking 
less than R resources has failure probability at  least 6, is it always the 
case that combining several independent instances of the problem makes 
the failure probability proportionally greater? Here, combining can mean 
asking the algorithm to output answers for each input, or some predicate 
(e-g., the parity) depending on all the answers. One classical example 
of such a result is the Yao exclusiveor lemma (p2]) ,  which says that if 
we have a Boolean function f that is &hard for circuits of size C, and 
(1 - 26)*' < â‚¬1 then the function f (xi, ... xk) = f (xi) @ f (m).. @ f (xk) 
is 1/2(1 - â‚¬)-ha for circuits of size 0(c2c). (For a complete proof, see 
Levin [L] ). 

I have been interested in this problem mainly from the viewpoint, is 
full independence between the different xi's necessary, or do the same 
results pertain if the xi's were chosen in some suitable peudo-random fas- 
sion? I have not been terribly successful at answering this question, but 
in thinking about these issues I have come up with a Lemma that I think 
might be of independent interest, and at least gives a new proof of the 
Yao XOR Lemma (up to some changes in the formula above, effectively 
requiring k to double), and some weak results along the lines I was pur- 
suing. [GILVZ] answers a similar question in amplifying the difficulty of 
inverting functions. 

Another interesting slant to this problem is, is it possible to get (in at 
least some models) some similar results without decreasing the resource 
bounds? (i.e., a real increase in difficulty, rather than just a time/ prob- 
ability of correctness trade-off). This direction is pursued in [NRS], but I 
won't talk about it any more here. 

I am already tardy in submitting my seminar contribution. So in the 
following informal seminar contribution, I will limit myself to stating and 



proving the following Lemma, and leave extensions and applications to 
the future, and to my fellow seminar participants. 

Lemma 1 Let f be a Boolean function on n-bit inputs that is 6-hard for 
circuits of size g on the uniform distribution, and let e > 0. Then there is 
a set S 2 {O, 1)" so that \S\ > 62" and f is 1/2(1 - e )  hard on an input 
uniformly chosen from S for circuits of size de262g, where d is an absolute 
constant. 

A translation into intuitive terms is that for any yes/no problem that 
is hard to solve almost aJl the time the instances can be divided up into 
a set of "easy" instances and a "hard-core" of difficult instances where it 
is impossible to do significantly better than a random guess. Note that 
in the above lemma, we are actually off by a constant factor from what 
we'd expect, since if there were a hard-core set of size 26, we might still be 
able to predict the function with pprobability (1 - 26) + 1/2(26) = 1 - 6. 
By recursively applying the lemma, we can make 151 closer and closer to 
262", but at the expense of reducing the resource bound more and more. 

The above actually holds for arbitrary starting distribution, and for 
any non-uniform model of computation closed under taking majorities. 

1 Basic Definitions 
Definition 1 Let f be a Boolean function on n bit inputs, and D  a distribution 
on n bit strings. Let 112 > 6 > 0 and let n <  ̂ g < 2*/n. W e  say f is &hard 
on D  for size g if for any circuit C  with at most g gates, and for x  chosen 
according to D, Prob[C(x) = f (x)]  < 1  - 6 .  For a circuit C and an input 
z  define Rc(x)  = 1  if f ( z )  = C ( x ) ,  -1 otherwise, A measure on strings of 
length n is a function M  with M ( x )  E [O, 11 (think of it as defining a "fuzzy" 
set of strings, where instead of definitely being in or out of the set, z  is in  
the set with probability M i x ) .  ) The size of a measure M  is written p ( M )  
and is defined by p ( M )  = 112" x_ M ( x ) .  The distribution induced by M  is 
defined by D M ( x )  = M ( x ) / p ( M ) .  The advantage of C on M  is  defined by 
Advc(M)  = 1/2" ^ >  M(x)Rc ( z ) .  It is easy to see that i f x  is chosen according 
to D M ,  Prob[C(x) = f ( x ) ]  >, 112 + c i f  and only if Advc(M) 2 2cp(M). 

We will use the above definitions in the following way. We will first show 
that f is 112 - â‚¬ hard on some DM with p(M)  > 6. We then use a counting 
argument to show that a randomly chosen subset  where x  E S with probability 
M i x )  must be almost as  hard a distribution as DM. This last step seems just 
a technicality; the hard-core measure will be sufficient for all applications (I 
believe). 



2 Intuition 
Consider a problem like inverting a one-way function, where if we have a correct 
solution, then it is easy to verify it. Finding a "hard-core" set of problems for 
such a distribution is easy. Either there is no circuit of size l/2e6g that solves the 
problem on a e fraction of instances, or there is. If not, our hard-core distribution 
is the uniform distribution. If so, this circuit weeds out an e fraction of inputs 
as easy, and we look for a circuit that does well on the remaining inputs. This 
process continues until either we find a hard-core distribution, or the set of 
remaining inputs is smaller than 6. Note that, since we weed out at least a 
66 fraction of inputs each time, this process continues at  most I /& iterations. 
(This is overcounting some.) So if we don't find a hard-core distribution, we 
could piece all of the circuits we found into one circuit that tries them all and 
outputs the first correct solution. This circuit has size g and solves the problem 
1 - 6 of the time, contradicting the assumed hardness of the problem. 

We will follow the same outline, except that in general, we won't be able 
to tell when a circuit solves a particular instance, so we won't be able to just 
eliminate those instances where our first circuit solves the problem correctly. 
Instead, we gradually reduce the importance of those inputs where the circuits 
we have found so far do well, until we have reached a certain "comfort level" 
where the margin of success is high enough that we don't have to worry about 
that input for a while. If the margin of success is large for almost all inputs, 
the circuit that computes the majority of the circuits we have found computes 
f correctly on almost all inputs. 

3 Proof of Main Lemma 
Lemma 2 Let f be 8-hard for size g on the uniform distribution on n-bit 
strings, and let 1 > e > 0. Then there is a measure M with p ( M )  > 6 so 
that f is 1/2(1- ?}-hard for size l/4e2Pg on DM. 

Proof: Assume not, i.e., that on every measure M with p(M) 2 6, we can 
find a circuit CM of size g' = l/4e282g so that Prob[f(x) = CM(X)] > 1/2(1+e) 
when x is chosen according to DM. Let e' = â‚¬ Then for each such M, 
Adv(CM)(M)  >. ep(M) >: e'. 

For a set of circuits C1, ...Cj, let Ni(x) = E l <  -<i Rci(x) (i.e., the margin 
by which we are predcting f on x correctly), a n d h  Mi(x) = 1 if Ni(x) < 0, 
0 if Ni{x) > 1/c1 and 1 - elNi(x) otherwise. (In other words, if we've guessed 
more incorrectly than correctly on x we definitely want to include z in our 
next candidate hard-core distribution, if we have a comfortable margin on x, 
we don't, and if we are somewhere in between, include x with a probability 
decreasing linearly with our margin.) For the empty set of circuits, No(x) = 0 
so &(x) = 1 (i.e., we start in the uniform distribution.) 



Let Cl = CMo. If ^ ( M I )  2 6 ,  let Ca = CM1, and so on. Note that 
maj(Cl ,  Xi)  is correct on all inputs except those with M;(x)  = 1, so Prob[maj(Ci, ..C;) = 
f ( i ) ]  > 1 - p(Mi). So if the above process halts before i = 9/29' = 2ed then 
this defines a circuit of size a t  most g'i + 0(i) < 2g'i = g gates that computes 
f on 1 - 6 of the inputs, a contradiction to the assumed hardness of f. 

On the other hand, let 2 be any fixed input. Let A ( z )  = '&j<,is.i R&)Mie1(z). 
We claim A(x)  <, min{N;(z) ,  I / â ‚ ¬  + 1/2e/i. To see this, for each k, match up 
the times j so that N j ( x )  = k, N j + l ( ~ )  = k + 1 with those where N j ( z )  = 
k + 1, N j ( x )  = k ,  with possibly one time left out for each 0 5 k < Ni(x),  or 
N;(z)  < k < 0. (In other words, if you ride an elevator starting at the ground 
floor, you will go up from floor k to floor k + 1 at most one more time than 
you go down from floor k + 1 to floor k, and that one time will occur if and 
only if you get off at a floor greater than k. P.S. The analagous principle ap- 
plies for health conscious people who take the stairs. ) For each such pair of 
times a, b,  R ~ , + ~ ( z ) M a { z )  + Rc^{x)M&) = Ma{x) - Mb(z). I f  0 <, k < l / e l ,  
this is 1 - k(el) - (1  - ( k  + l ) &  = 8, and otherwise it is 0. Thus, each pair 
together contribute at most c' to the sum, so all pairs contribute at most i/2& 
Each unmatched edge with k < 0 contributes -1, each unmatched edge with 
0 5 k < l/epsilonl contributes at  most 1, and each unmatched edge with 
k > l/epsilonl contributes 0, so the total contribution of the unmatched edges 
is at most min{Ni(x),  l/epsilon'}. Thus, we have proved the claim. 

On the other hand, ,̂, A ( x )  = 2" xw5i-l A ~ V ~ , + ~  ( M j )  2 Vie' .  So 
combining these, we have sumcmin{N; ( x ) ,  l/epsilon1} 2 2"i/2e1 = 2" l/e/ so 
N; ( x )  2 1/epsilon1 > 0 for all 2. But this gives us a circuit of size g that always 
computes f correctly. This contradiction proves the Lemma. 

4 Getting a hard core set from a hard-core 
measure 

Lemma 3 Let f be 1/2(1 - â‚¬1 hard for size 272 < g < ( l /8)(2n/n)(c6)2 on 
D M ,  where M is a measure with p ( M )  2 6.  Then there is a set S with \S\ 2 62" 
and f is 1 / 2 ( l Ã  e)  hard for size g on Us (the uniform distribution on S.) 

Proof: First, note that the number of circuits of size g is at most (2(2n + g ) ) 2 g  < 
n 2 2  

2'"g 3 l /4e2 ' ̂ 12. Let C be any circuit of size g, and pick S by placing 
z G S with probability M ( x ) .  Then Advc(M) = Ezp[Advc(Us)] < ep(M),  
and Advc(Us) is the sum of 2" independent random variables that are in the 
interval [0, 2""]. Hence, the probability that Adv*) >. 2epM is at  most 

n 2 2  e 2  ' 12, by Chernoff bounds. Thus, the probability that there is such a C is 
at most 1/4. On the other hand, the probability that IS1 >, Exp\S\ = p ( M )  is 
about 112 (I'm fudging a bit here, I should check this more carefully.) Therefore, 
there is a set S with IS1 2 p ( M )  and Advc(Us) < 2ep(M) for every circuit C 



with at most g gates. Therefore, Prob[C(x) = f(x)] < 112 + e for x uniformly 
selected from S for any such circuit C, and so f is 112 - e-hard for size g on Us. 

Lemma 1 then follows from combining Lemma 2 and Lemma 3 with the 
observation that if f is &hard on any distribution for any 6 for size g, then 
g < 2" /n, since any function can be computed with 2"/n gates. 
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Abstract 

We present a Logspace, many-one reduction from the undirected st-connectivity prob- 
lem to its complement. This shows that SL = co - SL. 

1 Introduction 

This paper deals with the complexity class symmetric Logspace, SL, defined by Lewis and 
Papadimitriou in [LP82]. This class can be defined in several equivalent ways: 

1. Languages which can be recognised by symmetric nondeterministic Turing Machines 
that run within logarithmic space. See [LP82]. 

2. Languages that can be accepted by a uniform family of polynomial size contact schemes 
(also sometimes called switching networks.) See [Razgl]. 

3. Languages which can be reduced in Logspace via a many-one reduction to  USTCON, 
the undirected st-connectivity problem. 

A major reason for the interest in this class is that it captures the complexity of USTCON. 
The input t o  USTCON is an undirected graph G and two vertices in it s , t ,  and the input 
should be accepted if s and t are connected via a path in G. The similar problem, STCO N,  
where the graph G is allowed to  be directed is complete for NL, non-deterministic Logspace. 
Several combinatorial problems are known to  be in SL  or co - SL, e.g. 2-colourability is 
complete in co - S L [Rei82]. 

The following facts are known regarding S L  relative to other complexity classes in "the 
vicinity" : 

L C S L - L C N L .  

Here, L is the class deterministic Logspace and RL is the class of problems that can be 
accepted with one-sided error by a randomized Logspace machine running in polynomial 

"This work was supported by BSF grant 92-00043 and by a Wolfeson award administered by the Israeli 
Academy of Sciences. The work was revised while visiting BRICS, Basic Research in Computer Science, Centre 
of the Danish National Research Foundation. 



time. The containment SL C RL is the only non-trivial one in the line above and follows 
directly from the randomized Logspace algorithm for USTCON of [AKL+79]. It is also 
known that SL C S C  [Nis92], SL 5 @ L [KW93] and SL 5 D S P A C E ( ~ O ~ ~ - ~  re) [NSW92]. 

After the surprising proofs that NL is closed under complement were found [Imm88, 
Sze881, Borodin et a1 [BCD+89] asked whether the same is true for SL. They could prove 
only the weaker statement, namely that SL C co - RL, and left "SL = co - SL?" as an open 
problem. In this paper we solve the problem in the affirmative by exhibiting a Logspace, 
many-one reduction from USTCON to  its complement. Quite surprisingly the proof of our 
theorem does not use inductive counting, as do the proofs of NL = co - NL, and is in fact 
even simpler than them, however it uses the [AKS83] sorting networks. 

Theorem 1 SL = co- SL. 

It should be noted that the monotone analogues (see [GS91]) of SL and co - SL are 
known to be different [KW88]. 

As a direct corollary of our theorem, we get that L~~ = SL '~  = SL where L~~ is the 
class of languages accepted by Logspace oracle Turing machines with oracle from SL, and 
SL '~  is defined similarly, being careful with the way we allow queries (see [RST82]). 

Corollary 1.1 LsL = SL^ = SL 

This also shows that the "symmetric Logspace hierarchy" defined in [Rei82] collapses to 
SL. 

2 Proof of Theorem 

2.1 Overview of proof. 

We show that we can upper and lower bound the number of connected components of a 
graph, using connectivity problems. We upper bound this number using a "transitive-closure" 
method, which can be easily done since we are allowed to freely use connectivity problems. 
However, trying to lower-bound the number of connected components this way requires nega- 
tion. The heart of the proof lies in lower-bounding the number of connected components, 
and we achieve this in a surprisingly easy way, by computing a spanning forest. 

In subsection 2.2 we show how to combine many connectivity problems to one single con- 
nectivity problem. In subsection 2.3 we show how to find a spanning forest using connectivity 
problems. In subsection 2.4 we show how to use this spanning forest to find the number of 
connected components of a graph, and how we solve the st non-connectivity problem with 
it. 

2.2 Projections to USTCON. 

In this paper we will use only the simplest kind of reductions, i.e. LogSpace uniform projec- 
tion reductions [SV85]. Moreover, we will be interested only in reductions to USTCON. In 
this subsection we define this kind of reduction and we show some of its basic properties. 



NOTATION 2.1 Given f : {O, 1}* I-+ {O, 1}* denote by fn : {O, I}"Â I+ {O, 1}* the restriction 
o f f  to  inputs of length n. Denote by f n k  the k'th bit function of fn ,  i.e. i f  f n  : {O, I}" I+ 

{O, l }k (n)  then fn = ( f n , ~  , - - - , fn ,k(n)) .  

NOTATION 2.2 W e  represent an n-node undirected graph G using (3 variables Z = { ~ i , ~ } ~ < i < ~ < n  
s.t. x i j  is 1 iff ( i ,  j )  G E(G) .  If f (Z)  operates on graphs , we will write f ( G )  meaning that- 
the input to f is a binary vector of length (3 representing G.  

DEFINITION 2.1 W e  say that f : {O, 1}* I+ {O, 1}* reduces to U S T C O N ( m )  , m = m(n), if 
there is a uniform family of Space(log(n)) functions { o n k }  s.t. for all n and k:  

%k is a projection, i.e.: on,k is a mapping from {i , j}~<i<~<rn to {O, 1, xi, -ixi}i<i<n 

Given Z define G g  to be the graph Gg = ( { I , .  . . , m } ,  E )  where 
E = { ( i ,  j )  1 (rn,k(i, j )  = 1 or (rn,k(i, j )  = xi and xi = 1 OT on,k(i ,J) = 1%; and xi = O}. 
It should hold that fnk(Z)  = 1 Â¥<==> there is a path from 1 to m in  Gy. 

If a is restricted to the set {O, 1, we say that f monotonically reduces to U S T C O N ( m ) .  

Lemma 2.1 If f has uniform monotone formulae of size s ( n )  then f is monotonically re- 
ducible to  U S T C O  N (O(s (n) ) ) .  

Proof: Given a formula 4 recursively build (G ,  s ,  t )  as follows: 

I f  4 = xi then build a graph with two vertices s and t ,  and one edge between them 
labelled with xi. 

I f  4 = ( f>l  A ( f > 2 ,  and (Gi,  si, t i )  the graphs for <^, i = 1,2, then identify 32 with ti and 
define s = s1,t = t2. 

I f  4 = V $2, and (Gi ,  si, t i )  the graphs for (f>i, i = 1,2, then identify sl with ti and 
s2 with t2 and define s = sl = ti and t = s2 = ti. 

Using the A K S  sorting networks [AKS83], which belong to  N C 1  , we get: 

Corollary 2.2 Sort : {O, 1}* I-+ {O, 1}* (which given a binary vector sorts it) is monotoni- 
cally reducible to U S T C O  N(po1y). 

Lemma 2.3 I f f  monotonically reduces to U S T C O N ( m l )  and g reduces to U S T C O N ( m 2 )  
then f o g reduces to U S T C O N ( m :  m-^} , where o is the standard function composition 
operator. 

Proof: f monotonically reduces to  a graph with m l  vertices, where each edge is labelled 
with one of {O, 1, xi}. In the composition function f o g each xi is replaced by xi = gi($ 
which can be reduced to  a connectivity problem of size m2. Replace each edge labelled xi 
with its corresponding connectivity problem. 



2.3 Finding a spanning forest. 

In this section we show how to  build a spanning forest using U S T C O N .  This construction 
was also noticed by Reif and independently by Cook [Rei82]. 

Given a graph G index the edges from 1 to  m. We can view the indices as weights to the 
edges, and as no two edges have the same weight, we know that there is a unique minimal 
spanning forest F. In our case, where the edges are indexed, this minimal forest is the 
lexicographically first spanning forest. 

It is well known that the greedy algorithm finds a minimal spanning forest. Let us recall 
how the greedy algorithm works in our case. The algorithm builds a spanning forest F which 
is at the beginning empty F = V. Then the algorithm checks the edges one by one according 
to their order, for each edge e if e does not close a cycle in F then e is added to the forest, 
i.e. F = F U {e}. 

At first glance the algorithm looks sequential, however, claim 2.3 shows that the greedy 
algorithm is actually highly parallel. Moreover, all we need to check that an edge does not 
participate in the forest, is one st connectivity problem over a simple to get graph. 

DEFINITION 2.2 For an undirected graph G denote by LFF(G)  the lexicographically first span- 
ning forest of G .  Let 

S F ( G )  n {O, l}G) be: 

SFi , (G) = 0 (i, j )  E LFF(G)  
1 otherwise 

Lemma 2.4 S F  reduces to USTCO Nfpoly) 

Proof: Let F be the lexicographically first spanning forest of G. For e E E define Ge to 
be the subgraph of G containing only the edges {e' ? E \ index(e1) < index(e)}. 

Claim: e = (i, j )  E F Â¥<=> e E E A i is not connected to j in Ge. 

Proof: Let e = ( i , j )  E E. Denote by Fe the forest which the greedy algorithm built at the 
time it was checking e. So e E F Â¥<=> e does not close a cycle in Fe. 

(') e G F and therefore e does not close a cycle in Fey but then e does not close a cycle 
in the transitive closure of Fe, and in particular e does not close a cycle in Ge. 

(e) e does not close a cycle in Ge therefore e does not close a cycle in Fe and e (E F. 0 

Therefore SFi j (G)  = l x ~  V i is connected to j in Gni) .  

Since -ixj,j can be viewed as the connectivity problem over the graph with two vertices 
and one edge labelled -la;,-,j it follows from lemmas 2.1,2.3 that S F  reduces to USTCON.  
Notice, however, that the reduction is not monotone. 

0 



2.4 Putting it together. 

First, we want to build a function that takes one representative from each connected com- 
ponent. We define LIi(G) to be 0 iff the vertex i has the largest index in its connected 
component. 

0 i has the largest index in its connected component 

Lemma 2.5 LI reduces to USTCON(po1y) 

Proof: 

LIi(G) = V?=i+l ( i  is connected to j in G).  

So LI is a simple monotone formula over connectivity problems, and by lemmas 2.1,2.3 
LI reduces to USTCO N .  This is, actually, a monotone reduction. 

0 

Using the spanning forest and the LI function we can exactly compute the number of 
connected components of G ,  i.e.: given G we can compute a function NCCi which is 1 iff 
there are exactly i connected components in G. 

DEFINITION 2.4 NCC(G) w {0 ,  I}" 

Lemma 2.6 NCC reduces to 

there are exactly i connected components in G 
otherwise 

USTCO N (poly) 

Proof; 

Let F be a spanning forest of G. It is easy to see that if G has k connected components 
then \F\ = n -  k. 

Define: 
f(G) = Sort o LI(G) 
g(G) = Sort o SF(G).  

Then: 

Therefore applying lemmas 2.1,2.2,2.3,2.4,2.5 proves the lemma. 

Finally we can reduce the non-connectivity problem to the connectivity problem, thus 
proving that SL = co - SL. 



Lemma 2.7 USTCON reduces to USTCON(po1y) 

Proof: 

Given (G, s, t) define G+ to be the graph G U {(s, t)}. 

Denote by #CC(H) the number of connected components in the undirected graph H. 

s is not connected to t in G <=Ã 

Therefore applying lemmas 2.1,2.3,2.6 proves the lemma. 

3 Extensions 

Denote by L~~ the class of languages accepted by Logspace oracle Turing machines with 
oracle from SL. An oracle Turing machine has a work tape and a write-only query tape 
(with unlimited length) which is initialised after every query. We get: 

Corollary 3.1 LsL = SL. 

Proof: 

Let Lang be a language in L~~ solved by an oracle Turing machine M running in L^, 
and fix an input Z to M. 

Look at the configuration graph of M. In this graph we have query vertices with outgoing 
edges labelled "connected" and "not connected". We would like to replace the edges labelled 
"connected" with their corresponding connectivity problems, and the edges labelled "not 
connected" with the connectivity problems obtained using our theorem that SL = co - SL. 

However, there is a technical problem here, as the queries are determined by the edges 
and not by the query vertices. We can fix this difficulty by splitting each query vertex to its 
"yes" and "no" answers, and splitting each edge entering a query vertex to "connected" and 
"not connected" edges. Now we can easily replace each edge with a connectivity problem, 
obtaining an undirected graph which is st connected iff Z ? Lang, and therefore Lang ? SL. 

As can easily be seen the above argument applies to any undirected graph with USTCON 
query vertices, thus, if we carefully define S L ' ~  (see [RST82]) we get that: 

Corollary 3.2 SL^ = SL. 

In particular, the "symmetric Logspace hierarchy" defined in [Re821 collapses to SL. 
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1 What are dynamic problems? 
In this note, we give a survey of some results about dynamic problems with a 
complexity theoretic flavour. A survey on the same subject, but with a slightly 
different perspective, was recently given by Fredman [7]. 

A dynamic problem is the problem of maintaining an object in a data struc- 
ture while certain operations are performed on the object, some of which change 
the object, and some of which answer questions about the object. Rather than 
a formal definition, let us look at some examples. 

The union-split-find problem 
The union-split-find problem (on intervals) is the task of maintaining a set 
S C {I, . . . , n}, initially empty, under the following operations: 

For each i c {I,.  . . , n}, an operation Â¥imion(i) It removes i from S. 

For each i { I , .  . . , n}, an operation spli t( i) .  It inserts i into S. 

For each i ? {I, . . . , n}, an operation find(!'). It returns the largest ele- 
ment of S which is smaller than or equal to i if such an element exists, 
otherwise 0 is returned. 

Union-split-find is a generally useful abstract data type, for instance, it can 
be used to implement priority queues with small integers. The best known 
implementation has a worst case time per operation of O(1og log n) [lg]. 
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Dynamic parity prefix 

The dynamic parity prefix problem is the problem of maintaining a vector x ? 
{O, I}" under the following operations: 

0 For each i E {1, . . . , n} and a ? {O, l} an operation change(i, a). This 
operation changes xi to a. 

For each j ? {I, . . . , n} an operation pref ix(j),  returning XI + xy + - - - + 
X j  mod 2. 

The parity prefix problem is a one dimensional version of the range query prob- 
lems, considered in computational geometry and database theory. A trivial 
solution gives time O(1ogn) per operation. With a bit more thought, we can 
get time O(1og n/ log log n) [9]. 

Dynamic graph connectivity 

The dynamic graph connectivity problem is the problem of maintaining an undi- 
rected graph with set of vertices V = {I,. . . , n} under the following operations: 

For each i, j 6 V with i # j ,  an operation insert( i ,  j). This inserts an 
edge between i and j in the graph. 

For each i, j ? V with i # j, an operation deleted,$. This removes the 
edge between i and j in the graph. 

For each i ,  j ? V, an operation con(i, j). This operation returns t r u e  if i 
and j are in the same connected component in the graph, f a l s e  otherwise. 

The best known solution to the graph connectivity problem is highly non-trivial, 
with a worst case time per operation of O(-\/n) [4]. Dynamic graph problems 
had been studied intensively for a decade before this solution appeared. 

The spreadsheet problem 

The (small-screen, Boolean) spreadsheet problem is the problem of maintaining 
n cells Cl,  C2,. . . ,Cn, each cell containing either a Boolean constant (i.e. "0" 
or "I") or a constant size Boolean formula, with variables denoting other cells 
(e.g. "C12 V C37"), under the following operations: 

For each i 6 {1, . . . , n}, and each formula or constant f ,  an operation 
change(!', f )  operation, which changes the contents of cell Ci to f .  

For each i E {I , .  . . , n}, an operation screen(i), which return the value 
of cell Ci (with "value" having the obvious semantics; if loops exist in the 
spreadsheet, the value is undefined). 



It is well known that spreadsheets are generally useful. The trivial solution to 
the spreadsheet problem is to maintain the cells themselves, perform changes 
in constant time and when a screen(i) operation is called, make a topological 
sort of the cells, and evaluate the cells bottom up until the value of cell C(i) is 
known. This takes time 0 (n )  in the worst case. This solution is patented [15]! 
No better solution is known. 

Our goal 

We see that while the various problems seem similar, at  least from a syntactical 
point of view, their best known solutions, some of which are trivial, some of 
which are deep, have very different complexities. This motivates looking at 
the problems from a complexity theoretic angle. The goal of doing complexity 
theory in this domain (as in others) are two-fold: 

Show lower bounds, hopefully establishing that the best known solutions 
are optimal, so that we do not have to keep on searching for better solu- 
tions. 

Gain an understanding about which properties of the problems make some 
of them difficult and some of them easy. This does not necessarily imply 
showing lower bounds, merely showing structure is often illuminating. 

2 A complexity t heoret ic framework 

Dynamic language membership problems 
In order to make systematic complexity theoretic investigations, we need a more 
well defined notion of dynamic problem. We will let the class of dynamic lan- 
guage membership problems be our subject of investigation: 

A problem in this class is given by a language L C {O, I}*. We are supposed 
maintain a string x E {O, 1}* with operations: 

For each i E {I, .  . . , n } ,  a ? {O, 11, an operation changed, a). This opera- 
tion changes the i'th component of x to a. 

query. This operation returns t r u e  if x ? L, f a l s e  otherwise. 

Many naturally occurring problems can be phrased as dynamic language 
membership problems without changing their complexity. For instance, it is an 
easy exercise to see that the dynamic graph connectivity problem corresponds 
to the dynamic language membership problem for the language L = USTCON. 
The spreadsheet and prefix problems can be similarly captured. The union-split- 
find problem can not be captured exactly, because the find operation returns 
more than O(1) bits, but similar problems, like dynamic binary addition [12] 
can. 



The cell probe model 
Various models of computation have been considered for dynamic problems: 

The pointer or storage modification machine, whose memory consists of a 
collection of records, each consisting of a bounded number of fields, each 
consisting of a pointer to other records. Interesting lower bounds [lo, 161 
have been shown in this model. However, since we know that arrays can 
be useful (e.g. for hashing), we would like our lower bounds to hold in 
stronger models. 

The unit cost RAM, where each cell in the random access memory holds 
an arbitrary integer. This model can simulate PRAMS [18], so it is a bit 
too strong. 

The log cost RAM, where the cost of an operation is proportional to the 
number of bits in the words accessed. This is a bit too weak, since we can 
then not follow a pointer in constant time. 

Our favourite model: The random access computer [2], where operations 
are unit cost, but each cell can only hold an integer of polynomial mag- 
nitude. Consensus seems to be emerging that this model has exactly the 
right level of generality. For instance, it captures all the upper bounds in 
Section 1, and the fact that they are the best known. 

The cell probe model can be regarded as a strong (but not too strong), non- 
uniform version of the random access computer. 

In this model, the complexity of a computation is the number of cells ac- 
cessed in the random access memory containing the data structure during the 
computation, while the computation itself is for free. Each cell contains b bits, 
where b is a parameter of the model. There is no restriction on the number of 
cells in the memory. 

Formally, the model is as follows: In an implementation of the dynamic 
problem we assign to each operation a decision assignment tree, i.e. a rooted 
tree containing read nodes and write nodes. When performing an operation 
we proceed from the root of its tree to one of the leaves. The read nodes 
are labelled with a location of the random access memory. Each has 2' sons, 
one for each possible content of the memory location. The write nodes, which 
are unary, are labelled with a memory location and a value between 0 and 
2b - 1. When such a node is encountered, the value is written in the memory 
location. If the operation is to return an answer, this is found in the leaf finally 
encountered. The complexity of an operation in an implementation is the depth 
of its corresponding tree. 

In the rest of the paper, we assume b = O(1ogn). With this setting, the cell 
probe model simulates the random access computer, no matter which instruction 
set the latter uses. 



3 Lower bounds 

Couting arguments 

It is easy to show [14]: 

Theorem 1 All dynamic language membership problems have complexity at 
most O(n/ log n). Furthermore, almost all dynamic language membership prob- 
lems have complexity at least Ct(n/logn). 

So the cell probe complexity measure behaves much like more usual complexity 
measures for Boolean languages, like circuit size and depth. However, we want to 
know lower bounds for explicitly defined languages, which, for our purpose, are 
languages in P (The theorem above only gives us languages in EXPSPACE). 
For this purpose, there seem to be only two techniques available for cell size 
b = O(log n): 

The time stamp method. 

The compression and communication complexity method. 

For smaller cell sizes, there are at least three additional techniquesL6, 5, 141, but 
they do not translate into RAG lower bounds. 

The time stamp method 
We are not going to go into the details of the time stamp method here, but only 
mention that the time stamp method shows a lower bound of ft(1og n/ log log n) 
for the dynamic prefix problem mentioned above. By a reduction, the same 
bound holds for the dynamic graph connectivity problem [14, 171. Furthermore, 
this seems to be the largest lower bound that can be shown for any problem 
using this technique. 

The compression and communication complexity method 
It is harder to give correct and fair citations for this method. Willard [20] used 
what is essentially the compression method for proving upper bounds on certain 
static data structure problems. Ajtai used what was essentially the communi- 
cation complexity method for proving lower bounds on the static version of the 
union-split-find problem. He didn't phrase his proof in terms of communication 
complexity, which (in our view) made it hard to understand. Miltersen [l l]  
used the compression and communication complexity technique in a weak form 
to show lower bounds on the cell probe complexity of dynamic problem. In [12], 
Miltersen noted that Ajtai's proof could be interpreted as communication com- 
plexity and combined a technical improvement of it with compression to give 
lower bounds for the union-split-find problem and a range of other problems. 



However, Xiao, in his unpublished PhD-thesis [21], had earlier, and indepen- 
dently, combined compression with a stronger version of Ajtai's proof, giving 
stronger lower bounds for the union-split-find problem. Beame and Fich [3], 
upon reading [12] independently gave this stronger bound for all the problems 
in [12]. 

Fortunately, the method itself is rather easy to explain. Assume, for conve- 
nience of notation, that our dynamic problem is the problem of maintaining a 
set S C {I,. . . , n} under insertions, deletions, and some set Q of query oper- 
ations. Suppose that we are given an efficient dynamic algorithm that runs in 
time t per operation. 

In the compression step we convert the dynamic algorithm to a solution 
for a static data structure problem, namely the problem of storing S using 
small space (O(\S\t) cells) so that any query in Q can be answered in time 
t. Basically, this is done by inserting the elements of S in our dynamic 
data structure, noting which memory locations have changed value, and 
storing those in a perfect hash table [8]. 

In the next stage we convert the solution to the static problem into an 
efficient protocol for the following communication game between Alice and 
Bob: 

- Alice is given a query q 6 Q. 

- Bob is given a subset S C { 1, . . . , n} . 

Alice is allowed to send messages that contains log 15'1 bits to Bob, while 
Bob is allowed to send messages that contain logn bits to Alice. The 
object of the game is for Alice to find out the answer to query q about S. 

The efficient protocol is as follows: Bob computes the static data structure 
corresponding to S, but does not send anything yet. Then Alice simulates 
the query operation corresponding to q by sending Bob requests for the 
cells she wants to read in his data structure. Bob sends the content of 
the cell in question back. This is repeated until the query operation is 
completed and Alice knows the answer, i.e.. for at most t rounds. 

We can now use communication complexity techniques to give a lower bound 
on the communication game and translate this bound back to a lower bound on 
the dynamic problem. 

Examples include an ft(1og log n/ log log log n) lower bound for the union- 
split-find problem [21, 31. The largest bound the technique is able to give for 
any problem is ft(1og n/ log log n). This bound is achieved for a language L, 
related to polynomial evaluation over finite fields [13]. 



4 Structure 

The largest lower bound we can show for an explicit problem by the known 
techniques is Q(1og n/ log log n). It is therefore an open problem if all dynamic 
language membership problems in P can be solved in time O(log n/ log log n) 
per operation. 

Thus, we are far from showing that the best known algorithms for e.g. the 
dynamic connectivity and the spreadsheet problems are optimal. However, from 
traditional complexity theory, where large lower bounds are also hard to find, 
we known an alternative: structure. It would be nice to be able to claim that 
these problems are difficult, because each are hard for a large class of natural 
problems. 

Of course, we need to define a notion of reduction that preserves dynamic 
complexity. One was defined in [14], here's another, a bit more intuitive, and 
sufficient for our purpose: 

For two languages L\ and L2, we say that Ll <d lit, if the dynamic language 
membership problem for Ll can be solved in time O(1ogn) if we assume access 
to black box (oracle) implementations of the dynamic language membership 
problem for L2 that runs in time O(1og n). 

We can now show, by emulating the usual completeness proof for the circuit 
value problem: 

Theorem 2 T h e  spreadsheet problem is complete for P w.r . t .  Sd. 

Thus, the spreadsheet problem can not be solved in time O(1og n) (or log0(') n 
or no@)) per operation, unless all of P can. 

Indeed, it seems that almost all natural P-complete (with respect to e.g. 
first order projections or whatever your favourite notion of low level reducibility 
is) problems are P-complete w.r.t. Sd. 

We might now reasonably expect that by a similar argument dynamic graph 
connectivity is complete for the class SL since USTCON is first order complete 
for SL. 

Unfortunately, this does not seem to be the case. In general, it seems that 
almost none of the natural first order complete problems for the usual classes 
(defined in terms of small space or parallel time) smaller than P are complete 
w.r.t. <d. 

Examples disobeying these rules of thumb can be constructed: languages, 
first order complete for P with efficient dynamic solutions exist, and so do 
problems which are first order complete, as well as &-complete, for SL [14], 
but neither are particularly natural when regarded as combinatorial problems. 

Though it is hard to find problems Sd-complete for usual complexity classes, 
we could hope for new structure: The dynamic graph connectivity problem 
might be complete for a large class of natural problems, different from SL. 
Unfortunately, this does not seem to be the case either: <d seems to be too 



weak a reduction for much structure to appear. Therefore, a rich structural 
complexity theory of dynamic problems seems unlikely. 
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Abstract 

We prove that the modular communication complexity of the undirected graph connectiv- 
ity problem UCONN equals Q(n), in contrast to the well-known Q(n log n) bound in the 
deterministic case (see [9]), and to the ?2(n log log n) lower bound in the nondeterministic 
case, recently proved by Raz and Spieker (see [15]). 

We obtain our result by combining Mobius function techniques due to Lovasz and 
Saks (see [12], [13]) with rank and projection reduction arguments. 

Topics: Computational Complexity, Communication Protocols, Modular Acception 
Modes, Undirected Graph Connectivity. 

Introduction 

During the last few years communication complexity theory gained popularity. In several 
papers many interesting questions of complexity theory were answered by reducing them t o  
several kinds of communication games. Among others, this regards time-area tradeoffs for 
VLSI-circuits [I], [lo], time-space tradeoffs for Turing machines, width-length tradeoffs for 
oblivious and usual ^-branching programs ([2],[4]), branching programs of bounded alterna- 
tion [l4], and threshold circuits of depth 2 [ll] and depth 3 [7]. 

The graph connectivity problem for undirected graphs UCONN = (UCONNn(n_i))ngN in 
distributed form can be formulated as follows. Assume that we are given two not necessarily 
edge-disjoint undirected graphs GI = (V, El) and G2 = (V, E2) on a common n-set of vertices 
V, where both graphs are represented as Boolean vectors of length (3. The question is 

def whether or not the graph G = GI U Gi = (V, El U E2) is connected, i.e. each pair of vertices 



in G is connected. In [18] the major developments in understanding the complexity of the 
graph connectivity problem in several computational models are surveyed. 

In the following we investigate the modular communication complexity of UCONN. Let two 
graphs Gi = (V, Ei), for i = 1,2, be given to two processors PI and P2. In order to  solve 
UCONN both processors have to communicate via a common communication tape. The 
computation of the whole structure, which is called a communication protocol or simply a 
protocol, is going on in rounds. Starting with Pi the processors write alternatingly bits on the 
communication tape. These bits depend on the input available to the processor which is to  
move and on the bits already written on the communication tape before. We assume without 
loss of generality, that in each round exactly one bit is written down on the communication 
tape. If the last bit written on the communication tape is "1" or "0" the computation is 
called accepting or rejecting, respectively. So co-operative computations can be thought of 
as to be Boolean strings. The length of the string is the communication complexity of the 
computation. Since we consider the worst-case-complexity in this paper, we assume without 
loss of generality, that all computations of a protocol are of equal length, say L. We shall 
assume the processors to be nondeterministic. That's why we have to define the output of 
a protocol via defining acception modes. As it is common use an acception mode is called a 
counting mode if the output of a protocol for a given input depends only on the numbers of 
accepting and rejecting computations performed by the protocol accessing this input. In this 
paper we discuss the modular acception modes in which the protocol accepts an input, if the 
number of accepting computations is not equal to 0 modulo m. 

How to  motivate the modular acception modes modulo m? In [20] it has been shown that 
all problems computable by constant depth, polynomial size circuits with MODm-gates for 
arbitrary integers m, are contained in certain counting communication complexity classes. 
In [5] these modes were formaly introduced and studied. Several papers (see e.g. [6]) deal 
with comparing the power of different counting acception modes. Roughly speaking, the 
computational power of the acception modes modulo mi, i = 1,2, is uncomparable, provided 
that (mi, m2) = 1 (see [8]). 

We conclude this section by reviewing the results and methods which are strongly related 
to ours and by formulating the result of this paper. We use the notions and notations of 
Definition 1. Hajnal, Maass, and Turan proved in [9] the following theorem. 

Theorem A C O ~ ~ ( U C O N N ~ ( ~ _ ~ ) )  = @(relog re). 

Their method involves the use of the Mobius function p for the lattice of partitions of an 
re-set. Lovasz and Saks extended in [12] and [13] this ideas to a large class of problems, the 
so-called meet problems for finite lattices, which can be formulated as follows. Let S be a 
finite lattice, and let both processor V\ and Py be given an element x and y, respectively. 
Then they have to decide whether x A y = 0. 

Theorem B Let MEETs be the meet problem of a finite lattice. Let S have a atoms and b 
Mobius elements (i.e. elements x such that p(0, x) -f- 0). Then 

log b < Comm(MEETs) < (log a)(log b). 



Recently, Raz and Spieker [15] proved 

Theorem C If processor Pl as well as processor P2 have an bipartite perfect matching on 
2n vertices with two colors of size n as an input, and if their goal is to determine whether the 
union of the two matchings forms a Hamiltonian cycle, the nondeterministic communication 
complexity of the problem is fl(n log log n). 

Since the problem of Theorem C is a subproblem of UCONN (see Lemma 2), it follows 

Corollary D N - C O ~ ~ ( U C O N N ~ ( ~ - ~ ) )  = O(n log log n). 

It is the aim of this paper to show that modular acception modes help for detecting undirected 
graph connectivity. 

Theorem Let m be arbitrary. Then MODm-Comm(UCONNn(n-l)) = @(n). 

Proof. The claim follows directly from Proposition 2 in Section 3 and from Proposition 4 in 
Section 4. 0 

We use the technique related to the Mobius function to prove the upper bound of Proposition 
2. The lower bound of Proposition 4 follows from rank and reduction arguments. 

1 The computational model 

Let f : Sl x S2 -+ {O, l} be given in distributed form. A protocol of length L consisting of 
two processors PI and P2 that access inputs of Sl and S2, respectively, can be described by 
two functions ^ si x {O, l}*L -+, 11, 
i = 1,2, and {o,!}*~ = {w ? {0,1}* 1 1 < lwl < L } .  The interpretation is as follows. 
Let 7 = 71.. .7j, 7fc ? {O, 1). If ai(s;,7) = 1, and if 171 - i is even, then the corresponding 
processor Pi is able to write 7, on the communication tape provided that it has read 71 . . .?,-I 
on the communication tape and that it has sj as input. If, however, ai(si, 7)  = 0, then Pi is 
not able to write 7,. 

Now we define two #Sl x #S2-matrices Acep and RejP associated with the protocol P of 
length L  by 

Clearly, A ~ C : , ~ ~  gives the number of accepting computations of the protocol P on the input 
(sl, s2), whereas RejES2 is the number of the rejecting computations. In order to make this 



approach unique, we agree that Qi(si, 7)  = 1, if 171 - i is odd, for i = 1,2. We may give an 
equivalent definition of the above two matrices as follows. Let 7 6 {O, l}' be a computation. 
Define 

for i = 1,2. Then we get directly from the equations (1) and (2) 

Definition 1 1. A counting acception mode p for a protocol P is a function p :  IN^ -+ 

{O, l} such that P accepts an (s17s2), if and only if, ~ ( A c c ~ , ~ ,  ~ e j : , )  = 1. Oth- 
erwise P rejects the input. A protocol P equipped with an acception mode p is called 
a p-protocol. The function computed is sometimes denoted by Comp(P,p). If we are 

given a function f : Sl x St -* {O, l} then p-Comm( f )  min{Ll Comp(P,p) = 
f, L is the length of P}. 

2. We define the following acception modes. 
def  Nondeterministic mode: N(W7 n2) = 1 n-i > 0, 

Modular modes: def  MODm(nl, n2) = 1 n1$ 0 (mod m), 

By the way, a deterministic communication protocol is not characterized by a special accep- 
tion mode but by a property of the underlying protocol, namely @i(sÃ 70) + @i(si, 7 1) < 1, 
for si c Si, i = 1,2, and 7 c {O, I}*. For such protocols all reasonable counting modes 
coincide. 

Lemma 1 If m11m2, then MODm2-Comm( f )  2 log(%) - MODml-Comm( f) ,  for each func- 
tion f .  

Proof. Clearly, m21mk"12-, if and only if, m11m3. 

Let P be the MODml -protocol for f .  We describe the following protocol PI. 

First, processor PI chooses nondeterministically an index k, 1 < k < "-2- and sheds k. 

Second, P2 and PI proceed in the same way as Pi and do according to the protocol P. 
We get that Accf" = - Accg. Consequently, Act;' = 0 (mod m2) <-Ã Accg' = 0 
(mod ml). If L is the length of protocol P, then log(%) - L is the length of protocol PI. 0 

Now we have to define what we mean by reductions. Fortunately, this is much easier here 
than in machine-based complexity theory. 

Definition 2 Let F = (f2n : Sn x En -+ {O, and G = : Fn x Fn -+ {O, be 
two decision problems. We say that F is rectangular reducible to G with respect to q, where 
q : IN Ã‘ IN is a nondecreasing function, iff there are two transformations In, : Sn Ã‘> P(") 
such that for all n and for all ?,f ? Sn we have fin(.x^y) = g2q(n)(ln(Z), rn(y))- We write 
F < 9  G. 



We can utilize rectangular reductions for proving lower bounds. Let q : IN -+ IN be an 
unbounded nondecreasing function. Then we define q ' - l )  by q ( ) ( i )  = max{jl q ( j )  < i}.  
For example let p : IR+ --+ IR+ be an unbounded monotone increasing continous function and 
let p-l : IR+ -+ IR+ be a right-inverse to p ,  i. e. p o p 1  = 1. If we define q : IN -+ IN to be 
q(i) = fp(i)l , then = [ f t l ( i ) J ,  for almost all natural numbers. 

The proof of the following lower bound reduction argument is easy. 

Lemma 2 Assume that we are given two sequences of functions F = ( f a n  : En x En -+ 

{O, and G = (g2n : rn X Fn --+ {O, If p-Comm(F) > c(n)  and i f  F <LC G ,  
then p-Comm(G) > c o q ( l ) ( n ) .  

One efficient way to  get rectangular reductions is to handle with projection reductions. The 
variables over {O, l}" are coordinate functions xi : {O, l}" --+ {O, l }  such that xi(crl,. . . , ern) = 
crf In accordance with Skyum and Valient (see [17]) we define. 

Definition 3 1. Let fn : {O, l}" --+ {O, l} and gm : {O, I}"' -+ {O, l } .  fn is called reducible 
to gm via a projection xn : {y17 . . . , ym} --+ {x17 . . . , X n ,  1x1, . . . , -ixn, 0, l }  and we write 
fn ST,, gm, where the xi and the yj are the Boolean variables of Fn and gm, resp., if 

2. If fn and gm are given in distributed form, i. e. fn : {O, 1}"12 x {O, 1}"12 --+ {O, l }  
and gm : {O, 1}m/2 x {O, 1}m/2 Ã‘Ã {O, l } ,  then we say that the reduction TT respects the 
distribution of the variables, i f  

3. There is a transpose : {O, --+ {O, I}" of the projection reduction TT. It is defined 
by 

d(q = ( ~ n ( l / l ) ( f f ) ,  . . . , ~ r n ( ~ m ) ( f f ) ) y  

where ii = (x i ( i i ) ,  . . ., xn(ii)) 6 {O, is any Boolean vector of length n.  

4. If F = ( fn )neN and g = are Sequences of functions, if n = ( 7 ~ ~ ) ~ ~ ~  ?k a 
sequence of projection reductions defined in the first item of this definition, i. e. fn <vn 
gm, and if m < p(n), then we say that I1 ist a p(n)-projection reduction and we write 
F <h G .  If both F and G are given in  distributed form, then the definition of the 
notion " v respects the distribution of the variables" can be done by analogy with the 
second item of this definition. 

If the elements of {O, I}" are representations of graphs, then we visualize the graph which is 
the transpose ':(a) of a vector 8 E En in such a way that the edges which are not constant 
are labelled by the corresponding literal (see figures 1 and 2). The meaning is that such an 
edge belongs to the graph, if and only if, the labelling literal is true. 

Due to Lemma 2 we get 



Lemma 3 Assume that we are given two sequences of functions F = (fan : {O, I}" x 
{0, J.ln -+ {O, and G = (GZm : {O, x {O, -+ {O, S U C ~  that F G, 
where p : IN -+ IN is increasing, and I1 = is a sequence of projection reductions 
which respects the distribution of the variables. If p-Comm(F) > c(n), then p-Comm(G) > 
c 0 q(-l)( 4. 

2 Rank arguments for upper and lower bounds 

We shall derive rank arguments for proving upper and lower bounds on the length of protocols 
equipped with the modular acception modes from Definition 1. We adopt the concept of 
variation ranks of communication matrices developed in [ll]. Throughout this section let 
f denote a function f : Sl x S2 -+ {0,1}, N = #Sl = #S2, and let M ^  denote the 
communication matrix, where M/, = f (i, j ) ,  for I, j = 1, . . . , N. 

Let the sequence equality function be defined by SEQZn(xi,. . . , X n ,  yl, . . . , yn) = A?=l(l - 
((xi + yi) mod 2)). Here Sl = S2 = {O, 1)". 

Definition 4 1. Two N x N-matrices A and B over the ring of integers are defined to 
be modm-equivalent, where m is a natural number, if and only if, for all indices i, j, 

aij 5 0 (mod m) <=  ̂ by 5 0 (mod m). 

2. Let A be an integer matrix. We define var-rankzlmz(A mod m) to mean the minimum 
of all numbers rankzlmz(B mod m), where B is an integer matrix which is modm- 
equivalent to A. 

A 0-1 matrix is interpreted as an R-matrix, where R is an arbitrary semiring, in the canonical 
way. As usual, the R-rank of a m x n-matrix A over R, which we denote by rankRA, is 
defined to  be the minimal number k such that A = B - C, where B is a m x k-matrix and C 
is a k x n-matrix over R. A straightforward calculation yields the next lemma. 

Lemma 4 Let A be an integer matrix. 

1. rankzlmz(A mod m) = max{rankzlmiZ(A mod mi) I i = I, .  . . , r}, 
provided that m = ml . . . - m2, where (mi, mj) = 1, for all i # j. 

2. rankzlmz(A mod m) = min{rankzD 1 D is modm-equivalent to A}. D 

Lemma 5 Let R be any semiring. Let P be a protocol of the length L on the input set 
Sl x $2, #Sl = #S2 = N, and let ACC' be the N x N-matrix defined in equation 1. Then 
rankR(~ccp)  < 2=-l. 

Proof. The inequality follows directly from equation 4. 0 

Now we can fully charaterize the modular communication complexity im terms of variation 
ranks. 



Proposition 1 

Proof. The left inequality follows directly from Lemma 5 and from Definition 4. Let us turn 
to the right one. We choose by Lemma 4 an integer matrix B which is modm-equivalent to  
~f , such that r = rankzlmz(B mod m) = var-rankzlmz(~f). Then B = B(l) + . . . + B(T), 

where the B ( ~ )  have Z/mZ--rank 1. This is equivalent to B? s UP - (mod m), for 

u/~),I$(~) 6 (1 ,..., m}, and for i, My... N. 

Now we can describe the following protocol P. Assume that the input is (i, j )  ? Sl x S2. 

First, processor Pl chooses nondeterministically some indices k, 1 < k < r ,  and li, 1 < ll < 
u/*), and sheds (k, ll). 

Second, processor P2 chooses nondeterministically some index 12, 1 < l2  <: q, and sheds 
(^2,l). 

Clearly, there are U /  - I $  = Bij (mod m) many accepting computations assigned t o  
the input (i, j). It follows that Comp(P, MODm) = f .  Obviously, the length of the protocol 
is bounded above by log2 r + 210g2 m + 1. 13 

In the case of m being a prime number, we can even do better. 

Corollary 1 If m = p is a prime number, we have 

Proof. By means of Fermat's Little Theorem each protocol of length L can be transformed 
into a protocol P' of length (p - l)L such that for all inputs (i, j) 

0 (mod p) if Accf. s 0 (mod p); -4~4' = ( A C C ~ )  = { 1 (mod p) if Ace: $ 0  (mod P). 

3 The Mobius function and upper bounds on the length 
of MODm-protocols for undirected graph connectivity 

In this section we transform a method due to Lovasz and Saks (see [12], [13]) for proving 
lower bounds on the length of deterministic protocols to the case of MODm-protocols in oder 
to prove upper bounds. We can only give a very brief treatment on Mobius functions. For 
more see [16]. 

Let S be a finite partially ordered set, R be a commutative ring with 1. The R-valued 
incidence algebra A(S, R) is defined as follows. Consider the set of functions of two variables 



f (x, y), for x and y ranging over S having values in R, and with the property that f (x, y) = 0 
whenever x < y. The sum and the multiplication by scalars are defined pointwise. The 
product of f and g is defined as follows. 

Clearly, Kronecker's &function is the 1 of A(S, R). The R-valued zeta function [(x, y) ? 
def A(S, R) is defined by [(x, y) = 1 if x < y and [(x, y) = 0 otherwise. The function ~ ( x ,  y) = 

[(x, y) - 6(x, y) is called the incidence function. 

The following formula is the key to  prove Lemma 6. 

It allows a recursive definition of the inverse of f ,  provided that the f (x, x) are units in R. 

Lemma 6 An element of A(S, R) is a unit, if and only i f ,  Y [  f (x, x) is a unit in R. 0 

Consequently, we can define the R-valued Mobius function to be the inverse of the zeta 
function. Let us denote this function for a moment by p@). 

Analogously to the standard real-valued case, we have the Mobius inversion formula. Let f (x) 
be an R-valued function, for x ranging over the finite poset S, and let g(x) = zy f (y)C(.y^ x). 

Then f (x) = E, 9(?/)>iW(</, x). 

If p denotes the real-valued Mobius function, then because of formula 6 p takes values only 
in Z. Consequently, if Ro R is the prime ring of R, which equals either Z or Z /mZ,  for 
some m 6 Z, then 

Ax7 Y) if Ro = Z ;  
p R ( x 7 y )  = {p(x, y) mod m if Ro = Z/mZ. 

Now, of course, we can drop the notation u,̂ . 
Again from formula 6 it follows that p(x, y) only depends on the the structure of the interval. 
Moreover, we know, that if p* is the Mobius function of the dual poset S*, then p*(x, y) = 
P(Y, 4- 
Let us assume from now on that the poset S is a lattice. In line with [12] we shall consider 
the meet problem MEETS : S x S -i- {O, l} of the finite lattice S, defined by MEETs(%, y) = 
6(0, x A y). We proceed as follows. Let M be a 0-1 matrix. Check whether there are two 
equal rows or colomns in M and if this is the case, then delete one of them. Do that as long 
as possible. The resulting matrix M is called the core of M. Clearly, the communication 
complexity of the underlying problems is the same. Now it is not difficult to see that the 
core of M uCoBNn(n-l) equals the core of M ~ ~ ~ ~ P ! ~ ) * ,  where P(n)* is the lattice dual to the 
lattice of partitions of an n-set. 

Lemma 7 Let M be the communication matrix of the meet problem assigned to the finite 
lattice S ,  and let p be a prime number. Then rankz/pz(M) = # { x  ? S 1 p(0,x) $ 0 
(mod P I } .  



Proof. Let M be the diagonal matrix diag(p(0, and let [ = ([(x, be the 
matrix associated with the zeta function. Wilf observed in [19], that cT - &f (, = M. The 
claim follows from the Mobius Inversion Formula. 

Now let us compute #{x ? Sl p(0, x) $ 0  (mod p)} in a special case. 

Lemma 8 Let P(n)* be the lattice dual to the lattice P i n )  of partitions, let p < n be a 
prime number, and let p* be the Mobius function of P(n)*. Then #{x 6 P(n)*l p*(0, x) $ 0  
(mod P)} 5 pn. 

Proof: The following three facts are well-known. 

Fact 1. If x 6 P(n), and if b(x) is the number of blocks of the partition x, then [x, 11 P(b(x)). 
Fact 2. If p is the Mobius function of P(n), then p*(O, 1) = p(0,l) = (-l)"-l(n - I)!. 

Fact 3. Let S(n, k) denote the number of partitions of an n-set into exactly k blocks (Stirling 
numbers of the second kind), then 

where X is an indeterminant and [XIk = X - (X - 1) . . . - (X  - k + 1) is the falling factorial. 

The next equality follows from Fact 1 and from Fact 2. The next but one from Fact 3. 

Proposition 2 Let m be arbitrary. Then MODm-C~mm(UCONNn(n-l)) = O(n). 

Proof. Let p be a prime number such that p\m. By Lemma 1 we have 

The claim follows from Corollary 1, Lemma 7, and Lemma 8. 



4 Variation ranks and lower bounds on the length of 
MODm-protoc~l~ for undirected graph connectivity 

The following lemma improves the corresponding one from [ll]. 

Lemma 9 Let IN denote the identity N x N-matrix. Let m = p? . . . . p: be a natural 
number which is given by its primary decomposition. Then var-rankzlmz (IN) = \N/rl. 

Proof. First we prove that \N/rl is a lower bound. Let A be an integer matrix such that 
A is modm-equivalent to  IN and var-rankzlmz(IN) = rankzA, which exists by Lemma 4. 
By definition we have, for all 4 an + 0 (mod m), and ay s 0 (mod m), for all j + i. For 
all i 6 {I,.  . ., N} there is a k 6 {I,. . . , r} such that a;, $ 0 (mod plk). We conclude that 
there is a primary component pf of m, which we denote for simplicity by p', a set of indices 

and, for all i 6 I, natural numbers ui 6 {I,. . . , li}, such that 

an = 0 (mod p'-ui), 

an + 0 (modp'-^), 

a;j = 0 (mod p'), 

for all j ? I, j # i. After deleting all rows and columns of A whose indices do not belong t o  
Z, we get an integer N' x N1-matrix B. It is sufficient to show that det B # 0. It is easy t o  
see that 

for all permutations a of the set {I,. . . , N'} different from the identity permutation. Conse- 
quently, 

det B = b1,l . . . - bNl,Nl + 0 (mod p N1.1+1-~2~ vi 1- 

Second let us prove that pV/rl is an upper bound. Let fi = p ~ "  & Fj = (f17.. . , fj), 
and Aj = ~f Fj for i, j = 1 6 {I,. . . , r}. Ay is defined to be the unique 0 x 0-matrix, which, 
of course, has rank 0. Clearly, Aj mod m is a j x j-diagonal matrix of Z/mZ-rank 1, for 
j 6 {I, .  . . , r}. Define the matrix A to be the following direct sum of matrices. 

where r' = N (mod r), and r' E {O, . . . , r - 1). It follows that A mod m is a diagonal 
N x N-matrix, and that rankzlmz(A mod m) < \N/rl. CI 

Proposition 3 For m arbitrary, we have that MODm-Comm(SEQ2) = Q(n). 

Proof. The claim follows from Proposition 1 and from Lemma 9. 



Lemma 10 SEQ = (sEQ2n)nEN is reducible to UCONN = (UCONNn(n-l))nEN given in 
distributed form via a O(n2)-projection reduction with respect to the partition of the variables. 

Proof. Consider an input (tl, . . . , tn,  ul, . . . , un) of SEQZn The projection reduction 

Tn(n-1) : {xij9Yij 1 i, j = 1,. . . ,n,  i < j} + { o ? l , t v , ~ v ,  i t v ,  TU,, 1 u = 1,. . .,n}, 

where the values of the Boolean variables xij and yij define the graphs GI and G2 accessible 
to the processors Pl and P2, is defined by the help of Figure 1 and Figure 2, in which the 
transpose 

t 
~ ~ ( ~ - ~ ) ( t ~ , - - - , t n , ~ l , * - - , ~ n )  

is shown. Clearly, this graph is connected, if and only if, 

SEQ2n(tl, - - .?  tn, ~ 1 ,  - - - un) = 1. 

Now it is easy to  prove the lower bound. 

Proposition 4 Let m be arbitmry. Then M O D ~ - C O ~ ~ ( U C O N N ~ ( ~ - ~ ) )  = Q(n). 

Proof. The claim follows from Lemma 10, Lemma 3 and Proposition 3. 0 
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Figure 1: The graph ~ i ( ~ - ~ ~  ( t l ,  . . . , tn7 U I ,  . . . , un) 
( K z j 2  denotes full bipartite graph having 2  x 2 nodes, G ( t p ,  up )  is defined in Figure 2.) 



Figure 2: The graphs G(tp, u p )  of Figure 1 
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Abstract 

For each q < 2 there exist a model M of IAo(a) which satisfies the 
Count(q) principle. Furthermore there exist n, r E M and a bijective 
map f ? Set(M) mapping { I ,  2,  ..., n}  onto { l ,2 ,  ..., n + qT}. 

A corollary is a complete classification of the Count(q) versus 
Count(p) problem. Another corollary solves an open question ([3]). 

In this note I state and prove a Theorem which actually can be viewed as 
the main result of [lo]. 

Theorem: Let q > 2. Suppose that r (n )  is an function with 

(a) limn-too r ( n )  = oo. 

(b) For all e > 0 lim,+,oo = 0 

Suppose that 7 is any system of Bounded Arithmetic over some countable 
language L. Suppose that L in addition to the language of arithmetic also 
contains at least one undefined relation symbol. Suppose that all terms t in 
L have polynomial growth rate. Then there exists a model M o f f  such that: 

(i) M Count (q) . 
(ii) The PHPz+qr( *) (bij) -principle fails in M. 

Here PHP:+Jbij) is the the elementary principle stating that there does not 
exists n and a bijective map from { l , 2 ,  ..., n }  onto { I ,  2,  ..., n + s} .  And 

*Basic Research in Computer Science, Centre of the Danish National Research 
Foundation. 



Count (p) is the elementary matching principle stating that if {l, 2, ..., n} is 
divided into disjoint p-element subsets, then p divides n. The principle is 
expressed as a Ao-axiom scheme. 

Proof: As in [lo] let M be a countable non-standard model of first order 
Arithmetic. Then by a similar forcing construction (which actually avoids 
certain technical problems) we expand M by a generic bijection f mapping 
{l,2, ..., n} onto {1,2, ...., re + qT(n)}. Assumption (a) allows us to assume 
that qr(n) is a non-standard number. Furthermore condition (b) ensures that 
the circuit collapsing argument goes through. Now it follows by the analysis 
in [lo] that the Count(p) principle can never be forced false. If it was false, 
there would exists an impossible M-definable object. In this case a forest 
of (D, Relabelled trees where 1 R 1 - \ D I= qr(n), but where all trees 
would have hight dominated by some standard number. This violates the 
main lemma (lemma 6.1.5) in [lo]. Finally M* is got a the initial segment 
{m E M : nk > m, k E N}. D 

Corollary 1: (Settling conjecture by Ajtai [3], [5], [lo]) 
For different primes q, p Count (q) If Count (p) 

Corollary 2: (Obtaining the complete classification [4], [lo]) 
For fixed q,p > 2 the following is equivalent 

(a) p divides a power of q 

(b) Count(^) I- Count(p). 

Proof: The implication (a) =>Â (b) was shown in [4] or [lo]. The implication 
(b) + (a) follows from the Theorem. According to the Theorem Count(p) 
If PHP;+^.) (bij) if Count(q) h Count(p). But then by the easy 'only i f  in 
corollary 1, p must divide a power of q. 

Corollary 3: (Solving the Count versus PHP problem) Let r(n) be 
as above. For each q, p > 2 
Count(p) If PHP:+qr(*)(bij) if and only if p divides a power of q. 

Let PHPE-l-p(inj) be the the statement that there is no n and no injective map 
from {I, 2, ...., n tp} into {I, 2, ...., n} and let PHPz+p(sur) be the statement 
that there is no n and no surjective map from {I, 2, .., n} onto {I, 2, ..., n + ~ } .  

Corollary 4: (Answering an open question in [3]) 
(a) P H P L  (bij) P H P ~  (inj) . 
(b) P H P 3 i n j )  41- PHP:+l (sur) . 



(c) Count (q) If P H P T i n j ) .  

Pro of: (b) is a simple exercise, and (a) clearly follows from (c) . To show (c) 
notice that PHP;+'(inj) I- PHP:+,;.,(bij) for any r. 
This shows that the Pigeon-hole Principle for injective maps are efficiently 
stronger than the Pigeon-hole Principle for bijective maps. Actually it shows 
that: 

Corollary 5: There exists a model M* ofIAo(a) in which Count(p) holds for 
each p ? N\ {I}. Yet, there exists n E M* and an injective map f ? Set(M*) 
mapping {l,2, ..., n + I} into {I, 2, ..., n}. 

Proof: By the completeness theorem it suffice to show that for each finite 
set pi, p2, .., p; of integers, the conjunction Count(pl) A .... A Count(p;) does 
not imply PHP;+'(inj). This follows by an argument similar to the one given 
for (c) in corollary 4. 
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Abstract 

Polynomial-time approximation algorithms with non-trivial performance 
guarantees are presented for the problems of (a) partitioning the vertices 
of a weighted graph into k blocks so as to maximise the weight of crossing 
edges, and (b) partitioning the vertices of a weighted graph into two blocks 
of equal cardinality, again so as to maximise the weight of crossing edges. 
The approach, pioneered by Goemans and Williamson, is via a semidefinite 
relaxation. 

1 Introduction 

Goemans and Williamson [5] have significantly advanced the theory of approx- 
imation algorithms. Previous work on approximation algorithms was largely de- 
pendent on comparing heuristic solution values to that of a Linear Program (LP) 
relaxation, either implicitly or explicitly. This was recognised some time ago by 
Wolsey [ll]. (One significant exception to this general rule has been the case of 
Bin Packing.) 

The main novelty of (51 is that it uses a Semi-Definite Program (SDP) as a relax- 
ation. To be more precise let us consider the problem MAX-CUT studied (among 
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others) in [5]: we are given a vertex set V = {I, .  . . , n} and non-negative weights 
w ~ ,  1 < i,j < n, where wij = wj,; and w,, = 0 for all i, j .  If S Vand 3 = V \ S 
then the weight of the cut (S : 3) is 

The aim is to find a cut of maximum weight. 

Introducing integer variables y j  E {-I, l} for j  E V we can formulate the MAX 
CUT problem as 

IP: maximise !j Ei<, wi,j(l - yiyj) 
subject to yj E {-I, I}, V j  E V (1) 

The key insight of Goemans and Williamson is that instead of converting this to 
an integer linear program and then considering the LP relaxation, it is possible to 
relax IP directly to the following 

SDP: maximise ! j x W w i j ( l  -v i -v j )  
subject to v j  E Sn, VJ E V 

Here Sn = {x E Rn : ~~x~~ = l} is the unit sphere in n dimensions. SDP7s are 
a special class of convex program (see Alizadeh [I] for a detailed exposition). In 
particular the above problem can be replaced by 

CP: maximise !j & - ̂,3} 
subject to Y,,j = 1, Vj ? V 

Y = [ Y J > - 0  
(2) 

Here Y,,, replaces vi - v - and the notation Y >- 0 indicates that the matrix Y is v 
constrained to be positive semi-definite; this constraint defines a convex subset 
of R".  The idea of Goemans and Williamson is to solve SDP and then use the 
following simple (randomised rounding) heuristic to obtain a remarkably good 
solution to MAX-CUT: choose a random hyperplane through the origin, and 
partition the vectors vi (and hence the vertex set V) according to which side of 
the hyperplane they fall. 

This is an exciting new idea and it is important to see in what directions it can be 
generalised. In this paper we do so in two ways. First we consider MAX k-CUT 
where the aim is to partition V into k subsets: for a partition P = Pi, P, . . . , Pe 
of V we let \P\ = i and 

The problem is then 

MAX k-CUT: maximise w(P) 
subject to IPI = k. 



Note that MAX k-CUT has an import ant interpretation as the search for a ground 
state in the anti-ferromagnetic k-state Potts model: see Welsh [lo].  To attack 
this problem we need to be able to handle variables which can take on one of 
k values as opposed to just two, a similar problem to that faced in trying to 
colour 3-colourable graphs 161. Our solution is a natural extension of the existing 
solution for the case k = 2, but the performance analysis presents greater technical 
difficulties. 

The simplest heuristic for MAX k-CUT is just to randomly partition V into k sets. 
If P denotes the (random) partition produced and P* denotes the optimum par- 
tition then it is easy to see that 

since each edge (i, j) has probability (1 - k )  of joining vertices in different sets 
of the partition. 

We describe a (randomised) heuristic A;-CUT which produces a partition Pk. We 
prove the existence of a sequence of constants %, k > 2 such that if Pi denotes 
the optimal partition in MAX k-CUT then: 

where the 0.1. satisfy 

(ii) ak - (1 - k-l) ^2k-2 ln k; 

(iii) a2 2 0-878567, a3 > 0-800217, a4 > 0-850304, ac 2 0-874243, q0 > 
0-926642, and qoo > 0-990625. 

The performance ratio for k = 2 is the same as that achieved by Goemans and 
Williamson, as our heuristic is a generalisation of theirs. 

Our next result concerns the problem MAX BISECTION. Here we have to parti- 
tion V into two subsets of equal size (assuming that n is even) so as to maximise w. 

MAX BISECTION: maximise w(P) 
subject to P = S, V \ S 

\S\ = n / 2 .  

A random bisection produces an expected guarantee of 1. We describe a heur- 
istic BISECT which produces a partition PB such that if P i  denotes the optimal 
bisection, 



Theorem 2 Let e be a small positive constant. Then E ( w ( P B ) )  > /3 w(P*,) where 

/3 = 2( J2(l- I ) ,  which is greater than 0-65 for e sufficiently small. 

Note that a2 = 0-878567.. . , as in Theorem 1. The difficulty with generalising 
Goemans and Williamson's heuristic to MAX BISECTION is that their heuristic 
does not generally give a bisection of V. We prove that a simple modification of 
their basic algorithm beats the trivial 1 lower bound. 

Note that there is a natural generalisation of this problem MAX k-SECTION 
where we seek to partition V into k equal pieces. Unfortunately we cannot prove 
that the natural generalisation of our bisection heuristic beats the 1 - k lower 
bound of the simple random selection heuristic when k > 3. 

MAX k-CUT 

In this section we describe our heuristic k-CUT. We first describe a suitable way of 
modelling variables which can take one of k values. Just allowing yj = 1,2, .  . . , k 
does not easily yield a useful integer program. Instead we allow yj to be one of 
k vectors a l ,  a2, .  . . , ak defined as follows: take an equilateral simplex Ek in R - ~  
with vertices bl, b2,. . . , bk. Let ck = (bl + b2 + - - -+ b k ) / k  be the centroid of Ek and 
let a,  = bi - ck, for 1 < i < k .  Finally assume that Ek is scaled so that [ail = 1 for 
l < i < k .  

Lemma 1 
a , - a , = - l / ( k - 1 ) )  f o r i #  j. 

Proof Since a l ,  a2 ,  . . . , ak are of unit length we have to show that the angle 
between a; and a j  is arccos(-l/(k - 1 ) )  for i # j .  Let bl, b2,. . . , bkbl lie in the 
plane xk_^  = 0 and form an equilateral simplex of dimension k - 2. Let bi = (b1,O) 
for 1 5 i < k - 1, where bl has dimension k - 2, and assume bi + bi + + bkbl = 0. 
Then ck = (0 ,0 , .  . . ,0,  x )  and bk = (0 ,0 ,  . . . ,0,  k x )  for some x > 0. But lbk-ckl = 1 
and so x = l / ( k  - 1).  But then (bk - c k )  - (bl - ck )  = - (k  - l ) x 2  = - l / ( k  - 1).  0 

Note that - l / ( k  - 1 )  is the best angle separation we can obtain for k vectors as 
we see from: 

Lemma 2 If u l ,  u 2 , .  . . , uk satisfy luil = 1 for 1 < i < k ,  and u, - uj  < y for i # j ,  
then y > - l / ( k  - 1) .  

Proof 



Given Lemma 1 we can formulate MAX k-CUT as follows: 

IPk: maxirnise EKj witj(l - yi yj) 
subject to yj ? {al,a2, .**)ak}. 

Here we use the fact that 

To obtain our SDP relaxation we replace y, by v,, where v; can now be any 
vector in Sn. There is a problem in that we can have v, vj = -1 whereas 
yi . yj > -1/(k - 1). We need therefore to add the constraint vi - vj > -l/(k - 1). 
We obtain 

SDPk: maximise 9 xi-<, wi ( 1  - vi - vj) 
subject to vj E Sn, '& 

vi - vj > -l/(k - I) ,  Vi # j 
(4) 

Note that (4) reduces to the linear constraint > -1/(k - 1) if we go to the 
convex programming form CP. We can now describe our heuristic 

Step 1 solve the problem SDPk to obtain vectors vl, v2, . . . , vn E Sn. 

Step 2 choose k random vectors zl, z^, . . . zk. 

Step 3 partition V according to which of zb %. . . , zk is closest to each vj, i.e., 
let P = PI, P2,. . . , Pk be defined by 

Pi = {j v v j ~ z i . f o r i # i 1 } ,  for 1 st k. 

(Break ties for the minimum arbitrarily: they occur with probability zero!) 

The most natural way of choosing zi, z2,. . . , is to choose them independently at 
random from SÃ  ̂Forcing \zA = 1 complicates the analysis marginally and so we 
let zj = z2,j,,. . , Q), 1 5 j <: k where the zcj are kn independent samples 
from a (standard) normal distribution with mean 0 and variance 1. When k = 2 
we have the heuristic of Goemans and Williamson, although they define it in terms 
of cutting Sn by a random hyperplane through the origin. 

Let Wk denote the weight of the partition produced by the heuristic, let Wl be the 
weight of the optimal partition and let Wk denote the maximum value of SDPk. 
Putting yj = a, for j E Pi, 1 < i < k we see that 



Now by symmetry Pr(y, # yj) depends only on the angle 0 between vi and vj, and 
hence on p = cos 0 = vi vj. Let this separation probability be denoted by Qk(p). 
It then follows from (5) that 

where 

We leave the estimation of the q to an appendix (see Corollaries 1, 2,  and 3). 
Suffice it to say that they satisfy the claims of Theorem 1. 

3 MAX BISECTION 

We now describe how to ensure that the partition we obtain divides V into equal 
parts. As an integer program we can express MAX BISECTION as 

Constraint (6) expresses the fact that we force 15'1 = n / 2  by maximising the 
number of pairs i, j where i G S, j @ S. It has the advantage of being easily 
relaxed to give an SDP problem: 

SDPg: maximise 1 - V; - vj) 
subject to v; - vj < -n /2  (7) 

Vjâ‚¬ VJGV 

We can now describe our heuristic: e is a small positive constant, e = 1/100 is 
small enough. 

BISECT 

Step 1 solve the problem SDPg to obtain vectors vl, v2, . . . , v E Sn. 

Repeat Steps 2-4 below for t = 1,2, . . . K = K(e) = r e 1  ln e l l  and output the 
best partition Sf, V \ Sf found in Step 4. 



Step 2 choose 2 random vectors zl, z2. 

Step 3 let St = { j  : vj zl < vj z2}. 

Step 4 suppose (w.1.o.g.) that lStl > n / 2 .  For each i E St let C(i) = EjGs,wi,j 
and let St = { x l , x ~ .  . ., xe} where C(xl) 2 C(x2) 2 - - *  >: C(xe). Let St = 

{ ~ l , .  9 xn12}. 

Clearly the construction in Step 4 satisfies 

In order to analyse the quality of the final partition we define two sets of random 
variables. 

Recall that Pi denotes the optimum bisection, and let W* >  ̂ w(Pi)  denote the 
maximum of SDPg. Then, by the analysis of Theorem 1 (or [ 5 ] ) ,  

Also 

where N = n2/4 (note the use of (7) here.) 

Thus if 

then 
E(Zt) 2 2%. 

On the other hand 
Zt 5 2, 

since Xt < W* and & < N. 

Define ZT = m a ~ ~ < ~ < ; < Â ¥ { Z ~ }  Now (10) and (11) imply that for any e > 0 
- - 



and so 
r, 

for the given choice of K (e). Assume that 

and suppose 
xr=\w. 

which from (10) and (12) implies 

Suppose ISTI = 8n; then (13) implies 

Applying (8) and (14) we see that 

The last inequality follows from simple calculus. 

Thus 

Finally note that the partition output by BISECT is at least as good as 3,. We 
divide e above by 3 to get the precise result. 

4 Appendix 

Let u, v be vectors, and r l ,  . . . , rk be a sequence of vectors, all in Rn.  We say that 
u and v are separated by r l ,  . . . , rk if the vector ri maximising u - ri is distinct from 
the vector rj maximising v - r j .  When we speak of a random vector, we mean a 
vector r = (tl,. . . , t n )  whose coordinates ti are independent, normally distributed 
random variables with mean 0 and variance 1. Note that the probability density 



-n/2 function of r is (27r) exp(-(( + - . + f,)/2), and in particular is spherically 
symmetric. 

-112 Denote by g(x) = (27r) exp(-x2/2) the probability density function of the uni- 
variate normal distribution, and by G(x) = J ^  g(() d( the corresponding cumu- 
lative distribution function. For i = 1,2, . . ., the normalised Hermite polynomials 

( ) are defined by 

Let hi = hi(k) denote the expectation of h(xmax), where xmax is distributed as the 
maximum of a sequence of k independent normally distributed random variables. 

Lemma 3 Suppose u, v E Rn are unit vectors at angle 0, and ri,. . . , rk is a 
sequence of random vectors. Let p = cos0 = u-v, and denote by N k ( ~ )  = lÃ‘<S{,(~ 
the probability that u and v are not separated by 71,. . . , r k .  Then the Taylor series 
expansion 

3 
Nk(p) = a, + alp + a2p2 + a3p + + - - 

of Nk(p) about the point p = 0 converges for all p in the range \p\ < 1. The 
coefficients a. of the expansion are all non-negative, and their sum converges to 
Nk(l) = 1. The first three coefficients are a, = 1/k, al = hf/(k - 1) and a, = 
kh,/(k - l)(k - 2). 

Proof We begin by computing the joint distribution of x = u - r and y = v . r, 
where r = (tii . . . , tn )  is a random vector. Since the density function of r is 
spherically symmetric, this joint distribution is dependent on 0 only, and not 
on the particular choice of u and v; for convenience let u = (1,0,. . . ,0) and 
v = (cos 6, sin 0,0, . . . ,0). Then 

Pr(u - r < x and v - r < y) 

= Pr(& < x  and (1cos0+(2sin6 < y) 

- - 
' 

exp (- c; - 2cosWC1C2 + C, 
27~ sin0 c 2 = - ~  2(sin 0)2 

where we have applied the change of coordinates & = and 6, = tl cos 0 + (, sin 0. 
The joint probability density function of x = u - r and y = v - r is thus 

where p = cos 0; this is the probability density function of the bivariate normal 
distribution in standard form, with correlation p = cos 0. Denote by 



the corresponding cumulative distribution function. 

Let rl, . . . , rk be independent random vectors; then 

Pr(u and v are not separated by rl, . . . , rk) 

= k x Pr(u-r1 = m a x u - r i  and v - r l  = maxv.r j )  
t 3 

where 

There is no expression for the integral I(p) in closed form, so we compute in- 
stead a Taylor series expansion for I(p) about p = 0 using ideas (and notation) 
from Bofinger and Bofinger [2]. The Mehler expansion [9] of the bivariate normal 
probability density function 

converges uniformly for \p\ < 1. Three facts that follow easily from the Mehler 
expansion and definition (15) of the Hermite polynomials are: 

and 

We now evaluate I(p) and its successive derivatives with respect to p at the point 
p = 0 by noting that F(x, y; 0) and f (x, y; 0) factorise into G(x)G(y) and g(x)g(y), 
respectively. In this way we obtain a Taylor series expansion for I(p) about the 
point p = 0. We defer an examination of the radius of convergence of this Taylor 
expansion to the end of the proof. 

Starting with I itself, we have 

where the second equality can be seen by interpreting the integral as the prob- 
ability that the maximum of a sequence of k independent, normally distributed 
random variables is achieved by the first variable.' 

1ntegration will be assumed to be over the infinite line when the limits of integration are 
omitted. 



By identities (18) and (19)) 

81 -1 = (/ s(x)wx)G(x)~-' dx)' + (k - 1) ( /~(x) 'G(x)"~ 
9f p s o  

dx) . 

(Passing the derivative through the integral is justified by Section 1.88 of Titch- 
marsh's text on analysis of functions [8].) The first integral is simply hl/k; the 
second may be simplified using integration by parts, and identity (17): 

Substituting these expressions for the two integrals yields 

Differentiating with respect to p a second time, we obtain 

The first integral is just h2/k. The second, using integration by parts and iden- 
tity (17)) is 

A further application of integration by parts reduces the third integral to the 
second, from which 



Substituting these expressions for the three integrals yields 

In principle the process of repeated differentiation by p could be continued indef- 
initely; for any i, the ith derivative of I(p) evaluated at  p = 0 is a positive linear 
combination of squares of one-dimensional integrals. This observation, combined 
with (20)) (21)) and (22) establishes the claims concerning the Taylor expansion 

of I (  P). 

It remains to show that the Taylor expansion of I(p) is valid for \p\ < 1 and 
hence - by continuity of Nk(p) at p = 1 and the fact that all terms in the 
expansion are positive - for \p\ < 1. Observe that I(p) is defined by an integral 
of the form 

where SAX, y) = xz: b ( x ,  y) is a sum of terms k ( x ,  y), and each term tij(x, y) 
is a product of factors of the form g(~)g(~)<f>~(x)( j>~(y) .  Now ff \t,j(x, y) \ dx dy < 
2.6, since f Ig(x)<f>;(x)\ dx < 1.6 and maxz \g(x)q51(x)l < 1 for all I. (These facts 
follow from the key inequality on page 324 of Sansone's treatise on orthogonal 
functions [7], which bounds l<f>l(x)l by cexp(-x2/4) for an absolute constant c; 
note, however, that the bound given by Sansone is for un-normalised Hermite 
polynomials, and must be scaled accordingly.) Noting that n; = O(ik l ) ,  we see 
that the sum 

converges, provided \p\ < 1. Thus - by uniform convergence of the Mehler expan- 
sion, and the theorems contained in Sections 1.71 and 1.77 of Titchmarsh [8] - 
it is permissible to integrate (23) term by term, yielding 

The above expression is a power series expansion of I(p) valid for \p\ < 1, which 
must be identical to the Taylor expansion, by uniqueness. 

Denote by Ak(p) the function 

and recall that the performance ratio of the k-CUT heuristic is given by 

ak = min Ak(p). 
-l/(k-l)<p<l 



Corollary 1 ak > 1 - k-l, for all k 2 2. 

Proof At p = 0, the numerator and denominator of Ak(p) are both k - 1; at 
p = 1 they are both 0. Since the power series expansion of Nk(p) has only positive 
terms, the numerator is a concave function in the range 0 < p < 1, and hence 
Ak(p) > 1 in that range. 

Turning to the case p < 0, note that Nk(l) = 1 and Nk(-1) = 0 implies even a, = I; furthermore, since hdk)  increases with k and h1(3) = 3/2& (using calculations 
described by David in [3, Section 3.2]), we have al > 9/47r(k - 1). Therefore, 

where the second inequality is valid over the range -l/(k - 1) < p < 0, since 
9/47r - 112 > 115; hence 

It is easily verified that the above expression is strictly greater than 1 - k over 
the closed interval -l/(k - 1) < p < 0. 

Corollary 2 q - (1 - k-l) - 2k-:^ Ink. 

Proof Galambos [4, Section 2.3.21, gives the asymptotic distribution of the 
maximum of k independent, normally distributed random variables. In partic- 
ular the quantity hl(k), which is just the expectation of the maximum, satisfies 
hl(k) N d m .  Thus we have the asymptotic estimate 

where e(k) is a function tending to 0, as k -+ oo. The result follows by arguments 
used in the proof of the previous corollary. 

Corollary 3 q? > 0-878567, > 0-800217, cq > 0-850304, ag > 0-874243, 
a1o > 0-926642, and > 0-990625. 

Proof The value of was obtained by Goemans and Williamson. For k > 3, 
we use the bound Nk(p) <: l / k  + alp + a2p2 + p4/2, valid for -1 < p < 0, and 
evaluate al and a2 numerically. (Observe that the coefficient of p3 is positive, and 
hence the term itself makes a negative contribution.) Note that by computing 
further terms in the Taylor expansion of Nk(p) it is possible to give better bounds 
on a k ;  e.g,, by expanding to the term in p4, we obtain a3 > 0.832718. 
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On Rank vs. Communication Complexity 

Noam Nisan * Avi Wigderson t 

Abstract 

This paper concerns the open problem of 
Lovkz and Saks regarding the relationship 
between the communication complexity of a 
boolean function and the rank of the associ- 
ated matrix. We first give an example ex- 
hibiting the largest gap known. We then 
prove two related theorems. 

1 Introduction 

For a 0 , l  matrix M,  denote by c(M) the de- 
terministic communication complexity of the 
associated function [Y79], and by rk(M) its 
rank over the reals. It is well known [MS82] 
that logrk(M) < c(M) < rk(M). It is a 
fundamental question of communication com- 
plexity to narrow this exponential gap. As 
rank arguments are the main source of de- 
terministic communication complexity lower 
bounds, and the rank function has many use- 
ful properties, it would make life nicer if the 
lower bound was rather tight. A tempting 
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conjecture (see [LS88]) is 

Conjecture 1 For every matrix M, c(M) = 
(log r k ( ~ ) ) * ( ' )  

Lovhz and Saks [LS89] also show that this 
conjecture is strongly related to a conjecture 
of van NufEelen [Nu761 and Fajtlowicz [Fa871 
regarding the connection between the chro- 
matic number of a graph and the rank of its 
adjacency matrix. 

Several authors have obtained separation 
results between c(M) and logrk(M) [AS89, 
Raz921. The best separation known so far 
gives an infinite family of matrices for which 
c(M) > log rk(M) log log log rk(M) [RS93]. 
Our first result is an example with a much 
larger gap. 

Theorem 1 There exist (explicitly given) 0- 
1 matrices M of size 2" x 2" such that c(M) = 
fl(n), and logrk(M) = O(nO'), where a = 
log3 2 = 0.63 ... 

The same fl(n) lower bound applies also to 
the randomized and to the nondeterministic 
communication complexities. The construc- 
tion is based on boolean functions with high 
"sensitivity" and low degree. Such a func- 
tion was constructed in [NS92]. The lower 
bound for the communication complexity re- 
lies on the known lower bounds for random- 
ized communication complexity of "disjoint- 
ness" [KS87, RazgO] . Recently Kushilevitz 
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[Ku94] has somewhat improved the construc- 
tion of [NS92] and has thus reduced the value 
of a to log63 = 0.61 .... The main lemma 
of [NS92] shows however that this technique 
cannot reduce the value of a to below 112. 

We then return our attention to conjec- 
ture 1, and consider weaker related conjec- 
tures. To explain them, we need some nota- 
tion. If S is a subset of the entries of M, let 
So and Sl denote respectively the subsets of 
S whose value is 0 and 1 respectively. Call S 
monochromatic if either S = So or S = Si. 
Let mono(M) denote the maximum fraction 
lAl/ 1 M 1 over all monochromatic submatrices 
A of M. When S is not monochromatic, we 
will be interested in the advantage one color 
has over the other. The (absolute) discrep- 
ancyof S i s  6{S) = ~ ( ~ S o ~ - ~ S l ~ ) / ~ M ~ ~ .  Define 
disc(M) to be the maximum of S(A) over all 
submatrices A of M. 

Since an optimal protocol for M partitions 
it into at most 2c(M) monochromatic rectan- 
gles, we have the basic relation: 

or, equivalently, 

- log disc(M) < - log mono(M) 5 c(M). 

Thus two conjectures weaker than Con- 
jecture 1 suggest themselves. They respec- 
tively assert t hat low rank matrices have large 
monochromatic rectangles, or weaker still, 
large discrepancy. 

Conjecture 2 For every M,  
- log mono(M) = (log rk(~))O( ' )  

Conjecture 3 For every M, 
- log disc(M) = (log r k ( ~ ) ) O ^  

As mentioned, Conjecture 1 -+ Conjecture 
2 Ã‘ Conjecture 3. We first prove, in theorem 
2, that conjectures 1 and 2 are equivalent. We 
then prove, in theorem 3, (a strong form of) 
conjecture 3. 

Theorem 2 Conjecture 1 iff Conjecture 2, 

Thus in order to prove conjecture 1 it suf- 
fices to  show that every low rank boolean ma- 
trix has a "large" monochromatic submatrix. 
In fact, the proof of the theorem implies that 
it suffices to show that every rank r boolean 
matrix has a "large" submatrix of rank at 
most, say, 0.99~. 

Theorem 3 For every M, l/disc(M) = 
0 ( r k ( ~ ) ' / ~ ) .  

Note that Theorem 3 implies Conjecture 3. 
The bound in this theorem is nearly tight: 
for every r there are infinitely many matrices 
M of rank r and l/disc(M) > r. This can 
be easily seen by taking any square array of 
r x r Hadamard matrices. 

This theorem supplies the first clue that 
low rank has something to do with low com- 
munication complexity, though in a very weak 
sense. The communication model we have 
in mind is distributional communication com- 
plexity, where the inputs are chosen at  ran- 
dom [Y83]. For this model, low rank guar- 
antees a cheap protocol with a nontrivial ad- 
vantage over guessing the function value. In 
the protocol each player sends one bit speci- 
fying whether or not his input is in the biased 
rectangle. Precisely: 

Corollary 1 If rk(M) = r ,  then there is a 
2 bit protocol P ,  which satisfies Pr[P(x, y) = 
M(x, y)] > 112 + f2(l/r3I2), where the input 
(a;, y) is chosen uniformly at random. 

2 Proof of Theorem 1 

We will require the following definition. 

Defininition: Let / : {O, l}" -+ {O, I} be 
a boolean function. We say that f is fully 
sensitive at 0 if f(6) = 0 and yet for any 
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vector x of hamming weight 1 (i.e. for any 
unit vector), f ( x )  = 1. 

The degree of f , deg( f )  is defined to be the 
degree of the unique multivariate multi-linear 
polynomial over the reals which agrees with 
f on {O, I}". 

In [NS92] it is shown that any boolean func- 
tion which is fully sensitive at 6 must have 
degree of at least v/n/2. They also give an 
example of a fully sensitive function with de- 
gree significantly less than n. 

Lemma 1 [NS92] There exists an (explicitly 
given) boolean function f : {O, I}" -+ {O, l} 
which is fully sensitive at 6 and deg( f )  = no, 
for a = log3 2 = 0.6 3... . Furthermore, f has 
at most 2O("Â¡ monomials. 

For completeness we repeat the construc- 
tion of [NS92] . 

Proof: Let E(z17 ,752, a) be the symmetric 
boolean function giving 1 iff exactly 1 or 2 
of its inputs are 1. It is easy to check that 
E is fully sensitive at 6. One may also read- 
ily verify that deg(E) = 2 as E(z l ,  2 2 ,  z3) = 
zl + z2 + 23 - 251.22 - ~ 1 . ~ 3  - z m .  We now 
recursively define a function Ek on 3^ in- 
put bits by: E O ( z )  = z ,  and E k ( - )  = 
E(Ek- l  (a), Ek-l (-), Ek-l (e)), where each in- 
stance of Ekvl is on a different set of 3""l 
input bits. It is easy to prove by induc- 
tion that (1)  Ek  is fully sensitive at 6, (2) 
deg(Ek) = 2', and (3)  Ek  has at most 62k-1 
monomials. Our desired f is the function Ek  
on n = 3^ variables1. 

We now transform f into a matrix as fol- 
lows. 

lRecently, [Ku94] has improved upon this con- 
struction by exhibiting a function E' on 6 variables 
which is folly sensitive at 0 and with degree only 3. 
Using the same recursion, this reduces a to logg 3 = 
0.61 ... 

Definition: With every boolean function f : 

{O, -+ { O ,  l} we associate a 2" x 2" matrix 
M f  as follows: 

The properties of M f  are ensured by the 
following lemmas. 

Lemma 2 If f is fully sensitive at 0 then 
c ( M f )  = f^(n). The same lower bound holds 
for the randomized and for the nondetermin- 
istic complexity of Mr.  

Lemma 3 Let f be a polynomial with m 
monomials, then rk{Mt) < m. In  particu- 
lar, i f  d = deg( f )  then r k ( M f )  < gso (3 = 

log 4. 

Proof (of lemma 2): This proof is a direct 
reduction from the known lower bounds for 
the randomized communication complexity 
of disjointness. These bounds actually show 
that it is even hard to distinguish between the 
case where the sets are disjoint and the case 
where the intersection size is 1. 

Let the U D I S J  problem be the following: 
the two players are each given a subset of 
{ I .  . . n} .  If the sets are disjoint they must 
accept. If the sets intersect at exactly 1 point 
then they must reject. If the size of the inter- 
section is greater than 1 then the players are 
allowed to either accept or reject. 

Theorem ([KS87], see also [Raz9O]): 
Any communication complexity protocol for 
U D I S  J requires a(n) bits of communication. 
The same is true for non-deterministic and for 
randomized protocols. 

Now notice that if f is fully sensitive at 
0 then any protocol for M f  directly solves 
U D I S J .  This is done by transforming each 
set to its characteristic vector. If the sets are 
disjoint then for each i ,  x^yi = 0,  and thus 
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Mf (3, y) = f(6) = 0. If the intersection 
size is exactly 1 then in exactly 1 position 
x a  = 1, and thus Mf(Z,y) = 1. 

Proof (of lemma 3): Let f(z\ .  . . zn) = 

Ss as rites G be the representation of f as 
a real polynomial. By the definition of Mf it 
follows that Mf = Es q M s ,  where the mar 
trix Ms is defined by Ms(Z, y) = nies xi yi. 
But clearly for each S, rk(Ms) = 1. It follows 
that the rank of Mf is bounded from above by 
the number of non-zero monomials of f .  The 
bound in terms of the degree follows directly. 

The combination of lemmas 2 and 3 with 
the function Ek constructed in lemma 1 gives 
the statement of the theorem. 

3 Proof of Theorem 2 

Assume conjecture 2, i.e. assume that ev- 
ery 0 , l  matrix M has a monochromatic sub- 

iven a matrix of size M 1 /exp(logk rk(M)). G' 
0 , l  matrix M we will design a communication 

Â 

protocol for M. 
Let A be the largest monochromatic sub- 

matrix of M. Then A induces in a natu- 
ral way a partition of M into 4 submatri- 
ces A, B, C, D, with B sharing the rows of 
A and C sharing the columns of A. Clearly 
rk{B) +rk(C) < rk(M) + 1. Assume w.1.o.g. 
that rk(B) < rk(C), then the submatrix 
(AIB) has rank at  most 2 + rk(M)/2. 

In our protocol the row player sends a bit 
saying if his input belongs to the rows of A 
or not. The players then continue recursively 
with a protocol for the submatrix (A1 B), or 
for the submatrix (C\ D), according to the bit 
communicated. 

Denote by L(m, r) the number of leaves of 
this protocol, starting with a matrix of area 
at most m and rank at most r .  By the proto- 
col presented we get a recurrence L(m, r )  5 
L(m, 2 + r/2) + L(m(1 - a), r), where a is 

the fraction of rows in A. By the assump- 
tion, a > (exp(logk r))-'. Note that (as- 
suming the players ignore identical rows and 
columns) that m 9, and that L(m, 1) = 1. 
It is standard to see that the solution to the 
recurrence satisfies L(m, r) < exp(1ogk+' r).  

We have so far obtained a protocol for 
M with exp(1ogk+'rk(M)) leaves; it is 
well known that this implies also c (M)  < 
0(1ogk+' r k ( ~ ) ) .  

Remark: Note that the same proof, yield- 
ing essentially the same bound, would go 
through even if instead of a large monochro- 
matic (rank 1) submatrix we were promised a 
large submatrix of rank r/4, say. The idea is 
that for the decomposition A, B, C, D in the 
proof we have in general rk(B) + rk(C) < 
rk(M) + rk(A). We used it above for a 
monochromatic A, so &(A) < 1. Now we 
have rk(A) < r/4, and using rk(B) < rk(C) 
we get rk(B) < (rk(M) + rk(A))/2 < 5 ~ 1 8 .  
Thus rk(A\B) < rk(A) + rk(B) < 7r/8. 
The recurrence relation changes to L(m, r )  < 
L(m,7r/8) + L(m(1 - a) , r ) ,  which has the 
same asymptotic behavior. 

The expression r/4 may be raplaced by ar 
for any a < 1 by repeatedly taking a large 
submatrix of low rank of the current subma- 
trix. After constant number of times the rank 
is reduced to r/4. Again, this does not change 
the asymptotics of the recurrence. 

4 Proof of Theorem 3 

Let us consider - 1, +1 matrices rather than 
0 , l  matrices; this obviously changes the rank 
by at most 1, and does not change the discrep- 
ancy. The advantage is that the discrepancy 
of a submatrix N of M has a simple form: 
8 ( N )  is the sum of entries of N, divided by 
the area of M. 

We will use the following notation. Let x = 
(xi) 6 Rn and A = (aq) be an n x n real 
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212 

matrix. Then: 

1x11 = (Ey=l x:)lI2, the La norm of x. 

lxlloo = maxAxil,  the Loo norm of x. 

IIAII = maxlla;ll=l~ /Ax1 I ,  the spectral 
norm of A. It is well known that 
also IIAII = ma~llsll=l,llyll=l lxTAy I ;  and 

IIAII - - max{^/\ 
A is an eigenvalue of AT A}. 

W(A)  = a?,)li2, the Euclidean 
norm of A. 

tr(A) = El a,,, the trace of A. 

Overview of Proof: It is best to smnmer- 
ize the proof backwards. We are given a 411 
matrix A of low rank and wish to find in it a 
submatrix of high discrepancy. This is done 
in lemma 6 and is clearly equivalent to find- 
ing 0 , l  vectors x and y such that xTAy is 
large. As an intermediate step we shall, in 
lemma 5, find real vectors u and v, having 
low Loo-norm, with uTAv large. Towards this 
we shall need real vectors w and z having low 
La-norm, with wTAz large. This is equivalent 
to proving lower bounds on IIAII, which we do 
in lemma 4. 

Lemma 4 For every real matrix A, 

Proof: Let r = rfc(A). Let us compute the 
trace of ATA. On one hand, direct calculation 
by definition shows that tr(ATA) = W(A)2. 
On the other hand tr(ATA) = Y,&, where 
the sum is over all eigenvalues A, of ATA. 
Since ATA has only r non-zero eigenvalues, 
and since all eigenvalues of ATA are posi- 
tive, the largest eigenvalue, \i, is bounded 
by < \i 5 W(A)2.  The lemma follows 
since IIAII = 6. 

Lemma 5 Let A be an n x n Â± matrix of 
rank r. Then there exist vectors u, v, \ \u\ loo < 
1, llvlloo < 1, such that vTAv 2: &. 

Proof: Denote r = rk(A). Let x and y be 
vectors such that 1 1 ~ ~ 1  = 1, llyll = 1, and 

xTAy = IIAII. Let I = {i : ]xi[ > JSrJn} 
and J = { j  : \ y j [  > i/8r/n}. Notice that 
111 < n/(8r), and 1 J l  5 n/(8r). 

Let ii be the vector that agrees with x out- 
side of I and is 0 for indices in I, and let V 
be the vector that agrees with y outside of J 
and is 0 for indices in J. 

We shall compute a lower bound on iiTAV. 
Consider the matrix B defined to agree with 
A on all entries i, j such that i E I or j E J, 
and to be 0 elsewhere. Using this notation it 
is clear that 

A lower bound for xTAy = [IAIl is obtained .. .. 
using the lower bound in lemma 4, and as 
W(A)  = n, xTAy > n/^/r. An upper bound 
for xTBy is given by the upper bound in the 
last lemma xT By < \ B 11 < W (B)  . Since B 
has at most n/(8r) non-zero rows and n/(8r) 
non-zero columns, W ( B )  < n/(2i/r). It fol- 
lows that UTAV 2: n/(2^/r). 

Now define u = Jn/{Sr)ii and v = 

V / n / o V .  By definition 1 [vl loo < 1 and 
1 lul loo < 1. The lemma follows since uTAv = 
n/ (8r) iiT AV. 0 

Lemma 6 Let A be an n x n matrix, and 
u,v vectors such that ~ ~ u I ~ o o  5 1, I[v~loo < 1. 
Then there exists a submatrix B of A with 
6(B) > uTAv/(4n2). 

Proof: Let z = Av. Clearly, EGR- uizi > 
$Av/2, where K is either the coordinates 
where both ui and zi are positive or the coor- 
dinates in which both are negative. Assume 
the first case (otherwise replace below v t 
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-v). Then setting x = ̂ K (the characteris- 
tic vector of K ) ,  we have (using Ilul loo <: 1) , 
xTAv > uTAv/2. Repeating this argument 
with z = xTA, we can replace v with a 0 , l  
vector y obtaining xTAy > uTAv/4. Now 
take B to be the submatrix defined by the 1's 
in x and y. Since B is a A1 matrix, the bilin- 
ear form divided by re2 gives its discrepancy. 
0 

Combining lemmas 5 and 6, every 411 ma- 
trix A of rank r, contains a submatrix B with 
@) 2 &. Thus disc(M) 2 Ã‘y. and 
theorem 3 follows. 
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