
B
R

IC
S

N
S

-94-3
S

.S
kyum

(ed.):
C

om
plexity

T
heory

-
P

resentand
F

uture

BRICS
Basic Research in Computer Science

Complexity Theory - Present and Future

15–18 August 1994, Aarhus, Denmark

Sven Skyum (editor)

BRICS Notes Series NS-94-3

ISSN 0909-3206 September 1994

See back inner page for a list of recentpublications in the BRICS
Notes Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Complexity Theory - Present and Future

15–18 August 1994 — Aarhus, Denmark

Sven Skyum (editor)

Preface

These “proceedings” contain slides, overviews and papers on which the con-
ference talks were based.

The conference was a byproduct of a longer meeting for a relatively small
number of researchers in complexity theory, hosted by BRICS, which took
place in Aarhus during the months of August and September, 1994.

On Friday, August 12, two preconference lectures were given, aimed at those
who were not complexity theory experts, and introducing the listener to areas,
methods and concepts of the field.

During the actual conference (August 15-18) there were two main talks each
day followed by a session with talks on more specific subjects.

We would like to thank Shmuel Safra, Hebrew University, Jerusalem, who took
the initiative to the meeting and with whom we co-organized the meeting. Fi-
nally we would like to thank Karen Kjær Møller for extra- ordinary engagement
in organizing the meeting and the conference.

Sven Skyum

ii

Complexity theory - Present and Future

Preconference Lectures

Friday, August 12 page

10.15-12.00 Noam Nisan, The Hebrew University, Jerusalem, Israel 1-11

Communication Complexity: an Introduction

Abstract:
Yao’s model of two-party communication complexity aims to
capture, in the simplest way, a situation where communication
plays a role. We will define the model and then concentrate
on how to analyse complexity in this model. We will present
basic techniques for lower bounds and will study the power
of nondeterminism and of randomization. We will also give
applications to Turing machines and to circuits.

The talk will be of a tutorial nature; it will require no prior knowl-
edge, but will assume a mathematically-oriented audience.

14.15-15.15 Avi Wigderson, The Hebrew University, Jerusalem, Israel 13-27

The wonders of the digital envelope - a crash course in modern
cryptography

Abstract:
The “One-way function” (or “digital envelope”) was suggested
15 years ago as means for solving the most basic cryptographic
tasks - secret communication. Since then it was gradually discov-
ered that this simple device is in fact universal, and can be used
to solve essentially ANY cryptographic task with given secrecy
and fault-tolerant constraints. In this talk I will try to survey the
key ideas that led to this understanding, including (naturally) a
“zero-knowledge proof” demonstration.

iii

Complexity Theory - Present and Future

Program

Monday, August 15 page

10.30 Opening

10.35-12.00 Allan Borodin, Toronto University 29-41
Trade offs between time and space

12.00-13.30 Lunch

13.30-15.00 Adi Shamir, Weizmann Institute, Rehovot 43
Open problems in cryptocomplexity

15.00-15.30 Coffee

15.30- Dexter Kozen, Cornell University, Ithaca 45-55
Efficient average-case algorithms for the modular group

Tuesday, August 16

10.30-12.00 Noam Nisan, The Hebrew University, Jerusalem 57-69
Direct sums, products, and help bits in circuits and decision trees

12.00-13.30 Lunch

13.30-15.00 Alexander Razborov, Steklov Institute, Moscow 71-112
Independence results in bounded arithmetic and natural proofs

15.00-15.30 Coffee

15.30- Russell Impagliazzo, Univ. of California at San Diego 113-119
Hard core distributions for somewhat hard functions

Amnon Ta-Shma, The Hebrew University, Jerusalem 121-139
Symmetric Log-space is closed under complement

iv

Wednesday, August 17 page

10.30-12.00 Peter Bro Miltersen, BRICS 141-166
On cell probe complexity

12.00-13.30 Lunch

13.30-15.00 Michael Ben-Or, The Hebrew University, Jerusalem 167
On algebraic complexity theory

15.00-15.30 Coffee

15.30- Christoph Meinel, University of Trier 169-184
Modular communication complexity of UCON

Søren Riis, BRICS 185-189
Complexity of counting principles

Thursday, August 18

10.30-12.00 Mark Jerrum, University of Edinburgh 191-205
Approximation via semidefinite programming relaxations

12.00-13.30 Lunch

13.30-15.00 Avi Wigderson, The Hebrew University, Jerusalem 207-213
On rank and communication complexity

15.00-15.30 Coffee

15.30- Discussions

v

Lecturer: Noam Nisan

Title: Communication Complexity:
an Introduction

Material: Slides

Institute of Computer Science
Hebrew University
Jerusalem, Israel
E-mail: noamQCS . HUJI . AC . IL

Wonders of the Digital Envelope

Slides

Institute of Computer Science
Hebrew University
Jerusalem, Israel
E-mail:avi@CS.HUJI.AC.IL

Lecturer: Allan Borodin

Title: Trade Offs between Time and Space

Material: Slides

Department of Computer Science
University of Toronto
Toronto, Ontario M5S 1A4
Canada

Lecturer: Adi Shamir

Title: Open Problems in Cryptocomplexity

No material, since blackboard was used.

Weizmann Institute of Science
Rehovot, Israel
E-mail: shamirQwisdom.weizmann. ac. il

Lecturer: Dexter Kozen

Title: Efficient Average-Case Algorithms
for the Modular Group

Material: Jin-Yi Cai, Wolfgang H. Fuchs, Dexter Kozen, and
Zicheng Liu: Efficient Average-Case Algorithms for
the Modular Group

Department of Computer Science
Cornell University
Ithaca, New York 14850
USA
E-mai1:kozen@cs.corne11.edu 45

Efficient Average- Case Algorithms
for the Modular Groun*

Jin-Yi Cai
SUNY Buffalo

caiQcs.buffalo.edu

Dexter Kozen
Cornell University

kozenQcs.cornell.edu

Abstract

The modular group occupies a central position in
many branches of mathematical sciences. In this paper
we give average polynomial-time algorithms for the un-
bounded and bounded membership problems for finitely
generated subgroups of the modular group. The latter
result affirms a conjecture of Gurevich [5].

1 Introduction

1.1 The Modular Group

The modular group F is a remarkable mathematical
object. It has several equivalent characterizations:

SL2(Z)/Â I, the quotient of the group SL2(Z) of
2 x 2 integer matrices with determinant 1 modulo
its central subgroup {Â±I}

the group of complex fractional linear transfor-
mations

with integer coefficients satisfying ad - be = 1;

the free product of cyclic groups of order 2 and 3;
i .e., the group presented by generators R, S and
relations R2 = S3 = 1;

the group of automorphisms of a certain regular
tesselation of the hyperbolic plane (Figure 1);

*Proc. 35th IEEE Symp. Foundations of Computer Science,
Nov. 1994, to appear.

Wolfgang H. Fuchs
Cornell University

fuchsQmath.cornell.edu

Zicheng Liu
Princeton University
zlQcs.princeton.edu

Figure 1: A tesselation of the hyperbolic plane1

(v) the group of sense-preserving automorphisms of
the undirected cubic plane tree (Figure 2).

The modular group is intimately connected with
the theory of elliptic curves, modular functions and
modular forms, hyperbolic geometry, and number the-
ory PI.

For instance, it is known that elliptic curves can
be uniformly parametrized by the Weierstrass p func-
tion. This function is invariant under the action of a
group of transformations of the plane isomorphic to
Z x Z. This action gives rise to a discrete Euclidean
tesselation of the plane. In contrast, a hyperbolic uni-
formizatzon is a uniform parametrization of the ellip-
tic curve by functions that are invariant under the

'Reproduced from Klein (1879) [9].

Figure 2: The undirected cubic plane tree

modular group F or some subgroup of it. Here the
so-called congruence subgroups of I? play a dominant
role. The Taniyama- Wed conjecture states that all
elliptic curves with rational coefficients admit such a
uniformization by functions invariant under some con-
gruence subgroup of F. It is known that a counterex-
ample to Fermat's Last Theorem would invalidate this
conjecture. While some difficulties remain, it appears
that Andrew Wiles has made a significant advance to-
wards resolving this conjecture.

The modular group is also deeply connected with
many algorithmic issues. For instance, the ordinary
Euclidean integer gcd algorithm can be understood in
terms of a basis reduction algorithm on 2 x 2 integer
matrices, where the reducing operations are elements
of the modular group in the form (i) above. This con-
nection allows us to apply a result of Yao and Knuth
[17] concerning the integer gcd algorithm in our anal-
ysis.

Some algorithms of Schonhage [14, 151 can be best
understood in light of the modular group.

A recent paper by Yap [I$] is concerned with the
modular group and its connection with lattice basis
reduction algorithms. The basis reduction algorithms
of Lenstra, Lenstra and Lovbz [lo] have had consid-
erable impact on algorithm design and analysis, rang-
ing from integer programming to polynomial factor-
ization.

Finally, we note that the modular group has found
applications in computational learning theory [3].

1.2 Subgroup Membership

In this paper we consider four natural decision
problems for the modular group F:

T h e Unbounded Subgroup Membership Prob-
lem Given a finite subset S C I' and an element
x 6 l?, is x contained in the subgroup of I' generated
by S?

The Bounded Subgroup Membership Prob lem
Given a finite subset S C F, an element x T, and
n > 0 in unary, can x be expressed as a product of at
most n elements of S and their inverses (repetitions
allowed)?

The Unbounded Submonoid Membership
Problem Given a finite subset S C T and an el-
ement x â F, is x contained in the submonoid of F
generated by S?

T h e Bounded Submonoid Membership Prob-
lem Given a finite subset S C F, an element x G F,
and n > 0 in unary, can x be expressed as a product
of at most n elements of S (repetitions allowed)?

The only difference between the subgroup and sub-
monoid membership problems is that in the subgroup
membership problems, inverses are allowed. The sub-
group membership problems reduce to the submonoid
membership problems by simply including the inverses
in the set S.

We assume that these problems are presented in the
form (i) of $1.1; that is, as 2 x 2 integer matrices with
entries written in binary.

1.3 Average-Case Complexity

The study of NP-hard problems that are hard on
average was initiated by Levin [ll] and generated con-
siderable subsequent interest [2, 6, 5, 8, 161.

Suppose the inputs to an algorithm occur randomly
according to a distribution with the property that the
probability that the input size is n is either zero or
at least n k for some fixed k. Such a distribution is
called regular. (For definiteness, Gurevich [5] takes
the probability of the event 1x1 = n to be proportional
to n 1 (log n)'"2, but any regular distribution will do.)

A deterministic algorithm runs in polynomial time
on average if there exists an e > 0 such that

where T(x) is the running time of the algorithm on
input x. For regular distrubutions, it suffices to show
that there exists an e > 0 such that for all n,

where Prn(x) denotes the conditional probability that
x occurs given that the size of the input instance is n

[6, 51.

Gurevich [5] applied this notion to several algebraic
problems. In particular, he showed that certain matrix
decomposition problems involving the modular group
are hard on average.

Gurevich defined the bounded subgroup member-
ship problem stated in 51.2 and conjectured that it
was polynomial time on average.

1.4 Main Results

In this paper we show:

Theorem 1.1 The bounded and unbounded member-
ship problems for finitely generated subgroups and sub-
monoids of the modular group can be solved in polyno-
mial t ime on average.

This affirms Gurevich's conjecture.
We do not know whether the subgroup membership

problems are NP-hard. However, the semigroup mem-
bership problems are quite easily shown to be NP-hard
by a straightforward encoding of the subset sum prob-
lem.

1.5 Overview

Our approach is to convert x and every element
in S to the representation (iii) of 51.1 (i .e . , words in
{R, S}* reduced modulo the identities R2 = S3 = I),
and work in that representation.

This will be of little use if the representation (iii) is
too long or if it is hard to compute from the represen-
tation (i). It turns out that it is easy to compute, but
may be exponentially long in the worst case. However,
it is short on average.

Our analysis makes use of an intermediate repre-
sentation (2.3), which is similar to (iii), but for which
a polynomial bound on the average length is known.
The lengths of minimal representations in (iii) and
(2.3) are mutually proportional.

Our analysis proceeds in two steps:

(i) In 54, we give deterministic polynomial-time al-
gorithms in representation (iii) for the bounded
and unbounded membership problems. These
algorithms reduce the problems to a certain
automata-theoretic reachability problem.

(ii) In 55 we show that the process of converting an
input instance from representation (i) to repre-
sentation (iii) and then executing the algorithm
of 54 on the resulting data gives an average-case
polynomial-time algorithm. This part of the ar-
gument relies on an estimate of Yao and Knuth
1171.

The same techniques also handle other related
groups such as SLy(Z) or the congruence subgroups
of I'. We do not treat these cases in this paper.

2 Representations of I'

To understand this work, one must first understand
the relationships among the different representations
(i)-(v) of I' described in 51.1. See [I, 13, 12, 41 for
details.

In the representation (i), elements of I' are repre-
sented as 2 x 2 matrices with integer entries. The
group I' is generated by the matrices

Any two of these three matrices generate F.
These matrices correspond to the fractional linear

transformations

on C, respectively. The matrices (2.1) represent
the transformations (2.2) in homogeneous coordinates,
viewing them as linear transformations on the projec-
tive complex line. This gives the relationship between
the representations (i) and (ii).

Note that R is of order 2 and S is of order 3 (recall
we are working modulo & I) . In fact I' is the free
product of the cyclic groups generated by R and S.
This gives the relationship with representation (iii).

To see the relationship with (iv), observe that the
transformations (2.2) preserve the upper half plane H.
H can be regarded as a model of hyperbolic geometry,
where geodesic lines are semicircles or lines perpendic-
ular to the real axis. Under the appropriate metric, I'
is a group of isometrics of H. The region

is a fundamental region for the action of r, and its
orbit gives a tesselation of H. This region corresponds
to the union of the two uppermost central regions, one
shaded and one not, shown in Figure 1. Several works
by M. C. Escher are based on this universe.

To understand the connection to (v), we observe
that the infinite undirected cubic plane tree shown in
Figure 2 is embedded in Figure 1 by considering the

segment of the circle of radius 1 centered at 0 from
eZTil3 to eiri13 as a directed edge E, then taking the
orbit of this edge under the action of the group. Every
element of F is uniquely identified with a directed edge
produced in this way.

With this identification, observe that R reverses the
direction of E, T corresponds to a left turn out of E,
and S = T R rotates about the vertex at the head of
E. In any product XI - - - Xn G {T, R, S}* applied in
order from right to left, the destination of E can be
calculated by reading the string XI . - . Xn from left to
right and interpreting T as "turn left", R as "reverse
direction", and S as "rotate clockwise about the ver-
tex before you". We can also define U = ST ("turn
right").

The group I? has the following presentation in terms
of T (turn left), U (turn right), and R (reverse):

TRU = URT = R

TRT = U URU = T P.3)

The equations (2.3) can be applied as term rewrit-
ing rules to reduce any string in {R,T, U}* to nor-
mal form (R + e)(T + U)*(R + 6). Every element
of F can be expressed uniquely as a product of this
form, and the length of any expression of this form
is within two of minimal among all expressions in
{R,T,U, R""l,T""l,U"l}* denoting the same group
element. This is a consequence of the fact that short-
est paths in the graph of Figure 2 are unique. A sim-
ilar statement holds for the presentation (iii); in this
case, normal forms are strings in {R, S}* with no oc-
currence of two consecutive R's or three consecutive
S's.

The presentations (2.3) and (iii) are interderivable
using the facts T = SR, U = SSR, S = TR. More-
over, these relations show that for any group element,
the lengths of the minimal representations in {R, S}*
and {R,T, U}* differ by at most a factor of three.

In terms of representation (i), the left and right
turns are

respectively. Note that elementary row and column
operations on 2 x 2 matrices (adding a row or column
to the other) are effected by multiplying on the left
or right by T or U. In this interpretation, the signifi-
cance of the normal form (R+e)(T+U)*(R+c) is that
for any matrix, we can multiply by R on the left or
right if necessary to make all entries nonnegative, and

then there is a unique sequence of column operations
to bring the matrix to I while keeping entries non-
negative. The same is true for row operations. This
gives us an effective method for converting between
the represent ations (i) and (2.3).

2.1 Integer GCD

The matrices T and U have the following signifi-
cance regarding integer gcd. Let s(m, n) be the num-
ber of steps in the following subtractive Euclidean al-
gorithm for finding the gcd of m and n: replace the
larger number by the difference of the two numbers
until both are equal. Note that s(m, n) is one less
than the sum of all partial quotients in the contin-
ued fraction representation of m/n, 1 < m < n. For
example,

7 1

and s(7,16) = (2 + 3 + 2) - 1 = 6.
The matrices T and U correspond to the basic op-

erations of the subtractive gcd algorithm in the sense
that if m and n are relatively prime and appear in the
top row of a matrix A ? F, then and u 1 applied
on the right hand side effect the column operations
corresponding to the steps of the subtractive gcd al-
gorithm. It follows that the length of the unique ex-
pression in {T, U}* equivalent to A is exactly s(m, n).

3 Length of Representations

Gurevich showed that the size of any element A F
in representation (2.3) is polynomial in the size of A in
representation (i) on average [5, Lemma 4.21. Our ob-
servation that minimal-length representations in (2.3)
and (iii) are mutually proportional implies that the
size of A in representation (iii) is also polynomial in
the size of A in representation (i) on average. This
result, together with the polynomial time algorithm
of the next section, do not immediately imply an av-
erage polynomial-time complexity of the membership
problems, since the number of input matrices is not
fixed.

Gurevich's argument is based on the following esti-
mate of Yao and Knuth:

Lemma 3.1 (Yao a n d Knuth [17])

6 = -n(log n)' + 0 (n log n(log log n)')
7r2

It follows immediately that for fixed n, the aver-
age value of s(m, n), where m is chosen uniformly at
random among all positive integers less than and rel-
atively prime to n, is at most

o(n(:g)2) < ~ ((l o ~ n) ~ log log n) , (3.4)

where y(n) is the Euler totient function. The in-
equality (3.4) follows from the estimate y(n) =
Q(n/ log log n) [7, Theorem 3281.

Except for I, T, and U, if A ? F has nonnegative en-
tries and maximumentry n, and if m is the other entry
in the same row as n, then 1 < m < n, (m, n) = 1, and
the rest of A is uniquely determined by the constraint
on the determinant of A. Since there are four ways
to choose the position of the maximal entry n in A,
such matrices are in four-to-one correspondence with
the pairs m, n such that 1 5 m < n and (m, n) = 1.
It follows that the length of the unique expression in
{T, U}* corresponding to A F is also polynomial on
average.

4 Deterministic Algorithms

In this section we give deterministic polynomial-
time algorithms for the unbounded and bounded mem-
bership problems when the input is given in represen-
tation (iii) of $1.1, i.e. in terms of generators R, S and
relations R~ = S3 = 1.

Consider the term rewriting system over strings in
{R, S}* consisting of reduction rules R2 --+ e, S3 --+ e.
We write x -+ y if the string x reduces to the string y in
zero or more steps. A string is said to be reduced or in
normal form if no reduction rule applies. This system
has nonoverlapping redexes (the redexes are R2 and
S3), thus it follows from term rewriting theory that
normal forms are unique, and x z y iff x and y have
a common normal form.

Suppose now we are given a set S of reduced strings
in {R, S}*, a reduced string x E {R, S}*, and (for the
bounded membership problem) an integer n in unary.
Let S* denote the submonoid of {R, S}* generated
by S. The unbounded membership problem is to de-
termine whether there exists a string y ? S* such that
y -+ x. For the bounded membership problem, we re-
quire in addition that y ? Sm for some m < n. We
will give an algorithm that runs in time polynomial in
n and the sum of the lengths of x and the elements of
s.

Note that this formulation of the problem asks for
membership of x in a finitely generated submonoid of

r. If we wish to determine membership in a finitely
generated subgroup, we can simply include the in-
verses of elements of S.

In a fixed reduction sequence x -+ y, we say that
an occurrence of a letter a in y comes from an occur-
rence of a in x if x = uav and y = zaw, where the
mentioned occurrences of a in x and y are as shown,
and the appropriately chosen subsequences of the re-
duction sequence give u + z and v + w. For a fixed
reduction sequence x + y, every letter of y comes from
a unique letter of x. The remaining letters of a; must
eventually become part of a redex and disappear.

For any set H of strings, we denote by H/G the
set of strings =-equivalent to some string in H. Thus
S*/= denotes the set of strings representing elements
of the submonoid of I' generated by S. This notation is
slightly nonstandard but convenient for our purposes.
Our task is to find an efficient membership test for
S*/ = for the unbounded membership problem and
Urn<,, Sm/= for the bounded membership problem.

4.1 An Automata-Theoretic Characteri-
zation

Let M be the finite automaton with states

start and final state e (the null string), and transitions

a u - ^ - u , a ? { R , S } ,

u Ã‘> v , u - v â S / = .

We will show below that for any reduced x, x (E

S * / z iff x is accepted by M. Note that M has linearly
many states and the e edges are transitive. Once we
construct the automaton for a given set of generators
S, we can test membership in S*/ =. of any string
efficiently by reducing to normal form and then testing
whether the resulting string is accepted by M. This
will give us an efficient algorithm for the unbounded
membership problem.

For the bounded membership problem, we will need
a slightly stronger formulation. Define

for any string x. Note x ? S*/= iff A(x) # 0. Label
each e-transition u Ã‘?- v in M with the nonempty set
A(ulv) . Let + denote setwise addition:

For any computation path u : u Ã‘Ã v in the automa-
ton M, let A(u) denote the sum of the sets labeling
the e-transitions along the path u. More formally,

A(u) = {O} , if u is of length 0

A(u - (au -% u)) = A(u)

A(u - (u -̂ v)) = A(u) + A(U-lv) .
Theorem 4.1 For any reduced x and n > 0, x 6
Sn/= if and only if there is an accepting computation
path u : e -% e with n 6 A(u). In other words, for
any reduced x,

Proof. (+) We show by induction on the length of u
that if u : e -% u and n E A(u) then xu 6 Sn/=. The
result follows by taking u = e. If u is of length zero,
thenA(u) = {O}andx = e ? S O . I f u = r - (a u % u),
then x = ya, T : e Ã‘ au, and n E A(r) = A(u).
By the induction hypothesis, xu = (ya)u = y(au) E
8%. Finally, if u = r . (v -̂ u) where r : e -% v,
then n = k + m for some k E A(r) and m G A (v l u) .
Then v l u E Sm/=, and by the induction hypothesis,
xu ? Sk/=. Thus xu =. xvv^u E Sn/=.

(-+) If x 6 So/=, then x = e since x is reduced.
In this case take u to be the null path e Ã‘ e and
we are done. Otherwise, we show by induction that if
r E S n l , st ? S , and r s -+ y where y is reduced, then
there is a computation path u : e -!'-̂ t with n 6 A(u).
The result then follows by taking t = e.

For n = 1, we have r = e. Then y = s since s is
reduced, and there is a computation path r : c Ã‘ st
of length one with 1 E A(r) = A(st). Combining this
with Is1 transitions of the form au Ã‘ u, we obtain a
computation path u : e Ã‘> t with 1 6 A(u).

Now suppose n > 2. If s = c, we have y = r 6
Sn^S and t ? S. Then 1 6 A(<) and by the induction

Y hypothesis, we have a computation path r : e - e
with n - 1 E A(r). Combining this with the transition
e Ã‘> t , we obtain a path u : c Ã‘Â t with n ? A(u).

If s # e and the last symbol of y comes from the
last symbol of s in the reduction rs -+ y, then s = ua,
y = va, and ru -+ v for some u,v. By the induction
hypothesis, we have a computation path r : e A at
with n ? A(r). Combining this with the transition

Y at Ã‘ t , we obtain a computation path u : e - t
with n E A(u).

Finally, if the last symbol of y does not come from
the last symbol of s , then the last symbol of y cannot
come from any symbol of s, since s is reduced. Thus

we can write r = upqv where u 6 ski v ? Sm, pq ? S,
the last symbol of y comes from the last symbol of p,
and qvs = e. Then up = upqvs = r s = y. Since y
is reduced, up -+ y. By the induction hypothesis, we
have a computation path r : e 4 q with k+ l ? A(r).
Moreover, since qvs = e, we have q l t = vst 6 Sm+l,
thus m+1 G A (q l t) . Combiningr with the transition
q Ã‘?- t , we obtain a computation path u : e Ã‘ t with
n = k + m + 2 ? A (u) .

Corollary 4.2 For any reduced x, x 6 S*/z if and
only if M accepts x.

4.2 Construction of M

We have reduced the problem of determining rnem-
bership in S*/= of arbitrary strings x to the prob-
lem of determining membership in S*/= of u l v for
u, v ? Q. We now give an efficient algorithm for this
problem.

Let N be the set of normal forms of strings u l v
for u, v ? Q. Note S s N and N is finite. Let B(x),
x ? N, be the smallest family of sets closed under the
following rules:

(i) 0 ? B(e)

(ii) 1 ? B(x), x E S

(iii) B(x) + B(y) B(z), where z = xy.

If x is not reduced but x -+ y ? N, we define B(x) =
B(Y).

We show below that A(x) = B(x) for x E N. This
gives a simple inductive method for determining the e-
transitions of M: mark e and all x E S as required by
rules (i) and (ii), then mark z ? N whenever x, y ? N
are marked and xy -+ z. Then u Ã‘ v iff the normal
form of u l v is marked.

Lemma 4.3 If u 6 Q, pq E S, r 6 Sn, and urp = e,
then n + 1 ? B(u-lq).

Proof. If n = 0, then u l q = pq, and the conclusion
follows from rule (ii).

If n > 1 and u = e, then we can write r = vs with
v ? S, s ? Sn-l, and vsp -+ e. Then 1 ? B (u l v) ,
and by the induction hypothesis, n E B (v l q), there-
fore n + 1 ? B (u l ^) by rule (iii).

Similarly, if p = e, then we can write r = sv with
s ? Sn-l, v ? S, and usv -+ e. Then 1 E B(e-lv),
and by the induction hypothesis, n 6 B (u l e) , there-
fore n + 1 6 B (u l q) by rule (iii).

Assume now that n > 1 and both u and p are non-
null. The proof proceeds by induction on the length
of the reduction sequence urp Ã‘ e.

If urp can be expressed as the concatenation of two
nonnull strings, each of which reduces to el then the
first of these cannot be a substring of u and the second
cannot be a substring of p, since u and p are reduced.
Thus we can write r = stxy where tx E S, s (=. Sk, y 6
Sm, m + k + 1 = n, ust =. xyq = e. By the induction
hypothesis, k + 1 6 B (u l x) and m + 1 E B (x l q) .
By rule (iii), n + 1 = m+ k + 2 ? B(u^q).

If urp has no such decomposition, then in the re-
duction urp Ã‘ e, if the last reduction rule applied is
RR Ã‘ e, the first R must come from the leftmost sym-
bol of u and the second must come from the rightmost
symbol of p, otherwise we would have a decomposi-
tion as in the previous case. Thus u = Rx, p = yR,
and xry + e. By the induction hypothesis, we have
n + 1 Î B(x-l Rq) T u - l q) .

If the last reduction rule applied is SSS --+ e, then
again the first S must come from the leftmost sym-
bol of u and the third must come from the rightmost
symbol of p.

If the second S comes from u, then we have u =
SSx and p = yS, where xry Ã‘ e. By the induction
hypothesis we have n + 1 E B (x l S q) = B(ulq) .

If the second S comes from p, then we have u =
Sx and p = ySS, where xry Ã‘ e. By the induction
hypothesis we have n + 1 E B (x l S S q) = B(ulq) .

Finally, if the second S comes from r, then we have
u = Sx, r = yzSws, and p = tS, where zSw E S,
y E Sk, s E Sm, and xyz = wst = e. By the induction
hypothesis we have k + 1 E B (x l S w) and m + 1 ?
B(wlSq) , therefore by rule (iii) we have n + 1 =
m + k + 2 Î B(x-'SSq) = B(u-lq). D

Theorem 4.4 A(x) = B(x) for x E N

Proof. We argue first that the sets A(x) satisfy all
the rules (i)-(iii) for x E N, thus B(x) C A(x). The
rule (i) just says e 6 So, (ii) just says that x E S1 for
x E S, and (iii) says that if x in Sm and y ? Sn, then
x y E s m + n .

For the reverse inclusion, we show by induction on
n that for all u,v ? Q, if n E A (u l v) then n 6
B(u^v). If n = 0, then u-lv = el and 0 ? B(u-lv)
by rule (i). If n = 1, then u l v = x E S, and 1 E
B(u-lv) by rule (ii).

Assume now that n > 2. Let u^v s r E Sn. Then
ur = v, and since v is reduced, we have ur Ã‘ v.

We proceed by induction on the length of v. If
v = e, then writing r = st with s 6 S n l and t (:. S,
we have ust el so n 6 B (u l v) by Lemma4.3.

Suppose now that v is nonnull. If the first letter of
v comes from u in the reduction ur + v, then i t must
come from the first letter of u, since u is reduced.
Thus u = ay, v = aw, and yr Ã‘ w. By the induction
hypothesis, n 6 B(y-lw) = B(u-lv).

If the first letter of v comes from r, then we can
write r = styz where s E S k z E Sm, ty ? S, and the
first letter of v comes from the first letter of y. Then
ust Ã‘ e and yz Ã‘ v. By Lemma4.3, k+l ? B (u l y) ,
and by the induction hypothesis, m ? B (y l v) . By
rule (iii), n = m + k + 1 ? B(u^ v). 0

4.3 Unbounded Membership

Once we have constructed the automaton M for a
given set of generators S , we can solve the unbounded
membership problem for a given string efficiently by
reducing to normal form and then testing whether the
resulting string is accepted by M. Corollary 4.2 as-
serts the correctness of this procedure.

4.4 Bounded Membership

One approach to solving the bounded membership
problem is to observe that the closure rules (i)-(iii)
are essentially equivalent to the following context-free
grammar over a single-letter alphabet {a} and nonter-
minals Ax, x 6 N:

Then for a; ? N, A(x) is the set of lengths of strings in
{a}* generated from the nonterminal Ax. By Parikh's
Theorem, this is a regular set, and we can deter-
mine membership in A(x) efficiently using known al-
gorithms for context-free language recognition.

However, for the purpose of deciding whether there
exists an accepting computation path a : e -'Ã‘> e with
m 6 A(u) and m <_ n, we do not need to know the
entire set A (u l v) but only its smallest element. In-
deed, if A (u l v) is nonempty but its smallest element
is greater than n, then we might as well delete the
edge u Ã‘ v, since it cannot contribute to such an
accepting computation path.

Let r be the number of relations x = yz that hold
among elements of N. Here is an O(nr) algorithm
for determining all the minimum elements of A(x) for
x E N. For each x E N we have an integer variable
Â¥ni that holds a current estimate of min A(x). We ini-
tialize mx to n + 1, which we regard as oo. We assume
that for each x E N we have a list Lx of all relations

z = xy or z = yx that hold among the elements of N
with x on the right hand side. The combined length
of all the lists L,. is at most 2r.

Now min A(â‚ = 0 and minA(x) = 1 for x ? S, so
we set me := 0 and mx := 1 for x E S and put e and all
x E S in a bag for further processing. We then repeat
the following procedure until the bag becomes empty.
Take the next x out of the bag and scan through the
list LX. For each relation z = xy or z z yx on the
list, check whether m̂ > m ̂+ my. If so, set mz :=
mx + my and put z in the bag.

Each x taken out of the bag takes O(lLrl) time to
process, and a particular x can enter the bag at most n
times, since mx is decremented each time. This gives
O(nr) in all.

Once we have computed the minimum element of
A (u l v) for each pair u, v 6 Q, we can weight the e-
transition u Ã‘> v with this quantity and weight the
other transitions au Ã‘ u zero. Then to compute the
minimum element of A(%) for a given reduced x, we
can use a variant of Dijkstra's shortest path algorithm
to find a minimum-weight computation path e e
and check that its weight is at most n. The correctness
of this method is given by Theorem 4.1. This solves
the bounded membership problem.

5 Average Case Algorithms

In this section we prove Theorem 1.1, which states
that the bounded and unbounded subgroup and sub-
monoid membership problems are polynomial-time on
aver age.

For a positive integer m, we take the size of m to
be logm, the base 2 logarithm of m. For a sequence - m of positive integers, we take the size of iii, denoted
lIiii[l, to be the sum of the sizes of its components.

An instance of the unbounded subgroup or sub-
monoid membership problem of $1.2 is a sequence S
of 2 x 2 integer matrices with determinant one and
entries written in binary. An instance of the bounded
subgroup or submonoid membership problem is a pair
(S, n) where S is as above and n is a positive inte-
ger. For our analysis, we will measure the size of
such instances as follows. For a matrix with entries
a , b, c, d, we take p(A) = max{lal, 161, lcl, \d\}, where
a1 denotes the absolute value of a. Let p(S) be the
sequence @(A) 1 A E S). We define the size of
an instance S of the unbounded membership prob-
lem to be IISII = llp(S)ll, and the size of an in-
stance (S, n) of the bounded membership problem to
be 11(S, n)ll = IISII + n.

Let u(S) denote the sum of the lengths of the R, S
representations of the matrices in S, as described in
$2.

Lemma 5.1 Let iii = (mi, . . . , mk). For d > 1 , the
quantity y^kl(1ogmi)^ is maximized subject t o the

k constraints 1 5 mi, 1 <: i <: k, and fli=i mi = n
at the extremes mi = n and mj = 1, j # i.

Proof. Taking a, = log mi/ log n, the problem is
equivalent to maximizing af subject to the con-
straints 0 < a,, 1 < i < k, and '& a, = 1. This
occurs at the extremes, since the function is convex
and symmetric.

Proof of Theorem 1.1. We treat the unbounded
membership problems first. As remarked in $1.3, we
need only show that there exists an e > 0 such that

where T(S) is the running time of the algorithm on in-
put S and Prn(S) denotes the conditional probability
that S occurs given that the size of the input instance
is n.

By results of $4, we have T(S) = 4 s) ' for some
constant c. Since all instances of size n are equally
likely, P r n S = \{S \ [[SlI = n}I-I for S of size n,
where 1x1 denotes the cardinality of the set X. Taking
e = 1/c, (5.5) becomes

We now establish (5.6). For i = (t i , . . . , tk) and - m = (m l ,..., r n k) , ~ < i i i m e a n s t h a t ~ i < m i , 1 < i s

k , and (2 , ~) = 1 means that 4 and mi are relatively
prime, 1 5 i < k. The numerator of (5.6) is

and for iii E N*',

The coefficient 12k reflects the number of ways of
choosing the positions of the largest elements of the
matrices in S and the factor bounding the lengths of
the R, S and R, T, U representations as discussed in
$2. The vectors 2 represent the possible entries in the
same row as the largest entry of each matrix in S. As
discussed in $2.1, once that row is given, the rest of
the matrix is uniquely determined, and the length of
the R, T, U representation of the ith matrix in S is
s(4, mi) -

Changing the order of summation in (5.8), we have

Step (5.9) uses Lemma 3.1 and step (5.10) uses the
estimate y(m) > Q(m/ log log m) [7, Theorem 3281.
Thus (5.7) is bounded by

Umll= n

The inequality (5.11) follows from Lemma 5.1.
The denominator of (5.6) is

Dividing the upper bound (5.11) for the numerator of
(5.6) by the lower bound (5.12) for the denominator of
(5.6), we obtain the polynomial bound 0(n4) for the
quotient.

Thus the condition (5.5) is fulfilled, and the algo-
rithm is polynomial time on average.

For the bounded membership problems, as above
we need to show for each n that

But the left hand side is bounded by

which by (5.6) is polynomial in n.

Acknowledgements

We thank Michael Ben-Or, Marshall Cohen,
Joachim von zur Gathen, David Henderson, Russell
Impagliazzo, Donald Knuth, Richard Lipton, Gabriele
Meyer, Paul Pedersen, Adi Shamir, Avi Wigderson,
Andrew Yao, and Richard Zippel for their help. We
gratefully acknowledge the support of the National
Science Foundation under grants CCR-9057486 and
CCR-9317320, BRIGS (Basic Research in Computer
Science), a Centre of the Danish National Research
Foundation, the U.S. Army Research Office through
ACSyAM, a branch of the Mathematical Sciences In-
stitute of Cornell University under contract DAAL03-
91-C-0027, and the Alfred P. Sloan Foundation.

References

T. M. APOSTOL, Modular Functions and Dirichlet Se-
ries in Number Theory, Springer-Verlag, 1976.
S. BEN-DAVID, B. CHOR, 0. GOLDREICH, AND

M. LUBY, On the theory of average case complex-
ity, in 21st Symp. Theory of Computing, ACM, 1989,
pp. 204-216.
N. BSHOUTY, T. HANCOCK, AND L. HELLERSTEIN,
Learning arithmetic read-once formulas, in 24th
Symp. Theory of Computing, 1992, pp. 370-381.

[4] H . S . M. COXETER AND W . 0. J . MOSER, Gen-
erators and Relations for Discrete Groups, Springer-
Verlag, 4 t h ed., 1984.

[5] Y . GUREVICH, Matrix decomposition problem is com-
plete for the average case, in 31st symp. Foundations
o f Computer Science, IEEE, 1990, pp. 802-811. SIAM
J. Comput., t o appear.

[GI - , Average case complexity, 3. Comput. Syst. Sci.,
42 (1991), pp. 346-398.

[7] G. H. HARDY AND E. M. WRIGHT, A n Introduction
t o the Theory of Numbers, Oxford University, 5th ed.,
1979.

[8] R. IMPAGLIAZZO AND L. LEVIN, No better ways t o
generate hard N P instances than picking uniformly a t
random, i n 31st Symp. Foundations o f Comput. Sci.,
IEEE, 1990, pp. 812-821.

[9] F. KLEIN, Uber die Transformation der elliptis-
chen Functionen und die Auflosung der Gleichungen
funften Grades, Math. Ann., 14 (1879), pp. 111-172.

[lo] A. K. LENSTRA, H . W . LENSTRA, AND L. LOVASZ,
Factoring polynomials with rational coefficients,
Math. Ann., 261 (1982), pp. 515-534.

[ll] L. LEVIN, Average case complete problems, SIAM J.
Comput., 15 (1986), pp. 285-286.

[12] W . MAGNUS, A . KARRASS, AND D. SOLITAR, Com-
binatorial Group Theory, Interscience, 1966.

[13] M . NEWMAN, Integral Matrices, Academic Press,
1972.

[14] A. SCHONHAGE, Schnelle berchnung van ketten-
bruchentwicklungen, Acta Informatica, 1 (1971),
pp. 139-144.

[151 - , Fast reduction and composition of binary
quadratic forms. Preprint, 1992.

[16] R. VENKATESAN AND L. LEVIN, Random instances
of a graph coloring problem are hard, in 20th Symp.
Theory o f Computing, A C M , 1988, pp. 217-222.

[17] A. C . YAO AND D. E. KNUTH, Analysis of the sub-
tractive algorithm for greatest common divisors, Proc.
Nat. Acad. Sci. U S A , 72 (1975), pp. 4720-4722.

[18] C . YAP, Fast unimodular reductions: planar integer
lattices, in 33rd Symp. Foundations o f Comput. Sci,
IEEE, 1992, pp. 437446.

Lecturer: Noam Nisan

Title: Direct sums, products, and help bits in circuits
and decision trees

Material: Noam Nisan, Steven Rudich, Michael Saks:
Products and Help Bits in Decision Trees

Institute of Computer Science
Hebrew University
Jerusalem, Israel
E-mail: noamQCS . H U J I . AC . IL

Abstract

Products and Help Bits in Decision Trees

Noam Nisan * Steven Rudich ^ Michael Saks ^

We investigate two problems concerning the complex-
ity of evaluating a function f at a k-tuple of unrelated
inputs by k parallel decision tree algorithms.

In the product problem, for some fixed depth bound
d, we seek to maximize the fraction of input k-tuples
for which all k decision trees are correct. Assume that
for a single input to f , the best decision tree algorithm
of depth d is correct on a fraction p of inputs. We
prove that the maximum fraction of k-tuples on which
k depth d algorithms are all correct is at most p k ,
which is the trivial lower bound. We show that if we
replace the depth d restriction by "expected depth d",
then this result fails.

In the help-bit problem, we are permitted to ask
k - 1 arbitrary binary questions about the k-tuple of
inputs. For each possible k - 1-tuple of answers to
these queries we will have a k-tuple of decision trees
which are supposed to correctly compute all functions
on k-tuples that are consistent with the particular an-
swers. The complexity here is the maximum depth
of any of the trees in the algorithm. We show that
for all k sufficiently large, this complexity is equal to
degS(f) which is the minimum degree of a multivariate
polynomial whose sign is equal to f .

Finally, we give a brief discussion of these problems
in the context of other complexity models.

"Computer Science Department, Hebrew Uni-
versity, Jerusalem, Israel. Supported by BSF grant 92-00043
and by a Wolfson award administered by the Israeli Academy
of Sciences.

t Department of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, Pa. Partially supported by NSF grant CCR-
9119319.

t ~ e ~ a r t m e n t of Mathematics, Rutgers University, New
Brunswick, NJ 08903. Supported in part by NSF contracts
CCR-9215293 and STC-91-19999 and by DIMACS

1 Introduction

Pick your favorite computation model and complex-
ity measure, e.g. boolean circuit size, communica-
tion complexity, decision tree depth, interactive proof
length, tensor rank, etc. Any attempt to understand
such a model and complexity measure requires under-
standing the ways that an "unreasonable" computa-
tion can be more efficient than a "reasonable" one.
Of course, what is "reasonable" changes as our under-
st anding of the model improves.

Suppose we are given several unrelated instances of
a problem to solve. The "reasonable" approach is to
solve each instance separately; intuitively, any com-
putation that is useful for solving one instance is ir-
relevant to any of the others. To what extent is this
intuition valid in a given model? The following ques-
tion is the most common way of formalizing this.
The Direct-sum problem: Suppose that the com-
plexity of computing some function f is c. Is i t true
that computing f twice, on two unrelated inputs re-
quires complexity 2c? How about computing f on k
unrelated inputs?

This question was first studied in the context of
Boolean circuits [Ulig, Paul, GF]. Subsequent work
has concerned bilinear circuits [J, Bsh], Boolean cir-
cuits [FKN], and communication complexity [KRW].
In this paper we consider two related problems of a
similar flavor:

The Product Problem: Let f be a function and
suppose that for any complexity c computation, the
fraction of inputs on which it correctly computes f
is at most p. Suppose that we have two independent
computations, each taking as input an ordered pair a , b
of inputs to f , where the first computation is trying
to compute /(a) and the second is trying to compute
f(b). If each of the two computations has complexity
at most c, can the fraction of input pairs a, b on which
both are correct exceed p2? What about the analo-
gous question for k independent computations and k
inputs?

If the first computation only uses the input a and

the second only uses the input b, then the p2 upper
bound is trivial. Intuition suggests that there is no
advantage in having each computation access the oth-
ers input. A variant of this problem, in which we seek
to compute f on the two inputs by a single computa-
tion was studied recently in [IRW].

The Help-bit Problem: Suppose that the complex-
ity of computing the boolean function f is c. Suppose
that one wishes to compute f on two inputs a and b,
and is allowed for free one "help-bit" , i.e. an arbitrary
function of the two inputs. Is it possible to choose
this help-bit function so that, given the help-bit, f(a)
and f(b) can each be computed by a computation of
complexity less than c, and if so, by how much? How
about computing f on k inputs with k - 1 help bits?

The help-bit problem was introduced (to our knowl-
edge) in the context of const ant depth circuits in [Cat],
and was also studied in the context of boolean circuits
in [ABG]. The point here is that if we have k inputs,
then with k help bits we can use them to obtain the
value of f on each of the inputs, and no further com-
putation is necessary. With only k - 1 help bits, we
can for instance obtain the value off at k - 1 inputs,
but then we still need complexity c to compute f on
the last input. Is there a more effective use of the help
bits?

In this paper we consider these problems in the con-
text of the boolean decision tree complexity - perhaps
the simplest computational model. The cost of a com-
putation (decision tree) is simply the number of input
variables that are read (the depth of the decision tree);
a more precise definition is given in Section 2. While
it is an easy exercise to see that "direct-sum" holds
for decision tree depth, the other two problems are
more difficult. Our answer for the product problem is
a qualified "Yes" :

Theorem 1 Let f be an n-variable boolean function
and suppose that any depth d decision tree computes
f correctly on a fraction at most p of the inputs. Let
TI, Ty, . . . , Tk be decision trees that each access a set of
nk variables corresponding to a k-tuple a l l 02, . . . , afc
of inputs to f . If each of the T, have depth at most
d, then the fraction of k-tuples a l , 02,. . . , ak on which
each Ti correctly outputs f (ai) is at most pk.

The theorem seems completely obvious; however,
the reader might test her intuition on the following
variation. Suppose that, in the above Theorem we
change the complexity measure from "depth" to "av-
erage depth" , i.e, the average over all inputs of the

depth of the leaf reached by the input. This modi-
fied statement of the Theorem seems similarly obvi-
ous, but, as we will see, it is false.

The recent work of [IRW], which was done inde-
pendently of ours, includes a (substantially different)
proof of a weaker variant of this theorem, namely that
a single depth d tree that tries to compute all k func-
tions can be correct on at most a pk fraction of the
inputs. Our result shows that even if we use k parallel
decision trees then we can't do better than this.

For the help bit problem, the answer is more com-
plicated. Nathan Linial [Lin] has shown that the com-
plexity of computing f on two inputs with one help
bit is at least deg(f), the degree of the (unique) multi-
linear real polynomial that is equal to f . Since almost
all boolean functions on n-variables have deg(f) = n,
this says that help bits don't help for most functions.
This result does not seem to extend to k > 3. In
fact, for sufficiently large k our results imply that it is
false. We manage to prove a lower bound that holds
for all k, and is always tight when k, the number of
instances to be solved, is sufficiently large. We need
the following definitions. If f is an n-variate boolean
function, we say that the n-variate real polynomial p
sign-represents f if for all inputs a, /(a) = sgn(p(a))
where sgn(z) = 1 if z > 0 and sgn(z) = -1 otherwise
(here we are taking our Boolean set to be {-I, 1)).
The sign-degree of f , degs(f) , is the minimum degree
of a polynomial that sign represents f .

Theorem 2 Let f be an n-variate boolean function,
and suppose that the optimal decision tree that com-
putes f has depth d. Then for all k > 1, any solution
to the help bit problem for f for k inputs and k - 1
help bits requires depth at least degs(f). Furthermore,
for all sufficiently large k, there is a decision tree al-
gorithm with k - l help bits whose depth is degs (f).

In the case that f is equal to the product of n
variables (which corresponds to the parity function
for {O, 1)-valued variables), degs(f) = n and so, the
lower bound implies that help-bits don't help in this
case. Actually, this function and its negative are the
only functions with degs(f) = n. Since the ordinary
decision tree complexity of most boolean functions is
n, this means that for large enough k , the complex-
ity of k instances given k - 1 help bits is less than
the ordinary decision tree complexity for most func-
tions. In particular, i ff is the majority function, then
degS(f) = 1, and the lower bound is vacuous, while
the upper bound says that for k sufficiently large, it is
possible to ask k- 1 binary questions so that, given the
answers, the value of the function on any one of the

k inputs can be computed by probing just one vari-
able. This remarkable savings is not typical, it was
recently shown [RR] that almost all functions satisfy
dega(f) > n/20.

In the next section, we review the decision tree
model. In Section 3 we give a general formulation
for the product problem in decision trees, and prove
a generalization (Theorem 3.1) of Theorem 1. In Sec-
tion 4, we discuss the help bits problem and prove
Theorem 2. Most proofs are in the appendices.

While some of the techniques we develop apply only
to the decision tree model, some of them may be ap-
plied to other models as well, and in fact suffice for
obtaining many of the known results in the boolean
circuit model. We sketch these applications in the
last section.

2 preliminaries

In this section we present some basic definitions and
notation. Most of the notions discussed here are
very familiar, but in some cases our notation is non-
standard.

2.1 Boolean functions

For purposes of this paper it will be convenient to use
B = {- 1, l} as our Boolean domain, instead of {O, I}.
If X is a set, a boolean assignment to X is a map
a from X to B. The set of boolean assignments to
X is denoted BX. We refer to the elements of X as
variables. We will consider probability distributions
over the set of assignments. For a specified distribu-
tion Dl a random assignment chosen according to D
is denoted by placing a - above the identifier, e.g., 5 .
A boolean function over the variable set X and range
R, or (X, R)-function is a function from Bx to R. In
this paper, the range R is always equal to Bk for some
integer k.

2.2 Decision Trees

All trees in this paper are rooted, ordered, binary
trees. For such a tree T every internal node v has
exactly two children, and the two children are distin-
guished as the (-1)-child and (+l)-child of v. The
depth dT(v) of a node v is, as usual, the number of
edges along the path from v to the root and the depth
dT of T is the maximum depth of any node in T.

Formally, a decision tree over the variable set X
with range R or (X, R)-decision tree is a triple (T, p, a)

where T is a rooted binary tree, p is a map that asso-
ciates to each internal node v a variable x = p,, in the
set X , and a is a map that associates each leaf v to
an element av of R. The label pv is called the query
associated to v, and node v is said to probe variable
p,, . We will generally say that T is an (X, R)-decision
tree, keeping the maps p and a implicit. The set of
(X, R)-decision trees over X is denoted T(X, R), or
simply 7.

Let T be an (X, R)-decision tree. If a is any assign-
ment in Bx , the computation of T on a, is the unique
path vO, vl, v2, . . . , v8 from the root of T to some leaf
vs = lT(a) as follows: start from the root vO and
inductively define define vi+' for i > 0 as the a(pui)-
child of vi. The output of the computation is the label
aly(a). Thus T can be viewed as a boolean function
over X with range R. Trivially, every (X, R)-function
f is computed by some (X, R)-decision tree.

The usual cost function for the computation per-
formed by T on a is the length (number of internal
nodes) of the computation path, denoted C(T, a). The
worst case complexity C(T) is the maximum over a
of C(T, a). C(f) , the decision tree depth of f , is the
minimumof C(T) over all decision trees that compute
f . For a distribution D on assignments, the distribu-
tional complexity CD(T) is the average of C(T, 5) with
respect to the distribution D.

For a given (X, R)- function f , and a complexity
bound b (with respect to some complexity measure),
we are interested in how well f can be approximated
by a tree of complexity at most b. The closeness of
approximation is defined with respect to a probability
distribution D on boolean assignments to X . Thus for
each (X, R)-decision tree T, the agreement probability
qD(f; T) of T with f relative to Dl is the probabil-
ity that T(G) = f(&), with respect to the random
assignment G chosen according to D. The decision
tree approximation problem for (f, D, U) where f is an
(X, R)-function, D is a distribution over boolean as-
signments to X , and U is a set of decision trees is to
determine qD(f;U), which is defined to be the maxi-
mum agreement probability qD(f ; 7') over all T G U.
Of particular interest is the case that U is the set
Td(X, R) of decision trees of depth at most d.

Finally, a decision forest F over X and ranges
Rl, R2, . . . , Rk is an ordered sequence TI, T2, . . . , Tk,
where T, is an (X, R,)-decision tree. F computes a
boolean function from B~ to R = Ri x R2 x . . . x Rk.

3 The Product Problem

Let XI , Xi, . . . , Xk be pairwise disjoint sets of vari-
ables, and let Dl , D2, . . . , Dk be, respectively, dis-
tributions over assignments to Xi,X2, . . . , Xk. Let
X = Xi U X2 U . . . U Xk . A boolean assignment /? for
X will be viewed as a k-tuple (/?I, /?2, . . . , /?k) where
/?j is an assignment for Xi. Let D denote the distribu-
tion over assignments to X given by P r o b o (0 = /?) =
nf=l P r o b ~ ~ (0 j = b), i.e., the product distribution
Dl x D2 x . . .x Dk.

Now suppose that we have k decision tree approxi-
mation problems
(f i , D i , ~ i) , (f z 1 ~ 2 , ~ z) , . ..,(fk,Dk,Uk), where for
each i , f j is a (Xi, &)-function, and let qj = qDj(fj; Ui)
be the optimal agreement probability for Uj with
f j relative to Dj. I t will be convenient some-
times to view f j as a function of the entire vari-
able set X that ignores all variables except those in
Xi. We consider the problem of simultaneously ap-
proximating f l , fa , . . . , fk by a decision forest F =
(TI, T2, . . . , Tk) where T{ ? Uj. The simultaneous
agreement probability q o (f ~ , f z , ..., fk;Tl,T2,.. . ,Tk)
for Ti, T2, . . . ,Tk with fl, fa,. . . , f k denotes the prob-
ability, for 0 chosen according to D l that (Ti(&) =
fi(0)) A (T2(0) = fz(5)) A - . - A (Tk(0) = fk(0)).
For Ul, 2.42, . . . , Uk where Ui is a family of (X, fi,)-
trees, qo(f1, f2, ..., fk;U1,U2, . . . ,~k) denotes the
maximum of qo(f1, f2, . . . , fk; TI, T2, . . . , T ,) over all
choices of trees with 7,- 6 Uj.

Now, since f j only depends on Xi and D chooses
the assignments 01, 02, . . . lit to Xi, X2, . . . , Xk in-
dependently, it would
seemthat qo(fll f2 ,..., fk;TllT2, ..., Tk) shouldjust
be the product of the probabilities qDi(fi; Ti). This is
clearly the case if each tree Tj only queries variables
in Xi. However (as shown by the examples in below),
if T{ is allowed to query variables outside of Xi, then
this need not be the case. Intuitively, it would seem
that variables outside of Xj could not help to approxi-
mate f j and indeed this is trivially true, if we are only
trying to approximate f j . But when we seek to ap-
proximate all of the functions simultaneously, it is no
longer obvious that such "cross-queries" are irrelevant.

Nevertheless, one might expect that for "reason-
able" classes 241 , U2, . . . , Uk of decision trees, the op-
timal simultaneous agreement probability is attained
by a sequence of trees Ti, Tz, . . . , Tk with T, querying
variables only in Xi, and is thus equal to the prod-
uct of the individual optimal agreement probabilities.
The main result of this section is to prove this in the
case that for each i, Uj is the set of trees of some fixed

depth dj.

Theorem 3.1 Let f l l f 2 , . . . , f k and
Dl1D2, ..., D k , D be as above. Let dl1d2, ..., d k be
nonnegative integers. Then

Note that Theorem 1 is a special case of the above.
Before giving the proof we present two examples to
show that multiplicativity fails for some natural alter-
native choices of the classes U\ , U2 , . . . , Uk .

Example 3.1 Theorem 3.1 fails i f we replace the
class Trfi by the class S i of trees that are restricted
to query at most dj variables from Xi along any path,
but can query variables outside Xj for free. Consider
the following trivial example. Let k = 2 and let XI =
{x1},X2 = {x^}. The distribution Dl assigns a;l to
1 with probability 1/2, and D2 assigns x2 to 1 with
probability 1/2. The functions fl and f2 are given by
fl(xl) = XI, f2(x2) = x2. Now let dl = d2 = 0. This
means that we do not allow TI to look at any variables
in XI and we do not allow T g to look at any variable in
X2. Clearly qoi(fi,S^) = q ~ ~ (f 2 , S2, 0) = 112. How-
ever, we can achieve simultaneous agreement probabil-
ity better than 1/4. Let Ti be the tree that queries x->
and outputs xz and T2 be the tree that queries XI and
outputs xi. Then, the probability that both Ti and f1
agree and T2 and f2 agree is just the probability that
x l and x2 are assigned the same value, which is 1/2.

A somewhat more subtle example is given by:

Example 3.2 F o r a distribution D over B ~ , let 7f
be the class of trees whose expected depth with respect
to D is dl i.e., T ? 7j if the average number of vari-
ables queried, with respect to 0 chosen from D is at
most d. Then the above theorem is false if we replace
Tdi by 71i. To see this, let X be a set of four vari-
ables, and f be the parity function on X . Let U be
the uniform distribution over assignments to X and
let d = 3. First we show that the maximum agreement
probability with f attained by a decision tree S of ex-
pected depth at most 3, is equal to 3/4. Agreement
probability 3/4 is attained by the tree S that queries
a particular variable x, and if H is 0, then it returns
0, and otherwise it queries the remaining three vari-
ables and returns the parity of them. To see that this
is best possible, note that if T is any decision tree al-
gorithm, then for each leaf l in T of depth less than
4 T will agree with f on exactly half of the inputs

that reach 1. Thus, i f pi is the probability that a ran-
dom input & ends up at a leaf of depth i, then the
agreement probability qD(f; T) can be bounded above
by p4 + 1/2(lÃ p4); it suffices to show that p4 < 1/2.
Now pi either equals 0, 112 or 1. I f pi > 0 then
p4 < 112. If pl = 0, then the expected depth of the
tree is at least 4p4 + 2(1- p4) = 2 + 2p4, which means
that p4 < 112.

Now let XI, fl, Dl and X2, f2, D2 be copies of
X, f , U on disjoint variable sets. W e show that it
is possible t o choose decision trees TI, T2 each of ex-
pected depth at most 3, whose agreement probabdity
exceeds 9/16 = (3/4)2. Let Ti be the S described
above and let xl denote the variable in Xl probed first
by TI. Let T2 be the following tree: first probe XI

(an Xi). If it is 0, output 0. If it is one, then read
all four variables in X2 and output their parity. The
expected depth of this tree is 3, since half the paths
have depth one and half the paths have depth five.
Now, let us consider the probability of the event A
that both TI(&) = fl(S) and T2(&) = T2(S). Then
P r o b ~ (A) = l/2(ProbD(Alxl = 0) + Prob(Alxl =
1). The conditional probability of A given $1 = 0 is
1 / 4 . If XI = 1 then Ti must agree with fl, and Tt
must agree with fa. Thus the probability of simultane-
ous agreement is 518 = 10/16.

What happens in the above example is that the
variable xi acts as a shared random coin that par-
tially coordinates the two computations so that they
are more likely to be simultaneously correct.

Proof of Theorem 3.1 Fix a sequence Ti, T2, . . . , Tk
of decision trees with Ti of depth at most di. For
I C [k] = { l ,2 , . . ., k}, let C(I) denote the event
Aie/(Tf = fj(xi), i-e., the event that all of the trees
indexed by I evaluate their respective functions cor-
rectly. We seek to prove that Prob[C([k])] is bounded

k
above by T(ii).

The proof is by induction on k, and for fixed k by
induction on the k-tuple dl + d2 + . . . + dk. The result
is vacuous if k = 1.

So assume that k > 2. Consider first the case that
di = 0 for some i. We may assume that dk = 0. Thus,
the k^ party must guess the value of fk(Sk) without
looking at any variables, so Tk consists of a single leaf
labeled -1 or 1. Now, by conditioning on the value of
the vector Sk, the probability, P* that C([k]) holds
can be written:

Now let 7 be the assignment of Sk that maximizes
the probability in the last expression. For each i be-
tween 1 and k - 1, define the tree Ui by contract-
ing Ti using Gk = 7. Then we may rewrite the
last term as Prob[(Ul (6) = fl (6)) A . . . (Uk- =
fk-I(&))] qDk(fk,O).

Each tree Ui has depth at most dj, and so we may
bound the first factor by
q ~ (f 1 , f2, . - . , fk-I; rfdJd2, . . which by the
induction hypothesis equals q ~ ; (fi , Td,). Thus
the desired result follows.

Now we assume that di > 0 for all i. Define a
directed graph on {I, 2, ..., k} with an edge from i to
j if the first variable probed by Tf is an input t o f,.
Since this directed graph has out-degree one, it has a
directed cycle. Let j > 1 be the length of the cycle.
Let us rename the set of indices in the cycle by the set
[?'I = {I, 2,. . ., j } in such a way that for each i < j ,
the first probe of T, is a variable, denoted xi+l, in

and the first probe of T, is a variable, denoted
X I , in Xi.

The intuition behind the rest of the proof is that
for i E [j], it is possible to replace each tree 7,- by
trees of the same depth in which the first probe in T, is
xi, without decreasing the probability of simultaneous
agreement.

For b E B, let ft denote the function obtained from
fi by fixing x\ = b. Also, let D: be the distribution
on the set Xi - xi obtained from Dj by conditioning
on x\ = b.

Now, for b = (61, b 2 , . . . , bj) ? Bj let A(b) denote
the event that (Sl(xl) = bl) A .. . A (Sj(xj) = 6,). We
can write the probability that all of the T{ compute
correctly by conditioning on b as follows:

We seek to upper bound this expression by:

i=l

To do this we show:

Claim. For each b ? BE], the conditional probability
of C([k]) given A(b) is at most:

Assuming the claim for the moment, we can then
substitute into the expression (1) to obtain the follow-
ing bound on the probability that all of the trees are
correct:

The sum can be rewritten as:
(3)

which is equal to:

Now, the ith term in this product corresponds to
the probability of correctly computing f; if we first
probe xi and then, depending on the outcome, use
the optimal depth di - 1 tree to evaluate the residual
function. Thus, we can upper bound this term by
p(fi, Di, 4). But then, the expression (3) is upper
bounded by the expression (2) as required.

So it suffices to prove the claim. ~ e f i n e ff(b) to
be the function f,?' for i < j and to be f; otherwise.

Similarly, the distribution D ?) is equal to D,6' for
i < j and to Di otherwise. Observe that, by the mutual
independence o f & , a2, . . . , G k , their joint distribution

given A(b) is the product distribution of Df for i
between 1 and k.

Let pb) be the tree obtained from contracting
T, under the assumption that A(b) holds. Then the
conditional probability that 7,- = /;(xi) for all i, given

A(b) is equal to the probability (with respect t o the

product distribution on D P) that for all i, if-^ =
ff^. Now for each i the depth of qA^ ha, at most
d; - 1 if i < j, and is at most d; for I > j , so we
may apply induction to say that the probability with

respect to the product distribution on D:() that for

all i, e(b) = fF is at most:

which is equal to the expression in the claim. This
proves the claim and the Theorem.

Remark. The proof of the Theorem can be extended
to a more general model of decision tree computation.
For this model, in the case of a single function we
are given a function f from an arbitrary domain S to
R, and want to compute f(s) for an unknown input
s ?. S. We are further given a set Q of admissible
queries, where each query q 6 Q is a partition of S
into sets (Sf, S l , . . -5'9). The response to query q is
the index i such that s ? Sf . The nodes of a decision
tree are labeled by queries, and the branches out of
the node correspond to the answers to the query. For
a collection of functions f; on disjoint domains S;, the
formulation of the product problem generalizes to this
model. The statement and proof of the Theorem now
go through assuming: (1) That the any allowed query
depends only on variables from one function and (2)
The distributions D; are independent.

4 Help Bits

In the help bits problem, We have k boolean
functions fl , f 2 , . . . , fk over disjoint variable sets
Xi, X2,. . . , Xk, Given an unknown assignment a to
the variables of the set X = XI U . . . U Xk, we want
to evaluate f;(a;) for all i, by a decision forest. We
are allowed to ask, "for free", an arbitrary set of I
binary questions about the assignment a. The an-
swer to these 1 questions is a vector a ? B1. For
each such a we will have a decision forest Fa =
(Tf , TF, . . . , T?), where we require that Fa(a) agrees
with (fl(ai), . . . , fk(ak)) for every assignment a thai-
is consistent with a .

Thus, such an algorithm is specified by 1 arbitrary
boolean functions hi , h2, . . . , hi (the help bits) on vari-
able set X, together with 2' decision forests. The com-
plexity of the algorithm is the maximum depth of any

of the 2'k decision trees in these forests. In general,
the decision tree Tr that computes fi(cn} for a consis-
tent with a is allowed to probe variables outside of Xi.
This is conceivably useful, because together with the
help bits, such probes could imply information about
the variables in Xi. For instance if one of the help
bit functions is (fi(ai) x aj(x)) where x is a variable
in Xj, then by probing the variable x, we can deduce
/,(ai). If only probes variables in Xi we say that
it is pure. If each of the 2'k decision trees are pure,
the algorithm is pure.

In this paper, we will restrict attention to the case
that, for some variable set X and boolean function
f over X , each of the Xi are copies of X and the
functions fi are copies of f . The help bits problem
Hk$'(f) is to evaluate k copies of f given 1 help bits.
Define Ck"(f) to be the complexity of the optimal
algorithm that solves it. We also define the problem
H g e (f) to be the same as ffk~'(f) except that we
require that the algorithm be pure. Define Ĉ f̂) t o
be the complexity of the optimal pure algorithm. Our
goal is to obtain bounds on Ckp'(f) and C x e (f) . The
mainresult of this section (which is a slight refinement
of Theorem 2), is:

Theorem 4.1 For any boolean function f on n vari-
ables and any positive integer k,

If k is sufficiently large, then

We first reformulate the problems Hk*'(f) and
Hzre(f) . Given functions fi, f2, . . . , fk as above,
and a decision forest F, we say that F covers the
assignment a of X, with respect to fl, f2 , . . ., f k , if
F (a) = (f i(a) , fz(a), . . . ,A(&)). Let rk(f , d) be the
minimum number of forests, each consisting of trees
of depth at most dl needed to cover all inputs with re-
spect to f . Let ~-i~,.~(f, d) be the corresponding mini-
mum when we restrict to forests that are pure.

Proposition 4.1 Let f be a boolean function and
k, I, d be nonnegative integers. Then:

1. CkJ(f) < d if and only if rk (f , d) < 2',

2. Czre(f) < d if and only if r^f, d) < 2'

In other words, Pog2 ~ ~ (f , d)l is the minimum I such
that Hkl' can be solved with trees of depth d, and
flog2 ~*~ ,^f , d)l is the minimum I such that H z e
can be solved with trees of depth d.

Proof. We prove the first assertion; the proof of
the second is completely analogous. If Ckv'(f) < d,
then the 2' forests given by the algorithm are also a
cover and rk(f , d) < 2'. Now suppose @(f , d) < 2'.
Then there is a collection of 2' forests that cover all
assignments of X. Index these forest as Fz where
z ranges over B'. Order the forests lexicographi-
cally, and define A(z) to be the set of assignments
that are covered by Fz but not covered by F^ for
any y < z. Then the sets {A(z) : z E Bk} parti-
tion the set of all assignments of X. Now define the
help bit functions hi,, h2,. . . , hi so that for each a,
(hl(a), h2(a), . . . , hk (a)) is the unique index z such
that a ? A(z). Then these functions together with
{FZ : z G B'} solves HkJ. I

So we now concentrate on obtaining bounds on
rk(f , d) and riUre(f, d). For this we need yet an-
other definition. A randomized (X, R)-decision tree
algorithm is a probability distribution Q over (X, R)-
decision trees. Such an algorithm is said to approxi-
mate f with probability p if for each assignment a, if
is a random decision tree chosen according to Q, then
the probability that ?(a) = f (a) is at least p. We
define p(f , d) to be the maximum p such that there
is a distribution Q over the set of decision trees of
depth at most d that approximates f with probability
p. It is easy to see that p(f, d) > 112. and that if
d = C(f), the ordinary decision tree complexity of f ,
then p(f , d) = 1. The following result relates r(f , d)
to P(f 1 4 .

Lemma 4.1 For any boolean function f on n vari-
ables and k, d > 0, we have:

Proof. The middle inequality is trivial. For the last
inequality, we use a standard probabilistic argument
to show that there is family of at most f*l pure
forests of depth at most d that cover all of the assign-
ments. Let Q be the distribution over (Y, R)-decision
trees of depth at most d that approximates f with
probability p(f, d). For i 5 k, let Qi be the cor-
responding distribution over the set of (Xi, R) deci-
sion trees; Qi approximates fi with probability p(f, d).
Consider the distribution P = Qi x . . . x Qk over ..

forests. Suppose we select t forests Fi, F2, . . . , Ft ac-
cording to P. For a given assignment a and j < t ,
the probability that Fj covers a is at least p(f , d)k.
Thus the probability that none of the forests cover a
is at most (1 -p(f , d))$, and the probability that there

exists an assignment a that is covered by none of the
forests is at most 2nk(l - p(f, d)k)t < 2"*e-~(f9'^)*. If
t = [(nk In 2)/p(f, d)*1 then this expression is at most
1, so there is a positive probability that the forest cov-
ers all assignments, and so there must be a collection
of t forests of depth d that cover all assignments.

Now we turn to the lower bound on r(f,d). For
this, we need the following relationship between p(f , d)
and the agreement probability qa(f, d) with respect to
a particular distribution D on assignments.

Lemma 4.2 For any (Y, R)-boolean function f and
integer d > 0, there exists a distribution D on assign-
ments to Y such that qn(f,d) =p(f,d).

This is a variant of a fundamental observation of
Yao [Yl], and follows from the min-max theorem for
two person zero sum games.

Let D be the distribution of the lemma. Sup-
pose that Fll F2,. . . , Ft is a family of forests that
cover all assignments a to X. Consider the distri-
bution P over all assignments a which is the prod-
uct Dl x D2 x . . . x Dk, where D, is the copy of
D on Xi. Then, by Theorem 3.1, for any forest Fi,
the probability that it covers 6 is at most p(f, @.
Then the expected number of assignments covered by
Fl, F2,. . . ,Ft is at most tp(f, d)*. Since Fll Ft, . . . , F k

covers all assignments, this expectation must be at
l e a s t l , s ~ t > l / p (f , d) ~ . 1

As an immediate corollary of the above lemma and
proposition 4.1 we get the following bounds on the
complexity of the help bits problem:

Corollary 4.1 For any boolean function f on n vari-
ables and integers k, l , d > 0:

1. If 2' < l/p(f,d)k then ~ * ? ' (f) > d.

2. If 2' > nk/p(f, d)* then Cgre(f) < d.

Next we need to connect the quantity p(f, d) to the
sign-degree degs (f) .

Proposition 4.2 For
any boolean function f , p(f, d) > 112 if and only if
d > degs(f).

Proof. Let d > degs(f). Then there is an n-variate
polynomial p(xi, x2,. . . , xn) of degree at most d such
that g(a) > 0 if and only if /(a) = 1. By shifting

the polynomial by a small constant we may assume
that g(a) is never 0. We may assume without loss of
generality that the sum of the absolute values of the
coefficients of g is 1. Consider the following random-
ized decision tree algorithm: choose a monomial of g
at random, where the probability a given monomial is
chosen is the absolute value of its coefficient. Probe
the variables of the monomial and output the product
of the values. It is easily seen that for any assignment
a, the probability of correctly evaluating f (a) minus
the probability of incorrectly evaluating f (a) is equal
to lg(a)l > 0 (here we use that our domain is {-I, 1)).
Thus for any a this algorithm correctly evaluates f (a)
with probability exceeding 112.

Now suppose p(f,d) > 112. There must exist
a randomized decision tree algorithm Q on depth d
trees that evaluates f (a) correctly with probability
exceeding 1/2. Now, it is well known, and easy to
see (by induction on dl looking at the two subtrees
of the root) that if T is a decision tree of depth d
on variables {Q, . . . , xn} then there is a polynomial
g T (~ l , . . . , xn) of degree d such that gT(a) = T(a) for
all assignments a. Define the polynomial g(xl,. . . , xn)
to be the sum of Q(T)(gT - 1/2) where the sum is
over all trees of depth d and Q(T) is the probability
that T is selected under the distribution Q. Then
g(ai,. . . , a n) = probQIT(a) = 11 - 112. By the
choice of Q, this latter term is positive if and only
i f f (a) = l . 1

Theorem 4.1 now follows easily.

Proof of Theorem 4.1. By Corollary 4.1,
~ ^ - l (f) < degs(f) would follow from 2*-' >
nkIp(f , degs(f))k. This holds for all sufficiently large
k since p(f, dega(f)) > 112, by Proposition 4.2.

Also, by Corollary 4.1, to show C z l (f) >
degs(f)-1, it suffices to show 2*-l < l/p(f, degs(f)-
I) ~ for all k , which follows immediately from the fact,
by Proposition 4.2, that p(f , degs(f) - 1) = 112. 1

Remark 1. It is interesting to note that, for k large
enough, it is possible to construct to obtain an opti-
mal algorithm in which all of the decision trees have a
particularly simple form. The randomized algorithm
in the proof of Proposition 4.2 uses only decision trees
that correspond to computing monomials of g. Using
this randomized algorithm in the proof of the upper
bound of lemma4.1 the decision trees used in the help-
bits algorithm are all of the same form.

Remark 2. As noted in the introduction, i f f is the
majority function the deg8(f) = 1 and so the deci-
sion trees used in the optimal algorithm for Hktk-l for
large k all have depth 1. In the case that f is the ma-
jority function on three variables, Manuel Blum gave
the following constructive protocol to solve
Enumerate the subsets of [k] having size at least 2k/3.
The number of these sets is 2Ck for some c < 1. Fix an
encoding of these sets by ck bits. Now given k sepa-
rate inputs to the majority-of-3 function, and imagine
the inputs arranged in a k x 3 array. In each row, at
least two of the three entries agree with the majority
value, so there is a column in which at least 2k/3 of
the entries agree with the function value on that col-
umn. For the help bits, we ask for the lowest index of
such a column (requiring 2 bits) and then the set S
of rows for which this column gives the function value
(requiring ck bits.) Armed with this information, the
value of the function on row r is equal to the entry in
that row and the designated column if r E S and is
the negative of the entry otherwise.

Remark 3. In the proof of the lower bound in Lemma
4.1, we used Theorem 3.1 in order to deduce that for
any forest F of depth at most dl the probability with
respect to a particular distribution P on assignments
F is correct for all k functions is at most p(f, d)k. In
the special case d = degs(f) - 1, which is the relevant
case for proving that > degs(f) - 1 in Theo-
rem 4.1, there is an alternative argument. We sketch
this argument, which has the benefit that it extends to
other models besides decision trees, as will be seen in
the next section. As noted above, for d = degs(f) - 1,
we have p(f, d) = 112, and thus for 6 selected from
D (the distribution of Lemma 4.2) any decision tree
of depth d agrees with f with probability exactly 112.
In particular, this can be shown to imply that if we
fix the values of any d variables then either that par-
tial assignment occurs with probability 0 under D, or
that the value o f f conditioned on this assignment is
unbiased.

Now, define the random variable cj to be 0 if
Ti(&) = fi(&) and 1 otherwise. We want to show
that the probability that cj = 0 for all i is at most
l/2k. In fact, the distribution on (cl, ~ 2 , . . . , ck) is
uniform on {O, I } ~ . By the XOR lemma of [Vaz] (see
also [CGHFRS]) a distribution over {O, I}* is uniform
if for any subset J of [k], the random variable CJ de-
fined to be the XOR of the cj for i E J is unbiased. Let
SJ be the probability that CJ = 0. The event CJ = 0
is the same as the event that Tj(&)(= nip w&))
is equal to fj(&)(= [ljg fi(&)). Now by combining

the decision trees {Ti\i J} we can get a single de-
cision tree of depth at most IJId that computes T j .
We claim that such a decision tree must agree with f j
with probability exactly 112, which is enough t o finish
the argument. We prove the claim by showing that for
each leaf of the tree TJ that is reached with nonzero
probability, f ~ (&) conditioned on & reaching the leaf
is unbiased. For each such leaf of the tree, there is
an i ? J such that at most d variables of Xi appear
on the path. Recall that the value of f j is unbiased
when conditioned on the values of these d variables.
If we further condition the value of f~ by the values
of all variables not in Xi, then fj is still unbiased and
therefore so is f J .

Remark 4. One implication of Theorem 4.1 is that
for large enough k, the best algorithm for f f k l k l (f)
uses pure trees. It is reasonable to speculate that this
is the case for Hk'l(f) for all k and I , and this is open.
For the case k = 2, it is interesting to note that for
the case k = 2 and I = 1, it is not hard to show
that pure tree algorithm can not do better than C(f),
the ordinary decision tree complexity off . To see this,
note that the help bit partitions the set of assignments
of X = Xi U X2 into two groups A1 and A2. I t is not
hard to see that either the set of assignments on XI
induced by Ai is all of Bxl , or the set of assignments
on X2 induced by A2 must be all of B^. In the first
case, then given Al, a pure tree computation for f on
XI is as hard as the problem without the help bits,
and in the second case, then given As, a pure tree
computation for f on X2 is as hard as the problem
without the help bits.

5 Other Models
Some of the ideas used so far are also relevant to other
models of computation. We can get results for these
models that are similar to but neither as precise or
as strong as what we obtain for decision trees. It is
convenient to describe our results in the following very
general framework. We fix some computational model
for computing a function f on input a ? X, and some
class, FEAS, of "feasible" algorithms.

Our results will only hold for classes having cer-
tain closure properties. A class FEAS is closed un-
der k-counting if for any k algorithms in FEAS, any
algorithm that runs all k of these algorithms on the
input and accepts or rejects based on the number of
computations out of k that accept, is also in FEAS.
Examples of such classes are polynomial size circuits,
which are closed under poly-counting, and polylog-bit

communication complexity protocols which are closed
under polylog-counting.

/.From such a class we define when a multi-input
algorithm is feasible. An algorithm for computing a
function f on a pair of inputs all a 2 E D2 is said to
be rectangularly-feasible, in FEAS*, if for every fixed
value of a1 the induced algorithm for f is in FEAS,
and for every fixed value of a 2 the induced algorithm
for f is in FEAS. Notice that for the two examples
mentioned above (and essentially any model one may
think of), FEAS C FEAS*. Thus, for example, for
the case of poly-size circuits, the lower bounds given
below for two-input algorithms apply to all poly-size
circuits as well.

5.1 Products

A product theorem in such a setting may be proven us-
ing Yao's XOR-lemma [Y2], which we observe applies
in this general setting. Let Dl, D2 distributions, and
denote PI = q ~ ~ (f i ; FEAS), pi = q ~ ~ (f 2 ; FEAS).

Lemma 5.1 (Yao) Assume that F E A S is closed un-
der k-counting. Then
<l~ixDz(fl(ai)@f2(a2); FEAS*) < pip2+(1 -pi)(l-
p2) +

/.From this one can deduce an "approximate prod-
uct theorem".

Theorem 5.1 Assume that F E A S is closed under k-
counting. Then

Proof. Fix an algorithm A in FEAS*, and denote by
pyy the probability that it is correct on both inputs,
by PNN the probability that it is incorrect on both, by
p y ~ the probability that it is correct only on the first
input and by p ~ y the probability that it is correct
only on the second input. Since for every fixed value
of a1 the probability that A is correct on f2 is at
most p2, then by averaging over all a1 , we have py y +
p ~ y < p2. Similarly, pyy + p y ~ < pi. Finally, Yao's
xor-lemma implies pyy + ~ N N < plp2 + (1 - pi)(l -
p2) + l/kn(l). These inequalities, together with the
fact that pyy + p y ~ + p ~ y + PNN = 1 , directly imply
pyy < pip2 + l/k"(l), which proves the lemma. 1

5.2 Help Bits

We can use the approximate product theorem to get
help-bit results for randomized algorithms. Given a

class of "feasible algorithms" FEAS, We say that a
function is randomly feasibly computable, in R F C , if
there exists a probability distribution on algorithms in
FEAS such that for any input, an algorithm chosen
from this distribution will be be correct on f with
probability of at least 213. The constant 213 is not
important as the usual "amplification" lemmas work
in this general case.

Lemma 5.2 If FEAS is closed under k-counting
then the constant 213 can be replaced by 112 + I l k
(or by 2 k) without changing the class RFC.

For the case where FEAS is the class of polyno-
mial size circuits, it is known that randomization does
not increase power, and thus R F C is exactly equal
to the functions computable by deterministic poly-
size circuits. For the case where FEAS is polylog-
bit communication protocols, R F C is the functions
computable by randomized polylog-bit protocols with
two-sided error.

Let us define what is feasible computation with a
help-bit. Let FEAS be a given class of algorithms.
A 1-help-bit-feasible algorithm, in FEAS1, is a set
of two algorithms AbA1 in FEAS, and a boolean
function h, whose value on input a is the output of
Ah(?. A function is in RFC1 if there is a FEAS}
algorithm for computing two copies of f , which on
every pair of inputs is correct on both with probability
of at least 213. We then can prove a randomized help-
bit theorem.

Theorem 5.2 If FEAS is closed under O(1)-
counting then RFC1 = RFC.

Proof. Assume that f $Z R F C then, amplifying and
similarly to lemma 4.2, there exists a distribution D
such that qD(f; FEAS) < 0.51. Using the approxi-
mate product theorem, any FEAS* algorithm for two
copies off can be correct on at most O.5l2+o(l) frac-
tion of inputs (under distribution D x D). If follows
that any FEAS; algorithm can be correct with prob-
ability at most twice that, a probability smaller than
213 (again probability taken over a pair of inputs cho-
sen from D x D.) This in turn implies that f <i RFC1.
I

For the case of boolean circuits, this was proven in
[ABG] .

5.3 The log k Barrier

The "approximate product" theorem and the "ran-
domized help-bit" theorem can be naturally general-

ized to up to log k functions where the family F E A S is
closed under k-counting. After that, these techniques
break down. It is unknown for example whether a
polynomial size circuit using n help-bits can compute
n+ 1 copies of function which doesn't have polynomial
size circuits. One can show that in a black box model,
alternatively, relative to a particular oracle, that the
generalizations are false using w(1og k) functions.

Consider the model of polynomial-size circuits each
with access to the same black-box.

Theorem 5.3 There is a black-box so that there ex-
ists a Boolean function f which can't be computed by
a polynomial-sized circuit family, but l(n) = w(1ogn)
help-bits will allow a polynomial-sized circuit to always
compute the answer to n disjoint copies off, where n
is the input size to f .

Proof. It is well know that a fandomf can't
be computed by a polynomial-sized circuit. Fix
such an f . A successful circuit would take in-
puts X^,X2, ...,Xk and output the vector V =<
f (Xl), f (X2), ..., f (Xk) >. We "hide" V in the black-
box in such a way that a circuit without help-bits can't
find it, but a circuit with help-bits goes directly to it.
Let n be the size of each Xi and choose k = n. For
each input tuple, and output V do the following: Let
s be a random l(n)-bit string. Place V in the loca-
tion indexed by Xi , X2, ...,X,,, s. For t # s, place a
"SORRY1 in location Xi , X2, ..., X,,, t. By a standard
counting argument, one can show that no polynomial-
sized circuit family (with access to the black box) can
answer correctly on all n-tuples of inputs. However,
given 1 help-bits, it is easy to query the oracle at the
location revealing the answer tuple. 1

It is interesting to note that the Yao XOR lemma
fails relative to this black-box in the sense that once we
XOR more than l(n) variables the parity stops getting
harder to compute. In other words, the XOR lemma
has the same logn barrier as above.

Acknowledgement. The authors have had many
conversations with several people regarding this re-
search. We would especially like to acknowledge the
contributions of Richard Beigel, Nati Linial, Russell
Impagliazzo, and Avi Wigderson.

References

[ABG] A. Amir, R. Beigel, W. Gasarch, Some
connections between bounded query classes
and nonuniform complexity, Proceedings 5th

Conference on Structure in Complexity The-
ory , 1990.

[Bsh] N.H. Bshouty, On the extended direct sum
conjecture, Proc. 21st ACM Symp. on The-
ory of Computing, 1989, pp. 177-185.

[Cai] J. Cai, Lower bounds for constant depth cir-
cuits in the presence of help bits, Proc. 30th
IEEE Symp. on Foundations of Computer
Science, 1989, pp. 532-537, 1989.

[CGHFRS] B. Chor, 0. Goldreich, J. HaStad, J.
Friedman, S. Rudich, R. Smolensky, The bit
extraction problem of t-resilient functions,
Proc. 26th IEEE Symp. on Foundations of
Computer Science, 1985, 396-407.

T. Feder, E. Kushilevitz, M. Naor, Amortized
Communication Complexity, Proc. 32nd
IEEE Symp. on Foundations of Computer
Science, 1991, pp. 239-248.

G. Galbiati, M. J . Fischer, On the complex-
ity of 2-output Boolean networks, TCS. 16,
1981, pp. 177-185.

J. Hastad, A. Wigderson, Composition of
the Universal Relation, in "Advances in
Computational Complexity Theoryn, AMS-
DIMACS book series, to appear.

J. Ja1Ja', J. Takche On the Validity of the
Direct Sum Conjecture, SIAM J . Comput. 15
(4), 1986, pp. 1004-1020.

M. Karchmer, E. Kushilevitz, N. Nisan,
Fractional Covers and Communication Com-
plexity, in Proc. 7th Structures in Complex-
ity Theory Conference, 1992, pp. 262-274.

M. Karchmer, R. Raz, A. Wigderson,
On Proving Super-Logarithmic Depth Lower
Bounds via the Direct Sum in Communica-
tion Complexity, Proc. 6th Conference on
Structures in Complexity Theory, 1991, pp.
299-304.

R. Impagliazzo, R. Raz, A. Wigderson, A Di-
red Product Theorem, Proc. 9th IEEE Con-
ference on Structure in Complexity Theory,
1994, to appear.

Nathan Linial, personal communication.

N. Nisan, A. Wigderson, Rounds in Commu-
nication Complexity Revisited, SIAM Jour-
nal on Computing, 22, (1) 1993.

[Paul] W. J. Paul, Realizing Boolean functions on
disjoint set of variables, TCS. 2, 1978, pp.
383-396.

[RR] A. Razborov, S. Rudich, Natural Proofs, Pro-
ceedings of the twenty-sixth annual ACM
symposium on the theory of computing,
1994, pp. 204-213.

[Ulig] D. Ulig, On the synthesis of self-correcting
schemes from functional elements with a
small number of reliable components, Math
Notes Acad. Sci. USSR. 15, 1974, pp. 558-
562.

[Vaz] U. Vazirani, Randomness, adversaries and
computation, Ph.D. Thesis, UC Berkeley,
1986.

[Yl] A. Yao, Theory and applications of trapdoor
functions, Proc. 23rd Annual IEEE Symp.
on Foundations of Computer Science, 1982,
80-91.

[Y2] A. Yao, Probabilistic computations: towards
a unified measure of complexity, Proc. 18th
Annual IEEE Symp. on Foundations of Com-
puter Science, 1977, 222-227.

Lecturer: Alexander A. Razborov

Title: Independence Results in Bounded Arithmetic
& Natural Proofs

Material: Slides &
Alexander A. Razborov: Unprovability of Lower Bounds on
Circuit Size in Certain Fragments of Bounded Arithmetic

Steklov Mathematical Institute
Vavilova 42,117966 GSP-1
Moscow, Russia
E-mail:razborov@mian.su

Unprovability of Lower Bounds on Circuit Size in
Certain Fragments of Bounded Arithmetic

Alexander A. Razborov*
School of Mathematics

Institute for Advanced Study
Princeton, NJ 08540

and
Steklov Mathematical Institute

Vavilova 42, 117966, GSP-1
Moscow, RUSSIA

To appear in Izvestiya of the RAN

Abstract

We show that if strong pseudorandom generators exist then the statement "a
encodes a circuit of size ra(lOg*") for SATISFIABILITY" is not refutable in Sj(a).
For refutation in $(a), this is proven under the weaker assumption of the existence of
generators secure against the attack by small depth circuits, and for another system
which is strong enough to prove exponential lower bounds for constant-depth circuits,
this is shown without using any unproven hardness assumptions.

These results can be also viewed as direct corollaries of interpolation-like theorems
for certain "split versions" of classical systems of Bounded Arithmetic introduced in
this paper.

*Supported by the grant # 93-6-6 of the Alfred P. Sloan Foundation and by the grant # 93-011-16015
of the Russian Foundation for Fundamental Research

1. Introduction

Proving lower bounds on the complexity of explicitly given Boolean functions is one of the
most challenging tasks in the computational complexity. This theory met with a remarkable
success at least twice: in the 60's (see e.g. [34, 29, 30, 35, 361) and in more recent time
([ll, 1, 26, 12, 31, 32, 27, 2, 24, 28, 33, 21, 4, 15, 171). Both times, however, the period
of enthusiasm was followed by understanding that it is not quite clear to which extent the
methods developed so far can be useful for attacking central open problems in Boolean
complexity.

A logical analysis of this situation should start with understanding what is the right
"minimal" fragment of ZFC which is really needed for formalizing all these methods, and
this question was raised in [19]. It was argued there that the conceivable answer is the
second order theory of Bounded Arithmetic K1, and no example of a lower bound for
explicit function not provable in has been found since that. The next goal is to develop
machinery for understanding whether can prove superpolynomial lower bounds on the
size of unrestricted circuits or not.

In this paper we present first partial results in this direction. Namely, we show that the
existence of a pseudorandom generator secure against the attack by circuits of size 2"' (for
some fixed e > 0) implies that for any explicit Boolean function fÃ and any integer-valued
t(n) such that t(n) > nu('), the theory Si(a) can not refute that a encodes a Boolean
circuit of size t(n) for fn. For the theory Sza) the same statement holds under the weaker
assumption of the existence of a generator secure against nC-depth circuits.

A few remarks concerning these results should be made immediately.

Following [19], we work in the strongest possible framework in which a includes en-
coding~ of truth-tables of all Boolean functions appearing in the circuit as intermediate
results.

We do not require that Bounded Arithmetic would prove t(n) > nu('), we only need
this to be true on integers. Thus, our results are still applicable to e.g. tin) = dog* ".

Since we are mostly interested in the provability in q, this is also natural to consider
the hierarchy of its subtheories and wonder whether we can do better for them. The
strongest theory in this hierarchy to which our method applies is IEl(f) (see [25]
for the definition of IEl), and for this theory we indeed can prove a slightly stronger
result. Namely, we may replace t(n) by nk for a fixed constant k > 0 depending only
on the quality of the generator. This improvement, however, is really marginal, so
we prefer to work all the time in the language Ly containing the smash function #.

Figure 1: The framework for split versions

For proving these results we define the split version S(Ŝ) of S2 as the theory in the
language L2(a, /3) which allows induction on arbitrary bounded formulae in L2(a) and
arbitrary bounded formulae in L2(/3). We consider the pair (a, /3) as an encoding of a
Boolean circuit with the PARITY gate at the top so that a encodes the left-hand side of
the rest, and /? encodes the right-hand side (see Figure 1).

S(S2) proves in this framework exponential lower bounds on the size of constant-depth
circuits over the standard basis. We show that on the other hand it can not prove super-
polynomial lower bounds for depth-3 circuits with PARITY gates. We derive the above-
mentioned results about Saa) and Sg(a) as direct consequences of similar statements
concerning w) appended with the corresponding induction schemes.

The proofs consist of several fairly independent pieces. One of essential ingredients is the
characterization of the circuit depth by a communication game [15], and a characterization
of the circuit size in these terms based upon local search problems (Theorem 3.1 of this
paper). These characterizations are non-uniform in their very nature, and this suggests

that our results might be extended to stronger theories allowing more computational power
for both players.

To this end we define the split version S(&) of the second order theory V2 in the same
fashion as S(S2), and extend our three results to this theory (appended with the appropriate
induction scheme for the first two). These extensions follow from general interpolation-
like theorems, and this is a close indication that s(&) and its extensions exactly capture
Karchmer-Wigderson game and its analogue for the circuit size. Unfortunately, these
second order versions are somewhat technical. Thus, for the convenience of the reader
interested only in classical fragments of Bounded Arithmetic, we start with the simpler
first order case.

The paper is organized as follows. In Section 2 we recall necessary definitions from
Complexity Theory. In Section 3 we present the new characterization of the circuit size
(Theorem 3.1). In Section 4 we briefly survey results from Bounded Arithmetic needed
for our purposes. In Section 5 we recall the framework from [19] and introduce its split
variant. In Section 6 we present first order versions of our main results, and in Section
7 show that they can be actually derived as corollaries of interpolation-like theorems for
split versions of second order theories. The paper is concluded by some remarks and open
problems in Section 8.

2. Background from Complexity Theory

In this section we recall necessary definitions and facts from Complexity Theory.

2.1. Boolean Complexity

We address the reader to [5] for an excellent treatment of the subject; the sole purpose of
this section is to agree upon notation.

We denote by Fn the set of all Boolean functions in n variables x i , . . . , xn. Let x] + xi
and xy ^Â (--xi). Most of the time, it will be convenient to think of fn ? Fn as of a
binary string of length 2" called the truth-table of fn. We will denote by S(fn) the circuit
size of fn (over the standard basis {A, V, --} with negations appearing only at variables;
all computational nodes must have fan-in 2). D(fn) is the minimal depth needed for
computing fn in the same model. Smon(fn) and Dmon(fn) are, respectively, the monotone
circuit size and the monotone depth of a monotone fn. Sd(fn) is the circuit size with
respect to depth-d (unbounded fan-in) circuits. S^fn) is the same as Sd(fn) , only now we
additionally allow PARITY gates.

2.3. Polynomial local search problems

This concept was originally considered in [13]. We reproduce here the variant of the
definition given in [8].

Definition 2.3. A local search problem L consists of a set FL(x) 2 N of solutions for
every instance x G N, an integer-valued cost function cL(s, x) and a neighborhood function
NL(s, x) such that:

b) for all s G FL (x) , Nh(s, x) E FL(x);

c) for all s G FL(x), if N L (s l x) # s then c ~ (s , x) < CL(NL(S ,X) ,X) .

A local optimum for the problem L on x is an s such that s G FL(x) and NL(s, x) = s.
A local search problem L is polynomial if the binary predicate s 6 FL(x) and the functions
C L (S , x) , NL(s , x) are polynomially time computable, and also there exists a polynomial
p L (n) such that \s\ < ~ ~ (1 x 1) for all s G FL(x).

Note that the concept of a polynomial local search (PLS) problem can be relativized
in a standard way.

2.4. Natural proofs
This concept was introduced in [20].

Let I? and A be complexity classes. Slightly altering the notation from [20], we call a
sequence {Cn 1 n ? w } of subsets Cn Fn a I?-natural combinatorial property useful against
A if it satisfies the following three conditions:

1
Constructivity: The predicate fn G Cn is computable in I? (note that the bit size of an

input to this problem is 2" which will be denoted further on by N),

Usefulness: For any sequence of functions fn â Cni { fn} # A

(our Cn corresponds to C; from [20]). A lower bound proof that some explicit function
is not in A is called I?-natural against A if it leads to a I?-natural combinatorial property
which is useful against A.

For a pseudo-random generator Gn : {O, I}" Ã‘ {O, define its hardness H(Gn) as
the minimal S for which there exists a circuit C of size < S with the property

Here x is taken at random from {O, I}", and y is taken at random from {O,
The following is a minor improvement on [20, Theorem 4.11 which is proved in the same

way:

Proposition 2.4. Assume that there exists a S I Z E (2(10g~)0(1)) -natural combinatorial

property which is useful against P/poly (= SIZE(^'^))). Then for every polynomial
k 4) time computable Gk : {O, 1lk - { O , I}^, H(Gk) < 2 .

We define depth hardness DH(Gn) of Gn as the minimal S for which there exists a
circuit C of depth < log, S such that (2) holds. The following is analogous to Proposition
2.4:

Proposition 2.5. Assume that there exists a D E P T H ((log N)'(')) -natural combinato-
rial property which is useful against P/poly. Then for every polynomial time computable
Gk : {O, 1}k - {o, I},~, DH(Gk) < 2^".

Note that the classes S I Z E (2(10giv)0(1)), D E P T H ((log N)'(')) appearing in the above
two propositions are simply non-uniform analogues of quasipolynomial time and POLY-
LOGSPACE, respectively.

Finally, we improve along the same lines upon [20, Theorem 4.31:

Proposition 2.6. There is no DEPTH, S I Z E (~ (l) , 2(10g")0(1)) -natural combinatorial
property useful against AC0*3[2].

3. A new characterization of circuit size

Let (7, V, I be finite sets, and R c U x V x I be a ternary relation such that (1) holds. We
will be considering those local search problems whose instances x are (encodings of) pairs
(u, v); u ? u, v Â V.

For any such problem L =< FL, cL, NL >, let C(FL, cL) be the communication com-
plexity of computing simultaneously the predicate s E FL(ul v) and the function cL(s, u, v)

in the model when the first player gets (s, u), and the second gets (s, v) (thus, s is in the
public domain). C(NL) is defined similarly. The size of L, by definition, is

(the meaning of the coefficient 2 in front of C(FL, ci,} will become clear from the proof of
Theorem 3.1).

We say that R reduces to L if there exists a function p : N Ã‘ I such that for any
(u, v) E U x V and any local optimum s for L on (u, v), we have (u, v, p(s)) E R. We define
size(R) as

min { size(L) \ R reduces to L } .

Theorem 3.1. a) For every partial Boolean function f , size(Rf) = 0(S(f)),

b) For every monotone partial Boolean function f , s i ze (Ton) = O(Smon(, f)).

Proof. Since the proofs of the two parts are practically identical, we prove only part a).

Let f be a partial Boolean function in n variables, let t Â¥ ̂S(f), and let C be a size-t
circuit computing f . Denote /-YO) by U , and f "'(1) by V. We want to reduce Rf to a
local search problem L of size 0(t). Disregarding all inessential variables not appearing in
C, we may assume w.1.o.g. that

t > n - 1 . (3)

We arrange nodes w ~ , . . . , wt of the circuit C in such a way that a wire can go from wu.
to wv only when p < v. Let f v be the function computed at wv. Note for the record that
ft is an extension of f that is ft{u) = 0, ft(v) = 1 for all u E U, v E V.

We construct L as follows. Encode nodes wl, . . . , wt by integers nl, . . . , nt so that nt = 0
and {I, . . . , n} n {nil . . . , nt} = 0. Let

2 FL(u,v) - { i l l < i < n & u ~ # ~ i } U { n ~ 1 1 - - < v < t & f u (u) = O & f v (~) = l } ,

cL(i, u, v) + 0 for 1 < i <: n,

NL(i, u, v) + i for 1 < i < n,

cL(nv, u,v) + v for 1 < v < t.
NL(nu, u, v) is defined as follows. If nu $! FL(u, v), let NL(nU , u, v) + 0. Otherwise, that is
when fv(u) = 0 and fv(v) = 1, we choose one of the two sons of the node wU for which this

property is preserved. If this son is a computational node wK, we let NL(nv, u, v) + nn; if
this is a leaf xz, we let NL(nv,u,v) + i.

It is straightforward to check that so defined L is a local search problem, and that Rf
reduces to L. Also, C(FL, CL) < 2 and (~ (N L) < 3. Hence size(L) <: 0 (n + 1) which is
0 (t) due to (3).

For another (non-trivial) direction, assume that Rf reduces via a function p to a
local search problem L. Let ho + 2C(F~7CL) and hi + 2Â¡̂ Then for every fixed
s E Uueu FL(u, v) we have a communication protocol Ps for computing the binary rela-

vev
tion s 6 FL(u, v) and the cost function cL(s, u, v) which has at most ho different histories.
These histories define a partition of U x V into rectangles Us,l x Vs,l; . . . ; Us,ho x Vsho
such that FL, CL are fully determined on Usti x V&. That is to say, for some predicates
as C [ho] and some functions ifs : [ho] Ã‘ N the following is true for all i E [ho] and for
all (u,v) E Us,, x V;,.:

s E FL(u,v) iff i E as

We call those rectangles Usti x K i for which i 6 as good. We call rjs(i) the cost of rectangle
Us+ x k. We order all good rectangles in such a way that their costs are non-decreasing:

Here Ho < U u E u FL(U, v) - ho.
vev

We construct by induction on v < Ho a circuit Cv which has the following property.
For every f t < v there exists a node wP of Cv computing a function fn such that fn \m. 7 0
and fV- lvIt = 1. Assume that we already have Cv-\- Cv will be obtained from it by adding
at most hohl new nodes for computing a fv with required properties from already available
f1,- v f v - 1 -

Let Uv x V = UsYi x Vs,& Consider the following communication protocol P* of
complexity at most C(FL, cL) + C(NL) . First we run the optimal protocol for computing
NL(s, u, v). Let s' + NL(s, u, v) be its outcome. Then we run Pst .

We introduce Boolean variables yl, . . . , y~ for those histories of P* which actually corre-
spond to at least one instance (u, v) (E Us,i x K,i. For every u E Us,, let ii be the assignment
on { O , l}H defined by letting iih be 0 if there exists v E K i such that the computation of
P* on (u, v) develops according to the history h, and 1 otherwise. Dually, E/i = 1 iff there
exists u E Us,+ so that the pair (u, v) leads to the history h. For every pair (u, v) (E Us,+ x K,,

we have & = 0, i&,, = 1, where h is the history of P* corresponding to this pair. Hence,
the partial Boolean function . . . , yH) outputting 0 on { ii \ u E Us,i 1, outputting 1 on
{G 1 v ? l4,i } and undefined elsewhere, is monotone, and, moreover, the protocol P,* finds
a solution to B""". f,, Hence, by Proposition 2.1 b), ~ ~ ~ ~ (f ~) < C(FL, cL) + C(NL), and the . -
same bound holds for some total monotone extension /iu of ft'. Note for the record that
this implies Smon(fv) < hohl.

Consider now a particular history of P,* h. Let (st, j) be the corresponding output (here
st is the output of computing Nh and j is the subhistory corresponding to the subprotocol
Psi). By Definition 2.3 b), the rectangle x Vsi, is good. By part c) of this definition,
either st = s or the cost of UslYj x is strictly less than the cost of UsTi x Ki.

In the first case s is a local optimum for L on every (u,v) ? Usi x X i belonging to
the non-empty rectangle which corresponds to h. Since Rf reduces to L, this means that

" ~ (4 # vpfs} for every such pair, and this implies that actually upis) = e, upis\ = (-x) for
(-4 some fixed e E {O, I}. Let y{ ^Â x ~ (~) .

In the second case Usij x VSi,j = U ^ x Vp for some p < v. Let y p fu,.
Finally, let fÃ + fv (YL . . . , yk). fu can be computed by appending to at most

ha hi new nodes.
Since for every u 6 Uu, 5 (til,. . . , G) = 0, and 5 is monotone, in order to check that

M u) = 0 for u e Uv, we only have to check that y!,(u) < Ufi for any history h. For doing
this simply note that if Ufi = 0, then for some v G V the computation on (u, v) proceeds
along h, which, due to our choice of y!,, implies y w = 0. By the dual argument, fu(v) = 1
for all v E Vu.

This completes the construction of Cu.
Now, CHo has size at most Ho ho hl. Also, due to Definition 2.3 a), all rectangles UOi x h i

are good. ~ h u s , applying the same argument as above and adding to CH,, at most ho new
nodes, we finally compute f by a circuit of size O(size(L)). This completes the proof of
Theorem 3.1.1

4. Background from Bounded Arithmetic
We assume the familiarity with [6] and use the now-standard notation for denoting various
hierarchies and fragments of Bounded Arithmetic from that book. We denote by L2 Buss's
first order language which consists of the constant 0, function symbols S, +, -, [SJ, 1x1, x#y
and of the predicate symbol <. BASIC2 is the set of 32 open axioms in the language L2
from [6, 82.21 describing basic properties of its symbols. Eb ?=" Ui>o is the set of all

(first-order) bounded formulae of L2.
In [I91 a convenient technical notion of a regular theory was introduced. The meaning

of this notion is that many proofs in Bounded Arithmetic which do not involve the smash
function # can be generalized to arbitrary regular theories. In this paper we need a stronger
notion which is good also for #-involving proofs.

Definition 4.1. A first order theory R in a language L 2 L2 is strongly regular if it
possesses the following properties:

b) R can be axiomatized by S$formulae,

c) every function symbol (and hence every term) of the language L can be bounded
from above in the theory R by a term of the language L2.

For a strongly regular theory R in a language L we denote by Si the theory R + L) -
PIND, and by T i the theory R + TZL) - IND. Let also SR + UiZo S i ; this is the same
theory as TR + Ui=:o TA.

If L = L2 and R = BASIC2 then Si is simply Si, and T i is Ti. Another important
example is L = L2(7), R = BASIC2 (7 is a new predicate variable). In this case Si and
T i coincide with ordinary theories S\{̂ } and T'(7). A less trivial example is provided by
L = Lpv, R = "BASIC2 + II:-defining axioms for PV-symbols" (see [6, 36-21)) where P V
is Cook's equational system [lo]. In this case Sp̂ is the theory S i (Lpv) as defined in [6].
One more example of this sort will be given in Section 6.

As we already mentioned, the meaning of this definition is that many (if not all) results
proven for S& T; relativize to arbitrary strongly regular theories R. For example, the
(weaker form of) the main theorem from [6] in this setting looks like this:

Proposition 4.2. Let R be a strongly regular theory in a language L extending L2. Sup-
pose Sk I- 3y A(;, y) , where A(;, b) is a s~(L)-formula with all its free variables displayed.
Then there is a polynomial time oracle Turing machine M allowed to ask queries of the

,,

form ii ? P or f (Z) =?, where P is a predicate symbol of L\ Liz, and f is a function symbol
of L \ L2, such that the following holds.

For every model (N, 0) of the theory R expanding the standard model of BASIC2 and
every tuple ii ? N ,

(N, 0) I= A (6 ~ ~ (3) -
Here fl is the interpretation of symbols from L \ L2, and M"(Z) is the result of the com-
putation of M on ii when M is fed with the oracle 0.

We also need the following conservation result from [7]:

Proposition 4.3. For any strongly regular theory R in a language L 2 L2, Si is 22%~)-
conservative over Tv.

Finally, we recall the characterization of Ei-defined in Tl functions in terms of PLS-
problems [8]. Once again, we present the relativized version.

Proposition 4.4. Let R be a strongly regular theory in a language L 2 L2. Suppose
TA I- 3y A(a, y), where A(a, 6) is a S3L)-formula with all its free variables displayed. Then
there is an oracle PLS-problem K, where the associated oracle computations of FK, cK1 NK

?

are allowed to ask queries of the form ii G P or f(ii) =?; P, f being symbols of L \ L2, and
a (polynomial-time computable) function p(s) such that the following holds.

For every model (N, 0) of the theory R expanding the standard model of BASICt, every
x 6 N, and every local optimum s for K Q on x,

5. Boolean Complexity and Bounded Arithmetic:
split framework

In our formalization of problems studied in Boolean complexity within the framework
provided by Bounded Arithmetic we follow [19, Appendix A]. Namely, let Circuit(t, N, 7)
be a Sb(y)-formula asserting that 7 encodes the protocol of computation by a circuit of size
t in \N\ variables. Similarly, for a fixed d > 0, let Circuitd(t, N, 7) and Circu@(t, N, 7)
assert that Circuit(t, N,7) and, moreover, 7 is a depth-d circuit or depth-d circuit with
PARITY gates, respectively. Let Output(t, N, x, 7) be a Sb(7)-formula which represents
the output of 7 (viewed as a circuit of size t in \N\ variables) on a Boolean string x.
The exact details of these encodings are unimportant; the only extra property which we
require (and which is shared by all reasonable schemes) is that we can easily combine in
this framework two circuits to compute PARITY of their outputs as shown on Figure 1.
More precisely, we require that there exists a Ai(a, /?) (with respect to Sxa , /?)) abstract

PARITY(t , N, a, ft) such that

Like in [19], we are mostly interested in the provability of the formula

'Ã

Si(a, ft) t- (~ i r c u i t ([(t 4) / 4 ~ , N, a) A Circuit(L(t-3)/4J, N, ft)) 3

(~ i r cu i t (t , N, PARITY(t, N, a, ft)) A Vx E {O, I}!"!

(Output([(tz3)/4], N, x, a) @ Output([(t-3)/4], N, x, ft) =
Output(t, N, x, PARITY(t, N, a, ft)))) .

./

Circuit(t(N), N, 7) 3 3x E {O, l}INI(0utPut(t(~), N, x, 7) $ S(N, x)), (5)

(4)

where t(N) is a Eb-definable function such that N [= t(N) > (log N)"(~), and S(N, a)
is in Eb. (5) asserts that there is no circuit of size t(N) (remember that N w 2"')
computing the Boolean function {x}S(N,x); we denote this formula by LB(t,S,y).
L Bd(t , S, 7) and LBfit , S, 7) are obtained from LBd (t, S, 7) after replacing Circuit (t , N, y)
by Circuitd(t, N, 7) and Circuite(t, N, 7), respectively.

One of the main results of this paper (Corollary 6.5) says that if sufficiently strong
pseudorandom generators exist, then S$(y) If LB(t, S, 7) for any choice of t, S with the
above properties. We can, however, prove a stronger result at the same cost and better
explain the mechanism of the proof if we split our circuit into two pieces as shown on
Figure 1. The corresponding statement, denoted by SLB(t, 5') a, 0) is

(Circuit(t(N), N, a) A Circuit(t(N), N , ft)) 3
3~ e {o, i } I N I (o ~ t p ~ t (t (~) , N, X, a) l~ o u t p u t (t (~) , N, x, 0) $ S(N, x)).

S Lwt, S, a, 0) and S L ~?{t, S, a, /3) have the obvious meaning.
We are going to allow unlimited reasoning about each of the two halves a, ft alone. In

this and the next section we do as much as we can within the first order framework, and,
with this restriction, we implement our idea as follows.

Denote by S(L2) the language L2 (a, ft) obtained from L2 by appending to it two new
unary predicate variables a and 8, and define the split hierarchy STi; S q of bounded
formulae in this language similarly to the ordinary hierarchy E;, 11: (see [6, $2.11) with the
exception of the base case. Namely, Sg = SII; is the set of all bounded formula in the
language L2(a) plus the set of all bounded formulae in L̂ }. The inductive definition of
SE',, SI$+, is the same as for ES+,,II~+,. Note that S E ~ is not closed under applying

the connectives A, V or sharply bounded quantifiers although all SS!, SII! for i > 0 are so
closed.

Our "base" theory S(S2) is the theory in the language S(L2) with the set of axioms
BASIC2 + SS; - I ND. Another, more expressive description of S(S2) (which also justifies
the notation) is that it is axiomatized by S2(a) + S2(ft).

We conclude this section by showing that 8(S2) is already capable of proving some
non-trivial lower bounds.

Theorem 5.1. For every fixed d > 2,

Proof. Arguing informally in S(S2), let a and /3 be depth-d circuits of size at most t(N).
Since Hbtad Switching Lemma is available in S2(a) (see [19, Appendix E.41)) we can find
a restriction p assigning at least ~ I N I * stars and reducing the output of ex to a constant.
p, however, is coded by an integer, thus we can apply in S(S2) the same argument to /3\n
and find an extension p' of p assigning at least two stars and reducing f t to a constant as
well. Now we take any two adjacent inputs compatible with p'; one of them will satisfy
Output(t(N), N, x, a) @ Output(t(N), N, x, f t) $ XI @ - - - @ x 1 ~ l . i

6. Main results: first order versions

Throughout the rest of the paper, t(N) will stand for a ^-definable in S2 function such
that N [= t(N) > (log N)~(') , and S(N, a) will stand for an arbitrary bounded formula.

We start with our base theory S(S2) and show that it can not prove superpolynomial
lower bounds for depth-3 circuits allowing PARITY gates. This, together with Theorem
5.1, provides some formal evidence toward the remark made in [20, Section 3.21 that [33,
21, 41 had to require arguments from a stronger class than those of [11, 26, 121.

Theorem 6.1. For any t(N), S(N, a) with the above properties,

The next theory of interest to us is S(S2) + SS! - P I N D .

Theorem 6.2. Assume that there exists a polynomial time computable generator Gk :
{O, I}' - { O , with DH(Gk) > 2*"". Then for my t(N), S(N, a) as above,

S(s2) + S-S[- P I N D \f SLB(t, S, a, Q).

Corollary 6.3. Under the same assumption as in Theorem 6.2,

Proof of Corollary 6.3 from Theorem 6.2. Assume the contrary, that is Si(a) I-
LB(t, S, a). Substitute in this proof the ~ g a , /?)-abstract PARITY(t(N), N, a, Q) for
a. Then we will have SKa1 Q) I- SLB(tf, S, a, f i where tr(N) + L(t(N)-3)/4J. This
contradicts Theorem 6.2 (applied to t := t') since Ŝ {oc, /?) is a subtheory of S(S2) + <?xi -
PIND.w

Our main result is similar to Theorem 6.2.

Theorem 6.4. Assume that there exists a polynomial time computable generator Gk :
(0, I}* --+ (0, l}2k with BIGk) > 2ka(1). Then for any t(N), S(N,a) with the properties
stated in the beginning of this section,

S(S2) + - P I N D \f SLB(t, S, a, Q).

Corollary 6.5. Under the same assumption as in Theorem 6.4,

Proof is the same as that of Corollary 6 . 3 . ~

We begin proving these results with a straightforward definition of the skolemization -
S2(7) of the theory S2(y). Firstly, we define the language L2(7) as the extension of L2(7)

4

obtained by recursively appending to it new function symbols fAt (b) for every open formula
A(a, b) and term t(b) of the language L2(7); all occurrences of free variables in A, t are
explicitly displayed. -

st(^) is the open theory in the language L2(7) axiomatized by BASIC2 and the fol-
lowing defining axioms for fAtt:

Thus, the intended meaning of f ~ , t (Q is simply fix < t (b) ~ (x , 6). The following summarizes
some easy properties of this theory:

Lemma 6.6. a) For every A 6 Eb(7) there exists A' E Open (~ 7 7)) such that s,(f} t-
A = A', and vice versa;

b) ,577) is a strongly regular open extension of s2(7) by definitions.

We define the extension s(L2) of S(L2) as L ~) + L a) , where we assume, of course,
that all non-logical symbols symbols in L2(a\ and L ~ P) other than those of L2 are pairwise .. ,

distinct. ~ i n a i ~ , let S(s2) bethe theory SZ)+S~) in the language S(L2). The following
properties are inherited from Lemma 6.6:

Lemma 6.7. a) For every A 6 SE; there exists A' e Open (L ~)) U Open (L@))
such that $is2) I- A = A', and vice versa;

b) S(s2) is a strongly regular open extension of S(s2) by definitions. Thus, S(S^) i s
conservative over S(S2), and every model of S(S2) has an unique extension to a
model of $(s2).

The following observation provides a crucial link between the theory $(s2) and the
communication game from Section 2.2.

Lemma 6.8. Let s(ai, . . . , ar, a , /3) be a term of the language S(L2) with all its free
variables displayed. Consider the following communication problem: player I receives
n ~ , . . . , nr 6 N and a language A C N; player 11 receives the same nl . . , , nr and B C N,
and they want to compute s (n l , . . . , nr , A, B) in the extension of the model (N, A, B) of
S(S2) to a model of S(S~). Then there exists a constant d depending only on the term s
and a d-round communication protocol solving this problem whose complexity is polynomial
in \nil + - - - + Inr[.

Proof. Obvious induction on the logical depth of s (every function symbol of the language
S(L~) can be evaluated by one of the two players alone, and results of all intermediate
evaluations are of polynomial length). rn

Now we are ready to prove the results stated in the beginning of this section.

Proof of Theorem 6.1. Assume the contrary, that is S(S2) I- SLBF(t, S, a, /?).
Then also 3(s2j t SLBf(t, S, a, /I). But the theory S(S~) is open, and, by Lemma 6.7

a), the formulae Circuitf(t(N), N, a), Circuitf(t(N), N, /?), Output(t(N), N, x, a) and
Output(t(N), N, x, /?) are equivalent in to open formulae. Thus, by Herbrand's the-
orem, there exist terms sl(N, a, /?), . . . , sr(N, a, /?) of the language S(L~) such that

Let n be an integer, and N + 2" - 1. By Lemma 6.8, there exists a communication protocol
in which the first player receives n and a depth-3 size-t(N) circuit Cl in n variables allowing
PARITY gates, the second player receives n and a circuit C2 of the same kind, and they
produce an input string x such that

within O(1) rounds and no(') bits exchanged. For doing this they simply compute

and find among this list some x satisfying (6).
But this protocol also gives raise to a similar protocol in which the players, instead of

circuits, receiveonly Boolean functions fl, f2 E Fn such that Sf(fl) < t(N) and Sf(f2) 5
t(N). In fact, the players, using their unlimited power, simply reconstruct some Cl, C2
computing fl and f2, respectively, and then run the protocol above.

Let us now consider the partial Boolean function Tn, in 2" variables (we will call it a
functional) which outputs a 1 on f if Sp(f) < t(N), outputs a 0 if Sf(f @ sn) < t (N)
(here s ~ (x) * S(N, x)) and is undefined elsewhere. Then our protocol for every fl, f2

such that Fn(fl) = 1 and ^{ft) = 0 finds a position x where fl(x) # f2(x) (note
that the second player should modify his f2 to fz 9) sn before entering the protocol
from the previous paragraph). Hence, by Proposition 2.2, there exists En & in
DEPTH, S I Z E (~ (l) , 2(10'"^1)) such that F,'(l) & En and F ~ l (0) n En = 0. If

I En 1 2 p n then En @ sn makes a DEPTH, S I Z E (~ (l) , 2(10gN)0(1)) -natural combina-

torial property useful against ACOT~[~] since t(N) > n^ and for every fn G En 9) sn we
have the bound Sf(fn) > t(N). Otherwise, Fn \ En is such a property. We have arrived
at a contradiction with Proposition 2 . 6 . ~

Proof of Theorem 6.2. Suppose SfSy) + Sg - P I N D I- SLB(t, S, a, 13). By Lemma
6.7 a), the class of SSS-formulae is equivalent in S(s2) to the class of (g(~2))-formulae.

Denoting 3 (s2) by R, we see that S(S;) + S S ~ - F I N D is actually equivalent to S;. In
particular, S}, I- SLB(t, S, a, p). But R is strongly regular by Lemma 6.7 b), hence we
can apply to it Proposition 4.2. We find a polynomial time (in n) oracle Turing machine
M asking queries which depend either only on Cl or only on C2; Cl, C2 being this time
size-t(N) circuits, and producing a length n string x with the property (6). But the two
players, one holding (n, Cl) and another holding (n, Ci). can simulate M exchanging only
re0(l) bits between each other. Now the proof is completed by the same argument as in the
proof of Theorem 6.1 on the base of Propositions 2.1 a) and 2.5.1

Proof of Theorem 6.4. Suppose S(S2) + a - P I N D I- SLB(t, S, a, /?). Let,
once again, R + w2). Then S(S2) + S& - P I N D is equivalent to Sf,, and Sf, t
SLB(t, S, a, p). By Proposition 4.3, Tk I- SLB(t, 5, a, /3). By Proposition 4.4, there is an
oracle PLS-problem K and a function p(s) such that for any two circuits Cl, C2 of size at
most t(N), and any local optimum s for Kc1tc2 on N, p(s) is a binary string x of length
n for which (6) holds.

Now we change our view and consider Cl, C2 simply as extra inputs to K rather than as
oracles, and let Kn be its subproblem obtained by fixing n to a particular value. Then the
relation R y corresponding to Fn (Fn is the functional defined as in the proof of Theorem
6.1) reduces to Kn if we encode a pair (fiifi) by (Cl, C2), where Cl is a size-t(N) circuit
computing f l y and C2 is a size-t(N) circuit computing fa @ sn. Also, size(Kn) <: 2(10gN^0(1).
Thus, by Theorem 3.1, .En is computable by circuits of size 2(10gN)01), and we can apply
Proposition 2.4 to complete the proof.=

7. Interpolat ion-like theorems in the second order
setting

The proof of Proposition 2.1, as well as of Theorem 3.1 in the non-trivial direction involves
a highly non-constructive step of deciding whether a rectangle is empty (cf. the sentence
"those histories of P* which actually correspond to at least one instance (u, v) E Usi x hi"
on page 9). This step seems to be intractable if we want to prove syntactic analogues of
the results from the previous section within the framework provided by first order theories.
In this section we briefly outline how to extend this framework to second order theories,

and present in this more general setting interpolation-like theorems which actually imply
these results.

Let & be the second order extension of Â£ obtained by augmenting it with second order
variables 71,72,. . . (for simplicity we allow only unary variables). Let S(L2) be the second
order language which has one sort for first order variables and two different sorts for second
order variables. We will be denoting second order variables of the first sort by a1, a 2 , . . .
(free variables) and $1, $2,. . . (bound variables); second order variables of the second sort
will be denoted by A, A, . . . , $1, &, . . . We fix the notation ,C; [r f] for the sublanguage
of S(&) (isomorphic to C2) which allows second order variables only of the first sort [of
the second sort, respectively]. For a formula A(y1, . . . , yT) of Â£ with all free second order
variables displayed, we denote by Aa(ai, . . . , ~ . r) and A^(&, . . . , PT) its isomorphic copies
in L; and ,Ĉ , respectively.

We form the hierarchy ~ 7 ' of second order bounded formulae similarly to the ordinary
hierarchy ~ 1 ' ~ (see [6, $9.11) with the exception that the forming rule "if A is in Â£1' then
(Vx 5 t)A is in E y " is weakened to "if A is in SY1' then (Vx]tl)A is in Syl""',
and similarly for the dual case. In plain words, we allow sharply bounded first order
quantifiers for free, whereas all other first order quantifiers are counted exactly as second
order quantifiers.

We define the split versions SB?" similarly to Sff. That is, 5~;" '~ ?* 5c1"' ?s

(S1vb)' U and the inductive definition of 322,5112;' is the same as for

S?;', (the case (37/)A gets split into two, depending on the sort of the second order
bound variable T)) .

Definition 7.1. For a class of bounded formulae in &, we denote by - S I M the
following principle:

where A(71, . . . ,7,.) is in a.
Let Clf be the class of bounded formulae without free second order variables. Note

that C12 - S I M is simply A" = A^, where A G C12. This principle states that isomorphic
internal computations run by the two parties (whatever complex) lead to the same result.

Our base theory, S(&) in the language S(C2) is, by definition, axiomatized by (Wff +
(&)^ + C\i - SIM.

For a class $ of formulae in the language Â£ we denote by @+ the closure of under
the operation of substituting Cb-abstracts for second order variables.

Lemma 7.2. S(V2) I- (Eiyb)' - S I M .

Proof* Let A(71,. . . ,7,, Vi, . . . , K) E (E;'")+, where A('yl,. . . , y,, 'y,+l,. . . ,?,+.) is in
xi", and Vi,. . . , K are C12-abstracts. In order to show A(-yl,. . . ,7,, K , . . . , K) - SIM,
we apply an obvious induction on the logical complexity of A; C12 - S I M takes care of
the base case A = yi(t); r + 1 < i < r + s.i

Lemma 7.3. S(V2) + SEf* - P I N D t (A;"(U;~))' - S I M , where A; '~ (u~) is the set

of formulae which are A:' with respect to Ui .

Proof. It is an immediate corollary of the main result in [19] that every A(G,y) in
A~'~(U;) is equivalent to the result of evaluating a Ey-definable circuit 8(Z,^} of depth
\SI0('). Thus, we only have to show in S(&)+SE:~'"- FIND that AiVx(ai(x) = fi(x)) 3

-+ +
P (s , S, V) = 8"G, f t , v)) for any circuit 8 of this kind and any abstracts V in C12. This

is done by SII:~' - P I N D on d applied to the formula "every node of 8 at the dth level
-+ -+

outputs the same value in P(G, 5, V) and in @(a, /?, V)"..

The following is proved in exactly the same way.

Lemma 7.4. S(&) + 5 ~ : ~ ' ~ - I N D I- (A:"(K'))+ - SIM.

Now we are in position to formulate and prove interpolation-like theorems generalizing
the results of the previous section.

Theorem 7.5. Let A(?), B(7/), C(a, y), D(a, 7) be ~~*~- fo rmulae , where all occurences of
a and of all free second order variables are explicitly displayed. Then S(V2) proves the

if and only if then exists E(7) e (~ i * ~) ' such that

Theorem 7.6. Let A, B,C, D have the same meaning as in Theorem 7.5. Then the
formula (7) is provable in w) + S E - ~ - P I N D if and only if there exists E(7) E

(A: '~(U~))^ with the properties (8), (9) .

Theorem 7.7. For the same A, B, C, D, 5(%) + 5~:~" - P I N D proves (7) if and only

if there exists E(7) E (A;"(v;,~)) satisfying (8), (9).

These theorems, combined with the material from Section 2.4, indeed generalize the re-
sults of the previous section if we notice that E(y) with properties (8)) (9) encodes a circuit
from the class needed in each of the three cases separating functions { {x}C(x, 6) 1 A(a) }
from functions { {x}D(x, jf) \ B(f3)). The output of this circuit corresponds to En in the
proof of Theorem 6.1, and the C12-abstracts provide non-uniformity.

The proofs of Theorems 7.5, 7.6, 7.7 in the easy direction are based on Lemmas 7.2,
7.3, 7.4, respectively. Namely, assume that we have (8)) (9) for some E(y) from the class
@ prescribed in each of the three cases. We lift these proofs to (w and (w, and find
that S (K) I- v&$ ((A'{&) A ~ p (f)) 3 (E({x}Cff (x, 4)) $ ~ ({ x } DP(X, f)))) . Now we
only have to apply $ - SIM to the formula E ("/\

The proofs in another direction can be viewed as formalized analogues of Propositions
2.2, 2.1 and Theorem 3.1. In the rest of this section we briefly outline those aspects of this
formalization which may appear less obvious.

Firstly, we, similarly to [18L treat V2 simply as a two-sorted first order theory. This
allows us to define a language Â£ and the skolemization Vt of & in this language similarly
to L2(7), S2(7). Namely, behind function symbols already known to us from the

+

previous section, we introduce function symbols OA(b, '7) and 7rB(6, 7) taking values in the
sort for second order variables with the intended meaning 04;) 7) = p#A(#, 6,7) and
^(6, 3 s {x} B(x, 6, 7). Here A(70, 6,7), B(a, 6,T) are in Open (G) , and the operator
p corresponds to the ordering of second order objects 7 given by 7 I+ 2"7(n). The

-+
definition of OA makes sense in since there always exists a term tA(b) such that 1-
V i < tA(Q (70(x) = $,(x)) 3 (A('yo, 6, 7) zz A(7;, 6 , ~ . We omit the exact details.

Then we define S(&) and Â¤(% analogously to S(L2) and mi). We will be denoting
terms of S[C.~) taking values in the second order variables of the first sort by Al, &, . . .,
and terms taking values in the second order variables of the second sort by Bl, B f , . . .

Now, suppose S{Vt) proves (7). Then S(&) also proves this formula. Applying Her-
brand's theorem (for the three-sorted case) as in the proof of Theorem 6.1, we find witnesses

~ ~ (5 , /?), . . . , sr(5,/?) to this fact, and it is easy to see that actually they can be combined
into one term s (5 ,6} such that

Next, we make an easy observation that the term s(5, /3) can be represented in an
-+

equivalent form s'(A(6)) m)), where all occurences of second order variables are explicitly
displayed, and s l (a , /5) is a term of S(L^).

In order to find E (7) 6 (S ; ') + with the required properties (8)) (9), we apply induction
on the logical complexity of s'.

Base case s' = a. We have S(&) t (Aff (a , 6) A ~ " (a , 3)) 3 (C a (a , 6) ,t D"(a, /?)).
Applying the sort-erasing interpretation, we find

The formula E (a , 7) defined by

I ~ (a) =E 3 & ~ (a , ?) A C (a , 6)) if 3&4(a, 4) A 3 < ? ~ (a , $1
T if $ ~ (a , 4) A v^B<a, f)
-L if v & A (~ , 4) A 3<?B(a, 6)
arbitrary if V & A (~ , $) A v & B (~ , <?)

has the required properties. Note that the case analysis in the definition of E (a , 7) is
exactly the place where we use the power of our base theory not available in the first order
setting.

Inductive step. s l (a , /3) = s" (f f f (a) , a, /5), where f (7) is a function symbol of L2 (y) ,
and we are guaranteed the existence of E with the desired properties anytime when (10)
is true for the term s"(a, A(6), ~(3)) and any choice of A, 5, (7, D.

(10) implies

and we can use our inductive assumption (with A (a , 6) := A(6) A f (A(5)) = a) to find

E1(a ,7) e (I$')+ such that

We simply set E(7) + Eb <: t E'(x,^), where t is a term such that V, I- f(a) < t. This
completes the inductive step and the proof of Theorem 7.5.

Coming to Theorem 7.6, we notice that in the theory S(V,) + Sz - P I N D every
~Eyl*~-formula is equivalent to a E; (g(,C2))-formula of the form 3x $ t (Aa(x) A B ~ x)) ,
where A(a), B(a) E Indeed, the class of such formulae is closed under applying second
order quantifiers:

and (in the presence of S! (S(,C2)) - P I N D) under applying sharply bounded universal

Thus, S (G) + SEyl" - P I N D is equivalent to S(V,) + E; (-2)) - PIND. But it is

straightforward to establish for S(&) + E; (S(,C2)) - P I N D the cut elimination theorem
and extend to it the syntactic version of Proposition 4.2; in fact, this theory more resembles
the first order theory So for what might be called "a many-sorted strongly regular theory
R, where no quantifiers other than those on first order variables are allowed" than a second
order theory. We skip the details.

The proof of Theorem 7.6 is completed by formalizing the standard proof of Proposition
2.1 in the same fashion as we did above with the proof of Proposition 2.2. We omit exact
and somewhat tedious details.

The same ideas work for the weaker version of Theorem 7.7 in which 5 ~ ; " - P I N D
is replaced by SE?' - IND: extending the syntactic variant of Proposition 4.4 to this
case and formalizing the proof of Theorem 3.1 is more or less straightforward.

The analogue of Proposition 4.3 is, however, much less straightforward since we in
general can not eliminate second order quantifiers from S ~ , ~ ~ - f o r m u l a e . We circumvent
this as follows.

to avoid collision with another usage of /?, we denote the ith member of a sequence w by (w), rather
than by /3(i, w)

2 M For A(;, a, i)) E 5Ey1' we introduce a family W i ' ' of witnessing formulae

W i t n e s s F ' (w , S, a, ,J) E; (S(Â£Z) u 11; (S(&))
rather than a single formula. All old cases in the standard definition of Witness (see [7,

2oa0 Section 41) are modified in an obvious way, e.g. we say "if A is B A C then W i ' ' consists
+ + - 2aaQ of all formulae of the form ~ i t n e s s 2 y " ~ ' ~ ((w \ , 2, a, / ?) f \ ~ i t n e s s c ' ' ((w) ~ , S, 6, i)), where

2 @ z o a h Witness"BGa"(w, S, 6, i)) c wF, and Witness6 ' ' (w , 3, a, ft E W e ' .
The only case when the branching really occurs is the following new case:

+ + -

(8) I f A 6 E; (S(,C2)) u II; (3(,C2)) and A is 34 B (S , a,$, /?) then ~ ~ ' " ' % o n s i s t s of ail

formulae ~ i t n e s s y ^ ? ~ (w , ti, 5, i)) of the form

where ((2) and A(& w, a, 8} run over all terms of the language 3(,C2), and

Due to the very limited nature of witnessing second order variables, we can not hope to
reverse this implication in any reasonable sense. But we actually do not need this. We
simply show the straightforward analogue of [7, Theorem 171 in the following form:

if
S(V,) + SS';"" - P I N D t G(Z, 6, /?) 3 H(S, a, i)),

* * - 2 m where G , H are in 5EF7 ' then for every ~ i t n e s s p " (w , S, 6,8} Wd ' ' there exist
4 - - ~ a d W i t n e s s ~ ~ ~ ~ (w , S, 6 , i)) c Wd ' and a Q2-defined function f (w , S, 6, /?) of 3 (~ 2) +

(5(,C2)) - I N D such that

 witness^^'^(f (w , S, a, i)), S, 6, B).
This allows us to conclude that m) + 5 ~ : ' - P I N D is 5~;"'"-conservative over

~ (v z) + Ei (s(~2)) - I N D and complete the proof of Theorem 7.7.

8. Conclusion

Naturally, the most interesting question is to which extent the techniques developed i n
this paper can advance us toward the main goal of understanding the strength of q. Let
us first point out that the hierarchy of second order theories introduced in the previous
section collapses already at the next level. Indeed,

31%) + SE;"" - I N D I- V q E l ~ <: t@(x) = Mx)) A V$3q5Vx $ t(+(x) = $(a;)).

Thus, at least with respect to bounded formulae, S(V~)+S'Z,:'- IND is simply equivalent
to V2. So, we restrict our discussion to first order theories.

What we actually did in the proof of Theorem 6.4 (this is also a direct corollary of
Theorem 7.7) was to show the following separation theorem. Whenever

where R = S(S2), the sets { {x}C(N, x, a) \ A(N, a}} and { {x} D(N, x, ,f?) \ B(N, /?)} can
be separated by a size-2(10gN)0^ circuit. An informal reformulation of this is that every two
NP-sets which are provably disjoint in Sk can actually be separated by a set computable
in quasipolynomial time. Is it possible to improve this by replacing Si in (11) with a

Sdq@), U\ or h l ? This seems to be open even under any stronger theory like To,
reasonable complexity assumption. Note for the comparison that even for the case of V;,
the affirmative answer to a similar question in which we are interested in separating co- N P
sets is a straightforward corollary of Proposition 4.2 and RSUV-isomorphism [22, 23, 181.

There are several examples showing that for NP-sets the situation may be different.
A couple of them originated from a discussion with Steven Rudich are based upon the
lower bound proof for voting polynomials [3] and one-way functions, respectively. In these
examples, however, in order to prove the formula (11) one apparently needs at least the
strength of U:. Also, their impact on the future research in this direction is still to be
understood. Thus, we confine ourselves here with a simpler combinatorial example which
gives a new unexpected proof of a known result from [9] and raises several immediate open
questions.

Example 1. The proof of the separation theorem works for the monotone case as well.
That is to say, if

then there exists a monotone size-2(10gN)0(1) circuit outputting 1 on all {x}C(N) xl a) with
A(Nl a)) and outputting 0 on all {x}D(N) xl p) with B(Nl p). We will show that this is
no longer the case if we replace Si with Ti.

Indeed) denote by WPHP(f) the weak pigeon hole principle taken in the following
form:

Note that) contrary to the common belief) it is open whether T;(f) I- WPHP(f) . But
the proof in [16] lets us conclude at least that T;(f) I- WPHP(f)) and this (naturally)
extends to showing that Ti(f) t WPHP(f) for every xi-definable f.

Nowl let A(N) fa) say "fa is an injective mapping from [N2] to [N4]". Let B(N) f p)
say " fo is a mapping from [N4] to [N]". Then) applying WPHP(fp o fa) (available in Ts),
we see that

But {xll x2} (xl < x2 < N4 A XI) x2 E im(fa)) taken over all possible injective fa : [N2] -+
[N4] is simply the set of all N2-cliques. {xll x2} (xl < x2 < N4 A fp(xl) = f0(x2)) is the
set of all N-partite complete subgraphs. These two sets can not be separated by a subex-
ponential size monotone circuit [2].

This example suggests several open questions. Is it true that Ti(f) I- WPHP(f)? Is
it true that Ti (f) t WPHP(fp o fa)? Is the monotone version of the separation theorem
true for Ti?

In connection with the last question the following observation made by J. ~ r a j k e k may
turn out useful. Let the weaker principle WPHPl(f)g) state that f and g do not form two
inverse bijections between [a2] and [a]) for a 2 2. Then this principle is already provable
in T;(f).

In general) we lack a decent characterization of xi-theorems of Ti. In particular) it
is still open whether S2(a) is Ei(a)-conservative over T;(a) or not. Obtaining such a
characterization and understanding its meaning in the context of split versions seems to
be the most immediate accessible question. The first part of this question is undoubtedly
interesting in its own right) irrespectively of the application to particular problems from
Boolean complexity.

It is also worth noting that the reasoning in Example 1 can be reversed: since we
have the monotone separation theorem for Si) we also have the independence result S i If
WPHP(fP o fa). This implies the result from [9] that Si(f) WPHP(f) .

In the formal sense) Example 1 can not be used for refuting the separation theorem for
nonmonotone circuits. Indeed) E. Tardos 1241 noticed that the classes of graphs G with
w(G) 2 s and of graphs G with x(G) < s can be separated by (non-monotone) polynomial
size circuits. Still) her proof involves highly nontrivial combinatorial argument known as
Lovasz lower bound for Shannon capacity) and it hardly can be expected that this argument
would follow from a separation theorem in Bounded Arithmetic.

9. Acknowledgement

I am indebted to Sam Bass) Steven Cook) Mauricio Karchmer) Jan ~ r a j k e k) Steven
Rudich) Avi Wigderson) and Andy Yao for their useful remarks concerning various as-
pects of this patchwork paper.

References

[I] M. Aj tai. Et-formulae on finite structures. Annals of Pure and Applied Logic) 24: 1-48)
May 1983.

[2] N. Alon and R. Boppana. The monotone circuit complexity of Boolean functions.
Combinatorica) 7(1):1-22) 1987.

[3] J. Aspnes) R. Beigel) M. Furst) and S. Rudich. The expressive power of voting polyno-
mials. In Proceedings of the 23rd ACM STOC) pages 402-409) 1991. Journal version
to appear in Combinatorica.

[4] D. A. Barrington. A note on a theorem of Razborov. Technical report) University of
Massachusetts) 1986.

[5] R. B. Boppana and M. Sipser. The complexity of finite functions. In Jan van Leeuwen)
editor) Handbook of Theoretical Computer Science, vol. A (Algorithms and Complex-
ity)) chapter 14) pages 757-804. Elsevier Science Publishers B.V. and The MIT Press)
1990.

[6] S. R. Buss. Bounded Arithmetic. Bibliopolis) Napoli) 1986.

[7] S. R. Buss. Axiomatizations and conservations results for fragments of Bounded
Arithmetic. In Logic and Computation, Contemporary Mathematics 106) pages 57-84.
American Math. Society) 1990.

[8] S. R. Buss and J. Krajkek. An application of Boolean complexity to separation prob-
lems in Bounded Arithmetic. To appear in Proceedings of the London Mathematical
Society, 1992.

[9] M. Chiari and J. ~ r a j k e k . Witnessing functions in Bounded Arithmetic and search
problems. Manuscript in preparation, 1994.

[lo] S. Cook. Feasibly constructive proofs and the propositional calculus. In Proceedings
of the 7th Annual ACM Symposium on the Theory of Computing, pages 83-97, 1975.

[11] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits and the polynomial time hierarchy.
Math. Syst. Theory, 17:13-27, 1984.

[12] J. Histad. Computational limitations on Small Depth Circuits. PhD thesis, Mas-
sachusetts Institute of Technology, 1986.

[13] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search?
Journal of Computer and System Sciences, 37~79-100, 1988.

[14] M. Karchmer. Communication complexity: A new approach to circuit depth. PhD
thesis, Massachusetts Institute of Technology, 1989.

[I51 M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. on Disc. Math., 3(2):255-265, May 1990.

[16] J. B. Paris, A. J. Wilkie, and A. R. Woods. Provability of the pigeonhole principle and
the existence of infinitely many primes. Journal of Symbolic Logic, 53(4): 1235-1244,
1988.

[17] R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. In
Proceedings of the 22th Ann. ACM Symposium on the Theory of Computing, pages
287-292, 1990.

[18] A. Razborov. An equivalence between second order bounded domain bounded arith-
metic and first order bounded arithmetic. In P. Clote and J. Krajkek, editors, Arith-
metic, Proof Theory and Computational Complexity, pages 247-277. Oxford University
Press, 1992.

[19] A. Razborov. Bounded Arithmetic and lower bounds in Boolean complexity. Submit-
ted to the volume Feasible Mathematics 11, 1993.

I l l

[20] A. Razborov and S. Rudich. Natural proofs. To appear in the 26th ACM STOC)
1994.

[21] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the 19th ACM Symposium on Theory of Computing,
pages 77-82, 1987.

[22] G. Takeuti. Si and '?~(BD). Archive for Math. Logic) 29~149-169, 1990.

[23] G. Takeuti. RSUV isomorphisms. In P. Clote and J. ~ r a j k e k , editors, Arithmetic,
Proof Theory and Computational Complexity) pages 364-386. Oxford University Press)
1992.

[24] E. Tardos. The gap between monotone and nonmonotone circuit complexity is expo-
nential. Combinatorica) 8:141-142, 1988.

[25] G. Wilmers. Bounded existential induction. The Journal of Symbolic Logic) 50(1):72-
90, March 1985.

[26] A. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the
26th IEEE FOG'S) pages 1-10, 1985.

[27] A.E. Aqqpee~ . 0 6 o ~ O M MeTOAe noJIpeHmI m X OqeHOK CJIOXHOCTH a-
-Hgyam,mx MOHOTOHH~IX +ymqmZ. A A H CCCP) 282(5):1033-1037, 1985. A.E.
Andreev, On a method for obtaining lower bounds for the complexity of individual
monotone functions. Soviet Math. Dokl. 31(3):530-534) 1985.

[28] A.E. A H A P ~ ~ B . 0 6 O q O M MeTOfie n o J I y ~ e m ~++~KTPIBHMx -X OqeHOK
MOHOTOHHOE C J I O ~ O C T H . A~ze6pa u Aozuxa) 26(1):3-21) 1987. A.E. Andreev) On
one method of obtaining effective lower bounds of monotone complexity. Algebra i
logika) 26(1):3-21) 1987. In Russian.

[29] A. A. M a p ~ o ~ . 0 M ~ a J I ~ ~ X KOHTaKTHO-BeHTHJIbHbIX ~ Y X I I O J I I O C H H X a X AJIR

MOHOTOHHHX CmmeTpwecmix + y m . In lIpo6~e&w ~u6epnemuxu~ volume 8)
pages 117-121. H a y ~ a) 1962. A. A. Markov) On minimal switching-and-rectifier net-
works for monotone symmetric functions) Problems of Cybernetics, vol. 8) 117-121
(1962).

1301 3. Id. Hewmopy~ . 0 6 0 ~ 0 % ~ Y J I ~ B C K O % + y m . A A H CCCP) 169(4):765-766)
1966. E. I. Neeiporuk, On a Boolean function) Soviet Mathematics Doklady 7:4) pages
999-1000.

[31] A. A. Pa360p0~. H m e OqeHJSM MOHOTOHHO% CJIOXHOCTPI HeKOTOpbIX 6yJIe~bIx
+#. AAH CCCP) 281(4):798-801) 1985. A. A. Razborov) Lower bounds for
the monotone complexity of some Boolean functions, Soviet Math. Dokl., 31~354-357)
1985.

[32] A. A. Pa36opo~. Hmmnie o q e m MOHOTOHHO% C J I O ~ ~ O C T ~ normecKoro nepMa-
HeHTa. Mame&. 3a&,, 37(6):887-900) 1985. A. A. Razborov) Lower bounds of mono-
tone complexity of the logical permanent function) Mathem. Notes of the Academy of
Sci. of the USSR, 37~485-493, 1985.

[33] A. A. Pa36opo~ , Hmmnie o q e m p a 3 ~ e p a cxeM o r p a m e m o E r n y 6 m B

IIOJIHOM 6amce) co,qepwaqeM + ~ I O n o r m e w o r 0 cnoaxem. Mame&. 3~~4.)

41(4):598-607) 1987. A. A. Razborov, Lower bounds on the size of bounded-depth
networks over a complete basis with logical addition) Mathem. Notes of the Academy
of Sci. of the USSR) 41(4):333-338) 1987.

[34] E. A. C ~ ~ ~ O T O B C K ~ J ~ . 0 peann3aqzm J I m e k x + y m +op~yJIahm B 6a3nce
&, V) -. A A H CCCP, 136(3):553-555) 1961. B. A.Subbotovskaya) Realizations of
linear functions by formulas using +) *) -) Soviet Mathematics Doklady 2(1961)) 110-
112.

[35] B. M. Xparmemo. 0 C J I O ~ ~ O C T P T peann3aqmz nxmeihoZ +ymqm B macce
I I - cxe~ . Mame&. 3a~emxu) 9(1):35-40) 1971, V.M. Khrapchenko) Complexity of the
realization of a linear function in the class of T-circuits) Math. Notes Acad. Sciences
USSR 9(1971)) 21-23.

[36] B. M. xpELIFIeHK0. 0 6 0-OM MeTOAe IIOJIyVeHMR HPLXGMX OqeHOK CJIOXKHOCTPI

I I - cxe~ . M a m e ~ . 3a~emxu, 10(1):83-92, 1971. V.M. Khrapchenko, A method of de-
termining lower bounds for the complexity of 11-schemes, Math. Notes Acad. Sciences
USSR lO(l971)) 474-479.

Lecturer: Russell Impagliazzo

Title: Hard-core distributions for somewhat hard
functions

Material: R. Impagliazzo: Hard-core distributions for somewhat hard
problems: (Preliminary informal version)

Computer Science Department
University of California at San Diego
San Diego, CA
USA
E-mail:russell@cs.ucsd.edu 113

Hard-core distributions for somewhat hard :

problems: (Preliminary informal version) -

Russell Impagliazzo

August 16, 1994

Abstract '

This work is motivated by the following general problem also looked
at under various models by many others (see the bibliography for a small
sample.) If you have a problem that is difficult for a certain model on
a certain input distribution, in that any algorithm in the model taking
less than R resources has failure probability at least 6, is it always the
case that combining several independent instances of the problem makes
the failure probability proportionally greater? Here, combining can mean
asking the algorithm to output answers for each input, or some predicate
(e-g., the parity) depending on all the answers. One classical example
of such a result is the Yao exclusiveor lemma (p2]) , which says that if
we have a Boolean function f that is &hard for circuits of size C, and
(1 - 26)*' < â‚¬1 then the function f (xi, ... xk) = f (xi) @ f (m).. @ f (xk)
is 1/2(1 - â‚¬)-ha for circuits of size 0(c2c). (For a complete proof, see
Levin [L]).

I have been interested in this problem mainly from the viewpoint, is
full independence between the different xi's necessary, or do the same
results pertain if the xi's were chosen in some suitable peudo-random fas-
sion? I have not been terribly successful at answering this question, but
in thinking about these issues I have come up with a Lemma that I think
might be of independent interest, and at least gives a new proof of the
Yao XOR Lemma (up to some changes in the formula above, effectively
requiring k to double), and some weak results along the lines I was pur-
suing. [GILVZ] answers a similar question in amplifying the difficulty of
inverting functions.

Another interesting slant to this problem is, is it possible to get (in at
least some models) some similar results without decreasing the resource
bounds? (i.e., a real increase in difficulty, rather than just a time/ prob-
ability of correctness trade-off). This direction is pursued in [NRS], but I
won't talk about it any more here.

I am already tardy in submitting my seminar contribution. So in the
following informal seminar contribution, I will limit myself to stating and

proving the following Lemma, and leave extensions and applications to
the future, and to my fellow seminar participants.

Lemma 1 Let f be a Boolean function on n-bit inputs that is 6-hard for
circuits of size g on the uniform distribution, and let e > 0. Then there is
a set S 2 {O, 1)" so that \S\ > 62" and f is 1/2(1 - e) hard on an input
uniformly chosen from S for circuits of size de262g, where d is an absolute
constant.

A translation into intuitive terms is that for any yes/no problem that
is hard to solve almost aJl the time the instances can be divided up into
a set of "easy" instances and a "hard-core" of difficult instances where it
is impossible to do significantly better than a random guess. Note that
in the above lemma, we are actually off by a constant factor from what
we'd expect, since if there were a hard-core set of size 26, we might still be
able to predict the function with pprobability (1 - 26) + 1/2(26) = 1 - 6.
By recursively applying the lemma, we can make 151 closer and closer to
262", but at the expense of reducing the resource bound more and more.

The above actually holds for arbitrary starting distribution, and for
any non-uniform model of computation closed under taking majorities.

1 Basic Definitions
Definition 1 Let f be a Boolean function on n bit inputs, and D a distribution
on n bit strings. Let 112 > 6 > 0 and let n < ̂ g < 2*/n. W e say f is &hard
on D for size g if for any circuit C with at most g gates, and for x chosen
according to D, Prob[C(x) = f (x)] < 1 - 6 . For a circuit C and an input
z define Rc(x) = 1 if f (z) = C (x) , -1 otherwise, A measure on strings of
length n is a function M with M (x) E [O, 11 (think of it as defining a "fuzzy"
set of strings, where instead of definitely being in or out of the set, z is in
the set with probability M i x) .) The size of a measure M is written p (M)
and is defined by p (M) = 112" x_ M (x) . The distribution induced by M is
defined by D M (x) = M (x) / p (M) . The advantage of C on M is defined by
Advc(M) = 1/2" ^ > M(x)Rc (z) . It is easy to see that i f x is chosen according
to D M , Prob[C(x) = f (x)] >, 112 + c i f and only if Advc(M) 2 2cp(M).

We will use the above definitions in the following way. We will first show
that f is 112 - â‚¬ hard on some DM with p(M) > 6. We then use a counting
argument to show that a randomly chosen subset where x E S with probability
M i x) must be almost as hard a distribution as DM. This last step seems just
a technicality; the hard-core measure will be sufficient for all applications (I
believe).

2 Intuition
Consider a problem like inverting a one-way function, where if we have a correct
solution, then it is easy to verify it. Finding a "hard-core" set of problems for
such a distribution is easy. Either there is no circuit of size l/2e6g that solves the
problem on a e fraction of instances, or there is. If not, our hard-core distribution
is the uniform distribution. If so, this circuit weeds out an e fraction of inputs
as easy, and we look for a circuit that does well on the remaining inputs. This
process continues until either we find a hard-core distribution, or the set of
remaining inputs is smaller than 6. Note that, since we weed out at least a
66 fraction of inputs each time, this process continues at most I /& iterations.
(This is overcounting some.) So if we don't find a hard-core distribution, we
could piece all of the circuits we found into one circuit that tries them all and
outputs the first correct solution. This circuit has size g and solves the problem
1 - 6 of the time, contradicting the assumed hardness of the problem.

We will follow the same outline, except that in general, we won't be able
to tell when a circuit solves a particular instance, so we won't be able to just
eliminate those instances where our first circuit solves the problem correctly.
Instead, we gradually reduce the importance of those inputs where the circuits
we have found so far do well, until we have reached a certain "comfort level"
where the margin of success is high enough that we don't have to worry about
that input for a while. If the margin of success is large for almost all inputs,
the circuit that computes the majority of the circuits we have found computes
f correctly on almost all inputs.

3 Proof of Main Lemma
Lemma 2 Let f be 8-hard for size g on the uniform distribution on n-bit
strings, and let 1 > e > 0. Then there is a measure M with p (M) > 6 so
that f is 1/2(1- ?}-hard for size l/4e2Pg on DM.

Proof: Assume not, i.e., that on every measure M with p(M) 2 6, we can
find a circuit CM of size g' = l/4e282g so that Prob[f(x) = CM(X)] > 1/2(1+e)
when x is chosen according to DM. Let e' = â‚¬ Then for each such M,
Adv(CM)(M) >. ep(M) >: e'.

For a set of circuits C1, ...Cj, let Ni(x) = E l < -<i Rci(x) (i.e., the margin
by which we are predcting f on x correctly), a n d h Mi(x) = 1 if Ni(x) < 0,
0 if Ni{x) > 1/c1 and 1 - elNi(x) otherwise. (In other words, if we've guessed
more incorrectly than correctly on x we definitely want to include z in our
next candidate hard-core distribution, if we have a comfortable margin on x,
we don't, and if we are somewhere in between, include x with a probability
decreasing linearly with our margin.) For the empty set of circuits, No(x) = 0
so &(x) = 1 (i.e., we start in the uniform distribution.)

Let Cl = CMo. If ^ (M I) 2 6 , let Ca = CM1, and so on. Note that
maj(Cl , Xi) is correct on all inputs except those with M;(x) = 1, so Prob[maj(Ci, ..C;) =
f (i)] > 1 - p(Mi). So if the above process halts before i = 9/29' = 2ed then
this defines a circuit of size a t most g'i + 0(i) < 2g'i = g gates that computes
f on 1 - 6 of the inputs, a contradiction to the assumed hardness of f.

On the other hand, let 2 be any fixed input. Let A (z) = '&j<,is.i R&)Mie1(z).
We claim A(x) <, min{N;(z) , I / â ‚ ¬ + 1/2e/i. To see this, for each k, match up
the times j so that N j (x) = k, N j + l (~) = k + 1 with those where N j (z) =
k + 1, N j (x) = k , with possibly one time left out for each 0 5 k < Ni(x), or
N;(z) < k < 0. (In other words, if you ride an elevator starting at the ground
floor, you will go up from floor k to floor k + 1 at most one more time than
you go down from floor k + 1 to floor k, and that one time will occur if and
only if you get off at a floor greater than k. P.S. The analagous principle ap-
plies for health conscious people who take the stairs.) For each such pair of
times a, b, R ~ , + ~ (z) M a { z) + Rc^{x)M&) = Ma{x) - Mb(z). I f 0 <, k < l / e l ,
this is 1 - k(el) - (1 - (k + l) & = 8, and otherwise it is 0. Thus, each pair
together contribute at most c' to the sum, so all pairs contribute at most i/2&
Each unmatched edge with k < 0 contributes -1, each unmatched edge with
0 5 k < l/epsilonl contributes at most 1, and each unmatched edge with
k > l/epsilonl contributes 0, so the total contribution of the unmatched edges
is at most min{Ni(x), l/epsilon'}. Thus, we have proved the claim.

On the other hand, ,̂, A (x) = 2" xw5i-l A ~ V ~ , + ~ (M j) 2 Vie' . So
combining these, we have sumcmin{N; (x) , l/epsilon1} 2 2"i/2e1 = 2" l/e/ so
N; (x) 2 1/epsilon1 > 0 for all 2. But this gives us a circuit of size g that always
computes f correctly. This contradiction proves the Lemma.

4 Getting a hard core set from a hard-core
measure

Lemma 3 Let f be 1/2(1 - â‚¬1 hard for size 272 < g < (l /8)(2n/n)(c6)2 on
D M , where M is a measure with p (M) 2 6. Then there is a set S with \S\ 2 62"
and f is 1 / 2 (l Ã e) hard for size g on Us (the uniform distribution on S.)

Proof: First, note that the number of circuits of size g is at most (2(2n + g)) 2 g <
n 2 2

2'"g 3 l /4e2 ' ̂ 12. Let C be any circuit of size g, and pick S by placing
z G S with probability M (x) . Then Advc(M) = Ezp[Advc(Us)] < ep(M),
and Advc(Us) is the sum of 2" independent random variables that are in the
interval [0, 2""]. Hence, the probability that Adv*) >. 2epM is at most

n 2 2 e 2 ' 12, by Chernoff bounds. Thus, the probability that there is such a C is
at most 1/4. On the other hand, the probability that IS1 >, Exp\S\ = p (M) is
about 112 (I'm fudging a bit here, I should check this more carefully.) Therefore,
there is a set S with IS1 2 p (M) and Advc(Us) < 2ep(M) for every circuit C

with at most g gates. Therefore, Prob[C(x) = f(x)] < 112 + e for x uniformly
selected from S for any such circuit C, and so f is 112 - e-hard for size g on Us.

Lemma 1 then follows from combining Lemma 2 and Lemma 3 with the
observation that if f is &hard on any distribution for any 6 for size g, then
g < 2" /n, since any function can be computed with 2"/n gates.

References

[ABG] A. Amir, R. Beigel, W. Gasarch, "Some connections between bounded
query classes and nonuniform complexity", 5th Structures in Complexity
Theory Conference, 1990.

[Bsh] N.H. Bshouty, "On the extended direct sum conjecture", Proceedings of
21st STOC, pp. 177-185 (1989).

[FKN] T. Feder , E. Kushilevit z, M. Naor , "Amortized Communication Com-
plexity", 32nd FOCS, pp. 239-248, 1991.

[J] 3. 3a1Ja', "On the Validity of the Direct Sum Conjecture", SIAM J.
Comput.,l5, 4, pp. 1004-1020, 1986.

[KKN] M. Karchrner, E. Kushilevitz, N. Nisan, "Fractional Covers and Commu-
nication Complexity", 7th Structures in Compelxity Theory Conference,
pp. 262-274, 1992.

[KRW] M. Karchmer, R. Raz, A. Wigderson, "On Proving Super-Logarithmic
Depth Lower Bounds via the Direct Sum in Communication Complex-
ity", Structures in Complexity Theory '91, pp. 299-304 (1991).

[L] L.Lov&z7 "On the ratio of optimal integral and fractional cover", Dis-
crete Mathematics , 13, pp. 383-390, 1975.

[NRS] N. Nisan, S. Rudich M. Saks, Manuscript.

[Yl A. C.-C. Yao, "Some complexity questions related to distributive com-
puting", Proceedings of llth STOC, pp. 209-213 (1979).

[BM] Blum, M., and Micali, S., "How to Generate Cryptographically Strong
Sequences of Pseudo-Random Bits7', SIAM 3. on Computing, Vol. 13,
1984, pp. 850-864. A preliminary version appeared in 23rd FOCS 1982.

[GILVZ] Goldreich, O., Impagliazzo, R., Levin, L., Venketesan, R., Zuckerman,
D., "Security Preserving Amplification of Harness", Proceedings of the
31st IEEE Symposium on Foundations of Computer Science, pp. 318-326,
1990.

[GL] Goldreich, O., and L.A. Levin, "A Hard-core Predicate for any One-way
Function", 21r'* STOC, 1989, pp 25-32.

[GM] Goldwasser, S. and Micali, S., "Probabilistic Encryption," JCSS, Vol. 28,
No. 2, April 1984, pp. 270-299. A preliminary version appeared in
STOC, 1982.

[L] Levin, L.A., "One-way Function and Pseudorandom Generators", Com-
binatorica, Vol. 7, No. 4, 1987, pp. 357-363. A preliminary version ap-
peared in 1 7 ~ ~ STOC, 1985.

[Y2] Yao, A.C., "Theory and Applications of Trapdoor Functions", 23rd
FOCS, 1982, pp. 80-91.

Lecturer: Amnon Ta-Shma

Title: Symmetric Log-space is Closed Under
Complement

Material: Slides &
Noam Nisan and Amnon Ta-Shma: Symmetric Logspace is
Closed Under Complement

Institute of Computer Science
Hebrew University
Jerusalem, Israel
E-mail: {noam, am} @CS . HUJI . AC . IL

Symmetric Logspace is Closed Under Complement *

Noam Nisan Amnon Ta-Shma
noam@cs.huji.ac.il am@cs.huji.ac.il

September 28, 1994

Abstract

We present a Logspace, many-one reduction from the undirected st-connectivity prob-
lem to its complement. This shows that SL = co - SL.

1 Introduction

This paper deals with the complexity class symmetric Logspace, SL, defined by Lewis and
Papadimitriou in [LP82]. This class can be defined in several equivalent ways:

1. Languages which can be recognised by symmetric nondeterministic Turing Machines
that run within logarithmic space. See [LP82].

2. Languages that can be accepted by a uniform family of polynomial size contact schemes
(also sometimes called switching networks.) See [Razgl].

3. Languages which can be reduced in Logspace via a many-one reduction to USTCON,
the undirected st-connectivity problem.

A major reason for the interest in this class is that it captures the complexity of USTCON.
The input t o USTCON is an undirected graph G and two vertices in it s , t , and the input
should be accepted if s and t are connected via a path in G. The similar problem, STCO N,
where the graph G is allowed to be directed is complete for NL, non-deterministic Logspace.
Several combinatorial problems are known to be in SL or co - SL, e.g. 2-colourability is
complete in co - S L [Rei82].

The following facts are known regarding S L relative to other complexity classes in "the
vicinity" :

L C S L - L C N L .

Here, L is the class deterministic Logspace and RL is the class of problems that can be
accepted with one-sided error by a randomized Logspace machine running in polynomial

"This work was supported by BSF grant 92-00043 and by a Wolfeson award administered by the Israeli
Academy of Sciences. The work was revised while visiting BRICS, Basic Research in Computer Science, Centre
of the Danish National Research Foundation.

time. The containment SL C RL is the only non-trivial one in the line above and follows
directly from the randomized Logspace algorithm for USTCON of [AKL+79]. It is also
known that SL C S C [Nis92], SL 5 @ L [KW93] and SL 5 D S P A C E (~ O ~ ~ - ~ re) [NSW92].

After the surprising proofs that NL is closed under complement were found [Imm88,
Sze881, Borodin et a1 [BCD+89] asked whether the same is true for SL. They could prove
only the weaker statement, namely that SL C co - RL, and left "SL = co - SL?" as an open
problem. In this paper we solve the problem in the affirmative by exhibiting a Logspace,
many-one reduction from USTCON to its complement. Quite surprisingly the proof of our
theorem does not use inductive counting, as do the proofs of NL = co - NL, and is in fact
even simpler than them, however it uses the [AKS83] sorting networks.

Theorem 1 SL = co- SL.

It should be noted that the monotone analogues (see [GS91]) of SL and co - SL are
known to be different [KW88].

As a direct corollary of our theorem, we get that L~~ = SL '~ = SL where L~~ is the
class of languages accepted by Logspace oracle Turing machines with oracle from SL, and
SL '~ is defined similarly, being careful with the way we allow queries (see [RST82]).

Corollary 1.1 LsL = SL^ = SL

This also shows that the "symmetric Logspace hierarchy" defined in [Rei82] collapses to
SL.

2 Proof of Theorem

2.1 Overview of proof.

We show that we can upper and lower bound the number of connected components of a
graph, using connectivity problems. We upper bound this number using a "transitive-closure"
method, which can be easily done since we are allowed to freely use connectivity problems.
However, trying to lower-bound the number of connected components this way requires nega-
tion. The heart of the proof lies in lower-bounding the number of connected components,
and we achieve this in a surprisingly easy way, by computing a spanning forest.

In subsection 2.2 we show how to combine many connectivity problems to one single con-
nectivity problem. In subsection 2.3 we show how to find a spanning forest using connectivity
problems. In subsection 2.4 we show how to use this spanning forest to find the number of
connected components of a graph, and how we solve the st non-connectivity problem with
it.

2.2 Projections to USTCON.

In this paper we will use only the simplest kind of reductions, i.e. LogSpace uniform projec-
tion reductions [SV85]. Moreover, we will be interested only in reductions to USTCON. In
this subsection we define this kind of reduction and we show some of its basic properties.

NOTATION 2.1 Given f : {O, 1}* I-+ {O, 1}* denote by fn : {O, I}"Â I+ {O, 1}* the restriction
o f f to inputs of length n. Denote by f n k the k'th bit function of fn , i.e. i f f n : {O, I}" I+

{O, l }k (n) then fn = (f n , ~ , - - - , fn ,k(n)) .

NOTATION 2.2 W e represent an n-node undirected graph G using (3 variables Z = { ~ i , ~ } ~ < i < ~ < n
s.t. x i j is 1 iff (i , j) G E(G) . If f (Z) operates on graphs , we will write f (G) meaning that-
the input to f is a binary vector of length (3 representing G.

DEFINITION 2.1 W e say that f : {O, 1}* I+ {O, 1}* reduces to U S T C O N (m) , m = m(n), if
there is a uniform family of Space(log(n)) functions { o n k } s.t. for all n and k:

%k is a projection, i.e.: on,k is a mapping from {i , j}~<i<~<rn to {O, 1, xi, -ixi}i<i<n

Given Z define G g to be the graph Gg = ({ I , . . . , m } , E) where
E = { (i , j) 1 (rn,k(i, j) = 1 or (rn,k(i, j) = xi and xi = 1 OT on,k(i ,J) = 1%; and xi = O}.
It should hold that fnk(Z) = 1 Â¥<==> there is a path from 1 to m in Gy.

If a is restricted to the set {O, 1, we say that f monotonically reduces to U S T C O N (m) .

Lemma 2.1 If f has uniform monotone formulae of size s (n) then f is monotonically re-
ducible to U S T C O N (O(s (n))) .

Proof: Given a formula 4 recursively build (G , s , t) as follows:

I f 4 = xi then build a graph with two vertices s and t , and one edge between them
labelled with xi.

I f 4 = (f>l A (f > 2 , and (Gi, si, t i) the graphs for <^, i = 1,2, then identify 32 with ti and
define s = s1,t = t2.

I f 4 = V $2, and (Gi , si, t i) the graphs for (f>i, i = 1,2, then identify sl with ti and
s2 with t2 and define s = sl = ti and t = s2 = ti.

Using the A K S sorting networks [AKS83], which belong to N C 1 , we get:

Corollary 2.2 Sort : {O, 1}* I-+ {O, 1}* (which given a binary vector sorts it) is monotoni-
cally reducible to U S T C O N(po1y).

Lemma 2.3 I f f monotonically reduces to U S T C O N (m l) and g reduces to U S T C O N (m 2)
then f o g reduces to U S T C O N (m : m-^} , where o is the standard function composition
operator.

Proof: f monotonically reduces to a graph with m l vertices, where each edge is labelled
with one of {O, 1, xi}. In the composition function f o g each xi is replaced by xi = gi($
which can be reduced to a connectivity problem of size m2. Replace each edge labelled xi
with its corresponding connectivity problem.

2.3 Finding a spanning forest.

In this section we show how to build a spanning forest using U S T C O N . This construction
was also noticed by Reif and independently by Cook [Rei82].

Given a graph G index the edges from 1 to m. We can view the indices as weights to the
edges, and as no two edges have the same weight, we know that there is a unique minimal
spanning forest F. In our case, where the edges are indexed, this minimal forest is the
lexicographically first spanning forest.

It is well known that the greedy algorithm finds a minimal spanning forest. Let us recall
how the greedy algorithm works in our case. The algorithm builds a spanning forest F which
is at the beginning empty F = V. Then the algorithm checks the edges one by one according
to their order, for each edge e if e does not close a cycle in F then e is added to the forest,
i.e. F = F U {e}.

At first glance the algorithm looks sequential, however, claim 2.3 shows that the greedy
algorithm is actually highly parallel. Moreover, all we need to check that an edge does not
participate in the forest, is one st connectivity problem over a simple to get graph.

DEFINITION 2.2 For an undirected graph G denote by LFF(G) the lexicographically first span-
ning forest of G . Let

S F (G) n {O, l}G) be:

SFi , (G) = 0 (i, j) E LFF(G)
1 otherwise

Lemma 2.4 S F reduces to USTCO Nfpoly)

Proof: Let F be the lexicographically first spanning forest of G. For e E E define Ge to
be the subgraph of G containing only the edges {e' ? E \ index(e1) < index(e)}.

Claim: e = (i, j) E F Â¥<=> e E E A i is not connected to j in Ge.

Proof: Let e = (i , j) E E. Denote by Fe the forest which the greedy algorithm built at the
time it was checking e. So e E F Â¥<=> e does not close a cycle in Fe.

(') e G F and therefore e does not close a cycle in Fey but then e does not close a cycle
in the transitive closure of Fe, and in particular e does not close a cycle in Ge.

(e) e does not close a cycle in Ge therefore e does not close a cycle in Fe and e (E F. 0

Therefore SFi j (G) = l x ~ V i is connected to j in Gni) .

Since -ixj,j can be viewed as the connectivity problem over the graph with two vertices
and one edge labelled -la;,-,j it follows from lemmas 2.1,2.3 that S F reduces to USTCON.
Notice, however, that the reduction is not monotone.

0

2.4 Putting it together.

First, we want to build a function that takes one representative from each connected com-
ponent. We define LIi(G) to be 0 iff the vertex i has the largest index in its connected
component.

0 i has the largest index in its connected component

Lemma 2.5 LI reduces to USTCON(po1y)

Proof:

LIi(G) = V?=i+l (i is connected to j in G).

So LI is a simple monotone formula over connectivity problems, and by lemmas 2.1,2.3
LI reduces to USTCO N . This is, actually, a monotone reduction.

0

Using the spanning forest and the LI function we can exactly compute the number of
connected components of G , i.e.: given G we can compute a function NCCi which is 1 iff
there are exactly i connected components in G.

DEFINITION 2.4 NCC(G) w {0 , I}"

Lemma 2.6 NCC reduces to

there are exactly i connected components in G
otherwise

USTCO N (poly)

Proof;

Let F be a spanning forest of G. It is easy to see that if G has k connected components
then \F\ = n - k.

Define:
f(G) = Sort o LI(G)
g(G) = Sort o SF(G).

Then:

Therefore applying lemmas 2.1,2.2,2.3,2.4,2.5 proves the lemma.

Finally we can reduce the non-connectivity problem to the connectivity problem, thus
proving that SL = co - SL.

Lemma 2.7 USTCON reduces to USTCON(po1y)

Proof:

Given (G, s, t) define G+ to be the graph G U {(s, t)}.

Denote by #CC(H) the number of connected components in the undirected graph H.

s is not connected to t in G <=Ã

Therefore applying lemmas 2.1,2.3,2.6 proves the lemma.

3 Extensions

Denote by L~~ the class of languages accepted by Logspace oracle Turing machines with
oracle from SL. An oracle Turing machine has a work tape and a write-only query tape
(with unlimited length) which is initialised after every query. We get:

Corollary 3.1 LsL = SL.

Proof:

Let Lang be a language in L~~ solved by an oracle Turing machine M running in L^,
and fix an input Z to M.

Look at the configuration graph of M. In this graph we have query vertices with outgoing
edges labelled "connected" and "not connected". We would like to replace the edges labelled
"connected" with their corresponding connectivity problems, and the edges labelled "not
connected" with the connectivity problems obtained using our theorem that SL = co - SL.

However, there is a technical problem here, as the queries are determined by the edges
and not by the query vertices. We can fix this difficulty by splitting each query vertex to its
"yes" and "no" answers, and splitting each edge entering a query vertex to "connected" and
"not connected" edges. Now we can easily replace each edge with a connectivity problem,
obtaining an undirected graph which is st connected iff Z ? Lang, and therefore Lang ? SL.

As can easily be seen the above argument applies to any undirected graph with USTCON
query vertices, thus, if we carefully define S L ' ~ (see [RST82]) we get that:

Corollary 3.2 SL^ = SL.

In particular, the "symmetric Logspace hierarchy" defined in [Re821 collapses to SL.

4 Acknowledgements

We would like to thank Amos Beimel, Allan Borodin, Robert Szelepcsenyi, Assaf Schuster
and Avi Wigderson for helpful discussions.

References

[AKL+79]

[AKS83]

[BCD+89]

[GS91]

[Imm88]

[KW88]

[KW93]

[LP82]

[Nis92]

[NS W92]

[Razg 11

[Rei82]

R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, and C. Rackoff. Random walks,
universal sequences and the complexity of maze problems. In Proceedings of the
20th Annual IEEE Symposium on the Foundations of Computer Science, 1979.

M. Ajtai, J. Komlos, and E. Szemeredi. An O(n log n) sorting network. In Proc.
15th ACM Symposium on Theory of Computing (STOC), pages 1-9, 1983.

A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo, and M. Tompa. Two appli-
cations of inductive counting for complementation problems. SIAM Journal on
Computing, 18(3):559-578,1989.

Grigni and Sipser. Monotone separation of logspace from ncl. In Annual Confer-
ence on Structure in Complexity Theory, 1991.

Immerman. Nondeterministic space is closed under complementation. SIAM Jour-
nal on Computing, 17, 1988.

M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. In Proc. 20th ACM Symposium on Theory of Computing
(STOC), pages 539-550,1988.

Karchmer and Wigderson. On span programs. In Annual Conference on Structure
in Complexity Theory, 1993.

Lewis and Papadimitriou. Symmetric space-bounded computation. Theoretical
Computer Science, 19, 1982.

N. Nisan. RL C SC. In Proc. 24th ACM Symposium on Theory of Computing
(STOC), pages 619-623,1992.

N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in O(log^^n)
space. In Proc. 33th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 24-29, 1992.

A. Razborov. Lower bounds for deterministic and nondeterministic branching
programs. In Proceedings of the 8th FCT, Lecture Notes in Computer Science,
529, pages 47-60, New York/Berlin, 1991. Springer-Verlag.

J. H. Reif. Symmetric complementation. In Proc. 14th ACM Symposium on
Theory of Computing (STOC), pages 201-214, 1982.

[RST82] W. L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and proba-
bilistic computations. In Proc. 14th ACM Symposium on Theory of Computing
(STOC), pages 215-223, 1982.

[SV85] Skyum and Valiant. A complexity theory based on boolean algebra. Journal of
the ACM, 1985.

[Sze88] Szelepcsenyi. The method of forced enumeration for nondeterministic automata.
Acta Informatics, 26, 1988.

Lecturer: Peter Bro Miltersen

Title: On Cell Probe Complexity

Material: Slides &
Peter Bro Miltersen: On the cell probe complexity of dynamic
problems

BRIGS
Computer Science Department
University of Aarhus
DK-8000 Aarhus C, Denmark
E-mail:bromille@daimi.aau.dk

141

On the cell probe complexity of
dynamic problems

Peter Bro Miltersen *
BRICSt

1 What are dynamic problems?
In this note, we give a survey of some results about dynamic problems with a
complexity theoretic flavour. A survey on the same subject, but with a slightly
different perspective, was recently given by Fredman [7].

A dynamic problem is the problem of maintaining an object in a data struc-
ture while certain operations are performed on the object, some of which change
the object, and some of which answer questions about the object. Rather than
a formal definition, let us look at some examples.

The union-split-find problem
The union-split-find problem (on intervals) is the task of maintaining a set
S C {I, . . . , n}, initially empty, under the following operations:

For each i c {I,. . . , n}, an operation Â¥imion(i) It removes i from S.

For each i { I , . . . , n}, an operation spli t(i) . It inserts i into S.

For each i ? {I, . . . , n}, an operation find(!'). It returns the largest ele-
ment of S which is smaller than or equal to i if such an element exists,
otherwise 0 is returned.

Union-split-find is a generally useful abstract data type, for instance, it can
be used to implement priority queues with small integers. The best known
implementation has a worst case time per operation of O(1og log n) [lg].

*This work was supported by a grant from the Danish Natural Science Research Council.
It was partially supportedby the ESPRIT I1 Basic Research Actions Program of the European
Community under contract No. 7141 (project ALCOM 11)

+Basic Research in Computer Science, a Centre of the Danish National Research Foun-
dation at: Computer Science Department, Aarhus University, Ny Munkegade, DK-8000
Aarhus C, Denmark.

Dynamic parity prefix

The dynamic parity prefix problem is the problem of maintaining a vector x ?
{O, I}" under the following operations:

0 For each i E {1, . . . , n} and a ? {O, l} an operation change(i, a). This
operation changes xi to a.

For each j ? {I, . . . , n} an operation pref ix(j), returning XI + xy + - - - +
X j mod 2.

The parity prefix problem is a one dimensional version of the range query prob-
lems, considered in computational geometry and database theory. A trivial
solution gives time O(1ogn) per operation. With a bit more thought, we can
get time O(1og n/ log log n) [9].

Dynamic graph connectivity

The dynamic graph connectivity problem is the problem of maintaining an undi-
rected graph with set of vertices V = {I,. . . , n} under the following operations:

For each i, j 6 V with i # j , an operation insert(i , j). This inserts an
edge between i and j in the graph.

For each i, j ? V with i # j, an operation deleted,$. This removes the
edge between i and j in the graph.

For each i , j ? V, an operation con(i, j). This operation returns t r u e if i
and j are in the same connected component in the graph, f a l s e otherwise.

The best known solution to the graph connectivity problem is highly non-trivial,
with a worst case time per operation of O(-\/n) [4]. Dynamic graph problems
had been studied intensively for a decade before this solution appeared.

The spreadsheet problem

The (small-screen, Boolean) spreadsheet problem is the problem of maintaining
n cells Cl, C2,. . . ,Cn, each cell containing either a Boolean constant (i.e. "0"
or "I") or a constant size Boolean formula, with variables denoting other cells
(e.g. "C12 V C37"), under the following operations:

For each i 6 {1, . . . , n}, and each formula or constant f , an operation
change(!', f) operation, which changes the contents of cell Ci to f .

For each i E {I , . . . , n}, an operation screen(i), which return the value
of cell Ci (with "value" having the obvious semantics; if loops exist in the
spreadsheet, the value is undefined).

It is well known that spreadsheets are generally useful. The trivial solution to
the spreadsheet problem is to maintain the cells themselves, perform changes
in constant time and when a screen(i) operation is called, make a topological
sort of the cells, and evaluate the cells bottom up until the value of cell C(i) is
known. This takes time 0 (n) in the worst case. This solution is patented [15]!
No better solution is known.

Our goal

We see that while the various problems seem similar, at least from a syntactical
point of view, their best known solutions, some of which are trivial, some of
which are deep, have very different complexities. This motivates looking at
the problems from a complexity theoretic angle. The goal of doing complexity
theory in this domain (as in others) are two-fold:

Show lower bounds, hopefully establishing that the best known solutions
are optimal, so that we do not have to keep on searching for better solu-
tions.

Gain an understanding about which properties of the problems make some
of them difficult and some of them easy. This does not necessarily imply
showing lower bounds, merely showing structure is often illuminating.

2 A complexity t heoret ic framework

Dynamic language membership problems
In order to make systematic complexity theoretic investigations, we need a more
well defined notion of dynamic problem. We will let the class of dynamic lan-
guage membership problems be our subject of investigation:

A problem in this class is given by a language L C {O, I}*. We are supposed
maintain a string x E {O, 1}* with operations:

For each i E {I, . . . , n } , a ? {O, 11, an operation changed, a). This opera-
tion changes the i'th component of x to a.

query. This operation returns t r u e if x ? L, f a l s e otherwise.

Many naturally occurring problems can be phrased as dynamic language
membership problems without changing their complexity. For instance, it is an
easy exercise to see that the dynamic graph connectivity problem corresponds
to the dynamic language membership problem for the language L = USTCON.
The spreadsheet and prefix problems can be similarly captured. The union-split-
find problem can not be captured exactly, because the find operation returns
more than O(1) bits, but similar problems, like dynamic binary addition [12]
can.

The cell probe model
Various models of computation have been considered for dynamic problems:

The pointer or storage modification machine, whose memory consists of a
collection of records, each consisting of a bounded number of fields, each
consisting of a pointer to other records. Interesting lower bounds [lo, 161
have been shown in this model. However, since we know that arrays can
be useful (e.g. for hashing), we would like our lower bounds to hold in
stronger models.

The unit cost RAM, where each cell in the random access memory holds
an arbitrary integer. This model can simulate PRAMS [18], so it is a bit
too strong.

The log cost RAM, where the cost of an operation is proportional to the
number of bits in the words accessed. This is a bit too weak, since we can
then not follow a pointer in constant time.

Our favourite model: The random access computer [2], where operations
are unit cost, but each cell can only hold an integer of polynomial mag-
nitude. Consensus seems to be emerging that this model has exactly the
right level of generality. For instance, it captures all the upper bounds in
Section 1, and the fact that they are the best known.

The cell probe model can be regarded as a strong (but not too strong), non-
uniform version of the random access computer.

In this model, the complexity of a computation is the number of cells ac-
cessed in the random access memory containing the data structure during the
computation, while the computation itself is for free. Each cell contains b bits,
where b is a parameter of the model. There is no restriction on the number of
cells in the memory.

Formally, the model is as follows: In an implementation of the dynamic
problem we assign to each operation a decision assignment tree, i.e. a rooted
tree containing read nodes and write nodes. When performing an operation
we proceed from the root of its tree to one of the leaves. The read nodes
are labelled with a location of the random access memory. Each has 2' sons,
one for each possible content of the memory location. The write nodes, which
are unary, are labelled with a memory location and a value between 0 and
2b - 1. When such a node is encountered, the value is written in the memory
location. If the operation is to return an answer, this is found in the leaf finally
encountered. The complexity of an operation in an implementation is the depth
of its corresponding tree.

In the rest of the paper, we assume b = O(1ogn). With this setting, the cell
probe model simulates the random access computer, no matter which instruction
set the latter uses.

3 Lower bounds

Couting arguments

It is easy to show [14]:

Theorem 1 All dynamic language membership problems have complexity at
most O(n/ log n). Furthermore, almost all dynamic language membership prob-
lems have complexity at least Ct(n/logn).

So the cell probe complexity measure behaves much like more usual complexity
measures for Boolean languages, like circuit size and depth. However, we want to
know lower bounds for explicitly defined languages, which, for our purpose, are
languages in P (The theorem above only gives us languages in EXPSPACE).
For this purpose, there seem to be only two techniques available for cell size
b = O(log n):

The time stamp method.

The compression and communication complexity method.

For smaller cell sizes, there are at least three additional techniquesL6, 5, 141, but
they do not translate into RAG lower bounds.

The time stamp method
We are not going to go into the details of the time stamp method here, but only
mention that the time stamp method shows a lower bound of ft(1og n/ log log n)
for the dynamic prefix problem mentioned above. By a reduction, the same
bound holds for the dynamic graph connectivity problem [14, 171. Furthermore,
this seems to be the largest lower bound that can be shown for any problem
using this technique.

The compression and communication complexity method
It is harder to give correct and fair citations for this method. Willard [20] used
what is essentially the compression method for proving upper bounds on certain
static data structure problems. Ajtai used what was essentially the communi-
cation complexity method for proving lower bounds on the static version of the
union-split-find problem. He didn't phrase his proof in terms of communication
complexity, which (in our view) made it hard to understand. Miltersen [l l]
used the compression and communication complexity technique in a weak form
to show lower bounds on the cell probe complexity of dynamic problem. In [12],
Miltersen noted that Ajtai's proof could be interpreted as communication com-
plexity and combined a technical improvement of it with compression to give
lower bounds for the union-split-find problem and a range of other problems.

However, Xiao, in his unpublished PhD-thesis [21], had earlier, and indepen-
dently, combined compression with a stronger version of Ajtai's proof, giving
stronger lower bounds for the union-split-find problem. Beame and Fich [3],
upon reading [12] independently gave this stronger bound for all the problems
in [12].

Fortunately, the method itself is rather easy to explain. Assume, for conve-
nience of notation, that our dynamic problem is the problem of maintaining a
set S C {I,. . . , n} under insertions, deletions, and some set Q of query oper-
ations. Suppose that we are given an efficient dynamic algorithm that runs in
time t per operation.

In the compression step we convert the dynamic algorithm to a solution
for a static data structure problem, namely the problem of storing S using
small space (O(\S\t) cells) so that any query in Q can be answered in time
t. Basically, this is done by inserting the elements of S in our dynamic
data structure, noting which memory locations have changed value, and
storing those in a perfect hash table [8].

In the next stage we convert the solution to the static problem into an
efficient protocol for the following communication game between Alice and
Bob:

- Alice is given a query q 6 Q.

- Bob is given a subset S C { 1, . . . , n} .

Alice is allowed to send messages that contains log 15'1 bits to Bob, while
Bob is allowed to send messages that contain logn bits to Alice. The
object of the game is for Alice to find out the answer to query q about S.

The efficient protocol is as follows: Bob computes the static data structure
corresponding to S, but does not send anything yet. Then Alice simulates
the query operation corresponding to q by sending Bob requests for the
cells she wants to read in his data structure. Bob sends the content of
the cell in question back. This is repeated until the query operation is
completed and Alice knows the answer, i.e.. for at most t rounds.

We can now use communication complexity techniques to give a lower bound
on the communication game and translate this bound back to a lower bound on
the dynamic problem.

Examples include an ft(1og log n/ log log log n) lower bound for the union-
split-find problem [21, 31. The largest bound the technique is able to give for
any problem is ft(1og n/ log log n). This bound is achieved for a language L,
related to polynomial evaluation over finite fields [13].

4 Structure

The largest lower bound we can show for an explicit problem by the known
techniques is Q(1og n/ log log n). It is therefore an open problem if all dynamic
language membership problems in P can be solved in time O(log n/ log log n)
per operation.

Thus, we are far from showing that the best known algorithms for e.g. the
dynamic connectivity and the spreadsheet problems are optimal. However, from
traditional complexity theory, where large lower bounds are also hard to find,
we known an alternative: structure. It would be nice to be able to claim that
these problems are difficult, because each are hard for a large class of natural
problems.

Of course, we need to define a notion of reduction that preserves dynamic
complexity. One was defined in [14], here's another, a bit more intuitive, and
sufficient for our purpose:

For two languages L\ and L2, we say that Ll <d lit, if the dynamic language
membership problem for Ll can be solved in time O(1ogn) if we assume access
to black box (oracle) implementations of the dynamic language membership
problem for L2 that runs in time O(1og n).

We can now show, by emulating the usual completeness proof for the circuit
value problem:

Theorem 2 T h e spreadsheet problem is complete for P w.r . t . Sd.

Thus, the spreadsheet problem can not be solved in time O(1og n) (or log0(') n
or no@)) per operation, unless all of P can.

Indeed, it seems that almost all natural P-complete (with respect to e.g.
first order projections or whatever your favourite notion of low level reducibility
is) problems are P-complete w.r.t. Sd.

We might now reasonably expect that by a similar argument dynamic graph
connectivity is complete for the class SL since USTCON is first order complete
for SL.

Unfortunately, this does not seem to be the case. In general, it seems that
almost none of the natural first order complete problems for the usual classes
(defined in terms of small space or parallel time) smaller than P are complete
w.r.t. <d.

Examples disobeying these rules of thumb can be constructed: languages,
first order complete for P with efficient dynamic solutions exist, and so do
problems which are first order complete, as well as &-complete, for SL [14],
but neither are particularly natural when regarded as combinatorial problems.

Though it is hard to find problems Sd-complete for usual complexity classes,
we could hope for new structure: The dynamic graph connectivity problem
might be complete for a large class of natural problems, different from SL.
Unfortunately, this does not seem to be the case either: <d seems to be too

weak a reduction for much structure to appear. Therefore, a rich structural
complexity theory of dynamic problems seems unlikely.

References

[I] M. Ajtai, A lower bound for finding predecessors in Yao's cell probe model,
Combznatorica 8 (1988) 235-247.

[2] D. Angluin, L.G. Valiant, Fast probabilistic algorithms for Hamiltonian
circuits and matchings, J. Comput. System Scz. 18 (1979) 155-193.

[3] P. Beame, F. Fich, Personal Communication.

[4] D. Eppstein, 2. Galil, G. F. Italiano, T. H. Spencer, Separator based spar-
sification for dynamic planar graph algorithms, in:Proc. 25th ACM Symp.
on Theory of Computing (1993) 208-217.

[5] G.S. Frandsen, P.B. Miltersen, S. Skyum, Dynamic Word Problems, in:
Proc. 34rd IEEEE Symposium on Foundations of Computer Science (1993)
470-479.

[6] M.L. Fredman, The complexity of maintaining an array and computing its
partial sums, J. Assoc. Comput. Mach. 29 (1982) 250-260.

[7] M.L. Fredman, Lower bounds for dynamic algorithms, in: Proc. 4th Scan-
dinavian Workshop on Algorithm Theory (1994) 167-171.

[8] M.L. Fredman, J . Koml&, E. Szemer&di, Storing a sparse table with O(1)
worst case access time, J. Assoc. Comput. Mach. 31 (1984) 538-544.

[9] M.L. Fredman, M.E. Saks, The cell probe complexity of dynamic data
structures, in: Proc. 21st Ann. ACM Symp. on Theory of Computing (1989)
345-354.

[lo] K. Mehlhorn, S. Naher, H. Alt, A lower bound on the complexity of the
union-split-find problem, SIAM J. Comput. 17(1988) 1093-1102.

[l l] P.B. Miltersen, The bit probe complexity measure revisited, in: Proc. 10th
Symp. on Theoretical Aspects of Computer Science, Lecture Notes in Com-
puter Science, Vol. 665 (Springer, Berlin, 1993) 662-671.

[12] P.B. Miltersen, Lower bounds for Union-Split-Find related problems on
random access machines, in: Proc. 26th ACM Symposium on Theory of
Computing (1994) 625-634.

1131 P.B. Miltersen, On the cell probe complexity of polynomial evaluation,
manuscript 1994.

[14] P.B. Miltersen, S. Subramanian, J.S. Vitter, R. Tamassia, Complexity mod-
els for incremental computation, Theoretical Computer Science 130 (1994)
203-236.

[15] R.K. Pardo, R. Landau, Process and apparatus for converting a source
program into an object program, US patent # 4,398,249, filed Aug 12,
1970, granted Aug 9, 1983.

[16] J.A. La Poutre, Lower bounds for the Union-Find and the Split-Find prob-
lem on pointer machines, in: Proc. 20th Ann. ACM Symp. on Theory of
Computing (1990) 3444.

[17] M. Rauch, Improved data structures for fully dynamic binconnectivity, in:
in: Proc. 26th ACM Symposium on Theory of Computing (1994) 686-695.

[18] A. Schonhage, On the Power of Random Access Machines, in: Proc. 6th
Annual International Colloquium on Automata, Languages and Program-
ming (1979) 520-529.

[19] P. Van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an
efficient priority queue, Math. Systems Theory 10 (1977) 99-127.

[20] D.E. Willard, Log-logarithmic worst case range queries are possible in space
0(n) , Inform. Process. Lett. 17 (1983) 81-84.

[21] B. Xiao, New bound in cell probe model, Doctoral Dissertation, University
of California, San Diego, 1992.

Lecturer: Michael Ben-or

Title: On Algebraic Complexity Theory

No material, since blackboard was used.

Institute of Computer Science
Hebrew University
Jerusalem, Israel
E - ~ ~ ~ ~ : ~ ~ ~ o ~ @ c s . H u J I . A C . I L

Lecturer: Christoph Meinel

Title: Modular Communication Complexity of UCON

Material: Christoph Meinel & Stephan Waack: The Mobius Function,
Variations Ranks, and @ (n)-Bounds on the Modular
Communication Complexity of the Undirected Graph
Connectivity Problem

Fachbereich IV - Informatik
Universitat Trier
D-54286 Trier, Germany
E-m~l:meinel@uni-trier.de

The Mobius Function, Variations Ranks, and @(n)-Bounds
on the Modular Communication Complexity

of the Undirected Graph Connectivity Problem

Christoph Meinel Stephan Waack
Lehrstuhl Theoretische Informatik Institut fur Numerische

Fachbereich IV - Informatik und Angewandte Mathematik
Universit at Trier Georg-August-Universitat Gottingen

D-54286 Trier Lotzestr. 16-18
D-37083 Gottingen

Abstract

We prove that the modular communication complexity of the undirected graph connectiv-
ity problem UCONN equals Q(n), in contrast to the well-known Q(n log n) bound in the
deterministic case (see [9]), and to the ?2(n log log n) lower bound in the nondeterministic
case, recently proved by Raz and Spieker (see [15]).

We obtain our result by combining Mobius function techniques due to Lovasz and
Saks (see [12], [13]) with rank and projection reduction arguments.

Topics: Computational Complexity, Communication Protocols, Modular Acception
Modes, Undirected Graph Connectivity.

Introduction

During the last few years communication complexity theory gained popularity. In several
papers many interesting questions of complexity theory were answered by reducing them t o
several kinds of communication games. Among others, this regards time-area tradeoffs for
VLSI-circuits [I], [lo], time-space tradeoffs for Turing machines, width-length tradeoffs for
oblivious and usual ^-branching programs ([2],[4]), branching programs of bounded alterna-
tion [l4], and threshold circuits of depth 2 [ll] and depth 3 [7].

The graph connectivity problem for undirected graphs UCONN = (UCONNn(n_i))ngN in
distributed form can be formulated as follows. Assume that we are given two not necessarily
edge-disjoint undirected graphs GI = (V, El) and G2 = (V, E2) on a common n-set of vertices
V, where both graphs are represented as Boolean vectors of length (3. The question is

def whether or not the graph G = GI U Gi = (V, El U E2) is connected, i.e. each pair of vertices

in G is connected. In [18] the major developments in understanding the complexity of the
graph connectivity problem in several computational models are surveyed.

In the following we investigate the modular communication complexity of UCONN. Let two
graphs Gi = (V, Ei), for i = 1,2, be given to two processors PI and P2. In order to solve
UCONN both processors have to communicate via a common communication tape. The
computation of the whole structure, which is called a communication protocol or simply a
protocol, is going on in rounds. Starting with Pi the processors write alternatingly bits on the
communication tape. These bits depend on the input available to the processor which is to
move and on the bits already written on the communication tape before. We assume without
loss of generality, that in each round exactly one bit is written down on the communication
tape. If the last bit written on the communication tape is "1" or "0" the computation is
called accepting or rejecting, respectively. So co-operative computations can be thought of
as to be Boolean strings. The length of the string is the communication complexity of the
computation. Since we consider the worst-case-complexity in this paper, we assume without
loss of generality, that all computations of a protocol are of equal length, say L. We shall
assume the processors to be nondeterministic. That's why we have to define the output of
a protocol via defining acception modes. As it is common use an acception mode is called a
counting mode if the output of a protocol for a given input depends only on the numbers of
accepting and rejecting computations performed by the protocol accessing this input. In this
paper we discuss the modular acception modes in which the protocol accepts an input, if the
number of accepting computations is not equal to 0 modulo m.

How to motivate the modular acception modes modulo m? In [20] it has been shown that
all problems computable by constant depth, polynomial size circuits with MODm-gates for
arbitrary integers m, are contained in certain counting communication complexity classes.
In [5] these modes were formaly introduced and studied. Several papers (see e.g. [6]) deal
with comparing the power of different counting acception modes. Roughly speaking, the
computational power of the acception modes modulo mi, i = 1,2, is uncomparable, provided
that (mi, m2) = 1 (see [8]).

We conclude this section by reviewing the results and methods which are strongly related
to ours and by formulating the result of this paper. We use the notions and notations of
Definition 1. Hajnal, Maass, and Turan proved in [9] the following theorem.

Theorem A C O ~ ~ (U C O N N ~ (~ _ ~)) = @(relog re).

Their method involves the use of the Mobius function p for the lattice of partitions of an
re-set. Lovasz and Saks extended in [12] and [13] this ideas to a large class of problems, the
so-called meet problems for finite lattices, which can be formulated as follows. Let S be a
finite lattice, and let both processor V\ and Py be given an element x and y, respectively.
Then they have to decide whether x A y = 0.

Theorem B Let MEETs be the meet problem of a finite lattice. Let S have a atoms and b
Mobius elements (i.e. elements x such that p(0, x) -f- 0). Then

log b < Comm(MEETs) < (log a)(log b).

Recently, Raz and Spieker [15] proved

Theorem C If processor Pl as well as processor P2 have an bipartite perfect matching on
2n vertices with two colors of size n as an input, and if their goal is to determine whether the
union of the two matchings forms a Hamiltonian cycle, the nondeterministic communication
complexity of the problem is fl(n log log n).

Since the problem of Theorem C is a subproblem of UCONN (see Lemma 2), it follows

Corollary D N - C O ~ ~ (U C O N N ~ (~ - ~)) = O(n log log n).

It is the aim of this paper to show that modular acception modes help for detecting undirected
graph connectivity.

Theorem Let m be arbitrary. Then MODm-Comm(UCONNn(n-l)) = @(n).

Proof. The claim follows directly from Proposition 2 in Section 3 and from Proposition 4 in
Section 4. 0

We use the technique related to the Mobius function to prove the upper bound of Proposition
2. The lower bound of Proposition 4 follows from rank and reduction arguments.

1 The computational model

Let f : Sl x S2 -+ {O, l} be given in distributed form. A protocol of length L consisting of
two processors PI and P2 that access inputs of Sl and S2, respectively, can be described by
two functions ^ si x {O, l}*L -+, 11,
i = 1,2, and {o,!}*~ = {w ? {0,1}* 1 1 < lwl < L } . The interpretation is as follows.
Let 7 = 71.. .7j, 7fc ? {O, 1). If ai(s;,7) = 1, and if 171 - i is even, then the corresponding
processor Pi is able to write 7, on the communication tape provided that it has read 71 . . .?,-I
on the communication tape and that it has sj as input. If, however, ai(si, 7) = 0, then Pi is
not able to write 7,.

Now we define two #Sl x #S2-matrices Acep and RejP associated with the protocol P of
length L by

Clearly, A ~ C : , ~ ~ gives the number of accepting computations of the protocol P on the input
(sl, s2), whereas RejES2 is the number of the rejecting computations. In order to make this

approach unique, we agree that Qi(si, 7) = 1, if 171 - i is odd, for i = 1,2. We may give an
equivalent definition of the above two matrices as follows. Let 7 6 {O, l}' be a computation.
Define

for i = 1,2. Then we get directly from the equations (1) and (2)

Definition 1 1. A counting acception mode p for a protocol P is a function p : IN^ -+

{O, l} such that P accepts an (s17s2), if and only if, ~ (A c c ~ , ~ , ~ e j : ,) = 1. Oth-
erwise P rejects the input. A protocol P equipped with an acception mode p is called
a p-protocol. The function computed is sometimes denoted by Comp(P,p). If we are

given a function f : Sl x St -* {O, l} then p-Comm(f) min{Ll Comp(P,p) =
f, L is the length of P}.

2. We define the following acception modes.
def Nondeterministic mode: N(W7 n2) = 1 n-i > 0,

Modular modes: def MODm(nl, n2) = 1 n1$ 0 (mod m),

By the way, a deterministic communication protocol is not characterized by a special accep-
tion mode but by a property of the underlying protocol, namely @i(sÃ 70) + @i(si, 7 1) < 1,
for si c Si, i = 1,2, and 7 c {O, I}*. For such protocols all reasonable counting modes
coincide.

Lemma 1 If m11m2, then MODm2-Comm(f) 2 log(%) - MODml-Comm(f) , for each func-
tion f .

Proof. Clearly, m21mk"12-, if and only if, m11m3.

Let P be the MODml -protocol for f . We describe the following protocol PI.

First, processor PI chooses nondeterministically an index k, 1 < k < "-2- and sheds k.

Second, P2 and PI proceed in the same way as Pi and do according to the protocol P.
We get that Accf" = - Accg. Consequently, Act;' = 0 (mod m2) <-Ã Accg' = 0
(mod ml). If L is the length of protocol P, then log(%) - L is the length of protocol PI. 0

Now we have to define what we mean by reductions. Fortunately, this is much easier here
than in machine-based complexity theory.

Definition 2 Let F = (f2n : Sn x En -+ {O, and G = : Fn x Fn -+ {O, be
two decision problems. We say that F is rectangular reducible to G with respect to q, where
q : IN Ã‘ IN is a nondecreasing function, iff there are two transformations In, : Sn Ã‘> P(")
such that for all n and for all ?,f ? Sn we have fin(.x^y) = g2q(n)(ln(Z), rn(y))- We write
F < 9 G.

We can utilize rectangular reductions for proving lower bounds. Let q : IN -+ IN be an
unbounded nondecreasing function. Then we define q ' - l) by q () (i) = max{jl q (j) < i}.
For example let p : IR+ --+ IR+ be an unbounded monotone increasing continous function and
let p-l : IR+ -+ IR+ be a right-inverse to p , i. e. p o p 1 = 1. If we define q : IN -+ IN to be
q(i) = fp(i)l , then = [f t l (i) J , for almost all natural numbers.

The proof of the following lower bound reduction argument is easy.

Lemma 2 Assume that we are given two sequences of functions F = (f a n : En x En -+

{O, and G = (g2n : rn X Fn --+ {O, If p-Comm(F) > c(n) and i f F <LC G ,
then p-Comm(G) > c o q (l) (n) .

One efficient way to get rectangular reductions is to handle with projection reductions. The
variables over {O, l}" are coordinate functions xi : {O, l}" --+ {O, l } such that xi(crl,. . . , ern) =
crf In accordance with Skyum and Valient (see [17]) we define.

Definition 3 1. Let fn : {O, l}" --+ {O, l} and gm : {O, I}"' -+ {O, l } . fn is called reducible
to gm via a projection xn : {y17 . . . , ym} --+ {x17 . . . , X n , 1x1, . . . , -ixn, 0, l } and we write
fn ST,, gm, where the xi and the yj are the Boolean variables of Fn and gm, resp., if

2. If fn and gm are given in distributed form, i. e. fn : {O, 1}"12 x {O, 1}"12 --+ {O, l }
and gm : {O, 1}m/2 x {O, 1}m/2 Ã‘Ã {O, l } , then we say that the reduction TT respects the
distribution of the variables, i f

3. There is a transpose : {O, --+ {O, I}" of the projection reduction TT. It is defined
by

d(q = (~ n (l / l) (f f) , . . . , ~ r n (~ m) (f f)) y

where ii = (x i (i i) , . . ., xn(ii)) 6 {O, is any Boolean vector of length n.

4. If F = (fn)neN and g = are Sequences of functions, if n = (7 ~ ~) ~ ~ ~ ?k a
sequence of projection reductions defined in the first item of this definition, i. e. fn <vn
gm, and if m < p(n), then we say that I1 ist a p(n)-projection reduction and we write
F <h G . If both F and G are given in distributed form, then the definition of the
notion " v respects the distribution of the variables" can be done by analogy with the
second item of this definition.

If the elements of {O, I}" are representations of graphs, then we visualize the graph which is
the transpose ':(a) of a vector 8 E En in such a way that the edges which are not constant
are labelled by the corresponding literal (see figures 1 and 2). The meaning is that such an
edge belongs to the graph, if and only if, the labelling literal is true.

Due to Lemma 2 we get

Lemma 3 Assume that we are given two sequences of functions F = (fan : {O, I}" x
{0, J.ln -+ {O, and G = (GZm : {O, x {O, -+ {O, S U C ~ that F G,
where p : IN -+ IN is increasing, and I1 = is a sequence of projection reductions
which respects the distribution of the variables. If p-Comm(F) > c(n), then p-Comm(G) >
c 0 q(-l)(4.

2 Rank arguments for upper and lower bounds

We shall derive rank arguments for proving upper and lower bounds on the length of protocols
equipped with the modular acception modes from Definition 1. We adopt the concept of
variation ranks of communication matrices developed in [ll]. Throughout this section let
f denote a function f : Sl x S2 -+ {0,1}, N = #Sl = #S2, and let M ^ denote the
communication matrix, where M/, = f (i, j) , for I, j = 1, . . . , N.

Let the sequence equality function be defined by SEQZn(xi,. . . , X n , yl, . . . , yn) = A?=l(l -
((xi + yi) mod 2)). Here Sl = S2 = {O, 1)".

Definition 4 1. Two N x N-matrices A and B over the ring of integers are defined to
be modm-equivalent, where m is a natural number, if and only if, for all indices i, j,

aij 5 0 (mod m) <= ̂ by 5 0 (mod m).

2. Let A be an integer matrix. We define var-rankzlmz(A mod m) to mean the minimum
of all numbers rankzlmz(B mod m), where B is an integer matrix which is modm-
equivalent to A.

A 0-1 matrix is interpreted as an R-matrix, where R is an arbitrary semiring, in the canonical
way. As usual, the R-rank of a m x n-matrix A over R, which we denote by rankRA, is
defined to be the minimal number k such that A = B - C, where B is a m x k-matrix and C
is a k x n-matrix over R. A straightforward calculation yields the next lemma.

Lemma 4 Let A be an integer matrix.

1. rankzlmz(A mod m) = max{rankzlmiZ(A mod mi) I i = I, . . . , r},
provided that m = ml . . . - m2, where (mi, mj) = 1, for all i # j.

2. rankzlmz(A mod m) = min{rankzD 1 D is modm-equivalent to A}. D

Lemma 5 Let R be any semiring. Let P be a protocol of the length L on the input set
Sl x $2, #Sl = #S2 = N, and let ACC' be the N x N-matrix defined in equation 1. Then
rankR(~ccp) < 2=-l.

Proof. The inequality follows directly from equation 4. 0

Now we can fully charaterize the modular communication complexity im terms of variation
ranks.

Proposition 1

Proof. The left inequality follows directly from Lemma 5 and from Definition 4. Let us turn
to the right one. We choose by Lemma 4 an integer matrix B which is modm-equivalent to
~f , such that r = rankzlmz(B mod m) = var-rankzlmz(~f). Then B = B(l) + . . . + B(T),

where the B (~) have Z/mZ--rank 1. This is equivalent to B? s UP - (mod m), for

u/~),I$(~) 6 (1 ,..., m}, and for i, My... N.

Now we can describe the following protocol P. Assume that the input is (i, j) ? Sl x S2.

First, processor Pl chooses nondeterministically some indices k, 1 < k < r , and li, 1 < ll <
u/*), and sheds (k, ll).

Second, processor P2 chooses nondeterministically some index 12, 1 < l2 <: q, and sheds
(^2,l).

Clearly, there are U / - I $ = Bij (mod m) many accepting computations assigned t o
the input (i, j). It follows that Comp(P, MODm) = f . Obviously, the length of the protocol
is bounded above by log2 r + 210g2 m + 1. 13

In the case of m being a prime number, we can even do better.

Corollary 1 If m = p is a prime number, we have

Proof. By means of Fermat's Little Theorem each protocol of length L can be transformed
into a protocol P' of length (p - l)L such that for all inputs (i, j)

0 (mod p) if Accf. s 0 (mod p); -4~4' = (A C C ~) = { 1 (mod p) if Ace: $ 0 (mod P).

3 The Mobius function and upper bounds on the length
of MODm-protocols for undirected graph connectivity

In this section we transform a method due to Lovasz and Saks (see [12], [13]) for proving
lower bounds on the length of deterministic protocols to the case of MODm-protocols in oder
to prove upper bounds. We can only give a very brief treatment on Mobius functions. For
more see [16].

Let S be a finite partially ordered set, R be a commutative ring with 1. The R-valued
incidence algebra A(S, R) is defined as follows. Consider the set of functions of two variables

f (x, y), for x and y ranging over S having values in R, and with the property that f (x, y) = 0
whenever x < y. The sum and the multiplication by scalars are defined pointwise. The
product of f and g is defined as follows.

Clearly, Kronecker's &function is the 1 of A(S, R). The R-valued zeta function [(x, y) ?
def A(S, R) is defined by [(x, y) = 1 if x < y and [(x, y) = 0 otherwise. The function ~ (x , y) =

[(x, y) - 6(x, y) is called the incidence function.

The following formula is the key to prove Lemma 6.

It allows a recursive definition of the inverse of f , provided that the f (x, x) are units in R.

Lemma 6 An element of A(S, R) is a unit, if and only i f , Y [f (x, x) is a unit in R. 0

Consequently, we can define the R-valued Mobius function to be the inverse of the zeta
function. Let us denote this function for a moment by p@).

Analogously to the standard real-valued case, we have the Mobius inversion formula. Let f (x)
be an R-valued function, for x ranging over the finite poset S, and let g(x) = zy f (y)C(.y^ x).

Then f (x) = E, 9(?/)>iW(</, x).

If p denotes the real-valued Mobius function, then because of formula 6 p takes values only
in Z. Consequently, if Ro R is the prime ring of R, which equals either Z or Z /mZ, for
some m 6 Z, then

Ax7 Y) if Ro = Z ;
p R (x 7 y) = {p(x, y) mod m if Ro = Z/mZ.

Now, of course, we can drop the notation u,̂ .
Again from formula 6 it follows that p(x, y) only depends on the the structure of the interval.
Moreover, we know, that if p* is the Mobius function of the dual poset S*, then p*(x, y) =
P(Y, 4-
Let us assume from now on that the poset S is a lattice. In line with [12] we shall consider
the meet problem MEETS : S x S -i- {O, l} of the finite lattice S, defined by MEETs(%, y) =
6(0, x A y). We proceed as follows. Let M be a 0-1 matrix. Check whether there are two
equal rows or colomns in M and if this is the case, then delete one of them. Do that as long
as possible. The resulting matrix M is called the core of M. Clearly, the communication
complexity of the underlying problems is the same. Now it is not difficult to see that the
core of M uCoBNn(n-l) equals the core of M ~ ~ ~ ~ P ! ~) * , where P(n)* is the lattice dual to the
lattice of partitions of an n-set.

Lemma 7 Let M be the communication matrix of the meet problem assigned to the finite
lattice S , and let p be a prime number. Then rankz/pz(M) = # { x ? S 1 p(0,x) $ 0
(mod P I } .

Proof. Let M be the diagonal matrix diag(p(0, and let [= ([(x, be the
matrix associated with the zeta function. Wilf observed in [19], that cT - &f (, = M. The
claim follows from the Mobius Inversion Formula.

Now let us compute #{x ? Sl p(0, x) $ 0 (mod p)} in a special case.

Lemma 8 Let P(n)* be the lattice dual to the lattice P i n) of partitions, let p < n be a
prime number, and let p* be the Mobius function of P(n)*. Then #{x 6 P(n)*l p*(0, x) $ 0
(mod P)} 5 pn.

Proof: The following three facts are well-known.

Fact 1. If x 6 P(n), and if b(x) is the number of blocks of the partition x, then [x, 11 P(b(x)).
Fact 2. If p is the Mobius function of P(n), then p*(O, 1) = p(0,l) = (-l)"-l(n - I)!.

Fact 3. Let S(n, k) denote the number of partitions of an n-set into exactly k blocks (Stirling
numbers of the second kind), then

where X is an indeterminant and [XIk = X - (X - 1) . . . - (X - k + 1) is the falling factorial.

The next equality follows from Fact 1 and from Fact 2. The next but one from Fact 3.

Proposition 2 Let m be arbitrary. Then MODm-C~mm(UCONNn(n-l)) = O(n).

Proof. Let p be a prime number such that p\m. By Lemma 1 we have

The claim follows from Corollary 1, Lemma 7, and Lemma 8.

4 Variation ranks and lower bounds on the length of
MODm-protoc~l~ for undirected graph connectivity

The following lemma improves the corresponding one from [ll].

Lemma 9 Let IN denote the identity N x N-matrix. Let m = p? p: be a natural
number which is given by its primary decomposition. Then var-rankzlmz (IN) = \N/rl.

Proof. First we prove that \N/rl is a lower bound. Let A be an integer matrix such that
A is modm-equivalent to IN and var-rankzlmz(IN) = rankzA, which exists by Lemma 4.
By definition we have, for all 4 an + 0 (mod m), and ay s 0 (mod m), for all j + i. For
all i 6 {I,. . ., N} there is a k 6 {I,. . . , r} such that a;, $ 0 (mod plk). We conclude that
there is a primary component pf of m, which we denote for simplicity by p', a set of indices

and, for all i 6 I, natural numbers ui 6 {I,. . . , li}, such that

an = 0 (mod p'-ui),

an + 0 (modp'-^),

a;j = 0 (mod p'),

for all j ? I, j # i. After deleting all rows and columns of A whose indices do not belong t o
Z, we get an integer N' x N1-matrix B. It is sufficient to show that det B # 0. It is easy t o
see that

for all permutations a of the set {I,. . . , N'} different from the identity permutation. Conse-
quently,

det B = b1,l . . . - bNl,Nl + 0 (mod p N1.1+1-~2~ vi 1-

Second let us prove that pV/rl is an upper bound. Let fi = p ~ " & Fj = (f17.. . , fj),
and Aj = ~f Fj for i, j = 1 6 {I,. . . , r}. Ay is defined to be the unique 0 x 0-matrix, which,
of course, has rank 0. Clearly, Aj mod m is a j x j-diagonal matrix of Z/mZ-rank 1, for
j 6 {I, . . . , r}. Define the matrix A to be the following direct sum of matrices.

where r' = N (mod r), and r' E {O, . . . , r - 1). It follows that A mod m is a diagonal
N x N-matrix, and that rankzlmz(A mod m) < \N/rl. CI

Proposition 3 For m arbitrary, we have that MODm-Comm(SEQ2) = Q(n).

Proof. The claim follows from Proposition 1 and from Lemma 9.

Lemma 10 SEQ = (sEQ2n)nEN is reducible to UCONN = (UCONNn(n-l))nEN given in
distributed form via a O(n2)-projection reduction with respect to the partition of the variables.

Proof. Consider an input (tl, . . . , tn, ul, . . . , un) of SEQZn The projection reduction

Tn(n-1) : {xij9Yij 1 i, j = 1,. . . ,n, i < j} + { o ? l , t v , ~ v , i t v , TU,, 1 u = 1,. . .,n},

where the values of the Boolean variables xij and yij define the graphs GI and G2 accessible
to the processors Pl and P2, is defined by the help of Figure 1 and Figure 2, in which the
transpose

t
~ ~ (~ - ~) (t ~ , - - - , t n , ~ l , * - - , ~ n)

is shown. Clearly, this graph is connected, if and only if,

SEQ2n(tl, - - .? tn, ~ 1 , - - - un) = 1.

Now it is easy to prove the lower bound.

Proposition 4 Let m be arbitmry. Then M O D ~ - C O ~ ~ (U C O N N ~ (~ - ~)) = Q(n).

Proof. The claim follows from Lemma 10, Lemma 3 and Proposition 3. 0

References

A. V. Aho, J. D. Ullman, M. Yannakakis, On notions of information transfer in VLSI
circuits, in: Proc. 15th ACM STOC 1983, pp. 133-183.

N. Alon, W. Maass, Meanders, Ramsey theory and lower bounds for branchingprograms,
Journal of Computer and System Sciences 37(1988), pp. 118-129.

L. Babai, P. Frankl, J. Simon, Complexity classes in communication complexity theory,
in: Proc. 27th IEEE FOCS, pp. 337-347,1986-

L. Babai, N. Nisan, M. Szegedy, Multiparty protocols and logspace-hard pseudorandom
sequences, Journal of Computer and System Sciences 45(1992), pp. 204-232.

B. Halstenberg, R. Reischuk, Relations bet ween Communication Complexity Classes,
Journal of Computer and System Sciences 41(1990), pp. 402-429.

B . Halstenberg , The Polynomial Communication Hierarchy and Protocols with Moder-
ately Bounded Error, Technical Report T I 1/90 of TH Darmstadt, 1990.

J . Hastad, M. Goldmann, On the power of small-depth threshold circuits, in: Proc. 31st
IEEE FOCS 1990, pp. 610-618.

[8] C. Damm? M. Krause? Ch. Meinel? St. Waack? Separating counting communication com-
plexity classes, in: Proc. 9th STACS? Lecture Notes in Computer Science 577? Springer
Verlag 1992, pp. 281-293.

[9] A. Hajnal? W. Maass? G . Turan7 On the communication complexity of graph problems
in: Proc. 20th ACM STOC 1988? pp. 186-191.

[lo] J. Hromkovic7 M. Krause? Ch. Meinel, St. Waack7 Branching programs provide lower
bounds on the area of multilective deterministic and nondeterministic VLSI circuits.?
Information and Computation 94(2)(1992) pp. 168-178.

[11] M. Krause? St. Waack? Variation ranks of communication matrices and lower bounds for
depth two circuits having symmetric gates with unbounded fan-in7 in: Proc. 32th IEEE
FOCS 19917 pp. 777-782.

[12] L. Lovasz? Communication complexity: A survey? in: Paths, flows and VLSI-layouts7
Springer-Verlag 19907 pp. 235-266.

[13] L. Lovasz? M. Saks? Communication complexity and combinatorial lattice theory, Journal
of Computer and System Sciences 47(1993)? pp. 322-349.

[I41 Ch. Meinel? St. Waack? Upper and lower bounds for certain graph-accessibility problems
on bounded alternating w-branching programs?
in: Complexity Theory - current research, K. Ambros-Spies? St. Homer? U. Schoning
(editors)? Cambridge University Press 1993,273-290.

[15] R. Raz7 B. Spieker? On the "log rankJ'-conjecture in communication complexity7 in:
Proc. 34th IEEE FOCS 1993? pp. 168-176.

[16] G.-C. Rota? On the foundation of combinatorial theory: I. Theory of M6bius functions7
Z. Wahrscheinlichkeitstheorie 2(1964)? pp. 340-368.

[17] L. Skyum7 L. V. Valiant? A complexity theory based on Boolean algebra? in: Proc. 22th
IEEE FOCS? pp. 244-253.

[18] A. Wigderson, The complexity of graph connectivity, T R 92-19, Leipniz Center for
Research in Computer Science? Institute of Computer Science? Hebrew University7
Jerusalem.

[I91 S. W i 7 Hadamad determinants, M6bius functions and the cromatic number of graphs?
Bull./ Amer. Math. SOC. 74(1968)? pp. 960-964.

[20] A. C.-C. Ym, On ACCand threshold circuits? in: Proc. 31st IEEE FOCS 19907 pp. 619-
627.

Figure 1: The graph ~ i (~ - ~ ~ (t l , . . . , tn7 U I , . . . , un)
(K z j 2 denotes full bipartite graph having 2 x 2 nodes, G (t p , up) is defined in Figure 2.)

Figure 2: The graphs G(tp, u p) of Figure 1

I I

Lecturer: Soren Riis

Title: Complexity of Counting Principles

Material: Soren Riis: Count(q) versus the Pigeon-Hole Principle

BRICS
Computer Science Department
University of Aarhus
DK-8000 Aarhus C, Denmark
E-m~l:smriis@daimi.aau.dk

Count (q) versus the Pigeon-Hole Principle

S ~ r e n Riis
BRIGS*

June 1994

Abstract

For each q < 2 there exist a model M of IAo(a) which satisfies the
Count(q) principle. Furthermore there exist n, r E M and a bijective
map f ? Set(M) mapping { I , 2, ..., n} onto { l ,2 , ..., n + qT}.

A corollary is a complete classification of the Count(q) versus
Count(p) problem. Another corollary solves an open question ([3]).

In this note I state and prove a Theorem which actually can be viewed as
the main result of [lo].

Theorem: Let q > 2. Suppose that r (n) is an function with

(a) limn-too r (n) = oo.

(b) For all e > 0 lim,+,oo = 0

Suppose that 7 is any system of Bounded Arithmetic over some countable
language L. Suppose that L in addition to the language of arithmetic also
contains at least one undefined relation symbol. Suppose that all terms t in
L have polynomial growth rate. Then there exists a model M o f f such that:

(i) M Count (q) .
(ii) The PHPz+qr(*) (bij) -principle fails in M.

Here PHP:+Jbij) is the the elementary principle stating that there does not
exists n and a bijective map from { l , 2 , ..., n } onto { I , 2, ..., n + s} . And

*Basic Research in Computer Science, Centre of the Danish National Research
Foundation.

Count (p) is the elementary matching principle stating that if {l, 2, ..., n} is
divided into disjoint p-element subsets, then p divides n. The principle is
expressed as a Ao-axiom scheme.

Proof: As in [lo] let M be a countable non-standard model of first order
Arithmetic. Then by a similar forcing construction (which actually avoids
certain technical problems) we expand M by a generic bijection f mapping
{l,2, ..., n} onto {1,2,, re + qT(n)}. Assumption (a) allows us to assume
that qr(n) is a non-standard number. Furthermore condition (b) ensures that
the circuit collapsing argument goes through. Now it follows by the analysis
in [lo] that the Count(p) principle can never be forced false. If it was false,
there would exists an impossible M-definable object. In this case a forest
of (D, Relabelled trees where 1 R 1 - \ D I= qr(n), but where all trees
would have hight dominated by some standard number. This violates the
main lemma (lemma 6.1.5) in [lo]. Finally M* is got a the initial segment
{m E M : nk > m, k E N}. D

Corollary 1: (Settling conjecture by Ajtai [3], [5], [lo])
For different primes q, p Count (q) If Count (p)

Corollary 2: (Obtaining the complete classification [4], [lo])
For fixed q,p > 2 the following is equivalent

(a) p divides a power of q

(b) Count(^) I- Count(p).

Proof: The implication (a) =>Â (b) was shown in [4] or [lo]. The implication
(b) + (a) follows from the Theorem. According to the Theorem Count(p)
If PHP;+^.) (bij) if Count(q) h Count(p). But then by the easy 'only i f in
corollary 1, p must divide a power of q.

Corollary 3: (Solving the Count versus PHP problem) Let r(n) be
as above. For each q, p > 2
Count(p) If PHP:+qr(*)(bij) if and only if p divides a power of q.

Let PHPE-l-p(inj) be the the statement that there is no n and no injective map
from {I, 2,, n tp} into {I, 2,, n} and let PHPz+p(sur) be the statement
that there is no n and no surjective map from {I, 2, .., n} onto {I, 2, ..., n + ~ } .

Corollary 4: (Answering an open question in [3])
(a) P H P L (bij) P H P ~ (inj) .
(b) P H P 3 i n j) 41- PHP:+l (sur) .

(c) Count (q) If P H P T i n j) .

Pro of: (b) is a simple exercise, and (a) clearly follows from (c) . To show (c)
notice that PHP;+'(inj) I- PHP:+,;.,(bij) for any r.
This shows that the Pigeon-hole Principle for injective maps are efficiently
stronger than the Pigeon-hole Principle for bijective maps. Actually it shows
that:

Corollary 5: There exists a model M* ofIAo(a) in which Count(p) holds for
each p ? N\ {I}. Yet, there exists n E M* and an injective map f ? Set(M*)
mapping {l,2, ..., n + I} into {I, 2, ..., n}.

Proof: By the completeness theorem it suffice to show that for each finite
set pi, p2, .., p; of integers, the conjunction Count(pl) A A Count(p;) does
not imply PHP;+'(inj). This follows by an argument similar to the one given
for (c) in corollary 4.

References

[I] M.Ajtai; On the complexity of the pigeonhole principle. 2gth Annual
symp. on Found. Comp-Sci. (1988) ,pp 340-355.

[2] M.Ajtai; Parity and the pigeon-hole principle, in Feasible Mathematics
Birkhauser, (1990)) pp 1-24.

[3] M.Ajtai; The independence of the modulo p counting principles, Pro-
ceedings gth-annual IEEE symposium on computer science (1994).

[4] P.Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, P. Pudlak; Lower
bounds on Hilbert's Nullstellensatz and propositional proofs, prelimi-
nary version.

[5] P. Clote, J.Krajicek; Open problems, in: Arithmetic, Proof theory and
computorial complexity, Oxford university press (1993) pp 1-19.

[6] J.Krajicek, P.Pudlak, and A.Wood, Exponential lower bound to the size
of bounded depth Frege proofs of the pigeonhole principle, submitted
(1991).

[7] T.Pitassi, P.Beame, and RJmpagliazzo; Exponential lower bounds for
the pigeonhole principle, preprint (1991).

[8] T.Pit assi, P.Beame; An Exponential separation between the Matching
Principle and the pigeonhole principle. Proceedings 8^-annual IEEE
symposium on computer science (1993), pp 308-319

[9] S.M.Riis; Independence in Bounded Arithmetic; DPhil dissertation, Ox-
ford University (1993)

[lo] S.M.Riis; Count (q) does not imply Count (p); Submitted. Report Series,
BRIGS RS-94-21.

Lecturer: Mark Jerrum

Title: Approximation via Semidefinite Programming
Relaxations

Material: Alan Frieze and Mark Jerrum: Improved approximation
algorithms for MAX k-CUT and MAX BISECTION

Department of Computer Science
University of Edinburgh
JCMB, The Ring's Buildings
Edinburgh EH9 3JZ, Scotland
E-mail:mrj@dcs.edinburgh.ac.uk

Improved approximation algorithms
for MAX k-CUT and MAX BISECTION

Alan Frieze* Mark erru urn'
Carnegie Mellon University University of Edinburgh

6th June, 1994

Abstract

Polynomial-time approximation algorithms with non-trivial performance
guarantees are presented for the problems of (a) partitioning the vertices
of a weighted graph into k blocks so as to maximise the weight of crossing
edges, and (b) partitioning the vertices of a weighted graph into two blocks
of equal cardinality, again so as to maximise the weight of crossing edges.
The approach, pioneered by Goemans and Williamson, is via a semidefinite
relaxation.

1 Introduction

Goemans and Williamson [5] have significantly advanced the theory of approx-
imation algorithms. Previous work on approximation algorithms was largely de-
pendent on comparing heuristic solution values to that of a Linear Program (LP)
relaxation, either implicitly or explicitly. This was recognised some time ago by
Wolsey [ll]. (One significant exception to this general rule has been the case of
Bin Packing.)

The main novelty of (51 is that it uses a Semi-Definite Program (SDP) as a relax-
ation. To be more precise let us consider the problem MAX-CUT studied (among

Department of Mathematics, Carnegie Mellon University, Pittsburgh PA15213, U.S.A., Sup-
ported by NSF grant CCR-9225008.

~ e ~ a r t m e n t of Computer Science, University of Edinburgh, The King's Buildings, Edinburgh
EH9 3JZ, UK. The second author is a Nuffield Science Research Fellow, and is supported in
part by grant GR/F 90363 of the UK Science and Engineering Research Council, and Esprit
Working Group "RAND;" this work was done while visiting Carnegie Mellon University.

others) in [5]: we are given a vertex set V = {I, . . . , n} and non-negative weights
w ~ , 1 < i,j < n, where wij = wj,; and w,, = 0 for all i, j . If S Vand 3 = V \ S
then the weight of the cut (S : 3) is

The aim is to find a cut of maximum weight.

Introducing integer variables y j E {-I, l} for j E V we can formulate the MAX
CUT problem as

IP: maximise !j Ei<, wi,j(l - yiyj)
subject to yj E {-I, I}, V j E V (1)

The key insight of Goemans and Williamson is that instead of converting this to
an integer linear program and then considering the LP relaxation, it is possible to
relax IP directly to the following

SDP: maximise ! j x W w i j (l -v i -v j)
subject to v j E Sn, VJ E V

Here Sn = {x E Rn : ~~x~~ = l} is the unit sphere in n dimensions. SDP7s are
a special class of convex program (see Alizadeh [I] for a detailed exposition). In
particular the above problem can be replaced by

CP: maximise !j & - ̂,3}
subject to Y,,j = 1, Vj ? V

Y = [Y J > - 0
(2)

Here Y,,, replaces vi - v - and the notation Y >- 0 indicates that the matrix Y is v
constrained to be positive semi-definite; this constraint defines a convex subset
of R". The idea of Goemans and Williamson is to solve SDP and then use the
following simple (randomised rounding) heuristic to obtain a remarkably good
solution to MAX-CUT: choose a random hyperplane through the origin, and
partition the vectors vi (and hence the vertex set V) according to which side of
the hyperplane they fall.

This is an exciting new idea and it is important to see in what directions it can be
generalised. In this paper we do so in two ways. First we consider MAX k-CUT
where the aim is to partition V into k subsets: for a partition P = Pi, P, . . . , Pe
of V we let \P\ = i and

The problem is then

MAX k-CUT: maximise w(P)
subject to IPI = k.

Note that MAX k-CUT has an import ant interpretation as the search for a ground
state in the anti-ferromagnetic k-state Potts model: see Welsh [lo]. To attack
this problem we need to be able to handle variables which can take on one of
k values as opposed to just two, a similar problem to that faced in trying to
colour 3-colourable graphs 161. Our solution is a natural extension of the existing
solution for the case k = 2, but the performance analysis presents greater technical
difficulties.

The simplest heuristic for MAX k-CUT is just to randomly partition V into k sets.
If P denotes the (random) partition produced and P* denotes the optimum par-
tition then it is easy to see that

since each edge (i, j) has probability (1 - k) of joining vertices in different sets
of the partition.

We describe a (randomised) heuristic A;-CUT which produces a partition Pk. We
prove the existence of a sequence of constants %, k > 2 such that if Pi denotes
the optimal partition in MAX k-CUT then:

where the 0.1. satisfy

(ii) ak - (1 - k-l) ^2k-2 ln k;

(iii) a2 2 0-878567, a3 > 0-800217, a4 > 0-850304, ac 2 0-874243, q0 >
0-926642, and qoo > 0-990625.

The performance ratio for k = 2 is the same as that achieved by Goemans and
Williamson, as our heuristic is a generalisation of theirs.

Our next result concerns the problem MAX BISECTION. Here we have to parti-
tion V into two subsets of equal size (assuming that n is even) so as to maximise w.

MAX BISECTION: maximise w(P)
subject to P = S, V \ S

\S\ = n / 2 .

A random bisection produces an expected guarantee of 1. We describe a heur-
istic BISECT which produces a partition PB such that if P i denotes the optimal
bisection,

Theorem 2 Let e be a small positive constant. Then E (w (P B)) > /3 w(P*,) where

/3 = 2(J2(l- I) , which is greater than 0-65 for e sufficiently small.

Note that a2 = 0-878567.. . , as in Theorem 1. The difficulty with generalising
Goemans and Williamson's heuristic to MAX BISECTION is that their heuristic
does not generally give a bisection of V. We prove that a simple modification of
their basic algorithm beats the trivial 1 lower bound.

Note that there is a natural generalisation of this problem MAX k-SECTION
where we seek to partition V into k equal pieces. Unfortunately we cannot prove
that the natural generalisation of our bisection heuristic beats the 1 - k lower
bound of the simple random selection heuristic when k > 3.

MAX k-CUT

In this section we describe our heuristic k-CUT. We first describe a suitable way of
modelling variables which can take one of k values. Just allowing yj = 1,2, . . . , k
does not easily yield a useful integer program. Instead we allow yj to be one of
k vectors a l , a2, . . . , ak defined as follows: take an equilateral simplex Ek in R - ~
with vertices bl, b2,. . . , bk. Let ck = (bl + b2 + - - -+ b k) / k be the centroid of Ek and
let a, = bi - ck, for 1 < i < k . Finally assume that Ek is scaled so that [ail = 1 for
l < i < k .

Lemma 1
a , - a , = - l / (k - 1)) f o r i # j.

Proof Since a l , a2 , . . . , ak are of unit length we have to show that the angle
between a; and a j is arccos(-l/(k - 1)) for i # j . Let bl, b2,. . . , bkbl lie in the
plane xk_^ = 0 and form an equilateral simplex of dimension k - 2. Let bi = (b1,O)
for 1 5 i < k - 1, where bl has dimension k - 2, and assume bi + bi + + bkbl = 0.
Then ck = (0 ,0 , . . . ,0, x) and bk = (0 ,0 , . . . ,0, k x) for some x > 0. But lbk-ckl = 1
and so x = l / (k - 1). But then (bk - c k) - (bl - ck) = - (k - l) x 2 = - l / (k - 1). 0

Note that - l / (k - 1) is the best angle separation we can obtain for k vectors as
we see from:

Lemma 2 If u l , u 2 , . . . , uk satisfy luil = 1 for 1 < i < k , and u, - uj < y for i # j ,
then y > - l / (k - 1) .

Proof

Given Lemma 1 we can formulate MAX k-CUT as follows:

IPk: maxirnise EKj witj(l - yi yj)
subject to yj ? {al,a2, .**)ak}.

Here we use the fact that

To obtain our SDP relaxation we replace y, by v,, where v; can now be any
vector in Sn. There is a problem in that we can have v, vj = -1 whereas
yi . yj > -1/(k - 1). We need therefore to add the constraint vi - vj > -l/(k - 1).
We obtain

SDPk: maximise 9 xi-<, wi (1 - vi - vj)
subject to vj E Sn, '&

vi - vj > -l/(k - I) , Vi # j
(4)

Note that (4) reduces to the linear constraint > -1/(k - 1) if we go to the
convex programming form CP. We can now describe our heuristic

Step 1 solve the problem SDPk to obtain vectors vl, v2, . . . , vn E Sn.

Step 2 choose k random vectors zl, z^, . . . zk.

Step 3 partition V according to which of zb %. . . , zk is closest to each vj, i.e.,
let P = PI, P2,. . . , Pk be defined by

Pi = {j v v j ~ z i . f o r i # i 1 } , for 1 st k.

(Break ties for the minimum arbitrarily: they occur with probability zero!)

The most natural way of choosing zi, z2,. . . , is to choose them independently at
random from SÃ ̂Forcing \zA = 1 complicates the analysis marginally and so we
let zj = z2,j,,. . , Q), 1 5 j <: k where the zcj are kn independent samples
from a (standard) normal distribution with mean 0 and variance 1. When k = 2
we have the heuristic of Goemans and Williamson, although they define it in terms
of cutting Sn by a random hyperplane through the origin.

Let Wk denote the weight of the partition produced by the heuristic, let Wl be the
weight of the optimal partition and let Wk denote the maximum value of SDPk.
Putting yj = a, for j E Pi, 1 < i < k we see that

Now by symmetry Pr(y, # yj) depends only on the angle 0 between vi and vj, and
hence on p = cos 0 = vi vj. Let this separation probability be denoted by Qk(p).
It then follows from (5) that

where

We leave the estimation of the q to an appendix (see Corollaries 1, 2, and 3).
Suffice it to say that they satisfy the claims of Theorem 1.

3 MAX BISECTION

We now describe how to ensure that the partition we obtain divides V into equal
parts. As an integer program we can express MAX BISECTION as

Constraint (6) expresses the fact that we force 15'1 = n / 2 by maximising the
number of pairs i, j where i G S, j @ S. It has the advantage of being easily
relaxed to give an SDP problem:

SDPg: maximise 1 - V; - vj)
subject to v; - vj < -n /2 (7)

Vjâ‚¬ VJGV

We can now describe our heuristic: e is a small positive constant, e = 1/100 is
small enough.

BISECT

Step 1 solve the problem SDPg to obtain vectors vl, v2, . . . , v E Sn.

Repeat Steps 2-4 below for t = 1,2, . . . K = K(e) = r e 1 ln e l l and output the
best partition Sf, V \ Sf found in Step 4.

Step 2 choose 2 random vectors zl, z2.

Step 3 let St = { j : vj zl < vj z2}.

Step 4 suppose (w.1.o.g.) that lStl > n / 2 . For each i E St let C(i) = EjGs,wi,j
and let St = { x l , x ~ . . ., xe} where C(xl) 2 C(x2) 2 - - * >: C(xe). Let St =

{ ~ l , . 9 xn12}.

Clearly the construction in Step 4 satisfies

In order to analyse the quality of the final partition we define two sets of random
variables.

Recall that Pi denotes the optimum bisection, and let W* > ̂ w(Pi) denote the
maximum of SDPg. Then, by the analysis of Theorem 1 (or [5]) ,

Also

where N = n2/4 (note the use of (7) here.)

Thus if

then
E(Zt) 2 2%.

On the other hand
Zt 5 2,

since Xt < W* and & < N.

Define ZT = m a ~ ~ < ~ < ; < Â ¥ { Z ~ } Now (10) and (11) imply that for any e > 0
- -

and so
r,

for the given choice of K (e). Assume that

and suppose
xr=\w.

which from (10) and (12) implies

Suppose ISTI = 8n; then (13) implies

Applying (8) and (14) we see that

The last inequality follows from simple calculus.

Thus

Finally note that the partition output by BISECT is at least as good as 3,. We
divide e above by 3 to get the precise result.

4 Appendix

Let u, v be vectors, and r l , . . . , rk be a sequence of vectors, all in Rn. We say that
u and v are separated by r l , . . . , rk if the vector ri maximising u - ri is distinct from
the vector rj maximising v - r j . When we speak of a random vector, we mean a
vector r = (tl,. . . , t n) whose coordinates ti are independent, normally distributed
random variables with mean 0 and variance 1. Note that the probability density

-n/2 function of r is (27r) exp(-((+ - . + f,)/2), and in particular is spherically
symmetric.

-112 Denote by g(x) = (27r) exp(-x2/2) the probability density function of the uni-
variate normal distribution, and by G(x) = J ^ g(() d(the corresponding cumu-
lative distribution function. For i = 1,2, . . ., the normalised Hermite polynomials

() are defined by

Let hi = hi(k) denote the expectation of h(xmax), where xmax is distributed as the
maximum of a sequence of k independent normally distributed random variables.

Lemma 3 Suppose u, v E Rn are unit vectors at angle 0, and ri,. . . , rk is a
sequence of random vectors. Let p = cos0 = u-v, and denote by N k (~) = lÃ‘<S{,(~
the probability that u and v are not separated by 71,. . . , r k . Then the Taylor series
expansion

3
Nk(p) = a, + alp + a2p2 + a3p + + - -

of Nk(p) about the point p = 0 converges for all p in the range \p\ < 1. The
coefficients a. of the expansion are all non-negative, and their sum converges to
Nk(l) = 1. The first three coefficients are a, = 1/k, al = hf/(k - 1) and a, =
kh,/(k - l)(k - 2).

Proof We begin by computing the joint distribution of x = u - r and y = v . r,
where r = (tii . . . , tn) is a random vector. Since the density function of r is
spherically symmetric, this joint distribution is dependent on 0 only, and not
on the particular choice of u and v; for convenience let u = (1,0,. . . ,0) and
v = (cos 6, sin 0,0, . . . ,0). Then

Pr(u - r < x and v - r < y)

= Pr(& < x and (1cos0+(2sin6 < y)

- -
'

exp (- c; - 2cosWC1C2 + C,
27~ sin0 c 2 = - ~ 2(sin 0)2

where we have applied the change of coordinates & = and 6, = tl cos 0 + (, sin 0.
The joint probability density function of x = u - r and y = v - r is thus

where p = cos 0; this is the probability density function of the bivariate normal
distribution in standard form, with correlation p = cos 0. Denote by

the corresponding cumulative distribution function.

Let rl, . . . , rk be independent random vectors; then

Pr(u and v are not separated by rl, . . . , rk)

= k x Pr(u-r1 = m a x u - r i and v - r l = maxv.r j)
t 3

where

There is no expression for the integral I(p) in closed form, so we compute in-
stead a Taylor series expansion for I(p) about p = 0 using ideas (and notation)
from Bofinger and Bofinger [2]. The Mehler expansion [9] of the bivariate normal
probability density function

converges uniformly for \p\ < 1. Three facts that follow easily from the Mehler
expansion and definition (15) of the Hermite polynomials are:

and

We now evaluate I(p) and its successive derivatives with respect to p at the point
p = 0 by noting that F(x, y; 0) and f (x, y; 0) factorise into G(x)G(y) and g(x)g(y),
respectively. In this way we obtain a Taylor series expansion for I(p) about the
point p = 0. We defer an examination of the radius of convergence of this Taylor
expansion to the end of the proof.

Starting with I itself, we have

where the second equality can be seen by interpreting the integral as the prob-
ability that the maximum of a sequence of k independent, normally distributed
random variables is achieved by the first variable.'

1ntegration will be assumed to be over the infinite line when the limits of integration are
omitted.

By identities (18) and (19))

81 -1 = (/ s(x)wx)G(x)~-' dx)' + (k - 1) (/~(x) 'G(x)"~
9f p s o

dx) .

(Passing the derivative through the integral is justified by Section 1.88 of Titch-
marsh's text on analysis of functions [8].) The first integral is simply hl/k; the
second may be simplified using integration by parts, and identity (17):

Substituting these expressions for the two integrals yields

Differentiating with respect to p a second time, we obtain

The first integral is just h2/k. The second, using integration by parts and iden-
tity (17)) is

A further application of integration by parts reduces the third integral to the
second, from which

Substituting these expressions for the three integrals yields

In principle the process of repeated differentiation by p could be continued indef-
initely; for any i, the ith derivative of I(p) evaluated at p = 0 is a positive linear
combination of squares of one-dimensional integrals. This observation, combined
with (20)) (21)) and (22) establishes the claims concerning the Taylor expansion

of I (P).

It remains to show that the Taylor expansion of I(p) is valid for \p\ < 1 and
hence - by continuity of Nk(p) at p = 1 and the fact that all terms in the
expansion are positive - for \p\ < 1. Observe that I(p) is defined by an integral
of the form

where SAX, y) = xz: b (x , y) is a sum of terms k (x , y), and each term tij(x, y)
is a product of factors of the form g(~)g(~)<f>~(x)(j>~(y) . Now ff \t,j(x, y) \ dx dy <
2.6, since f Ig(x)<f>;(x)\ dx < 1.6 and maxz \g(x)q51(x)l < 1 for all I. (These facts
follow from the key inequality on page 324 of Sansone's treatise on orthogonal
functions [7], which bounds l<f>l(x)l by cexp(-x2/4) for an absolute constant c;
note, however, that the bound given by Sansone is for un-normalised Hermite
polynomials, and must be scaled accordingly.) Noting that n; = O(ik l) , we see
that the sum

converges, provided \p\ < 1. Thus - by uniform convergence of the Mehler expan-
sion, and the theorems contained in Sections 1.71 and 1.77 of Titchmarsh [8] -
it is permissible to integrate (23) term by term, yielding

The above expression is a power series expansion of I(p) valid for \p\ < 1, which
must be identical to the Taylor expansion, by uniqueness.

Denote by Ak(p) the function

and recall that the performance ratio of the k-CUT heuristic is given by

ak = min Ak(p).
-l/(k-l)<p<l

Corollary 1 ak > 1 - k-l, for all k 2 2.

Proof At p = 0, the numerator and denominator of Ak(p) are both k - 1; at
p = 1 they are both 0. Since the power series expansion of Nk(p) has only positive
terms, the numerator is a concave function in the range 0 < p < 1, and hence
Ak(p) > 1 in that range.

Turning to the case p < 0, note that Nk(l) = 1 and Nk(-1) = 0 implies even a, = I; furthermore, since hdk) increases with k and h1(3) = 3/2& (using calculations
described by David in [3, Section 3.2]), we have al > 9/47r(k - 1). Therefore,

where the second inequality is valid over the range -l/(k - 1) < p < 0, since
9/47r - 112 > 115; hence

It is easily verified that the above expression is strictly greater than 1 - k over
the closed interval -l/(k - 1) < p < 0.

Corollary 2 q - (1 - k-l) - 2k-:^ Ink.

Proof Galambos [4, Section 2.3.21, gives the asymptotic distribution of the
maximum of k independent, normally distributed random variables. In partic-
ular the quantity hl(k), which is just the expectation of the maximum, satisfies
hl(k) N d m . Thus we have the asymptotic estimate

where e(k) is a function tending to 0, as k -+ oo. The result follows by arguments
used in the proof of the previous corollary.

Corollary 3 q? > 0-878567, > 0-800217, cq > 0-850304, ag > 0-874243,
a1o > 0-926642, and > 0-990625.

Proof The value of was obtained by Goemans and Williamson. For k > 3,
we use the bound Nk(p) <: l / k + alp + a2p2 + p4/2, valid for -1 < p < 0, and
evaluate al and a2 numerically. (Observe that the coefficient of p3 is positive, and
hence the term itself makes a negative contribution.) Note that by computing
further terms in the Taylor expansion of Nk(p) it is possible to give better bounds
on a k ; e.g,, by expanding to the term in p4, we obtain a3 > 0.832718.

References

[I] F. Alizadeh, Interior point methods in Semi-Definite Programming with ap-
plications to Combinatorial Optimisation. (To appear.)

[2] E. Bofinger and V. J. Bofinger, The correlation of maxima in samples drawn
from a bivariate normal distribution, The Australian Journal of Statistics 7
(1965)) pp. 57-61.

[3] H. A. David, Order Statistics, Wiley, New York, 1980.

[4] J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wiley,
New York, 1978.

[5] M. X. Goemans and D. P. Williamson, .878-Approximation algorithms for
MAX-CUT and MAX 2SAT, Proceedings of the 26th Annual ACM Sym-
posium on Theory of Computing (1994) pp. 422-431.

[6] D. Karger, R. Motwani, and M. Sudan, Improved graph coloring by semidef-
inite programming. (In preparation.)

[7] G. Sansone, Orthogonal Functions, (translated from the Italian by A. H. Dia-
mond), Interscience Publishers, New York, 1959.

[8] E. C. Titchmarsh, The Theory of Functions (second edition), Oxford Uni-
versity Press, 1939.

[9] G. N. Watson, Notes on generating functions of polynomials: Hermite poly-
nomials, Journal of the London Mathematical Society 8 (1933), pp. 194-199.

[lo] D. J. A. Welsh, Complexity: Knots, Colourings and Counting, London Math-
ematical Society Lecture Notes 186, Cambridge University Press, 1993.

[ll] L. A. Wolsey, Heuristic analysis, linear programming and branch and
bound, Mathematical Programming Study 13: Combinatorial Optimiza-
tion 11, North-Holland, 1980, pp. 121-134.

Lecturer: Avi Wigderson

Title: On Rank and Communication Complexity

Material: Noam Nisan and Avi Wigderson:
O n Rank us. Communication Complexity

Institute of Computer Science
Hebrew University
Jerusalem, Israel
E-mail:aviQCS.HUJI.AC.IL

On Rank vs. Communication Complexity

Noam Nisan * Avi Wigderson t

Abstract

This paper concerns the open problem of
Lovkz and Saks regarding the relationship
between the communication complexity of a
boolean function and the rank of the associ-
ated matrix. We first give an example ex-
hibiting the largest gap known. We then
prove two related theorems.

1 Introduction

For a 0 , l matrix M, denote by c(M) the de-
terministic communication complexity of the
associated function [Y79], and by rk(M) its
rank over the reals. It is well known [MS82]
that logrk(M) < c(M) < rk(M). It is a
fundamental question of communication com-
plexity to narrow this exponential gap. As
rank arguments are the main source of de-
terministic communication complexity lower
bounds, and the rank function has many use-
ful properties, it would make life nicer if the
lower bound was rather tight. A tempting

'Institute of Computer Science, Hebrew Univer-
sity of Jerusalem, Israel. This work was supported
by USA-Israel BSF grant 92-00043 and by a Wolfeson
research award administered by the Israeli Academy
of Sciences.

h t i t u t e of Computer Science, Hebrew Univer-
sity of Jerusalem, Israel. This work was supported
by USA-Israel BSF grant 92-00106 and by a Wolfeson
research award administered by the Israeli Academy
of Sciences.

conjecture (see [LS88]) is

Conjecture 1 For every matrix M, c(M) =
(log r k (~)) * (')

Lovhz and Saks [LS89] also show that this
conjecture is strongly related to a conjecture
of van NufEelen [Nu761 and Fajtlowicz [Fa871
regarding the connection between the chro-
matic number of a graph and the rank of its
adjacency matrix.

Several authors have obtained separation
results between c(M) and logrk(M) [AS89,
Raz921. The best separation known so far
gives an infinite family of matrices for which
c(M) > log rk(M) log log log rk(M) [RS93].
Our first result is an example with a much
larger gap.

Theorem 1 There exist (explicitly given) 0-
1 matrices M of size 2" x 2" such that c(M) =
fl(n), and logrk(M) = O(nO'), where a =
log3 2 = 0.63 ...

The same fl(n) lower bound applies also to
the randomized and to the nondeterministic
communication complexities. The construc-
tion is based on boolean functions with high
"sensitivity" and low degree. Such a func-
tion was constructed in [NS92]. The lower
bound for the communication complexity re-
lies on the known lower bounds for random-
ized communication complexity of "disjoint-
ness" [KS87, RazgO] . Recently Kushilevitz

Page 1

[Ku94] has somewhat improved the construc-
tion of [NS92] and has thus reduced the value
of a to log63 = 0.61 The main lemma
of [NS92] shows however that this technique
cannot reduce the value of a to below 112.

We then return our attention to conjec-
ture 1, and consider weaker related conjec-
tures. To explain them, we need some nota-
tion. If S is a subset of the entries of M, let
So and Sl denote respectively the subsets of
S whose value is 0 and 1 respectively. Call S
monochromatic if either S = So or S = Si.
Let mono(M) denote the maximum fraction
lAl/ 1 M 1 over all monochromatic submatrices
A of M. When S is not monochromatic, we
will be interested in the advantage one color
has over the other. The (absolute) discrep-
ancyof S i s 6{S) = ~ (~ S o ~ - ~ S l ~) / ~ M ~ ~ . Define
disc(M) to be the maximum of S(A) over all
submatrices A of M.

Since an optimal protocol for M partitions
it into at most 2c(M) monochromatic rectan-
gles, we have the basic relation:

or, equivalently,

- log disc(M) < - log mono(M) 5 c(M).

Thus two conjectures weaker than Con-
jecture 1 suggest themselves. They respec-
tively assert t hat low rank matrices have large
monochromatic rectangles, or weaker still,
large discrepancy.

Conjecture 2 For every M,
- log mono(M) = (log rk(~))O(')

Conjecture 3 For every M,
- log disc(M) = (log r k (~)) O ^

As mentioned, Conjecture 1 -+ Conjecture
2 Ã‘ Conjecture 3. We first prove, in theorem
2, that conjectures 1 and 2 are equivalent. We
then prove, in theorem 3, (a strong form of)
conjecture 3.

Theorem 2 Conjecture 1 iff Conjecture 2,

Thus in order to prove conjecture 1 it suf-
fices to show that every low rank boolean ma-
trix has a "large" monochromatic submatrix.
In fact, the proof of the theorem implies that
it suffices to show that every rank r boolean
matrix has a "large" submatrix of rank at
most, say, 0.99~.

Theorem 3 For every M, l/disc(M) =
0 (r k (~) ' / ~) .

Note that Theorem 3 implies Conjecture 3.
The bound in this theorem is nearly tight:
for every r there are infinitely many matrices
M of rank r and l/disc(M) > r. This can
be easily seen by taking any square array of
r x r Hadamard matrices.

This theorem supplies the first clue that
low rank has something to do with low com-
munication complexity, though in a very weak
sense. The communication model we have
in mind is distributional communication com-
plexity, where the inputs are chosen at ran-
dom [Y83]. For this model, low rank guar-
antees a cheap protocol with a nontrivial ad-
vantage over guessing the function value. In
the protocol each player sends one bit speci-
fying whether or not his input is in the biased
rectangle. Precisely:

Corollary 1 If rk(M) = r , then there is a
2 bit protocol P , which satisfies Pr[P(x, y) =
M(x, y)] > 112 + f2(l/r3I2), where the input
(a;, y) is chosen uniformly at random.

2 Proof of Theorem 1

We will require the following definition.

Defininition: Let / : {O, l}" -+ {O, I} be
a boolean function. We say that f is fully
sensitive at 0 if f(6) = 0 and yet for any

Page 2

vector x of hamming weight 1 (i.e. for any
unit vector), f (x) = 1.

The degree of f , deg(f) is defined to be the
degree of the unique multivariate multi-linear
polynomial over the reals which agrees with
f on {O, I}".

In [NS92] it is shown that any boolean func-
tion which is fully sensitive at 6 must have
degree of at least v/n/2. They also give an
example of a fully sensitive function with de-
gree significantly less than n.

Lemma 1 [NS92] There exists an (explicitly
given) boolean function f : {O, I}" -+ {O, l}
which is fully sensitive at 6 and deg(f) = no,
for a = log3 2 = 0.6 3... . Furthermore, f has
at most 2O("Â¡ monomials.

For completeness we repeat the construc-
tion of [NS92] .

Proof: Let E(z17 ,752, a) be the symmetric
boolean function giving 1 iff exactly 1 or 2
of its inputs are 1. It is easy to check that
E is fully sensitive at 6. One may also read-
ily verify that deg(E) = 2 as E(z l , 2 2 , z3) =
zl + z2 + 23 - 251.22 - ~ 1 . ~ 3 - z m . We now
recursively define a function Ek on 3^ in-
put bits by: E O (z) = z , and E k (-) =
E(Ek- l (a), Ek-l (-), Ek-l (e)), where each in-
stance of Ekvl is on a different set of 3""l
input bits. It is easy to prove by induc-
tion that (1) Ek is fully sensitive at 6, (2)
deg(Ek) = 2', and (3) Ek has at most 62k-1
monomials. Our desired f is the function Ek
on n = 3^ variables1.

We now transform f into a matrix as fol-
lows.

lRecently, [Ku94] has improved upon this con-
struction by exhibiting a function E' on 6 variables
which is folly sensitive at 0 and with degree only 3.
Using the same recursion, this reduces a to logg 3 =
0.61 ...

Definition: With every boolean function f :

{O, -+ { O , l} we associate a 2" x 2" matrix
M f as follows:

The properties of M f are ensured by the
following lemmas.

Lemma 2 If f is fully sensitive at 0 then
c (M f) = f^(n). The same lower bound holds
for the randomized and for the nondetermin-
istic complexity of Mr.

Lemma 3 Let f be a polynomial with m
monomials, then rk{Mt) < m. In particu-
lar, i f d = deg(f) then r k (M f) < gso (3 =

log 4.

Proof (of lemma 2): This proof is a direct
reduction from the known lower bounds for
the randomized communication complexity
of disjointness. These bounds actually show
that it is even hard to distinguish between the
case where the sets are disjoint and the case
where the intersection size is 1.

Let the U D I S J problem be the following:
the two players are each given a subset of
{ I . . . n} . If the sets are disjoint they must
accept. If the sets intersect at exactly 1 point
then they must reject. If the size of the inter-
section is greater than 1 then the players are
allowed to either accept or reject.

Theorem ([KS87], see also [Raz9O]):
Any communication complexity protocol for
U D I S J requires a(n) bits of communication.
The same is true for non-deterministic and for
randomized protocols.

Now notice that if f is fully sensitive at
0 then any protocol for M f directly solves
U D I S J . This is done by transforming each
set to its characteristic vector. If the sets are
disjoint then for each i , x^yi = 0, and thus

Page 3

Mf (3, y) = f(6) = 0. If the intersection
size is exactly 1 then in exactly 1 position
x a = 1, and thus Mf(Z,y) = 1.

Proof (of lemma 3): Let f(z\ . . . zn) =

Ss as rites G be the representation of f as
a real polynomial. By the definition of Mf it
follows that Mf = Es q M s , where the mar
trix Ms is defined by Ms(Z, y) = nies xi yi.
But clearly for each S, rk(Ms) = 1. It follows
that the rank of Mf is bounded from above by
the number of non-zero monomials of f . The
bound in terms of the degree follows directly.

The combination of lemmas 2 and 3 with
the function Ek constructed in lemma 1 gives
the statement of the theorem.

3 Proof of Theorem 2

Assume conjecture 2, i.e. assume that ev-
ery 0 , l matrix M has a monochromatic sub-

iven a matrix of size M 1 /exp(logk rk(M)). G'
0 , l matrix M we will design a communication

Â

protocol for M.
Let A be the largest monochromatic sub-

matrix of M. Then A induces in a natu-
ral way a partition of M into 4 submatri-
ces A, B, C, D, with B sharing the rows of
A and C sharing the columns of A. Clearly
rk{B) +rk(C) < rk(M) + 1. Assume w.1.o.g.
that rk(B) < rk(C), then the submatrix
(AIB) has rank at most 2 + rk(M)/2.

In our protocol the row player sends a bit
saying if his input belongs to the rows of A
or not. The players then continue recursively
with a protocol for the submatrix (A1 B), or
for the submatrix (C\ D), according to the bit
communicated.

Denote by L(m, r) the number of leaves of
this protocol, starting with a matrix of area
at most m and rank at most r . By the proto-
col presented we get a recurrence L(m, r) 5
L(m, 2 + r/2) + L(m(1 - a), r), where a is

the fraction of rows in A. By the assump-
tion, a > (exp(logk r))-'. Note that (as-
suming the players ignore identical rows and
columns) that m 9, and that L(m, 1) = 1.
It is standard to see that the solution to the
recurrence satisfies L(m, r) < exp(1ogk+' r).

We have so far obtained a protocol for
M with exp(1ogk+'rk(M)) leaves; it is
well known that this implies also c (M) <
0(1ogk+' r k (~)) .

Remark: Note that the same proof, yield-
ing essentially the same bound, would go
through even if instead of a large monochro-
matic (rank 1) submatrix we were promised a
large submatrix of rank r/4, say. The idea is
that for the decomposition A, B, C, D in the
proof we have in general rk(B) + rk(C) <
rk(M) + rk(A). We used it above for a
monochromatic A, so &(A) < 1. Now we
have rk(A) < r/4, and using rk(B) < rk(C)
we get rk(B) < (rk(M) + rk(A))/2 < 5 ~ 1 8 .
Thus rk(A\B) < rk(A) + rk(B) < 7r/8.
The recurrence relation changes to L(m, r) <
L(m,7r/8) + L(m(1 - a) , r) , which has the
same asymptotic behavior.

The expression r/4 may be raplaced by ar
for any a < 1 by repeatedly taking a large
submatrix of low rank of the current subma-
trix. After constant number of times the rank
is reduced to r/4. Again, this does not change
the asymptotics of the recurrence.

4 Proof of Theorem 3

Let us consider - 1, +1 matrices rather than
0 , l matrices; this obviously changes the rank
by at most 1, and does not change the discrep-
ancy. The advantage is that the discrepancy
of a submatrix N of M has a simple form:
8 (N) is the sum of entries of N, divided by
the area of M.

We will use the following notation. Let x =
(xi) 6 Rn and A = (aq) be an n x n real

Page 4

212

matrix. Then:

1x11 = (Ey=l x:)lI2, the La norm of x.

lxlloo = maxAxil, the Loo norm of x.

IIAII = maxlla;ll=l~ /Ax1 I , the spectral
norm of A. It is well known that
also IIAII = ma~llsll=l,llyll=l lxTAy I ; and

IIAII - - max{^/\
A is an eigenvalue of AT A}.

W(A) = a?,)li2, the Euclidean
norm of A.

tr(A) = El a,,, the trace of A.

Overview of Proof: It is best to smnmer-
ize the proof backwards. We are given a 411
matrix A of low rank and wish to find in it a
submatrix of high discrepancy. This is done
in lemma 6 and is clearly equivalent to find-
ing 0 , l vectors x and y such that xTAy is
large. As an intermediate step we shall, in
lemma 5, find real vectors u and v, having
low Loo-norm, with uTAv large. Towards this
we shall need real vectors w and z having low
La-norm, with wTAz large. This is equivalent
to proving lower bounds on IIAII, which we do
in lemma 4.

Lemma 4 For every real matrix A,

Proof: Let r = rfc(A). Let us compute the
trace of ATA. On one hand, direct calculation
by definition shows that tr(ATA) = W(A)2.
On the other hand tr(ATA) = Y,&, where
the sum is over all eigenvalues A, of ATA.
Since ATA has only r non-zero eigenvalues,
and since all eigenvalues of ATA are posi-
tive, the largest eigenvalue, \i, is bounded
by < \i 5 W(A)2. The lemma follows
since IIAII = 6.

Lemma 5 Let A be an n x n Â± matrix of
rank r. Then there exist vectors u, v, \ \u\ loo <
1, llvlloo < 1, such that vTAv 2: &.

Proof: Denote r = rk(A). Let x and y be
vectors such that 1 1 ~ ~ 1 = 1, llyll = 1, and

xTAy = IIAII. Let I = {i :]xi[> JSrJn}
and J = { j : \ y j [> i/8r/n}. Notice that
111 < n/(8r), and 1 J l 5 n/(8r).

Let ii be the vector that agrees with x out-
side of I and is 0 for indices in I, and let V
be the vector that agrees with y outside of J
and is 0 for indices in J.

We shall compute a lower bound on iiTAV.
Consider the matrix B defined to agree with
A on all entries i, j such that i E I or j E J,
and to be 0 elsewhere. Using this notation it
is clear that

A lower bound for xTAy = [IAIl is obtained
using the lower bound in lemma 4, and as
W(A) = n, xTAy > n/^/r. An upper bound
for xTBy is given by the upper bound in the
last lemma xT By < \ B 11 < W (B) . Since B
has at most n/(8r) non-zero rows and n/(8r)
non-zero columns, W (B) < n/(2i/r). It fol-
lows that UTAV 2: n/(2^/r).

Now define u = Jn/{Sr)ii and v =

V / n / o V . By definition 1 [vl loo < 1 and
1 lul loo < 1. The lemma follows since uTAv =
n/ (8r) iiT AV. 0

Lemma 6 Let A be an n x n matrix, and
u,v vectors such that ~ ~ u I ~ o o 5 1, I[v~loo < 1.
Then there exists a submatrix B of A with
6(B) > uTAv/(4n2).

Proof: Let z = Av. Clearly, EGR- uizi >
$Av/2, where K is either the coordinates
where both ui and zi are positive or the coor-
dinates in which both are negative. Assume
the first case (otherwise replace below v t

Page 5

-v). Then setting x = ̂ K (the characteris-
tic vector of K) , we have (using Ilul loo <: 1) ,
xTAv > uTAv/2. Repeating this argument
with z = xTA, we can replace v with a 0 , l
vector y obtaining xTAy > uTAv/4. Now
take B to be the submatrix defined by the 1's
in x and y. Since B is a A1 matrix, the bilin-
ear form divided by re2 gives its discrepancy.
0

Combining lemmas 5 and 6, every 411 ma-
trix A of rank r, contains a submatrix B with
@) 2 &. Thus disc(M) 2 Ã‘y. and
theorem 3 follows.

Acknowledgements

We thank Oded Goldreich, Russell Impagli-
azzo, Mauricio Karchmer, Eyal Kushilevitz,
and Roman Smolensky for conversations on
this subject.

References
. [AS891 N. Alon, P. Seymour, "A counter ex-

ample to the rank-covering conjec-
ture", J. Graph Theory 13, pp. 523-
525, 1989.

[Fa871 S. Fajtlowicz, "On conjectures of
Graffiti" 11, Congresus Numeraturn
60, pp. 189-198, (1987).

[KS87] B. Kalyanasundaram and G. Schnit-
ger, "The probabilistic communica-
tion complexity of set intersection",
2nd Structure in Complexity Theory
Conference, pages 41-49, 1987.

Ku941 E. Kushilevitz, manuscript, 1994.

[LS88] L. Lovhz and M. Saks, "Lattices,
Mobius functions, and communica-
tion complexity", Proc. of the 29th
FOCS, pp. 81-90, 1988.

[LS89] L. Lovhz and M. Saks, Private com-
munication.

[MS82] K. Mehlhorn, E.M. Schmidt, "Las
Vegas is better than determinism in
VLSI and distributive computing",
Proceedings of 1 4 ~ ~ STOC, pp. 330-
337, 1982.

[NS92] N. Nisan and M. Szegedy, "On the
degree of boolean functions as real
polynomials", Proceedings of 24th
STOC, pp. 462-467, 1992.

[Nu761 C. van Nuffelen, "A bound for
the chromatic number of a graph",
American Mathematical Monthly 83,
pp. 265-266, 1976.

[RazgO] A. Razborov, "On the distributional
complexity of disjointness" , Proceed-
ings of the ICALP, pp. 249-253,
1990. (to appear in Theoretical Com-
puter Science).

[Raz92] A. Razborov, "The gap between the
chromatic number of a graph and the
rank of its adjacency matrix is super-
linear", Discrete Math. 108, pp 393-
396, 1992.

[RS93] R. Raz and B. Spiker, "On the Log-
Rank conjecture in communication
complexity", Proc. of the 34th FOCS,
pp. 168-176, 1993

[Y79] A. C.-C. Yao, "Some complexity
questions related to distributive com-
puting", Proceedings of 1 lth STOC,
pp. 209-213 (1979).

[Y83] A. C.-C. Yao, "Lower Bounds by
Probabilistic Arguments", Proc. 24th

, FOCS, pp. 420-428, (1983).

Page 6

Recent Publications in the BRICS Notes Series

NS-94-4 Peter D. Mosses, editor.Abstracts of the 6th Nordic Work-
shop on PROGRAMMING THEORY(Aarhus, Denmark,
17–19 October, 1994), October 1994. v+52 pp.

NS-94-3 Sven Skyum, editor.Complexity Theory: Present and Fu-
ture (Aarhus, Denmark, 15–18 August, 1994), September
1994. v+213 pp.

NS-94-2 David Basin.Induction Based on Rippling and Proof Plan-
ning. Mini-Course. August 1994. 62 pp.

NS-94-1 Peter D. Mosses, editor.Proc. 1st International Workshop
on Action Semantics(Edinburgh, 14 April, 1994), May
1994. 145 pp.

	Preface
	Preconference Lectures
	Program
	Noam Nisan. Communication Complexity: an Introduction
	Avi Wigderson. The wonders of the digital envelope - a crash course in modern cryptography
	Allan Borodin. Trade offs between time and space
	Adi Shamir. Open problems in cryptocomplexity
	Dexter-Kozen. Efficient averagecase algorithms for the modular group
	Jin-Yi, Wolfgang H. Fucs, Dexter-Kozen and Zicheng Liu. Efficient averagecase algorithms for the modular group

	Noam Nisan. Direct sums, products, and help bits in circuits and decision trees
	Noam Nisan, Steven Rudich and Michael Saks. Products and help bits in decision trees

	Alexander Razborov. Independence results in bounded arithmetic and natural proofs
	Slides
	AlexanAlexander Razborov. Unprovability of lower bounds on circuit size in certain fragments of bounded arithmetic

	Russell Impagliazzo. Hard core distributions for somewhat hard functions
	Russell Impagliazzo. Hard core distributions for somewhat hard problems (Preliminary informal version)

	Amnon Ta-Shma. Symmetric Logspace is closed under complement
	Slides
	Noam Nisan and Amnon Ta-Shma. Symmetric Logspace is closed under complement

	Peter Bro Miltersen. On cell probe complexity
	Slides
	Peter Bro Miltersen. On cell probe complexity

	Michael Ben-Or. On algebraic complexity theory
	Christoph-Meinel. Modular communication complexity of UCON
	Christoph-Meinel and Stephan Waack. The Möbius Function, Variation Ranks, and Omega(n)-Bounds on the Modular Communication Complexity of the Undirected Graph Connectivity Problem

	Søren Riis. Complexity of counting principles
	Søren Riis. Count(q) versus the Pigeon-Hole Principle

	Mark Jerrum. Approximation via semidefinite programming relaxations
	Alan Frieze and Mark Jerrum. Improved approximation algorithms for MAX k-CUT and MAX BISECTION

	Avi Wigderson. On rank and communication complexity
	Noam Nisan and Avi Wigderson. On Rank vs. Communication Complexity

