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Preface

These “proceedings” contain slides, overviews and papers on which the con-
ference talks were based.

The conference was a byproduct of a longer meeting for a relatively small
number of researchers in complexity theory, hosted by BRICS, which took
place in Aarhus during the months of August and September, 1994.

On Friday, August 12, two preconference lectures were given, aimed at those
who were not complexity theory experts, and introducing the listener to areas,
methods and concepts of the field.

During the actual conference (August 15-18) there were two main talks each
day followed by a session with talks on more specific subjects.

We would like to thank Shmuel Safra, Hebrew University, Jerusalem, who took
the initiative to the meeting and with whom we co-organized the meeting. Fi-
nally we would like to thank Karen Kjeer Mgller for extra- ordinary engagement
in organizing the meeting and the conference.

Sven Skyum



Complexity theory - Present and Future

Preconference Lectures

Friday, August 12

10.15-12.00

14.15-15.15

Noam Nisan, The Hebrew University, Jerusalem, Israel
Communication Complexity: an Introduction

Abstract:

Yao’s model of two-party communication complexity aims to
capture, in the simplest way, a situation where communication
plays a role. We will define the model and then concentrate
on how to analyse complexity in this model. We will present
basic techniques for lower bounds and will study the power
of nondeterminism and of randomization. We will also give
applications to Turing machines and to circuits.

The talk will be of a tutorial nature; it will require no prior knowl-
edge, but will assume a mathematically-oriented audience.

Avi Wigderson, The Hebrew University, Jerusalem, Israel

The wonders of the digital envelope - a crash course in modern
cryptography

Abstract:

The “One-way function” (or “digital envelope) was suggested
15 years ago as means for solving the most basic cryptographic
tasks - secret communication. Since then it was gradually discov-
ered that this simple device is in fact universal, and can be used
to solve essentially ANY cryptographic task with given secrecy
and fault-tolerant constraints. In this talk I will try to survey the
key ideas that led to this understanding, including (naturally) a
“zero-knowledge proof” demonstration.
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Complexity Theory - Present and Future

Program

Monday, August 15

10.30
10.35-12.00

12.00-13.30
13.30-15.00

15.00-15.30
15.30-

Opening

Allan Borodin, Toronto University
Trade offs between time and space

Lunch

Adi Shamir, Weizmann Institute, Rehovot
Open problems in cryptocomplexity

Coffee

Dexter Kozen, Cornell University, Ithaca
Efficient average-case algorithms for the modular group

Tuesday, August 16

10.30-12.00

12.00-13.30
13.30-15.00

15.00-15.30
15.30-

Noam Nisan, The Hebrew University, Jerusalem
Direct sums, products, and help bits in circuits and decision trees

Lunch

Alexander Razborov, Steklov Institute, Moscow
Independence results in bounded arithmetic and natural proofs

Coffee

Russell Impagliazzo, Univ. of California at San Diego
Hard core distributions for somewhat hard functions

Amnon Ta-Shma, The Hebrew University, Jerusalem
Symmetric Log-space is closed under complement
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Wednesday, August 17

10.30-12.00

12.00-13.30
13.30-15.00

15.00-15.30
15.30-

Peter Bro Miltersen, BRICS
On cell probe complexity

Lunch

Michael Ben-Or, The Hebrew University, Jerusalem
On algebraic complexity theory

Coffee

Christoph Meinel, University of Trier
Modular communication complexity of UCON

Seren Riis, BRICS
Complexity of counting principles

Thursday, August 18

10.30-12.00

12.00-13.30
13.30-15.00

15.00-15.30
15.30-

Mark Jerrum, University of Edinburgh
Approximation via semidefinite programming relaxations

Lunch

Avi Wigderson, The Hebrew University, Jerusalem
On rank and communication complexity

Coffee
Discussions
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Lecturer: Noam Nisan

Title: Communication Complexity:
an Introduction

Material: Slides

Institute of Computer Science
Hebrew University
Jerusalem, Israel

E-mail: noam@CS.HUJI.AC.IL
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Avi Wigderson:

Wonders of the Digital Envelope

Slides

Institute of Computer Science
Hebrew University
Jerusalem, Israel

E-mail: avi@CS.HUJI.AC.IL

13



14




Lecturer: Avi Wigderson

Title: The Wonders of the Digital Envelope
- a crash course in modern cryptography

Material: Slides

Institute of Computer Science
Hebrew University
Jerusalem, Israel

E-mail: avi@CS.HUJI.AC.IL
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Lecturer: Adi Shamir

Title: Open Problems in Cryptocomplexity

No material, since blackboard was used.

Weizmann Institute of Science
Rehovot, Israel
E-mail: shamir@wisdom.weizmann.ac.il
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Efficient Average-Case Algorithms
for the Modular Group*

Jin-Y1 Cai
SUNY Buffalo
cai@cs.buffalo.edu

Dexter Kozen
Cornell University
kozen@cs.cornell.edu

Abstract

The modular group occupies a central position in
many branches of mathematical sciences. In this paper
we give average polynomial-time algorithms for the un-
bounded and bounded membership problems for finitely
generated subgroups of the modular group. The latter
result affirms a conjecture of Gurevich [5].

1 Introduction
1.1 The Modular Group

The modular group T is a remarkable mathematical
object. It has several equivalent characterizations:

(1) SL2(Z)/+ I, the quotient of the group SLy(Z) of
2 x 2 integer matrices with determinant 1 modulo
its central subgroup {£I};

(ii) the group of complex fractional linear transfor-
mations
az+b
cz+d

with integer coefficients satisfying ad — be = 1;

(iii) the free product of cyclic groups of order 2 and 3;
i.e., the group presented by generators R, S and
relations R?2 = S3 = 1;

(iv) the group of automorphisms of a certain regular
tesselation of the hyperbolic plane (Figure 1);

*Proc. 35th IEEE Symp. Foundations of Computer Science,
Nov. 1994, to appear.

Wolfgang H. Fuchs
Cornell University

fuchs@math.cornell.edu

Zicheng Liu
Princeton University
z1@cs.princeton.edu

I J=@ J=m J=m J=w

Figure 1: A tesselation of the hyperbolic plane!

(v) the group of sense-preserving automorphisms of
the undirected cubic plane tree (Figure 2).

The modular group is intimately connected with
the theory of elliptic curves, modular functions and
modular forms, hyperbolic geometry, and number the-
ory [1].

For instance, it is known that elliptic curves can
be uniformly parametrized by the Weierstrass g func-
tion. This function is invariant under the action of a
group of transformations of the plane isomorphic to
Z x Z. This action gives rise to a discrete Euclidean
tesselation of the plane. In contrast, a hyperbolic uni-
formization is a uniform parametrization of the ellip-
tic curve by functions that are invariant under the

1Reproduced from Klein (1879) [9].



Figure 2: The undirected cubic plane tree

modular group I’ or some subgroup of it. Here the
so-called congruence subgroups of I' play a dominant
role. The Taniyama-Weil conjecture states that all
elliptic curves with rational coeflicients admit such a
uniformization by functions invariant under some con-
gruence subgroup of I'. It is known that a counterex-
ample to Fermat’s Last Theorem would invalidate this
conjecture. While some difficulties remain, it appears
that Andrew Wiles has made a significant advance to-
wards resolving this conjecture.

The modular group is also deeply connected with
many algorithmic issues. For instance, the ordinary
Euclidean integer ged algorithm can be understood in
terms of a basis reduction algorithm on 2 x 2 integer
matrices, where the reducing operations are elements
of the modular group in the form (i) above. This con-
nection allows us to apply a result of Yao and Knuth
[17] concerning the integer ged algorithm in our anal-
ysis.

Some algorithms of Schénhage [14, 15] can be best
understood in light of the modular group.

A recent paper by Yap [18] is concerned with the
modular group and its connection with lattice basis
reduction algorithms. The basis reduction algorithms
of Lenstra, Lenstra and Lovész [10] have had consid-
erable impact on algorithm design and analysis, rang-
ing from integer programming to polynomial factor-
ization.

Finally, we note that the modular group has found
applications in computational learning theory [3].

1.2 Subgroup Membership

In this paper we consider four natural decision
problems for the modular group I':

The Unbounded Subgroup Membership Prob-
lem Given a finite subset § C T and an element

z € T, is © contained in the subgroup of I' generated
by 87
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The Bounded Subgroup Membership Problem
Given a finite subset § C T, an element £ € I', and
n > 0 in unary, can & be expressed as a product of at

most n elements of § and their inverses (repetitions
allowed)?

The Unbounded Submonoid Membership
Problem Given a finite subset S C T and an el-
ement £ € I', is ¢ contained in the submonoid of T'
generated by 87

The Bounded Submonoid Membership Prob-
lem Given a finite subset § C T, an element z € T,
and n > 0 in unary, can z be expressed as a product
of at most n elements of § (repetitions allowed)?

The only difference between the subgroup and sub-
monoid membership problems is that in the subgroup
membership problems, inverses are allowed. The sub-
group membership problems reduce to the submonoid
membership problems by simply including the inverses
in the set S.

We assume that these problems are presented in the
form (i) of §1.1; that is, as 2 x 2 integer matrices with
entries written in binary.

1.3 Average-Case Complexity

The study of NP-hard problems that are hard on
average was initiated by Levin [11] and generated con-
siderable subsequent interest [2, 6, 5, 8, 16].

Suppose the inputs to an algorithm occur randomly
according to a distribution with the property that the
probability that the input size is n is either zero or
at least n~* for some fixed k. Such a distribution is
called regular. (For definiteness, Gurevich [5] takes
the probability of the event || = n to be proportional
to n~1(logn)~2, but any regular distribution will do.)

A deterministic algorithm runs in polynomial time
on average if there exists an ¢ > 0 such that

€
Z T(—m)Pr(m) < 00,
~ |z

where T'(z) is the running time of the algorithm on
input z. For regular distrubutions, it suffices to show
that there exists an ¢ > 0 such that for all =,

Z T(z)¢ - Pra(z) < nC®)
|zi=n

where Pr,(z) denotes the conditional probability that
z occurs given that the size of the input instance is n

[6, 5].
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Gurevich [5] applied this notion to several algebraic
problems. In particular, he showed that certain matrix
decomposition problems involving the modular group
are hard on average.

Gurevich defined the bounded subgroup member-
ship problem stated in §1.2 and conjectured that it
was polynomial time on average.

1.4 Main Results

In this paper we show:

Theorem 1.1 The bounded and unbounded member-
ship problems for finitely generated subgroups and sub-
monoids of the modular group can be solved in polyno-
mial time on average.

This affirms Gurevich’s conjecture.

We do not know whether the subgroup membership
problems are NP-hard. However, the semigroup mem-
bership problems are quite easily shown to be NP-hard

by a straightforward encoding of the subset sum prob-
lem.

1.5 Overview

Our approach is to convert z and every element
in § to the representation (iii) of §1.1 (i.e., words in
{R, S}* reduced modulo the identities R? = 5% = 1),
and work in that representation.

This will be of little use if the representation (iii) is
too long or if it is hard to compute from the represen-
tation (i). It turns out that it is easy to compute, but
may be exponentially long in the worst case. However,
it is short on average.

Our analysis makes use of an intermediate repre-
sentation (2.3), which is similar to (iii), but for which
a polynomial bound on the average length is known.
The lengths of minimal representations in (iii) and
(2.3) are mutually proportional.

Our analysis proceeds in two steps:

(1) In §4, we give deterministic polynomial-time al-
gorithms in representation (iii) for the bounded
and unbounded membership problems. These
algorithms reduce the problems to a certain
automata-theoretic reachability problem.

(it) In §5 we show that the process of converting an
input instance from representation (i) to repre-
sentation (it} and then executing the algorithm
of §4 on the resulting data gives an average-case
polynomial-time algorithm. This part of the ar-

gument relies on an estimate of Yao and Knuth
[17].

The same techniques also handle other related
groups such as SLy(Z) or the congruence subgroups
of I'. We do not treat these cases in this paper.

2 Representations of I'

To understand this work, one must first understand
the relationships among the different representations
(1)—(v) of I described in §1.1. See [1, 13, 12, 4] for
details.

In the representation (i), elements of I' are repre-
sented as 2 x 2 matrices with integer entries. The
group I is generated by the matrices

11 0 -1
r=(o1) »=(1 %)
1 -1
sorne (1)
Any two of these three matrices generate I'.

These matrices correspond to the fractional linear
transformations

(2-1)

T:z—2z+1 R:z»—»—% S:z»—»l——-i— (2.2)

on C, respectively. The matrices (2.1) represent
the transformations (2.2) in homogeneous coordinates,
viewing them as linear transformations on the projec-
tive complex line. This gives the relationship between
the representations (i) and (ii).

Note that R is of order 2 and S is of order 3 (recall
we are working modulo +I). In fact T is the free
product of the cyclic groups generated by R and S.
This gives the relationship with representation (iii).

To see the relationship with (iv), observe that the
transformations (2.2) preserve the upper half plane H.
H can be regarded as a model of hyperbolic geometry,
where geodesic lines are semicircles or lines perpendic-
ular to the real axis. Under the appropriate metric, I'
is a group of isometries of H. The region

1 1
{z€C|—§<§Rz<§, |z] > 1}

is a fundamental region for the action of T', and its
orbit gives a tesselation of H. This region corresponds
to the union of the two uppermost central regions, one
shaded and one not, shown in Figure 1. Several works
by M. C. Escher are based on this universe.

To understand the connection to (v), we observe
that the infinite undirected cubic plane tree shown in
Figure 2 is embedded in Figure 1 by considering the



segment of the circle of radius 1 centered at 0 from
e2™/3 to ¢™/3 ag a directed edge E, then taking the
orbit of this edge under the action of the group. Every
element of I is uniquely identified with a directed edge
produced in this way.

With this identification, observe that R reverses the
direction of E, T corresponds to a left turn out of E,
and S = TR rotates about the vertex at the head of
E. In any product X; --- X, € {T,R,S}* applied in
order from right to left, the destination of E can be
calculated by reading the string X, -- - X, from left to
right and interpreting T" as “turn left”, R as “reverse
direction”, and S as “rotate clockwise about the ver-
tex before you”. We can also define U = ST (“turn
right”).

The group I has the following presentation in terms
of T (turn left), U (turn right), and R (reverse):

TRU = URT = R
TRT = U URU = T (2.3)
R? =1

The equations (2.3) can be applied as term rewrit-
ing rules to reduce any string in {R,T,U}* to nor-
mal form (R + €)(T + U)*(R + €). Every element
of I' can be expressed uniquely as a product of this
form, and the length of any expression of this form
is within two of minimal among all expressions in
{R,T,U,R~!, T7,U~'}* denoting the same group
element. This is a consequence of the fact that short-
est paths in the graph of Figure 2 are unique. A sim-
ilar statement holds for the presentation (iii); in this
case, normal forms are strings in {R, S}* with no oc-
currence of two consecutive R’s or three consecutive
S’s.

The presentations (2.3) and (iii) are interderivable
using the facts T'= SR, U = SSR, S = TR. More-
over, these relations show that for any group element,
the lengths of the minimal representations in {R, S}*
and {R,T,U}* differ by at most a factor of three.

In terms of representation (i), the left and right

turns are
_ 1 1 ({10
r=(s1) v=(i 1)

respectively. Note that elementary row and column
operations on 2 x 2 matrices (adding a row or column
to the other) are effected by multiplying on the left
or right by T or U. In this interpretation, the signifi-
cance of the normal form (R+¢€)(T'+U)*(R+e¢) is that
for any matrix, we can multiply by R on the left or
right if necessary to make all entries nonnegative, and
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then there is a unique sequence of column operations
to bring the matrix to I while keeping entries non-
negative. The same is true for row operations. This
gives us an effective method for converting between
the representations (i) and (2.3).

2.1 Integer GCD

The matrices T' and U have the following signifi-
cance regarding integer ged. Let s(m,n) be the num-
ber of steps in the following subtractive Euclidean al-
gorithm for finding the ged of m and n: replace the
larger number by the difference of the two numbers
until both are equal. Note that s(m,n) is one less
than the sum of all partial quotients in the contin-
ued fraction representation of m/n, 1 < m < n. For
example,

T 1
16 2+ 5;}_—
and s(7,16) =(2+3+2)—-1=6.

The matrices T and U correspond to the basic op-
erations of the subtractive gcd algorithm in the sense
that if m and n are relatively prime and appear in the
top row of a matrix A € T, then T~ and U~! applied
on the right hand side effect the column operations
corresponding to the steps of the subtractive gecd al-
gorithm. It follows that the length of the unique ex-
pression in {7, U}* equivalent to A is exactly s(m,n).

3 Length of Representations

Gurevich showed that the size of any element A € T'
in representation (2.3) is polynomial in the size of 4 in
representation (i) on average [5, Lemma 4.2]. Our ob-
servation that minimal-length representations in (2.3)
and (iii) are mutually proportional implies that the
size of A in representation (iii) is also polynomial in
the size of A in representation (i) on average. This
result, together with the polynomial time algorithm
of the next section, do not immediately imply an av-
erage polynomial-time complexity of the membership
problems, since the number of input matrices is not
fixed.

Gurevich’s argument is based on the following esti-
mate of Yao and Knuth:

Lemma 3.1 {Yao and Knuth [17])

Z s(m, n)

m<n

6
= Fn(log n)? + O(nlogn(loglogn)?) .
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It follows immediately that for fixed n, the aver-
age value of s(m,n), where m is chosen uniformly at
random among all positive integers less than and rel-
atively prime to n, is at most

n(logn)?

o e(n)

) < O((logn)’loglogn) , (3.4)

where ¢(n) is the Euler totient function. The in-
equality (3.4) follows from the estimate @(n) =
Q(n/loglogn) [7, Theorem 328].

Except for I, T, and U, if A € I has nonnegative en-
tries and maximum entry n, and if m is the other entry
in the same row as n, then 1 < m < n, (m,n) = 1, and
the rest of A is uniquely determined by the constraint
on the determinant of A. Since there are four ways
to choose the position of the maximal entry n in A,
such matrices are in four-to-one correspondence with
the pairs m,n such that 1 < m < n and (m,n) = 1.
It follows that the length of the unique expression in
{T,U}* corresponding to A € T is also polynomial on
average.

4 Deterministic Algorithms

In this section we give deterministic polynomial-
time algorithms for the unbounded and bounded mem-
bership problems when the input is given in represen-
tation (iii) of §1.1, i.e. in terms of generators R, S and
relations R? = S3 = 1.

Consider the term rewriting system over strings in
{R, S}* consisting of reduction rules R? — ¢, $3 — ¢.
We write £ — y if the string « reduces to the string y in
zero or more steps. A string is said to be reduced or in
normal form if no reduction rule applies. This system
has nonoverlapping redexes (the rederes are R? and
$3), thus it follows from term rewriting theory that
normal forms are unique, and z = y iff £ and y have
a common normal form.

Suppose now we are given a set § of reduced strings
in {R, S}*, a reduced string = € {R, S}*, and (for the
bounded membership problem) an integer n in unary.
Let S* denote the submonoid of {R,S}* generated
by §. The unbounded membership problem is to de-
termine whether there exists a string y € S* such that
y — x. For the bounded membership problem, we re-
quire in addition that y € 8™ for some m < n. We
will give an algorithm that runs in time polynomial in
n and the sum of the lengths of £ and the elements of
S.

Note that this formulation of the problem asks for
membership of z in a finitely generated submonoid of

I'. If we wish to determine membership in a finitely
generated subgroup, we can simply include the in-
verses of elements of S.

In a fixed reduction sequence z — y, we say that
an occurrence of a letter a in y comes from an occur-
rence of ¢ in z if £ = uav and y = zaw, where the
mentioned occurrences of a in £ and y are as shown,
and the appropriately chosen subsequences of the re-
duction sequence give © — z and v — w. For a fixed
reduction sequence z — y, every letter of y comes from
a unique letter of z. The remaining letters of £ must
eventually become part of a redex and disappear.

For any set H of strings, we denote by H/= the
set of strings =-equivalent to some string in H. Thus
8* /= denotes the set of strings representing elements
of the submonoid of T’ generated by §. This notation is
slightly nonstandard but convenient for our purposes.
Our task is to find an efficient membership test for
8*/ = for the unbounded membership problem and
U< S™ /= for the bounded membership problem.

4.1 An Automata-Theoretic Characteri-
zation

Let M be the finite automaton with states

@ = {u|uis a suffix of some z € S},

start and final state € (the null string), and transitions

a
oy — U,

a€{R,S},

u—v, uwlvesS*=.

We will show below that for any reduced z, = €
S* /= iff z is accepted by M. Note that M has linearly
many states and the ¢ edges are transitive. Once we
construct the automaton for a given set of generators
S, we can test membership in $*/= of any string
efficiently by reducing to normal form and then testing
whether the resulting string is accepted by M. This
will give us an efficient algorithm for the unbounded
membership problem.

For the bounded membership problem, we will need
a slightly stronger formulation. Define

A(z) = {n|zeS"/=}
for any string z. Note z € $*/=iff A(z) # 0. Label
each e-transition u — v in M with the nonempty set
A(u~1v). Let + denote setwise addition:

X+Y = {m+n|meX, neY}.



For any computation path o : 4 — v in the automa-
ton M, let A(c) denote the sum of the sets labeling
the e-transitions along the path o. More formally,
A(o) = {0}, if oisof length 0
Al - (au > u)) = A(o)
Alo-(u—v)) = A(o)+ A(u~v) .
Theorem 4.1 For any reduced £ and n > 0, z €

8™ [= if and only if there is an accepting computation
path o : € = € with n € A(0). In other words, for

any reduced z,
U 4@ .

x
Tt €

A(z) =

Proof. («) We show by induction on the length of
that if & : ¢ > v and n € A(0) then zu € S*/=. The
result follows by taking u = €. If & is of length zero,
then A(c) = {0} and z = e € §°. If 0 = 7-(au ~ u),
then z = ya, 7 : ¢ —> au, and n € A(1) = A(o).
By the induction hypothesis, zu = (ya)u = y(au) €
S"/=. Finally, if ¢ = 7- (v — u) where 7 : € ~ v,
then n = k + m for some k € A(7) and m € A(v~1u).
Then v—'u € 8™ /=, and by the induction hypothesis,
zv € 8% /=. Thus zu = zvv~lu € S*/=.

(=) If z € 8%/=, then z = ¢ since z is reduced.
In this case take ¢ to be the null path ¢ ==+ ¢ and
we are done. Otherwise, we show by induction that if
re 8" !, st € S, and rs — y where y is reduced, then
there is a computation path o : € - t with n € A(0).
The result then follows by taking ¢ = e.

For n = 1, we have r = ¢. Then y = s since s is
reduced, and there is a computation path 7 : € — st
of length one with 1 € A(r) = A(st). Combining this
with |s| transitions of the form au —— u, we obtain a
computation path o : ¢ — ¢t with 1 € A(0).

Now suppose n > 2. If s = ¢, we have y = r €
8"~2S and t € S. Then 1 € A(t) and by the induction
hypothesis, we have a computation path 7 : € —— ¢
with n—1 € A(7). Combining this with the transition
€ —t, we obtain a path o : ¢ <+t with n € A(c).

If s # ¢ and the last symbol of y comes from the
last symbol of s in the reduction rs — y, then s = ua,
Yy = va, and ru — v for some u,v. By the induction
hypothesis, we have a computation path 7 : ¢ — at
with n € A(r). Combining this with the transition
at —~ t, we obtain a computation path o
with n € A(0).

Finally, if the last symbol of y does not come from
the last symbol of s, then the last symbol of y cannot
come from any symbol of s, since s is reduced. Thus

y
te — 1
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we can write r = upqu where u € 8¥, v € 8™, pg € S,
the last symbol of y comes from the last symbol of p,
and qus = e. Then up = upqus = rs = y. Since y
is reduced, up — y. By the induction hypothesis, we
have a computation path 7 : e - g with k+1 € A(T).
Moreover, since qus = ¢, we have ¢~ 1t = vst € S™H1,
thus m+1 € A(g~'t). Combining r with the transition
q — t, we obtain a computation path o : ¢ — ¢ with
n=k+m+2€ Ao). a

Corollary 4.2 For any reduced z, z € S*/= if and
only if M accepis x.

4.2 Construction of M

We have reduced the problem of determining mem-
bership in §*/= of arbitrary strings z to the prob-
lem of determining membership in §*/= of u~lv for
u,v € . We now give an eflicient algorithm for this
problem.

Let N be the set of normal forms of strings u~'v
for u,v € Q. Note § C N and N is finite. Let B(z),
z € N, be the smallest family of sets closed under the
following rules:

(i) 0 € B(e)
(ii) 1€ B(x),z €8
(iii) B(z) + B(y) C B(z), where z = zy.

If z is not reduced but £ — y € N, we define B(z) =
B(y).

We show below that A(z) = B(z) for z € N. This
gives a simple inductive method for determining the e-
transitions of M: mark ¢ and all z € S as required by
rules (i) and (ii), then mark z € N whenever z,y € N
are marked and £y — z. Then u —— v iff the normal
form of u~!v is marked.

Lemma 4.3 Ifu e Q,pg € S, r € 8", and urp = ¢,
then n+ 1 € B(u~1q).

Proof. If n = 0, then u~!q = pq, and the conclusion
follows from rule (ii).

If n > 1 and u = ¢, then we can write r = vs with
v€ES, s €8 and vsp — €. Then 1 € B(u~lv),
and by the induction hypothesis, n € B(v~1q), there-
fore n + 1 € B(u~'q) by rule (iii).

Similarly, if p = ¢, then we can write » = sv with
s€ 8" vesS, and usv — €. Then 1 € B(elv),
and by the induction hypothesis, n € B(u~!¢), there-
fore n + 1 € B(u~1q) by rule (iii).
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Assume now that n > 1 and both » and p are non-
null. The proof proceeds by induction on the length
of the reduction sequence urp — e.

If urp can be expressed as the concatenation of two
nonnull strings, each of which reduces to €, then the
first of these cannot be a substring of u and the second
cannot be a substring of p, since u and p are reduced.
Thus we can write r = stzy wheretzr € S,s € S*,y €
S™, m+k+1=n, ust = zyq = €. By the induction
hypothesis, k + 1 € B(u~'z) and m + 1 € B(z~1q).
By rule (iii), n+1=m+k +2 € B(u"1q).

If urp has no such decomposition, then in the re-
duction urp — ¢, if the last reduction rule applied is
RR -+ ¢, the first R must come from the leftmost sym-
bol of © and the second must come from the rightmost
symbol of p, otherwise we would have a decomposi-
tion as in the previous case. Thus u = Rz, p = yR,
and zry — ¢. By the induction hypothesis, we have
n+1€ B(z"1Rq) = B(u~1g).

If the last reduction rule applied is SSS — ¢, then
again the first S must come from the leftmost sym-
bol of u and the third must come from the rightmost
symbol of p.

If the second S comes from u, then we have u =
SSz and p = yS, where zry — €. By the induction
hypothesis we have n + 1 € B(z~1S¢q) = B(u"1q).

If the second S comes from p, then we have u =
Sz and p = ySS, where zry — ¢. By the induction
hypothesis we have n + 1 € B(z~15Sq) = B(u~1q).

Finally, if the second S comes from r, then we have
u = Sz, r = yzSws, and p = tS, where 25w € S,
y € 8%, s € ™, and zyz = wst = €. By the induction
hypothesis we have k + 1 € B(z"1Sw) and m+ 1 €
B(w~1Sq), therefore by rule (iii) we have n + 1 =
m+k+2€ B(z~155¢) = B(u™1q). ]
Theorem 4.4 A(z) = B(z) forx € N.

Proof. We argue first that the sets A(z) satisfy all
the rules (i)-(iii) for z € N, thus B(z) C A(z). The
rule (i) just says € € 8%, (ii) just says that z € S* for
¢ € 8, and (iii) says that if z in 8™ and y € 8", then
ry € S™N.

For the reverse inclusion, we show by induction on
n that for all u,v € Q, if n € A(u~'v) then n €
B(u~v). If n = 0, then u™!v = ¢, and 0 € B(u"'v)
by rule (i). fn=1,thenu v =z € 8,and 1 €
B(u~1v) by rule (ii).

Assume now that n > 2. Let u=lv = r € §™.
ur = v, and since v is reduced, we have ur — v.

We proceed by induction on the length of v. If
v = ¢, then writing r = st with s € " ! and t € S,
we have ust — ¢, so n € B(u~1v) by Lemma 4.3.

Then

Suppose now that v is nonnull. If the first letter of
v comes from u in the reduction ur — v, then it must
come from the first letter of u, since u is reduced.
Thus v = ay, v = aw, and yr — w. By the induction
hypothesis, n € B(y~1w) = B(u~lv).

If the first letter of v comes from r, then we can
write r = styz where s € 8%, z € 8™, ty € S, and the
first letter of v comes from the first letter of y. Then
ust — € and yz — v. By Lemma 4.3, k+1 € B(u~ly),
and by the induction hypothesis, m € B(y~1v). By
rule (iii), n =m+k + 1 € B(u!v).

4.3 TUnbounded Membership

Once we have constructed the automaton M for a
given set of generators S, we can solve the unbounded
membership problem for a given string efficiently by
reducing to normal form and then testing whether the
resulting string is accepted by M. Corollary 4.2 as-
serts the correctness of this procedure.

4.4 Bounded Membership

One approach to solving the bounded membership
problem is to observe that the closure rules (i)-(iii)
are essentially equivalent to the following context-free
grammar over a single-letter alphabet {a} and nonter-
minals A;, z € N:

A — ¢
Ay — a, z€8
A, — AAy, zy=2z.

Then for z € N, A() is the set of lengths of strings in
{a}* generated from the nonterminal A;. By Parikh’s
Theorem, this is a regular set, and we can deter-
mine membership in A(«z) efficiently using known al-
gorithms for context-free language recognition.

However, for the purpose of deciding whether there
exists an accepting computation path o : ¢ <= € with
m € A(o) and m < n, we do not need to know the
entire set A(u~1v) but only its smallest element. In-
deed, if A(u~!v) is nonempty but its smallest element
is greater than n, then we might as well delete the
edge u — v, since it cannot contribute to such an
accepting computation path.

Let r be the number of relations = yz that hold
among elements of N. Here is an O(nr) algorithm
for determining all the minimum elements of A(z) for
z € N. For each z € N we have an integer variable
m, that holds a current estimate of min A(z). We ini-
tialize m, to n+ 1, which we regard as oo. We assume
that for each £ € N we have a list L, of all relations



z = zy or z = yx that hold among the elements of N
with = on the right hand side. The combined length
of all the lists L, is at most 2r.

Now min A(¢) = 0 and minA(z) = 1 for z € S, so
we set m := 0 and m, := 1 for z € § and put € and all
z € S in a bag for further processing. We then repeat
the following procedure until the bag becomes empty.
Take the next x out of the bag and scan through the
list L,. For each relation z = zy or z = yz on the
list, check whether m; > m; + my. If so, set m, =
mg + my and put z in the bag.

Each z taken out of the bag takes O(|L;|) time to
process, and a particular z can enter the bag at most n
times, since m, is decremented each time. This gives
O(nr) in all.

Once we have computed the minimum element of
A(u~1v) for each pair u,v € @, we can weight the e-
transition u — v with this quantity and weight the
other transitions au —— u zero. Then to compute the
minimum element of A(z) for a given reduced z, we
can use a variant of Dijkstra’s shortest path algorithm
to find a minimum-weight computation path ¢ —— ¢
and check that its weight is at most n. The correctness
of this method is given by Theorem 4.1. This solves
the bounded membership problem.

5 Average Case Algorithms

In this section we prove Theorem 1.1, which states
that the bounded and unbounded subgroup and sub-
monoid membership problems are polynomial-time on
average.

For a positive integer m, we take the size of m to
be logm, the base 2 logarithm of m. For a sequence
7 of positive integers, we take the size of 7, denoted
l|m|], to be the sum of the sizes of its components.

An instance of the unbounded subgroup or sub-
monoid membership problem of §1.2 is a sequence S
of 2 x 2 integer matrices with determinant one and
entries written in binary. An instance of the bounded
subgroup or submonoid membership problem is a pair
(S,n) where S is as above and n is a positive inte-
ger. For our analysis, we will measure the size of
such instances as follows. For a matrix with entries
a,b,c,d, we take u(A) = max{|al,|b|,]c|,|d|}, where
|a| denotes the absolute value of a. Let u(S) be the
sequence (u(A) | A € §). We define the size of
an instance § of the unbounded membership prob-
lem to be ||S|| = ||u(S)||, and the size of an in-
stance (8, n) of the bounded membership problem to
be [I(S, m)lI = IS]| + .
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Let o(S) denote the sum of the lengths of the R, S
representations of the matrices in 8§, as described in
§2.

Lemma 5.1 Let @ = (mq,...,my). Ford > 1, the
quantity Yr_ (logm;)? is mazimized subject to the
constraints 1 < m;, 1 < i < k, and Hle m; = n
at the extremes m; = n and m; =1, j # i.

Proof. Taking a; = logm;/logn, the problem is
equivalent to maximizing ZLI af subject to the con-
straints 0 < a;, 1 <7 < k, and Zfﬂ a; = 1. This
occurs at the extremes, since the function is convex
and symmetric. a

Proof of Theorem 1.1. We treat the unbounded
membership problems first. As remarked in §1.3, we
need only show that there exists an ¢ > 0 such that

Y T(S) -Pro(8§) = n%W,  (55)
ISll=n

where T'(S) is the running time of the algorithm on in-
put S and Pr,(S) denotes the conditional probability
that S occurs given that the size of the input instance
is n.

By results of §4, we have T(S) = o(S)° for some
constant c. Since all instances of size n are equally
likely, PrnS = |{S | ||S|| = n}|~! for S of size =,
where | X | denotes the cardinality of the set X. Taking
e =1/c¢, (5.5) becomes

Z"S":n a(S)
HS LISl = n}|
We now establish (5.6). For £ = (£y,...,£) and
m = (my,...,mk), £ < M meansthat £ <my, 1 <i <
k, and (¢,7) = 1 means that £; and m; are relatively
prime, 1 < i < k. The numerator of (5.6) is

Yo =Y Y Y w67
I51=n = e wbrm

= nf (5.6)

and for 7 € N¥,

> a(S)

u(S)=m
k
< 12k Zs(l;,m‘)
ZS-"T i=1
€,m =1
k
= O(n Es(&-,m;)) . (5.8)
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The coefficient 12k reflects the number of ways of
choosing the positions of the largest elements of the
matrices in § and the factor bounding the lengths of
the R,S and R,T,U representations as discussed in
§2. The vectors £ represent the possible entries in the
same row as the largest entry of each matrixin §. As
discussed in §2.1, once that row is given, the rest of
the matrix is uniquely determined, and the length of
the R,T,U representation of the i*" matrix in S is
s(€;, my;).

Changing the order of summation in (5.8), we have

k
Z Z s(&;,m;)
i=1 Zsm

(f,m) =1

k k
ST emin >

i=1 j=1 4; < my
i#d (l.',m.')=1

= O(Z m;(log my)? H p(m;)) (5.9)

i=1
j#i

= 0((H p(m;)) }: )(log m;:)*)

5(£:, mi))

= 0((H so(m;))Z(log m)°) -

i=1

Step (5.9) uses Lemma 3.1 and step (5.10) uses the
estimate ¢(m) > Q(m/loglogm) {7, Theorem 328].
Thus (5.7) is bounded by

O(n Z > (H p(m;)) Z(log m;)?)

k=1 ;7 e Nk j=1
Imll=n

< o'y 3 Tetm)).

k=1 ¢ N* §=1
Il =n

The inequality (5.11) follows from Lemma 5.1.
The denominator of (5.6) is

{8 111811 = n}]
=2 2 2!

k=1 77 ¢ N* u(S)=T7

(5.10)

(5.11)

Imll=n
n
=Y 3 Z 4k
k=1 7 ¢ N* <m

W™l = n g m) =1

(5.12)

n k
> Q(Z I_I p(m;)) -

Dividing the upper bound (5.11) for the numerator of
(5.6) by the lower bound (5.12) for the denominator of
(5.6), we obtain the polynomial bound O(n*) for the
quotient.

Thus the condition (5.5) is fulfilled, and the algo-
rithm is polynomial time on average.

For the bounded membership problems, as above
we need to show for each n that

Z||S||+m=n U(S) +m
(S, m) | [|S]] +m=n}|
But the left hand side is bounded by
2siign 7(S) + Lysjcn
1{5 LISl < »}
Z z"su—m "(3)
HIEEN

which by (5.6) is polynomial in n. O

= nOW)
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Products and Help Bits in Decision Trees

Noam Nisan *

Abstract

We investigate two problems concerning the complex-
ity of evaluating a function f at a k-tuple of unrelated
inputs by k parallel decision tree algorithms.

In the product problem, for some fixed depth bound
d, we seek to maximize the fraction of input k-tuples
for which all k decision trees are correct. Assume that
for a single input to f, the best decision tree algorithm
of depth d is correct on a fraction p of inputs. We
prove that the maximum fraction of k-tuples on which
k depth d algorithms are all correct is at most o*,
which is the trivial lower bound. We show that if we
replace the depth d restriction by “expected depth d”,
then this result fails.

In the help-bit problem, we are permitted to ask
k — 1 arbitrary binary questions about the k-tuple of
inputs. For each possible k — 1-tuple of answers to
these queries we will have a k-tuple of decision trees
which are supposed to correctly compute all functions
on k-tuples that are consistent with the particular an-
swers. The complexity here is the maximum depth
of any of the trees in the algorithm. We show that
for all k sufficiently large, this complexity is equal to
deg®(f) which is the minimum degree of a multivariate
polynomial whose sign is equal to f.

Finally, we give a brief discussion of these problems
in the context of other complexity models.
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1 Introduction

Pick your favorite computation model and complex-
ity measure, e.g. boolean circuit size, communica-
tion complexity, decision tree depth, interactive proof
length, tensor rank, etc. Any attempt to understand
such a model and complexity measure requires under-
standing the ways that an “unreasonable” computa-
tion can be more efficient than a “reasonable” one.
Of course, what is “reasonable” changes as our under-
standing of the model improves.

Suppose we are given several unrelated instances of
a problem to solve. The “reasonable” approach is to
solve each instance separately; intuitively, any com-
putation that is useful for solving one instance is ir-
relevant to any of the others. To what extent is this
intuition valid in a given model? The following ques-
tion is the most common way of formalizing this.
The Direct-sum problem: Suppose that the com-
plexity of computing some function f is ¢. Is it true
that computing f twice, on two unrelated inputs re-
quires complexity 2¢? How about computing f on k
unrelated inputs?

This question was first studied in the context of
Boolean circuits [Ulig, Paul, GF]. Subsequent work
has concerned bilinear circuits [J, Bsh], Boolean cir-
cuits [FKN], and communication complexity [KRW].
In this paper we consider two related problems of a
similar flavor:

The Product Problem: Let f be a function and
suppose that for any complexity ¢ computation, the
fraction of inputs on which it correctly computes f
is at most p. Suppose that we have two independent
computations, each taking as input an ordered pair a, b
of inputs to f, where the first computation is trying
to compute f(a) and the second is trying to compute
f(b). If each of the two computations has complexity
at most ¢, can the fraction of input pairs a,b on which
both are correct exceed p?? What about the analo-
gous question for k independent computations and k
inputs?

If the first computation only uses the input e and



the second only uses the input b, then the p? upper
bound is trivial. Intuition suggests that there is no
advantage in having each computation access the oth-
ers input. A variant of this problem, in which we seek
to compute f on the two inputs by a single computa-~
tion was studied recently in [IRW].

The Help-bit Problem: Suppose that the complex-
ity of computing the boolean function f is ¢. Suppose
that one wishes to compute f on two inputs a and b,
and is allowed for free one “help-bit”, i.e. an arbitrary
function of the two inputs. Is it possible to choose
this help-bit function so that, given the help-bit, f(a)
and f(b) can each be computed by a computation of
complexity less than ¢, and if so, by how much? How
about computing f on k inputs with k — 1 help bits?

The help-bit problem was introduced (to our knowl-
edge) in the context of constant depth circuits in [Cai],
and was also studied in the context of boolean circuits
in [ABG]. The point here is that if we have k inputs,
then with &k help bits we can use them to obtain the
value of f on each of the inputs, and no further com-
putation is necessary. With only k — 1 help bits, we
can for instance obtain the value of f at k — 1 inputs,
but then we still need complexity ¢ to compute f on
the last input. Is there a more effective use of the help
bits?

In this paper we consider these problems in the con-
text of the boolean decision tree complexity — perhaps
the simplest computational model. The cost of a com-
putation (decision tree) is simply the number of input
variables that are read (the depth of the decision tree);
a more precise definition is given in Section 2. While
it is an easy exercise to see that “direct-sum” holds
for decision tree depth, the other two problems are
more difficult. Our answer for the product problem is
a qualified “Yes”:

Theorem 1 Let f be an n-variable boolean function
and suppose that any depth d decision iree compuies
f correctly on & fraction at most p of the inputs. Let
T1,T3,..., T be decision trees that each access a set of
nk variables corresponding to a k-tuple ay,aq,...,ax
of inputs to f. If each of the T; have depth at most
d, then the fraction of k-tuples a1, as,...,ar on which
each T; correctly outputs f(a;) is at most p*.

The theorem seems completely obvious; however,
the reader might test her intuition on the following
variation. Suppose that, in the above Theorem we
change the complexity measure from “depth” to “av-
erage depth” | i.e, the average over all inputs of the
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depth of the leaf reached by the input. This modi-
fied statement of the Theorem seems similarly obvi-
ous, but, as we will see, it is false.

The recent work of [IRW], which was done inde-
pendently of ours, includes a (substantially different)
proof of a weaker variant of this theorem, namely that
a single depth d tree that tries to compute all k& func-
tions can be correct on at most a p* fraction of the
inputs. Our result shows that even if we use k parallel
decision trees then we can’t do better than this.

For the help bit problem, the answer is more com-
plicated. Nathan Linial [Lin] has shown that the com-
plexity of computing f on two inputs with one help
bit is at least deg(f), the degree of the (unique) multi-
linear real polynomial that is equal to f. Since almost
all boolean functions on n-variables have deg(f) = n,
this says that help bits don’t help for most functions.
This result does not seem to extend to &k > 3. In
fact, for sufficiently large k our results imply that it is
false. We manage to prove a lower bound that holds
for all k, and is always tight when %, the number of
instances to be solved, is sufficiently large. We need
the following definitions. If f is an n-variate boolean
function, we say that the n-variate real polynomial p
sign-represents f if for all inputs a, f(a) = sgn(p(a))
where sgn(z) = 1 if z > 0 and sgn(z) = —1 otherwise
(here we are taking our Boolean set to be {—1,1}).
The sign-degree of f, deg®(f), is the minimum degree
of a polynomial that sign represents f.

Theorem 2 Let f be an n-variate boolean function,
and suppose that the optimal decision tree that com-
putes f has depth d. Then for all k > 1, any solution
to the help bit problem for f for k inputs and k — 1
help bits requires depth at least deg®(f). Furthermore,
for all sufficiently large k, there is a decision tree al-
gorithm with k — 1 help bits whose depth is deg®(f).

In the case that f is equal to the product of n
variables (which corresponds to the parity function
for {0,1}-valued variables), deg®(f) = n and so, the
lower bound implies that help-bits don’t help in this
case. Actually, this function and its negative are the
only functions with deg®*(f) = n. Since the ordinary
decision tree complexity of most boolean functions is
n, this means that for large enough k, the complex-
ity of k instances given k — 1 help bits is less than
the ordinary decision tree complexity for most func-
tions. In particular, if f is the majority function, then
deg®’(f) = 1, and the lower bound is vacuous, while
the upper bound says that for k sufficiently large, it is
possible to ask k—1 binary questions so that, given the
answers, the value of the function on any one of the
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k inputs can be computed by probing just one vari-
able. This remarkable savings is not typical, it was
recently shown [RR] that almost all functions satisfy
deg®(f) > n/20.

In the next section, we review the decision tree
model. In Section 3 we give a general formulation
for the product problem in decision trees, and prove
a generalization (Theorem 3.1) of Theorem 1. In Sec-
tion 4, we discuss the help bits problem and prove
Theorem 2. Most proofs are in the appendices.

While some of the techniques we develop apply only
to the decision tree model, some of them may be ap-
plied to other models as well, and in fact suffice for
obtaining many of the known results in the boolean
circuit model. We sketch these applications in the
last section.

2 Preliminaries

In this section we present some basic definitions and
notation. Most of the notions discussed here are
very familiar, but in some cases our notation is non-
standard.

2.1 Boolean functions

For purposes of this paper it will be convenient to use
B = {~1,1} as our Boolean domain, instead of {0,1}.
If X is a set, a boolean assignment to X is a map
o from X to B. The set of boolean assignments to
X is denoted BX. We refer to the elements of X as
variables. We will consider probability distributions
over the set of assignments. For a specified distribu-
tion D, a random assignment chosen according to D
is denoted by placing a ~ above the identifier, e.g., &.
A boolean function over the variable set X and range
R, or (X, R)-function is a function from B to R. In
this paper, the range R is always equal to B* for some
integer k.

2.2 Decision Trees

All trees in this paper are rooted, ordered, binary
trees. For such a tree T every internal node v has
exactly two children, and the two children are distin-
guished as the (-1)-child and (+1)-child of v. The
depth dp(v) of a node v is, as usual, the number of
edges along the path from v to the root and the depth
dp of T is the maximum depth of any node in T'.
Formally, a decision tree over the variable set X
with range R or (X, R)-decision tree is a triple (T, p, a)

where T is a rooted binary tree, p is a map that asso-
clates to each internal node v a variable z = p, in the
gset X, and a is a map that associates each leaf v to
an element a, of R. The label p, is called the query
associated to v, and node v is said to probe variable
py. We will generally say that T is an (X, R)-decision
tree, keeping the maps p and a implicit. The set of
(X, R)-decision trees over X is denoted 7(X, R), or
simply 7.

Let T be an (X, R)-decision tree. If « is any assign-
ment in BX, the computation of T on «, is the unique
path v°,v1,v2,...,v* from the root of T' to some leaf
v* = lp(a) as follows: start from the root v° and
inductively define define v**! for i > 0 as the a(pyi)-
child of v;. The output of the computation is the label
Qip(a)- Thus T' can be viewed as a boolean function
over X with range R. Trivially, every (X, R)-function
f is computed by some (X, R)-decision tree.

The usual cost function for the computation per-
formed by T on « is the length (number of internal
nodes) of the computation path, denoted C(T, ). The
worst case complexity C(T) is the maximum over o
of C(T,a). C(f), the decision tree depth of f, is the
minimum of C(T) over all decision trees that compute
f. For a distribution D on assignments, the distribu-
tional complexity Cp(T) is the average of C(T, &) with
respect to the distribution D.

For a given (X, R)- function f, and a complexity
bound b (with respect to some complexity measure),
we are interested in how well f can be approximated
by a tree of complexity at most b. The closeness of
approximation is defined with respect to a probability
distribution D on boolean assignments to X. Thus for
each (X, R)-decision tree T, the agreement probability
gp(f;T) of T with f relative to D, is the probabil-
ity that T(&) = f(&), with respect to the random
assignment & chosen according to D. The decision
tree approzimation problem for (f, D,U) where f is an
(X, R)-function, D is a distribution over boolean as-
signments to X, and U is a set of decision trees is to
determine ¢p(f;U), which is defined to be the maxi-
mum agreement probability ¢p(f;T) over all T € U.
Of particular interest is the case that U is the set
T4(X, R) of decision trees of depth at most d.

Finally, a decision forest F over X and ranges
Ry, Ry, ..., Ry is an ordered sequence 11,73,..., Tk,
where T; is an (X, R;)-decision tree. F' computes a
boolean function from BX to R = Ry X Ry X...X Ry.



3 The Product Problem

Let X3, Xs,..., X, be pairwise disjoint sets of vari-
ables, and let Dy, D,,..., Dy be, respectively, dis-
tributions over assignments to X3, Xs,...,X;. Let
X =X1UX3U...UX}. A boolean assignment 8 for
X will be viewed as a k-tuple (81, Ba, ..., ) where
B; is an assignment for X;. Let D denote the distribu-
tion over assignments to X given by Probp(& = g) =
I, Probp,(& = £), i.., the product distribution
D1 XDz X ...%X Dyg.

Now suppose that we have k decision tree approxi-
mation problems
(fl; Dl;ul), (fZ) DZ)HZ); “eey (fk; Dkyuk)) where for
each 7, f; isa (X;, R;)-function, and let ¢; = ¢p,(fi; ;)
be the optimal agreement probability for #; with
fi relative to D;. It will be convenient some-
times to  view f; as a function of the entire vari-
able set X that ignores all variables except those in
X;. We consider the problem of simultaneously ap-
prozimating fi, fs,..., fr by a decision forest F =
(T1,T3,...,Tx) where T; € U;. The simultaneous
agreement probability qp(f1, fa, ..., fr; 11, T, . .., Tk)
for Ty, T5, ..., Ty with fi, f2,..., fr denotes the prob-
ability, for & chosen according to D, that (Ti(&) =
A@E@) A (T3E) = £@) A .. A (Tu(@) = (@),
For Uy,Us, ..., Ur where U; is a family of (X, R;)-
trees, qp(fi,fo,..., fe;Us,Uz,...,U;) denotes the
maximum of ¢p(fi1, f2,.. ., fi;T1, T2, ..., Tk) over all
choices of trees with T; € U;.

Now, since f; only depends on X; and D chooses
the assignments &;, &2, ...ar to X1,Xs,..., X in-
dependently, it would
seem that ¢p(f1, fo, ..., fi; Th, T2, . . ., Tk) should just
be the product of the probabilities ¢p,(f;; 7;). This is
clearly the case if each tree T; only queries variables
in X;. However (as shown by the examples in below),
if T; is allowed to query variables outside of X;, then
this need not be the case. Intuitively, it would seem
that variables outside of X; could not help to approxi-
mate f; and indeed this is trivially true, if we are only
trying to approximate f;. But when we seek to ap-
proximate all of the functions simultaneously, it is no
longer obvious that such “cross-queries” are irrelevant.

Nevertheless, one might expect that for “reason-
able” classes Uy, Uy, ..., U of decision trees, the op-
timal simultaneous agreement probability is attained
by a sequence of trees T1, T3, ..., T, with T; querying
variables only in X;, and is thus equal to the prod-
uct of the individual optimal agreement probabilities.
The main result of this section is to prove this in the
case that for each 7, If; is the set of trees of some fixed
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depth d;.

Theorem 3.1 Let i, fao 0 I and
Dy, Dy,...,Dy,D be as above. Let dy,ds,...,dp be
nonnegative tntegers. Then

k
QD(fI:fZ;' . ':fk;’]:ianzi .. "’Z:ik) = HQDi(fi”‘Tdi)

=1

Note that Theorem 1 is a special case of the above.
Before giving the proof we present two examples to
show that multiplicativity fails for some natural alter-
native choices of the classes Uy,Us,. .., Us.

Example 3.1 Theorem 3.1 fails if we replace the
class Ty, by the class S";’, of trees that are restricted
to query at most d; variables from X; along any path,
but can query variables outside X; for free. Consider
the following irivial example. Let k = 2 and let X; =
{z1}, X2 = {=2}. The distribution D, assigns z; to
1 with probability 1/2, and Dy assigns x4 to 1 with
probability 1/2. The functions f; and f2 are given by
fl(:cl) =z, fz(:l,‘z) = 3. Nowletdy =dy = 0. This
means that we do not allow Ty to look at any variables
tn X1 and we do not allow Ty to look at any variable in
Xs. Clearly gp, (f1,88) = qp,(f2,8%,0) = 1/2. How-
ever, we can achieve simultaneous agreement probabil-
ity better than 1/4. Let T be the tree that queries x4
and outputs zo and T, be the tree that queries ¢, and
outputs z1. Then, the probability that both Ty and f;
agree and Ty and fo agree is just the probability that
z1 and z3 are assigned the same value, which is 1/2.

A somewhat more subtle example is given by:

Example 3.2 For a distribution D over BX, let TP
be the class of trees whose ezpected depth with respect
to D isd, ie., T € 1 tf the average number of vari-
ables queried, with respect to & chosen from D is at
most d. Then the above theorem is false if we replace
T, by ’Z;,?". To see this, let X be a set of four vari-
ables, and f be the parity function on X. Let U be
the uniform distribution over assignments to X and
let d = 3. First we show that the marimum agreement
probability with f attained by a decision tree S of ex-
pected depth at most 3, ts equal to 3/4. Agreement
probability 3/4 is attained by the tree S that queries
a particular variable xz, and if it is 0, then it returns
0, and otherwise it queries the remaining three var:-
ables and returns the parity of them. To see that this
ts best possible, note that if T is any decision tree al-
gorithm, then for each leaf l in T' of depth less than
4, T will agree with f on ezactly half of the inputs
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that reach l. Thus, if p; is the probability that a ran-
dom inpult & ends up at a leaf of depth i, then the
agreement probability qp(f; T) can be bounded above
by ps + 1/2(1 — pa); it suffices to show that py < 1/2.
Now py either equals 0, 1/2 or 1. If p1 > 0 then
ps < 1/2. If py = 0, then the ezpected depth of the
tree is at least 4ps +2(1 — ps) = 2+ 2p4, which means
that pa < 1/2.

Now let Xy, f1,D; and X, fa,Ds be copies of
X, f,U on disjoint variable sets. We show that it
s possible to choose decision trees Ty,T> each of ez-
pected depth at most 3, whose agreement probability
exceeds 9/16 = (3/4)%. Let Ty be the S described
above and let x, denote the variable in X; probed first
by Tyi. Let Ty be the following tree: first probe z1
(in Xi). If it is 0, output 0. If it is one, then read
all four vartables in Xy and output their parity. The
ezpected depth of this tree is 3, since half the paths
have depth one and half the paths have depth five.
Now, let us consider the probability of the event A
that both Ty (&) = fi1(&) end T3(&) = T2(&). Then
Probp(A) = 1/2(Probp(Alz; = 0) + Prob(A|z; =
1). The conditional probability of A given z; = 0 is
1/4. If 21 = 1 then Ty must agree with f1, and T
must agree with fo. Thus the probability of simultane-
ous agreement is 5/8 = 10/16.

What happens in the above example is that the
variable z; acts as a shared random coin that par-
tially coordinates the two computations so that they
are more likely to be simultaneously correct.

Proof of Theorem 3.1 Fix a sequence 11,75,...,T%
of decision trees with T; of depth at most d;. For
I C [k] = {1,2,...,k}, let C(I) denote the event
Nier(T; = fi(zY), i.e., the event that all of the trees
indexed by I evaluate their respective functions cor-
rectly. We seek to prove that Prob[C([k])] is bounded
above by [Ti_, an.(fi, Ta)-

The proof is by induction on k, and for fixed & by
induction on the k-tuple d; +ds +. ..+ di. The result
is vacuous if k = 1.

So assume that k > 2. Consider first the case that
d; = 0 for some ;. We may assume that d;, = 0. Thus,
the k** party must guess the value of f; (&) without
looking at any variables, so T} consists of a single leaf
labeled -1 or 1. Now, by conditioning on the value of
the vector @y, the probability, P* that C([k]) holds
can be written:

P* < Y Probla = 4] x

BEBXk

Prob[T(8) = fr(B)] x
Prob[C([k — 1])|é& = ]

< maxgegx; Prob[C([k — 1])|ax = f] x
> Prob[é; = f]Prob[Ti(8) = fi(8)]
peBr

= maxgepx; Prob[C([k — 1])|ar = f] x
Pl‘Ob[Tk(&) = fk (&))]

< maxgepx, Prob[C([k — 1])|a, = £] x

qu(fk) 0)

Now let ¥ be the assignment of &; that maximizes
the probability in the last expression. For each 7 be-
tween 1 and k — 1, define the tree U; by contract-
ing T; using & = 7. Then we may rewrite the
last term as Prob[(U1(&) = fi(@) A...(Up-1(&) =
fx-1(&))] x ap,.(f, 0).

Each tree U; has depth at most d;, and so we may
bound the first factor by
qD(fl; f27 ceey fk—l;’rdquz; . ~”Z:1k—1) which by the
induction hypothesis equals [[i_; ¢p,(fi, 7). Thus
the desired result follows.

Now we assume that d; > 0 for all 7. Define a
directed graph on {1,2,...,k} with an edge from 7 to
j if the first variable probed by T; is an input to f;.
Since this directed graph has out-degree one, it has a
directed cycle. Let 7 > 1 be the length of the cycle.
Let us rename the set of indices in the cycle by the set
71 = {1,2,...,7} in such a way that for each 7 < j,
the first probe of T; is a variable, denoted z;44, in
Xiy1 and the first probe of Tj is a variable, denoted
zi, in Xl.

The intuition behind the rest of the proof is that
for i € [j], it is possible to replace each tree T; by
trees of the same depth in which the first probe in T; is
z;, without decreasing the probability of simultaneous
agreement.

For b € B, let f° denote the function obtained from
fi by fixing zf = b. Also, let D} be the distribution
on the set X; — x; obtained from D; by conditioning
onzi =b.

Now, for b = (b1,bs,...,b;) € B’ let A(b) denote
the event that (&1(z1) = b)) A...A(&;(x;) = b;). We
can write the probability that all of the T; compute
correctly by conditioning on b as follows:

> Prob[A(b)]Prob[C([k])|A(b)]
beBlil

(1)

‘We seek to upper bound this expression by:
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[ eo:(fi. 7). (2)
i=1

To do this we show:

Claim. For each b € BU], the conditional probability
of C([k]) given A(b) is at most:

j k
(qu)?i(fs'bi7’1:1i))( H QD.-(fi,’Z:i,'))

i=j+1

Assuming the claim for the moment, we can then
substitute into the expression (1) to obtain the follow-
ing bound on the probability that all of the trees are
correct:

k i
(11 0:(:,7a)) 3 ProblA®)([] ape: (£, 7a))
i=j+1 beBi i=1 ®)

The sum can be rewritten as:

i
Z HProbD,.[:c; = bi]que(f?iylfda))’

bij i=1

which is equal to:

H((ProbD;[&(zi) = ‘l]qD;‘(fi_l;nf) +

i=1

ProbD;[&(z:) = lgp:(f}, 7a.))

Now, the i** term in this product corresponds to
the probability of correctly computing f; if we first
probe &; and then, depending on the outcome, use
the optimal depth d; — 1 tree to evaluate the residual
function. Thus, we can upper bound this term by
p(fi, Di,d;). But then, the expression (3) is upper
bounded by the expression (2) as required.

So it suffices to prove the claim. Define f,f'1 (b) to
be the function f}* for ¢ < j and to be f; otherwise.
Similarly, the distribution D,f4 (b) is equal to Df * for
¢ < j and to D; otherwise. Observe that by the mutual
independence of &;, &s, . . ., &g, their joint distribution
given A(b) is the product distribution of Dfi(b) for ¢
between 1 and k.

Let T,-A(b) be the tree obtained from contracting
T; under the assumption that A(b) holds. Then the
conditional probability that T; = f;(z*) for all ¢, given
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A(b) is equal to the probability (with respect to the
product distribution on D{l(b)) that for all ¢, T,.A(b) =

f;‘t (b). Now for each ¢ the depth of I}A(b) has at most
d; —1if7 < j, and is at most d; for ¢ > j, so we
may apply induction to say that the probability with
respect to the product distribution on D? (b) that for

all 7, T,-Mb) = f,-A(b) is at most:

j k
ab A(b
(T 2,y F TN 0, (P T0))
t=1 s i=j+1 *
which is equal to the expression in the claim. This
proves the claim and the Theorem.

Remark. The proof of the Theorem can be extended
to a more general model of decision tree computation.
For this model, in the case of a single function we
are given a function f from an arbitrary domain S to
R, and want to compute f(s) for an unknown input
s € S. We are further given a set @ of admissible
queries, where each query ¢ € @ is a partition of S
into sets (S7,53,...5%). The response to query g is
the index 7 such that s € S{. The nodes of a decision
tree are labeled by queries, and the branches out of
the node correspond to the answers to the query. For
a collection of functions f; on disjoint domains S;, the
formulation of the product problem generalizes to this
model. The statement and proof of the Theorem now
go through assuming: (1) That the any allowed query
depends only on variables from one function and (2)
The distributions D; are independent.

4 Help Bits

In the help bits problem, We have & boolean
functions fi, f2,..., fr over disjoint variable sets
X1,Xg,..., Xk, Given an unknown assignment « to
the variables of the set X = X3 U...U X}, we want
to evaluate fi(a;) for all 7, by a decision forest. We
are allowed to ask, “for free”, an arbitrary set of |
binary questions about the assignment «. The an-
swer to these [ questions is a vector a € B'. For
each such a we will have a decision forest F& =
(TR,T2,...,TR), where we require that F2(«) agrees
with (fi(e), ..., fr(ar)) for every assignment o that
is consistent with a.

Thus, such an algorithm is specified by [ arbitrary
boolean functions hy, ha, . . ., ki (the help bits) on vari-
able set X, together with 2/ decision forests. The com-
plexity of the algorithm is the maximum depth of any
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of the 2'k decision trees in these forests. In general,
the decision tree T2 that computes fi(«;) for o consis-
tent with a is allowed to probe variables outside of X;.
This is conceivably useful, because together with the
help bits, such probes could imply information about
the variables in X;. For instance if one of the help
bit functions is (fi(e;) x a;(z)) where & is a variable
in X;, then by probing the variable x, we can deduce
fi(a;). If T2 only probes variables in X; we say that
it is pure. If each of the 2'k decision trees are pure,
the algorithm is pure.

In this paper, we will restrict attention to the case
that, for some variable set X and boolean function
f over X, each of the X; are copies of X and the
functions f; are copies of f. The help bits problem
HEI(f) is to evaluate k copies of f given ! help bits.
Define C*!(f) to be the complexity of the optimal
algorithm that solves it. We also define the problem
HES (f) to be the same as H*/(f) except that we
require that the algorithm be pure. Define C¥;\.(f) to
be the complexity of the optimal pure algorithm. Qur
goal is to obtain bounds on C¥//(f) and CE/l..(f). The

main result of this section (which is a slight refinement

of Theorem 2), is:

Theorem 4.1 For any boolean function f on n vari-
ables and any positive integer k,

CCparH(f) 2 CHFTN(S) 2 deg* (£).
If k is suffictently large, then

CHE7U(f) = Coazz H(f) = deg* (f).

We first reformulate the problems H*!(f) and
H}f,;’,e(f). Given functions fi, f2,...,fr as above,
and a decision forest F', we say that F covers the
assignment « of X, with respect to fi, fa,..., fx, if
F(a) = (fi(@), f2(@), - - -, fr()). Let %(f,d) be the
minimum number of forests, each consisting of trees
of depth at most d, needed to cover all inputs with re-
spect to f. Let 7, .(f, d) be the corresponding mini-
mum when we restrict to forests that are pure.

Proposition 4.1 Let f be a boolean function and
k,1,d be nonnegative integers. Then:

1. CRI(f) < d if and only if T*(f,d) < 2,
2. Ciho(f) £ dif and only if 73, (f,d) < 2.

In other words, [log, 7*(f, d)] is the minimum I such
that H*' can be solved with trees of depth d, and
[ogy 75,..(f,d)] is the minimum 1 such that HE,,
can be solved with trees of depth d.

Proof. We prove the first assertion; the proof of
the second is completely analogous. If CH/(f) < d,
then the 2 forests given by the algorithm are also a
cover and 7F(f,d) < 2. Now suppose 7%(f,d) < 2.
Then there is a collection of 2' forests that cover all
assignments of X. Index these forest as F? where
z ranges over B'. Order the forests lexicographi-
cally, and define A(z) to be the set of assignments
that are covered by FZ but not covered by FY for
any y < z. Then the sets {A(z) : z € B*} parti-
tion the set of all assignments of X. Now define the
help bit functions ki, hs,...,h; so that for each «,
(hi(@), ha(a), ..., hr(@)) is the unique index z such
that o € A(z). Then these functions together with
{F? :z € B'} solves H*!. |

So we now concentrate on obtaining bounds on
7*(f,d) and T:m.e( f,d). For this we need yet an-
other definition. A randomized (X, R)-decision tree
algorithm is a probability distribution @ over (X, R)-
decision trees. Such an algorithm is said to approzi-
mate f with probability p if for each assignment «, if T
is a random decision tree chosen according to @, then
the probability that T(a) = f() is at least p. We
define p(f,d) to be the maximum p such that there
is a distribution @ over the set of decision trees of
depth at most d that approximates f with probability
p. It is easy to see that p(f,d) > 1/2. and that if
d = C(f), the ordinary decision tree complexity of f,
then p(f,d) = 1. The following result relates r(f,d)
to p(f,d).

Lemma 4.1 For any boolean function f on n vari-
ables and k,d > 0, we have:

nkln2

1
2. aF < 7(f,d) < Tpure(f,d) < [W]

Proof. The middle inequality is trivial. For the last
inequality, we use a standard probabilistic argument
to show that there is family of at most ]'f(-lfa%] pure
forests of depth at most d that cover all of the assign-
ments. Let @ be the distribution over (Y, R)-decision
trees of depth at most d that approximates f with
probability p(f,d). For ¢ < k, let Q; be the cor-
responding distribution over the set of (Xj, R) deci-
sion trees; Q; approximates f; with probability p(f, d).
Consider the distribution P = Q1 X ... X Q_over
forests. Suppose we select t forests Fy, Fy, ..., F} ac-
cording to P. For a given assignment « and j < ¢,
the probability that Fj covers « is at least p(f,d)F.
Thus the probability that none of the forests cover «
is at most (1 —p(f, d))?, and the probability that there



exists an assignment o« that is covered by none of the
forests is at most 27%(1 — p(f, d)¥)t < 27ke—p(f )"t 1f
t = [(nk1n2)/p(f, d)*] then this expression is at most
1, so there is a positive probability that the forest cov-
ers all assignments, and so there must be a collection
of ¢ forests of depth d that cover all assignments.

Now we turn to the lower bound on 7(f,d). For
this, we need the following relationship between p(f, d)
and the agreement probability g5 (f, d) with respect to
a particular distribution D on assignments.

Lemma 4.2 For any (Y, R)-boolean function f and
integer d > 0, there exists a distribution D on assign-
ments to Y such that q5(f, d) = p(f, d).

This is a variant of a fundamental observation of
Yao [Y1], and follows from the min-max theorem for
two person zero sum games.

Let D be the distribution of the lemma. Sup-
pose that Fy, Fy,..., Fy is a family of forests that

cover all assignments o to X. Conside_r the distri-

bution P over all assignments « which is the prod-
uct Dy x Dy x ... X Dk, where Dj; is_the copy of
D on X;. Then, by Theorem 3.1, for any forest R,
the probability that it covers @ is at most p(J, d)k
Then the expected number of assignments covered by
Fy, F,, ..., F;is at most tp(f, d)k. Since Fy, Fs, ..., Fy
covers all assignments, this expectation must be at
least 1,s0¢ > 1/p(f,d)*. |

As an immediate corollary of the above lemma and
proposition 4.1 we get the following bounds on the
complexity of the help bits problem:

Corollary 4.1 For any boolean function f on n vari-
ables and integers k,{,d > 0:

1. If 2" < 1/p(f, d)¥ then C*'(f) > d.
2. If 2 > nk/p(f,d)* then CFyl (f) < d.

Next we need to connect the quantity p(f, d) to the
sign-degree deg®(f).

Proposition 4.2 For
any boolean function f, p(f,d) > 1/2 if and only if
d> deg’(f).

Proof. Let d > deg®(f). Then there is an n-variate
polynomial p(x1, 22, ...,2,) of degree at most d such
that g(a) > 0 if and only if f(a) = 1. By shifting
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the polynomial by a small constant we may assume
that g(«) is never 0. We may assume without loss of
generality that the sum of the absolute values of the
coefficients of g is 1. Consider the following random-
ized decision tree algorithm: choose a monomial of ¢
at random, where the probability a given monomial is
chosen is the absolute value of its coefficient. Probe
the variables of the monomial and output the product
of the values. It is easily seen that for any assignment
«, the probability of correctly evaluating f(a) minus
the probability of incorrectly evaluating f(«) is equal
to Jg(a)] > 0 (here we use that our domainis {—1,1}).
Thus for any « this algorithm correctly evaluates f(a)
with probability exceeding 1/2.

Now suppose p(f,d) > 1/2. There must exist
a randomized decision tree algorithm @ on depth d
trees that evaluates f(a) correctly with probability
exceeding 1/2. Now, it is well known, and easy to
see (by induction on d, looking at the two subtrees
of the root) that if T is a decision tree of depth d
on variables {z1,...,2,} then there is a polynomial
gr(z1, ..., zn) of degree d such that g7(a) = T(«) for
all assignments a. Define the polynomial g(z1,...,z,)
to be the sum of Q(T)(gr — 1/2) where the sum is
over all trees of depth d and Q(T) is the probability
that T is selected under the distribution ¢. Then
g(ai,...,an) = Probg[T(a) = 1] — 1/2. By the
choice of ), this latter term is positive if and only

if f(a) =1. l
Theorem 4.1 now follows easily.

Proof of Theorem 4.1. By Corollary 4.1,
C**-1(f) < deg*(f) would follow from 2%-! >
nk/ p(f,deg’( f))" This holds for all sufficiently large
k since p(f, deg*(f)) > 1/2, by Proposition 4.2.

Also, by Corollary 4.1, to show CEE-1(f) >

pure
deg®(f)—1, it suffices to show 2¥~! < 1/p(f, deg®(f)—
1)¥ for all k, which follows immediately from the fact,
by Proposition 4.2, that p(f,deg*(f) —1)=1/2. |

Remark 1. It is interesting to note that, for k large
enough, it is possible to construct to obtain an opti-
mal algorithm in which all of the decision trees have a
particularly simple form. The randomized algorithm
in the proof of Proposition 4.2 uses only decision trees
that correspond to computing monomials of g. Using
this randomized algorithm in the proof of the upper
bound of lemma 4.1 the decision trees used in the help-
bits algorithm are all of the same form.
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Remark 2. As noted in the introduction, if f is the
majority function the deg®(f) = 1 and so the deci-
sion trees used in the optimal algorithm for H**~1 for
large k all have depth 1. In the case that f is the ma-
Jority function on three variables, Manuel Blum gave
the following constructive protocol to solve H¥*—1,
Enumerate the subsets of [k] having size at least 2k/3.
The number of these sets is 2°* for some ¢ < 1. Fix an
encoding of these sets by ck bits. Now given %k sepa-
rate inputs to the majority-of-3 function, and imagine
the inputs arranged in a k x 3 array. In each row, at
least two of the three entries agree with the majority
value, so there is a column in which at least 2k/3 of
the entries agree with the function value on that col-
umn. For the help bits, we ask for the lowest index of
such a column (requiring 2 bits) and then the set S
of rows for which this column gives the function value
(requiring ck bits.) Armed with this information, the
value of the function on row r is equal to the entry in
that row and the designated column if r € S and is
the negative of the entry otherwise.

Remark 3. In the proof of the lower bound in Lemma
4.1, we used Theorem 3.1 in order to deduce that for
any forest F' of depth at most d, the probability with
respect to a particular distribution P on assignments
F is correct for all k functions is at most p(f,d)*. In
the special case d = deg®(f) — 1, which is the relevant
case for proving that C**~1 > deg®(f) — 1 in Theo-
rem 4.1, there is an alternative argument. We sketch
this argurnent, which has the benefit that it extends to
other models besides decision trees, as will be seen in
the next section. As noted above, for d = deg®(f)—1,
we have p(f,d) = 1/2, and thus for & selected from
D (the distribution of Lemma 4.2) any decision tree
of depth d agrees with f with probability exactly 1/2.
In particular, this can be shown to imply that if we
fix the values of any d variables then either that par-
tial assignment occurs with probability 0 under D, or
that the value of f conditioned on this assignment is
unbiased.

Now, define the random variable ¢; to be 0 if
Ti(@) = fi(a@) and 1 otherwise. We want to show
that the probability that ¢; = 0 for all i is at most
1/2%. In fact, the distribution on (cy,¢a,...,cx) is
uniform on {0,1}*. By the XOR lemma of [Vaz] (see
also [CGHFRS)) a distribution over {0, 1}* is uniform
if for any subset J of [k}, the random variable c; de-
fined to be the XOR of the ¢; for i € J is unbiased. Let
sy be the probability that ¢y = 0. The event ¢y = 0
is the same as the event that T7(&)(= [;c; T:(&))
is equal to f;(&)(= [lics fi(&@)). Now by combining

the decision trees {T;|¢ € J} we can get a single de-
cision tree of depth at most |J|d that computes Tj.
We claim that such a decision tree must agree with f
with probability exactly 1/2, which is enough to finish
the argument. We prove the claim by showing that for
each leaf of the tree Ty that is reached with nonzero
probability, f;(&) conditioned on & reaching the leaf
is unbiased. For each such leaf of the tree, there is
an ¢ € J such that at most d variables of X; appear
on the path. Recall that the value of f; is unbiased
when conditioned on the values of these d variables.
If we further condition the value of fy by the values
of all variables not in X;, then f; is still unbiased and
therefore so is fy.

Remark 4. One implication of Theorem 4.1 is that
for large enough k, the best algorithm for H¥*—1(f)
uses pure trees. It is reasonable to speculate that this
is the case for H*!(f) for all k and I, and this is open.
For the case k = 2, it is interesting to note that for
the case £ = 2 and ! = 1, it is not hard to show
that pure tree algorithm can not do better than C(f),
the ordinary decision tree complexity of f. To see this,
note that the help bit partitions the set of assignments
of X = X3 U X> into two groups A; and A,. It is not
hard to see that either the set of assignments on X;
induced by A; is all of BX1 or the set of assignments
on X5 induced by A, must be all of BX2. In the first
case, then given Aj, a pure tree computation for f on
X is as hard as the problem without the help bits,
and in the second case, then given A;, a pure tree
computation for f on X5 is as hard as the problem
without the help bits.

5 Other Models

Some of the ideas used so far are also relevant to other
models of computation. We can get results for these
models that are similar to but neither as precise or
as strong as what we obtain for decision trees. It is
convenient to describe our results in the following very
general framework. We fix some computational model
for computing a function f on input & € X, and some
class, FEAS, of “feasible” algorithms.

Our results will only hold for classes having cer-
tain closure properties. A class FEAS is closed un-
der k-counting if for any k algorithms in FEAS, any
algorithm that runs all k¥ of these algorithms on the
input and accepts or rejects based on the number of
computations out of k that accept, is also in FEAS.
Examples of such classes are polynomial size circuits,
which are closed under poly-counting, and polylog-bit



communication complexity protocols which are closed
under polylog-counting.

i From such a class we define when a multi-input
algorithm is feasible. An algorithm for computing a
function f on a pair of inputs a1, s € D? is said to
be rectangularly-feasible, in FEAS,, if for every fixed
value of ; the induced algorithm for f isin FEAS,
and for every fixed value of a2 the induced algorithm
for f is in FEAS. Notice that for the two examples
mentioned above (and essentially any model one may
think of), FEAS C FEAS,.. Thus, for example, for
the case of poly-size circuits, the lower bounds given
below for two-input algorithms apply to all poly-size
circuits as well.

5.1 Products

A product theorem in such a setting may be proven us-
ing Yao’s XOR-lemma [Y2], which we observe applies
in this general setting. Let Dy, D, distributions, and
denote py = qp,(f1; FEAS), p2 = qp,(f2; FEAS).

Lemma 5.1 (Yao) Assume that FEAS is closed un-
der k-counting. Then

4D, xD,{f1(e1)® fo(az); FEAS,) < prp2+(1—p1)(1—
p2) + 1/k%D)

;From this one can deduce an “approximate prod-
uct theorem”. :

Theorem 5.1 Assume that FEAS is closed under k-
counting. Then

Dy xD,(f1, f2; FEAS,) < pipa + 1/k%W).

Proof. Fix an algorithm A in FEAS,, and denote by
pyy the probability that it is correct on both inputs,
by pyn the probability that it is incorrect on both, by
py N the probability that it is correct only on the first
input and by pyy the probability that it is correct
only on the second input. Since for every fixed value
of @y the probability that A is correct on f; is at
most py, then by averaging over all «), we have pyy +
PNY < p2. Similarly, pyy + pyny < p1. Finally, Yao’s
xor-lemma implies pyy +pyny < pip2 + (1 — p1)(1 —
p2) + 1/, These inequalities, together with the
fact that pyy +pynN +pny +onn = 1, directly imply
pyy < pip2 + 1/ which proves the lemma. [

5.2 Help Bits

We can use the approximate product theorem to get
help-bit results for randomized algorithms. Given a
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class of “feasible algorithms” FEAS, We say that a
function is randomly feasibly computable, in RFC, if
there exists a probability distribution on algorithmsin
FEAS such that for any input, an algorithm chosen
from this distribution will be be correct on f with
probability of at least 2/3. The constant 2/3 is not
important as the usual “amplification” lemnmas work
in this general case.

Lemma 5.2 [f FEAS is closed under k-counting
then the constant 2/3 can be replaced by 1/2 + 1/k
(or by 27 ) without changing the class RFC.

For the case where FEAS is the class of polyno-
mial size circuits, it is known that randomization does
not increase power, and thus RFC is exactly equal
to the functions computable by deterministic poly-
size circuits. For the case where FEAS is polylog-
bit communication protocols, RF'C is the functions
computable by randomized polylog-bit protocols with
two-sided error.

Let us define what is feasible computation with a
help-bit. Let FEAS be a given class of algorithms.
A 1-help-bit-feasible algorithm, in FEAS!, is a set
of two algorithms Ap, A; in FEAS, and a boolean
function h, whose value on input « is the output of
Ana)- A function is in RFC! if there is a FEAS]
algorithm for computing two copies of f, which on
every pair of inputs is correct on both with probability

- of at least 2/3. We then can prove a randomized help-

10

bit theorem.

Theorem 5.2 If FEAS s closed under O(1)-
counting then RFC! = RFC.

Proof. Assume that f ¢ RFC then, amplifying and
similarly to lemma 4.2, there exists a distribution D
such that ¢p(f; FEAS) < 0.51. Using the approxi-
mate product theorem, any FEAS, algorithm for two
copies of f can be correct on at most 0.51%+o(1) frac-
tion of inputs (under distribution D x D). If follows
that any FEAS? algorithm can be correct with prob-
ability at most twice that, a probability smaller than
2/3 (again probability taken over a pair of inputs cho-
sen from Dx D.) This in turn implies that f ¢ RFC?.
|

For the case of boolean circuits, this was proven in

[ABG].

5.3 The logk Barrier

The “approximate product” theorem and the “ran-
domized help-bit” theorem can be naturally general-
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ized to up to log k functions where the family FEAS is
closed under k-counting. After that, these techniques
break down. It is unknown for example whether a
polynomial size circuit using n help-bits can compute
n+1 copies of function which doesn’t have polynomial
size circuits. One can show that in a black box model,
alternatively, relative to a particular oracle, that the
generalizations are false using w(log k) functions.

Consider the model of polynomial-size circuits each
with access to the same black-box.

Theorem 5.3 There is a black-boz so that there ex-
ists @ Boolean function f which can’t be computed by
a polynomial-sized circuit family, but l(n) = w(logn)
help-bits will allow a polynomial-sized circuit to always
compute the answer to n disjoint copies of f, where n
1s the input size to f.

Proof. 1t is well know that a random f cam’t
be computed by a polynomial-sized circuit. Fix
such an f. A successful circuit would take in-
puts X;i,Xo,...,X; and output the vector V =<
f(X1), f(X2), ..., f(Xx) >. We “hide” V in the black-
box in such a way that a circuit without help-bits can’t
find it, but a circuit with help-bits goes directly to it.
Let n be the size of each X; and choose k = n. For
each input tuple, and output V do the following: Let
s be a random I(n)-bit string. Place V in the loca-
tion indexed by X, X, ..., X,,s. Fort # s, place a
“SORRY” in location X3, Xa, ..., X5, t. By a standard
counting argument, one can show that no polynomial-
sized circuit family (with access to the black box) can
answer correctly on all n-tuples of inputs. However,
given ! help-bits, it is easy to query the oracle at the
location revealing the answer tuple. |}

It is interesting to note that the Yao XOR lemma
fails relative to this black-box in the sense that once we
XOR more than I(n) variables the parity stops getting
harder to compute. In other words, the XOR lemma
has the same logn barrier as above.
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Unprovability of Lower Bounds on Circuit Size in
Certain Fragments of Bounded Arithmetic

Alexander A. Razborov*
School of Mathematics
Institute for Advanced Study
Princeton, NJ 08540
and
Steklov Mathematical Institute
Vavilova 42, 117966, GSP-1
Moscow, RUSSIA
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Abstract

We show that if strong pseudorandom generators exist then the statement “o
encodes a circuit of size n{°8" ™ for SATISFIABILITY” is not refutable in S3(c).
For refutation in $3(«), this is proven under the weaker assumption of the existence of
generators secure against the attack by small depth circuits, and for another system
which is strong enough to prove exponential lower bounds for constant-depth circuits,
this is shown without using any unproven hardness assumptions.

These results can be also viewed as direct corollaries of interpolation-like theorems
for certain “split versions” of classical systems of Bounded Arithmetic introduced in
this paper.

*Supported by the grant # 93-6-6 of the Alfred P. Sloan Foundation and by the grant # 93-011-16015

of the Russian Foundation for Fundamental Research
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1. Introduction

Proving lower bounds on the complexity of explicitly given Boolean functions is one of the
most challenging tasks in the computational complexity. This theory met with a remarkable
success at least twice: in the 60’s (see e.g. [34, 29, 30, 35, 36]) and in more recent time
([11, 1, 26, 12, 31, 32, 27, 2, 24, 28, 33, 21, 4, 15, 17]). Both times, however, the period
of enthusiasm was followed by understanding that it is not quite clear to which extent the
methods developed so far can be useful for attacking central open problems in Boolean
complexity.

A logical analysis of this situation should start with understanding what is the right
“minimal” fragment of ZFC which is really needed for formalizing all these methods, and
this question was raised in [19]. It was argued there that the conceivable answer is the
second order theory of Bounded Arithmetic V!, and no example of a lower bound for
explicit function not provable in V! has been found since that. The next goal is to develop
machinery for understanding whether V! can prove superpolynomial lower bounds on the
size of unrestricted circuits or not.

In this paper we present first partial results in this direction. Namely, we show that the
existence of a pseudorandom generator secure against the attack by circuits of size 2" (for
some fixed € > 0) implies that for any explicit Boolean function f, and any integer-valued
t(n) such that t(n) > n*“() the theory S?(«) can not refute that o encodes a Boolean
circuit of size t(n) for f,. For the theory S}(«) the same statement holds under the weaker
assumption of the existence of a generator secure against n°-depth circuits.

A few remarks concerning these results should be made immediately.

e Following [19], we work in the strongest possible framework in which « includes en-
codings of truth-tables of all Boolean functions appearing in the circuit as intermediate
results.

e We do not require that Bounded Arithmetic would prove t(n) > n“(), we only need
this to be true on integers. Thus, our results are still applicable to e.g. t(n) = nlos" ",

e Since we are mostly interested in the provability in V}!, this is also natural to consider
the hierarchy of its subtheories and wonder whether we can do better for them. The
strongest theory in this hierarchy to which our method applies is IE;(f) (see [25]
for the definition of IE;), and for this theory we indeed can prove a slightly stronger
result. Namely, we may replace ¢(n) by n* for a fized constant ¥ > 0 depending only
on the quality of the generator. This improvement, however, is really marginal, so
we prefer to work all the time in the language L2 containing the smash function #.

2
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Figure 1: The framework for split versions

For proving these results we define the split version S(S2) of Sz as the theory in the
language L2(c,8) which allows induction on arbitrary bounded formulae in Ly(a) and
arbitrary bounded formulae in Ly(3). We consider the pair (o, 3) as an encoding of a
Boolean circuit with the PARITY gate at the top so that « encodes the left-hand side of
the rest, and B encodes the right-hand side (see Figure 1).

S(S3) proves in this framework exponential lower bounds on the size of constant-depth
circuits over the standard basis. We show that on the other hand it can not prove super-
polynomial lower bounds for depth-3 circuits with PARITY gates. We derive the above-
mentioned results about S}(a) and S3(a) as direct consequences of similar statements
concerning §(S2) appended with the corresponding induction schemes.

The proofs consist of several fairly independent pieces. One of essential ingredients is the
characterization of the circuit depth by a communication game [15], and a characterization
of the circuit size in these terms based upon local search problems (Theorem 3.1 of this
paper). These characterizations are non-uniform in their very nature, and this suggests

3
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that our results might be extended to stronger theories allowing more computational power
for both players.

To this end we define the split version S(V3) of the second order theory V; in the same
fashion as §(S3), and extend our three results to this theory (appended with the appropriate
induction scheme for the first two). These extensions follow from general interpolation-
like theorems, and this is a close indication that S(V;) and its extensions ezactly capture
Karchmer-Wigderson game and its analogue for the circuit size. Unfortunately, these
second order versions are somewhat technical. Thus, for the convenience of the reader

interested only in classical fragments of Bounded Arithmetic, we start with the simpler
first order case.

The paper is organized as follows. In Section 2 we recall necessary definitions from
Complexity Theory. In Section 3 we present the new characterization of the circuit size
(Theorem 3.1). In Section 4 we briefly survey results from Bounded Arithmetic needed
for our purposes. In Section 5 we recall the framework from [19] and introduce its split
variant. In Section 6 we present first order versions of our main results, and in Section
7 show that they can be actually derived as corollaries of interpolation-like theorems for

split versions of second order theories. The paper is concluded by some remarks and open
problems in Section 8.

2. Background from Complexity Theory

In this section we recall necessary definitions and facts from Complexity Theory.

2.1. Boolean Complexity

We address the reader to [5] for an excellent treatment of the subject; the sole purpose of
this section is to agree upon notation.

We denote by F), the set of all Boolean functions in n variables z;,...,z,. Let z! = z;
and ¥ = (—z;). Most of the time, it will be convenient to think of f, € F, as of a
binary string of length 2" called the truth-table of f,. We will denote by S(f,) the circuit
size of f, (over the standard basis {A,V,—} with negations appearing only at variables;
all computational nodes must have fan-in 2). D(f,) is the minimal depth needed for
computing f, in the same model. Spon(fn) and Dpon(f,) are, respectively, the monotone
circuit size and the monotone depth of a monotone f,. Sy(f.) is the circuit size with
respect to depth-d (unbounded fan-in) circuits. S$(f,) is the same as Sy(f,), only now we
additionally allow PARITY gates.



SIZE(t(n)) is the complexity class consisting of all functions {f,} for which S(f,) <
O(t(n)); DEPT H(d(n)) has a similar meaning. The notation DEPTH, SIZE(d(n), t(r))
and DEPTH, SIZE®(d(n),t(n)) corresponds to unbounded fan-in circuits with simultane-
ous restrictions d(n) on their depth and O(t(n)) on their size. DEPTH, SIZE(O(1),n°M)
is the (non-uniform) class AC°, DEPTH, SIZE®(O(1),n°M) will be denoted by AC[2],
and DEPTH, SIZE®(d,n°®™) will be denoted by AC®?[2).

All these complexity measures can be in a natural way extended to the case of partial
Boolean functions f, : {0,1}* — {0,1,%} (* stands for “undefined”). E.g. S(f,) for a
partial f, is the minimum of S(f,) taken over all total extensions fn of £, etc.

2.2. Karchmer-Wigderson game

This game was introduced in [15].
Let U,V, I be finite sets, and R C U x V x I be a ternary relation such that

VueUVveV I el ((u,v,i) €R). (D

Assume that we have two players with unlimited computational power. Let player I receive
u € U, and player II receive v € V. Their common task is to find some i € I such that
(v,v,1) € R exchanging messages between each other. The minimal number of bits (taken
over all possible protocols achieving this goal) to be exchanged in the worst case is called
the communication complezity of R and denoted by C(R).

Now, for a (possibly, partial) Boolean function f, in n variables consider the relation
Ry, C £71(0) x f7(1) x [n] given by Ry, = {(u,v,4)|u; # v;}. If f, is monotone (that is,
has at least one total monotone extension in Fy,), define also its monotone analogue REem
by R7" = {(u,v,7) |u; = 0,v; = 1}.

Proposition 2.1 ([15]). a) For every (partial) Boolean function f, C(R;) = D(f),
b) For every (partial) monotone Boolean function f, C(R7") = Dmon(f).

Denote by C4(R) the modification of C(R) in which only d rounds are allowed. The

following is a slightly refined version of the result implicitly contained in [14, Definition
3.5.2]:

Proposition 2.2. For every (partial) Boolean function f and every d > 0,

(Cd(Rt)_
2

d 1) S Sd(f) S 2C¢(R;).
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2.3. Polynomial local search problems

This concept was originally considered in [13]. We reproduce here the variant of the
definition given in [8).

Definition 2.3. A local search problem L consists of a set Fp(z) C N of solutions for

every instance z € N, an integer-valued cost function cr(s, z) and a neighborhood function
Ni(s,z) such that:

a) 0 € Fr(z);
b) for all s € Fi(z), Ni(s,z) € Fr(z);
c) for all s € Fr(z), if Nip(s,z) # s then cr(s,z) < cp(Ni(s, ), z).

A local optimum for the problem L on z is an s such that s € Fr(z) and Ni(s,z) = s.
A local search problem L is polynomial if the binary predicate s € FL(z) and the functions
cr(s,z), Ni(s,z) are polynomially time computable, and also there exists a polynomial
pr(n) such that |s| < pr(|z]) for all s € Fr(z).

Note that the concept of a polynomial local search (PLS) problem can be relativized
in a standard way.

2.4. Natural proofs

This concept was introduced in [20].

Let T and A be complexity classes. Slightly altering the notation from [20], we call a
sequence {Cy, | n € w} of subsets C, C F, a I'-natural combinatorial property useful against
A if it satisfies the following three conditions:

Constructivity: The predicate f, é C,, is computable in I' (note that the bit size of an
input to this problem is 2" which will be denoted further on by N),

Largeness: |C,| > 27°M™ - |F,),

Usefulness: For any sequence of functions f, € Cp, {fo} € A

(our C), corresponds to C;; from [20]). A lower bound proof that some explicit function
is not in A is called I'-natural against A if it leads to a I'-natural combinatorial property
which is useful against A.



For a pseudo-random generator G, : {0,1}" — {0,1}*" define its hardness H(G,) as
the minimal S for which there exists a circuit C of size < .S with the property

[PIC(Ga(@) = 1] - P[Cy) = 1] > 5. (2)

Here @ is taken at random from {0,1}", and y is taken at random from {0, 1}2".

The following is a minor improvement on [20, Theorem 4.1] which is proved in the same
way:

Proposition 2.4. Assume that there exists a SIZE (2(1°3N)O(1)) -natural combinatorial

property which is useful against P[poly (= SIZE(n°W)). Then for every polynomial
time computable Gy : {0,1}* — {0,1}%*, H(G:) < k),

We define depth hardness DH(G,,) of G, as the minimal S for which there exists a

circuit C of depth < log, S such that (2) holds. The following is analogous to Proposition
2.4:

Proposition 2.5. Assume that there exists a DEPTH ((log N )0(1)) -natural combinato-

rial property which is useful against P/poly. Then for every polynomial time computable
Gy : {0,1}F — {0,1}%, DH(Gy) < 28V

Note that the classes SIZE (206™°), DEPTH ((log N)°®) appearing in the above
two propositions are simply non-uniform analogues of quasipolynomial time and POLY-
LOGSPACE, respectively.

Finally, we improve along the same lines upon [20, Theorem 4.3]:

Proposition 2.6. There is no DEPTH,SIZE (O(l),2(1°5N)O(1))~natural combinatorial
property useful against AC®3[2].

3. A new characterization of circuit size

Let U,V, I be finite sets, and R C U x V x I be a ternary relation such that (1) holds. We
will be considering those local search problems whose instances ¢ are (encodings of) pairs
(u,v);ue UveV.

For any such problem L =< Fy,cr, N >, let C(F,c) be the communication com-
plexity of computing simultaneously the predicate s € Fr(u,v) and the function ¢ (s, u, v)
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in the model when the first player gets (s,u), and the second gets (s,v) (thus, s is in the
public domain). C(Ny) is defined similarly. The size of L, by definition, is

U FL(U, v) . 220(FL10L)+C(NL)

uelU
veV

(the meaning of the coefficient 2 in front of C(F,cr) will become clear from the proof of
Theorem 3.1).

We say that R reduces to L if there exists a function p : N — I such that for any
(u,v) € U x V and any local optimum s for L on (u,v), we have (u, v, p(s)) € R. We define
size(R) as

min {size(L) | R reduces to L}.

Theorem 3.1. a) For every partial Boolean function f, size(Ry) = 6(S(f)),

b) For every monotone partial Boolean function f, size(R}") = 0(Smon(f))-

Proof. Since the proofs of the two parts are practically identical, we prove only part a).

Let f be a partial Boolean function in n variables, let ¢ = S(f), and let C be a size-¢
circuit computing f. Denote f7*(0) by U, and f~*(1) by V. We want to reduce Ry to a
local search problem L of size O(t). Disregarding all inessential variables not appearing in
C, we may assume w.l.o.g. that

t>n—1. (3)

We arrange nodes wy, ..., w, of the circuit C' in such a way that a wire can go from w,
to w, only when u < v. Let f, be the function computed at w,. Note for the record that
ft is an extension of f that is fi(u) =0, fi(v)=1foralu € U,v € V.

We construct L as follows. Encode nodes wy, ..., w; by integers ny,...,n; sothat n; = 0
and {1,...,n} N {ny,...,ne} =0. Let
Frlu,v) = {i|1<i<n&u#viU{n|1<v<t& fi(u)=0& f,(v)=1},
cr(t,u,v) = 0forl<i <,
Np(i,u,v) = dforl<e¢<n,
c(ny,u,v) = viorl <v <t

Ni(n,,u,v) is defined as follows. If n, & Fi(u,v),let Np(n,,u,v) = 0. Otherwise, that is
when f,(v) = 0 and f,(v) = 1, we choose one of the two sons of the node w, for which this
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property is preserved. If this son is a computational node w,, we let Np(n,,u,v) = n,; if
this is a leaf 5, we let Np(n,,u,v) = 1.

It is straightforward to check that so defined L is a local search problem, and that Ry
reduces to L. Also, C(FL,CL) < 2 and C(Nr) < 3. Hence size(L) < O(n + t) which is
O(t) due to (3).

For another (non-trivial) direction, assume that R; reduces via a function p to a
local search problem L. Let ho = 2°0Fz<1) and h; = 2°(Vi), Then for every fixed
s € UZE‘J Fp(u,v) we have a communication protocol P, for computing the binary rela-
tion s € Fr(u,v) and the cost function cr(s,u,v) which has at most ho different histories.
These histories define a partition of U x V into rectangles U3 X Vi1;...5Ushy X Vi b
such that Fy,cy, are fully determined on U;; x V,;. That is to say, for some predicates
as; C [ho] and some functions 75, : [hg] — N the following is true for all ¢ € [hg] and for
all (u,v) c Us,i X Vs,i:

s € Fr(u,v)iff i € a4
and
15, ,0) = 1.(0)

We call those rectangles U;; x V; ; for which ¢ € a; good. We call 7,(2) the cost of rectangle
U,; x V,;. We order all good rectangles in such a way that their costs are non-decreasing;:

Ul x VY...;UHe x Vo,

Here Hy < Ingg Fr(u,v)|- ho.

We construct by induction on v < Hy a circuit C, which has the following property.
For every p < v there exists a node w, of €, computing a function f, such that f,|,. =0
and f,|y,. = 1. Assume that we already have C,_,. C, will be obtained from it by adding
at most hohy new nodes for computing a f, with required properties from already available
fla" ')fu—l-

Let U¥ x V¥ = U,; x V,;. Consider the following communication protocol P} of
complexity at most C(Fr,cr) + C(N). First we run the optimal protocol for computing
Ni(s,u,v). Let s' = Ni(s,u,v) be its outcome. Then we run Py.

We introduce Boolean variables y1, . . ., yu for those histories of P} which actually corre-
spond to at least one instance (u,v) € U, ; X V5 ;. For every u € Us; let @ be the assignment
on {0,1}7 defined by letting @y be 0 if there exists v € V;; such that the computation of
P? on (u,v) develops according to the history k, and 1 otherwise. Dually, v, = 1 iff there
exists u € U, ; so that the pair (u, v) leads to the history h. For every pair (u,v) € Us; x V5
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we have % = 0,0, = 1, where h is the history of P} corresponding to this pair. Hence,
the partial Boolean function f,(y1,...,ys) outputting 0 on {@| v € Us; }, outputting 1 on
{9|v € V,;} and undefined elsewhere, is monotone, and, moreover, the protocol P} finds
a solution to R’;}:‘m. Hence, by Proposition 2.1 b), Dpon(f,) < C(FL,cr)+ C(NL), and the

same bound holds for some total monotone extension f, of f,, Note for the record that
this implies Spmon(f,) < hohi-

Consider now a particular history of P*, h. Let (s', 7) be the corresponding output (here
s' is the output of computing Ny, and j is the subhistory corresponding to the subprotocol
Py). By Definition 2.3 b), the rectangle Uy ; x Vi ; is good. By part c) of this definition,
either s’ = s or the cost of Uy ; X Vi ; is strictly less than the cost of Us; x V.

In the first case s is a local optimum for L on every (u,v) € U,; x V;; belonging to
the non-empty rectangle which corresponds to A. Since Ry reduces to L, this means that
Up(s) # Up(s) for every such pair, and this implies that actually uys) = €,vp5) = (—¢) for
some fixed € € {0,1}. Let y}, = :cg?:))

In the second case Uy ; X Vy j = U* x V¥ for some p < v. Let yj, = f,.

Finally, let f, = f, (v,--.,¥%). f, can be computed by appending to C,_; at most
hohi new nodes.

Since for every u € U”, f, (#1,...,4x) = 0, and f, is monotone, in order to check that
Jo(u) =0 for u € U¥, we only have to check that y}(u) < @ for any history k. For doing
this simply note that if @, = 0, then for some v € V¥ the computation on (u,v) proceeds
along h, which, due to our choice of yj,, implies y},(u) = 0. By the dual argument, f,(v) =1
for allv € V*.

This completes the construction of C,.

Now, Cp, has size at most Hyohohy. Also, due to Definition 2.3 a), all rectangles Ug ; X Vo ¢
are good. Thus, applying the same argument as above and adding to Cy, at most ko new

nodes, we finally compute f by a circuit of size O(size(L)). This completes the proof of
Theorem 3.1.m

4. Background from Bounded Arithmetic

We assume the familiarity with [6] and use the now-standard notation for denoting various
hierarchies and fragments of Bounded Arithmetic from that book. We denote by L, Buss’s
first order language which consists of the constant 0, function symbols S, +, -, |3z], ||, z#y
and of the predicate symbol <. BASIC; is the set of 32 open axioms in the language Lo
from [6, §2.2] describing basic properties of its symbols. £* = ;5o Z? is the set of all
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(first-order) bounded formulae of L.

In {19] a convenient technical notion of a regular theory was introduced. The meaning
of this notion is that many proofs in Bounded Arithmetic which do not involve the smash
function # can be generalized to arbitrary regular theories. In this paper we need a stronger
notion which is good also for #-involving proofs.

Definition 4.1. A first order theory R in a language I O Ly is strongly regular if it
possesses the following properties:

a) BASIC,; C R,
b) R can be axiomatized by X3-formulae,

c¢) every function symbol (and hence every term) of the language L can be bounded
from above in the theory R by a term of the language L.

For a strongly regular theory R in a language L we denote by S, the theory R+X2(L)—
PIND, and by T}, the theory R+ Z2(L) — IND. Let also Sg = U= Sk; this is the same
theory as Tr = Uizo Th-

If L = Ly, and R = BASIC, then S} is simply Si, and T}, is T§. Another important
example is L = Ly(y), R = BASIC, (v is a new predicate variable). In this case S% and
T, coincide with ordinary theories Si(y) and Ti(7y). A less trivial example is provided by
L= Lpy, R = “BASIC; + I1%-defining axioms for PV-symbols” (see [6, §6.2]), where PV
is Cook’s equational system [10]. In this case Sk is the theory S3(Lpy) as defined in [6].
One more example of this sort will be given in Section 6.

As we already mentioned, the meaning of this definition is that many (if not all) results
proven for Si, T: relativize to arbitrary strongly regular theories R. For example, the
(weaker form of) the main theorem from [6] in this setting looks like this:

Proposition 4.2. Let R be a strongly regular theory in a language L extending Lo. Sup-
pose Sk Jy A(@,y), where A(@,b) is a T8(L)-formula with all its free variables displayed.
Then there is a polynomial time oracle Turing machine M allowed to ask queries of the
form 7t é P or f(71) =?, where P is a predicate symbol of L\ Ly, and f is a function symbol
of L\ Ly, such that the following holds.

For every model (N, Q) of the theory R ezpanding the standard model of BASICy and
every tuple i € N,

(N,Q) |= A (7, M(7)) .

Here Q is the interpretation of symbols from L\ Lo, and M®(R) is the result of the com-
~ putation of M on 7i when M is fed with the oracle §}. '

11
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We also need the following conservation result from [7]:

Proposition 4.3. For any strongly regular theory R in a language L 2 La, S% is ¥5(L)-
conservative over Th.

Finally, we recall the characterization of £%-defined in T} functions in terms of PLS-
problems [8]. Once again, we present the relativized version.

Proposition 4.4. Let R be a strongly regular theory in a language L O L,. Suppose

TE ¢ Jy A(a,y), where A(a, b) is a B8 (L)-formula with all its free variables displayed. Then
there is an oracle PLS-problem K, where the associated oracle computations of Fx,cx, Nx

are allowed to ask queries of the form #i é P or f(7t) =?; P, f being symbols of L'\ Ly, and
a (polynomial-time computable) function p(s) such that the following holds.

For every model (N, Q) of the theory R expanding the standard model of BASICs, every
z € N, and every local optimum s for K¢ on z,

(N, Q) = A(z, p(s))-

5. Boolean Complexity and Bounded Arithmetic:
split framework

In our formalization of problems studied in Boolean complexity within the framework
provided by Bounded Arithmetic we follow [19, Appendix A]. Namely, let Circuit(t, N, v)
be a X.*(y)-formula asserting that « encodes the protocol of computation by a circuit of size
tin |N| variables. Similarly, for a fixed d > 0, let Circuity(t, N,v) and Circuit®(¢, N,v)
assert that Circuit(¢, N,v) and, moreover, v is a depth-d circuit or depth-d circuit with
PARITY gates, respectively. Let Output(t, N,z,v) be a X°(y)-formula which represents
the output of v (viewed as a circuit of size ¢ in |N| variables) on a Boolean string z.
The exact details of these encodings are unimportant; the only extra property which we
require (and which is shared by all reasonable schemes) is that we can easily combine in
this framework two circuits to compute PARITY of their outputs as shown on Figure 1.
More precisely, we require that there exists a Ab(a, 8) (with respect to Si(«, B)) abstract
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PARITY(t,N,a, ) such that

Si(ey B) b (Clircuit([(t=3)/4], N, @) A Circuit(|(t=3)/4], N, §)) D
(Circuit(t, N, PARITY (t, N, o, B)) A Vz € {0, 1}V
(Output(|(t=3)/4], N, z, o) ® Output(|(t-3)/4],N,z,08) =
Output(t, N,z, PARITY(t, N, a, ﬂ)))).

e (4)

Like in [19], we are mostly interested in the provability of the formula
Circuit(t(N), N,v) D 3z € {0,1}M(Output(t(N), N, z,v) # S(N, z)), (5)

where #(N) is a Z%-definable function such that N f= t(N) > (log N)*®, and S(N,a)
is in X°. (5) asserts that there is no circuit of size t{(N) (remember that N = 2%)
computing the Boolean function {z}S(N,z); we denote this formula by LB(¢,S,7).
LBy(t,S,v) and LBP(¢, S,v) are obtained from LBy(t, S,v) after replacing Circuit(t, N, )
by Circuity(t, N,v) and Circuit (¢, N,v), respectively.

One of the main results of this paper (Corollary 6.5) says that if sufficiently strong
pseudorandom generators exist, then S2(v) I/ LB(t,S,v) for any choice of ¢,S with the
above properties. We can, however, prove a stronger result at the same cost and better
explain the mechanism of the proof if we split our circuit into two pieces as shown on
Figure 1. The corresponding statement, denoted by SLB(t, S, a, ) is

(Circuit(t(N), N, a) A Circuit(t(N), N, 8)) D
3z € {0, 1}M(Output(t(N), N, z,a) ® Output(t(N), N,z,8) # S(N,z)).

SLBy4(t,S,a,B) and SLBY(t, S, a, B) have the obvious meaning.

We are going to allow unlimited reasoning about each of the two halves «, 3 alone. In
this and the next section we do as much as we can within the first order framework, and,
with this restriction, we implement our idea as follows.

Denote by S(L,) the language Ly(a, B) obtained from L, by appending to it two new
unary predicate variables o and B3, and define the split hierarchy SX2, SII? of bounded
formulae in this language similarly to the ordinary hierarchy X2, TI® (see [6, §2.1]) with the
exception of the base case. Namely, ST = STI} is the set of all bounded formula in the
language L2(a) plus the set of all bounded formulae in Ly(8). The inductive definition of
Sxt,,, ST, is the same as for X!, II?,,. Note that ST} is not closed under applying

13
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the connectives A,V or sharply bounded quantifiers although all S%¢, STI? for ¢ > 0 are so
closed.

Our “base” theory S§(S5;) is the theory in the language S(L2) with the set of axioms
BASICy+8%%—IND. Another, more expressive description of $(S2) (which also justifies
the notation) is that it is axiomatized by S2(a) + S2(8).

We conclude this section by showing that S(S;) is already capable of proving some
non-trivial lower bounds.

Theorem 5.1. For every fized d > 2,
8(Ss) F SLBy(t, S, a, B),
where t(N) = 12316‘1\”1/(2‘1”3)_] and S(N,z) =z, ®--- D z|n|.

Proof. Arguing informally in §(S52), let a and 3 be depth-d circuits of size at most ¢(V).
Since Héastad Switching Lemma is available in Sz(«) (see [19, Appendix E.4]), we can find

a restriction p assigning at least 1|V Iz(fi;—13 stars and reducing the output of  to a constant.
p, however, is coded by an integer, thus we can apply in S(S;) the same argument to S|,
and find an extension p’ of p assigning at least two stars and reducing 3 to a constant as
well. Now we take any two adjacent inputs compatible with p’; one of them will satisfy
Output(t(N), N,z, ) @ Output(t(N),N,z,B) # :® - - O z)v|-»

6. Main results: first order versions

Throughout the rest of the paper, t(N) will stand for a X*-definable in S, function such
that N = t(N) > (log N)“(), and S(N, a) will stand for an arbitrary bounded formula.

We start with our base theory S(S;) and show that it can not prove superpolynomial
lower bounds for depth-3 circuits allowing PARITY gates. This, together with Theorem
5.1, provides some formal evidence toward the remark made in [20, Section 3.2] that [33,
21, 4] had to require arguments from a stronger class than those of [11, 26, 12].

Theorem 6.1. For any t(N), S(N,a) with the above properties,
S(SZ) V SLBI?(L S) a, IB)
The next theory of interest to us is S(53) + SL4 — PIND.
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Theorem 6.2. Assume that there exists a polynomial time computable generator Gy, :
{0,1}* — {0,1}%* with DH(G,) > 2¥"". Then for any t(N), S(N,a) as above,

S(S) +SXb — PIND i/ SLB(t, S, a, B).
Corollary 6.3. Under the same assumption as in Theorem 6.2,

S}(a) ¥ LB(t, S, ).

Proof of Corollary 6.3 from Theorem 6.2. Assume the contrary, that is S3(a) F
LB(t,5,a). Substitute in this proof the A%(w,B)-abstract PARITY (¢(N),N,a, ) for
a. Then we will have S}(a,8) F SLB(t,S,a, 3), where ¢/(N) = [({(N)=3)/4]. This
contradicts Theorem 6.2 (applied to ¢ := #') since S}(e, B) is a subtheory of S(S;) +SXb —
PIND.m

Our main result is similar to Theorem 6.2.

Theorem 6.4. Assume that there exists a polynomial time computable generator Gy :
{0,1}F — {0, 1}%* with H(Gy) > 2", Then for any t(N),S(N,a) with the properties
stated in the beginning of this section,

S(S;) + 8%t — PIND i/ SLB(t, S, , 3).
Corollary 6.5. Under the same assumption as in Theorem 6.4,

S%(a) i LB(%, S, o).
Proof is the same as that of Corollary 6.3.m

__We begin proving these results with a straightforward definition of the skolemization
52(7) of the theory Sy(). Firstly, we define the language Lz(fy) as the extension of Ly(7)
obtained by recursively appending to it new function symbols f4 :( b) for every open formula

A(a,b) and term t(B) of the language L;(\'y); all occurrences of free variables in A,t are
explicitly displayed.

Sz( ) is the open theory in the language Lz(’)’) axiomatized by BASIC, and the fol-
lowing defining azioms for fa.:

V7 fai(§) < (@)
Vz,7((z < ty) A Az, 7)) D (A(fas(¥),9) A fae(§) < 2));5
Vi (~A(fas(4),9) D fas(y) =0).

15



08

Thus, the intended meaning of £, () is simply pz < ¢(5)A(=, b). The following summarizes
some easy properties of this theory:

Lemma 6.6. a) For every A € X°(v) there exists A’ € Open (L;(\fy)) such that S;G) -
A= A', and vice versa;

b) S;(\'y) is a strongly reqular open extension of Sa(y) by definitions.

We define the extension S(L,) of S(L) as L;(\a) + L;CB), where we assume, of course,
that all non-logical symbols symbols in Le(«) and L,(3) other than those of L, are pairwise

distinct. Finally, let §(S;) be the theory Sz/(\cv)+5';i\ﬂ) in the language S(L;). The following
properties are inherited from Lemma 6.6:

Lemma 6.7. a) For every A € S} there exists A’ € Open (L;(\a)) U Open (L;CB))
such that S(S3) F A = A’, and vice versa;

b) 8(S,) is a strongly regular open estension of 8(S;) by definitions. Thus, S(S3) is
conservative over S(S2), and every model of S(S2) has an unique eztension to a

model of S(S3).

The following observation provides a crucial link between the theory S(S;) and the
communication game from Section 2.2.

Lemma 6.8. Let s(ai,...,a,,a,B) be a term of the language §(L2) with all its free
variables displayed. Consider the following communication problem: player I receives
n1,y...,0r € N and a language A C N; player II receives the same ny ...,n, and B C N,

and they want to compute s(n, .. n,,A B) in the estension of the model (N, A, B) of
S(S:) to a model of 5(S;). Then there exists a constant d depending only on the term s
and a d-round communication protocol solving this problem whose complexity is polynomial
in [na| + - + |ne-

Proof. Obvious induction on the logical depth of s (every function symbol of the language
S(L3) can be evaluated by one of the two players alone, and results of all intermediate
evaluations are of polynomial length).m

Now we are ready to prove the results stated in the beginning of this section.

Proof of Theorem 6.1.  Assume the contrary, that is S(S;) + SLB(t,S, o, B).
Then also §(S;) F SLBE(t, S, a, ). But the theory 8(S;) is open, and, by Lemma 6.7
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a), the formulae Circuit@(¢(N), N, a),ACircuz'tg’(t(N),N, B), Output(t(N),N,z,a) and
Output(¢(N), N, z, B) are equivalent in S(S;) to open formulae. Thus, by Herbrand’s the-
orem, there exist terms s;(N, o, 8),...,8:(N, @, 8) of the language S(L2) such that

8(S,) F (Circuitg’(t(N),N, a) A Circuit?(t(N), N, ﬂ)) D

V (Si(N, a,B) € {0,111 A

" (Output(s(N), N, (N, @, B), @) ® Output((N), N, si(N, @, ), ) #
S(N, s:(N, o, 8))))-

Let n be an integer, and N = 2" —1. By Lemma 6.8, there exists a communication protocol
in which the first player receives n and a depth-3 size-t(N) circuit C in n variables allowing
PARITY gates, the second player receives n and a circuit Cs of the same kind, and they
produce an input string z such that

Ci(z) ® Cy(x) # S(N, x) (6)
within O(1) rounds and n°") bits exchanged. For doing this they simply compute
sl(N) Cl, CY2)7 RS Sr(Na Cl, CZ)

and find among this list some z satisfying (6).

But this protocol also gives raise to a similar protocol in which the players, instead of
circuits, receive only Boolean functions fi, f» € F, such that S$(f1) <t(N) and SP(f,) <
t(N). In fact, the players, using their unlimited power, simply reconstruct some Ci, C;
computing f; and f,, respectively, and then run the protocol above.

Let us now consider the partial Boolean function F, in 2" variables (we will call it a
functional) which outputs a 1 on f if SP(f) < ¢(N), outputs a 0 if S(f @ s,) < t(N)
(here s,(z) == S(N,z)) and is undefined elsewhere. Then our protocol for every fi, fa
such that F,(fi) = 1 and F.(f;) = 0 finds a position z where fi(z) # fa(z) (note
that the second player should modify his f, to f» @ s, before entering the protocol
from the previous paragraph). Hence, by Proposition 2.2, there exists F, C F, in
DEPTH,SIZE (0(1),208M°) such that F;(1) C Ey and F;*(0) N E, = 0. If
|En| > %Fn then E, @ s, makes a DEPTH,SIZE (0(1),2(1°3N)O(1))-natural combina-
torial property useful against AC®3[2] since (V) > n“() and for every f, € E, @ s, we

have the bound SP(f,) > t(N). Otherwise, F, \ E, is such a property. We have arrived
at a contradiction with Proposition 2.6.m
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Proof of Theorem 6.2. Suppose §(S;) + SX; — PIND + SLB(t,S,, ). By Lemma
6.7 a), the class of SX2-formulae is equivalent in S(S3) to the class of X (§ (Lz)) -formulae.

Denoting 5(S2) by R, we see that 8(S;) + SE2 — PIND is actually equivalent to Sh. In
particular, S} - SLB(t,S,, ). But R is strongly regular by Lemma 6.7 b), hence we
can apply to it Proposition 4.2. We find a polynomial time (in n) oracle Turing machine
M asking queries which depend either only on C; or only on C,; Cy,C; being this time
size-t(IN) circuits, and producing a length n string = with the property (6). But the two
players, one holding (n,C) and another holding (n,C5), can simulate M exchanging only
n®() bits between each other. Now the proof is completed by the same argument as in the
proof of Theorem 6.1 on the base of Propositions 2.1 a) and 2.5.m

Proof of Theorem 6.4. Suppose S(S2) + SX4 — PIND + SLB(t,S,a,B). Let,
once again, R = 8(5,;). Then S(S;) + S¥& — PIND is equivalent to S%, and S3
SLB(t,S,a,pB). By Proposition 4.3, T F SLB(t,S, «, 3). By Proposition 4.4, there is an
oracle PLS-problem K and a function p(s) such that for any two circuits Cy, C; of size at
most ¢(N), and any local optimum s for K°:'°2 on N, p(s) is a binary string z of length
n for which (6) holds.

Now we change our view and consider Cy, C; simply as extra inputs to K rather than as
oracles, and let K, be its subproblem obtained by fixing n to a particular value. Then the
relation Rz, corresponding to JF, (F, is the functional defined as in the proof of Theorem
6.1) reduces to K, if we encode a pair (f1, f2) by (Ci, C2), where C) is a size-t(N) circuit
computing f, and C is a size-t(N) circuit computing fo® s,. Also, size(K,) < 20osN o,
Thus, by Theorem 3.1, F, is computable by circuits of size 208N )°® " and we can apply
Proposition 2.4 to complete the proof.m

7. Interpolation-like theorems in the second order
setting

The proof of Proposition 2.1, as well as of Theorem 3.1 in the non-trivial direction involves
a highly non-constructive step of deciding whether a rectangle is empty (cf. the sentence
“those histories of P} which actually correspond to at least one instance (u,v) € U, ; x V;;”
on page 9). This step seems to be intractable if we want to prove syntactic analogues of
the results from the previous section within the framework provided by first order theories.
In this section we briefly outline how to extend this framework to second order theories,
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and present in this more general setting interpolation-like theorems which actually imply
these results.

Let £, be the second order extension of Ly obtained by augmenting it with second order
variables 71,72, - - - (for simplicity we allow only unary variables). Let S(L;) be the second
order language which has one sort for first order variables and two different sorts for second
order variables. We will be denoting second order variables of the first sort by ay, ay,. ..
(free variables) and ¢y, ¢2, ... (bound variables); second order variables of the second sort
will be denoted by 81, B2, . .., ¥1, P2, ... We fix the notation L5 [[,g] for the sublanguage
of 8(L3) (isomorphic to L) which allows second order variables only of the first sort [of
the second sort, respectively]. For a formula A(vyi,...,7,) of £, with all free second order
variables displayed, we denote by A*(a,...,a,) and AP(B,,..., B,) its isomorphic copies
in £§ and £§ , respectively.

We form the hierarchy S¥* of second order bounded formulae similarly to the ordinary
hierarchy £} (see [6, §9.1]) with the exception that the forming rule “if A is in %1* then
(Vz < t)A is in B is weakened to “if A is in T¥" then (Vz < [t])A is in TP,
and similarly for the dual case. In plain words, we allow sharply bounded first order
quantifiers for free, whereas all other first order quantifiers are counted exactly as second
order quantifiers.

We define the split versions ST’ similarly to §%¢. That is, STV = SI¥ =

(El'b)a U (21'b>ﬁ, and the inductive definition of SE:-‘jrll’b,SH:-”_:ib is the same as for

Z}”,rlib, :f'_:ib (the case (dn)A gets split into two, depending on the sort of the second order

bound variable 7).

Definition 7.1. For a class ® of bounded formulae in £;, we denote by ® — SIM the
following principle:

r

A (Ve(ai(z) = Bi(2))) D (A%(n, ..., 00) = AP(By,..., B,))

=1
where A(v1,...,7) isin @.

Let Cl,; be the class of bounded formulae without free second order variables. Note
that Cly, — SIM is simply A = AP, where A € Cl,. This principle states that isomorphic
internal computations run by the two parties (whatever complex) lead to the same result.

Our base theory, S(V,) in the language S(L,) is, by definition, axiomatized by (V5)* +
(V2)8 +Cly — SIM.

For a class ® of formulae in the language £, we denote by ®* the closure of ® under
the operation of substitutinig Cls-abstracts for second order variables.
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Lemma 7.2. S(V)  (54%)" - SIM.

+ ..
Proof. Let A(m,-.-,%V1y.--,Vs) € (Eé’b) , where A(71, ..oy Yy Yty - -y Trts) 18 in

ot and V4,...,V, are Cly-abstracts. In order to show Almyee sty Vayeo oy, Vo) = SIM,
we apply an obvious induction on the logical complexity of A; Cl; — SIM takes care of
the base case A=(t); r+1<i<r+s.m

Lemma 7.3. §(V3) + SE¥** — PIND F (A{"’(Ug))’“ — SIM, where AY (U} is the set

of formulae which are A}’b with respect to Uy .

Proof. It is an immediate corollary of the main result in [19] that every A(@,7) in
AT (U}) is equivalent to the result of evaluating a Xa’-definable circuit §(d,7) of depth
|@|°M). Thus, we only have to show in S(V3)+SEY"’ — PIND that A; Ve (eu(z) = Bi(x)) D
(6“(&',&, 17) = §°(a, 8, V)) for any circuit § of this kind and any abstracts V in Cl,. This
is done by SH;"I’b — PIND on d applied to the formula “every node of § at the dth level
outputs the same value in §%(@, &, V) and in 6°(a, 8, ‘7)”.-

The following is proved in exactly the same way.

Lemma 7.4. S(Va) + S5 — IND + (AY(VH)" - SIM.

Now we are in position to formulate and prove interpolation-like theorems generalizing
the results of the previous section.

Theorem 7.5. Let A(7), B(7'),C(a,7), D(a,7') be ZYt-formulae, where all occurences of
a and of all free second order variables are explicitly displayed. Then S(V3) proves the
formula

VeV ((A%() A B®(%)) D Fo(C*(, §) # DP(z,1))) (7)
if and only if there exists E(vy) € (E(l)’b>+ such that
V2 FYH(A() D E({=}C (=, 9))) (8)
and
Ve b VH(B(#) > ~E({z}D(x,¥)))- 9)
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Theorem 7.6. Let A, B,C,D have the same meaning as in Theorem 7.5. Then the
formula (7) is provable in S(V3) + SE¥™® — PIND if and only if there exists E(y) €
(Ai’b(U%))-l- with the properties (8), (9).

Theorem 7.7. For the same A, B,C,D, S(V;) + ST¥® _ PIND proves (7) if and only
if there exists E(y) € (A}’b(Vzl))+ satisfying (8), (9).

These theorems, combined with the material from Section 2.4, indeed generalize the re-
sults of the previous section if we notice that E(y) with properties (8), (9) encodes a circuit
from the class needed in each of the three cases separating functions {{z}C(z,a)| A(a) }
from functions {{:L'}D(:c, B)| B (,3)} The output of this circuit corresponds to E, in the
proof of Theorem 6.1, and the Cl,-abstracts provide non-uniformity.

The proofs of Theorems 7.5, 7.6, 7.7 in the easy direction are based on Lemmas 7.2,
7.3, 7.4, respectively. Namely, assume that we have (8), (9) for some E(v) from the class
9 prescribed in each of the three cases. We lift these proofs to (V2)* and (V2)?, and find
that S(Vz) F V¥ ((A%($) A B*(¥)) D (E({2}C(z, §)) # E({z}DP(z,1)))). Now we
only have to apply ® — SIM to the formula E(7).

The proofs in another direction can be viewed as formalized analogues of Propositions
2.2, 2.1 and Theorem 3.1. In the rest of this section we briefly outline those aspects of this
formalization which may appear less obvious.

Firstly, we, similarly to [18J\ treat V; simply as a two-sorted first order theory. This
allows us to define a language L, and the skolemization V; of V, in this language similarly
to Lg(’)’), Sg(")’). Namely, behind function symbols f4: already known to us from the
previous section, we introduce function symbols 84(5,7) and 71'3(3 7) taking values in the
sort for second order variables with the intended meaning HA(b,'y) ,uqﬁA((ﬁ,b ¥) and
7rB(b ¥) = {z}B(z=, b, ¥). Here A('yo,b ¥), B(a, b, ¥) are in Open (Cz), and the operator
p corresponds to the ordering of second order objects vy given by v — P> 27"y(n). The
definition of 84 makes sense in V; since there always exists a term i A(b) such that V; +
Ve < t4(8)(0(z) = 75(%)) 2 (Al7o, 5,7) = Ay, b, 7))- We omit the exact details.

Then we define S S(L2) and 8(V4) analogously to S(L;) and S(Sz). We will be denotmg
terms of S (L) taking values in the second order variables of the first sort by A, As,..
and terms taking values in the second order variables of the second sort by By, Bs, ..

Now, suppose S(V4) proves (7). Then S(V3) also proves this formula. Applying Her—
brand’s theorem (for the three-sorted case) as in the proof of Theorem 6.1, we find witnesses
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s1(a, H), NN A 5) to this fact, and it is easy to see that actually they can be combined
into one term s(&, B) such that

(Vo) - (A%(@) A B?(B)) > (C*(s(&, ), &) # D°(s(a, B), B)). (10)

Next, we make an easy observation that the term s(&, ﬁ) can be represented in an

—

equivalent form s'(.A(&), B(B)), where all occurences of second order variables are explicitly
displayed, and s'(«, 8) is a term of S(L3).

In order to find E(y) € (E(l,’b)+ with the required properties (8), (9), we apply induction
on the logical complexity of s. . .

Base case s’ = a. We have S(V,) + (4%(a,@) A Bf(a,B)) D (C*(a,&) # DP(a,B)).
Applying the sort-erasing interpretation, we find

V; F (A(e,8) A B(a, B)) D (C(a, &) # D(a, B))-
The formula E(a,~) defined by
7(a) = 3¢(A(e, §) A C(a, ) if I¢A(a, ¢) A IPB(a, )
T if 3¢A(a, ) AVY—B(a,?)

L if Yé~A(a, ) A IFB(a, )
arbitrary if V(}—S’—lA(a, $) AY9—-B (a, "L‘)

E(a,y) =

has the required properties. Note that the case analysis in the definition of E(a,v) is

exactly the place where we use the power of our base theory not available in the first order
setting.

———

Inductive step. s'(a, 8) = s"(f*(a), @, 8), where f(7) is a function symbol of Ly(v),
and we are guaranteed the existence of E with the desired properties anytime when (10)

is true for the term s"(a, A(@), B(B)) and any choice of A, B,C, D.
(10) implies

S(Va) F (A%(@) A fo(A@)) = @A B*()) > L
(C(s"(a, A(G), B(B)), &) # D°(s"(a, A(G), B(B)), B)),

and we can use our inductive assumption (with A(a,a) := A(a) A f(A(&)) = a) to find
E'(a,v) € (E(l)’b)+ such that

V2 B (A(@) A f(A(G)) = a) D E'(a, {e}C(z, d))
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and

—

Vs - B(B) > —E'(a,{w}D(x, ).
We simply set E(v) = Jxr <t E'(z,), where t is a term such that V, I f(a) < ¢. This
completes the inductive step and the proof of Theorem 7.5.
Coming to Theorem 7.6, we notice that in the theory & (V) + 8%t — PIND every
STY"formula is equivalent to a £ (§ (£2)) -formula of the form Jz < ¢ (A"‘(:v) A BF (x)) ,

where A(a), B(a) € £'*. Indeed, the class of such formulae is closed under applying second
order quantifiers:

3¢3z <t (A%(4,2) A B*(2)) = 3o <t (3A%(4,2) A BP(z))

and (in the presence of X% (§ (ﬁg)) — PIND) under applying sharply bounded universal
quantifiers':

Vy < |s|dz <t (A"‘(a:,y) A Bﬁ(a:,y)) =
Hw(Seq(w) A Len(w) < |s| + 1 A Size(w) <t AVy < |s| A*((w)y41,9) A
¥y < |s| B((w)ys1,9)).

Thus, S(V2) + STV — PIND is equivalent to S(V3) + £ (§(£2)) — PIND. But it is

straightforward to establish for S(V3) + 2 (3 (,Cz)) — PIND the cut elimination theorem
and extend to it the syntactic version of Proposition 4.2; in fact, this theory more resembles
the first order theory S} for what might be called “a many-sorted strongly regular theory
R, where no quantifiers other than those on first order variables are allowed” than a second
order theory. We skip the details.

The proof of Theorem 7.6 is completed by formalizing the standard proof of Proposition

2.1 in the same fashion as we did above with the proof of Proposition 2.2. We omit exact
and somewhat tedious details.

The same ideas work for the weaker version of Theorem 7.7 in which S E;’l’b — PIND
is replaced by ST — IND: extending the syntactic variant of Proposition 4.4 to this
case and formalizing the proof of Theorem 3.1 is more or less straightforward.

The analogue of Proposition 4.3 is, however, much less straightforward since we in

general can not eliminate second order quantifiers from S E;’l’b—formulae. We circumvent
this as follows.

to avoid collision with another usage of 8, we denote the ith member of a sequence w by (w); rather
than by B(i, w)
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For A(d, a, 3) € ST¥M we introduce a family Wj’a’&’ﬁ of witnessing formulae
Witnessi’a’&’ﬁ(w, i,a,0) axt (g(ﬁg)) U I (g([,g))

rather than a single formula. All old cases in the standard definition of Witness (see [7,
Section 4]) are modified in an obvious way, €.g. we say “f Ais BAC then W% 86 consists
of all formulae of the form Witnessy 10,8 'ﬁ((w)l, a, o ﬂ)/\Wztness2 aa’ﬁ((w)z, a,a, ﬂ), where
Witness%a’&’ﬁ(w,&', a, E) € leg’a’“’ﬁ, and Witness® @ (w, @, &, ,8) € Wé’a'&’ﬁ”.

The only case when the branching really occurs is the following new case:
(8) FA¢x:(S(L)) U (8 (A(cz)) and A is 3¢ B(d,&, 6, B) then W3%? consists of all

formulae Witnessz’a’a’ (w, &, @, B) of the form

Seq(w)A Len(w) = 2A(w); < t(&')/\Wz'tnessé?f’f"’ ﬁ)((w)2,a a, A(@, (w1, d, B), B),

where (@) and A(@, w, &, B) run over all terms of the language 8(L,), and

Wztness;'(’;fmﬂ (w, d, &, aq, ,3) € Wit G0,

The case A = 3P B() is treated in the same way.
For every Witnessz’a’&’ﬁ (w,@,a IB') = W%t’l’,&',ﬁ,

S(V2) F IwWitness4® 0"ﬁ(w, a,a, E) D A(a, a, ﬁ)

Due to the very limited nature of witnessing second order variables, we can not hope to
reverse this implication in any reasonable sense. But we actually do not need this. We

simply show the straightforward analogue of [7, Theorem 17] in the following form:
if

S(Va) + 82 _ PIND + G(&,d, B) > H(g, &, B),
where G, H are in ST¥"" then for every Witness”a’ﬁ (w,&,a,5) @ W2 A%F there exist

Witness%}a’&’ﬁ(w,&',&,ﬁ) € W}z{,a‘,&,ﬁ* and a (),-defined function f(w,a,a,ﬂ) of 3(Vz) +
34 (g([,z)) — IND such that

8(Va) + 3t (8(L2)) ~ IND + Witness5*(w,d,&,f) >

Witnessi™® ’ﬁ(f(w i,a,B),d,a, p).

This allows us to conclude that S(V;) + SE¥"* — PIND is SE¥"*-conservative over
S(Vy) + 3¢ (3([:2)) — IND and complete the proof of Theorem 7.7.
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8. Conclusion

Naturally, the most interesting question is to which extent the techniques developed in
this paper can advance us toward the main goal of understanding the strength of V;!. Let
us first point out that the hierarchy of second order theories introduced in the previous
section collapses already at the next level. Indeed,

8(Va) + STy — IND + V9TV < t(¢(e) = $(2)) A ViI$Va < t(d(z) = (<))

Thus, at least with respect to bounded formulae, & (V2)+S Y¥t_ IND is simply equivalent
to V3. So, we restrict our discussion to first order theories.

What we actually did in the proof of Theorem 6.4 (this is also a direct corollary of
Theorem 7.7) was to show the following separation theorem. Whenever

Sk F (A(N,a) A B(N, 8)) D 3=(C(N, z,a) # D(N, z, B)), (11)
where R = §(S3), the sets {{z}C(N,z,a)| A(N,a)} and {{z}D(N,z,B)| B(N,B)} can

be separated by a size-20°eN) °® circuit. An informal reformulation of this is that every two
N P-sets which are provably disjoint in S% can actually be separated by a set computable
in quasipolynomial time. Is it possible to improve this by replacing 5% in (11) with a
stronger theory like T3, Si(a,B), U} or V}? This seems to be open even under any
reasonable complexity assumption. Note for the comparison that even for the case of V3!,
the affirmative answer to a similar question in which we are interested in separating co— N P
sets is a straightforward corollary of Proposition 4.2 and RSUV-isomorphism [22, 23, 18].

There are several examples showing that for NP-sets the situation may be different.
A couple of them originated from a discussion with Steven Rudich are based upon the
lower bound proof for voting polynomials [3] and one-way functions, respectively. In these
examples, however, in order to prove the formula (11) one apparently needs at least the
strength of U]. Also, their impact on the future research in this direction is still to be
understood. Thus, we confine ourselves here with a simpler combinatorial example which

gives a new unexpected proof of a known result from [9] and raises several immediate open
questions.

Example 1. The proof of the separation theorem works for the monotone case as well.
That is to say, if

S% - (A(N,a) A B(N,B8)) D 3z(C(N,z,a) A=D(N, z, 8))
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then there exists a monotone size-20°6M° circuit outputting 1 on all {z}C(N, z, o) with
A(N, ), and outputting 0 on all {z}D(N,z, B) with B(N, B). We will show that this is
no longer the case if we replace 5% with T3.

Indeed, denote by WPHP(f) the weak pigeon hole principle taken in the following
form:

(a > 2AVz < a*(f(2) < 0)) D Fo1, 22 < A*(f(21) = f(22) A 71 # 2).

Note that, contrary to the common belief, it is open whether T2(f) - WPHP(f). But
the proof in [16] lets us conclude at least that T3(f) F WPHP(f), and this (naturally)
extends to showing that T3(f) F WPHP(f) for every X!-definable f.

Now, let A(N, f,) say “f, is an injective mapping from [N?] to [N*]”. Let B(N, fg)
say “fg is a mapping from [N*] to [N]”. Then, applying W PH P(fso f,) (available in T3),
we see that

T3+ (N > 2AA(N, f) AB(N, f3)) D 3z1 < 2 < N* (21,22 € im(fa) A fo(z1) = fo(z2)) -

But {z1, 72} (z1 < 2 < N* A 24,3 € im(f,)) taken over all possible injective f, : [N?] —
[N4] is simply the set of all N2-cliques. {z1,z.} (21 < z2 < N* A fg(z1) = fs(z2)) is the
set of all N-partite complete subgraphs. These two sets can not be separated by a subex-
ponential size monotone circuit [2].

This example suggests several open questions. Is it true that TZ(f) - WPHP(f)? Is
it true that TA(f) - WPHP(fgo fo)? Is the monotone version of the separation theorem
true for TA?

In connection with the last question the following observation made by J. Kra,ji'éek may
turn out useful. Let the weaker principle WPH P;(f, g) state that f and g do not form two
inverse bijections between [a?] and [a], for @ > 2. Then this principle s already provable
in T2(f).

In general, we lack a decent characterization of ¥.8-theorems of T2. In particular, it
is still open whether Sy(a) is £%(a)-conservative over TZ(a) or not. Obtaining such a
characterization and understanding its meaning in the context of split versions seems to
be the most immediate accessible question. The first part of this question is undoubtedly
interesting in its own right, irrespectively of the application to particular problems from
Boolean complexity.

It is also worth noting that the reasoning in Example 1 can be reversed: since we
have the monotone separation theorem for S%, we also have the independence result S%

WPHP(fgo fo). This implies the result from [9] that S2(f) f WPHP(f).
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In the formal sense, Example 1 can not be used for refuting the separation theorem for
nonmonotone circuits. Indeed, E. Tardos [24] noticed that the classes of graphs G with
w(@) > s and of graphs G with x(G) < s can be separated by (non-monotone) polynomial
size circuits. Still, her proof involves highly nontrivial combinatorial argument known as
Lovasz lower bound for Shannon capacity, and it hardly can be expected that this argument
would follow from a separation theorem in Bounded Arithmetic.
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Abstract’

This work is motivated by the following general problem also looked
at under various models by many others (see the bibliography for a small
sample.) If you have a problem that is difficult for a certain model on
a certain input distribution, in that any algorithm in the model taking
less than R resources has failure probability at least §, is it always the
case that combining several independent instances of the problem makes
the failure probability proportionally greater? Here, combining can mean
asking the algorithm to output answers for each input, or some predicate
(e.g., the parity) depending on all the answers. One classical example
of such a result is the Yao exclusive-or lemma ([Y2]), which says that if
we have a Boolean function f that is 6-hard for circuits of size C, and
(1 —26)* < ¢/2, then the function f(z1,...zx) = f(z1) ® f(z2)..® f(zx)
is 1/2(1 — €)-hard for circuits of size O(¢>C). (For a complete proof, see
Levin [L] ).

I have been interested in this problem mainly from the viewpoint, is
full independence between the different z:’s necessary, or do the same
results pertain if the z;’s were chosen in some suitable peudo-random fas-
sion? I have not been terribly successful at answering this question, but
in thinking about these issues I have come up with a Lemma that I think
might be of independent interest, and at least gives a new proof of the
Yao XOR Lemma (up to some changes in the formula above, effectively
requiring k to double), and some weak results along the lines I was pur-
suing. [GILVZ] answers a similar question in amplifying the difficulty of
inverting functions.

Another interesting slant to this problem is, is it possible to get (in at
least some models) some similar results without decreasing the resource
bounds? (i.e., a real increase in difficulty, rather than just a time/ prob-
ability of correctness trade-off). This direction is pursued in [NRS], but I
won’t talk about it any more here.

I am already tardy in submitting imy seminar contribution. So in the
following informal seminar contribution, I will limit myself to stating and



proving the following Lemma, and leave extensions and applications to
the future, and to my fellow seminar participants.

Lemma 1 Let f be a Boolean function on n-bit inputs that is §-hard for
circuils of size g on the uniform distribution, and let ¢ > 0. Then there is
a set S C {0,1}" so that |S| > 62" and f is 1/2(1 — €) hard on an input
uniformly chosen from S for circuits of size de®6%g, where d is an absolute
constant.

A translation into intuitive terms is that for any yes/no problem that
is hard to solve almost all the time the instances can be divided up into
a set of "easy” instances and a "hard-core” of difficult instances where it
is impossible to do significantly better than a random guess. Note that
in the above lemma, we are actually off by a constant factor from what
we’d expect, since if there were a hard-core set of size 28, we might still be
able to predict the function with pprobability (1 — 26) +1/2(26) =1-6.
By recursively applying the lemma, we can make |S| closer and closer to
262", but at the expense of reducing the resource bound more and more.

The above actually holds for arbitrary starting distribution, and for
any non-uniform model of computation closed under taking majorities.

1 Basic Definitions

Definition 1 Let f be a Boolean function on n bit inputs, and D a disiribution
on n bit strings. Let 1/2>6 >0 and let n < g < 2°/n. We say f is §-hard
on D for size g if for any circuit C with at most g gates, and for z chosen
according to D, Prob[C(z) = f(x)] < 1 —§. For a circuit C and an input
z define Re(z) = 1 if f(z) = C(z), —1 otherwise. A measure on sirings of
length n is a function M with M(z) € [0,1] (think of it as defining a "fuzzy”
set of strings, where instead of definitely being in or out of the set, z is in
the set with probability M(z). ) The size of a measure M is written u(M)
and s defined by p(M) = 1/2" 5", M(z). The distribution induced by M is
defined by Dp(z) = M(z)/u(M). The advantage of C on M is defined by
Advc(M) =1/2" 5" M(z)Rc(z). It is easy to see that if = is chosen according
to Dar, Prob[C(z) = f(z)] > 1/2+ € if and only if Advc(M) > 2epu(M).

We will use the above definitions in the following way. We will first show
that fis 1/2 — ¢/4 hard on some Dys with u(M) > §. We then use a counting
argument to show that a randomly chosen subset S where z € S with probability
M (z) must be almost as hard a distribution as Dys. This last step seems just

a technicality; the hard-core measure will be sufficient for all applications (I
believe).
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2 Intuition

Consider a problem like inverting a one-way function, where if we have a correct
solution, then it is easy to verify it. Finding a "hard-core” set of problems for
such a distribution is easy. Either there is no circuit of size 1/2¢6g that solves the
problem on a € fraction of instances, or there is. If not, our hard-core distribution
is the uniform distribution. If so, this circuit weeds out an e fraction of inputs
as easy, and we look for a circuit that does well on the remaining inputs. This
process continues until either we find a hard-core distribution, or the set of
remaining inputs is smaller than §. Note that, since we weed out at least a
e fraction of inputs each time, this process continues at most 1/8¢ iterations.
(This is overcounting some.) So if we don’t find a hard-core distribution, we
could piece all of the circuits we found into one circuit that tries them all and
outputs the first correct solution. This circuit has size g and solves the problem
1 — 6 of the time, contradicting the assumed hardness of the problem.

We will follow the same outline, except that in general, we won’t be able
to tell when a circuit solves a particular instance, so we won’t be able to just
eliminate those instances where our first circuit solves the problem correctly.
Instead, we gradually reduce the importance of those inputs where the circuits
we have found so far do well, until we have reached a certain ”comfort level”
where the margin of success is high enough that we don’t have to worry about
that input for a while. If the margin of success is large for almost all inputs,
the circuit that computes the majority of the circuits we have found computes
f correctly on almost all inputs.

3 Proof of Main Lemma

Lemma 2 Let f be §-hard for size g on the uniform distribution on n-bit
strings, and let 1 > ¢ > 0. Then there is a measure M with p(M) > & so
that f is 1/2(1 — €)-hard for size 1/4¢*6%g on Dyy.

Proof: Assume not, i.e., that on every measure M with u(M) > 6, we can
find a circuit Cas of size ¢’ = 1/4¢%6%g so that Prob[f(z) = Cu(z)] > 1/2(1+¢)
when z is chosen according to Dps. Let ¢ = ¢§. Then for each such M,
Adv Cp)(M) > ep(M) > €.

For a set of circuits Cy,...Cj, let Ni(z) = 3, <. «; Rei(2) (ie., the margin
by which we are predcting f on z correctly), and let M;(z) = 1 if Ni(z) <0,
0 if Ni(z) > 1/€¢’ and 1 — €’ N;(z) otherwise. (In other words, if we’ve guessed
more incorrectly than correctly on r we definitely want to include = in our
next candidate hard-core distribution, if we have a comfortable margin on z,
we don’t, and if we are somewhere in between, include z with a probability
decreasing linearly with our margin.) For the empty set of circuits, No(z) =0
so Mo(z) =1 (i.e., we start in the uniform distribution.)



Let Cy = Cum,. If u(My) > 6, let Cy = Cpy,, and so on. Note that

maj(Ch, ..C;) is correct on all inputs except those with M;(z) = 1, so Prob[maj(C:,..C;) =

f(@)] > 1= u(M;). So if the above process halts before i = g/2¢’ = 2¢'~2 then
this defines a circuit of size at most ¢'s + O(7) < 2¢’'i = g gates that computes
fon 1—6 of the inputs, a contradiction to the assumed hardness of f.

On the other hand, let z be any fixed input. Let A(z) = ) o¢;<i—1 Rei(2)Mizi(z).

We claim A(z) < min{N;(z),1/¢'} + 1/2¢'i. To see this, for each k, match up
the times j so that Nj(x) = k, Nj;1(z) = k + 1 with those where N;(z) =
k +1,N;(z) = k, with possibly one time left out for each 0 < k < Ni(z), or
Ni(z) < k < 0. (In other words, if you ride an elevator starting at the ground
floor, you will go up from floor k£ to door k& + 1 at most one more time than
you go down from floor k¥ + 1 to floor k, and that one time will occur if and
only if you get off at a floor greater than k. P.S. The analagous principle ap-
plies for health conscious people who take the stairs. ) For each such pair of
times a,b, Re, ., ()Ma(z) + Rey, (2)Ms(z) = Mu(z) — Mp(x). HO< k< 1/€,
this is 1 — k(¢/) — (1 — (k + 1)¢’ = ¢, and otherwise it is 0. Thus, each pair
together contribute at most ¢’ to the sum, so all pairs contribute at most i/2¢’.
Each unmatched edge with £ < 0 contributes —1, each unmatched edge with
0 < k < 1/epsilon’ contributes at most 1, and each unmatched edge with
k > 1/epsilon’ contributes 0, so the total contribution of the unmatched edges
is at most min{N;(z), 1/epsilon’}. Thus, we have proved the claim.

On the other hand, }°; A(z) = 2"} ,;c; g Advc,,,(M;) > 2"ie’. So
combining these, we have sum,min{N;(z), I/epsilon’} > 2"i/2¢' = 2"1/€ so
N;i(z) > 1/epsilon’ > 0 for all z. But this gives us a circuit of size g that always
computes f correctly. This contradiction proves the Lemma.

4 Getting a hard core set from a hard-core
measure

Lemma 3 Let f be 1/2(1 — €/2) hard for size 2n < g < (1/8)(2"/n)(eb)? on
Dps, where M is a measure with py(M) > 6. Then there is a set S with |S] > 627
and f 15 1/2(1 — €) hard for size g on Us (the uniform distribution on S.)

Proof: First, note that the number of circuits of size g is at most (2(2n + g))*
229 << 1/4¢2"€°5°/2. Let C be any circuit of size g, and pick S by placing
z € S with probability M(z). Then Advc(M) = Ezp[Advc(Us)] < ep(M),
and Advc(Us) is the sum of 2" independent random variables that are in the
interval [0,27"]. Hence, the probability that Adve(Us) > 2euM is at most
e=2"e"8%/ 2, by Chernoff bounds. Thus, the probability that there is such a C is
at most 1/4. On the other hand, the probability that |S| > Exp|S| = u(M) is
about 1/2 (I’'m fudging a bit here, I should check this more carefully.) Therefore,
there is a set S with |S| > u(M) and Adve(Us) < 2eu(M) for every circuit C
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with at most g gates. Therefore, Prob[C(z) = f(z)] < 1/2 + € for = uniformly
selected from S for any such circuit C, and so f is 1/2 — e-hard for size g on Us.

Lemma 1 then follows from combining Lemma 2 and Lemma 3 with the
observation that if f is é-hard on any distribution for any & for size g, then
g < 2" /[n, since any function can be computed with 2" /n gates. '
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Definition [Lewis,Papadimitriou]:

SL is the class of languages accepted by sym-
metric non-deterministic logspace Turing ma-
chines.

T heorem [Lewis,Papadimitriou]:

USTCON is complete for SL (under many-one
logspace reductions).

USTCON is the undirected s,t connectivity
problem.




Complexity map

SL

NL

[AKLLR]

RL
[AKLLR]

- Aleliunas, Karp, Lipton,
Lovasz, Rackof

gcl



1£4

CO - SL CO—-RL CO-NL

[1,S]

[1,S] - Immerman / Szelepcsényi



Main result

yd Theorem: SL=cCO-SL
7| [BCDRT] |?

/

Corollary: sL°L = SL

We need to show that given (G, s,t) we can
build (G, s, t') s.t:

G is s,t connected <—
G' is NOT s/, connected.

[BCDRT] - Borodin, Cook, Dymond,
Ruzz6, Tompa

3-d 4

14}




Overview of proof

¢ Combining s-t non-connectivity problems.

e Counting the number of connected com-
ponents of G, #CC(G).

e sis connected to tin G <= #CC(G) =
#CC(G U (s,1))

How to combine results ®

(G1,s1,t1) is disconnected AND (Go, s, t2) is
disconnected.

81 G1 1

S$2 Go to

(G1,s1,t1) is disconnected OR (Go, s0,10) is
disconnected.

S1 t1 So to




Thus, if we can solve the connectivity prob-
lem with a monotone formula whose inputs
are disconnectivity problems, we can express
the connectivity problem as one disconnectiv-
ity problem.

1 <= the
original graph
is connected

Monotone formula

1 <= (G1,s1,%1) 1 <= (G, sk, tk)
is disconnected is disconnected
7

Computing #CC(G)

We will build:

1. A Vector A with r» 1's, where r is the
number of edges in a spanning forest of
G.

2. A Vector B with k 1's, where k =#CC(G).

Then, we will show how we can solve the con-
nectivity problem using these vectors.

x4




#eddges in a spanning forest

Idea: consider greedy MSF algorithm.

Index the edges from 1 to m. There is a
unique lexicographically first spanning forest
T.

Notation: G. is the subgraph of G con-
taining all edges with index < Indez(e).

Lemma: e = (i,j) € T «= i is discon-
nected from j in Ge.

Let Ae=1 <= e€T.
The vector A has exactly |T| 1's.

——h

Choosing a representativeg
from each CC

Idea: transitive closure

For every ¢ € V, define:
B; = A\j>; ( j is not connected to i ).

; = 1 < 1 iS the vertex with the biggest
index in its component.

Thus, B has exactly #CC(G) 1's.

10



Finding #CC(G)

Finding #CC(G)

Given G:

1) Construct A and B. A contains r = |T| 1's, T Tn

B contains k =#CC(G) 1's. é\) Qg
Notice that £ + r = n. / \ / \
AAl Z’;,n——l An Bo

2) Construct a vector A s.t. A, = 1 < there

are at least 7+ 1's in A (using [AKS] sorting
networks).

.1]0... Bl...1]0...

h )

3) Construct B

4) Define T; = B; N A,_; Al...101... Bl...o10...

Then: T; = 1 <= i =#CC(G)

11 12

621
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New complexity map °

Solving USTCON

s is connected to t in G <—
#CC(G) = #CC(GU{(s,t)}).

Build the vectors: / RL \
1) T, =1<= #CC(G) =i
2) TW =1 <= #CC(GU{(s,8)}) = . L SL = NL =
CO - SL CO — N.
CO — RL

13 14
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Abstract

We present a Logspace, many-one reduction from the undirected st-connectivity prob-
lem to its complement. This shows that SL = co — SL.

1 Introduction

This paper deals with the complexity class symmetric Logspace, SL, defined by Lewis and
Papadimitriou in [L.P82]. This class can be defined in several equivalent ways:

1. Languages which can be recognised by symmetric nondeterministic Turing Machines
that run within logarithmic space. See [LP82].

2. Languages that can be accepted by a uniform family of polynomial size contact schemes
(also sometimes called switching networks.) See [Raz91].

3. Languages which can be reduced in Logspace via a many-one reduction to USTCON,
the undirected st-connectivity problem.

A major reason for the interest in this class is that it captures the complexity of USTCON.
The input to USTCON is an undirected graph G and two vertices in it s,t, and the input
should be accepted if s and ¢ are connected via a path in G. The similar problem, STCON,
where the graph G is allowed to be directed is complete for N L, non-deterministic Logspace.
Several combinatorial problems are known to be in SL or co — SL, e.g. 2-colourability is
complete in co — SL [Rei82].

The following facts are known regarding S relative to other complexity classes in “the
vicinity”:
LCSLCRLCNL.

Here, L is the class deterministic Logspace and RL is the class of problems that can be
accepted with one-sided error by a randomized Logspace machine running in polynomial

*This work was supported by BSF grant 92-00043 and by a Wolfeson award administered by the Israeli
Academy of Sciences. The work was revised while visiting BRICS, Basic Research in Computer Science, Centre
of the Danish National Research Foundation.



time. The containment SL C RL is the only non-trivial one in the line above and follows
directly from the randomized Logspace algorithm for USTCON of [AKL*79]. It is also
known that SL C SC [Nis92], SL C @ L [KW93] and SL C DSPACE(log*® n) [NSW92].

After the surprising proofs that NL is closed under complement were found [Imm88,
Sze88], Borodin et al [BCD*89] asked whether the same is true for SL. They could prove
only the weaker statement, namely that SL C co— RL, and left “SL = co— SL?” as an open
problem. In this paper we solve the problem in the affirmative by exhibiting a Logspace,
many-one reduction from USTCON to its complement. Quite surprisingly the proof of our
theorem does not use inductive counting, as do the proofs of NL = co — NI, and is in fact
even simpler than them, however it uses the [AKS83] sorting networks.

Theorem 1 SL =co—- SL.

It should be noted that the monotone analogues (see [GS91]) of SL and co — SIL are
known to be different [KW88].

As a direct corollary of our theorem, we get that L5L = SIS = S where L5L is the

class of languages accepted by Logspace oracle Turing machines with oracle from SL, and
SLSL is defined similarly, being careful with the way we allow queries (see [RST82)).

Corollary 1.1 L5V = SI5L = §,

This also shows that the “symmetric Logspace hierarchy” defined in [Rei82] collapses to
SL.

2 Proof of Theorem

2.1 Overview of proof.

We show that we can upper and lower bound the number of connected components of a
graph, using connectivity problems. We upper bound this number using a “transitive-closure”
method, which can be easily done since we are allowed to freely use connectivity problems.
However, trying to lower-bound the number of connected components this way requires nega-
tion. The heart of the proof lies in lower-bounding the number of connected components,
and we achieve this in a surprisingly easy way, by computing a spanning forest.

In subsection 2.2 we show how to combine many connectivity problems to one single con-
nectivity problem. In subsection 2.3 we show how to find a spanning forest using connectivity
problems. In subsection 2.4 we show how to use this spanning forest to find the number of

connected components of a graph, and how we solve the st non-connectivity problem with
it.

2.2 Projections to USTCON.

In this paper we will use only the simplest kind of reductions, i.e. LogSpace uniform projec-
tion reductions [SV85]. Moreover, we will be interested only in reductions to USTCON. In
this subsection we define this kind of reduction and we show some of its basic properties.
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NoTaTiON 2.1 Given f : {0,1}* ~ {0,1}* denote by f, : {0,1}" — {0,1}* the restriction
of f to inputs of length n. Denote by f,x the k’th bit function of f,, i.e. if fn : {0,1}" —
{0, l}k(n) then f, = (fn,l) ) fn,k(n))

NoTATION 2.2 We represent an n—node undirected graph G using (g) variables ¥ = {z; ;}1<icj<n
s.t. z;j is 1 iff (i,7) € E(G). If f(£) operates on graphs , we will write f(G) meaning that
the input to f is a binary vector of length (72‘) representing G.

DEFINITION 2.1 We say that f : {0,1}* — {0,1}* reduces to USTCON(m) ,m = m(n), if
there is a uniform family of Space(log(n)) functions {0k} s.t. for all n and k:

® 0, is a projection, i.e.: onk 15 a mapping from {i,jh<ici<m to {0,1,%;, 2% }1<i<n

e Given T define Gz to be the graph Gz = ({1,...,m}, E) where
E={(%37)] oni(i,j) =1 0r oni(i,j) = i and &; = 1 or 0, 1(3,5) = —z; and z; = 0}.
It should hold that f, (%) =1 <=> there is a path from 1 to m in Ggz.

If o is restricted to the set {0, 1, z;}1<i<n we say that f monotonically reduces to USTCON(m).

Lemma 2.1 If f has uniform monotone formulae of size s(n) then f is monotonically re-
ducible to USTCON(O(s(n))).

Proof: Given a formula ¢ recursively build (G, s,t) as follows:

o If ¢ = z; then build a graph with two vertices s and ¢, and one edge between them
labelled with z;.

o If ¢ = ¢1 A ¢2, and (Gi, si,t;) the graphs for ¢;, ¢ = 1,2, then identify s, with ¢; and
define s = s1,1 = 5.

o If = ¢1V ¢2, and (G, si,t;) the graphs for ¢;, ¢ = 1,2, then identify s; with ¢; and
8o with ¢, and define s = sy = t; and t = 89 = t5.

O
Using the AK S sorting networks [AKS83], which belong to NC! , we get:

Corollary 2.2 Sort : {0,1}* — {0,1}* (which given a binary vector sorts it) is monotoni-
cally reducible to USTCON (poly).

Lemma 2.3 If f monotonically reduces to USTCON(my) and g reduces to USTCON (m3)
then f o g reduces to USTCON (m?2 - my) , where o is the standard function composition
operator.

Proof: f monotonically reduces to a graph with m; vertices, where each edge is labelled
with one of {0,1,z;}. In the composition function f o g each z; is replaced by z; = ¢:i(9)
which can be reduced to a connectivity problem of size my. Replace each edge labelled z;
with its corresponding connectivity problem. O



2.3 Finding a spanning forest.

In this section we show how to build a spanning forest using USTCON. This construction
was also noticed by Reif and independently by Cook [Rei82].

Given a graph G index the edges from 1 to m. We can view the indices as weights to the
edges, and as no two edges have the same weight, we know that there is a unique minimal
spanning forest F. In our case, where the edges are indexed, this minimal forest is the
lexicographically first spanning forest.

It is well known that the greedy algorithm finds a minimal spanning forest. Let us recall
how the greedy algorithm works in our case. The algorithm builds a spanning forest F' which
is at the beginning empty F = V. Then the algorithm checks the edges one by one according

to their order, for each edge e if e does not close a cycle in F' then e is added to the forest,
ie. F=FU{e}.

At first glance the algorithm looks sequential, however, claim 2.3 shows that the greedy
algorithm is actually highly parallel. Moreover, all we need to check that an edge does not
participate in the forest, is one st connectivity problem over a simple to get graph.

DEFINITION 2.2 For an undirected graph G denote by LF F(Q) the lexicographically first span-
ning forest of G. Let

SF(G) ~ {0,1}5) be:

1 otherwise

SF,-,,-(G):{ 0 (i,5) € LFF(G)

Lemma 2.4 SF reduces to USTCON (poly)

Proof: Let F be the lexicographically first spanning forest of G. For e € E define G, to
be the subgraph of G containing only the edges {¢’ € E | indez(€’) < indez(e)}.

Claim: e=(i,j)€ F <= e€ E A iisnot connected to j in G.

Proof: Let e =(i,5) € E. Denote by F, the forest which the greedy algorithm built at the
time it was checking e. So e € F' <=> e does not close a cycle in F,.

(=) e € F and therefore e does not close a cycle in F,, but then e does not close a cycle
in the transitive closure of F¢, and in particular e does not close a cycle in G..

(«<=) e does not close a cycle in G, therefore e does not close a cycle in F, and e € F. [J

Therefore SF;,;(G) = =i Vi is connected to j in G; j)-

Since —z; ; can be viewed as the connectivity problem over the graph with two vertices

and one edge labelled —z; ; it follows from lemmas 2.1,2.3 that SF reduces to USTCON.
Notice, however, that the reduction is not monotone.

O
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2.4 Putting it together.

First, we want to build a function that takes one representative from each connected com-

ponent. We define LI;(G) to be 0 iff the vertex ¢ has the largest index in its connected
component.

DeriNITION 2.3 LI(G)+— {0,1}"

LI(G) = 0 ¢ has the largest index in its connected component
T 1 otherwise

Lemma 2.5 LI reduces to USTCON (poly)

Proof:
LI;(G) = V}—i41 (iis connected to j in G).

So LI is a simple monotone formula over connectivity problems, and by lemmas 2.1,2.3
LI reduces to USTCON. This is, actually, a monotone reduction.

O

Using the spanning forest and the LI function we can exactly compute the number of
connected components of G, i.e.: given G we can compute a function NCC; which is 1 iff
there are exactly ¢ connected components in G.

DeriNITION 24 NCC(G) — {0,1}"

_J 1 there are ezactly i connected components in G
NCel(G) = { 0 otherwise

Lemma 2.6 NCC reduces to USTCON (poly)

Proof:

Let F be a spanning forest of G. It is easy to see that if G has k connected components
then |F| = n — k.

Define:
f(G) = Sorto LI(G)
9(G) = Sort o SF(G).

Then:

filG)y=1 = k<i
gi(G)=1 =n—-k<i = k>n-1.
and thus: NCCi(G) = fi4+1(G) A gn—i+1(G)
Therefore applying lemmas 2.1,2.2,2.3,2.4,2.5 proves the lemma.
O

Finally we can reduce the non-connectivity problem to the connectivity problem, thus
proving that SL = co— SL.
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Lemma 2.7 USTCON reduces to USTCO N(poly)

Proof:
Given (G, s,t) define G to be the graph G U {(s,t)}.
Denote by #CC(H) the number of connected components in the undirected graph H.

s is not connected to tin G RN
#CC(GH)=#CC(G)-1 =
Vica,..n NCCi(G)ANCC;_y(GH).

Therefore applying lemmas 2.1,2.3,2.6 proves the lemma. (]

3 Extensions

Denote by L5 the class of languages accepted by Logspace oracle Turing machines with
oracle from SL. An oracle Turing machine has a work tape and a write-only query tape
(with unlimited length) which is initialised after every query. We get:

Corollary 3.1 LS5l =SL.

Proof:

Let Lang be a language in LT solved by an oracle Turing machine M running in L5L,
and fix an input & to M.

Look at the configuration graph of M. In this graph we have query vertices with outgoing
edges labelled “connected” and “not connected”. We would like to replace the edges labelled
“connected” with their corresponding connectivity problems, and the edges labelled “not
connected” with the connectivity problems obtained using our theorem that SL = co — SL.

However, there is a technical problem here, as the queries are determined by the edges
and not by the query vertices. We can fix this difficulty by splitting each query vertex to its
“yes” and “no” answers, and splitting each edge entering a query vertex to “connected” and
“not connected” edges. Now we can easily replace each edge with a connectivity problem,
obtaining an undirected graph which is st connected iff ¥ € Lang, and therefore Lang € SL.

O

As can easily be seen the above argument applies to any undirected graph with USTCON
query vertices, thus, if we carefully define SL (see [RST82]) we get that:

Corollary 3.2 SIS = SL.

In particular, the “symmetric Logspace hierarchy” defined in [Rei82] collapses to SL.
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On the cell probe complexity of
dynamic problems

Peter Bro Miltersen *
BRICSt

1 What are dynamic problems?

In this note, we give a survey of some results about dynamic problems with a
complexity theoretic flavour. A survey on the same subject, but with a slightly
different perspective, was recently given by Fredman [7].

A dynamic problem is the problem of maintaining an object in a data struc-
ture while certain operations are performed on the object, some of which change
the object, and some of which answer questions about the object. Rather than
a formal definition, let us look at some examples.

The union-split-find problem

The union-split-find problem (on intervals) is the task of maintaining a set
S C{1,...,n}, initially empty, under the following operations:

e For each 7 € {1,...,n}, an operation union(z). It removes ¢ from S.
e For each i € {1,...,n}, an operation split(¢). It inserts ¢ into S.

e For each ¢ € {1,...,n}, an operation £ind(7). It returns the largest ele-
ment of S which is smaller than or equal to ¢ if such an element exists,
otherwise 0 is returned.

Union-split-find is a generally useful abstract data type, for instance, it can
be used to implement priority queues with small integers. The best known
implementation has a worst case time per operation of O(loglogn) [19].

*This work was supported by a grant from the Danish Natural Science Research Council.
It was partially supported by the ESPRIT II Basic Research Actions Program of the European
Community under contract No. 7141 (project ALCOM II)

tBasic Research in Computer Science, a Centre of the Danish National Research Foun-
dation at: Computer Science Department, Aarhus University, Ny Munkegade, DK-8000
Aarhus C, Denmark.



Dynamic parity prefix

The dynamic parity prefix problem is the problem of maintaining a vector ¢ €
{0,1}" under the following operations:

e For each i € {1,...,n} and e € {0,1} an operation change(?,a). This
operation changes x; to a.

e For each j € {1,...,n} an operation prefix(j), returning z, + 3+ ---+
z; mod 2.

The parity prefix problem is a one dimensional version of the range query prob-
lems, considered in computational geometry and database theory. A trivial
solution gives time O(logn) per operation. With & bit more thought, we can
get time O(log n/loglogn) [9].

Dynamic graph connectivity

The dynamic graph connectivity problem is the problem of maintaining an undi-
rected graph with set of vertices V = {1,...,n} under the following operations:

e For each 4,j € V with ¢ # j, an operation insert(s,j). This inserts an
edge between ¢ and j in the graph.

e For each 7,7 € V with i # j, an operation delete(i, 7). This removes the
edge between ¢ and j in the graph.

e For each 7,j € V, an operation con(s, j). This operation returns true if ¢
and j are in the same connected component in the graph, false otherwise.

The best known solution to the graph connectivity problem is highly non-trivial,
with a worst case time per operation of O(y/n) [4]. Dynamic graph problems
had been studied intensively for a decade before this solution appeared.

The spreadsheet problem

The (small-screen, Boolean) spreadsheet problem is the problem of maintaining
n cells C1,Cs, ..., Cy, each cell containing either a Boolean constant (i.e. “0”
or “1”) or a constant size Boolean formula, with variables denoting other cells
(e.g. “Cy12V Cs7”), under the following operations:

e For each ¢ € {1,...,n}, and each formula or constant f, an operation
change(z, f) operation, which changes the contents of cell C; to f.

e For each 7 € {1,...,n}, an operation screen(z), which return the value
of cell C; (with “value” having the obvious semantics; if loops exist in the
spreadsheet, the value is undefined).
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It is well known that spreadsheets are generally useful. The trivial solution to
the spreadsheet problem is to maintain the cells themselves, perform changes
in constant time and when a screen(i) operation is called, make a topological
sort of the cells, and evaluate the cells bottom up until the value of cell C(7) is
known. This takes time O(n) in the worst case. This solution is patented [15]!
No better solution is known.

Our goal

We see that while the various problems seem similar, at least from a syntactical
point of view, their best known solutions, some of which are trivial, some of
which are deep, have very different complexities. This motivates looking at
the problems from a complexity theoretic angle. The goal of doing complexity
theory in this domain (as in others) are two-fold:

e Show lower bounds, hopefully establishing that the best known solutions
are optimal, so that we do not have to keep on searching for better solu-
tions.

o Gain an understanding about which properties of the problems make some
of them difficult and some of them easy. This does not necessarily imply
showing lower bounds, merely showing structure is often illuminating.

2 A complexity theoretic framework

Dynamic language membership problems

In order to make systematic complexity theoretic investigations, we need a more
well defined notion of dynamic problem. We will let the class of dynamic lan-
guage membership problems be our subject of investigation:

A problem in this class is given by a language L C {0,1}*. We are supposed
maintain a string = € {0, 1}* with operations:

e For each i € {1,...,n},a € {0,1}, an operation change(?, a). This opera-
tion changes the 7’th component of = to a.

e query. This operation returns true if z € L, false otherwise.

Many naturally occurring problems can be phrased as dynamic language
membership problems without changing their complexity. For instance, it is an
easy exercise to see that the dynamic graph connectivity problem corresponds
to the dynamic language membership problem for the language L = USTCON.
The spreadsheet and prefix problems can be similarly captured. The union-split-
find problem can not be captured exactly, because the find operation returns
more than O(1) bits, but similar problems, like dynamic binary addition [12]
can.



The cell probe model
Various models of computation have been considered for dynamic problems:

e The pointer or storage modification machine, whose memory consists of a
collection of records, each consisting of a bounded number of fields, each
consisting of a pointer to other records. Interesting lower bounds [10, 16]
have been shown in this model. However, since we know that arrays can
be useful (e.g. for hashing), we would like our lower bounds to hold in
stronger models.

o The unit cost RAM, where each cell in the random access memory holds
an arbitrary integer. This model can simulate PRAMs [18], so it is a bit
too strong.

o The log cost RAM, where the cost of an operation is proportional to the
number of bits in the words accessed. This is a bit too weak, since we can
then not follow a pointer in constant time.

e Our favourite model: The random access computer [2], where operations
are unit cost, but each cell can only hold an integer of polynomial mag-
nitude. Consensus seems to be emerging that this model has exactly the
right level of generality. For instance, it captures all the upper bounds in
Section 1, and the fact that they are the best known.

The cell probe model can be regarded as a strong (but not too strong), non-
uniform version of the random access computer.

In this model, the complexity of a computation is the number of cells ac-
cessed in the random access memory containing the data structure during the
computation, while the computation itself is for free. Each cell contains b bits,
where b is a parameter of the model. There is no restriction on the number of
cells in the memory.

Formally, the model is as follows: In an implementation of the dynamic
problem we assign to each operation a decision assignment tree, i.e. a rooted
tree containing read nodes and write nodes. When performing an operation
we proceed from the root of its tree to one of the leaves. The read nodes
are labelled with a location of the random access memory. Each has 2° sons,
one for each possible content of the memory location. The write nodes, which
are unary, are labelled with a memory location and a value between 0 and
2% — 1. When such a node is encountered, the value is written in the memory
location. If the operation is to return an answer, this is found in the leaf finally
encountered. The complexity of an operation in an implementation is the depth
of its corresponding tree.

In the rest of the paper, we assume b = O(log n). With this setting, the cell
probe model simulates the random access computer, no matter which instruction
set the latter uses.

161



162

3 Lower bounds

Couting arguments

It is easy to show [14]:

Theorem 1 All dynamic language membership problems have complezity at
most O(n/logn). Furthermore, almost all dynamic language membership prob-
lems have complezity at least Q(n/logn).

So the cell probe complexity measure behaves much like more usual complexity
measures for Boolean languages, like circuit size and depth. However, we want to
know lower bounds for explicitly defined languages, which, for our purpose, are
languages in P (The theorem above only gives us languages in EXPSPACE).
For this purpose, there seem to be only two techniques available for cell size

b = O(logn):
e The time stamp method.
e The compression and communication complexity method.

For smaller cell sizes, there are at least three additional techniquesi6, 5, 14}, but
they do not translate into RAC lower bounds.

The time stamp method

We are not going to go into the details of the time stamp method here, but only
mention that the time stamp method shows a lower bound of Q(log n/ loglogn)
for the dynamic prefix problem mentioned above. By a reduction, the same
bound holds for the dynamic graph connectivity problem [14, 17]. Furthermore,
this seems to be the largest lower bound that can be shown for any problem
using this technique.

The compression and communication complexity method

It is harder to give correct and fair citations for this method. Willard [20] used
what is essentially the compression method for proving upper bounds on certain
static data structure problems. Ajtai used what was essentially the communi-
cation complexity method for proving lower bounds on the static version of the
union-split-find problem. He didn’t phrase his proof in terms of communication
complexity, which (in our view) made it hard to understand. Miltersen [11]
used the compression and communication complexity technique in a weak form
to show lower bounds on the cell probe complexity of dynamic problem. In [12],
Miltersen noted that Ajtai’s proof could be interpreted as communication com-
plexity and combined a technical improvement of it with compression to give
lower bounds for the union-split-find problem and a range of other problems.



However, Xiao, in his unpublished PhD-thesis [21], had earlier, and indepen-
dently, combined compression with a stronger version of Ajtai’s proof, giving
stronger lower bounds for the union-split-find problem. Beame and Fich [3],
upon reading [12] independently gave this stronger bound for all the problems
in [12].

Fortunately, the method itself is rather easy to explain. Assune, for conve-
nience of notation, that our dynamic problem is the problem of maintaining a
set S C {1,...,n} under insertions, deletions, and some set Q of query oper-
ations. Suppose that we are given an efficient dynamic algorithm that runs in
time t per operation.

o In the compression step we convert the dynamic algorithm to a solution
for a static data structure problem, namely the problem of storing S using
small space (O(|S|t) cells) so that any query in @ can be answered in time
t. Basically, this is done by inserting the elements of S in our dynamic
data structure, noting which memory locations have changed value, and
storing those in a perfect hash table [8].

e In the next stage we convert the solution to the static problem into an

efficient protocol for the following communication game between Alice and
Bob:

— Alice is given a query ¢ € Q.
— Bob is given a subset S C {1,...,n}.

Alice is allowed to send messages that contains log|S| bits to Bob, while
Bob is allowed to send messages that contain logn bits to Alice. The
object of the game is for Alice to find out the answer to query ¢ about S.

The efficient protocol is as follows: Bob computes the static data structure
corresponding to S, but does not send anything yet. Then Alice simulates
the query operation corresponding to ¢ by sending Bob requests for the
cells she wants to read in his data structure. Bob sends the content of
the cell in question back. This is repeated until the query operation is
completed and Alice knows the answer, i.e.. for at most ¢ rounds.

We can now use communication complexity techniques to give a lower bound
on the communication game and translate this bound back to a lower bound on
the dynamic problem.

Examples include an Q(loglogn/logloglogn) lower bound for the union-
split-find problem (21, 3]. The largest bound the technique is able to give for
any problem is Q(logn/loglogn). This bound is achieved for a language L,
related to polynomial evaluation over finite fields [13].
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4 Structure

The largest lower bound we can show for an explicit problem by the known
techniques is Q(logn/loglogn). It is therefore an open problem if all dynamic
language membership problems in P can be solved in time O(logn/loglogn)
per operation.

Thus, we are far from showing that the best known algorithms for e.g. the
dynamic connectivity and the spreadsheet problems are optimal. However, from
traditional complexity theory, where large lower bounds are also hard to find,
we known an alternative: structure. It would be nice to be able to claim that
these problems are difficult, because each are hard for a large class of natural
problems.

Of course, we need to define a notion of reduction that preserves dynamic
complexity. One was defined in {14], here’s another, a bit more intuitive, and
sufficient for our purpose:

For two languages Ly and Lo, we say that L, <g L», if the dynamic language
membership problem for L; can be solved in time O(logn) if we assume access
to black box (oracle) implementations of the dynamic language membership
problem for L that runs in time O(logn).

‘We can now show, by emulating the usual completeness proof for the circuit
value problem:

Theorem 2 The spreadsheet problem is complete for P w.r.t. <g4.

Thus, the spreadsheet problem can not be solved in time O(log n) (or log®Mn
or n"(l)) per operation, unless all of P can.

Indeed, it seems that almost all natural P-complete (with respect to e.g.
first order projections or whatever your favourite notion of low level reducibility
is) problems are P-complete w.r.t. <4.

We might now reasonably expect that by a similar argument dynamic graph
connectivity is complete for the class SL since USTCON is first order complete
for SL.

Unfortunately, this does not seem to be the case. In general, it seems that
almost none of the natural first order complete problems for the usual classes
(defined in terms of small space or parallel time) smaller than P are complete
w.r.t. <q4.

Examples disobeying these rules of thumb can be constructed: languages,
first order complete for P with efficient dynamic solutions exist, and so do
problems which are first order complete, as well as <4-complete, for SL [14],
but neither are particularly natural when regarded as combinatorial problems.

Though it is hard to find problems <4-complete for usual complexity classes,
we could hope for new structure: The dynamic graph connectivity problem
might be complete for a large class of natural problems, different from SL.
Unfortunately, this does not seem to be the case either: <; seems to be too



weak a reduction for much structure to appear. Therefore, a rich structural
complexity theory of dynamic problems seems unlikely.
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Abstract

We prove that the modular communication complexity of the undirected graph connectiv-
ity problem UCONN equals O(n), in contrast to the well-known O(nlogn) bound in the
deterministic case (see [9]), and to the Q(nloglog n) lower bound in the nondeterministic
case, recently proved by Raz and Spieker (see [15]).

We obtain our result by combining Mébius function techniques due to Lovasz and
Saks (see [12], [13]) with rank and projection reduction arguments.

Topics: Computational Complexity, Communication Protocols, Modular Acception
Modes, Undirected Graph Connectivity.

Introduction

During the last few years communication complexity theory gained popularity. In several
papers many interesting questions of complexity theory were answered by reducing them to
several kinds of communication games. Among others, this regards time—area tradeoffs for
VLSI-circuits [1], [10], time—space tradeoffs for Turing machines, width~length tradeoffs for
oblivious and usual Q—-branching programs ([2],[4]), branching programs of bounded alterna-
tion [14], and threshold circuits of depth 2 [11] and depth 3 [7].

The graph connectivity problem for undirected graphs UCONN = (UCONN(_1))nen in
distributed form can be formulated as follows. Assume that we are given two not necessarily
edge-disjoint undirected graphs Gy = (V, E;) and G = (V, E2) on a common n—set of vertices
V, where both graphs are represented as Boolean vectors of length (3). The question is

whether or not the graph G def G1UG2 = (V, EyU E3) is connected, i.e. each pair of vertices
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in G is connected. In [18] the major developments in understanding the complexity of the
graph connectivity problem in several computational models are surveyed.

In the following we investigate the modular communication complexity of UCONN. Let two
graphs G; = (V, E;), for i = 1,2, be given to two processors Py and P,. In order to solve
UCONN both processors have to communicate via a common communication tape. The
computation of the whole structure, which is called a communication protocol or simply a
protocol, is going on in rounds. Starting with P; the processors write alternatingly bits on the
communication tape. These bits depend on the input available to the processor which is to
move and on the bits already written on the communication tape before. We assume without
loss of generality, that in each round exactly one bit is written down on the communication
tape. If the last bit written on the communication tape is “1” or “0” the computation is
called accepting or rejecting, respectively. So co-operative computations can be thought of
as to be Boolean strings. The length -of the string is the communication complezity of the
computation. Since we consider the worst—case—complexity in this paper, we assume without
loss of generality, that all computations of a protocol are of equal length, say L. We shall
assume the processors to be nondeterministic. That’s why we have to define the output of
a protocol via defining acception modes. As it is common use an acception mode is called a
counting mode if the output of a protocol for a given input depends only on the numbers of
accepting and rejecting computations performed by the protocol accessing this input. In this
paper we discuss the modular acception modes in which the protocol accepts an input, if the
number of accepting computations is not equal to 0 modulo m.

How to motivate the modular acception modes modulo m? In [20] it has been shown that
all problems computable by constant depth, polynomial size circuits with MOD,,-gates for
arbitrary integers m, are contained in certain counting communication complexity classes.
In [5] these modes were formaly introduced and studied. Several papers (see e.g. [6]) deal
with comparing the power of different counting acception modes. Roughly speaking, the
computational power of the acception modes modulo m;, ¢« = 1,2, is uncomparable, provided
that (mq, ma) = 1 (see [8]).

We conclude this section by reviewing the results and methods which are strongly related
to ours and by formulating the result of this paper. We use the notions and notations of
Definition 1. Hajnal, Maass, and Turan proved in [9] the following theorem.

Theorem A Comm(UCONN,,_1)) = O(nlogn). a

Their method involves the use of the Mobius function u for the lattice of partitions of an
n—set. Lovasz and Saks extended in [12] and [13] this ideas to a large class of problems, the
so-called meet problems for finite lattices, which can be formulated as follows. Let S be a

finite lattice, and let both processor P; and P, be given an element = and y, respectively.
Then they have to decide whether z Ay = 0.

Theorem B Let MEETs be the meet problem of a finite lattice. Let S have a atoms and b
Mobius elements (i.e. elements © such that p(0,2) #0). Then

logb < Comm(MEETs) < (log a)(log b).



Recently, Raz and Spieker [15] proved

Theorem C If processor Py as well as processor Py have an bipartite perfect matching on
2n vertices with two colors of size n as an input, and if their goal is to determine whether the
union of the two matchings forms a Hamiltonian cycle, the nondeterministic communication
complezity of the problem is Q(nloglogn). O

Since the problem of Theorem C is a subproblem of UCONN (see Lemma 2), it follows
Corollary D N-Comm(UCONN,,_1)) = Q(nloglogn). (m]

It is the aim of this paper to show that modular acception modes help for detecting undirected
graph connectivity.

Theorem Let m be arbitrary. Then MOD,,-Comm(UCONN,,(,,_;)) = O(n).

Proof. The claim follows directly from Proposition 2 in Section 3 and from Proposition 4 in
Section 4. a

We use the technique related to the M&bius function to prove the upper bound of Proposition
2. The lower bound of Proposition 4 follows from rank and reduction arguments.

1 The computational model

Let f:S; x So — {0,1} be given in distributed form. A protocol of length L consisting of
two processors P; and P, that access inputs of Sy and 52, respectively, can be described by
two functions

®;: 5; x {0,1}*F - {0,1},
i=1,2,and {0,1}*) = {w € {0,1}*|1 < |w| < L}. The interpretation is as follows.
Let ¥ = y1...9j, 7k € {0,1}. If ®;(s;,7) = 1, and if |y| — 4 is even, then the corresponding
processor P; is able to write 7; on the communication tape provided that it hasread vy ...7v;-1

on the communication tape and that it has s; as input. If, however, ®;(s;,7) = 0, then P; is
not able to write ;.

Now we define two #5; X #S,—matrices Acc” and Rej” associated with the protocol P of
length L by

L
def
Accfm = Z H ‘1’1+((j+1)mod2)(31+((j+1)mod2),’71 e Y5) (1)
AL €{0,1}, yp=1 =1

L
. def
Re]ir” = Z H B 4 ((+1)mod 2)(814((j+1)mod 2)> V1 - - - V;) (2)
M.y €{0,1}L, v, =0 J=1

Clearly, Accfb s, Gives the number of accepting computations of the protocol P on the input
(s1,82), whereas Rejg s, 15 the number of the rejecting computations. In order to make this

3
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approach unique, we agree that &;(s;,v) = 1, if |y| — ¢ is odd, for i = 1,2. We may give an
equivalent definition of the above two matrices as follows. Let v € {0, 1}L be a computation.
Define

di
X (i) “ I a7 (3)
y'e{01}*L, v'<y

for i = 1,2. Then we get directly from the equations (1) and (2)

Accl ,, = ST X (s1,7)  xE (52,7) (4)
’YE{O,I}L, =1
Rej.fl,,sz = Z Xf(sl”)’) : Xg(sz’ 7) (5)

76{011}L1 yL=0

Definition 1 1. A counting acception mode p for a protocol P is a function y : IN? —
{0,1} such that P accepts an (s1,s2), if and only if, u(Accfl,sz,Rejgysz) = 1. Oth-
erwise P rejects the input. A protocol P equipped with an acception mode p is called
a p-protocol. The function computed is sometimes denoted by Comp(P,u). If we are
given a function f : S; X S — {0,1} then p-Comm(f) def min{L| Comp(P, ) =
f, L is the length of P}.

2. We define the following acception modes.

Nondeterministic mode: N(ny,n2) =1 &L ny > 0,
Modular modes: MOD,(n1,n2) =1 & n1 #0 (mod m),

By the way, a deterministic communication protocol is not characterized by a special accep-
tion mode but by a property of the underlying protocol, namely ®;(s;,v0)+ ®:(s:,71) < 1,
for s; € S;, ¢ = 1,2, and v € {0,1}*. For such protocols all reasonable counting modes
coincide.

Lemma 1 If my|my, then MOD,,,-Comm(f) < log(:2) - MOD;y,-Comm(f), for each func-
tion f.

Proof. Clearly, m,| ™2, if and only if, my|mas.
Let P be the MOD,,,~protocol for f. We describe the following protocol P’.
First, processor Py chooses nondeterministically an index k, 1 <k < 72 and sheds k.

Second, P; and ’Pl proceed in the same way as Py and P, do a,ccordmg to the protocol P.
We get that Acc = 2. Acclj Consequently, Acc =0 (mod my) <= Aecf =

mi

(mod my). If L is the length of protocol P, then log(——z) L is the length of protocol P/. O

Now we have to define what we mean by reductions. Fortunately, this is much easier here
than in machine-based complexity theory.

Definition 2 Let F = (fan : " x 2" — {0,1}),,cN and G = (g2n : T* X I™ — {0,1}),.c be
two decision problems. We say that F is rectangular reducible to G with respect to q, where
:IN — IN is a nondecreasing function, iff there are two transformations l,, r, : ¥* — re(n)

such that for all n and for all Z,§ € L™ we have fan(Z,T) = g2q(n)(In(Z), Tn(¥)). We write
F<1 _G.

—Tec



We can utilize rectangular reductions for proving lower bounds. ILet ¢ : IN — IN be an
unbounded nondecreasing function. Then we define ¢~ by ¢ (i) = max{j| ¢(j) < i}
For example let p : IRY — R* be an unbounded monotone increasing continous function and
let p~1 : R* — RY be a right-inverse to p, i. e. po p~! = 1. If we define ¢ : IN — IN to be
q(i) = [p(3)], then ¢(=D(i) = |p~1(4)], for almost all natural numbers.

The proof of the following lower bound reduction argument is easy.

Lemma 2 Assume that we are given two sequences of functions F = (fon, : X" X £" —
{0,1}),en and G = (g2n : T™ x T — {0,1}),cN- If p-Comm(F) > c(n) and if F <%, G,
then u-Comm(G) > ¢ o ¢t~V (n). a

One efficient way to get rectangular reductions is to handle with projection reductions. The
variables over {0,1}" are coordinate functions z; : {0,1}" — {0, 1} such that z;(0y,...,0,) =
o;. In accordance with Skyum and Valient (see [17]) we define.

Definition 3 1. Let f, : {0,1}" — {0,1} and g,,, : {0,1}™ — {0,1}. f, is called reducible
to gm via a projection Ty 1 {Y1,---sYm} — {21,y Tny%1,y. .., Tn, 0,1} and we write
fa <xp gm, where the z; and the y; are the Boolean variables of Fy, and g, resp., if

fa(Z1y .0y 80) = g7 (Y1)s - - -, T(Ym))-

2. If fn and gn, are given in distributed form, i. e. f, : {0,1}"? x {0,1}*/2 - {0,1}
and g, : {0,112 x {0,1}™? — {0,1}, then we say that the reduction = respects the
distribution of the variables, if

7‘-';1.-1{“:1, sy T2y Ly ey —'mn/Z} C {yh teey ym/Z}
and
"Jl{xn/u—l, voes Loy WTn a4y o —~z,} C {?lm/2+1, T

3. There is a transpose 7% : {0,1}™ — {0,1}" of the projection reduction =. It is defined
by
Th () = (Tn(91)(8), - - -, Tn(Ym)(¥)),

where & = (z1(%), ..., z.(%)) € {0,1}™ is any Boolean vector of length n.

4. If F = (fa)peN and g = (Gp),cN are sequences of functions, if Il = (Tn),cN 5 @
sequence of projection reductions defined in the first item of this definition, i. e. f, <,
gm, and if m < p(n), then we say that II ist a p(n)-projection reduction and we write
F <E G. If both F and G are given in distributed form, then the definition of the
notion “ m respects the distribution of the variables” can be done by analogy with the
second item of this definition.

If the elements of {0, 1}" are representations of graphs, then we visualize the graph which is
the transpose 7% (&) of a vector & € L™ in such a way that the edges which are not constant
are labelled by the corresponding literal (see figures 1 and 2). The meaning is that such an
edge belongs to the graph, if and only if, the labelling literal is true.

Due to Lemma 2 we get
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Lemma 3 Assume that we are given two sequences of functions F = (fa, : {0,1}" x
{0,1}" — {0,1}),cn and G = (Gam : {0,1}™ x {0,1}™ — {0,1}),,cN such that F <} G,
where p : N — IN is increasing, and Il = (m,),cN is a sequence of projection reductions
which respects the distribution of the variables. If u-Comm(F) > c¢(n), then p-Comm(G) >
cog(=(n). (m]

2 Rank arguments for upper and lower bounds

We shall derive rank arguments for proving upper and lower bounds on the length of protocols
equipped with the modular acception modes from Definition 1. We adopt the concept of
variation ranks of communication matrices developed in [11]. Throughout this section let
f denote a function f : §; x S — {0,1}, N = #S; = #5,, and let M/ denote the
communication matrix, where M;’:J- = f(i,j),fori,j=1,...,N.

Let the sequence equality function be defined by SEQ,,(21,...,%n,Y1,.-+3Yn) = Aiza(1 —
((z; + i) mod 2)). Here Sy = S = {0,1}".

Definition 4 1. Two N X N-matrices A and B over the ring of integers are defined to
be mod,,—equivalent, where m is a natural number, if and only if, for all indices i, j,

ai; =0 (modm) <= b;=0 (modm).

2. Let A be an integer matriz. We define var-rankg ,,7(A mod m) to mean the minimum
of all numbers rankz/,z(B mod m), where B is an integer matriz which is mod,—
equivalent to A.

A 0-1 matrix is interpreted as an R—matrix, where R is an arbitrary semiring, in the canonical
way. As usual, the R—rank of a m X n—matriz A over R, which we denote by rankrA, is
defined to be the minimal number & such that A = B -C, where B is a m X k—matrix and C
is a k X n—matrix over R. A straightforward calculation yields the next lemma.

Lemma 4 Let A be an integer matriz.
1. rankz;,z(A mod m) = max{rankz ,,,z(4 mod m;) [i=1,...,7},
provided that m = my - ...  mg, where (m;,m;) =1, for all i # j.

2. rankz /,z(A mod m) = min{rankz D | D is mod,, —equivalent to A}. O
Lemma 5 Let R be any semiring. Let P be a protocol of the length L on the input set
Sy X So, #51 = #55 = N, and let Acct be the N x N-matriz defined in equation 1. Then
rankp(Acct) < 2L-1,

Proof. The inequality follows directly from equation 4. ]

Now we can fully charaterize the modular communication complexity im terms of variation
ranks.
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Proposition 1
log, (var-rankz /mz(M f )) < MOD,-Comm( f) < log, (var—rankz Jmz(M f )) + 2log, m + 1.

Proof. The left inequality follows directly from Lemma 5 and from Definition 4. Let us turn
to the right one. We choose by Lemma 4 an integer matrix B which is mod,,—equivalent to
MY, such that r = rankgz,,z(B mod m) = var—rankz/mZ(Mf). Then B = B +...4+ B(),

where the B(*) have Z/mZ-rank 1. This is equivalent to Bz(Jk ) = Uz-(k) . Vj(k) (mod m), for
UM, v € {1,...,m}, and for i,5 = 1,...N.
Now we can describe the following protocol P. Assume that the input is (4,75) € S1 X S5.

First, processor P; chooses nondeterministically some indices k, 1 <k <r,and 1,1 <}; <
U-(k), and sheds (k,1y).

13
Second, processor P, chooses nondeterministically some index I3, 1 < [ < Vj(k), and sheds
(Ig,1).

Clearly, there are Y 7, U, i(k) -Vj(k) = B;; (mod m)many accepting computations assigned to
the input (2, 7). It follows that Comp(P, MOD,,) = f. Obviously, the length of the protocol
is bounded above by log, r + 2log, m + 1. a

In the case of m being a prime number, we can even do better.

Corollary 1 If m = p is a prime number, we have

1
p—1

1
p—1

log, (rankz (M s )) < MOD,-Comm( f) < -(1og2 (rankz z(M s )) + 2log, p + 1) .

Proof. By means of Fermat’s Little Theorem each protocol of length L can be transformed
into a protocol P’ of length (p — 1)L such that for all inputs (%, 5)

P p\?~1_ )0 (modp) if Acc =0 (mod p);
Accj; = (Acc,]) - { 1 (modp) if Acc];#0 (mod p).

3 The Mobius function and upper bounds on the length
of MOD,,,—protocols for undirected graph connectivity

In this section we transform a method due to Lovasz and Saks (see [12], [13]) for proving
lower bounds on the length of deterministic protocols to the case of MOD,,,—protocols in oder

to prove upper bounds. We can only give a very brief treatment on Mdbius functions. For
more see [16].

Let S be a finite partially ordered set, R be a commutative ring with 1. The R-valued
incidence algebra A(S, R) is defined as follows. Consider the set of functions of two variables

7
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f(z,y), for z and y ranging over S having values in R, and with the property that f(z,y) =0
whenever ¢ £ y. The sum and the multiplication by scalars are defined pointwise. The
product of f and g is defined as follows.

(f9)(z9) E S f(z, 2)9(2,9)

Clearly, Kronecker’s §—function is the 1 of A(S,R). The R-valued zeta function ((z,y) €

A(S, R) is defined by ((z,y) = 1if z < y and {(z,y) = 0 otherwise. The function ¢(z,y) def
((z,y) — 8(z,y) is called the incidence function.

The following formula is the key to prove Lemma 6.
1
z, = —— z,2)g(z,y) 2, 6
9(=,y) e ;f( )9(z,9)u(,9) (6)
It allows a recursive definition of the inverse of f, provided that the f(z,z) are units in R.

Lemma 6 An element of A(S, R) is a unit, if and only if, [1, f(z,z) is a unit in R. a

Consequently, we can define the R-valued Maébius function to be the inverse of the zeta
function. Let us denote this function for a moment by u(®.

Analogously to the standard real-valued case, we have the Mébius inversion formula. Let f(z)
be an R-valued function, for = ranging over the finite poset S, and let g(z) = 3=, f(¥)((y, 2)-

Then f(z) =3, 9(y)pP(y, ).

If i denotes the real-valued Md&bius function, then because of formula 6 u takes values only

in Z. Consequently, if Ry C R is the prime ring of R, which equals either Z or Z/mZ, for
some m € Z, then

(R) _ [ u(z,y) if Ry = Z;
w(w,y) = {,u,(a:,y) modm if Ro=2Z/mZ.

Now, of course, we can drop the notation u(R).

Again from formula 6 it follows that u(z, y) only depends on the the structure of the interval.
Moreover, we know, that if 4* is the M6bius function of the dual poset S*, then y*(z,y) =

Wy, ).

Let us assume from now on that the poset S is a lattice. In line with [12] we shall consider
the meet problem MEETs : § X § — {0, 1} of the finite lattice S, defined by MEETs(z,y) =
6(0,z A y). We proceed as follows. Let M be a 0-1 matrix. Check whether there are two
equal rows or colomns in M and if this is the case, then delete one of them. Do that as long
as possible. The resulting matrix M is called the core of M. Clearly, the communication
complexity of the underlying problems is the same. Now it is not difficult to see that the
core of M YCONNnn—1) equals the core of MMEET(n) | where P(n)* is the lattice dual to the
lattice of partitions of an n—set.

Lemma 7 Let M be the communication malriz of the meet problem assigned to the finite
lattice S, and let p be a prime number. Then rankz;,z(M) = #{z € § | p(0,z) # 0
(mod p)}.
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Proof. Let M be the diagonal matrix diag(p(0,%))ses, and let ¢ = (((,9))z,yes be the
matrix associated with the zeta function. Wilf observed in [19], that ¢T - M ~{ = M. The
claim follows from the M&bius Inversion Formula. a

Now let us compute #{z € S| u(0,z) Z0 (mod p)}in a special case.

Lemma 8 Let P(n)* be the lattice dual to the lattice P(n) of partitions, let p < n be a
prime number, and let u* be the Mobius function of P(n)*. Then #{zx € P(n)*|p*(0,2) #0
(mod p)} < p".

Proof: The following three facts are well-known.

Fact 1.If z € P(n), and if b(z) is the number of blocks of the partition «, then [z, 1] = P(b(z)).
Fact 2. If 4 is the M&bius function of P(n), then p*(0,1) = pu(0,1) = (—1)*"1(n — 1)L

Fact 3. Let S(n, k) denote the number of partitions of an n-set into exactly k blocks (Stirling
numbers of the second kind), then

S (n, KX = X",
k=0

where X is an indeterminant and [X] = X - (X —1)-...-(X — k+ 1) is the falling factorial.
The next equality follows from Fact 1 and from Fact 2. The next but one from Fact 3.

Y S(nk) = #{z€P(n)"|p(0,2)£0 (modp)}

k=0

Z S(n, k)
k=0

IA

> S(n,k)plk = p"
k=0

Proposition 2 Let m be arbitrary. Then MOD,,-Comm(UCONN(,_1)) = O(n).

Proof. Let p be a prime number such that p|m. By Lemma 1 we have
MOD,,,-Comm(UCONN) < % - MOD,-Comm(UCONN).

The claim follows from Corollary 1, Lemma 7, and Lemma 8. O
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4 Variation ranks and lower bounds on the length of
MOD,,—protocols for undirected graph connectivity

The following lemma improves the corresponding one from [11].

Lemma 9 Let In denote the identity N x N-matriz. Let m = plf c ..o DT be a natural
number which is given by its primary decomposition. Then var-rankz .,z (In) = [N/r].

Proof. First we prove that [N/r]| is a lower bound. Let A be an integer matrix such that
A is mod,,—equivalent to Iy and var-rankz,,z(In) = rankz A, which exists by Lemma 4.
By definition we have, for all ¢, a;; #0 (mod m), and a;; =0 (mod m), for all j # i. For
allie {l,...,N} thereis a k € {1,...,7} such that a;; #0 (mod p'*). We conclude that
there is a primary component pfc" of m, which we denote for simplicity by p', a set of indices

I7C{1,2,...,N},#I > N':=[N/r],

and, for all ¢ € Z, natural numbers »; € {1,...,[;}, such that

a; = 0 (mod p"”"),
a; # 0 (mod p’“""“),
a;; = 0 (modp),

for all j € Z, j # i. After deleting all rows and columns of A whose indices do not belong to
Z, we get an integer N’ X N'—matrix B. It is sufficient to show that det B # 0. It is easy to
see that

Y] N! i
bipce..rbyye # 0 (mod pVv H1=3 5 %), but

)

I- p— N' .
bro() - byipvy = 0 (mod pVHI2ina %),

for all permutations o of the set {1,..., N’} different from the identity permutation. Conse-
quently,

det B=byy-...-byry £0 (mod pN'H-Lila %),

Second let us prove that [N/r] is an upper bound. Let f; = p;l‘ =1 pif, F;=(fi,--, £,

and 4; = FJT -Fjfori,j=1€ {1,...,r}. Agis defined to be the unique 0 X 0—matrix, which,
of course, has rank 0. Clearly, A; mod m is a j X j—diagonal matrix of Z/mZ-rank 1, for
j €{1,...,r}. Define the matrix A to be the following direct sum of matrices.

where ' = N (mod ), and #' € {0,...,7 — 1}. It follows that A mod m is a diagonal
N x N-matrix, and that rankz /,,z(A mod m) < [N/r]. a

Proposition 3 For m arbitrary, we have that MOD,,-Comm(SEQ,,) = O(n).

Proof. The claim follows from Proposition 1 and from Lemma 9. a

10



Lemma 10 SEQ = (5EQ,,)nen is reducible to UCONN = (UCONN,(,_1))nen given in
distributed form via a O(n?)-projection reduction with respect to the partition of the variables.

Proof. Consider an input (¢1,...,%,,%1,...,u,) of SEQ,, The projection reduction
Tn(n—1) * {mijvyij |4,5=1,...,n,8 <3} = {0,L,t,,u,,ty,~u, | v=1,.. - N},

where the values of the Boolean variables z;; and y;; define the graphs G, and G5 accessible

to the processors Py and Pa, is defined by the help of Figure 1 and Figure 2, in which the
transpose

Wfl(n—l)(tl’ couytn, U, .,’u,n)

is shown. Clearly, this graph is connected, if and only if,

SEQ2n(t1)' cesln, UL, .- -,un) =1.

a
Now it is easy to prove the lower bound.
Proposition 4 Let m be arbitrary. Then MOD,,-Comm(UCONN(,,_1)) = (n).
Proof. The claim follows from Lemama 10, Lemma 3 and Proposition 3. a
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Figure 1: The graph W’fz(n-—l)(th ey by Uy e ey Uy)
K, 5 denotes full bipartite graph having 2 x 2 nodes, G(%,,u,) is defined in Figure 2.
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Figure 2: The graphs G(%,,u,) of Figure 1
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Abstract

For each ¢ < 2 there exist a model Ml of IAg(«) which satisfies the
Count(q) principle. Furthermore there exist n,r» € M and a bijective
map f € Set(M) mapping {1,2,...,n} onto {1,2,...,n+¢"}.

A corollary is a complete classification of the Count(q) versus
Count(p) problem. Another corollary solves an open question ([3]).

In this note I state and prove a Theorem which actually can be viewed as
the main result of [10].

Theorem: Let ¢ > 2. Suppose that r(n) is an function with
(a)  limpeo r(n) = oco.

(b) For all e >0 limy_,0o 9? =0

Suppose that F is any system of Bounded Arithmetic over some countable
language L. Suppose that L in addition to the language of arithmetic also
contains at least one undefined relation symbol. Suppose that all terms t in
L have polynomial growth rate. Then there exists a model M of F such that:

(i) M [ Count(q).
(ii) The PHP}, . (bij)-principle fails in M.

Here PHP; (bij) is the the elementary principle stating that there does not
exists n and a bijective map from {1,2,...,n} onto {1,2,....,n + s}. And

*Basic Research in Computer Science, Centre of the Danish National Research
Foundation.



Count(p) is the elementary matching principle stating that if {1,2,...,n} is
divided into disjoint p-element subsets, then p divides n. The principle is
expressed as a Ag-axiom scheme.

Proof: As in [10] let M be a countable non-standard model of first order
Arithmetic. Then by a similar forcing construction (which actually avoids
certain technical problems) we expand M by a generic bijection f mapping
{1,2,...,n} onto {1,2,....,n + ¢"™}. Assumption (a) allows us to assume
that ¢"(*) is a non-standard number. Furthermore condition (b) ensures that
the circuit collapsing argument goes through. Now it follows by the analysis
in [10] that the Count(p) principle can never be forced false. If it was false,
there would exists an impossible M-definable object. In this case a forest
of (D, R)-labelled trees where | R | — | D |= ¢, but where all trees
would have hight dominated by some standard number. This violates the
main lemma (lemma 6.1.5) in [10]. Finally M* is got a the initial segment
{meM: n*>m,keN} ]
Corollary 1: (Settling conjecture by Ajtai [3], [5], [10])

For different primes q,p Count(q) / Count(p)

Corollary 2: (Obtaining the complete classification [4], [10])

For fized q,p > 2 the following is equivalent

(a) p divides a power of q

(b) Count(g) + Count(p).

Proof: The implication (a) => (b) was shown in [4] or [10]. The implication
(b) = (a) follows from the Theorem. According to the Theorem Count(p)

i PHPY . (bij) if Count(q) I Count(p). But then by the easy ‘only if” in
corollary 1, p must divide a power of q. O

Corollary 3: (Solving the Count versus PHP problem) Let r(n) be
as above. For each q,p > 2
Count(p) ¢/ PHP:H,(,‘)(bij) if and only if p divides a power of q.

Let PHP**?(inj) be the the statement that there is no n and no injective map
from {1,2,....,n+p} into {1,2,....,n} and let PHP}, (sur) be the statement
that there is no n and no surjective map from {1,2,..,n} onto {1,2,...,n+p}.

Corollary 4: (Answering an open question in [3])
() PHPZ,,(bij) i/ PHPIH (inj).
(b) PHP:*(inj) -+ PHP},(sur).

2
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(c) Count(q) I/ PHP**(inj).

Proof: (b) is a simple exercise, and (a) clearly follows from (c). To show (c)
notice that PHP;*!(inj) - PHP} .., (bij) for any r. a
This shows that the Pigeon-hole Principle for injective maps are efficiently
stronger than the Pigeon-hole Principle for bijective maps. Actually it shows

that:

Corollary 5: There ezists a model M* of IA¢(c) in which Count(p) holds for
each p € N\{1}. Yet, there exists n € M* and an injective map f € Set(M*)
mapping {1,2,...,n+ 1} into {1,2,...,n}.

Proof: By the completeness theorem it suffice to show that for each finite
set py, pa, .., pr of integers, the conjunction Count(p;) A ....A Count(p;) does

not imply PHP**!(inj). This follows by an argument similar to the one given
for (c) in corollary 4. a
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Abstract

Polynomial-time approximation algorithms with non-trivial performance
guarantees are presented for the problems of (a) partitioning the vertices
of a weighted graph into &k blocks so as to maximise the weight of crossing
edges, and (b) partitioning the vertices of a weighted graph into two blocks
of equal cardinality, again so as to maximise the weight of crossing edges.
The approach, pioneered by Goemans and Williamson, is via a semidefinite
relaxation.

1 Introduction

Goemans and Williamson [5] have significantly advanced the theory of approx-
imation algorithms. Previous work on approximation algorithms was largely de-
pendent on comparing heuristic solution values to that of a Linear Program (LP)
relaxation, either implicitly or explicitly. This was recognised some time ago by

Wolsey [11]. (One significant exception to this general rule has been the case of
Bin Packing.)

The main novelty of [5] is that it uses a Semi-Definite Program (SDP) as a relax-
ation. To be more precise let us consider the problem MAX-CUT studied (among
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others) in [5]: we are given a vertex set V = {1,...,n} and non-negative weights
w;j, 1 < 4,5 < n, where w;; = w;; and w;; =0 for all4,j. If S C Vand S=V\S
then the weight of the cut (S :S) is

w(S:8)= > w.

i€S,je8
The aim is to find a cut of maximum weight.

Introducing integer variables y; € {—1,1} for j € V we can formulate the MAX
CUT problem as

IP: maximise ¥ ;c;w;;(1—yy;) (1)
subject to y; € {~1,1}, VjeV

The key insight of Goemans and Williamson is that instead of converting this to
an integer linear program and then considering the LP relaxation, it is possible to
relax IP directly to the following

SDP: maximise 13, . w; (1 —v;-v;)
subject to v; €5, VjeV

Here S, = {z € R" : ||z]] = 1} is the unit sphere in n dimensions. SDP’s are
a special class of convex program (see Alizadeh [1] for a detailed exposition). In
particular the above problem can be replaced by

CP: maximise % i< wi,j(l - Yi,j)
subject to Y;; =1, VjeV (2)
Y=[Y,]>0

Here Y; ; replaces v; - v;, and the notation Y > 0 indicates that the matrix Y is
constrained to be positive semi-definite; this constraint defines a convex subset
of R”. The idea of Goemans and Williamson is to solve SDP and then use the
following simple (randomised rounding) heuristic to obtain a remarkably good
solution to MAX-CUT: choose a random hyperplane through the origin, and
partition the vectors v; (and hence the vertex set V) according to which side of
the hyperplane they fall.

This is an exciting new idea and it is important to see in what directions it can be
generalised. In this paper we do so in two ways. First we consider MAX k-CUT
where the aim is to partition V into k subsets: for a partition P = P, P,..., P,
of V we let |P| =/ and

wP)= ) . Wi

1<r<s<¢ i€Pr,jePs

The problem is then

MAX k-CUT: maximise w(P)
subject to |P| = k.

2
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Note that MAX k-CUT has an important interpretation as the search for a ground
state in the anti-ferromagnetic k-state Potts model: see Welsh [10]. To attack
this problem we need to be able to handle variables which can take on one of
k values as opposed to just two, a similar problem to that faced in trying to
colour 3-colourable graphs [6]. Our solution is a natural extension of the existing

solution for the case k = 2, but the performance analysis presents greater technical
difficulties.

The simplest heuristic for MAX k-CUT is just to randomly partition V into k sets.
If P denotes the (random) partition produced and P* denotes the optimum par-
tition then it is easy to see that

B@(?) 2 (1- 1) u()

since each edge (4, j) has probability (1 — ¥7") of joining vertices in different sets
of the partition.

We describe a (randomised) heuristic £.-CUT which produces a partition P,. We
prove the existence of a sequence of constants oy, k > 2 such that if P, denotes
the optimal partition in MAX k-CUT then:

Theorem 1
E(w(Py)) > axw(Py),

where the «;, satisfy

(l) (892 > 1~ k—l;
(i) ax— (1 —k™) ~2k%Ink;

(ili) ap > 0-878567, ay > 0-800217, a, > 0-850304, o > 0-874243, oy >
0-926642, and a4 > 0-990625.

The performance ratio for £ = 2 is the same as that achieved by Goemans and
Williamson, as our heuristic is a generalisation of theirs.

Our next result concerns the problem MAX BISECTION. Here we have to parti-
tion V into two subsets of equal size (assuming that n is even) so as to maximise w.

MAX BISECTION: maximise w(P)
subject to P =S,V \S
|S| = n/2.

A random bisection produces an expected guarantee of 2. We describe a heur-

istic BISECT which produces a partition Pg such that if P denotes the optimal
bisection,



Theorem 2 Let € be a small positive constant. Then E(w(Pg)) > Bw(Py) where
B = 2(1/2(1 — €)a, — 1), which is greater than 0-65 for € sufficiently small.

Note that a, = 0-878567..., as in Theorem 1. The difficulty with generalising
Goemans and Williamson’s heuristic to MAX BISECTION is that their heuristic
does not generally give a bisection of V. We prove that a simple modification of
their basic algorithm beats the trivial 1 lower bound.

Note that there is a natural generalisation of this problem MAX k-SECTION
where we seek to partition V into k equal pieces. Unfortunately we cannot prove
that the natural generalisation of our bisection heuristic beats the 1 — k™' lower
bound of the simple random selection heuristic when k£ > 3.

2 MAX k-CUT

In this section we describe our heuristic k-CUT. We first describe a suitable way of
modelling variables which can take one of k values. Just allowing y; =1,2,...,k
does not easily yield a useful integer program. Instead we allow y; to be one of
k vectors ay,ay,. . .,a; defined as follows: take an equilateral simplex X, in R*™!

with vertices by, by, ..., b;. Let ¢, = (b +by+---+b;)/k be the centroid of ¥, and
let a; = b; — ¢, for 1 <7 < k. Finally assume that X, is scaled so that |a;| = 1 for
1<1<k.

Lemma 1

a;-a;=—1/(k—1), fori#j. (3)

Proof Since a,4,,...,a; are of unit length we have to show that the angle
between a; and a; is arccos(—1/(k — 1)) for ¢ # j. Let b;,b,,...,b;_; lie in the
plane z;_; = 0 and form an equilateral simplex of dimension k —2. Let b, = (b:, 0)
for 1 <: < k-1, where b:. has dimension k£ —2, and assume b'1 +b’2+ eeet b;_l =0.
Then ¢; = (0,0,...,0,z) and b, = (0,0,...,0, kz) for some z > 0. But |by—c;| =1
and so z = 1/(k —1). But then (b, — cz) - (by — ;) = —(k— 1)z® = —1/(k—1). O

Note that —1/(k — 1) is the best angle separation we can obtain for k vectors as
we see from:

Lemma 2 Ifuy,uy,...,u; satisfy fu;| =1 for 1 <i <k, and u;-u; < fori#7j,
then v > —1/(k —1).

Proof

(ug +up+ -+ uy)”
k+ k(k—1)y.

IA A

4
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Given Lemma 1 we can formulate MAX k-CUT as follows:

IP,: maximise k%l Yiciwii(L—y; - y;)
subject to y; € {a;,a,,...,a;}.

Here we use the fact that

_Jo, ify=uy;
1"-’”'%-{;5-1-, if y; # y;

To obtain our SDP relaxation we replace y; by v;, where v, can now be any

vector in S,. There is a problem in that we can have v; - v; = —1 whereas
Yy; - y; = —1/(k —1). We need therefore to add the constraint v;-v; > —1/(k —1).
We obtain
SDP,: maximise £ w; (1 —v;-v;)
subject to v; € S,, Vj (4)
v;-v; 2 —1/(k—-1), Vi#j

Note that (4) reduces to the linear constraint Y;; > —1/(k — 1) if we go to the
convex programming form CP. We can now describe our heuristic

E-CUT:

Step 1 solve the problem SDP; to obtain vectors vy,v,,...,v, € S,.

Step 2 choose k random vectors zy,z,,. .., 2.

Step 3 partition V' according to which of 2, z,,. .., 2, is closest to each v;, i.e.,
let P =P, P,,..., P, be defined by

H:{j:vj-z,-ZUj-z,-,fori¢i'}, for1 <:<k.

(Break ties for the minimum arbitrarily: they occur with probability zero!)

The most natural way of choosing z,, z,, .. ., 2 is to choose them independently at
random from S,,. Forcing |z;| = 1 complicates the analysis marginally and so we
let z; = (215,224, -+ 2n,;)s 1 < J < k where the z;; are kn independent samples
from a (standard) normal distribution with mean 0 and variance 1. When k = 2
we have the heuristic of Goemans and Williamson, although they define it in terms
of cutting S, by a random hyperplane through the origin.

Let W, denote the weight of the partition produced by the heuristic, let W," be the

weight of the optimal partition and let W, denote the maximum value of SDP,.
Putting y; = a; for j € P;, 1 <1 < k we see that

E(Wy) = > w;; Pr(y; # v;)- (5)

<]



Now by symmetry Pr(y; # y;) depends only on the angle # between v; and v;, and
hence on p = cos6 = v; -v;. Let this separation probability be denoted by ®,(p).
It then follows from (5) that

E(W;) S E(W,)
Wy T W
_ Yici Wi ; Prlv; - ;)
B Ticj wig(l = v - v;)
Z o,
where
_ k®.(p)
ak =

1/t (k—1)(1 —p)’

We leave the estimation of the a; to an appendix (see Corollaries 1, 2, and 3).
Suffice it to say that they satisfy the claims of Theorem 1.

3 MAX BISECTION

We now describe how to ensure that the partition we obtain divides V into equal
parts. As an integer program we can express MAX BISECTION as

IPg: maximise 3. w; ;{1 —vy;) i =
subject to Y ;;yiy; < —n/2 (6)
y; € {*1,1} VjeV

Constraint (6) expresses the fact that we force |S| = n/2 by maximising the
number of pairs z,7 where ¢ € S,7 ¢ S. It has the advantage of being easily
relaxed to give an SDP problem:
SDPg: maximise %3, ;w;;(1—v;-v;)
subject to Y, ;v;-v; < —n/2 (7)
v; € S'n,a V] ev

We can now describe our heuristic: € is a small positive constant, € = 1/100 is
small enough.

BISECT

Step 1 solve the problem SDPg to obtain vectors vy,v,,...,v, € S,.

Repeat Steps 2-4 below for t = 1,2,... K = K(¢) = [¢ "lne '] and output the
best partition S,V \ S, found in Step 4.
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Step 2 choose 2 random vectors z,, z,.
Step 3 let S, = {j : v; ~2; < v; -z}

Step 4 suppose (w.l.o.g.) that |[S;] > n/2. For each i € S; let ((z) = ¥jgs, wi
and let S; = {x),z,,...,2,} where {(z,) > ((zy) > --- > ((z,). Let 5, =
{11:1, ¢ sevey $n/2}.

Clearly the construction in Step 4 satisfies

w(@,: v\ 5)z BB VAT, ®)

In order to analyse the quality of the final partition we define two sets of random
variables.

X, = w(S,:V\S), 1<t<K.
Y, = [S(n—1[S]), 1<t<K.

Recall that Py denotes the optimum bisection, and let W” > w(P}) denote the
maximum of SDPg. Then, by the analysis of Theorem 1 (or [5]),

E(X,) > a,W". (9)
Also

E(Y) = > ®(v;-v;)

1<j

v
—~
[T
I
=
<
s
~—r

> asz

where N = n?/4 (note the use of (7) here.)

Thus if x v
_ t -t
L=grty
then
E(Z,) > 2. (10)
On the other hand
Zt S 27 (11)

since X; < W* and Y; < N.
Define Z, = max;<;<x{Z;}. Now (10) and (11) imply that for any € > 0

1—(12
Z; <2(1 - <
Pr( 1 = ( 6)02) -_ 1—-—(1—6)0{2

7
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and so

Pr(Z, <2(1 - €)ay) < (i—_l(T__a—zeE)K <e

for the given choice of K(¢€). Assume that
Z,> 21 - €)ay (12)

and suppose

which from (10) and (12) implies
Y, > (2(1 — €)ay — A)N. (13)
Suppose |S,| = én; then (13) implies
8(1—6) > (2(1 — €)ay — X) /4. (14)
Applying (8) and (14) we see that

w(S,:VASE) > w(S,:V\S5,)/(26)
AW /(26)
(2(1 — €)ay — 46(1 — 6))W™/(26)

2(v/2(1 - €)a, — 1)W™.

The last inequality follows from simple calculus.

Thus

AVAR AVAN Y]

E(w(S,)) > 2201 — e)ag —1) (1 - (1—_1(—-1??“2—);2) ) W
> 2(y/2(1 = 3e)ay, — 1)W™.

Finally note that the partition output by BISECT is at least as good as 5. We
divide € above by 3 to get the precise result.

4 Appendix

Let u,v be vectors, and ry,...,r; be a sequence of vectors, all in R". We say that
u and v are separated by r,,...,r if the vector r; maximising u - r; is distinct from
the vector r; maximising v - 7;. When we speak of a random vector, we mean a
vector r = (§;,...,§,) whose coordinates ¢; are independent, normally distributed
random variables with mean 0 and variance 1. Note that the probability density

8



200

function of r is (27r)“n/ 2 exp(—~(§12 + -+ 52) /2), and in particular is spherically
symmetric.

Denote by g(z) = (27r)_1/ ?exp(—x/2) the probability density function of the uni-
variate normal distribution, and by G(z) = [°_ ¢(£) d¢ the corresponding cumu-

lative distribution function. For z = 1,2,..., the normalised Hermite polynomials
#;(-) are defined by

(1) Vi @lgte) = T2 (15)

Let h; = h;(k) denote the expectation of @;(zyax), where Tpnay 15 distributed as the
maximum of a sequence of k independent normally distributed random variables.

Lemma 8 Suppose u,v € R" are unit vectors at angle 9, and r{,...,7 is a
sequence of random vectors. Let p = cos = u-v, and denote by Ni(p) = 1—P;(p)
the probability that v and v are not separated by ry,...,r;. Then the Taylor series
erpansion

Ni(p) = ap+ a1p+ azp” +agp” +---

of Ni(p) about the point p = 0 converges for all p in the range |p| < 1. The
coefficients a; of the expansion are all non-negative, and their sum converges to
Ni(1) = 1. The first three coefficients are ag = 1/k, a; = h2/(k —1) and a, =
kh2/(k —1)(k —2).

Proof We begin by computing the joint distribution of z =u-r andy =v-r,
where r = (§,...,&,) is a random vector. Since the density function of r is
spherically symmetric, this joint distribution is dependent on 6 only, and not
on the particular choice of v and v; for convenience let v = (1,0,...,0) and
v = (cosb,sind,0,...,0). Then
Pr(u-r <z and v-r <y)
= Pr(§1 <z and & cosf+ &,sinf < y)

(y—£&1cos8)/sin @ §f+€;>
exp (—222 ) dg, d
27r ‘/5’1——00 /;2-——00 ( 2 62 61

T ¢ —2cos(0)(1Ga + 5
o sin 0 /(1=_oo /gz=_°o exp (_ : z(zl(nfg)lz : 2) d(y d(y,

where we have applied the change of coordinates {; = ¢; and (, = &; cos 0+¢&, sin 6.
The joint probability density function of ¢ =u -7 and y = v - r is thus

1 z? — 2pzy +y°
—————eXp | — ,
274/1 — p? 2(1—p%)
where p = cos 0; this is the probability density function of the bivariate normal
distribution in standard form, with correlation p = cos 6. Denote by

Fewo=[ [ fempd

f(z,y;0) =

9
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the corresponding cumulative distribution function.
Let rq,...,r; be independent random vectors; then
Pr(u and v are not separated by ry,...,7;)
=k xPr(u-ry = maxu-r; and v -7, = maxv-r;)
1

=kI(p),

where o oo .
I(p) =/_w/_wf(w,y;p)F(w,y;p) ~dz dy.

There is no expression for the integral I(p) in closed form, so we compute in-
stead a Taylor series expansion for I(p) about p = 0 using ideas (and notation)
from Bofinger and Bofinger [2]. The Mehler expansion [9] of the bivariate normal
probability density function

F(z,530) = 9(2)9() (1 + pba(2) 1 (¥) + £°$2(®)ba(y) +---),  (16)

converges uniformly for |p| < 1. Three facts that follow easily from the Mehler
expansion and definition (15) of the Hermite polynomials are:

Zda;g(x)¢i—1($) = “‘/;9(3?)4{%'(33)’ (17)
a—FS;’pﬂ’z = f(z,¥;0) (18)

and .
-37{ = i1 g(2)9(y)¢:(2):(y)- (19)

We now evaluate I(p) and its successive derivatives with respect to p at the point
p = 0 by noting that F(z,y;0) and f(z,y;0) factorise into G(z)G(y) and ¢g(z)g(y),
respectively. In this way we obtain a Taylor series expansion for I(p) about the
point p = 0. We defer an examination of the radius of convergence of this Taylor
expansion to the end of the proof.

Starting with I itself, we have

10 = ([ )6t "ds) = 1,

where the second equality can be seen by interpreting the integral as the prob-
ability that the maximum of a sequence of k¥ independent, normally distributed
random variables is achieved by the first variable.!

(20)

ntegration will be assumed to be over the infinite line when the limits of integration are
omitted.

10
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By identities (18) and (19),

Q{
dp

) (/ g(e)h(@)Gle) ™ da;)2 +(k—-1) (/ 9(z)*G(x)*? dﬂﬂ)2 .

p=0

(Passing the derivative through the integral is justified by Section 1.88 of Titch-
marsh’s text on analysis of functions [8].) The first integral is simply %, /k; the
second may be simplified using integration by parts, and identity (17):

k-1
[ o) a(2)6(e) ) da - [9—(—),;%)——] - [ {E)6e) s

= [ o) ()C) o
h
T kEk—-1)

Substituting these expressions for the two integrals yields

a1
dp

by

p=0 N k(k - 1)' (21)

Differentiating with respect to p a second time, we obtain

&I

0p?

_9 ( [ o(=)$s(2)G(2)* d:c)2

p=0

+3(k—1) ( [ o(e$1(z)G(z)" da:>2
+(k=1)(k—2) ( [ o(@yG(z) da:)2 .

The first integral is just h,/k. The second, using integration by parts and iden-
tity (17), is

[ E@6@)g(@)GE@) ) do = = [(~VEg(e)br(@)C(e) de
VEh,

T kEk-1)

A further application of integration by parts reduces the third integral to the
second, from which

2v/2 b,
(k—-1)(k—-2)

Jo@°G@)" = -

11



Substituting these expressions for the three integrals yields

o1

0p?

. 6 8 2 2h?
o (7?2 TR T PRk 2)) "= (k—1)(k-2) (22)

In principle the process of repeated differentiation by p could be continued indef-
initely; for any ¢, the ith derivative of I(p) evaluated at p = 0 is a positive linear
combination of squares of one-dimensional integrals. This observation, combined
with (20), (21), and (22) establishes the claims concerning the Taylor expansion
of I(p).

It remains to show that the Taylor expansion of I(p) is valid for |p| < 1 and
hence — by continuity of Ni(p) at p = 1 and the fact that all terms in the
expansion are positive — for |p| < 1. Observe that I(p) is defined by an integral

of the form -
I{p) = //Zp’s,-(w,y) dz dy, (23)

=0
where s;(z,y) = Z?‘:Bl t;;(z,y) is a sum of terms ¢;;(z,y), and each term ¢;;(z,y)
is a product of factors of the form g(z)g(y)¢i(x)di(y). Now [f|t;;(z,y)ldzdy <
2.6, since [ |g(z)di(z)|dz < 1.6 and max, |g(z)¢(z)] < 1 for all I. (These facts
follow from the key inequality on page 324 of Sansone’s treatise on orthogonal
functions [7], which bounds |(z)| by cexp(—z’/4) for an absolute constant c;
note, however, that the bound given by Sansone is for un-normalised Hermite
polynomials, and must be scaled accordingly.) Noting that n; = O(ik"l), we see

ni—1

that the sum "
S0 Y [[ iz v)l dody

1=0 =0

converges, provided |p| < 1. Thus — by uniform convergence of the Mehler expan-
sion, and the theorems contained in Sections 1.71 and 1.77 of Titchmarsh [8] —
it is permissible to integrate (23) term by term, yielding

I(p) = };p" J[ sey) dedy.

The above expression is a power series expansion of I(p) valid for |p| < 1, which
must be identical to the Taylor expansion, by uniqueness. O

Denote by Ax(p) the function

k(1 - Ny(p))

(k=1)(1 ~p)’

and recall that the performance ratio of the k-CUT heuristic is given by

= o AlP)

Ai(p) =

12
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Corollary 1 o, > 1—k™, for all k> 2.

Proof At p = 0, the numerator and denominator of A.(p) are both k — 1; at
p = 1 they are both 0. Since the power series expansion of Ny(p) has only positive
terms, the numerator is a concave function in the range 0 < p < 1, and hence
Ai(p) > 1 in that range.

Turning to the case p < 0, note that Ni(1) = 1 and N(—1) = 0 implies T_; cyen @; =
%; furthermore, since h, (k) increases with k and h,(3) = 3/2,/7 (using calculations

described by David in [3, Section 3.2]), we have a; > 9/4w(k — 1). Therefore,

1 9(-p) N ).

R R Ty ()

pz
t3

where the second inequality is valid over the range —1/(k — 1) < p < 0, since
9/4n — 1/2 > 1/5; hence

1 k(—p)
w02 72 (14 55 205)

It is easily verified that the above expression is strictly greater than 1 — k™' over
the closed interval —1/(k —1) < p <0. O

Corollary 2 a; — (1 — k') ~ 2k In k.

Proof Galambos [4, Section 2.3.2], gives the asymptotic distribution of the
maximum of k independent, normally distributed random variables. In partic-
ular the quantity k,(k), which is just the expectation of the maximum, satisfies
hi(k) ~ v/2In k. Thus we have the asymptotic estimate

1 2Ink 2
Ni(p) = 7+ (1+e(k)) ——p + 0(s"),
where ¢(k) is a function tending to 0, as & — oco. The result follows by arguments
used in the proof of the previous corollary. O

Corollary 3 a, > 0-878567, a; > 0-800217, a, > 0-850304, o > 0-874243,
a0 > 0-926642, and ayep > 0-990625.

Proof The value of a, was obtained by Goemans and Williamson. For k£ > 3,
we use the bound Ni(p) < 1/k + a;p + azp® + p*/2, valid for -1 < p < 0, and
evaluate a; and a, numerically. (Observe that the coefficient of p° is positive, and
hence the term itself makes a negative contribution.) Note that by computing
further terms in the Taylor expansion of Ny(p) it is possible to give better bounds
on ay; e.g., by expanding to the term in p*, we obtain ag > 0-832718. O

13
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On Rank vs. Communication Complexity

Noam Nisan *

Abstract

This paper concerns the open problem of
Lovész and Saks regarding the relationship
between the communication complexity of a
boolean function and the rank of the associ-
ated matrix. We first give an example ex-
hibiting the largest gap known. We then
prove two related theorems.

1 Introductioh

For a 0,1 matrix M, denote by ¢(M) the de-
terministic communication complexity of the
associated function [Y79], and by rk(M) its
rank over the reals. It is well known [MS82]
that logrk(M) < (M) < rk(M). It is a
fundamental question of communication com-
plexity to narrow this exponential gap. As
rank arguments are the main source of de-
terministic communication complexity lower
bounds, and the rank function has many use-
ful properties, it would make life nicer if the
lower bound was rather tight. A tempting
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Avi Wigderson T

conjecture (see [LS88]) is

Conjecture 1 For every matrizx M, ¢(M) =
(log k(M)

Lovész and Saks [LS89] also show that this
conjecture is strongly related to a conjecture
of van Nuffelen [Nu76] and Fajtlowicz [Fa87]
regarding the connection between the chro-
matic number of a graph and the rank of its
adjacency matrix.

Several authors have obtained separation
results between ¢(M) and logrk(M) [AS89,
Raz92]. The best separation known so far
gives an infinite family of matrices for which
c(M) > logrk(M)logloglogrk(M) [RS93].
Our first result is an example with a much
larger gap.

Theorem 1 There exist (explicitly given) 0-
1 matrices M of size 2™ x 2" such that c(M) =
Q(n), and logrk(M) = O(n%), where a =
logs 2 = 0.63...

The same Q(n) lower bound applies also to
the randomized and to the nondeterministic
communication complexities. The construc-
tion is based on boolean functions with high
“sensitivity” and low degree. Such a func-
tion was constructed in [NS92]. The lower
bound for the communication complexity re-
lies on the known lower bounds for random-
ized communication complexity of “disjoint-
ness” [KS87, Raz90]. Recently Kushilevitz
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[Ku94] has somewhat improved the construc-
tion of [NS92| and has thus reduced the value
of o to loggd = 0.61.... The main lemma
of [NS92] shows however that this technique
cannot reduce the value of a to below 1/2.

We then return our attention to conjec-
ture 1, and consider weaker related conjec-
tures. To explain them, we need some nota-
tion. If S is a subset of the entries of M, let
Sp and Sy denote respectively the subsets of
S whose value is 0 and 1 respectively. Call S
monochromatic if either S = Sy or S = 5;.
Let mono(M) denote the maximum fraction
|A|/| M| over all monochromatic submatrices
A of M. When S is not monochromatic, we
will be interested in the advantage one color
has over the other. The (absolute) discrep-
ancy of S is 6(S) = |(|Se| —|S1})/| M||. Define
disc(M) to be the maximum of §(A) over all
submatrices A of M.

Since an optimal protocol for M partitions
it into at most 2) monochromatic rectan-
gles, we have the basic relation:

disc(M) > mono(M) > 27)
or, equivalently,
—log disc(M) < —logmono(M) < c(M).

Thus two conjectures weaker than Con-
jecture 1 suggest themselves. They respec-
tively assert that low rank matrices have large
monochromatic rectangles, or weaker still,
large discrepancy.

Conjecture 2 For every M,
— log mono(M) = (log rk(M))°W

Conjecture 3 For every M,
—log disc(M) = (log rk(M))°®)

As mentioned, Conjecture 1 — Conjecture
2 — Conjecture 3. We first prove, in theorem
2, that conjectures 1 and 2 are equivalent. We
then prove, in theorem 3, (a strong form of)
conjecture 3.
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Theorem 2 Conjecture 1 iff Conjecture 2.

Thus in order to prove conjecture 1 it suf-
fices to show that every low rank boolean ma-
trix has a “large” monochromatic submatrix.
In fact, the proof of the theorem implies that
it suffices to show that every rank r boolean
matrix has a “large” submatrix of rank at
most, say, 0.99r.

Theorem 3 For every M, 1/disc(M) =
O(rk(M)3/?).

Note that Theorem 3 implies Conjecture 3.
The bound in this theorem is nearly tight:
for every r there are infinitely many matrices
M of rank r and 1/dise(M) > r. This can
be easily seen by taking any square array of
r X r Hadamard matrices.

This theorem supplies the first clue that
low rank has something to do with low com-
munication complexity, though in a very weak
sense. The communication model we have
in mind is distributional communication com-
plexity, where the inputs are chosen at ran-
dom [Y83]. For this model, low rank guar-
antees a cheap protocol with a nontrivial ad-
vantage over guessing the function value. In
the protocol each player sends one bit speci-
fying whether or not his input is in the biased
rectangle. Precisely:

Corollary 1 If rk(M) = 7, then there is a
2 bit protocol P, which satisfies Pr[P(z,y) =
M(z,y)] > 1/2 + Q(1/r%?), where the input
(z,y) is chosen uniformly at random.

2 Proof of Theorem 1

We will require the following definition.
Defininition: Let f : {0,1}" — {0,1} be

a boolean function. We say that f is fully
sensitive at 0 if f(0) = 0 and yet for any
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vector z of hamming weight 1 (i.e. for any
unit vector), f(z) = 1.

The degree of f, deg(f) is defined to be the
degree of the unique multivariate multi-linear
polynomial over the reals which agrees with

fon {0,1}".

In [N'S92] it is shown that any boolean func-
tion which is fully sensitive at 0 must have
degree of at least \/n/2. They also give an
example of a fully sensitive function with de-
gree significantly less than n.

Lemma 1 [NS92] There exists an (explicitly
given) boolean function f : {0,1}* — {0,1}
which is fully sensitive at 0 and deg(f) = n®,
Jor a =logg 2 = 0.63.... Furthermore, f has
at most 2°") monomials.

For completeness we repeat the construc-
tion of [NS92].

Proof: Let E(zi,2,23) be the symmetric
boolean function giving 1 iff exactly 1 or 2
of its inputs are 1. It is easy to check that
E is fully sensitive at 0. One may also read-
ily verify that deg(F) = 2 as FE(z1,29,23) =
21+ 29 + 23 — 2120 — 2123 — 2923. We now
recursively define a function E; on 3% in-
put bits by: E%z) = 2z, and Ef() =
E(E*1(.), E¥~1(.), E¥"1(.)), where each in-
stance of E*! is on a different set of 3%!
input bits. It is easy to prove by induc-
tion that (1) E* is fully sensitive at 0, (2)
deg(EF) = 2%, and (3) E* has at most 62 1
monomials. Our desired f is the function E*
on n = 3* variables!. O

We now transform f into a matrix as fol-
lows.

'Recently, [Ku94] has improved upon this con-
struction by exhibiting a function £’ on 6 variables
which is fully sensitive at 0 and with degree only 3.
Using the same recursion, this reduces o to logg3 =
0.61...

Definition: With every boolean function f :
{0,1}* — {0, 1} we associate a 2" x 2" matrix
M; as follows:

Mf(&h oo TpyYr .- yn) - f(ml‘yl,xZ‘Zh cen xn'yn)

The properties of My are ensured by the
following lemmas.

Lemma 2 If f is fully sensitive at 0 then
e(My) = Q(n). The same lower bound holds
for the randomized and for the nondetermin-
istic complezity of M;.

Lemma 3 Let f be a polynomial with m
monomials, then rk(M;) < m. In particu-

lar, if d = deg(f) then rk(M;) < T3, (“) -
20(dlogn)'

Proof (of lemma 2): This proof is a direct
reduction from the known lower bounds for
the randomized communication complexity
of disjointness. These bounds actually show
that it is even hard to distinguish between the
case where the sets are disjoint and the case
where the intersection size is 1.

Let the UDISJ problem be the following:
the two players are each given a subset of
{1...n}. If the sets are disjoint they must
accept. If the sets intersect at exactly 1 point
then they must reject. If the size of the inter-
section is greater than 1 then the players are
allowed to either accept or reject.

Theorem ([KS87], see also [Raz90]):
Any communication complexity protocol for
UDIS J requires Q(n) bits of communication.
The same is true for non-deterministic and for
randomized protocols.

Now notice that if f is fully sensitive at
0 then any protocol for M 7 directly solves
UDISJ. This is done by transforming each
set to its characteristic vector. If the sets are
disjoint then for each i, z;y; = 0, and thus
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My(Z,7) = f(0) = 0. If the intersection
size is exactly 1 then in exactly 1 position
z;y; = 1, and thus Ms(Z,9) = 1. O

Proof (of lemma 3): Let f(z1...2,) =
Y s @sIlics 2z be the representation of f as
a real polynomial. By the definition of M it
follows that My = Y 5 agMg, where the ma-
trix Mg is defined by Ms(Z,9) = [Lies i - ¥i-
But clearly for each S, rk(Ms) = 1. It follows
that the rank of My is bounded from above by
the number of non-zero monomials of f. The
bound in terms of the degree follows directly.
O

The combination of lemmas 2 and 3 with
the function E* constructed in lemma 1 gives
the statement of the theorem. O

3 Proof of Theorem 2

Assume conjecture 2, i.e. assume that ev-
ery 0,1 matrix M has a monochromatic sub-
matrix of size |M|/exp(log® rk(M)). Given a
0, 1 matrix M we will design a communication
protocol for M.

Let A be the largest monochromatic sub-
matrix of M. Then A induces in a natu-
ral way a partition of M into 4 submatri-
ces A, B,C, D, with B sharing the rows of
A and C sharing the columns of A. Clearly
rk(B) +rk(C) < rk(M)+1. Assume w.l.o.g.
that rk(B) < rk(C), then the submatrix
(A|B) has rank at most 2 + rk(M)/2.

In our protocol the row player sends a bit
saying if his input belongs to the rows of A
or not. The players then continue recursively
with a protocol for the submatrix (A|B), or
for the submatrix (C|D), according to the bit
communicated.

Denote by L(m,r) the number of leaves of
this protocol, starting with a matrix of area
at most m and rank at most r. By the proto-
col presented we get a recurrence L(m,r) <
L(m,2 +r/2) + L(m(1 — a),r), where o is

211

the fraction of rows in A. By the assump-
tion, & > (ezp(log®r))~!. Note that (as-
suming the players ignore identical rows and
columns) that m < 2", and that L(m,1) = 1.
It is standard to see that the solution to the
recurrence satisfies L(m,r) < exp(log"** r).
We have so far obtained a protocol for
M with exp(log"t! rk(M)) leaves; it is
well known that this implies also ¢(M) <
O(log"* rk(M)). O

Remark: Note that the same proof, yield-
ing essentially the same bound, would go
through even if instead of a large monochro-
matic (rank 1) submatrix we were promised a
large submatrix of rank 7/4, say. The idea is
that for the decomposition A, B,C, D in the
proof we have in general rk(B) + rk(C) <
rk(M) + rk(A). We used it above for a
monochromatic A, so rk(A) < 1. Now we
have rk(A) < r/4, and using 7k(B) < rk(C)
we get rk(B) < (rk(M) + rk(A))/2 < 5r/8.
Thus 7k(A|B) < rk(A) + rk(B) < Tr/8.
The recurrence relation changes to L(m, r) <
L(m,7r/8) + L(m(1 — a),r), which has the
same asymptotic behavior.

The expression /4 may be raplaced by ar
for any a < 1 by repeatedly taking a large
submatrix of low rank of the current subma-
trix. After constant number of times the rank
is reduced to r/4. Again, this does not change
the asymptotics of the recurrence.

4 Proof of Theorem 3

Let us consider —1,+1 matrices rather than
0, 1 matrices; this obviously changes the rank
by at most 1, and does not change the discrep-
ancy. The advantage is that the discrepancy
of a submatrix N of M has a simple form:
8(N) is the sum of entries of N, divided by
the area of M.

We will use the following notation. Let z =
(z;) € R* and A = (a;;) be an n X n real
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matrix. Then:
o ||z|| = (T, 22)?, the Ly norm of .

¢ ||z]|loo = maz?,|z;], the Ly, norm of z.

o |All = mawy=1]||Az||, the spectral
norm of A. It is well known that
also ||Al| = majjs)=1,|ly|j=1|2" Ay|; and

[|All = maz{vA

Ais an eigenvalue of AT A}.

e W(A) = (V-1 0%)"?, the Euclidean
norm of A.

o tr(A) =Y, as;, the trace of A.
Overview of Proof: It is best to summer-
ize the proof backwards. We are given a +1
matrix A of low rank and wish to find in it a
submatrix of high discrepancy. This is done
in lemma 6 and is clearly equivalent to find-
ing 0,1 vectors x and y such that 2T Ay is
large. As an intermediate step we shall, in
lemma 5, find real vectors v and v, having
low Loo-norm, with uT Av large. Towards this
we shall need real vectors w and z having low
Lo-norm, with wT Az large. This is equivalent
to proving lower bounds on || A||, which we do
in lemma, 4.

Lemma 4 For every real matriz A,

W(A)
Jrk(4)

Proof: Let r = rk(A). Let us compute the
trace of AT A. On one hand, direct calculation
by definition shows that tr(AT A) = W(A)2.
On the other hand ¢r(ATA) = ¥, \;, where
the sum is over all eigenvalues \; of ATA.
Since ATA has only r non-zero eigenvalues,
and since all eigenvalues of ATA are posi-
tive, the largest eigenvalue, )\, is bounded
by MTALZ < A < W(A)2 The lemma, follows
since [|A|| = V. a

< Al < W(4)

Lemma 5 Let A be an n X n +1 matriz of
rank r. Then there exist vectors u, v, [Ju|loo <
L, |lvlleo < 1, such that uT Av > ——7—

Proof: Denote r = rk(A). Let z and y be

vectors such that ||z|| = 1, ||ly|| = 1, and
eTAy = ||A|l. Let I = {i: |z;| > /8r/n}

and J = {j : |y;| > 4/8r/n}. Notice that
|| < n/(8r), and |J| < n/(87).

Let u be the vector that agrees with = out-
side of I and is O for indices in I, and let ¢
be the vector that agrees with y outside of J
and is 0 for indices in J.

We shall compute a lower bound on 47 A%.
Consider the matrix B defined to agree with
A on all entries ¢,7 such that i € I or j € J,
and to be 0 elsewhere. Using this notation it
is clear that

4T Ad = 2T Ay — 2T By.

A lower bound for zT Ay = ||A]| is obtained
using the lower bound in lemma 4, and as
W(A) = n, 2T Ay > n/\/r. An upper bound
for 27 By is given by the upper bound in the
last lemma 7By < ||B|| < W(B). Since B
has at most n/(8r) non-zero rows and n/(8r)
non-zero columns, W(B) < n/(2y/7). It fol-
lows that 47 A% > n/(24/7).

Now define u = +/n/(8r)d and v =
\/1/(8r)0. By definition ||v|le < 1 and

llu]low < 1. The lemma follows since uT Av =
n/(8r)aT Ad. O

Lemma 6 Let A be an n X n matriz, and
u,v vectors such that ||ulle < 1, ||v||ee < 1.
Then there exists a submatriz B of A with
6(B) > uT Av/(4n?).

Proof: Let z = Av. Clearly, Y icx uiz; >
uT Av/2, where K is either the coordinates
where both u; and 2; are positive or the coor-
dinates in which both are negative. Assume
the first case (otherwise replace below v «
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—v). Then setting z = xx (the characteris-
tic vector of K), we have (using ||u||e < 1),
2T Av > uTAv/2. Repeating this argument
with z = 2T A, we can replace v with a 0,1
vector y obtaining zTAy > wTAv/4. Now
take B to be the submatrix defined by the 1’s
in z and y. Since B is a =1 matrix, the bilin-
ear form divided by n? gives its discrepancy.
g

Combining lemmas 5 and 6, every +1 ma-
trix A of rank r, contains a submatrix B with
6(B) > gsra- Thus disc(M) > %7, and

4r3/2
theorem 3 follows.
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