
B
R

IC
S

N
S

-94-2
D

.B
asin:

Induction
B

ased
on

R
ippling

and
P

roofP
lanning

BRICS
Basic Research in Computer Science

Induction Based on
Rippling and Proof Planning
Mini-Course

David Basin

BRICS Notes Series NS-94-2

ISSN 0909-3206 August 1994

See back inner page for a list of recentpublications in the BRICS
Notes Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

BRICS
Mini-Course on

Induction Based on Rippling and Proof Planning

David Basin
MPI, Saarbrucken

Aarhus University
August 11, 1994

Page 1 Copies of Slides
Page 32 Logic Frameworks for Logic Programs
Page 48 Termination Orderings for Rippling

'

&

$

%

In
d
u
ct
io
n
B
a
se
d
o
n
R
ip
p
li
n
g
a
n
d
P
ro
o
f
P
la
n
n
in
g

P
a
rt
I:
R
ip
p
li
n
g
a
n
d
P
ro
o
f
P
la
n
n
in
g

D
a
v
id
B
a
si
n

M
a
x
-P
la
n
ck
-I
n
st
it
u
t
f�u
r
In
fo
rm
a
ti
k

S
a
a
rb
r�u
ck
en

David Basin { 1 { MPI-I Saarbr�ucken

'

&

$

%

Example: An Easy Induction Proof

� De�nitions and Axioms

{ Plus: s(X) + Y) s(X + Y)

{ Multiplication: s(X)� Y) Y +X � Y

{ Associativity, Simpli�cation

� Prove: (y + z) � x = y � x+ z � x (induct y)

{ Step case fs(y)=yg:

(s(y) + z)� x = s(y)� x+ z � x

s(y + z)� x = (x+ y � x) + z � x

x+ (y + z)� x = x+ (y � x+ z � x)

(y + z)� x = y � x+ z � x

� Easy but...

{ How did we pick the induction?

{ How did we control rewriting?

{ How did we organize proof?

{ Where do lemmas come from?

David Basin { 2 { MPI-I Saarbr�ucken

'

&

$

%

A (Slightly) Harder Example

8t : list(obj): rev(t) = qrev(t; nil)

� De�nitions (+ axioms like Assoc)

rev(nil) = nil

rev(X :: Y) = rev(Y) <> X :: nil

qrev(nil; Z) = Z

qrev(X :: Y; Z) = qrev(Y;X :: Z)

� Proof by Induction on t

8t; l : list(obj): rev(t) <> l = qrev(t; l)

{ Ind Hyp : 8l:rev(t) <> l = qrev(t; l)

8l:rev(h :: t) <> l = qrev(h :: t; l)

8l:(rev(t) <> h :: nil) <> l = qrev(h :: t; l)

8l:(rev(t) <> h :: nil) <> l = qrev(t; h :: l)

8l:rev(t) <> ((h :: nil) <> l) = qrev(t; h :: l)

8l:rev(t) <> (h :: l) = qrev(t; h :: l)

David Basin { 3 { MPI-I Saarbr�ucken

'

&

$

%

O
v
er
v
ie
w
:
In
d
u
ct
io
n
B
a
se
d
o
n
R
ip
p
li
n
g
&
P
ro
o
f
P
la
n
n
in
g

�
P
a
rt
I:
R
ip
p
li
n
g
(i
n
fo
rm
a
l)

{
g
o
a
l
d
ir
ec
te
d
re
w
ri
ti
n
g

{
\
in
d
u
ct
io
n
a
rc
h
it
ec
tu
re
s"
b
a
se
d
o
n
ri
p
p
li
n
g

�
P
a
rt
II
:
R
ip
p
li
n
g
(f
o
rm
a
l)

{
re
w
ri
te
ca
lc
u
lu
s

{
te
rm
in
a
ti
o
n
o
rd
er
s

{
im
p
le
m
en
ta
ti
o
n

�
P
a
rt
II
I:
P
ro
o
f
se
a
rc
h
a
n
d
cr
it
ic
s

{
L
em
m
a
sp
ec
u
la
ti
o
n
,
g
en
er
a
li
za
ti
o
n
,
ca
se
-s
p
li
tt
in
g
,
..
.

�
P
a
rt
IV
:
S
y
n
th
es
is
b
a
se
d
o
n
ri
p
p
li
n
g

{
P
ro
g
ra
m
a
n
d
in
d
u
ct
io
n
sy
n
th
es
is
b
a
se
d
o
n
h
.o
.
u
n
i�
ca
ti
o
n

�
P
a
rt
V
:
R
el
a
ti
o
n
sh
ip
to
o
th
er
a
p
p
ro
a
ch
es

{
In
d
u
ct
iv
e
co
m
p
le
ti
o
n
,
g
en
er
a
l
d
i�
er
en
ce
re
d
u
ct
io
n

David Basin { 4 { MPI-I Saarbr�ucken

1

'

&

$

%

O
v
er
v
ie
w
(c
o
n
t.
)
|

F
o
cu
s
o
n
E
d
in
b
u
rg
h
M
R
G
R
es
ea
rc
h

�
P
a
rt
I:
R
ip
p
li
n
g

{
B
u
n
d
y,
e
t.
a
l.
(C
A
D
E
9
,
C
A
D
E
1
0
,
J
A
R
,
A
IJ
)

�
P
a
rt
II
:
F
o
rm
a
li
za
ti
o
n

{
B
a
si
n
&
W
a
ls
h
(C
A
D
E
1
2
,
C
T
R
S
9
4
)

�
P
a
rt
II
I:
C
ri
ti
cs
a
n
d
\
p
a
tc
h
in
g
"

{
Ir
el
a
n
d
(L
P
A
R
9
2
),
H
es
k
et
h
(C
A
D
E
1
2
)

�
P
a
rt
IV
:
S
y
n
th
es
is

{
K
ra
a
n
,
B
a
si
n
&
B
u
n
d
y
(L
O
P
S
T
R
9
2
,
IC
L
P
9
3
)

{
B
a
si
n
(L
O
P
S
T
R
9
4
,
IC
L
P
9
4
)

�
P
a
rt
V
:
R
el
a
ti
o
n
sh
ip

{
B
a
rn
et
t,
B
a
si
n
,
H
es
k
et
h
(A
n
n
a
ls
A
I
&
M
a
th
,
1
9
9
3
)

David Basin { 5 { MPI-I Saarbr�ucken

'

&

$

%

G
o
a
l
d
ir
ec
te
d
re
w
ri
ti
n
g

�
D
e�
n
it
io
n
s
a
n
d
a
x
io
m
s
a
s
re
w
ri
te
ru
le
s

s
(X
)
+
Y

)

s
(X
+
Y
)

s
(X
)
�
Y

)

Y
+
X
�
Y

(X
+
Y
)
+
Z

)

X
+
(Y
+
Z
)

X
+
(Y
+
Z
)

)

(X
+
Y
)
+
Z

X
+
Y
=
X
+
Z

)

Y
=
Z

�
P
ro
v
e:
(y
+
z
)
�
x
=
y
�
x
+
z
�
x

(i
n
d
u
ct
y
)

{
S
te
p
ca
se
f
s
(y
)=
y
g
: (s

(y
)
+
z
)
�
x

=

s
(y
)
�
x
+
z
�
x

s
(y
+
z
)
�
x

=

(x
+
y
�
x
)
+
z
�
x

x
+
(y
+
z
)
�
x

=

x
+
(y
�
x
+
z
�
x
)

(y
+
z
)
�
x

=

y
�
x
+
z
�
x

�
In
si
g
h
t:
R
ew
ri
te
st
ep
s
a
re
d
i�
e
re
n
ce
re
d
u
c
in
g

David Basin { 6 { MPI-I Saarbr�ucken

'

&

$

%

Example: Distributivity (with Rippling)

� De�nitions and axioms

s(X)
"

+ Y) s(X + Y)
"

s(X)
"

� Y) Y +X � Y
"

(X + Y)
"

+ Z) X + (Y + Z)
"

X + (Y + Z)
"

) (X + Y) + Z
"

X + Y
"
= X + Z

"
) Y = Z

� Prove: (y + z) � x = y � x+ z � x (induct on y)

{ Step case: f s(y)
"

=yg

(s(y)
"

+ z)� x = s(y)
"

� x+ z � x

s(y + z)
"

� x = (x+ y � x)
"

+ z � x

x+ (y + z) � x
"

= x+ (y � x+ z � x)
"

(y + z)� x = y � x+ z � x

David Basin { 7 { MPI-I Saarbr�ucken

'

&

$

%

Rippling | Idea

� Di�erences are Contexts:

{ Invariant part (Skeleton): Black

{ Changeable part (Wave-fronts): Red

� Example Induction: P (x) ` P (s(x)
"

)

Skeleton = P (x) Wavefront = s(:)
"

� Rewrite Rules are Context Moving Rules

s(X)
"

+ Y) s(X + Y)
"

{ Rules structure preserving

LHS Skeleton = X +Y RHS Skeleton = X+Y

{ Rules reduce di�erences

+

s(X)
"�� AA

Y

) s(+)
"

X
�� BB

Y

David Basin { 8 { MPI-I Saarbr�ucken

2

'

&

$

%

Rippling as Tree Rewriting

� Rules

+

s(X)

"
�� AA

Y

) s(+)

"

X

�� CC
Y

�

s(X)

"
�� AA

Y

) Y +�
"

X

�� CC
Y

+

X + Y
"

�� AA
Z

) X ++
"

Y

�� CC
Z

=

X + Y
"
�� SS

X + Z
"

) =

Y

�� CC
Z

� Proof

=

�

+

Y

�� AA
Z

�� LL
X

�� ZZ
+

�

Y

�� AA
X

�� @@
�

Z

�� AA
X

David Basin { 9 { MPI-I Saarbr�ucken

'

&

$

%

Rippling | Wavefront Directed to Mark Progress

� De�nition + Axioms

rev(X :: Y
"
)) rev(Y) <> X :: nil

"

qrev(X :: Y
"
; Z)) qrev(Y; X :: Z

#
)

X :: Y
"
<> Z) X :: (Y <> Z)

"

X :: (Y <> Z)
#

) X :: Y
#
<> Z

(X <> Y
"
) <> Z) X <> (Y <> Z

#
)

X :: Y
"
= X :: Z

"
) Y = Z

X � (Y + Z
"
)) (X � Y) + (X � Z)

"

� Proof 8l : list(obj): rev(t) <> l = qrev(t; l)

rev(h :: t
"
) <> blc = qrev(h :: t

"
; blc)

(rev(t) <> h :: nil
"

) <> blc = qrev(h :: t
"

; blc)

(rev(t) <> h :: nil
"

) <> blc = qrev(t;

�
h :: l

#
�
)

rev(t) <>

�
(h :: nil) <> l

#
�

= qrev(t;

�
h :: l

#
�
)

rev(t) <>

�
h :: l

#
�

= qrev(t;

�
h :: l

#
�
)

David Basin { 10 { MPI-I Saarbr�ucken

'

&

$

%

Rippling | Multiple Invariants

� Generalize Structure Preservation

8t : bin-tree:swap(swap(t)) = t

� Two inductions hypotheses

swap(swap(l)) = l,

swap(swap(r)) = r

� Conclusion contains two skeletons

swap(swap(br(l; r)
"

)) = br(l; r)
"

=

swap

swap

br(l; r)

"

�� SS
br(l; r)

"

=

swap

swap

br(l; r)

"

�� @@
br(l; r)

"

David Basin { 11 { MPI-I Saarbr�ucken

'

&

$

%

R
ip
p
li
n
g
:
W
av
e-
ru
le
s
R
ew
ri
te
M
u
lt
ip
le
In
va
ri
a
n
ts

�

R
u
le
:

s
w
a
p
(b
r
(L
;
R
))

"

)

b
r
(s
w
a
p
(R
);
s
w
a
p
(L
))

"

s
w
a
p

b
r
(
L
;
R
)

"

)

b
r
(
s
w
a
p
;
s
w
a
p
(
R
)
)

"

L

s
w
a
p

b
r
(
L
;
R
)

"

)

b
r
(
s
w
a
p
(
L
)
;
s
w
a
p
)

"

R

�

P
ro
o
f
st
e
p
:
s
w
a
p
(
b
r
(s
w
a
p
(l
);
s
w
a
p
(r
))

"
)
=

b
r
(l
;
r
)

"

=

s
w
a
p

b
r
(
s
w
a
p
;
s
w
a
p
(
R
)

"

l

JJ
b
r
(
l;
r
)

"

=

s
w
a
p

b
r
(
s
w
a
p
(
l)
;
s
w
a
p
)

"

r

��

SS
b
r
(
l;
r
)

"

David Basin { 12 { MPI-I Saarbr�ucken

3

'

&

$

%

T
y
p
es
o
f
R
ip
p
li
n
g

R
ip
p
li
n
g
-O
u
t:
M
o
v
e
w
a
v
e-
fr
o
n
ts
o
u
tw
a
rd
s
p
re
se
rv
in
g
co
p
y
o
f
I.
H
.

s
(X
)

"
+
Y
)

s
(X
+
Y
)

"

R
ip
p
li
n
g
-S
id
e
w
a
y
s/
In
:
M
o
v
e
w
a
v
e-
fr
o
n
ts
to
w
a
rd
s
`s
in
k
s'

q
r
ev
(
X

::
Y

"
;Z
)
)

q
r
ev
(Y
;
X

::
Z

#
)

C
o
n
d
it
io
n
a
l
R
ip
p
li
n
g
:
U
se
co
n
d
it
io
n
a
l
w
a
v
e
ru
le
s
to
su
g
g
es
t
ca
se
sp
li
ts
.

X

6=
Y
!

m
em
be
r
(X
;
Y
::
Z

"
)
)

m
em
be
r
(X
;Z
)

G
e
n
e
r
a
li
se
d
R
ip
p
li
n
g
:
C
o
m
b
in
a
ti
o
n
s
o
f
a
b
ov
e

p
a
li
n
(
H

::
T

"
;A
cc
)
)

H

::
p
a
li
n
(T
;
H

::
A
cc
)

#
)

"

David Basin { 13 { MPI-I Saarbr�ucken

'

&

$

%

P
ro
o
f
P
la
n
n
in
g

F
o
rm
u
la
�

+

� �

� �

C
la
m

(

M
et
h
o
d
s
(R
ip
p
li
n
g
,
G
en
er
a
li
za
ti
o
n
,
..
.)

+
T
a
ct
ic

+

� �

� �

P
ro
v
er

(

T
y
p
e
T
h
eo
ry
,
F
O
L
,
..
.

+

P
ro
o
f
o
f
�

David Basin { 14 { MPI-I Saarbr�ucken

'

&

$

%

P
ro
o
f
P
la
n
s/
C
la
m

�
C
a
p
tu
re
co
m
m
o
n
st
ru
ct
u
re
o
f
fa
m
il
y
o
f
p
ro
o
fs
,
e.
g
.,
in
d
u
ct
io
n

�
P
la
n
n
er
s
co
n
st
ru
ct
p
ro
o
f-
p
la
n
s
fo
r
co
n
je
ct
u
re
s

{
T
a
c
ti
c
s
a
re
p
ro
g
ra
m
s
w
h
ic
h
co
n
st
ru
ct
p
ro
o
fs

{
M
e
th
o
d
s
a
re
sp
ec
i�
ca
ti
o
n
s
o
f
ta
ct
ic
s

�
P
la
n
s
a
n
d
M
et
h
o
d
s
ex
p
li
ci
t
o
b
je
ct
s

{
S
u
cc
es
s/
F
a
il
u
re
ca
n
b
e
a
n
a
ly
ze
d
(b
y
h
u
m
a
n
s
o
r
co
m
p
u
te
rs
)

�
L
ea
d
s
to
u
n
d
er
st
a
n
d
in
g
o
f
st
ru
ct
u
re
o
f
in
d
u
ct
iv
e
th
eo
re
m
p
ro
v
in
g

David Basin { 15 { MPI-I Saarbr�ucken

'

&

$

%

M
et
h
o
d
s

�
S
p
ec
i�
ca
ti
o
n
o
f
ta
ct
ic
s

�
E
x
a
m
p
le
:
I
n
d
S
tr
a
t

in
d
st
ra
t(
I
n
d
T
er
m
(X
);
X
)
�

in
d
u
ct
io
n
(I
n
d
T
er
m
(X
);
X
)
th
en

[
sy
m

ev
a
l;
ri
p
p
le
th
en
f
er
ti
li
z
e
]

�
P
re
co
n
d
it
io
n
s:

C
o
n
j
is
co
n
je
ct
u
re
,
X

is
in
d
u
ct
io
n
va
ri
a
b
le
,

I
n
d
T
er
m

is
w
av
e
fr
o
n
t
in
in
d
u
ct
io
n
ru
le
.

X

m
u
st
o
cc
u
r
in
C
o
n
j;

L
et
C
o
n
j0
=
C
o
n
jf
I
n
d
T
er
m
(X
0)
=
X
g
.

F
o
r
ea
ch
o
cc
u
rr
en
ce
o
f
I
n
d
T
er
m
(X
0)
in
C
o
n
j0
a
w
av
e
ru
le
m
u
st
a
p
p
ly
so

th
a
t
it
s
w
av
e
fr
o
n
t
m
a
tc
h
es
I
n
d
T
er
m
.

David Basin { 16 { MPI-I Saarbr�ucken

4

'

&

$

%

P
la
n
E
x
a
m
p
le
s

in
d
s
tr
a
t(
s
(x
);
x
)
th
en

in
d
s
tr
a
t(
s
(x
);
x
)
th
en

[
s
y
m

ev
a
l;

[
in
d
s
tr
a
t(
s
(y
);
y
)
th
en

s
y
m

ev
a
l

[
s
y
m

ev
a
l;

]

s
y
m

ev
a
l

];

in
d
s
tr
a
t(
s
(y
);
y
)
th
en

[
s
y
m

ev
a
l;

s
y
m

ev
a
l

]

]

A
ss
o
ci
a
ti
v
it
y
o
f
+

C
o
m
m
u
ta
ti
v
it
y
o
f
+

x
+
(y
+
z
)
=
(x
+
y
)
+
z

x
+
y
=
y
+
x

David Basin { 17 { MPI-I Saarbr�ucken

'

&

$

%

P
la
n
n
in
g
(c
o
n
t.
)

�
4
F
o
rw
a
rd
P
la
n
n
er
s:
d
ep
th
�
rs
t,
b
re
a
d
th
�
rs
t,
it
er
a
ti
v
e
d
ee
p
en
er
,
b
es
t
�
rs
t.

�
M
a
tc
h
cu
rr
en
t
co
n
je
ct
u
re
to
in
p
u
t
fo
rm
u
la
a
n
d
ch
ec
k
p
re
co
n
d
it
io
n
s.

E
.g
.
C
o
n
j
�

x
+
(y
+
z
)
=
(x
+
y
)
+
z

F
it
in
d
s
tr
a
t

F
it
s
w
it
h
I
n
d
T
er
m
(X
)
�

s
(x
)

"

X

�

x

�
C
a
lc
u
la
te
n
ew
re
su
lt
fr
o
m
o
u
tp
u
t
fo
rm
u
la
a
n
d
e�
ec
ts

B
a
se
ca
se
:
::
:
`
x
+
(y
+
z
)
=
(x
+
y
)
+
z
,

S
te
p
ca
se
:
::
:
`

s
(x
)

"
+
(y
+
z
)
=

s
(x
)

"
+
(y
+
z
)

�
E
x
ec
u
te
ta
ct
ic
w
h
en
w
h
o
le
p
la
n
fo
u
n
d

David Basin { 18 { MPI-I Saarbr�ucken

'

&

$

%

P
la
n
n
in
g
(c
o
n
t.
)

�
E
x
a
m
p
le
T
h
eo
re
m
:
In
va
ri
a
n
ce
o
f
C
o
u
n
t
A
ft
er
S
o
rt
in
g

8
a
:
n
a
t;
l
:
li
st
(n
a
t)
:
co
u
n
t(
a
;s
o
rt
(l
))

=

co
u
n
t(
a
;l
)

�
P
ro
o
f
p
la
n
:
5
8
n
o
d
es
,
3
in
d
u
ct
io
n
s,
7
ca
se
sp
li
ts
,
4
1
.5
cp
u
se
cs
,
n
o
se
a
rc
h

�
P
ro
o
f:
4
,2
0
4
st
ep
s,
1
,5
3
5
cp
u
se
cs

�
C
a
se
sp
li
ts
su
g
g
es
te
d
b
y
ri
p
p
li
n
g

David Basin { 19 { MPI-I Saarbr�ucken

'

&

$

%

Planning (cont.)

� Some Theorems attempted

Name Theorem

ass+ x+ (y + z) = (x+ y) + z

com+ x+ y = y + z

com+2 x+ (y + z) = y + (x+ z)

dist x� (y + z) = (x� y) + (x� z)

ass� x� (y � z) = (x� y)� z

com� x� y = y � x

even+ (even(x) ^ even(y))! even(x+ y)

primes x 6= 0! 9xl : list(primes):prod(xl) = x

tailrev2 app(rev(a); n :: nil) = rev(n :: a)

assapp app(l; app(m;n)) = app(app(l;m); n)

lensum len(app(x; y)) = len(x) + len(y)

tailrev rev(app(a;n :: nil)) = n :: rev(a)

lenrev len(x) = len(rev(x))

revrev x = rev(rev(x))

comapp len(app(x; y)) = len(app(y; x))

apprev app(rev(l); rev(m)) = rev(app(m;l))

applast n = last(app(x; n :: nil))

tailrev3 rev(app(rev(a);n :: nil)) = n :: a

� Search space constrained by methods/rippling

David Basin { 20 { MPI-I Saarbr�ucken

5

'

&

$

%

S
u
g
g
es
te
d
R
ea
d
in
g
o
n
R
ip
p
li
n
g
/
P
ro
o
f
P
la
n
n
in
g

T
h
e
fo
ll
ow
in
g
re
p
o
rt
s
a
re
a
v
a
il
a
b
le
b
y
a
n
o
n
y
m
o
u
s
ft
p
fr
o
m
d
re
a
m
.d
a
i.
ed
.a
c.
u
k
:

�
B
u
n
d
y,
\
T
h
e
U
se
o
f
E
x
p
li
ci
t
P
la
n
s
to
G
u
id
e
In
d
u
ct
iv
e
P
ro
o
fs
"
,
C
A
D
E
9
.

�
B
u
n
d
y
e
t.
a
l.
,
\
E
x
te
n
si
o
n
s
to
th
e
R
ip
p
li
n
g
-O
u
t
T
a
ct
ic
fo
r
G
u
id
in
g
In
d
u
ct
iv
e

P
ro
o
fs
"
,
C
A
D
E
1
0
.

�
B
u
n
d
y
e
t.
a
l.
,
\
E
x
p
er
im
en
ts
w
it
h
P
ro
o
f
P
la
n
s
fo
r
In
d
u
ct
io
n
"
,
J
A
R
,
V
o
l
7
,

1
9
9
1
.

�
B
u
n
d
y
e
t.
a
l.
,
\
R
ip
p
li
n
g
:
A
H
eu
ri
st
ic
fo
r
G
u
id
in
g
In
d
u
ct
iv
e
P
ro
o
fs
"
,
A
I

J
o
u
rn
a
l,
V
o
l
6
2
,
1
9
9
3
.

David Basin { 21 { MPI-I Saarbr�ucken

6

'

&

$

%

In
d
u
ct
io
n
B
a
se
d
o
n
R
ip
p
li
n
g
a
n
d
P
ro
o
f
P
la
n
n
in
g

P
a
rt
II
:
F
o
rm
a
li
za
ti
o
n
o
f
R
ip
p
li
n
g

D
a
v
id
B
a
si
n

M
a
x
-P
la
n
ck
-I
n
st
it
u
t
f�u
r
In
fo
rm
a
ti
k

S
a
a
rb
r�u
ck
en

David Basin { 1 { MPI-I Saarbr�ucken

'

&

$

%

O
v
er
v
ie
w
|

F
o
rm
a
li
za
ti
o
n
o
f
R
ip
p
li
n
g

�
In
tu
it
iv
e
id
ea
o
f
ri
p
p
li
n
g

{
\
O
rd
in
a
ry
re
w
ri
ti
n
g
"
w
it
h
a
n
n
o
ta
te
d
ru
le
s

�
F
o
rm
a
li
ze
re
w
ri
te
ca
lc
u
lu
s
fo
r
ri
p
p
li
n
g

{
\
O
rd
in
a
ry
re
w
ri
ti
n
g
"
is
in
su
�
ci
en
t

�
F
o
rm
a
li
ze
st
ru
ct
u
re
p
re
se
rv
a
ti
o
n

{
S
u
cc
es
sf
u
l
ri
p
p
li
n
g
)
ca
n
u
se
in
d
u
ct
io
n
h
y
p
o
th
es
es

�
F
o
rm
a
li
ze
te
rm
in
a
ti
o
n
:
ri
p
p
li
n
g
a
lw
a
y
s
te
rm
in
a
te
s

{
T
er
m
in
a
ti
o
n
im
p
o
rt
a
n
t:
o
th
er
in
d
u
ct
io
n
s,
cr
it
ic
s,
..
.

David Basin { 2 { MPI-I Saarbr�ucken

'

&

$

%

A
n
n
o
ta
ti
o
n
(W
A
T
s)

�

W
a
v
e-
fr
o
n
ts
a
re
C
o
n
te
x
ts
:

P
(n
)
`
P
(
s
(n
)

"

�

P
(n
)
`
P
(w
f(
s
(w
h
(n
))
)

�

W
A
T
s:
C
o
n
te
x
t
is
m
ea
n
in
g
fu
ll
y
m
a
rk
ed
(r
el
a
ti
v
e
to
W
F
F
s)

e
v
e
n
(
s
(
s
(x
)

"
)

"
)

�

e
v
e
n
(w
f(
s
(w
h
(w
f(
s
(w
h
(x
)
))
)
))
)

x
�

s
(y
)

"
+

s
(y
)

"

�

w
f(
w
h
(x
�

w
f(
s
(w
h
(y
)
))
)
+

s
(y
))

s
w
a
p
(
b
r
(t
1
;
t 2
)

"
)

�

s
w
a
p
(w
f(
b
r
(w
h
(t
1
);
w
h
(t
2
))
)
)

�

E
x
a
m
p
le
s
o
f
n
o
n
-W
A
T
s

e
v
e
n
(
s
(s
(x
))

"
)

�

e
v
e
n
(w
f(
s
(s
(x
))
)
)

x
�

s
(y
)

"
+

s
(y
)

"

"

�

w
f(
w
h
(x
�

w
f(
s
(w
h
(y
)
))
)
+

w
f(
s
(w
h
(y
)
))
)

David Basin { 3 { MPI-I Saarbr�ucken

'

&

$

%

A
n
n
o
ta
ti
o
n
(c
o
n
t.
)

�

S
k
el
et
o
n
:
W
A
T
!

P
(W
F
F
)

{
s
k
e
l(
a
)
=
f
a
g

(a
a
to
m
ic
)

{
s
k
e
l(
f
(:
::
;
t i
;
::
:)
)
=
f
f
(:
::
;
s
k
e
l(
t i
);
::
:)
g

{
s
k
e
l(
f
(:
::
;
t i
;
::
:)

"
)
=
f
s
js
2

s
k
e
l(
t i
)
^

t i
in
w
a
v
e-
h
o
le
g

�

E
ra
se
:
W
A
T
!

W
F
F
b
y
d
ro
p
p
in
g
a
n
n
o
ta
ti
o
n

t

e
r
a
s
e
(t
)

s
k
e
l(
t)

e
v
e
n
(
s
(
s
(x
)

"
)

"
)

e
v
e
n
(s
(s
(x
))
)

f
e
v
e
n
(x
)g

x
�

s
(y
)

"
+
s
(y
)

"

(x
�

s
(y
))
+
s
(y
)

f
x
�

y
g

s
w
a
p
(
b
r
(t
1
;
t 2
)

"
)

s
w
a
p
(b
r
(t
1
;
t 2
))

f
s
w
a
p
(t
1
);
s
w
a
p
(t
2
)g

David Basin { 4 { MPI-I Saarbr�ucken

7

'

&

$

%

D
es
ir
ed
P
ro
p
er
ti
es
o
f
R
ip
p
li
n
g

W

e
ll
-
f
o
r
m

e
d
n
e
s
s
:

if
s
is
a
W
A
T
,
a
n
d
s
ri
p
p
le
s
to
t,
th
en
t
is
a
ls
o
a
W
A
T
.

S
k
e
le
t
o
n

p
r
e
s
e
r
v
a
t
io
n
:

if
s
ri
p
p
le
s
to
t
th
en
s
k
el
(t
)
�
s
k
el
(s
);

C

o
r
r
e
c
t
n
e
s
s
:
if
s
ri
p
p
le
s
to
t
th
en
er
a
s
e(
s
)
re
w
ri
te
s
to
er
a
s
e(
t)
in
th
e
o
ri
g
in
a
l

(u
n
a
n
n
o
ta
te
d
)
th
eo
ry
; t 1

)

t 2

)
::
:

t n

+

er
a
s
e(
t 1
)

!
er
a
s
e(
t 2
)

!
::
:

er
a
s
e(
t n
)

T
e
r
m

in
a
t
io
n
:

ri
p
p
li
n
g
te
rm
in
a
te
s.

David Basin { 5 { MPI-I Saarbr�ucken

'

&

$

%

F
ir
st
O
rd
er
R
ew
ri
ti
n
g
6=
R
ip
p
li
n
g

l ��

M

a
t
c
h

�
(
l
)
=

s

// r
��

A
p
p
l
y

�
(
r
)

t[
s
]

//
//
t[
�
(r
)]

�
R
ip
p
li
n
g
a
s
F
ir
st
-O
rd
er
R
ew
ri
ti
n
g
?

s
(a
)

"
�

s
(b
)

"

7!

w
f(
s
(w
h
(a
))
)
�
w
f(
s
(w
h
(b
))
)

�
F
a
il
s:

t
=
s
=

s
(a
)

"
�

s
(b
)

"

{
R
u
le
:

s
(X
)

"
�
Y
!

Y
+
X
�
Y

"

{
M
a
tc
h
:

�
=
f
a
=
X
;
s
(b
)

"
=
Y
g s

(b
)

"
+
a
�

s
(b
)

"

"

David Basin { 6 { MPI-I Saarbr�ucken

'

&

$

%

F
ir
st
O
rd
er
R
ew
ri
ti
n
g
6=
R
ip
p
li
n
g
(c
o
n
t.
)

�
T
er
m
in
a
ti
o
n
a
ls
o
fa
il
s.

{
C
a
n
a
n
n
o
ta
te
h
(f
(U
;s
(V
))
)
=
s
(h
(f
(s
(U
);
V
))
)
a
s
w
av
e-
ru
le

h
(
f
(U
;s
(V
))

"
)

)

s
(h
(
f
(s
(U
);
V
)

"
))

"
:

s
(h
(
f
(s
(U
);
V
)

"
))

"

)
h
(
f
(U
;s
(V
))

"
):

{
le
a
d
s
to
cy
cl
in
g

(N
o
te
:
a
ll
te
rm
s
W
A
T
s)

h
(
f
(a
;s
(a
))

"
)
)
s
(h
(
f
(s
(a
);
a
)

"
))

"

)
h
(
f
(a
;s
(a
))

"
)
)
::
:
:

�
C
o
n
cl
u
d
e:
�
rs
t-
o
rd
er
re
w
ri
ti
n
g
ca
n
n
o
t
d
ir
ec
tl
y
im
p
le
m
en
t
ri
p
p
li
n
g
.

David Basin { 7 { MPI-I Saarbr�ucken

'

&

$

%

A Rippling Calculus

� Term Replacement Must Respect Annotation

f(a; b)
"

{ Replacement in wavefront requires erasure

a 7! s(a)
"

then f(s(a); b)
"

{ Replacement in skeleton as usual

b 7! s(b)
"

then f(a; s(b)
"

)

"

� Replacement e�ects substitution � = fa=X; s(b)
"

=Y g

�(Y +X � Y
"

) = s(b) + a� s(b)
"

"

� New substitution requires new matching

{ Match f(X; 0)
"

with f(s(0); 0)
"

.

{ Answers: fs(0)=Xg and f s(0)
"

=Xg

David Basin { 8 { MPI-I Saarbr�ucken

8

'

&

$

%

M
a
tc
h
in
g
:
S
ta
n
d
a
rd
M
a
tc
h
in
g

D
E
L
E
T
E

ru
le
:

S
[
f
t
=
tg

)

S

D
E
C
O
M

P
O
S
E

ru
le

S
[
f
f
(s
1
;:
:;
s
n
)
=
f
(t
1
;:
::
;
t n
)g

)

S
[
f
s
i

=
t i
j
1
�
i
�
n
g

�
N
o
rm
a
li
ze
st
a
rt
in
g
eq
u
a
ti
o
n

f
f
(a
;X
;Y
)
=
f
(a
;s
(a
);
b)
g

S
ta
rt

f
a
=
a
;X

=
s
(a
);
Y
=
bg

D
ec
o
m
p
o
se

f
X

=
s
(a
);
Y
=
bg

D
el
et
e

�
S
u
cc
ee
d
s
if
re
su
lt
co
m
p
a
ti
b
le
(e
a
ch
v
a
r
o
cc
u
rs
o
n
ce
)

f
X

=
s
(a
);
X

=
b;
Y
=
bg

�
R
es
u
lt
is
su
b
st
it
u
ti
o
n

�
=
f
s
(a
)=
X
;b
=
Y
g

David Basin { 9 { MPI-I Saarbr�ucken

'

&

$

%

A
n
n
o
ta
te
d
M
a
tc
h
in
g

D
E
L
E
T
E

ru
le
:

S
[
f
t
=
t
:P
o
s
g

)

S

D
E
C
O
M

P
O
S
E

ru
le
s:

S
[
f
f
(s
1
;:
:;
s
n
)
=
f
(t
1
;:
::
;
t n
)
:P
o
s
g

)

S
[
f
s
i

=
t i
:P
o
s
j
1
�
i
�
n
g

S
[
f
f
(s
1
;:
::
;
s
n
)

"

=

f
(t
1
;:
::
;t
n
)

"
:s
k
g

)

S
[
f
s
1

=
t 1
:s
k
;:
::
;
s
n

=
t n
:w
f
g

�
N
o
rm
a
li
ze
st
a
rt
eq
u
a
ti
o
n f

f
(X
;X
)

"

=

f
(
s
(a
)

"
;s
(a
))

"

:
s
k
g

�
A
ss
ig
n
m
en
ts
fo
r
v
a
ri
a
b
le
s
m
u
st
b
e
co
m
p
a
ti
b
le

f
X

=

s
(a
)

"

:
s
k
;X

=
s
(a
)
:
w
f
g
:

�
A
n
sw
er
su
b
st
it
u
ti
o
n
ca
n
b
e
ex
tr
a
ct
ed �

=
f
s
(a
)

"
=
X
g

David Basin { 10 { MPI-I Saarbr�ucken

'

&

$

%

R
ew
ri
te
C
a
lc
u
lu
s

�
R
ip
p
li
n
g
=
A
n
n
o
ta
te
d
M
a
tc
h
in
g
+
T
er
m
R
ep
la
ce
m
en
t

l ��

M

a
t
c
h

�
(
l
)
=

s

// r
��

A
p
p
l
y

�
(
r
)

t[
s
]

//
//
t[
�
(r
)]

�
l
)
r
is
P
ro
pe
r
R
ew
ri
te
R
u
le
i�

{
l
a
n
d
r
a
re
W
A
T
s
&
er
a
s
e(
l)
!
er
a
s
e(
r
)

{
s
k
el
(r
)
�
s
k
el
(l
),

�
C
o
rr
ec
tn
es
s:
fo
r
s
a
W
A
T
,
s
)
�
t
w
it
h
p
ro
p
er
eq
u
a
ti
o
n
s

{
t
is
a
w
a
t,

{
s
k
el
(t
)
�
s
k
el
(s
),
a
n
d

{
er
a
s
e(
s
)
!
�
er
a
s
e(
t)
.

David Basin { 11 { MPI-I Saarbr�ucken

'

&

$

%

T
er
m
in
a
ti
o
n

�
T
er
m
in
a
ti
o
n
Im
p
o
rt
a
n
t!

�
U
se
o
rd
er
s
a
n
a
lo
g
o
u
s
to
R
ed
u
ct
io
n
O
rd
er
s

>
is
w
el
l-
fo
u
n
d
ed
:
I.
e.
,
n
o
t 1
>
t 2
>
::
:

>
is
m
o
n
o
to
n
ic
:
l
>
r
th
en
s
[l
]
>
s
[r
]

>
is
st
a
b
le
:
l
>
r
th
en
�
(l
)
>
�
(r
)

�
R
ew
ri
ti
n
g
w
it
h
ru
le
s
R
te
rm
in
a
ti
n
g

9
re
d
u
ct
io
n
o
rd
er
>
:
8l
!
r
2
R
:l
>
r

�
A
n
a
lo
g
:
R
ip
p
li
n
g
re
d
u
ct
io
n
o
rd
er

>
w
el
l-
fo
u
n
d
ed

>
m
o
n
o
to
n
ic
w
it
h
re
sp
ec
t
to
W
A
T
s

st
a
b
il
it
y
:
if
s
>
t,
�
w
el
l-
a
n
n
o
ta
te
d
,
th
en
�
(s
)
>
�
(t
)

�
R
ip
p
li
n
g
o
rd
er
s
w
ea
k
er
th
a
n
re
d
u
ct
io
n
o
rd
er
s

{
O
n
ly
co
n
si
d
er
m
o
n
o
to
n
ic
it
y
/
st
a
b
il
it
y
re
la
ti
v
e
to
w
el
l-
a
n
n
o
ta
te
d
re
p
la
ce
m
en
t

David Basin { 12 { MPI-I Saarbr�ucken

9

'

&

$

%

W
a
v
e-
ru
le
s
&
C
o
rr
ec
tn
es
s

�
C
o
rr
ec
tn
es
s
o
f
R
ip
p
li
n
g
d
ep
en
d
s
o
n
tw
o
in
d
ep
en
d
en
t
p
ro
p
er
ti
es

1
.
W
a
v
e-
ru
le
s
a
re
st
ru
ct
u
re
p
re
se
rv
in
g

s
(X
)

"
+
Y
!
s
(X
+
Y
)

"

2
.
R
ip
p
li
n
g
m
a
k
es
w
el
l-
fo
u
n
d
ed
p
ro
g
re
ss

S
ec
o
n
d
P
ro
p
er
ty
a
ch
ie
v
ed
b
y
in
si
st
in
g
L
H
S
>
R
H
S

w
h
er
e
>
is
a
re
d
u
ct
io
n
o
rd
er
fo
r
ri
p
p
li
n
g

�
W
h
a
t
co
u
n
ts
a
s
su
ch
o
rd
er
in
g
s?

{
O
ri
en
ta
ti
o
n
d
et
er
m
in
es
d
ir
ec
ti
o
n
o
f
w
a
v
e-
fr
o
n
t
m
o
v
em
en
t!

+

s
(X
)

"
��

AA
Y

)
s
(+
)

"

X
��
BB Y

David Basin { 13 { MPI-I Saarbr�ucken

'

&

$

%

Termination Orders

� Measure Depth/Weight of annotation | consider

single hole/skeleton

f

s(U)
"�� SS

s(V)
"

; �

s(�)
"

 JJ

s(�)
"

; 0

1
�� CC
1

;

2
4 0

2

3
5

� Example

s(f)
"1

s(a)
"1�� @@

h(g(b))
"2

) f

s(a)
"1�� AA

b

� Weight function:�: Term ! Weight

[1; 3]) [0; 1]

� Progress: wave-fronts move upwards

{ Reverse lexicographic order \>"

{ Above example is a wave-rule

David Basin { 14 { MPI-I Saarbr�ucken

'

&

$

%

Termination Orders | Generalization

� Multi-hole wave-fronts

swap(node(L;R)
"

)

{ Reduce to simple annotation

fswap(node(L;R)
"

); swap(node(L;R)
"

)g

{ Measure are Multisets: f[0; 1]; [0; 1]g

{ Take multiset extension of >revlex

� Inward wave-fronts: lex-order

s(f(x))
#

! f(s(x)
#

) as f[1; 0]g >lex f[0; 1]g

� Inward & Outward

palin(H :: T
"
; Acc)) H :: palin(T; H :: Acc)

#

)

"

{ Find measures relative to inward and outward

palin(H :: T
"
; Acc)) H :: palin(T;Acc)

"

palin(T;Acc)) palin(T; H :: Acc)
#

)

... lexicographically combine hOUT; INi

hf[0; 1]g; f[0; 0]gi > hf[1; 0]g; f[0; 1]gi

David Basin { 15 { MPI-I Saarbr�ucken

'

&

$

%

T
er
m
in
a
ti
o
n
O
rd
er
s
(c
o
n
t.
)

�
>
is
w
el
l-
fo
u
n
d
ed
:
le
x
ic
o
g
ra
p
h
ic
co
m
b
in
a
ti
o
n
s
a
n
d
m
u
lt
i-
se
t
ex
te
n
si
o
n
s

�
>
is
m
o
n
o
to
n
ic
:
o
rd
er
d
e�
n
ed
v
ia
le
v
el
-b
y
-l
ev
el
m
a
p
p
in
g

0
1��

CC 1
;

2 4
0 2

3 5

�
>
is
st
a
b
le
:
V
a
rs
in
w
av
e-
fr
o
n
ts
h
av
e
n
o
e�
ec
t

f

g
(U
;X
)

"

��

@@ h
(V
;Y
)

"

{
V
a
rs
in
sk
el
et
o
n
in
l
!
r
o
cc
u
r
a
t
sa
m
e
p
o
si
ti
o
n
s.

�
C
o
n
cl
u
d
e:
ri
p
p
li
n
g
w
it
h
>
te
rm
in
a
te
s

David Basin { 16 { MPI-I Saarbr�ucken

10

'

&

$

%

O
rd
er
in
g
s
D
o
m
a
in
D
ep
en
d
en
t

�
In
d
u
ct
io
n
:
\
U
p
"
o
u
t
o
f
th
e
w
a
y
o
r
\
D
o
w
n
"
to
si
n
k
s

�
O
th
er
d
o
m
a
in
s
re
q
u
ir
e
d
i�
er
en
t
o
rd
er
in
g
s

lo
g
e
(x
+
1
)
+
lo
g
e
(x
�
1
)

"

=

c

lo
g
e
((
x
+
1
)
�
(x
�
1
))

"

=

c

lo
g
e
(x
2
�
1
)

"

=

c

x
2
�
1

"

=

ec
#

x
2

"

=

ec
+
1

#

x

=

�p
ec
+
1

#

�
R
ip
p
li
n
g
ca
n
b
e
u
se
d
fo
r
d
o
m
a
in
in
d
ep
en
d
en
t
d
i�
er
en
ce
re
d
u
ct
io
n

David Basin { 17 { MPI-I Saarbr�ucken

'

&

$

%

R
ip
p
li
n
g
fo
r
A
lg
eb
ra
ic
P
ro
b
le
m
S
o
lv
in
g

�
U
se
\
P
re
ss
"
st
ra
te
g
ie
s
(B
u
n
d
y
1
9
8
1
)

C
O
L
L
E
C
T
I
O
N

:

U
�
U

"

)

U
2

"

A
T
T
R
A
C
T
I
O
N

:

lo
g
(U
)
+
lo
g
(V
)

"

)

lo
g
(U
�
V
)

"

I
S
O
L
A
T
I
O
N

:

U
2

"

=
V

)

U
=

�
p
V

#

�
T
er
m
in
a
ti
o
n
b
a
se
d
o
n
p
re
co
n
d
it
io
n
s

�
S
im
p
li
fy
a
n
d
g
en
er
a
li
ze
v
ia
R
ip
p
li
n
g

{
U
n
k
n
o
w
n
v
a
ri
a
b
le
s
a
re
in
v
a
ri
a
n
ts

{
O
rd
er
in
g
le
x
ic
o
g
ra
p
h
ic
a
ll
y
co
m
b
in
es
:

C
o
ll
ec
ti
o
n

A
tt
ra
ct
io
n

Is
o
la
ti
o
n

#

\
W
a
v
e-
H
o
le
s"

D
is
ta
n
ce
b
et
w
ee
n
h
o
le
s

A
n
n
o
ta
ti
o
n
W
ei
g
h
t

(P
a
th
in
tr
ee
)

David Basin { 18 { MPI-I Saarbr�ucken

'

&

$

%

Im
p
le
m
en
ti
n
g
R
ip
p
li
n
g

�
S
im
p
le
o
rd
er
s
y
ie
ld
si
m
p
le
p
a
rs
er
s

(X
+
Y
)
+
Z

!
X
+
(Y
+
Z
)

+

(X
+
Y
)

"
+
Z

!

X
+
(Y
+
Z
)

"

(X
+
Y
)

"
+
Z

!
X
+

(Y
+
Z
)

#

. . .

(X
+
Y
)
+
Z

"

!

X
+
(Y
+
Z
)

#

�
C
a
n
g
en
er
a
te
in
a
d
va
n
ce
:
P
a
rs
in
g
=
O
ri
en
ta
ti
o
n
+
A
n
n
o
ta
ti
o
n

�
P
re
fe
ra
b
le
to
g
en
er
a
te
ru
le
s
a
s
n
ee
d
ed
fo
r
re
w
ri
ti
n
g

David Basin { 19 { MPI-I Saarbr�ucken

'

&

$

%

Im
p
le
m
en
ti
n
g
R
ip
p
li
n
g
|

W
av
e-
ru
le
P
a
rs
in
g

r
e
w
r
i
t
e
(
T
,
N
T
)

:
-

%
p
i
c
k

t
e
r
m
p
o
s
i
t
i
o
n

p
i
c
k
_
a
n
_
p
o
s
(
T
,
X
,
S
T
,
N
T
)
,

%
s
u
b
t
e
r
m

S
T
i
n
N
T
m
a
r
k
e
d

b
y
X

p
i
c
k
_
r
u
l
e
(
L
,
R
)
,

%
p
i
c
k

a
r
u
l
e
L
-
>
R

m
a
t
c
h
_
e
r
a
s
u
r
e
(
S
T
,
L
)
,

%
c
h
e
c
k

L
a
g
a
i
n
s
t

e
r
a
s
u
r
e

o
f
T

r
e
p
l
a
c
e
(
S
T
,
L
,
R
,
N
S
T
)
,

%
p
e
r
f
o
r
m

r
e
p
l
a
c
e
m
e
n
t

y
i
e
l
d
i
n
g

N
S
T

X
=
N
S
T
.

%
d
o
s
u
b
t
e
r
m

r
e
p
l
a
c
e
m
e
n
t

r
e
p
l
a
c
e
(
T
,

L
,
R
,
S
T
)
:
-

c
o
p
y
_
a
n
(
T
,
L
,
A
L
,
S
u
b
s
)
,

%
c
o
p
y

a
n
n
o
t
a
t
i
o
n
s

a
n
d
g
e
n
e
r
a
t
e

s
u
b
s

p
a
r
s
e
(
A
L
,
R
,
A
R
)
,

%
f
i
n
d

c
o
m
p
a
t
i
b
l
e

R
f
r
o
m

a
n
n
o
t
a
t
e
d

L

a
p
p
l
y
_
s
u
b
s
(
S
u
b
s
,
A
S
,
S
T
)
.

%
A
p
p
l
y

s
u
b
s
t
i
t
u
t
i
o
n
s

t
o
p
a
r
s
e
d

R

p
a
r
s
e
(
A
L
,
R
,
A
R
)

:
-

p
i
c
k
_
a
n
(
R
,
A
)
,

%
a
n
n
o
t
a
t
e

R

(
g
e
n
e
r
a
t
e

a
n
n
o
t
a
t
i
o
n
s
)

s
k
e
l
_
p
r
e
s
e
r
v
i
n
g
(
A
L
,
A
)
,

%
s
k
e
l
e
t
o
n
s

e
q
u
a
l
?

(
t
e
s
t

e
q
u
a
l
i
t
y
)

o
r
i
e
n
t
(
A
L
,
A
,
A
R
)
.

%
O
r
i
e
n
t

R
(
a
n
d

t
e
s
t
m
e
a
s
u
r
e
)

David Basin { 20 { MPI-I Saarbr�ucken

11

'

&

$

%

W
a
v
e-
ru
le
P
a
rs
in
g
E
x
a
m
p
le

�
E
x
a
m
p
le
:
t
=

s
(x
)

"
�
s
(y
)

"

{
W
a
v
e
ru
le
:
s
(U
)
�
V
)
(U
�
V
)
+
V

�
E
ra
su
re
s
m
a
tc
h
:
er
a
s
e(
t)
=
s
(x
)
�
s
(y
)

�
C
o
p
y
a
n
n
o
ta
ti
o
n
o
n
to
L
H
S
:
s
(U
)

"
�
V

..
.
g
en
er
a
te
su
b
st
it
u
ti
o
n
s:
fx
=
U
g;
f
s
(y
)

"
=
V
g

�
G
en
er
a
te
R
H
S
te
st
in
g
sk
el
et
o
n
a
n
d
m
ea
su
re

(U
�
V
)
+
V

"

�
A
p
p
ly
su
b
st
it
u
ti
o
n
(u
si
n
g
a
n
n
o
ta
te
d
re
p
la
ce
m
en
t)

(x
�
s
(y
)

"
)
+
s
(y
)

"

David Basin { 21 { MPI-I Saarbr�ucken

'

&

$

%

H
is
to
ry
/
C
o
m
p
a
ri
so
n
|

E
d
in
b
u
rg
h

�
C
a
lc
u
lu
s
b
a
se
d
o
n
�
rs
t-
o
rd
er
re
w
ri
ti
n
g
+
re
st
ri
ct
io
n
s

{
R
es
tr
ic
ti
o
n
s
d
is
a
ll
ow
a
n
n
o
ta
te
d
su
b
st
it
u
ti
o
n
s

s
(
s
(x
)

"
)

"
+
y

..
.
ca
n
n
o
t
b
e
re
w
ri
tt
en
w
it
h

s
(X
)

"
+
Y
)
s
(X
+
Y
)

"

{
re
st
ri
ct
io
n
s
p
a
rt
ia
ll
y
li
ft
ed
in
im
p
le
m
en
ta
ti
o
n

�
W
a
v
e-
ru
le
s
g
iv
en
b
y
co
m
p
le
x
sc
h
em
a
ta

{
co
m
b
in
e
st
ru
ct
u
re
p
re
se
rv
a
ti
o
n
+
te
rm
in
a
ti
o
n

{
L
es
s

ex
ib
le
,
i.
e.
,
d
is
a
ll
ow f

(
s
(s
(x
))

"
)
!
f
(
g
(x
)

"
)

David Basin { 22 { MPI-I Saarbr�ucken

'

&

$

%

H
is
to
ry
/
C
o
m
p
a
ri
so
n
|

IN
K
A

�
H
u
tt
er
d
ev
el
o
p
ed
ri
g
o
ro
u
s
re
w
ri
te
ca
lc
u
lu
s
fo
r
ri
p
p
li
n
g

�
M
o
re
co
m
p
le
x
,
b
u
t
a
ls
o
m
o
re
g
en
er
a
l

�
N
o
t
co
n
ce
rn
ed
w
it
h
te
rm
in
a
ti
o
n

�
H
av
e
a
ls
o
ex
p
lo
re
d
\
d
i�
er
en
ce
re
d
u
ct
io
n
"
b
a
se
d
o
n
ri
p
p
li
n
g
(S
ee
p
a
rt
V
)

David Basin { 23 { MPI-I Saarbr�ucken

'

&

$

%

S
u
g
g
es
te
d
R
ea
d
in
g

T
h
e
fo
ll
ow
in
g
re
p
o
rt
s
a
re
av
a
il
a
b
le
b
y
a
n
o
n
y
m
o
u
s
ft
p
fr
o
m
m
p
i-
sb
.m
p
g
.d
e
a
n
d

d
re
a
m
.d
a
i.
ed
.a
c.
u
k
:

�
B
a
si
n
&
W
a
ls
h
,
\
A
C
a
lc
u
lu
s
fo
r
R
ip
p
li
n
g
"
,
C
T
R
S
9
4
.

�
B
a
si
n
&
W
a
ls
h
,
\
T
er
m
in
a
ti
o
n
O
rd
er
in
g
s
fo
r
R
ip
p
li
n
g
"
,
C
A
D
E
1
2
.

�
Y
o
sh
id
a
et
.
a
l.
,
\
C
o
lo
u
re
d
R
ip
p
li
n
g
:
A
n
E
x
te
n
si
o
n
o
f
a
T
h
eo
re
m
P
ro
v
in
g

H
eu
ri
st
ic
"
.

David Basin { 24 { MPI-I Saarbr�ucken

12

'

&

$

%

In
d
u
ct
io
n
B
a
se
d
o
n
R
ip
p
li
n
g
a
n
d
P
ro
o
f
P
la
n
n
in
g

P
a
rt
II
I:
P
ro
o
f
S
ea
rc
h
a
n
d
C
ri
ti
cs

D
a
v
id
B
a
si
n

M
a
x
-P
la
n
ck
-I
n
st
it
u
t
f�u
r
In
fo
rm
a
ti
k

S
a
a
rb
r�u
ck
en

(W
it
h
th
a
n
k
s
to
A
n
d
re
w
Ir
el
a
n
d

fo
r
sl
id
e
m
a
te
ri
a
l
o
n
cr
it
ic
s)

David Basin { 1 { MPI-I Saarbr�ucken

'

&

$

%

O
v
er
v
ie
w
|

R
ip
p
li
n
g
a
n
d
P
ro
o
f
S
ea
rc
h

�
R
ip
p
li
n
g
&
L
em
m
a
D
is
co
v
er
y

{
D
is
co
v
er
y
b
a
se
d
o
n
\
w
ea
k
fe
rt
il
iz
a
ti
o
n
"
+
ri
p
p
li
n
g
-i
n

�
C
ri
ti
cs
&
P
ro
d
u
ct
iv
e
U
se
o
f
F
a
il
u
re

{
cr
ea
te
n
ew
w
a
v
e-
ru
le
s

{
n
es
te
d
in
d
u
ct
io
n
s

{
g
en
er
a
li
ze
th
eo
re
m
to
in
tr
o
d
u
ce
a
cc
u
m
u
la
to
rs

{
ca
se
a
n
a
ly
se
s

David Basin { 2 { MPI-I Saarbr�ucken

'

&

$

%

Rippling-in & Lemma Discovery

� Schematic Induction Hypothesis

+ + + + + + + = � � � � � � �

� Schematic Induction Conclusion

+ + + ? + ?
"

+ + + = � � � ? � ?
"

� � �

� Imagine we can ripple out on one side

+ + ? + + + ?
"

+ + = ? � � � � � � � ?
"

� We can fertilize RHS

+ + ? + + + ?
"

+ + = ? + + + + + + + ?
#

� Progress: two sides only di�er in \?" and position!

� Further Progress: Ripple in

+ + ? + + + ?
"

+ + = + ? + + + + + ?
#

+

� And cancel

+ ? + + + ?
"

+ = ? + + + + + ?
#

� Result is generalized to missing wave-rule

David Basin { 3 { MPI-I Saarbr�ucken

'

&

$

%

Rippling-in & Lemma Discovery

� Example: half(x + x) = x

� De�nition for + and half

half(0) = half(s(0)) = 0

half(s(s(X))
"

) = s(half(X))
"

� Proof

half(s(x)
"

+ s(x)
"

) = s(x)
"

half(s(x+ s(x)
"

)

"

) = s(x)
"

half(s(x+ s(x)
"

)

"

) = s(half(x+ x))
#

half(s(x+ s(x)
"

)

"

) = half(s(s(x+ x))
#

)

� Further rippling in doesn't help cancellation

x+ s(x) = s(x+ x)

� Generalize to missing wave-rule

x+ s(Y) = s(x+ Y)

David Basin { 4 { MPI-I Saarbr�ucken

13

'

&

$

%

C
ri
ti
c
A
p
p
ro
a
ch
to
F
a
il
u
re
A
n
a
ly
si
s

�
D
ev
el
o
p
ed
b
y
A
n
d
re
w
Ir
el
a
n
d
,
U
.
o
f
E
d
in
b
u
rg
h

�
B
a
se
d
o
n
d
ec
la
ra
ti
v
e
sp
ec
i�
ca
ti
o
n
o
f
k
in
d
s
o
f
ri
p
p
li
n
g

�
F
a
il
u
re
o
f
co
n
d
it
io
n
s
su
g
g
es
ts
p
a
tc
h
es

{
E
x
a
m
p
le
:
g
en
er
a
li
ze
to
in
tr
o
d
u
ce
si
n
k
s

�
N
a
tu
ra
l
ex
te
n
si
o
n
o
f
p
la
n
n
in
g
h
ie
ra
rc
h
y

{
T
a
ct
ic
:
co
n
tr
o
ls
a
p
p
li
ca
ti
o
n
o
f
in
fe
re
n
ce
ru
le
s.

{
M
et
h
od
:
d
ec
la
ra
ti
v
el
y
sp
ec
i�
es
a
ta
ct
ic
.

{
C
ri
ti
c:
a
n
a
ly
se
s
p
ro
o
f
fa
il
u
re
s
a
n
d
su
g
g
es
ts
p
a
tc
h
es
.

�
W
e
b
eg
in
b
y
sp
ec
if
y
in
g
ri
p
p
li
n
g
m
et
h
o
d
s

David Basin { 5 { MPI-I Saarbr�ucken

'

&

$

%

S
p
ec
i�
ca
ti
o
n
:
(l
o
n
g
it
u
d
in
a
l)
w
a
v
e-
ru
le
s

r
e
v
(
h
::
t

"
)
<
>
bl
c

=

::
:

(
r
e
v
(t
)
<
>
h
::
n
il

"
)
<
>
bl
c

=

::
:

�
M
et
h
o
d
p
re
co
n
d
it
io
n
s
1
:
w
a
v
e
(l
o
n
g
it
u
d
in
a
l)

1
.1
T
h
er
e
ex
is
ts
a
w
a
v
e-
o
cc
u
rr
en
ce
,
e.
g.

r
e
v
(
h
::
t

"
)
::
:

1
.2
a
n
d
a
m
a
tc
h
in
g
w
a
v
e-
ru
le
,
e.
g.

r
e
v
(
X

::
Y

"
)
)

r
e
v
(Y
)
<
>
X

::
n
il

"

1
.3
a
n
d
a
n
y
co
n
d
it
io
n
a
tt
a
ch
ed
to
th
e
re
w
ri
te
is
p
ro
v
a
b
le
.

David Basin { 6 { MPI-I Saarbr�ucken

'

&

$

%

S
p
ec
i�
ca
ti
o
n
:
(t
ra
n
sv
er
se
)
w
av
e-
ru
le
s

::
:

=

q
r
e
v
(
h
::
t

"
;b
lc
)

::
:

=

q
r
e
v
(t
;� h
::
l

#
�)

�
M
et
h
o
d
p
re
co
n
d
it
io
n
s
2
:
w
av
e
(t
ra
n
sv
er
se
)

2
.1
T
h
er
e
ex
is
ts
a
w
av
e-
o
cc
u
rr
en
ce
,
e.
g.

::
:q
r
e
v
(
h
::
t

"
;b
lc
)

2
.2
a
n
d
a
m
a
tc
h
in
g
w
av
e-
ru
le
,
e.
g.

q
r
e
v
(
X

::
Y

"
;Z
)
)

q
r
e
v
(Y
;
X

::
Z

#
)

2
.3
a
n
d
a
n
y
co
n
d
it
io
n
a
tt
a
ch
ed
to
th
e
re
w
ri
te
is
p
ro
va
b
le
,

2
.4
a
n
d
th
e
se
le
ct
ed
w
av
e-
o
cc
u
rr
en
ce
is
si
n
ka
b
le
,
e.
g.

::
:
=
q
r
e
v
(t
;� h
::
l

#
�)

David Basin { 7 { MPI-I Saarbr�ucken

'

&

$

%

W
av
e-
ru
le
s:
G
en
er
a
l
P
a
tt
er
n

g
(x
;Y
)

`
g
(
c(
x
)

"
;b
y
c)

L
o
n
g
it
u
d
in
a
l
.

&

T
ra
n
sv
er
se

g
(x
;Y
)

g
(x
;Y
)

`

c0
(g
(x
;b
y
c)
)

"

`
g
(x
;� c0

0 (
y
)

#
�)

David Basin { 8 { MPI-I Saarbr�ucken

14

'

&

$

%

E
x
ce
p
ti
o
n
:
m
is
si
n
g
w
a
v
e-
ru
le

8
t;
l
:
li
s
t(
o
bj
):
r
e
v
(r
e
v
(t
<
>
l)
)
=
r
e
v
(r
e
v
(t
))
<
>
r
e
v
(r
e
v
(l
))

�
In
d
u
ct
io
n
h
y
p
o
th
es
is
(i
n
d
u
ct
io
n
o
n
t,
l
is
si
n
k
)

r
e
v
(r
e
v
(t
<
>
L
))
=
r
e
v
(r
e
v
(t
))
<
>
r
e
v
(r
e
v
(L
))

�
In
d
u
ct
io
n
co
n
cl
u
si
o
n

r
e
v
(r
e
v
(
h
::
t

"
<
>
bl
c)
)

=

r
e
v
(r
e
v
(
h
::
t

"
))
<
>
r
e
v
(r
e
v
(b
lc
))

r
e
v
(r
e
v
(
h
::
t
<
>
bl
c

"
))

=

r
e
v
(r
e
v
(
h
::
t

"
))
<
>
r
e
v
(r
e
v
(b
lc
))

r
e
v
(
r
e
v
(t
<
>
bl
c)
<
>
h
::
n
il

"
)

=

r
e
v
(r
e
v
(
h
::
t

"
))
<
>
r
e
v
(r
e
v
(b
lc
))

r
e
v
(
r
e
v
(t
<
>
bl
c)
<
>
h
::
n
il

"
)

|

{z

}

b
lo
ck
ed

=

r
e
v
(
r
e
v
(t
)
<
>
h
::
n
il

"
)
<
>
r
e
v
(r
e
v
(b
lc
))

|

{z

}

b
lo
ck
ed

David Basin { 9 { MPI-I Saarbr�ucken

'

&

$

%

C
ri
ti
c
p
re
co
n
d
it
io
n
s
(l
em
m
a
sp
ec
u
la
ti
o
n
)

�
P
re
co
n
d
it
io
n
(1
.1
)
o
f
th
e
w
a
v
e
m
et
h
o
d
h
o
ld
s,
e.
g

1
.1
T
h
er
e
ex
is
ts
a
w
a
v
e-
o
cc
u
rr
en
ce
,
e.
g.

f
(
c(
x
)

"
;y
)

P
re
co
n
d
it
io
n
s
(1
.2
)
a
n
d
(1
.3
)
a
re
fa
ls
e:

1
.2
b
u
t
n
o
m
a
tc
h
in
g
w
a
v
e-
ru
le

1
.3
so
n
o
co
n
d
it
io
n
to
ch
ec
k

�
a
n
d
fo
r
ea
ch
m
o
st
n
es
te
d
w
a
v
e-
o
cc
u
rr
en
ce
th
er
e
d
o
es
n
o
t
ex
is
t
a
p
o
te
n
ti
a
l

u
n
b
lo
ck
in
g
w
a
v
e-
ru
le
,
e.
g. f

(
c(
C

0 (
X
))

"
;
C

00
(Y
)

"
)
)

::
:

David Basin { 10 { MPI-I Saarbr�ucken

'

&

$

%

C
ri
ti
c
p
re
co
n
d
it
io
n
s
(l
em
m
a
sp
ec
u
la
ti
o
n
)

�
P
re
co
n
d
it
io
n
(1
.1
)
o
f
th
e
w
av
e
m
et
h
o
d
h
o
ld
s,
e.
g

1
.1
T
h
er
e
ex
is
ts
a
w
av
e-
o
cc
u
rr
en
ce
,
e.
g.

::
:
=
r
e
v
(
r
e
v
(t
)
<
>
h
::
n
il

"
)
<
>
::
:

�
P
re
co
n
d
it
io
n
s
(1
.2
)
a
n
d
(1
.3
)
a
re
fa
ls
e:

1
.2
b
u
t
n
o
m
a
tc
h
in
g
w
av
e-
ru
le

1
.3
so
n
o
co
n
d
it
io
n
to
ch
ec
k

�
a
n
d
fo
r
ea
ch
m
o
st
n
es
te
d
w
av
e-
o
cc
u
rr
en
ce
th
er
e
d
o
es
n
o
t
ex
is
t
a
p
o
te
n
ti
a
l

u
n
b
lo
ck
in
g
w
av
e-
ru
le
,
e.
g. r

e
v
(
C
(X
)
<
>
Y
::
n
il

"
)
)

::
:

David Basin { 11 { MPI-I Saarbr�ucken

'

&

$

%

P
a
tc
h
:
w
av
e-
ru
le
sp
ec
u
la
ti
o
n
(c
o
n
t.
)

�
S
p
ec
u
la
ti
v
e
w
av
e-
ru
le
:

� �

� �

C
(s
)

"
,

� �

� �

C
(s
)

#
,

r
e
v
(
X

<
>
Y
::
n
il

"
)
)

� �

� �

C
(r
e
v
(X
);
X
;Y
)

"

{
P
o
ss
ib
le
In
st
a
n
ce
s

r
e
v
(
X

<
>
Y
::
n
il

"
)

)

r
e
v
(X
)

r
e
v
(
X

<
>
Y
::
n
il

"
)

)

Y
::
r
e
v
(X
)

"

�
A
ct
u
a
l
w
av
e-
ru
le
s

X

::
Y

"
<
>
Z

)

X

::
(Y
<
>
Z
)

"

X

::
Y

"
=

X

::
Z

"

)

Y
=
Z

David Basin { 12 { MPI-I Saarbr�ucken

15

'

&

$

%

P
a
tc
h
:
w
a
v
e-
ru
le
sp
ec
u
la
ti
o
n

�
C
o
n
ti
n
u
e
w
it
h
sp
ec
u
la
ti
v
e
ri
p
p
li
n
g

r
e
v
(
r
e
v
(:
::
)
<
>
h
::
n
il

"
)

=

r
e
v
(
r
e
v
(t
)
<
>
h
::
n
il

"
)
<
>
::
:

� �

� �

C
(r
e
v
(r
e
v
(:
::
))
;:
::
;h
)

"

=

� �

� �

C
(r
e
v
(r
e
v
(t
))
;:
::
;h
)

"
<
>
::
:

C
0 (
::
:;
h
)
::

� �

� �

C
00
(r
e
v
(r
e
v
(:
::
))
;:
::
)

"

"

=

C
0 (
::
:;
h
)
::

� �

� �

C
00
(:
::
<
>
::
:;
::
:)

"

"

� �

� �

C
00
(r
e
v
(r
e
v
(:
::
))
;:
::
)

"

=

� �

� �

C
00
(:
::
<
>
::
:;
::
:)

"

r
e
v
(r
e
v
(t
<
>
l)
)

=

r
e
v
(r
e
v
(t
))
<
>
r
e
v
(r
e
v
(l
))

David Basin { 13 { MPI-I Saarbr�ucken

'

&

$

%

E
x
ce
p
ti
o
n
to
G
en
er
a
l
P
a
tt
er
n
|

L
em
m
a
S
p
ec
u
la
ti
o
n

f
(g
(x
;h
(Z
))
)

`
f
(g
(
c(
x
;y
)

"
;h
(b
z
c)
))

L
o
n
g
it
u
d
in
a
l
.

&

T
ra
n
sv
er
se

f
(g
(x
;h
(Z
))
)

f
(g
(x
;h
(Z
))
)

`
f
(� �

� �

C
(g
(x
;h
(b
z
c)
);
x
;y
)

"
)

`
f
(g
(x
;� �

� �

C
0 (
h
(b
z
c)
;x
;y
)

#
))

David Basin { 14 { MPI-I Saarbr�ucken

'

&

$

%

E
x
ce
p
ti
o
n
:
n
es
te
d
in
d
u
ct
io
n

8
t
:
li
s
t(
o
bj
):
e
v
e
n
l(
t
<
>
n
il
)
$

e
v
e
n
(l
e
n
g
th
(t
))

�
W
av
e-
ru
le
s:

le
n
g
th
(
X

::
Y

"
)

)

s
(l
e
n
g
th
(Y
))

"

e
v
e
n
(
s
(s
(X
))

"
)

)

e
v
e
n
(X
)

e
v
e
n
l(
X

::
Y
::
Z

"
)

)

e
v
e
n
l(
Z
)

X

::
Y

"
<
>
Z

)

X

::
(Y
<
>
Z
)

"

David Basin { 15 { MPI-I Saarbr�ucken

'

&

$

%

E
x
ce
p
ti
o
n
:
n
es
te
d
in
d
u
ct
io
n
(c
o
n
t.
)

�
F
ir
st
in
d
u
ct
io
n
su
g
g
es
ti
o
n
P
(
h
::
t

"
)

e
v
e
n
l(
h
::
(t
<
>
n
il
)

"
)

|

{z

}

b
lo
ck
ed

$

e
v
e
n
(
s
(l
e
n
g
th
(t
))

"
)

|

{z

}

b
lo
ck
ed

�
S
ec
o
n
d
in
d
u
ct
io
n
su
g
g
es
ti
o
n
P
(
h
1

::
h
2

::
t

"
)

e
v
e
n
l(
h
1

::
(
h
2

::
t

"
<
>
n
il
)

"
)

$

e
v
e
n
(
s
(l
e
n
g
th
(
h
2

::
t

"
))

"
)

e
v
e
n
l(
h
1

::
h
2

::
(t
<
>
n
il
)

"
)

$

e
v
e
n
(
s
(s
(l
e
n
g
th
(t
))
)

"
)

e
v
e
n
l(
t
<
>
n
il
)

$

e
v
e
n
(l
e
n
g
th
(t
))

David Basin { 16 { MPI-I Saarbr�ucken

16

'

&

$

%

C
ri
ti
c
p
re
co
n
d
it
io
n
s
(n
es
te
d
in
d
u
ct
io
n
)

�
P
re
co
n
d
it
io
n
(1
.1
)
o
f
th
e
w
a
v
e
m
et
h
o
d
h
o
ld
s,
e.
g

1
.1
T
h
er
e
ex
is
ts
a
w
a
v
e-
o
cc
u
rr
en
ce
,
e.
g.

::
:
$

e
v
e
n
(
s
(l
e
n
g
th
(t
))

"
)

�
P
re
co
n
d
it
io
n
s
(1
.2
)
a
n
d
(1
.3
)
a
re
fa
ls
e:

1
.2
b
u
t
n
o
m
a
tc
h
in
g
w
a
v
e-
ru
le

1
.3
so
n
o
co
n
d
it
io
n
to
ch
ec
k

�
a
n
d
th
er
e
ex
is
ts
a
m
o
st
n
es
te
d
w
a
v
e-
o
cc
u
rr
en
ce
fo
r
w
h
ic
h
th
er
e
ex
is
ts
a

p
o
te
n
ti
a
l
u
n
b
lo
ck
in
g
w
a
v
e-
ru
le
,
e.
g.

e
v
e
n
(
s
(C
(X
))

"
)

)

::
:

e
v
e
n
(
s
(s
(X
))

"
)

)

e
v
e
n
(X
)

David Basin { 17 { MPI-I Saarbr�ucken

'

&

$

%

E
x
ce
p
ti
o
n
to
G
en
er
a
l
P
a
tt
er
n
|

n
es
te
d
in
d
u
ct
io
n

f
(g
(x
;h
(Y
))
)

`
f
(g
(
c(
x
)

"
;h
(b
y
c)
))

L
o
n
g
it
u
d
in
a
l
.

&

T
ra
n
sv
er
se

`
f
(
c 1
(g
(x
;h
(b
y
c)
))

"
)

`
f
(g
(x
;
c 3
(h
(b
y
c)
)

#
))

`
f
(
c 1
(g
(
c(
x
)

"
;h
(b
y
c)
))

"
)

`
f
(g
(
c(
x
)

"
;
c 3
(h
(b
y
c)
)

#
))

`
f
(
c 1
(c
1
(g
(x
;h
(b
y
c)
))
)

"
)

`
f
(g
(x
;
c 3
(c
3
(h
(b
y
c)
))

#
))

`

c 2
(f
(g
(x
;h
(b
y
c)
))
)

"

`
f
(g
(x
;h
(� c 4
(y
)

#
�))

)

David Basin { 18 { MPI-I Saarbr�ucken

'

&

$

%

E
x
ce
p
ti
o
n
:
m
is
si
n
g
si
n
k

8
t
:
li
s
t(
o
bj
):
r
e
v
(t
)
=
q
r
e
v
(t
;n
il
)

�
In
d
u
ct
io
n
h
y
p
o
th
es
is

r
e
v
(t
)
=
q
r
e
v
(t
;n
il
)

�
In
d
u
ct
io
n
co
n
cl
u
si
o
n

r
e
v
(
h
::
t

"
)
=
q
r
e
v
(
h
::
t

"
;n
il
)

r
e
v
(t
)
<
>
h
::
n
il

"
=
q
r
e
v
(
h
::
t

"
;n
il
)

|

{z

}

m
is
si
n
g
si
n
k

David Basin { 19 { MPI-I Saarbr�ucken

'

&

$

%

C
ri
ti
c
p
re
co
n
d
it
io
n
s
(s
in
k
sp
ec
u
la
ti
o
n
)

�
P
re
co
n
d
it
io
n
s
(2
.1
),
(2
.2
)
a
n
d
(2
.3
)
o
f
th
e
w
av
e
m
et
h
o
d
h
o
ld
,
e.
g
.

2
.1
T
h
er
e
ex
is
ts
a
w
av
e-
o
cc
u
rr
en
ce
,
e.
g.

::
:
=
q
r
e
v
(
h
::
t

"
;n
il
)

2
.2
a
n
d
a
m
a
tc
h
in
g
w
av
e-
ru
le
,
e.
g.

q
r
e
v
(
X

::
Y

"
;Z
)
)

q
r
e
v
(Y
;
X

::
Z

#
)

2
.3
a
n
d
a
n
y
co
n
d
it
io
n
a
tt
a
ch
ed
to
th
e
re
w
ri
te
is
p
ro
va
b
le
.

�
P
re
co
n
d
it
io
n
(2
.4
)
is
fa
ls
e,
i.
e.

2
.4
n
o
si
n
k
o
cc
u
rr
en
ce
.

David Basin { 20 { MPI-I Saarbr�ucken

17

'

&

$

%

Patch: sink speculation

8t; l : list(obj): F (rev(t); l) = qrev(t; G(l))

� Induction hypothesis

F (rev(t); L) = qrev(t; G(L))

� Induction conclusion

F (rev(h :: t
"

); blc) = qrev(h :: t
"

; G(blc))

F (rev(t) <> h :: nil
"

; blc) = qrev(h :: t
"

; G(blc))

F (rev(t) <> h :: nil
"

; blc) = qrev(t; h :: G(blc)
#

)

rev(t) <> (

j
h :: nil <> l

#
k
) = qrev(t; h :: G(blc)

#

)

rev(t) <> (

j
h :: l

#
k
) = qrev(t; h :: G(blc)

#

)

rev(t) <> (

j
h :: l

#
k
) = qrev(t;

j
h :: l

#
k
)

� Wave-rule

(X <> Y
"

) <> Z) X <> (Y <> Z
#

)

� Generalized conjecture

8t; l : list(obj): rev(t) <> l = qrev(t; l)

David Basin { 21 { MPI-I Saarbr�ucken

'

&

$

%

E
x
ce
p
ti
o
n
to
G
en
er
a
l
P
a
tt
er
n
|

si
n
k
sp
ec
u
la
ti
o
n

f
(x
;:
::
)

f
(x
;:
::
;F
(Y
);
::
:)

`
f
(
c(
x
)

"
;:
::
)

)

`
f
(
c(
x
)

"
;:
::
;F
(b
y
c)
;:
::
)

`
f
(x
;:
::
;
c0
(F
(b
y
c)
)

#
;:
::
)

David Basin { 22 { MPI-I Saarbr�ucken

'

&

$

%

E
x
ce
p
ti
o
n
:
m
is
si
n
g
ca
se
sp
li
t

8
a
:
o
bj
:8
t;
s
:
li
s
t(
o
bj
):
m
e
m
be
r
(a
;t
)
!

m
e
m
be
r
(a
;t
<
>
s
)

�
W
av
e-
ru
le
s

X

::
Y

"
<
>
Z

)

X

::
(Y
<
>
Z
)

"

X

6=
Y
!

m
e
m
be
r
(X
;
Y
::
Z

"
)

)

m
e
m
be
r
(X
;Z
)

X

=
Y
!

m
e
m
be
r
(X
;
Y
::
Z

"
)

)

tr
u
e

�
In
d
u
ct
io
n
h
y
p
o
th
es
is

m
e
m
be
r
(a
;t
)
!

m
e
m
be
r
(a
;t
<
>
S
)

�
In
d
u
ct
io
n
co
n
cl
u
si
o
n

m
e
m
be
r
(a
;
h
::
t

"
)

!

m
e
m
be
r
(a
;
h
::
t

"
<
>
bs
c)

m
e
m
be
r
(a
;
h
::
t

"
)

|

{z

}

b
lo
ck
ed

!

m
e
m
be
r
(a
;
h
::
t
<
>
bs
c

"
)

|

{z

}

b
lo
ck
ed

David Basin { 23 { MPI-I Saarbr�ucken

'

&

$

%

C
ri
ti
c
p
re
co
n
d
it
io
n
s
(c
a
se
sp
li
t)
:

�
P
re
co
n
d
it
io
n
s
(1
.1
)
a
n
d
(1
.2
)
o
f
th
e
w
av
e
m
et
h
o
d
h
o
ld
,
e.
g

1
.1
T
h
er
e
ex
is
ts
a
w
av
e-
o
cc
u
rr
en
ce
,
e.
g.

m
e
m
be
r
(a
;
h
::
t

"
)
!

::
:

1
.2
a
n
d
a
m
a
tc
h
in
g
w
av
e-
ru
le
,
e.
g.

X

6=
Y
!

m
e
m
be
r
(X
;
Y
::
Z

"
)
)

::
:

�
P
re
co
n
d
it
io
n
(1
.3
)
is
fa
ls
e,
i.
e.

1
.3
a
6=
h
is
n
o
t
p
ro
va
b
le
g
iv
en
th
e
h
y
p
o
th
es
es
.

David Basin { 24 { MPI-I Saarbr�ucken

18

'

&

$

%

P
a
tc
h
:
ca
se
sp
li
t

�
In
d
u
ct
io
n
h
y
p
o
th
es
is

m
e
m
be
r
(a
;t
)
!

m
e
m
be
r
(a
;t
<
>
S
)

�
In
d
u
ct
io
n
co
n
cl
u
si
o
n

m
e
m
be
r
(a
;
h
::
t

"
)
!

m
e
m
be
r
(a
;
h
::
(t
<
>
bs
c)

"
)

�
C
a
se
:
a
6=
h

m
e
m
be
r
(a
;t
)

!

m
e
m
be
r
(a
;
h
::
(t
<
>
bs
c)

"
)

m
e
m
be
r
(a
;t
)

!

m
e
m
be
r
(a
;t
<
>
bs
c)

�
C
a
se
:
a
=
h

tr
u
e

!

m
e
m
be
r
(a
;
h
::
(t
<
>
bs
c)

"
)

tr
u
e

!

tr
u
e

David Basin { 25 { MPI-I Saarbr�ucken

'

&

$

%

C
ri
ti
cs
|

E
x
a
m
p
le
s

N
o

T
h
eo
re
m

1

8
x
:n
a
t:
e
v
e
n
(x
+
x
)

2

8
x
;
y
:i
n
t:
e
v
e
n
(x
+
y
)
$

e
v
e
n
(x
�

y
)

3

8
x
:l
is
t(
o
b
j
):
e
v
e
n
l(
x
<
>

n
il
)
$

e
v
e
n
(l
e
n
g
th
(x
))

4

8
x
;
y
:l
is
t(
o
b
j
):
r
e
v
(x
)
<
>

(y
<
>

x
)
=
q
r
e
v
(x
;
y
)
<
>

x

5

8
x
:l
is
t(
o
b
j
):
r
e
v
(x
)
=
q
r
e
v
(x
;
n
il
)

6

8
x
;
y
:l
is
t(
o
b
j
):
r
e
v
(r
e
v
(x
<
>

y
))
=
r
e
v
(r
e
v
(x
))
<
>

r
e
v
(r
e
v
(y
))

7

8
x
:l
is
t(
o
b
j
):
r
e
v
(x
)
<
>

x
=
q
r
e
v
(x
;
x
)

8

8
x
:l
is
t(
o
b
j
):
8
y
:o
b
j:
r
e
v
(r
e
v
(x
)
<
>

y
::
n
il
)
=
y
::
x

9

8
x
;
y
:l
is
t(
o
b
j
):
r
o
ta
te
(l
e
n
g
th
(x
);
x
<
>

y
)
=
y
<
>

x

1
0

8
x
:l
is
t(
o
b
j
):
r
o
ta
te
(l
e
n
g
th
(x
);
x
)
=
x

David Basin { 26 { MPI-I Saarbr�ucken

'

&

$

%

C
ri
ti
cs
|

E
x
a
m
p
le
s
(c
o
n
t.
)

N
o

L
e
m
m
a
s

G
en
er
a
li
ze

N
es
te
d
In
d

1

X

+
s
(Y
)
=
s
(X

+
Y
)

2

x

3

x

4

r
e
v
(X

<
>

Y

::
n
il
)
=
Y

::
r
e
v
(X
)

q
r
e
v
(X
;
Y
)
<
>

Z
=
q
r
e
v
(X
;
Y

<
>

Z
)

5

(X

<
>

Y
)
<
>

Z
=
X

<
>

(Y
<
>

Z
)

x

6

r
e
v
(X

<
>

Y

::
n
il
)
=
Y

::
r
e
v
(X
)

7

X

<
>

Y

::
Z
=
(X

<
>

Y

::
n
il
)
<
>

Z

x

8

X

<
>

Y

::
Z
=
(X

<
>

Y

::
n
il
)
<
>

Z

x

9

(X

<
>

Y
)
<
>

Z
=
X

<
>

(Y
<
>

Z
)

X

<
>

Y

::
Z
=
(X

<
>

Y

::
n
il
)
<
>

Z

1
0

(X

<
>

Y
)
<
>

Z
=
X

<
>

(Y
<
>

Z
)

x

X

<
>

Y

::
Z
=
(X

<
>

Y

::
n
il
)
<
>

Z

David Basin { 27 { MPI-I Saarbr�ucken

'

&

$

%

S
u
g
g
es
te
d
R
ea
d
in
g

T
h
e
fo
ll
ow
in
g
re
p
o
rt
s
a
re
av
a
il
a
b
le
b
y
a
n
o
n
y
m
o
u
s
ft
p
fr
o
m
d
re
a
m
.d
a
i.
ed
.a
c.
u
k
:

�
B
u
n
d
y
et
.
a
l.
,
\
R
ip
p
li
n
g
:
A
H
eu
ri
st
ic
fo
r
G
u
id
in
g
In
d
u
ct
iv
e
P
ro
o
fs
"
,
A
I

J
o
u
rn
a
l,
V
o
l
6
2
,
1
9
9
3
.

�
Ir
el
a
n
d
,
\
T
h
e
U
se
o
f
P
la
n
n
in
g
C
ri
ti
cs
in
M
ec
h
a
n
iz
in
g
In
d
u
ct
iv
e
P
ro
o
fs
"
,

L
P
A
R
9
2
.

�
Ir
el
a
n
d
a
n
d
B
u
n
d
y,
\
P
ro
d
u
ct
iv
e
U
se
o
f
F
a
il
u
re
in
In
d
u
ct
iv
e
P
ro
o
f"
,
D
A
I

R
ep
o
rt
(f
o
rt
h
co
m
in
g
in
J
u
ly
).

David Basin { 28 { MPI-I Saarbr�ucken

19

'

&

$

%

In
d
u
ct
io
n
B
a
se
d
o
n
R
ip
p
li
n
g
a
n
d
P
ro
o
f
P
la
n
n
in
g

P
a
rt
IV
:
S
y
n
th
es
is

D
a
v
id
B
a
si
n

M
a
x
-P
la
n
ck
-I
n
st
it
u
t
f�u
r
In
fo
rm
a
ti
k

S
a
a
rb
r�u
ck
en

David Basin { 1 { MPI-I Saarbr�ucken

'

&

$

%

In
d
u
ct
io
n
&
S
y
n
th
es
is

�

S
y
n
th
es
is
o
f
p
ro
g
ra
m
s
b
y
in
d
u
ct
iv
e
th
eo
re
m
p
ro
v
in
g

{
N
o
n
-t
y
p
e
th
eo
re
ti
c
a
p
p
ro
a
ch
es

{
In
d
u
ct
io
n
co
rr
es
p
o
n
d
s
to
w
el
l-
fo
u
n
d
ed
re
cu
rs
io
n

P
ro
b
le
m

A
ss
er
ti
o
n
s

F
u
n
ct
io
n
a
l
P
ro
g
ra
m
s

f
(x
)
=
t
s.
t.
S
(x
;f
(x
))

L
o
g
ic
P
ro
g
ra
m
s

8
x
:p
r
o
g
(x
)
$

s
p
ec
(x
)

H
a
rd
w
a
re

8
x
:p
r
o
g
(x
)
!

s
p
ec
(x
)

�

S
y
n
th
es
is
o
f
in
d
u
ct
io
n
sc
h
em
a
ta

{
C
o
n
st
ru
ct
in
d
u
ct
io
n
sc
h
em
a
d
u
ri
n
g
p
ro
o
f

�

C
o
m
b
in
a
ti
o
n
:
sc
h
em
a
/
p
ro
g
ra
m
sy
n
th
es
is

David Basin { 2 { MPI-I Saarbr�ucken

'

&

$

%

Id
ea
:
G
en
er
a
li
ze
U
n
i�
ca
ti
o
n
B
a
se
d
S
y
n
th
es
is

�

C
o
n
si
d
er
P
ro
lo
g
|

sy
n
th
es
is
/
v
er
i�
ca
ti
o
n
in
H
o
rn
cl
a
u
se
th
eo
ry

H
(x
)

C
1
(x
1
);
::
:C
n

(x
n

)

�

E
x
a
m
p
le

p
r
o
f
(a
la
n
):

li
k
ed
(a
la
n
):

n
ic
ep
r
o
f
(X
)

p
r
o
f
(X
);
li
k
ed
(X
):

�

Q
u
er
y
co
n
st
ru
ct
s
p
ro
o
f

p
r
o
f
(a
la
n
)

p
r
o
f
(a
la
n
)

li
k
ed
(a
la
n
)

li
k
ed
(a
la
n
)

n
ic
ep
r
o
f
(a
la
n
)

p
r
o
f
(a
la
n
)
f
a
la
n
=
X
g

p
r
o
f
(X
)

li
k
ed
(a
la
n
)
f
X

=
a
la
n
g

li
k
ed
(X
)
f
X

=
a
la
n
g

n
ic
ep
r
o
f
(X
)

David Basin { 3 { MPI-I Saarbr�ucken

'

&

$

%

G
en
er
a
li
ze
U
n
i�
ca
ti
o
n
B
a
se
d
S
y
n
th
es
is
(c
o
n
t.
)

�

V
er
i�
ca
ti
o
n
/
sy
n
th
es
is
id
en
ti
ca
l
(m
o
d
u
lo
u
n
i�
ca
ti
o
n
b
a
se
-c
a
se
)

�

G
o
es
b
a
ck
(a
t
le
a
st
)
to
C
o
rd
el
l
G
re
en
(1
9
6
9
)

�

G
en
er
a
li
ze
id
ea

{
T
h
eo
ry
:
A
x
io
m
a
ti
ze
d
cl
a
u
se
s
=
)

g
en
er
a
l
d
er
iv
ed
ru
le
s

{
P
ro
o
f:
S
L
D
re
so
lu
ti
o
n
=
)

n
o
n
-u
n
if
o
rm
p
ro
o
f
se
a
rc
h

{
S
y
n
ta
x
:
F
ir
st
o
rd
er
sy
n
ta
x
=
)

h
ig
h
er
-o
rd
er
sy
n
ta
x

{
O
b
je
ct
s
B
u
il
t:
re
la
ti
o
n
s,
re
cu
rs
iv
e
p
ro
g
ra
m
s,
..
.

David Basin { 4 { MPI-I Saarbr�ucken

20

'

&

$

%

G
en
er
a
li
za
ti
o
n
re
q
u
ir
es
H
O
-s
y
n
ta
x
/
u
n
i�
ca
ti
o
n

�

G
en
er
a
li
za
ti
o
n
b
a
se
d
o
n
id
ea
o
f
\
sc
h
em
a
ti
c
p
ro
o
fs
"

8
l
m
:(
8
z
:z
2

l
!

z
2

m
)
$

E
(l
;m
)

{
P
ro
o
f
in
st
a
n
ti
a
te
s
E
w
it
h
p
ro
g
ra
m
|

w
h
a
t
is
E
?

�

P
ro
o
f
ru
le
s
g
en
er
a
ll
y
sc
h
em
a
ti
c
(e
.g
.,
ov
er
fo
rm
u
la
s)

A

B

A
^

B

{
C
a
n
b
e
a
p
p
li
ed
w
it
h
1
st
-o
rd
er
m
a
tc
h
in
g
/
u
n
i�
ca
ti
o
n

�

V
er
i�
ca
ti
o
n
=
S
y
n
th
es
is
w
h
en
in
st
a
n
ti
a
ti
o
n
co
m
m
u
te
s
w
it
h
p
ro
o
f
ru
le
s

{
E
.g
.,
P
u
re
P
ro
lo
g

David Basin { 5 { MPI-I Saarbr�ucken

'

&

$

%

G
en
er
a
li
za
ti
o
n
|

H
O
-s
y
n
ta
x
/
u
n
i�
ca
ti
o
n

�

B
in
d
in
g
R
eq
u
ir
es
H
.O
.
sy
n
ta
x

8
x
:A
[x
]
8
-E
(t
)

A
[t
=
x
]

{
8
x
:A
fa
il
s,
A
o
f
ty
p
e
o
.

..
.
A
p
p
li
ca
ti
o
n
o
f
�
to
8
x
:A
:
ca
n
't
re
fe
r
to
x
.

..
.
S
u
b
st
it
u
ti
o
n
[t
=
x
]
to
A
:
o
n
ly
d
e�
n
ed
fo
r
A
g
ro
u
n
d

�

H
O
-s
y
n
ta
x
&
U
n
i�
ca
ti
o
n
su
�
ce
|

8
:
(i
!

o
)
!

o
,
A
:
(i
!

o
)

{
In
st
a
n
ti
a
ti
o
n
co
m
m
u
te
s
w
it
h
p
ro
o
f
ru
le
s
(�
=
f
�
y
:y
+
3
=
5
=A
g
)

8
x
:A
(x
))

� !

8
x
:x
+
3
=
5

8
E

(t
)

!

t
+
3
=
5

�

A
(t
)

8
E

(t
)

8
x
:A
(x
))

�

O
ft
en
o
n
ly
p
a
tt
er
n
u
n
i�
ca
ti
o
n
n
ee
d
ed
:
P

�
r
s
:a
(s
)

�
x
y
z
:P
(x
;z
)
=

?
�
x
y
z
:a
(z
)

David Basin { 6 { MPI-I Saarbr�ucken

'

&

$

%

E
x
te
n
d
ed
E
x
a
m
p
le
|

L
o
g
ic
P
ro
g
ra
m
S
y
n
th
es
is

�

F
ir
st
-o
rd
er
lo
g
ic
su
�
ci
en
t
fo
r
fo
rm
a
li
zi
n
g
/
m
a
n
ip
u
la
ti
n
g
L
P
s

�

F
o
rm
a
li
za
ti
o
n
|

re
p
re
se
n
t
a
s
\
P
u
re
L
o
g
ic
P
ro
g
ra
m
s"

8
x
y
:m
em
(x
;y
)
$

(x
=
[]
^

F
a
ls
e)
_

(9
v
0

v
1
:x
=
v
0
:v
1

^
(y
=
v
0

_
m
em
(v
1
;y
))
)

{
re
p
re
se
n
ts

m
em
([
];
y
):

f
a
il
:

m
em
([
V
0
jV
1
];
Y
):

Y
=
V
0
:

i.
e.

m
em
([
V
0
jV
1
];
V
0
):

m
em
([
V
0
jV
1
];
Y
)

m
em
(V
1
;Y
):

m
em
([
V
0
jV
1
];
Y
)

m
em
(V
1
;Y
):

�

C
o
rr
ec
tn
es
s:
R
ea
so
n
a
b
o
u
t
eq
u
iv
a
le
n
ce
in
a
p
p
ro
p
ri
a
te
lo
g
ic
a
l
th
eo
ry
.

8
l
m
:(
8
z
:z
2

l
!

z
2

m
)
$

E
(l
;m
)

David Basin { 7 { MPI-I Saarbr�ucken

'

&

$

%

L
o
g
ic
P
ro
g
ra
m
S
y
n
th
es
is
(c
o
n
t.
)

�

R
el
a
ti
o
n
b
et
w
ee
n
o
b
je
ct
s/
sp
ec
is
$

�

D
e
ri
v
e
ca
lc
u
lu
s
fo
r
re
a
so
n
in
g
a
b
o
u
t
$

{
T
ri
v
ia
l
e
q
u
iv
a
le
n
ce
s

P
$

P
0

Q
$

Q
0
^

$

-
I

P
^
Q
$

P
0
^
Q

0

{
In
d
u
ct
io
n

A
1

A
2

A
3

$

-
I
n
d

A
(x
;y
)
$

P
(x
;y
)

w
h
er
e
..
.

A
1

�

8
x
y
:P
(x
;y
)
$

(x
=
[]
^
B
(y
))
_
(9
h
t:
x
=
h
:t
^
S
(h
;t
;y
))

A
2

�

8
y
:A
([
];
y
)
$

B
(y
)

A
3

�

8
t:
(8
y
:A
(t
;y
)
$

P
(t
;y
))
!

8
h
y
:A
(h
:t
;y
)
$

S
(h
;t
;y
)

David Basin { 8 { MPI-I Saarbr�ucken

21

'

&

$

%

L
o
g
ic
P
ro
g
ra
m
S
y
n
th
es
is
(c
o
n
t.
)

�

S
u
b
se
t
E
x
a
m
p
le
:
8
l
m
:(
8
z
:z
2

l
!

z
2

m
)
$

E
(l
;m
)

{
U
n
if
y
w
it
h
$

-I
n
d
ru
le
|

in
d
u
ct
io
n
o
n
l
w
h
en
f
l=
x
g

A
1

A
2

A
3

$

-I
n
d

8
l
m
:(
8
z
:z
2

l
!

z
2

m
)
$

P
(l
;m
)

A
1

�

8
x
y
:P
(x
;y
)
$

x
=
[]
^

B
(y
)
_

(9
h
t:
x
=
h
:t
^

S
(h
;t
;y
))

A
2

�

8
y
:(
(8
z
:z
2

[]
!

z
2

y
)
$

B
(y
))

A
3

�

8
y
:(
I
H

!

(8
z
:z
2

h
:t
!

z
2

y
)
$

S
(h
;t
;y
))

I
H

�

(8
z
:z
2

t
!

z
2

y
)
$

P
(t
;y
))

David Basin { 9 { MPI-I Saarbr�ucken

'

&

$

%

L
o
g
ic
P
ro
g
ra
m
S
y
n
th
es
is
(c
o
n
t.
)

�

B
a
se
ca
se
:
n
o
rm
a
li
ze

re
so
lv
e
A
$

A

T
r
u
e
$

B
(y
)

N
o
rm
a
li
ze

8
y
:(
(8
z
:z
2

[]
!

z
2

y
)
$

B
(y
))

�

P
ro
d
u
ce
s
su
b
st
it
u
ti
o
n

f
T
r
u
e=
B
(y
)g

David Basin { 10 { MPI-I Saarbr�ucken

'

&

$

%

L
o
g
ic
P
ro
g
ra
m
S
y
n
th
es
is
(c
o
n
t.
)

�

S
te
p
C
a
se
:
U
se
re
w
ri
te
ru
le
s

(A
_

B
!

C
)

$

(A
!

C
)
^
(B
!

C
)

8
v
:A
(v
)
^

B
(v
))

$

(8
v
:A
(v
))
^

(8
v
:B
(v
))

(8
v
:v
=
w
!

A
(v
))

$

A
(w
)

�

S
im
p
li
fy
A
3

A
4

R
es
o
lv
e
IH

A
5

^

$

-I

8
y
:I
H

!

h
2

y
^
(8
z
:z
2

t
!

z
2

y
)
$

S
(h
;t
;y
)
R
ew
ri
ti
n
g

8
y
:(
I
H

!

(8
z
:z
2

h
:t
!

z
2

y
)
$

S
(h
;t
;y
))

A
4

�

8
y
:I
H

!

(h
2

y
$

S
1
(h
;t
;y
))

A
5

�

8
y
:I
H

!

((
8
z
:z
2

t
!

z
2

y
)
$

S
2
(h
;t
;y
))

{
S
u
b
st
it
u
ti
o
n
s
f
S
1
(h
;t
;y
)
^

S
2
(h
;t
;y
)=
S
(h
;t
;y
)g

f
P
(t
;y
)=
S
2
(h
;t
;y
)g

David Basin { 11 { MPI-I Saarbr�ucken

'

&

$

%

S
u
b
se
t
E
x
a
m
p
le
(c
o
n
t.
)

�

C
u
rr
en
t
p
ro
o
f
st
a
te
(i
n
cl
u
d
in
g
in
st
a
n
ti
a
ti
o
n
s)

A
1

A
4

$

-I
n
d

8
l
m
:(
8
z
:z
2

l
!

z
2

m
)
$

P
(l
;m
)

A
1

�

8
x
y
:P
(x
;y
)
$

x
=
[]
^

T
r
u
e
_

(9
h
t:
x
=
h
:t
^

(S
1
(h
;t
;y
)
^

P
(h
;y
))
)

A
4

�

8
y
:I
H

!

(h
2

y
$

S
1
(t
;h
;y
))

�

A
4

a
ls
o
p
ro
v
ed
b
y
in
d
u
ct
io
n
S
1
(h
;t
;y
)
=
Q
(y
;h
)

{
A
s
b
ef
o
re
3
g
o
a
ls

..
.
1
st
is
sc
h
em
a
ti
c
d
e�
n
it
io
n
fo
r
Q
(y
;h
)

..
.
2
n
d
is
b
a
se
ca
se
:
n
o
rm
a
li
ze

..
.
3
rd
is
st
ep
-c
a
se
:
R
ew
ri
te
/
u
se
n
ew
IH

David Basin { 12 { MPI-I Saarbr�ucken

22

'

&

$

%

S
u
b
se
t
E
x
a
m
p
le
(c
o
n
t.
)

�

F
in
a
l
p
ro
o
f
st
a
te

A
1

A
6

$

-I
n
d

8
l
m
:(
8
z
:z
2

l
!

z
2

m
)
$

P
(l
;m
)

A
1

�

8
x
y
:P
(x
;y
)
$

x
=
[]
^

T
r
u
e
_
(9
h
t:
x
=
h
:t
^

(Q
(y
;h
)
^

P
(t
;y
))
)

A
6

�

8
x
y
:Q
(x
;y
)
$

x
=
[]
^

F
a
ls
e
_

(9
h
t:
x
=
h
:t
^

(x
=
h
_

Q
(t
;y
))
)

�

T
ra
n
sl
a
te
to
m
u
lt
i-
m
o
d
e
P
ro
lo
g
p
ro
g
ra
m

p
([
];
Y
):

q
([
H
jT
];
H
):

p
([
H
jT
];
Y
)

q
(Y
;H
);
p
(T
;Y
):

q
([
H
jT
];
Y
)

q
(T
;Y
):

David Basin { 13 { MPI-I Saarbr�ucken

'

&

$

%

A
u
to
m
a
ti
n
g
S
y
n
th
es
is

�

P
ro
o
f
fo
ll
ow
s
\
sc
h
em
a
ti
c
v
er
i�
ca
ti
o
n
"
p
la
n

8
x
:s
p
ec
(x
)
$

P
(x
)

�

In
d
u
ct
io
n
:
se
t
u
p
sc
h
em
a
ti
c
d
e�
n
it
io
n

8
x
:P
(x
)
$

::
:B
::
:S
(h
;t
):
::

{
B
a
se
ca
se
:
n
o
rm
a
li
ze
sp
ec
i�
ca
ti
o
n
,
p
ro
d
u
ce
a
ss
ig
n
m
en
t
fo
r
B

s
p
ec
(0
)
$

B

{
S
te
p
ca
se
:
n
o
rm
a
li
ze
sp
ec
i�
ca
ti
o
n
,
fe
rt
il
iz
e
w
it
h
IH
.

(s
p
ec
(t
)
$

P
(t
))
!

(s
p
ec
(
h
:t

"
)
$

S
(h
;t
))

{
F
er
ti
li
za
ti
o
n
p
ro
d
u
ce
s
a
ss
ig
n
m
en
t
fo
r
S
b
a
se
d
o
n
P

David Basin { 14 { MPI-I Saarbr�ucken

'

&

$

%

A
u
to
m
a
ti
n
g
S
y
n
th
es
is
(c
o
n
t.
)

�

L
o
g
ic
P
ro
g
ra
m
m
in
g
P
ro
o
f
P
la
n
s
h
av
e
b
ee
n
im
p
le
m
en
te
d
(K
ra
a
n
's
P
h
D
)

�

S
im
p
li
�
ca
ti
o
n
b
a
se
d
o
n
ri
p
p
li
n
g

�

O
n
ly
p
a
tt
er
n
u
n
i�
ca
ti
o
n
is
re
q
u
ir
ed

{
S
ta
rt
in
g
p
ro
g
ra
m
is
a
p
a
tt
er
n
,
i.
e.
,
P
(x
1
;x
2
)

{
R
u
le
s
m
a
n
ip
u
la
te
p
a
tt
er
n
s
o
n
R
H
S
(p
ro
g
ra
m
si
d
e)

A
2

�

8
y
:A
([
];
y
)
$

B
(y
)

A
3

�

8
t:
(8
y
:A
(t
;y
)
$

P
(t
;y
))
!

8
h
y
:A
(h
:t
;y
)
$

S
(h
;t
;y
)

{
U
n
i�
ca
ti
o
n
u
n
d
er
p
a
tt
er
n
s
is
\
cl
o
se
d
"
.

David Basin { 15 { MPI-I Saarbr�ucken

'

&

$

%

S
y
n
th
es
iz
in
g
In
d
u
ct
io
n
S
ch
em
a
ta

�

P
ro
b
le
m
:
in
d
u
ct
io
n
va
ri
a
b
le
s
&
in
d
u
ct
io
n
sc
h
em
a
ta

ev
en
(x
)
^
ev
en
(y
)
!

ev
en
(x
+
y
)

�

A
x
io
m
s

s
(x
)

"
+
y
)

s
(x
+
y
)

"

ev
en
(
s
(s
(x
))

"
)
)

ev
en
(x
)

�

In
d
u
ct
io
n
sc
h
em
a
ta P

(0
)

P
(x
)
!

P
(
s
(x
)

"
)
1
-s
te
p

8
x
:P
(x
)

P
(0
)

P
(s
(0
))

P
(x
)
!

P
(
s
(s
(x
))

"
)
2
-s
te
p

8
x
:P
(x
)

�

Q
u
es
ti
o
n
s:

{
H
ow
d
o
w
e
p
ic
k
in
d
u
ct
io
n
v
a
ri
a
b
le
s?

{
H
ow
d
o
w
e
p
ic
k
in
d
u
ct
io
n
sc
h
em
a
ta
?

David Basin { 16 { MPI-I Saarbr�ucken

23

'

&

$

%

S
y
n
th
es
iz
in
g
In
d
u
ct
io
n
S
ch
em
a
ta
(c
o
n
t.
)

�

P
ro
o
f

ev
en
(
s
(s
(x
))

"
)
^
ev
en
(y
)
!

ev
en
(
s
(s
(x
))

"
+
y
)

ev
en
(x
)
^

ev
en
(y
)
!

ev
en
(
s
(
s
(x
)

"
+
y
)

"
)

ev
en
(x
)
^

ev
en
(y
)
!

ev
en
(
s
(s
(x
+
y
))

"
)

ev
en
(x
)
^

ev
en
(y
)
!

ev
en
(x
+
y
)

�

In
d
u
ct
io
n
o
n
y
w
o
u
ld
b
e

aw
ed

�

O
n
e
st
ep
in
d
u
ct
io
n
o
n
x
w
o
u
ld
fa
il

�

R
ec
u
rs
io
n
a
n
a
ly
si
s
w
o
rk
s
h
er
e
|

b
u
t
o
n
ly
1
st
ep
lo
o
k
-a
h
ea
d
!

David Basin { 17 { MPI-I Saarbr�ucken

'

&

$

%

S
y
n
th
es
iz
in
g
In
d
u
ct
io
n
S
ch
em
a
ta

�
Id
ea
:
P
ic
k
in
d
u
ct
io
n
v
a
ri
a
b
le
/
sc
h
em
a
ta
\
m
id
d
le
-o
u
t"

e
v
e
n
(C
(x
))
^
e
v
e
n
(D
(y
))
!

e
v
e
n
(C
(x
)
+
D
(y
))

�
B
eg
in
w
it
h
ri
p
p
li
n
g
(e
.g
.,
o
n
R
H
S
)

e
v
e
n
(
s
(C
1
(x
))

"
)
^
e
v
e
n
(D
(y
))
!

e
v
e
n
(
s
(C
1
(x
)
+
D
(y
))

"
)

f
�
x
:
s
(C
1
(x
))

"
=
C
g

e
v
e
n
(
s
(s
(C
2
(x
))
)

"
)
^
e
v
e
n
(D
(y
))
!

e
v
e
n
(
s
(s
(C
2
(x
)
+
D
(y
))
)

"
))

f
�
x
:
s
(C
2
(x
))

"
=
C
1
g

e
v
e
n
(C
2
(x
))
^
e
v
e
n
(D
(y
))
!

e
v
e
n
(C
2
(x
)
+
D
(y
))

e
v
e
n
(x
)
^
e
v
e
n
(y
)
!

e
v
e
n
(x
+
y
)

f
�
x
:x
=
C
2
;
�
x
:x
=
D
g

�
S
y
n
th
es
iz
ed
f
�
x
:
s
(s
(x
))

"
=
C
;
�
x
:x
=
D
g

e
v
e
n
(s
(s
((
x
))
))
^
e
v
e
n
(y
)
!

e
v
e
n
(s
(s
(x
))
+
y
)

{
S
u
g
g
es
ts
2
st
ep
sc
h
em
a
ta
a
n
d
in
d
u
ct
io
n
o
n
x

{
D
el
a
y
ed
co
m
m
it
m
en
t
a
ll
o
w
s
a
rb
it
ra
ry
la
rg
e
lo
o
k
-a
h
ea
d
in
to
ri
p
p
li
n
g

{
R
ip
p
li
n
g
co
n
st
ra
in
s
re
w
ri
ti
n
g
&

u
n
i�
ca
ti
o
n

David Basin { 18 { MPI-I Saarbr�ucken

'

&

$

%

S
y
n
th
es
iz
in
g
N
o
et
h
er
ia
n
In
d
u
ct
io
n

8
x
:(
8
y
:R
(y
;
x
)
!

P
(y
))
!

P
(x
)

w
f
(R
)

P
(x
)

�
S
y
n
th
es
iz
e
lo
g
ic
p
ro
g
ra
m
s

8
x
:P
(x
)
$

B
(x
)

8
x
:(
8
y
:R
(y
;
x
)
!

(S
p
e
c(
y
)
$

P
(y
))
!

S
p
e
c(
y
)
$

B
(x
)

w
f
(R
)

S
p
e
c(
x
)
$

P
(x
)

�
S
y
n
th
es
iz
e
fu
n
c
ti
o
n
a
l
p
ro
g
ra
m
s

8
x
:F
(x
)
=
B
(x
)

8
x
:(
8
y
:R
(y
;
x
)
!

S
p
e
c(
y
;
F
(y
))
$

S
p
e
c(
x
;
B
(x
))

w
f
(R
)

S
p
e
c(
x
;
F
(x
))

�
R
ea
li
z
a
ti
o
n
in
H
O
L
|

d
er
iv
e
in
d
u
ct
io
n
fr
o
m

w
f
d
e�
n
it
io
n

w
f
(R
)
�
(8
P
:(
8
x
:(
8
y
:R
(y
;x
)
!

P
(y
))
!

P
(x
))
!

(8
x
:P
(x
))
)

�
Id
ea
:
C
a
n
sy
n
th
e
si
ze
b
o
th
p
ro
g
ra
m

a
n
d
R

David Basin { 19 { MPI-I Saarbr�ucken

'

&

$

%

S
y
n
th
es
iz
in
g
N
o
et
h
er
ia
n
In
d
u
ct
io
n
(c
o
n
t.
)

�
S
k
et
ch
:
q
u
ic
k
so
rt

8
x
:p
e
r
m
(x
;
F
(x
))
^
o
r
d
e
r
e
d
(F
(x
))

�
A
ft
er
In
d
u
ct
io
n

{
B
u
il
d
p
ro
g
ra
m

F
(x
)
=
B
(x
)
b
y
p
ro
v
in
g

1
)

8
y
:R
(y
;
x
)
!

(p
e
r
m
(y
;F
(y
))
^
o
r
d
e
r
e
d
(F
(y
))
)
`
(p
e
r
m
(x
;B
(x
))
^
o
r
d
e
r
e
d
(B
(x
))
))

2
)

`
w
f
(R
)

�
A
ft
er
ca
se
sp
li
t
(x
=
[]
),
u
se
IH
w
it
h
f
le
s
s
(h
d
(x
);
tl
(x
))
=
y
g

R
(l
e
s
s
(h
d
(x
);
tl
(x
))
;x
)
!

(p
e
r
m
(l
e
s
s
(h
d
(x
);
tl
(x
))
);
F
(l
e
s
s
(h
d
(x
);
tl
(x
))
))
^
o
r
d
e
r
e
d
(F
(l
e
s
s
(h
d
(x
);
tl
(x
))
))

�
T
o
u
se
IH
(!
-E
),
g
e
t
n
e
w
g
o
a
l

R
(l
e
s
s
(h
d
(x
);
tl
(x
))
;x
)

{
A
lo
n
g
w
it
h
su
b
g
o
a
l
(2
)
fo
rm
s
co
n
st
ra
in
t
fo
r
M
O
R
in
d
u
ct
io
n

David Basin { 20 { MPI-I Saarbr�ucken

24

'

&

$

%

C
o
m
p
a
ri
so
n
|

T
y
p
e
T
h
eo
ry

�

T
y
p
e
th
eo
ry
is
a
lt
er
n
a
ti
v
e
fo
u
n
d
a
ti
o
n
fo
r
d
er
iv
in
g
p
ro
g
ra
m
s

�

W
el
l-
fo
u
n
d
ed
in
d
u
ct
io
n
co
rr
es
p
o
n
d
s
to
w
el
l-
fo
u
n
d
ed
re
cu
rs
io
n

{
A
n
a
lo
g
o
u
s
to
N
o
rd
st
ro
m
's
A
cc
ty
p
e

�

T
y
p
e
th
eo
ry
h
a
s
a
d
v
a
n
ta
g
e
th
a
t
a
ll
te
rm
s
co
m
p
u
te

{
D
is
a
d
v
a
n
ta
g
e:
te
rm
s
a
re
fu
n
ct
io
n
a
l
p
ro
gr
a
m
s

{
M
u
st
sh
o
w
fa
it
h
fu
ln
es
s
o
f
o
th
er
(e
.g
.,
lo
g
ic
p
ro
g
ra
m
m
in
g
)
en
co
d
in
g
s

�

S
y
n
th
es
is
a
ls
o
u
n
d
er
st
a
n
d
a
b
le
u
si
n
g
u
n
i�
ca
ti
o
n

{
P
ro
o
fs
-a
s-
p
ro
g
ra
m
s
=
p
ro
o
fs
-a
s-
o
b
je
ct
s
+
o
b
je
ct
s-
a
s-
p
ro
g
ra
m
s

{
P
A
O
ex
p
la
in
ed
v
ia
u
n
i�
ca
ti
o
n

{
O
A
P
ex
p
la
in
ed
v
ia
co
n
st
ru
ct
iv
it
y t

2

A
!

B

{
T
w
o
p
a
rt
s
a
re
in
d
ep
en
d
en
t

David Basin { 21 { MPI-I Saarbr�ucken

'

&

$

%

S
u
m
m
a
ry
o
f
R
es
u
lt
s
o
n
S
y
n
th
es
is

�

In
d
u
ct
io
n
+
m
et
a
-v
a
ri
a
b
le
s
)

\
re
cu
rs
iv
e
st
ru
ct
u
re
s"

{
M
u
lt
i-
m
o
d
e
lo
g
ic
p
ro
g
ra
m
s
fr
o
m
n
o
n
-e
x
ec
u
ta
b
le
sp
ec
i�
ca
ti
o
n

�

C
a
n
d
er
iv
e
d
ev
el
o
p
m
en
t
ca
lc
u
li

{
L
o
g
ic
&
fu
n
ct
io
n
a
l
ca
lc
u
li
d
er
iv
ed
in
H
O
L
in
Is
a
b
el
le

�

C
a
n
pa
rt
ia
ll
y
a
u
to
m
a
te
re
w
ri
ti
n
g

{
S
tr
u
ct
u
re
o
f
p
ro
o
fs
a
m
en
a
b
le
to
ri
p
p
li
n
g

�

C
a
n
sy
n
th
es
iz
e/
pa
rt
ia
ll
y
a
u
to
m
a
te
in
d
u
ct
io
n

{
C
o
n
st
ru
ct
o
r
st
y
le

{
W
el
l-
fo
u
n
d
ed

David Basin { 22 { MPI-I Saarbr�ucken

'

&

$

%

S
u
g
g
es
te
d
R
ea
d
in
g

T
h
e
fo
ll
ow
in
g
re
p
o
rt
s
a
re
av
a
il
a
b
le
b
y
a
n
o
n
y
m
o
u
s
ft
p
fr
o
m
m
p
i-
sb
.m
p
g
.d
e
a
n
d

d
re
a
m
.d
a
i.
ed
.a
c.
u
k
:

�

B
a
si
n
,
\
L
o
g
ic
F
ra
m
ew
o
rk
s
fo
r
L
o
g
ic
P
ro
g
ra
m
s"
,
L
O
P
S
T
R
9
4
.

�

K
ra
a
n
,
B
a
si
n
,
B
u
n
d
y,
\
L
o
g
ic
P
ro
g
ra
m
S
y
n
th
es
is
v
ia
P
ro
o
f
P
la
n
n
in
g
"
,
L
og
ic

P
ro
gr
a
m

S
y
n
th
es
is
a
n
d
T
ra
n
sf
o
rm
a
ti
o
n
,
1
9
9
3
.

�

K
ra
a
n
,
B
a
si
n
,
B
u
n
d
y,
\
M
id
d
le
-O
u
t
R
ea
so
n
in
g
fo
r
L
o
g
ic
P
ro
g
ra
m
S
y
n
th
es
is
"
,

IC
L
P
9
3
.

�

A
y
a
ri
,
B
a
si
n
,
\
D
ed
u
ct
iv
e
T
a
b
le
a
u
x
a
s
H
ig
h
er
-O
rd
er
R
es
o
lu
ti
o
n
"
(i
n

p
re
p
a
ra
ti
o
n
).

David Basin { 23 { MPI-I Saarbr�ucken

25

'

&

$

%

In
d
u
ct
io
n
B
a
se
d
o
n
R
ip
p
li
n
g
a
n
d
P
ro
o
f
P
la
n
n
in
g

P
a
rt
V
:
R
ip
p
li
n
g
in
O
th
er
S
et
ti
n
g
s
(&
C
o
m
p
a
ri
so
n
s)

D
a
v
id
B
a
si
n

M
a
x
-P
la
n
ck
-I
n
st
it
u
t
f�u
r
In
fo
rm
a
ti
k

S
a
a
rb
r�u
ck
en

David Basin { 1 { MPI-I Saarbr�ucken

'

&

$

%

G
en
er
a
li
ty
/
C
o
m
p
a
ri
so
n
o
f
R
ip
p
li
n
g
B
a
se
d
A
p
p
ro
a
ch

�

R
ip
p
li
n
g
a
p
p
li
ca
b
le
in
o
th
er
in
d
u
ct
io
n
se
tt
in
g
s

{
C
o
m
p
a
ri
so
n
w
it
h
in
d
u
ct
io
n
co
m
p
le
ti
o
n

�

R
ip
p
li
n
g
a
p
p
li
ca
b
le
in
n
o
n
-i
n
d
u
ct
io
n
se
tt
in
g
s

{
S
er
v
es
a
s
\
g
o
a
l
d
ir
ec
te
d
p
ro
b
le
m
so
lv
in
g
"

{
D
i�
er
en
ce
u
n
i�
ca
ti
o
n
=
id
en
ti
�
ca
ti
o
n
o
f
d
i�
er
en
ce
s

{
R
ip
p
li
n
g
=
re
m
ov
a
l
o
f
d
i�
er
en
ce
s

David Basin { 2 { MPI-I Saarbr�ucken

'

&

$

%

Im
p
li
ci
t
(\
In
d
u
ct
io
n
le
ss
"
)
In
d
u
ct
io
n

�

T
ru
th
w
it
h
re
sp
ec
t
to
st
a
n
d
a
rd
m
o
d
el
:
I
(E
)
j=
E

f
0
+
X

=
X
;
s
(X
)
+
Y
=
s
(X
+
Y
)g
j=
X
+
Y
=
Y
+
X

�

In
co
m
p
le
te
m
et
h
o
d
s
b
a
se
d
o
n
co
m
p
le
ti
o
n
a
n
d
co
n
si
st
en
cy
u
n
d
er
ex
te
n
si
o
n

�

D
o
n
o
t
ex
p
li
ci
tl
y
co
n
st
ru
ct
in
d
u
ct
io
n
p
ro
o
fs

�

T
ig
h
t
th
eo
re
ti
ca
l/
p
ra
ct
ic
a
l
re
la
ti
o
n
sh
ip
b
et
w
ee
n
E
x
p
li
ci
t
In
d
u
ct
io
n
a
n
d
IC

{
R
ec
u
rs
io
n
a
n
a
ly
si
s/
ri
p
p
li
n
g
in
ex
p
li
ci
t
in
d
u
ct
io
n

{
C
ri
ti
ca
l
p
a
ir
g
en
er
a
ti
o
n
/
si
m
p
li
�
ca
ti
o
n
in
IC

David Basin { 3 { MPI-I Saarbr�ucken

'

&

$

%

In
d
u
ct
iv
e
C
o
m
p
le
ti
o
n
(a
b
st
ra
ct
ly
)

�

In
p
u
t:
(g
ro
u
n
d
)
co
n

u
en
t
se
t
R

,
eq
u
a
ti
o
n
s
L
,
eq
u
a
ti
o
n
s
C
.

�

P
ro
o
f

{
D
ed
u
ct
io
n
:
th
e
g
en
er
a
ti
o
n
o
f
cr
it
ic
a
l
p
a
ir
s
b
et
w
ee
n
R
u
le
s
a
n
d
C
.

{
S
im
p
li
�
ca
ti
o
n
:
re
w
ri
ti
n
g
w
it
h
R

,
L

a
n
d
C
.

{
E
n
d
s
w
h
en
a
ll
eq
u
a
ti
o
n
s
in
C

p
ro
v
en
(\
d
el
et
ed
"
)

{
O
r
a
n
in
co
n
si
st
en
cy
is
d
et
ec
te
d

..
.
tr
u
e
=
f
a
ls
e,
C
(x
)
=
D
(x
),
..
.

David Basin { 4 { MPI-I Saarbr�ucken

26

'

&

$

%

D
ed
u
ct
io
n
P
h
a
se
|

S
im
il
a
r
to
E
x
p
li
ci
t
In
d
u
ct
io
n

�

C
o
n
si
d
er
d
e�
n
it
io
n
b
y
p
ri
m
it
iv
e
re
cu
rs
io
n

f
(0
;
~ Y
)

!

g
(
~ Y
)

f
(s
(X
);
~ Y
)

!

h
(X
;
~ Y
;
f
(X
;
~ Y
))

�

C
ri
ti
ca
l
p
a
ir
s
w
it
h
g
o
a
l

P
[f
(X
;
~ Y
)]
=
Q
(X
;
~ Y
)

C
ri
ti
ca
l
E
x
p
re
ss
io
n

C
ri
ti
ca
l
P
a
ir

E
x
p
li
ci
t
In
d
u
ct
io
n

P
[f
(0
;
~ Y
)]

h
P
[g
(
~ Y
)]
;
Q
(0
;
~ Y
)i

P
[f
(0
;
~ Y
)]
=
Q
(0
;
~ Y
)

P
[f
(s
(X
);
~ Y
)]

h
P
[h
(X
;
~ Y
;
f
(X
;
~ Y
))
];
Q
(X
;
~ Y
)i

P
[f
(s
(X
);
~ Y
)]
=
Q
(s
(X
);
~ Y
)

�

C
o
rr
es
p
o
n
d
en
ce
:

{
cr
it
ic
a
l
p
a
ir
s
ex
p
re
ss
d
es
ir
ed
eq
u
a
li
ti
es

{
p
a
ir
s
o
n
e
re
w
ri
te
st
ep
re
m
o
v
ed
fr
o
m

ex
p
li
ci
t
st
ru
ct
u
ra
l
in
d
u
ct
io
n

{
O
n
e
st
ep
is
th
e
a
p
p
li
ca
ti
o
n
re
w
ri
te
to
L
H
S
o
f
p
a
ir

{
R
ew
ri
te
st
ep
in
su
re
s
IH
a
p
p
li
ed
to
\
sm
a
ll
er
"
te
rm
s

David Basin { 5 { MPI-I Saarbr�ucken

'

&

$

%

In
d
u
ct
iv
e
C
o
m
p
le
ti
o
n
|

E
v
en
E
x
a
m
p
le

�

A
x
io
m
s

0
+
X

!

X

s
(X
)
+
Y

!

s
(X
+
Y
)

e
v
e
n
(0
)

!

tr
u
e

e
v
e
n
(s
(0
))

!

fa
ls
e

e
v
e
n
(s
(s
(X
))
)

!

e
v
e
n
(X
)

�

G
o
a
l

e
v
e
n
(X
)
^

e
v
e
n
(Y
)
)

e
v
e
n
(X
+
Y
))
!

tr
u
e

David Basin { 6 { MPI-I Saarbr�ucken

'

&

$

%

E
v
en
E
x
a
m
p
le
|

cr
it
ic
a
l
p
a
ir
s/
in
d
u
ct
io
n
s

C
ri
ti
c
a
l
E
x
p
re
ss
io
n
/
C
ri
ti
c
a
l
P
a
ir

S
c
h
e
m
e

S
u
b
g
o
a
l

e
v
e
n
(0
)
^

e
v
e
n
(Y
)
)

e
v
e
n
(0
+
Y

)

s
X

b
a
se
:
0

h
tr
u
e
;
e
v
e
n
(0
)
^

e
v
e
n
(Y
)
)

e
v
e
n
(Y
)i

X

+
Y

e
v
e
n
(s
X

)
^

e
v
e
n
(Y
)
)

e
v
e
n
(s
X

+
Y

)

s
X

in
d
u
c
ti
v
e

h
tr
u
e
;
e
v
e
n
(s
X

)
^

e
v
e
n
(Y
)
)

e
v
e
n
(s
(X

+
Y

)i

X

+
Y

e
v
e
n
(0
)
^

e
v
e
n
(Y
)
)

e
v
e
n
(0
+
Y

)

s
s
X

b
a
se
:
0

h
tr
u
e
;
tr
u
e
^

e
v
e
n
(Y
)
)

e
v
e
n
(0
+
Y

)i

e
v
e
n
(X
)

e
v
e
n
(s
0
)
^

e
v
e
n
(Y
)
)

e
v
e
n
(s
0
+
Y

)

s
s
X

b
a
se
:
s
0

h
tr
u
e
;
fa
ls
e
^

e
v
e
n
(Y
)
)

e
v
e
n
(s
0
+
Y

)i

e
v
e
n
(X
)

e
v
e
n
(s
s
X

)
^

e
v
e
n
(Y
)
)

e
v
e
n
(s
s
X

+
Y

)

s
s
X

in
d
u
c
ti
v
e

h
tr
u
e
;
e
v
e
n
(X
)
^

e
v
e
n
(Y
)
)

e
v
e
n
(s
s
X

+
Y

)i

e
v
e
n
(X
)

e
v
e
n
(X
)
^

e
v
e
n
(0
)
)

e
v
e
n
(X

+
0
)

s
s
Y

b
a
se
:
0

h
tr
u
e
;
e
v
e
n
(X
)
^

tr
u
e
)

e
v
e
n
(X

+
0
)i

e
v
e
n
(X
)

e
v
e
n
(X
)
^

e
v
e
n
(s
0
)
)

e
v
e
n
(X

+
s
0
)

s
s
Y

b
a
se
:
s
0

h
tr
u
e
;
e
v
e
n
(X
)
^

fa
ls
e
)

e
v
e
n
(X

+
s
0
)i

e
v
e
n
(Y
)

e
v
e
n
(X
)
^

e
v
e
n
(s
s
Y

)
)

e
v
e
n
(X

+
s
s
Y

)

s
s
Y

in
d
u
c
ti
v
e

h
tr
u
e
;
e
v
e
n
(X
)
^

e
v
e
n
(Y
)
)

e
v
e
n
(X

+
s
s
Y

)i

e
v
e
n
(Y
)

David Basin { 7 { MPI-I Saarbr�ucken

'

&

$

%

E
v
en
E
x
a
m
p
le
|

R
ec
u
rs
io
n
A
n
a
ly
si
s

�

S
u
p
er
p
o
si
ti
o
n
p
er
fo
rm
s
re
cu
rs
io
n
a
n
a
ly
si
s

{
In
p
ra
ct
ic
e
ch
o
se
fr
o
m
\
co
m
p
le
te
p
o
si
ti
o
n
s"
(i
n
d
u
ct
io
n
v
a
ri
a
b
le
s)

e
v
e
n
(X
)
^

e
v
e
n
(Y
)
)

e
v
e
n
(X
+
Y
)
!

tr
u
e

V
a
ri
a
b
le

F
u
n
ct
io
n

S
ch
em
a

R
ec
u
rs
io
n
T
er
m

S
ta
tu
s

X

e
v
e
n

2
-s
te
p

s
s
X

u
n

a
w
ed

Y

e
v
e
n

2
-s
te
p

s
s
Y

a
w
ed

X

+

1
-s
te
p

s
X

su
b
su
m
ed

{
O
n
ly
1
-s
te
p
lo
o
ka
h
ea
d
a
t
o
n
e
p
o
si
ti
o
n

{
N
o
sc
h
em
a
m
er
g
in
g

{
C
a
n
o
n
ly
u
se
sc
h
em
a
ta
su
g
g
es
te
d
b
y
re
cu
rs
iv
e
d
e�
n
it
io
n
s

David Basin { 8 { MPI-I Saarbr�ucken

27

'

&

$

%

S
im
p
li
�
ca
ti
o
n
/
R
ip
p
li
n
g
in
In
d
u
ct
iv
e
C
o
m
p
le
ti
o
n

�

S
im
p
li
�
ca
ti
o
n
co
rr
es
p
o
n
d
s
to
ri
p
p
li
n
g

R

=

f
0
+
X

!

X
;
s
(X
)
+
Y
!

s
(X
+
Y
)

0
�
X

!

X
;
s
(X
)
�
Y
!

Y
+
X
�
Y
g

�

C
o
n
je
ct
u
re
(y
+
z
)
�
x
=
y
�
x
+
z
�
x

�

In
d
u
ct
io
n
S
te
p
:
h
s
(y
+
z
)
�
x
;s
(y
)
�
x
+
z
�
x
i

�

S
im
p
li
�
es
to
:
h
x
+
(y
+
z
)
�
x
;(
x
+
y
�
x
)
+
z
�
x
i

�

C
a
n
u
se
co
n
je
ct
u
re
to
fu
rt
h
er
si
m
p
li
fy

h
x
+
(y
�
x
+
z
�
x
);
(x
+
y
�
x
)
+
z
�
x
i
:

�

B
lo
ck
ed
|

te
rm
s
a
re
ir
re
d
u
ci
b
le

David Basin { 9 { MPI-I Saarbr�ucken

'

&

$

%

Rippling in IC

� Rippling directly applicable to simpli�cation

� Recursive de�nitions in R parsed as wave-rules.

f(s(X); ~Y)! h(X; ~Y ; f(X; ~Y)

{ Parses as

f(s(X)
"

; ~Y)! h(X; ~Y ; f(X; ~Y))
"

� Critical pairs can be annotated (see following slides)

� Lemmas in L often wave-rules.

� Previous example

h s(y + z)
"

� x; s(y)
"

� x+ z � xi

{ Ripples to

h x+ (y + z) � x
"

; (x+ y � x)
"

+ z � xi:

{ Associative of plus

(X + Y)
"

+ Z ! X + (Y + Z)
"

{ Complete proof with fertilization

David Basin { 10 { MPI-I Saarbr�ucken

'

&

$

%

IC
v
er
su
s
C
la
m
/
P
ro
o
f
P
la
n
n
in
g

�

M
a
n
y
IC
a
lg
o
ri
th
m
s/
te
ch
n
iq
u
es

{
B
a
si
c,
i.
e.
,
H
u
et
/
H
u
ll
o
t

{
C
ov
er
-s
et
p
ro
ce
d
u
re
s
(B
a
ch
m
a
ir
,
R
ed
d
y
)

{
C
o
m
p
le
te
p
o
si
ti
o
n
s
|

in
d
u
ct
io
n
v
a
ri
a
b
le
s
(F
ri
b
o
u
rg
)

{
L
em
m
a
ta
(G
o
b
el
,
K
u
ch
li
n
),
G
en
er
a
li
za
ti
o
n
(G
ra
m
li
ch
),
..
.

�

A
s
re
st
ri
ct
io
n
s
d
ro
p
,
co
n
tr
o
l
b
ec
o
m
es
im
p
o
rt
a
n
t

{
W
h
ic
h
co
v
er
se
t
d
o
es
o
n
e
p
ic
k
?

{
H
ow
d
o
es
si
m
p
li
fy
w
it
h
le
m
m
a
ta

�

S
u
g
g
es
ts
sc
o
p
e
fo
r
cr
o
ss
-f
er
ti
li
za
ti
o
n
o
f
id
ea
s

David Basin { 11 { MPI-I Saarbr�ucken

'

&

$

%

R
ip
p
li
n
g
O
u
tw
id
th
In
d
u
ct
io
n

�

R
ip
p
li
n
g
w
el
l
su
it
ed
fo
r
in
d
u
ct
io
n

{
R
ea
so
n
:
C
a
n
d
ir
ec
t
p
ro
o
f
to
w
a
rd
s
d
es
ir
ed
re
su
lt
(I
n
d
u
n
ct
io
n
H
y
p
)

�

C
a
n
b
e
u
se
d
in
o
th
er
d
o
m
a
in
s
fo
r
g
o
a
l-
d
ir
ec
te
d
re
w
ri
ti
n
g

{
A
lg
eb
ra
ic
p
ro
b
le
m
so
lv
in
g
:
is
o
la
te
u
n
k
n
ow
n
s

�

E
x
a
m
p
le
:
a
ri
th
m
et
ic
se
ri
es
|

u
se
\
st
a
n
d
a
rd
re
su
lt
s"

�

P
ro
b
le
m
:
m
u
st
id
en
ti
fy
d
i�
er
en
ce
s
�
rs
t!

David Basin { 12 { MPI-I Saarbr�ucken

28

'

&

$

%

Di�erence Identi�cation = Di�erence Uni�cation

� Homeomorphic Embedding | s � t if s
�

! t

f(x1; :::; xn)! xi

{ Example f(s(x)) � f(x), rewriting �rst subterm

skel(f(s(x)
"

)) = f(x)

� Idea generalizes | \di�erence uni�cation"

unif(f(X; a); f(s(x); a)) = fa=Xg

{ Return annotation suitable for rippling

s = h(f(X; a); a) t = f(s(a); X)

du(s; t) = h h(f(X; a); a)
"

; f(s(a)
"

; X); fa=Xgi

� Wanted: du(s; t) = hs0; t0; �i

{ where �(s0) & �(t0) share the same skeleton.

David Basin { 13 { MPI-I Saarbr�ucken

'

&

$

%

D
i�
er
en
ce
U
n
i�
ca
ti
o
n

::
:;
x
<

y
�

y
;
::
:
`
x
<

s
(y
)
�

s
(y
)

�

R
u
le
-b
a
se
d
d
i�
e
re
n
c
e
id
e
n
ti
�
c
a
ti
o
n

D
e
c
o
m
p
o
se

f
(s
1
;
::
:;
s
k
)
=
?

f
(t
1
;
::
:;
t k
)

!

f
s
1

=
?

t 1
;
::
:;
s
k

=
?

t k
g

D
e
le
te

t
=
?

t

!

f
g

H
id
e

t
=
?

f
(s
1
;
::
:;
s
i
;
::
:s
k
)

!

f
t
=
?

s
i
g
+

f
(s
1
;
::
:;
s
i
;
::
:s
k
)

"

�

E
x
a
m
p
le

R
u
le

R
e
m
a
in
in
g
E
q
u
a
ti
o
n
s

D
e
c
o
m
p
o
se

f
x
<

y
�

y
=
?

x
<

s
(y
)
�

s
(y
)g

D
e
c
o
m
p
o
se

f
x
=
?

x
;
y
�

y
=
?

s
(y
)
�

s
(y
)g

H
id
e
(2
)

f
x
=
?

x
;
y
=
?

s
(y
)

"
;
y
=
?

s
(y
)

"
g

D
e
le
te
(3
)

f
x
=
?

x
;
y
=
?

y
;
y
=
?

y
g

f
g

�

R
e
su
lt

::
:;
x
<

y
�

y
;
::
:
`
x
<

s
(y
)

"
�

s
(y
)

"

David Basin { 14 { MPI-I Saarbr�ucken

'

&

$

%

Series

� Problem �nd \solved form" (without summation) of series

� Proofs often guided by standard results (C constant)

NX
i=0

i =
N � s(N)

2

NX
i=0

C = s(N)� C

� Proof technique: di�erence unify problem with solved forms

mX
j=0

nX
k=0

k � j + c

"

� and ripple with wave-rules

BX
j=A

DX
k=C

U

"

!

DX
k=C

BX
j=A

U

"

(1)

BX
j=A

C � U
"

! C �

BX
j=A

U

"

(2)

BX
j=A

U � C
"

!

BX
j=A

U � C

"

(3)

BX
j=A

U + V
"

!

BX
j=A

U +

BX
j=A

V

"

(4)

David Basin { 15 { MPI-I Saarbr�ucken

'

&

$

%

Series (cont.)

mX
j=0

nX
k=0

k � j + c

"

� Rewrite with (??), (??), (??):

nX
k=0

mX
j=0

k � j + c
"

"

nX
k=0

(

mX
j=0

k � j
"

+

mX
j=0

c)

"

nX
k=0

(k �

mX
j=0

j +

mX
j=0

c)

"

� Fertilize with standard result

nX
k=0

(k �
m� s(m)

2
+ s(m)� c)

David Basin { 16 { MPI-I Saarbr�ucken

29

'

&

$

%

S
er
ie
s
(c
o
n
t.
)

�

R
e-
d
i�
er
en
ce
u
n
if
y
a
g
a
in
st
st
a
n
d
a
rd
fo
rm
s

n X k
=
0

(k
�

m

�

s
(m
)

2

+
s
(m
)
�

c)
"

�

R
ip
p
le
w
it
h
(?
?
),
(?
?
)

n X k
=
0

(k
�

m

�

s
(m
)

2

)
"

+

n X k
=
0

s
(m
)
�

c
"

(
n X k

=
0

k
)
�

m

�

s
(m
)

2

+

n X k
=
0

s
(m
)
�

c
"

�

F
er
ti
li
ze
a
n
d
it
er
a
te
a
g
a
in
;
co
n
cl
u
d
e
w
it
h

n
�

s
(n
)

2

�

m
�

s
(m
)

2

+
s
(n
)
�

s
(m
)
�

c

David Basin { 17 { MPI-I Saarbr�ucken

'

&

$

%

S
er
ie
s
(c
o
n
t.
)

�

D
U
+
R
ip
p
li
n
g
is
a

ex
ib
le
a
p
p
ro
a
ch
to
so
lv
in
g
se
ri
es

S
er
ie
s

C
lo
se
d
F
o
rm

P
i2

2
:
n
3
+
3
:
n
2
+
n

6

P
a
i

a
s

(
n

)
�

1

a
�

1

P

1

i
:
(i
+
1
)

n
s
(n
)

P
F
i

F
n
+
2
�

1

P
0 @

s
(i
)

s
(m
)

1 A

0 @
s
(n
)

s
(s
(m
))

1 A
+

0 @
s
(n
)

s
(m
)

1 A

A
ll
su
m
s
a
re
fr
o
m

0
to
n
,
a
6=
1
,
F
i

is
th
e
it
h
F
ib
o
n
a
cc
i
n
u
m
be
r.

T
a
b
le
1
:
S
o
m
e
se
ri
es
su
m
m
ed
b
y
C
L
A
M

u
si
n
g
d
i�
er
en
ce
u
n
i�
ca
ti
o
n
a
n
d
ri
p
p
li
n
g
.

David Basin { 18 { MPI-I Saarbr�ucken

'

&

$

%

H
is
to
ri
ca
l/
C
o
m
p
a
ri
so
n
|

G
en
er
a
l
D
i�
er
en
ce
R
ed
u
ct
io
n

�

H
is
to
ry
o
f
si
m
il
a
ri
ty
&
d
i�
er
en
ce
re
d
u
ct
io
n
h
eu
ri
st
ic
s

�

P
ed
a
g
o
g
ic
b
a
se
d
w
o
rk
:
si
m
u
la
te
h
u
m
a
n
s
o
n
sa
m
e
ta
sk

{
L
o
g
ic
M
a
ch
in
e
o
f
N
ew
el
l,
S
h
aw
,
a
n
d
S
im
o
n
(1
9
5
0
s)

�

S
ea
rc
h
sp
a
ce
re
d
u
ct
io
n
:
R
eo
rd
er
in
�
n
it
e
sp
a
ce

{
R
es
o
lu
ti
o
n
T
h
eo
re
m
P
ro
v
in
g
:
E
a
n
d
R
U
E
R
es
o
lu
ti
o
n

P
(h
(a
);
b)
$

P
(g
(a
);
b)

(f
P
(h
(a
);
b)
g
;f
:
P
(g
(a
);
b)
g
)

..
.
F
a
il
ed
u
n
i�
er
re
p
re
se
n
ts
d
i�
er
en
ce
s

h
(a
)
=
?
g
(a
)

(f
:
E
q
(h
(a
);
g
(a
))
g
)

..
.
D
i�
er
en
ce
s
a
re
m
a
n
ip
u
la
te
d
b
y
eq
u
a
li
ty
re
a
so
n
in
g

..
.
Y
ie
ld
s
d
em
a
n
d
d
ri
v
en
p
a
ra
m
o
d
u
la
ti
o
n

David Basin { 19 { MPI-I Saarbr�ucken

'

&

$

%

H
is
to
ri
ca
l/
C
o
m
p
a
ri
so
n
|

G
en
er
a
l
D
i�
er
en
ce
R
ed
u
ct
io
n

R
U
E

R
ip
p
li
n
g
B
a
se
d

D
i�
e
re
n
c
e
Id
e
n
ti
�
c
a
ti
o
n

F
a
il
e
d
U
n
i�
c
a
ti
o
n

D
i�
e
re
n
c
e
U
n
i�
c
a
ti
o
n

T
y
p
e

T
e
rm

C
o
n
te
x
t

D
i�
e
re
n
c
e
M
a
n
ip
u
la
ti
o
n

P
a
ra
m
o
d
u
la
ti
o
n

C
o
n
te
x
t
R
e
w
ri
ti
n
g

D
i�
e
re
n
c
e
R
e
d
u
c
ti
o
n

(T
e
rm

O
rd
e
ri
n
g
s)

C
o
n
te
x
t
O
rd
e
ri
n
g
s

(M
a
y
d
iv
e
rg
e
)

(t
e
rm
in
a
ti
n
g
)

C
a
lc
u
lu
s

U
n
i�
c
a
ti
o
n
B
a
se
d

\
M
o
d
i�
e
d
"
R
e
w
ri
ti
n
g

�

D
i�
e
re
n
c
e
R
e
d
u
c
ti
o
n
S
tr
a
te
g
ie
s
Im
p
o
rt
a
n
t

A
lt
h
o
u
g
h
p
a
ra
m
o
d
u
la
ti
o
n
w
a
s
a
su
b
st
a
n
ti
a
l
im
p
ro
v
e
m
e
n
t
c
o
m
p
a
re
d
to
th
e
a
x
io
m
a
ti
c
a
l

fo
rm
a
li
z
a
ti
o
n
o
f
th
e
e
q
u
a
li
ty
re
la
ti
o
n
,
it
st
il
l
le
a
d
s
to
e
n
o
rm
o
u
s
se
a
rc
h
sp
a
c
e
s,
a
s
th
is

in
fe
re
n
c
e
ru
le
c
a
n
b
e
a
p
p
li
e
d
a
lm
o
st
e
v
e
ry
w
h
e
re
in
th
e
c
la
u
se
sp
a
c
e
.
..
..
W
h
e
re
a
s
m
o
st

re
se
a
rc
h
is
b
a
se
d
w
it
h
re
m
a
rk
a
b
le
su
c
c
e
ss
o
n
si
m
p
li
�
c
a
ti
o
n
m
e
c
h
a
n
is
m
s,
e
sp
e
c
ia
ll
y
o
n

d
e
m
o
d
u
la
ti
o
n
a
n
d
te
rm

re
w
ri
ti
n
g
,
d
i�
e
re
n
c
e
re
d
u
c
ti
o
n
m
e
th
o
d
s
h
a
v
e
fo
u
n
d
le
ss
a
tt
e
n
ti
o
n
,

a
lt
h
o
u
g
h
th
e
y
a
re
a
t
le
a
st
a
s
im
p
o
rt
a
n
t
fo
r
a
n
a
u
to
m
a
te
d
d
e
d
u
c
ti
o
n
sy
st
e
m
.

B
l�a
s
iu
s
&

S
ie
k
m
a
n
n
,
C
A
D
E

9

�

E
sp
e
c
ia
ll
y
su
c
c
e
ss
fu
l
in
in
d
u
c
ti
o
n
g
iv
e
n
\
st
ro
n
g
h
in
t"
o
f
I.
H
.

David Basin { 20 { MPI-I Saarbr�ucken

30

'

&

$

%

S
u
g
g
es
te
d
R
ea
d
in
g

T
h
e
fo
ll
o
w
in
g
re
p
o
rt
s
a
re
a
v
a
il
a
b
le
b
y
a
n
o
n
y
m
o
u
s
ft
p
fr
o
m

m
p
i-
sb
.m
p
g
.d
e
a
n
d
d
re
a
m
.d
a
i.
e
d
.a
c
.u
k
:

�

B
a
rn
e
tt
,
B
a
si
n
,
&

H
e
sk
e
th
,
\
A
R
e
c
u
rs
io
n
P
la
n
n
in
g
A
n
a
ly
si
s
o
f
In
d
u
c
ti
v
e
C
o
m
p
le
ti
o
n
"
,

A
n
n
a
ls
o
f
M
a
th
e
m
a
ti
c
s
a
n
d
A
I,
1
9
9
3
.

�

B
a
si
n
&

W
a
ls
h
\
D
i�
e
re
n
c
e
U
n
i�
c
a
ti
o
n
"
,
IJ
C
A
I9
3
.

�

B
a
si
n
&

W
a
ls
h
\
S
y
m
b
o
li
c
R
e
a
so
n
in
g
b
y
D
i�
e
re
n
c
e
R
e
d
u
c
ti
o
n
"
,
u
n
p
u
b
li
sh
e
d
re
p
o
rt
.

�

W
a
ls
h
,
N
u
n
e
s,
&

B
u
n
d
y
,
\
T
h
e
U
se
o
f
P
ro
o
f
P
la
n
s
to
S
u
m

S
e
ri
e
s"
,
C
A
D
E
1
1
.

David Basin { 21 { MPI-I Saarbr�ucken

31

MAX-PLANCK-INSTITUT

F�UR

INFORMATIK

 	

� �

Logic Frameworks for Logic Programs

David A. Basin

MPI{I{94{218 June 1994

���
�

�� k

I N F O R M A T I K

Im Stadtwald

D 66123 Saarbr�ucken

Germany

32

33

Authors' Addresses

David Basin Max-Planck-Institut f�ur Informatik Im Satdwald, D-66123 Saarbr�ucken, Germany
basin@mpi-sb.mpg.de

Publication Notes

A version of this paper will appear at the Fourth International Workshop on Logic Program Synthesis and
Transformation (LOPSTR'94), 19 { 21 June, 1994, Pisa, Italy.

Acknowledgements

I thanks Tobias Nipkow and Larry Paulson for their advice on Isabelle. I also thank Alan Bundy, Ina
Kraan, and Sean Matthews for discussions on this work and collaboration on related work. This research
was funded by the German Ministry for Research and Technology (BMFT) under grant ITS 9102. The
responsibility for the contents lies with the author.

34

Abstract

We show how logical frameworks can provide a basis for logic program synthesis. With
them, we may use �rst-order logic as a foundation to formalize and derive rules that
constitute program development calculi. Derived rules may be in turn applied to
synthesize logic programs using higher-order resolution during proof that programs
meet their speci�cations. We illustrate this using Paulson's Isabelle system to derive
and use a simple synthesis calculus based on equivalence preserving transformations.

35

1 Introduction

Background

In 1969 Dana Scott developed his Logic for Computable Functions and with it a model of functional
program computation. Motivated by this model, Robin Milner developed the theorem prover LCF whose
logic PP� used Scott's theory to reason about program correctness. The LCF project [13] established a
paradigm of formalizing a programming logic on a machine and using it to formalize di�erent theories of
functional programs (e.g., strict and lazy evaluation) and their correctness; although the programming logic
was simple, within it complex theories could be developed and applied to functional program veri�cation.

This paradigm can be characterized as formal development from foundations. Type theory and higher-
order logic have been also used in this role. A recent example is the work of Paulson with ZF set theory.
Although this theory appears primitive, Paulson used it to develop a theory of functions using progressively
more powerful derived rules [24].

Most work in formalized program development starts at a higher level; foundations are part of an
informal and usually unstated meta-theory. Consider, for example, transformation rules like Burstall and
Darlington's well known fold-unfold rules [7]. Their rules are applied to manipulate formulas and derive
new ones; afterwards some collection of the derived formulas de�nes the new program. The relationship of
the new formulas to the old ones, and indeed which constitute the new program is part of their informal
(not machine formalized) metatheory. So is the correctness of their rules (see [18, 8]). In logic programming
the situation is similar; for example, [30, 29] and others have analyzed conditions required for fold-unfold
style transformations to preserve equivalence of logic programs and indeed what \equivalence" means.

Development from Foundations in Logic Programming

We propose that, analogous to LCF, we may begin with a programming logic and derive within it a program
development calculus. Derived rules can be applied to statements about program correctness formalized in
the logic and thereby verify or synthesize logic programs. Logic programming is a particularly appropriate
domain to formalize such development because under the declarative interpretation of logic programs as
formulas, programs are formalizable within a fragment of �rst-order logic and are therefore amenable to
manipulation in proof systems that contain this fragment. Indeed, there have been many investigations
of using �rst-order logic to specify and derive correct logic programs [9, 10, 11, 17, 19]. But this work,
like that of Burstall and Darlington, starts with the calculus rather than the foundations. For example in
[17] formulas are manipulated using various simpli�cation rules and at the end a collection of the resulting
formulas constitutes the program. The validity of the rules and the relationship of the �nal set of formulas
(which comprise the program) to the speci�cation is again part of the informal meta-theory.

Our main contribution is to demonstrate that without signi�cant extra work much of the informal
metatheory can be formalized; we can build calculi from foundations and carry out proofs where our notion
of correctness is more explicit. However, to do this, a problem must be overcome: �rst-order logic is too
weak to directly formalize and derive proof rules. Consider for example, trying to state that in �rst-order
logic we may replace any formula 8x:A by :9x::A. We might wish to formulate this as 8x:A! :9x::A.
While this is provable for any instance A, such a generalized statement cannot be made in �rst-order logic
itself; some kind of second-order quanti�cation is required.1 In particular, to formalize proof rules of a
logic, one must express rules that (in the terminology of [15]) are schematic and hypothetical. The former
means that rules may contain variables ranging over formula. The latter means that one may represent

1First-order logic is too weak, but it is possible to formalize powerful enough �rst-order theories to express such rules by

axiomatizing syntax, e.g., [32, 3, 23]. However, such approaches require some kind of reection facility to establish a link

between the formalized meta-theory and the desired theory where such rules are used. See [4] for a further discussion of this.

Moreover, under such an approach uni�cation cannot be used to identify program veri�cation and synthesis.

2

36

logical consequence; in the above example consequence has been essentially internalized by implication in
the object language.

Rather than moving to a more powerful logic like higher-order logic, we show that one can formalize
program development using weak logics embedded in logical frameworks such as Paulson's Isabelle system
[25] or Pfenning's ELF [28]. In our work, a programming logic (also called the object logic) is encoded
in the logic of the logical framework (the meta-logic). For example, the meta-logic of Isabelle, which we
use, is fragment of higher-order logic containing implication (to formalize hypothetical rules) and universal
quanti�cation (to formalize schematic rules). Within this meta-logic we formalize a theory of relevant
data-types like lists and use this to specify our notion of program correctness and derive rules for building
correct programs. Moreover, Isabelle manipulates rules using higher-order uni�cation and we use this to
build programs during proof where meta-variables are incrementally instantiated with logic programs.

We illustrate this development paradigm by working through a particular example in detail. Within
an Isabelle theory of �rst-order logic we formulate and derive a calculus for reasoning about equivalences
between speci�cations and representations of logic programs in �rst-order logic. The derived calculus can
be seen as a formal development of a logic for program development proposed in Wiggins (see Section 3.4).
After derivation, we apply these rules using higher-order uni�cation to verify that logic programs meet
their speci�cations; the logic programs are given by meta-variables and each uni�cation step during proof
incrementally instantiates them.

Our experience indicates that this development is quite manageable. Isabelle comes with well-developed
tactic support for rewriting and simpli�cation. As a result, our derivation of rules was mostly trivial
and involved no more than typing them in and invoking the appropriate �rst-order simpli�cation tactics.
Moreover, proof construction with these rules was partially automated by the use of Isabelle's standard
normalization and simpli�cation procedures. We illustrate this by developing a program for list subset.

2 Background to Isabelle

What follows is a brief overview of Isabelle [25, 26, 27] as is necessary for what follows. Isabelle is an
interactive theorem prover developed by Larry Paulson. It is a logical framework: its logic serves as a meta-
logic in which object logics (e.g., �rst-order logic, set theory, etc.) are encoded. Proofs are interactively
constructed by applying proof rules using higher-order resolution. Proof construction may be automated
using tactics which are ML programs in the tradition of LCF that construct proofs.

Isabelle provides a �ne basis for our work. Since it is a logical framework, we may encode in it the ap-
propriate object logic, �rst-order logic (although we indicate in Section 5 other possible choices). Isabelle's
metalogic is based on the implicational fragment of higher-order logic where implication is represented by
\==>" and universal quanti�cation by \!!"; hence we can formalize and derive proof rules which are both
hypothetical and schematic. Rules, primitive and derived, may be applied with higher-order uni�cation
during higher-order resolution; uni�cation permits meta-variables to occur both in rules and proofs. We
use this to build logic programs by theorem proving where the program is originally left unspeci�ed as a
higher-order meta-variable and is �lled in incrementally during the resolution steps; the use of resolution
is similar to the use of \middle out reasoning" to build logic programs as demonstrated in [20, 21].

Isabelle manipulates objects of the form2
[|F1; ...; Fn|] ==> F. A proof proceeds by applying rules to

such formulas which result in zero or more subgoals, possibly with di�erent assumptions. When there are
no subgoals, the proof is complete. Although Isabelle proof rules are formalized natural deduction style,
the above implication can be read as an intuitionistic sequent where the Fi are the hypotheses. Isabelle
has resolution tactics which apply rules in a way the maintains this illusion of working with sequents.

2We shall use typewriter font to display concrete Isabelle syntax.

3

37

3 Encoding A Simple Equivalence Calculus

We give a simple calculus for reasoning about equivalence between logic programs and their speci�cations.
Although simple, it illustrates the avor of calculus and program development we propose.

3.1 Base Logic

We base our work on standard theories that come with the Isabelle distribution. We begin by selecting
a theory of constructive �rst-order predicate calculus and augment this with a theory of lists to allow
program development over this data-type (See IFOL and List in [27]). The list theory, for example,
extends Isabelle's �rst-order logic with constants for the empty list \[]", cons \.", and standard axioms
like structural induction over lists. In addition, we have extended this theory with two constants called Wfp

(well-formed program) and Def with the property that Wfp(P) = Def(P) = P for all formulas P; their role will
be clari�ed later.

The choice of lists was arbitrary; to develop programs over numbers, trees, etc. we would employ
axiomatizations of these other data-types. Moreover, the choice of a constructive logic was also arbitrary.
Classical logic su�ces too as the proof rules we derive are clearly valid after addition of the law of excluded
middle. This point is worth emphasizing: higher-order uni�cation, not any feature of constructivity, is

responsible for building programs from proofs in our setting.

In this theory, we reason about the equivalence between programs and speci�cations. \Equivalence"
needs clari�cation since even for logic programs without impure features there are rival notions of equiv-
alence. The di�erences though (see [22, 5]) are not so relevant in illustrating our suggested methodology
(they manifest themselves through di�erent formalized theories). The notion of equivalence we use is
equivalence between the speci�cation and a logic program represented as a pure logic program in the above
theory. Pure logic programs themselves are equivalences between a universally quanti�ed atom and a for-
mula in a restricted subset of �rst-order logic (see [6] for details); they are similar to the logic descriptions

of [12].
For example, the following is a pure logic program for list membership (where cons is \.").3

8x y:p(x; y)$ (x = []^ False) _ (9v0 v1:x = v0:v1 ^ (y = v0 _ p(v1; y))) (1)

Such programs can be translated to Horn clauses or run directly in a language like G�odel [16].

3.2 Problem Speci�cation

As our notion of correctness is equivalence between programs and speci�cations, our proofs begin with
formulas of the form 8x:(spec(x)$ E(x)). The variables in x represent parameters to both the speci�cation
spec and the logic program E; we do not distinguish input from output. spec is a �rst-order speci�cation
and E is either a concrete (particular) pure logic program or a schematic (meta) variable standing in for
such a program. If E is a concrete formula then a proof of this equivalence constitutes a veri�cation proof
as we are showing that E is equivalent to its speci�cation. If E is a second-order meta-variable then a
proof of this equivalence that instantiates E serves as a synthesis proof as it builds a program that meets
the spec. If spec is already executable we might consider such a proof to be a transformation proof.

An example we develop in this report is synthesizing a program that given two lists l and m is true
when l is a subset of m. This example has been proposed by others, e.g., [17, 33]. Slipping into Isabelle
syntax we specify it as

ALL l m. (ALL z. In(z,l) --> In(z,m)) <-> ?E(l,m).

3Unfortunately, \." is overloaded and also is used in the syntax of quanti�ers; e.g., 8xy:� which abbreviates 8x:8y:�.

4

38

Note that ALL, --> and <-> represent �rst-order universal quanti�cation, implication, and equivalence, and
are declared in the de�nition of �rst-order logic. The \?" symbol indicates metavariables in Isabelle. Note
that ?E is a function of the input lists l and m but z is only part of the speci�cation. Higher-order uni�cation,
which we use to build an instance for ?E will ensure that it is only a function of l and m.

3.3 Rules

We give natural deduction rules where the conclusion explains how to construct ?E from proofs of the
subgoals. These rules form a simple calculus for reasoning about equivalences and can be seen as a
reconstruction of those of the Whelk system (see Section 3.4). Of course, since A <-> A is valid, the synthesis
speci�cation for subset can be immediately proven by instantiating ?E with the speci�cation on the left
hand side of the equivalence. While this would lead to a valid proof, it is uninteresting as the speci�cation
does not suggest an algorithm for computing the subset relation. To make our calculus interesting, we
propose rules that manipulate equivalences with restricted right-hand sides where the right hand side can
be directly executed.

Speci�cally, we propose rules that admit as right hand sides formulas like the body of the membership
predicate given above, but exclude formula like ALL z. In(z,l) --> In(z,m). To do this we de�ne inductively
the set of such admissible formulas. They are built from a collection of (computable) base-relations and
operators for combining these that lead to computable algorithms provided their arguments are computable.
In particular, our base relations are the relations True, False, equality and inequality. Our operators will be
the propositional connectives and existential quanti�cation restricted to a use like that in the membership
example, i.e., of the form 9v0v1:x = v0:v1 ^ P where P is admissible. This limited use of existential
quanti�cation is necessary for constructing recursive programs in our setting; it can be trivially compiled
out in the translation to Horn clauses.

Note that to be strictly true to our \foundations" paradigm, we would specify the syntax of such well-
formed logic programs in our theory (which we could do by recursively de�ning a unary well-formedness
predicate that captures the above restrictions). However, to simplifymatters we capture it by only deriving
rules for manipulating these equivalences where the right-hand sides meet these restrictions. To ensure
that only these rules are used to prove equivalences we will resort to a simple trick. Namely, we wrap all
the right hand sides of equivalences in our rule, and in the starting speci�cation with the constructor Wfp.
E.g., our starting goal for the subset proof would really be

ALL l m. (ALL z. In(z,l) --> In(z,m)) <-> Wfp(?E(l,m))).

As Wfp was de�ned to be the identity (i.e., Wfp(P) equals P) it does not e�ect the validity of any of the rules.
It does, however, a�ect their applicability. That is, after rule derivation we remove the de�nition of Wfp

from our theory so the only way we can prove the above is by using rules that manipulate equivalences
whose right hand side is also labeled by Wfp. In particular, we won't be able to prove

ALL l m. (ALL z. In(z,l) --> In(z,m)) <-> Wfp(ALL z. In(z,l) --> In(z,m)).

Basic Rules

Figure 1 contains a collection of typical derived rules about equivalences. Many of the rules serve simply
to copy structure from the speci�cation to the program. These are trivially derivable, for example

A$Wfp(ExtA) B $Wfp(ExtB)

A ^B $Wfp(ExtA ^ExtB)
:

Translating this into Isabelle we have

[| A <-> Wfp(ExtA); B <-> Wfp(ExtB) |] ==> A & B <-> Wfp(ExtA & ExtB).

5

39

RAllI: [| !!x. A(x) <-> Wfp(Ext) |] ==> (ALL x.A(x)) <-> Wfp(Ext)

RAndI: [| A <-> Wfp(ExtA); B <-> Wfp(ExtB) |] ==> A & B <-> Wfp(ExtA & ExtB)

ROrI: [| A <-> Wfp(ExtA); B <-> Wfp(ExtB) |] ==> A | B <-> Wfp(ExtA | ExtB)

RImpI: [| A <-> Wfp(ExtA); B <-> Wfp(ExtB) |] ==> (A --> B) <-> (Wfp(ExtA --> ExtB))

RTrue: [| A |] ==> A <-> Wfp(True)

RFalse: [| ~A |] ==> A <-> Wfp(False)

RAllE: [| ALL x.A(x) <-> Wfp(Ext(x)) |] ==> A(x) <-> Wfp(Ext(x))

ROrE: [| A ==> (C <-> Wfp(ExtA)); B ==> (C <-> Wfp(ExtB)); A | B |] ==> C <-> Wfp(ExtA | ExtB)

EqInstance: A = B <-> Wfp(A = B)

Figure 1: Examples of Basic Rules

This rule is derivable (recall that Wfp(P) = P) in one step with Isabelle's simpli�cation tactic for intuitionistic
logic, so it is a valid rule. The rule allows us essentially to decompose synthesizing logic programs for a
conjunction into synthesizing programs for the individual parts. Note that this rule is initially postulated
with free variables like A and ExtAwhich are treated as constants during proof of the rule; this prevents their
premature instantiation, which would lead to a proof of something more specialized. When the proof is
completed, these variables are replaced by metavariables, so the rule may be later applied using uni�cation.

There are two subtleties in the calculus we propose: parameter variables and induction rules. These
are explained below.

Predicate Parameters

Recall that problems are equivalences between speci�cations and higher-order meta-variables applied to
parameters, e.g., l and m in the subset speci�cation. We would like our derived rules to be applicable
independent of the number of parameters involved. Fortunately, these do not need to be mentioned in
the rules themselves (with one exception noted shortly) as Isabelle's higher-order uni�cation properly
propagates these parameters to subgoals. This is explained below.

Isabelle automatically lifts rules during higher-order resolution (see [25, 26]); this is a sound way of
dynamically matching types of meta-variables during uni�cation by applying them to new universally
quanti�ed parameters when necessary. This idea is best explained by an example. Consider applying the
above conjunction rule to the following (made-up) goal.

ALL l m. ((ALL z. In(z,l)) & (Exists z. ~In(z,m))) <-> Wfp(?E(l,m)))

In our theory, we begin proving goals by \setting up a context" where initial universally quanti�ed variables
become eigenvariables.4 Applying 8-I (8-intro of �rst-order logic) twice yields the following.

!! l m. ((ALL z. In(z,l)) & (Exists z. ~In(z,m))) <-> Wfp(?E(l,m)))

Now if we try to apply the above derived rule for conjunction, Isabelle will automatically lift this rule to

4By eigenvariables, we mean variables universally quanti�ed outermost in the context. Recall universal quanti�cation is

the operator \!!" in Isabelle's meta-logic. See [26] for more details.

6

40

!! l m. [| ?A(l,m) <-> Extract(?ExtA(l,m)); ?B(l,m) <-> Extract(?ExtB(l,m)) |] ==>

?A(l,m) & ?B(l,m) <-> Extract(?ExtA(l,m) & ?ExtB(l,m)),

which now resolves (by unifying the conclusion) with ?A(l,m) = ALL z. In(z,l), ?B(l,m) = Exists z. ~In(z,m),
and the program is instantiated with ?E(l,m) = ?ExtA(l,m) & ?ExtB(l,m). As the proof proceeds ?ExtA and
?ExtB are further instantiated.

Recursive De�nitions

Our calculus so far is trivial; it copies structure from speci�cations into programs. One nontrivial way of
transforming speci�cations is to admit proofs about equivalence by induction over the recursively de�ned
data-types. But this introduces a problem of how predicates recursively call themselves.

We solve this by proving theorems in a context and proof by induction can extend this context with
new predicate de�nitions.5 In particular, the context will contain not only axioms for de�ned function
symbols (e.g., like In in the subset example) but it also contains a meta-variable (\wrapped" by Def) that
is instantiated during induction with new predicate de�nitions.

Back to the subset example; our starting goal actually includes a context which de�nes the axioms for
In and includes a variable ?H which expands to a de�nition or series of de�nitions. These will be called
from the program that instantiates ?E.

[| ALL x. ~In(x,[]); ALL x h t. In(x,h.t) <-> x = h | In(x,t) |]

==> Def(?H) --> (ALL l m. (ALL z. In(z,l) --> In(z,m)) <-> Wfp(?E(l,m)))

The wrapper Def (recall this, like Wfp is the identity) also serves to restrict uni�cation; in particular, only
the induction rule which creates a schematic pure logic program can instantiate Def(?H).

De�nitions are set up during induction. Consider the following rule corresponding to structural in-
duction over lists. This rule builds a schematic program P(x,y) contained in the �rst assumption. The
second and third assumption correspond to the base case and step case of a proof by induction showing
that this de�nition is equivalent to the speci�cation formula A(x,y). This rule is derived in our theory by
list induction.

[| Def(ALL x y. P(x,y) <-> (x = [] & EA(y)) | (EX v0 v1. x = v0.v1 & EB(v0,v1,y)));

ALL y. A([],y) <-> Wfp(EA(y));

!!m. ALL y. A(m,y) <-> Wfp(P(m,y)) ==> ALL h y. A(h.m,y) <-> Wfp(EB(h,m,y)) |]

==> A(x,y) <-> Wfp(P(x,y))

As in [2] we have written a tactic that applies induction rules. Resolution with this rule yields three subgoals
(corresponding to the three assumptions above) but the �rst is discharged by unifying against a Def(?H) in
the context which sets up a recursive de�nition. This is precisely the role that Def(?H) serves. Actually, to
allow for multiple recursive de�nitions, the induction tactic �rst duplicates the Def(?H)

6 before resolving
with the induction rule. Also, it thins out (weakens) the instantiated de�nition in the two remaining
subgoals.

There is an additional subtlety in the induction rule which concerns parameter arguments. Other
rules did not take additional parameters but this is the exception; P takes two arguments even though the
induction is on only one of them. This is necessary as the rule must establish (in the �rst assumption) a
de�nition for a predicate with a �xed number of universally quanti�ed parameters and the number of these

5The ability to postulate new predicate de�nitions can, of course, lead to inconsistency. We lack space here for details,

but it is not hard to prove under our approach that de�ned predicates are de�ned by well-founded recursion and may be

consistently added as assumptions.
6This follows as Def(?H) equals ?H and if we have an hypothesis ?H then we can instantiate it with ?H1 & ?H2. Instantiation

is performed by uni�cation with &-elimination and results in the two new assumptions ?H1 and ?H2 which are rewrapped with

Def. This \engineering with logic" is accomplished by resolving with a derived rule that performs these manipulations.

7

41

cannot be predicted at the time of the induction. Our solution to this problem is ad hoc; we derive in
Isabelle a separate induction rule for each number of arguments needed in practice (two are needed for the
predicates synthesized in the subset example). Less ad hoc, but more complex, solutions are also possible.

3.4 Relationship to Other Calculi

The derived calculus, although very simple, is motivated by and is similar to the Whelk Calculus developed
by Wiggins in [33]. There Whelk is presented as a new kind of logic where speci�cations are manipulated
in a special kind of \tagged" formal system. A tagged formula A is of the form [[A]]P (x)$�. Both formulas
and sequents are tagged and the tag subscript represents part of a pure logic program. The Whelk logic
manipulates these tags so that the tagged (subscripted) program should satisfy two properties. First, the
tagged program should be logically equivalent to formula it tags in the appropriate �rst-order theory. To
achieve this the proof rules state how to build programs for a given goal from programs corresponding to
the subgoals. Second, the tagged program should be decidable, which means as a program it terminates in
all-ground mode. One other feature of Whelk is that a proof may begin with a subformula of the starting
goal labeled by a special operator @ . At the end of the proof the Whelk system extracts the tagged program
labeling this goal; hence Whelk may be used to synthesize logic programs.

The rules I give can be seen as a reinterpretation of the rules of Whelk where tagged formulas are
formulated directly as equivalences between speci�cations and program schemas (for full details see [1]);
hence, seen in this light, the Whelk rules constitute a simple calculus for manipulating equivalences. For
example, the Whelk rule for reasoning about conjunctions is

@ ^-I
[[� ` @ A]]P (E)$� [[� ` @ B]]P (E)$

[[� ` @ (A ^B)]]P (E)$�^

and can be straightforwardly translated into the rule RAndI given in Section 3.3 (� and play the role of
ExtA and ExtB and P and its parameters E are omitted.) Our derivation of many of these rules provides
a formal veri�cation that they are correctness preserving with respect to the above mentioned equivalence
criteria. Interestingly, not all of the Whelk rules given could be derived; the reinterpretation led to rules
which were not derivable (counter models could be given) and hence helped uncover mistakes in the original
Whelk calculus (see [1]). This con�rms that just as it is useful to have machine checked proofs of program
correctness, it is also important to certify calculi formally.

4 Program Development

We now illustrate how the derived rules can be applied to program synthesis. Our example is synthesizing
the subset predicate (over lists). We choose this as it is a standard example from the literature. In
particular, our proof is almost identical to one given in [33].

Our proof requires 15 steps and is given in Figure 2 with comments. Here we replay Isabelle's response
to these proof steps, i.e., the instantiated top-level goal and subgoals generated after each step. The output
is taken directly from an Isabelle session except, to save space, we have combined a couple of steps, \pretty
printed" formulas, and abbreviated variable names.

The proof begins by giving Isabelle the subset speci�cation. Isabelle prints back the goal to be proved
(at the top) and the subgoals necessary to establish it. As the proof proceeds, the theorem we are proving
becomes specialized as ?H is incrementally instantiated with a program. We have also given the names
inbase and instep to the context assumptions that de�ne the membership predicate In.

Def(?H) --> (ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?E(l, m)))

1. Def(?H) --> (ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?E(l, m)))

val inbase = "ALL x. ~ In(x, [])"

val instep = "ALL x h t. In(x, h . t) <-> x = h | In(x, t)"

8

42

val [inbase,instep] = goal thy

" [| ALL x. ~In(x,[]); \

\ ALL x h t. In(x,h.t) <-> x = h | In(x,t) |] \

\ ==> Def(?H) --> (ALL l m. (ALL z. In(z,l) --> In(z,m)) <-> Wfp(?E(l,m)))";

(* After performing forall introductions, perform induction *)

by SetUpContext;

by (IndTac WListInduct2 [("x","l"),("y","m")] 1);

(* Base Case *)

br RAllI 1;

br RTrue 1;

by (cut_fast_tac [inbase] 1);

(* Step Case *)

by(SIMP_TAC (list_ss addrews [instep,AndImp,AllAnd,AllEqImp]) 1);

br RAndI 1;

(* Prove 2nd case with induction hypothesis! *)

by (etac allE 2 THEN assume_tac 2);

(* First Case --- Do an induction on y to synthesize member(h,y) *)

by (IndTac WListInduct2 [("x","y"),("y","h")] 1);

br RFalse 1; (* Induction Base Case *)

by(SIMP_TAC (list_ss addrews [inbase]) 1);

by(SIMP_TAC (list_ss addrews [instep]) 1); (* Induction Step Case *)

br ROrI 1;

br EqInstance 1;

by (etac allE 1 THEN assume_tac 1); (* Apply induction hypothesis *)

Figure 2: Isabelle Proof Script for Subset Proof

The �rst proof step, invoked by the tactic SetUpContext, moves the de�nition variable ?H into the as-
sumption context and, as discussed in the previous section, promotes universally quanti�ed variables to
eigenvariables so our rules may be used via lifting.

Def(?H) --> (ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?E(l, m)))

1. !!l m. Def(?H) ==> (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?E(l, m))

Next, we invoke our induction tactic that applies the derived list induction rule, specifying induction
on l. The execution of the tactic instantiates our schematic de�nition ?H with the �rst schematic de�nition
?P and a placeholder ?Q for further instantiation. Note too that ?E has been instantiated to this schematic
program ?P.

Def((ALL x y. ?P(x, y) <-> x = [] & ?EA10(y) | (EX v0 v1. x = v0 . v1 & ?EB11(v0, v1, y))) &

?Q) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

1. !!l m y. Def(?Q) ==> (ALL z. In(z, []) --> In(z, y)) <-> Wfp(?EA10(y))

2. !!l m ma h y.

[| Def(?Q); ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y)) |] ==>

(ALL z. In(z, h . ma) --> In(z, y)) <-> Wfp(?EB11(h, ma, y))

We now prove the �rst case, which is the base-case (and omit printing the step case in the next two
steps | Isabelle maintains a goal stack). First we apply RAllI which promotes the 8-quanti�ed variable

9

43

z to an eigenvariable. The new subgoal becomes (as this step does not instantiate the theorem we are
proving, we omit redisplaying it) the following.

1. !!l m y z. Def(?Q) ==> (In(z, []) --> In(z, y)) <-> Wfp(?EA10(y))

Next we apply RTruewhich states if ?EA10(y) is True, the above is provable provided In(z, []) --> In(z, y)

is provable. This reduces the goal to one of ordinary logic (without Wfp) as it instantiates the base case
with the proposition True.

Def((ALL x y. ?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?EB11(v0, v1, y))) &

?Q) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

1. !!l m y z. Def(?Q) ==> In(z, []) --> In(z, y)

Finally we complete this step by applying Isabelle's predicate-calculus simpli�cation routines augmented
with base case of the de�nition for In. Isabelle leaves us with the following step case (which is now the top
goal on the stack and hence numbered 1).

1. !!l m ma h y.

[| Def(?Q); ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y)) |] ==>

(ALL z. In(z, h . ma) --> In(z, y)) <-> Wfp(?EB11(h, ma, y))

We now normalize this goal by applying the tactic

SIMP_TAC (list_ss addrews [instep,AndImp,AllAnd,AllEqImp]) 1

This calls Isabelle's simpli�cation tactic which applies basic simpli�cations for the theory of lists, list_ss,
augmented with the recursive case of the de�nition for In and the following lemmas AndImp, AllAnd and
AllEqImp.

(A | B --> C) <-> (A --> C) & (B --> C)

ALL v. A(v) & B(v)) <-> (ALL v.A(v)) & (ALL v.B(v))

(ALL v. v = w --> A(v)) <-> A(w)

Each of these had been previously (automatically!) proven with Isabelle's predicate calculus simpli�er.
This normalization step simpli�es our subgoal to the following.

1. !!l m ma h y.

[| Def(?Q); ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y)) |] ==>

In(h, y) & (ALL v. In(v, ma) --> In(v, y)) <-> Wfp(?EB11(h, ma, y))

We decompose the conjunction with RAndI, which yields two subgoals.

Def((ALL x y. ?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?EA21(v1, v0, y) & ?EB22(v1, v0, y))) &

?Q) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

1. !!l m ma h y.

[| Def(?Q); ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y)) |] ==>

In(h, y) <-> Wfp(?EA21(ma, h, y))

2. !!l m ma h y.

[| Def(?Q); ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y)) |] ==>

(ALL v. In(v, ma) --> In(v, y)) <-> Wfp(?EB22(ma, h, y))

We immediately solve the second subgoal by resolving with the induction hypothesis. I.e., after 8-E
we unify the conclusion with the induction hypothesis using Isabelle's assumption tactic. This instantiates
the program we are building by replacing ?EB22 with a recursive call to ?P as follows.

10

44

Def((ALL x y. ?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?EA21(v1, v0, y) & ?P(v1, y))) & ?Q) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

Returning to the �rst goal (to build a program for ?EA21), we perform another induction; the base case
is proved as in the �rst induction except rather than introducing True with RTrue we introduce False with
RFalse and solve the remaining goal by simpli�cation. This leaves us with the step case.

Def((ALL x y. ?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?Pa(v0, y) & ?P(v1, y))) &

(ALL x y. ?Pa(y, x) <-> x = [] & False | (EX v0 v1. x = v0 . v1 & ?EB32(v0, v1, y))) &

?Q27) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

1. !!l m ma h y mb ha ya.

[| ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y));

Def(?Q27); ALL y. In(y, mb) <-> Wfp(?Pa(y, mb)) |] ==>

In(ya, ha . mb) <-> Wfp(?EB32(ha, mb, ya))

As before, we normalize this subgoal with Isabelle's standard simpli�er.

1. !!l m ma h y mb ha ya.

[| ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y));

Def(?Q27); ALL y. In(y, mb) <-> Wfp(?Pa(y, mb)) |] ==>

ya = ha | In(ya, mb) <-> Wfp(?EB32(ha, mb, ya))

Applying ROrI uni�es ?EB32(v0, v1, y) with ?EA40(v1, v0, y) | ?EB41(v1,v0, y) and yields a subgoal for
each disjunct.

1. !!l m ma h y mb ha ya.

[| ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y));

Def(?Q27); ALL y. In(y, mb) <-> Wfp(?Pa(y, mb)) |] ==>

ya = ha <-> Wfp(?EA40(mb, ha, ya))

2. !!l m ma h y mb ha ya.

[| ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y));

Def(?Q27); ALL y. In(y, mb) <-> Wfp(?Pa(y, mb)) |] ==>

In(ya, mb) <-> Wfp(?EB41(mb, ha, ya))

In the �rst we apply EqInstancewhich instantiates ?EA40(v1, v0, y) with y = v0. This completes the �rst
goal leaving only the following.

Def((ALL x y.

?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?Pa(v0, y) & ?P(v1, y))) &

(ALL x y. ?Pa(y, x) <-> x = [] & False | (EX v0 v1. x = v0 . v1 & (y = v0 | ?EB41(v1, v0, y)))) &

?Q27) -->

(ALL l m. (ALL z. In(z, l) --> In(z, m)) <-> Wfp(?P(l, m)))

1. !!l m ma h y mb ha ya.

[| ALL y. (ALL z. In(z, ma) --> In(z, y)) <-> Wfp(?P(ma, y));

Def(?Q27); ALL y. In(y, mb) <-> Wfp(?Pa(y, mb)) |] ==>

In(ya, mb) <-> Wfp(?EB41(mb, ha, ya))

We complete the proof by resolving with the induction hypothesis. Isabelle prints back the following
proven formula with no remaining subgoals.

[| ALL x. ~ ?In(x, []);

ALL x h t. ?In(x, h . t) <-> x = h | ?In(x, t) |] ==>

Def((ALL x y. ?P(x, y) <-> x = [] & True | (EX v0 v1. x = v0 . v1 & ?Pa(y, v0) & ?P(v1, y))) &

(ALL x y. ?Pa(x, y) <-> x = [] & False | (EX v0 v1. x = v0 . v1 & (y = v0 | ?Pa(v1, y)))) &

?Q) -->

(ALL l m. (ALL z. ?In(z, l) --> ?In(z, m)) <-> Wfp(?P(l, m)))

11

45

Note that the context remains open (?Q) as we might have needed to derive additional predicates. Also
observe that Isabelle never forced us to give the predicates built (?P and ?Pa) concrete names; these were
picked automatically during resolution when variables were renamed apart by the system.

The constructed program can be simpli�ed and translated into a G�odel program similar to the one in
[33]. Alternatively it can be directly translated into the following Prolog program.

p([],Y). pa([],Y) :- false.

p([V0|V1],Y) :- pa(Y,V0), p(V1,Y). pa([V0|V1],V0).

pa([V0|V1],Y) :- pa(V1,Y).

5 Conclusion, Comparisons, and Future Work

The ideas presented here have applicability, of course, outside logic programming and Isabelle can be used
to derive other calculi for veri�cation and synthesis. [2, 4] describes other applications of this methodology.
But logic programming seems an especially apt domain for such development due to the close relationship
between the speci�cation and programming language.

Other authors have argued that �rst-order logic is the proper foundation for reasoning about and
transforming logic programs (e.g., [11, 9]). But there are bene�ts to using even richer logics to manipulate
�rst-order, and possibly higher-order, speci�cations. For example, in this paper we used a recursion schema
corresponding to structural induction over lists. But synthesizing logic programs with more complicated
kinds of recursion (e.g., quick sort) requires general well-founded induction. But providing a theory where
the user can provide his own well-founded relations necessitates formalizing well-foundedness which in turn
requires quantifying over sets or predicates and, outside of set-theory, this is generally second-order. We
are currently exploring synthesis based on well-founded induction in higher-order logic.

Another research direction is exploring other notions of equivalence. Our calculus has employed a very
simple notion based on provability in a theory with induction principles over recursive data-types. There
are other notions of equivalence and ways of proving equivalence that could be formalized of course. Of
particular interest is exploring schematic calculi like that proposed by Waldau [31]. Waldau presents a
calculus for proving the correctness of transformation schemata using intuitionistic �rst-order logic. In
particular he showed how one can prove the correctness of fold-unfold transformations and schemata like
those which replace recursion by tail recursion. The spirit of this work is similar to our own: transformation
schemata should be proven correct using formal proofs. It would be interesting to carry out the kinds of
derivations he suggests in Isabelle and use Isabelle's uni�cation to apply his transformation schemata.

We conclude with a brief comparison of related approaches to program synthesis based on uni�cation.
This idea can be traced back to [14] who proposed the use of resolution not only for checking answers to
queries, but also for synthesizing programs and the use of second-order matching by Huet and Lang to
apply schematic transformations. Work in uni�cation based program synthesis that is closest in spirit to
what we described here is the work of [20, 21], which used higher-order (pattern) uni�cation to synthesize
logic programs in a \middle-out" fashion. Indeed, synthesis with higher-order resolution in Isabelle is very
similar as in our work, the meta-variable standing in for a program is a second-order pattern and it is only
uni�ed against second-order patterns during proof. [20, 21] emphasizes, however, the automation of such
proofs via rippling while we concentrate more on the use of logical frameworks to give formal guarantees
to the programming logic itself. Of course, these approaches are compatible and can be combined.

References

[1] David Basin. Isawhelk: Whelk interpreted in Isabelle. Abstract accepted at the 11th International Con-
ference on Logic Programming (ICLP94). Full version available via anonymous ftp to mpi-sb.mpg.de
in pub/papers/conferences/Basin-ICLP94.dvi.Z.

12

46

[2] David Basin, Alan Bundy, Ina Kraan, and Sean Matthews. A framework for program development
based on schematic proof. In 7th International Workshop on Software Speci�cation and Design, Los
Angeles, December 1993. IEEE Computer Society Press.

[3] David Basin and Robert Constable. Metalogical frameworks. In G�erard Huet and Gordon Plotkin,
editors, Logical Environments, pages 1{29. Cambridge University Press, 1993.

[4] David Basin and Sean Matthews. A conservative extension of �rst order logic and its applications
to theorem proving. In 13th Conference of the Foundations of Software Technology and Theoretical

Computer Science, pages 151{160, December 1993.

[5] A. Bundy. Tutorial notes; reasoning about logic programs. In G. Comyn, N.E. Fuchs, and M.J.
Ratcli�e, editors, Logic programming in action, pages 252{277. Springer Verlag, 1992.

[6] A. Bundy, A. Smaill, and G. A. Wiggins. The synthesis of logic programs from inductive proofs. In
J. Lloyd, editor, Computational Logic, pages 135{149. Springer-Verlag, 1990. Esprit Basic Research
Series. Also available from Edinburgh as DAI Re search Paper 501.

[7] R.M. Burstall and J. Darlington. A transformation system for developing recursive programs. Journal
of the Association for Computing Machinery, 24(1):44{67, 1977.

[8] Wei Ngan Chin. Automatic Methods for Program Transformation. Ph. D. thesis, Imperial College
Department of Computer Science, March 1990.

[9] K. L. Clark and S-�A. T�arnlund. A �rst order theory of data and programs. In B. Gilchrist, editor,
Information Processing, pages 939{944. IFIP, 1977.

[10] K.L. Clark. Predicate logic as a computational formalism. Technical Report TOC 79/59, Imperial
College, 1979.

[11] K.L. Clark and S. Sickel. Predicate Logic: a calculus for deriving programs. In R. Reddy, editor,
Proceedings of IJCAI-77, pages 419{420. IJCAI, 1977.

[12] Pierre Flener and Yves Deville. Towards stepwise, schema-guided synthesis of logic programs. In
T. Clement and K.-K. Lau, editors, Logic Program Synthesis and Transformation, pages 46{64.
Springer-Verlag, 1991.

[13] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF: A Mechanized

Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

[14] Cordell Green. Application of theorem proving to problem solving. In Proceedings of the IJCAI-69,
pages 219{239, 1969.

[15] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics. Journal of the

Association for Computing Machinery, 40(1):143{184, January 1993.

[16] P. Hill and J. Lloyd. The G�odel Report. Technical Report TR-91-02, Department of Computer Science,
University of Bristol, March 1991. Revised in September 1991.

[17] C.J. Hogger. Derivation of logic programs. JACM, 28(2):372{392, April 1981.

[18] L. Kott. About a transformation system: A theoretical study. In Proceedings of the 3rd International

Symposium on Programming, pages 232{247, Paris, 1978.

[19] Robert A. Kowalski. Predicate logic as a programming language. In IFIP-74. North-Holland, 1974.

13

47

[20] Ina Kraan, David Basin, and Alan Bundy. Logic program synthesis via proof planning. In Proceedings

of LoPSTr-92. Springer Verlag, 1992.

[21] Ina Kraan, David Basin, and Alan Bundy. Middle-out reasoning for logic program synthesis. In 10th

International Conference on Logic Programming (ICLP93), pages 441{455, Budapest Hungary, 1993.

[22] M.J. Maher. Equivalences of logic programs. In J. Minker, editor, Foundations of Deductive Databases
and Logic Programming. Morgan Kaufmann, 1987.

[23] Sean Matthews, Alan Smaill, and David Basin. Experience with FS0 as a framework theory. In G�erard
Huet and Gordon Plotkin, editors, Logical Environments, pages 61{82. Cambridge University Press,
1993.

[24] Lawrence C. Paulson. Set theory for veri�cation: I. From foundations to functions. Journal of

Automated Reasoning. In press; draft available as Report 271, University of Cambridge Computer
Laboratory.

[25] Lawrence C. Paulson. The foundation of a generic theorem prover. Journal of Automated Reasoning,
5:363{397, 1989.

[26] Lawrence C. Paulson. Introduction to Isabelle. Technical Report 280, Cambridge University Computer
Laboratory, Cambridge, January 1993.

[27] Lawrence C. Paulson. Isabelle's object-logics. Technical Report 286, Cambridge University Computer
Laboratory, Cambridge, February 1993.

[28] Frank Pfenning. Logic programming in the LF logical framework. In Logical Frameworks, pages 149
{ 181. Cambridge University Press, 1991.

[29] Taisuke Sato. Equivalence-preserving �rst-order unfold/fold transformation systems. Theoretical Com-

puter Science, 105:57{84, 1992.

[30] H. Tamaki and T. Sato. Unfold/fold transformations of logic programs. In Proceedings of 2nd ICLP,
1984.

[31] Mattias Waldau. Formal validation of transformation schemata. In T. Clement and K.-K. Lau, editors,
Logic Program Synthesis and Transformation, pages 97{110. Springer-Verlag, 1991.

[32] Richard W. Weyhrauch. Prolegomena to a theory of formal reasoning. Arti�cial Intelligence, 13:133{
170, 1980.

[33] Geraint A. Wiggins. Synthesis and transformation of logic programs in the Whelk proof development
system. In K. R. Apt, editor, Proceedings of JICSLP-92, 1992.

14

48

MAX-PLANCK-INSTITUT

F�UR

INFORMATIK

 	

� �

Termination Orderings for Rippling

David A. Basin

Toby Walsh

MPI{I{94{209 June 1994

���
�

�� k

I N F O R M A T I K

Im Stadtwald

D 66123 Saarbr�ucken

Germany

49

50

Authors' Addresses

David Basin Max-Planck-Institut f�ur Informatik Im Satdwald, D-66123 Saarbr�ucken, Germany

basin@mpi-sb.mpg.de

Toby Walsh INRIA-Lorraine, 615, rue du Jardin Botanique, 54602 Villers-les-Nancy, France

walsh@loria.fr

Publication Notes

A version of this paper will appear at CADE-12 in Nancy France, June 1994.

Acknowledgements

Many of the ideas described here stem from conversations with members of the Edinburgh MRG group,

in particular with Alan Bundy, Ian Green, and Andrew Ireland. We also wish to thank Sean Matthews,

Michael Rusinowitch, and Andrew Stevens for comments on earlier drafts. The �rst author was funded

by the German Ministry for Research and Technology (BMFT) under grant ITS 9102. The second author

was supported by a SERC and a HCM Postdoctoral Fellowship.

51

Abstract

Rippling is a special type of rewriting developed for inductive theorem proving. Bundy

et. al. have shown that rippling terminates by providing a well-founded order for the

annotated rewrite rules used by rippling. Here, we simplify and generalize this order,

thereby enlarging the class of rewrite rules that can be used. In addition, we extend

the power of rippling by proposing new domain dependent orders. These extensions

elegantly combine rippling with more conventional term rewriting. Such combinations

o�er the exibility and uniformity of conventional rewriting with the highly goal di-

rected nature of rippling. Finally, we show how our orders simplify implementation of

provers based on rippling.

52

1 Introduction

Rippling is a form of goal directed rewriting developed at Edinburgh [5, 3] and in

parallel in Karlsruhe [11, 12] for inductive theorem proving. In inductive proof, the

induction conclusion typically di�ers from the induction hypothesis by the addi-

tion of some constructors or destructors. Rippling uses special annotations, called

wavefronts, to mark these di�erences. They are then removed by annotated rewrite

rules, called wave-rules. Rippling has several attractive properties. First, it is highly

goal directed, attempting to remove just the di�erences between the conclusion and

hypothesis, leaving the common structure preserved. And second, it terminates yet

allows rules like associativity to be used both ways.

The contributions of this paper are to simplify, improve, and generalize the

speci�cation of wave-rules and their associated termination orderings. Wave-rules

have previously been presented via complex schematic de�nitions that intertwine

the properties of structure preservation and the reduction of a well-founded measure

(see [3] and x7). As these properties may be established independently, our de�nition

of wave-rules separates these two concerns. Our main focus is on new measures.

We present a family of measures that, despite their simplicity, admit strictly more

wave-rules than the considerably more complex speci�cation given in [3].

This work has several practical applications. By allowing rippling to be com-

bined with new termination orderings, the power of rippling can be greatly extended.

Although rippling has been designed primarily to prove inductive theorems it has

recently been applied to other problem domains. We show that in rippling, as in

conventional rewriting, the ordering used should be domain dependent. We pro-

vide several new orderings for applying rippling to new domains within induction

(e.g. domains involving mutually recursive functions) and outside of induction (e.g.

equational problem solving). In doing so, we show for the �rst time how rippling

can be combined with conventional rewriting.

Another practical contribution is that our work greatly simpli�es the implemen-

tation of systems based on rippling. Systems like Clam [4] require a procedure,

called a wave-rule parser, to annotate rewrite rules. Clam's parser is based upon

the complex de�nition of wave-rules in [3] and as a result is itself extremely complex

and faulty. We show how, given a simple modular order, we can build simple mod-

ular wave-rule parsers. We have implemented such parsers and they have pleasant

properties that current implementations lack (e.g. notions of correctness and com-

pleteness); our work hence leads to a simpler and more exible mechanization of

rippling.

The paper is organized as follows. In x2 we give a brief overview of rippling.

In x3 we de�ne an order on a simple kind of annotated term and use this in x4
to build orderings on general annotated terms. Based on this we show in x5 how

rewrite rules may be automatically annotated. In x6 we describe how new orders

increase the power and applicability of rippling. In x7 we compare this work to

previous work in this area and discuss some practical experience. Finally we draw

conclusions.

2 Background

We provide a brief overview of rippling. For a complete account please see [3].

Rippling arose out of an analysis of inductive proofs. For example, if we wish to

prove P (x) for all natural numbers, we assume P (n) and attempt to show P (s(n)).

The hypothesis and the conclusion are identical except for the successor function

s(:) applied to the induction variable n. Rippling marks this di�erence by the

annotation, P (s(n)). Deleting everything in the box that is not underlined gives

2

53

the skeleton, which is preserved during rewriting. The boxed but not underlined

term parts are wavefronts, which are removed by rippling.

Formally, a wavefront is a term with at least one proper subterm deleted. We

represent this by marking a term with annotation where wavefronts are enclosed in

boxes and the deleted subterms, called waveholes, are underlined. Schematically, a

wavefront looks like �(�1; :::; �n) , where n > 0 and �i may be similarly annotated.

The part of the term not in the wavefront is called the skeleton. Formally, the

skeleton is a non-empty set of terms de�ned as follows.

De�nition 1 (Skeleton)

1. skel(t) = ftg for t a constant or variable

2. skel(f(t1; :::; tn)) = ff(s1; :::; sn)j8i: si 2 skel(ti)g

3. skel(f(t1; :::; tn)) = skel(t1) [:::[skel(tn) for the ti in waveholes.

We call a term simply annotated when all its wavefronts contain only a single wave-

hole and generally annotated otherwise. In the simply annotated case, the skeleton

function returns a singleton set whose member we call the skeleton. E.g. the skele-

ton of f(s(a) ; s(b)) is f(a; b).

We de�ne wave-rules to be rewrite rules between annotated terms that meet

two requirements: they are skeleton preserving and measure decreasing. This is

a simpler and more general approach to de�ning wave-rules than that given in

[3] where these requirements were intertwined into the syntactic speci�cation of a

wave-rule.1 Skeleton preservation in the simply-annotated case means that both the

LHS (left-hand side) and RHS (right-hand side) of the wave-rule have an identical

skeleton. In the multi-hole case we demand that some of the skeletons on the LHS

are preserved on the RHS and no new skeletons are introduced, i.e. skel(LHS) �
skel(RHS).

Wavefronts in wave-rules are also oriented. This is achieved by marking the

wavefront with an arrow indicating if the wavefront should move up through the

skeleton term tree or down towards the leaves. Oriented wavefronts dictate a mea-

sure on terms that rippling decreases. The focus of this paper is on these measures.

Below are some examples of wave-rules (s is successor and <> is in�x append).

s(U)
"

� V) (U � V) + V
"

(1)

s(U)
"

� s(V)
"

) U � V (2)

U + V
" �W) U �W + V �W

"
(3)

(U <> V
"
) <> W) U <> (V <> W

#
) (4)

U <> (V <> W
"
)) (U <> V) <> W

"

(5)

U + V
"
= W + Z

") U = W ^ V = Z
"

(6)

(1) and (2) are typical of wave-rules based on a recursive de�nitions. The remainder

come from lemmas. Methods for turning de�nitions and lemmas into wave-rules is

the subject of x5. Note that annotation in the wave-rules must match annotation

in the term being rewritten. This allows use of rules like associativity of append,

(4) and (5), in both directions; these would loop in conventional rewriting. Note

also that in (6) the skeletons of the RHS are a strict subset of those of the LHS.

1This generalization is, however, briey discussed in their further work section.

3

54

As a simple example of rippling, consider proving the associativity of multipli-

cation using structural induction. In the step-case, the induction hypothesis is

(x� y) � z = x� (y � z)

and the induction conclusion is

(s(x)
"

� y) � z = s(x)
"

� (y � z):

The wavefronts in the induction conclusion mark the di�erences with the induction

hypothesis. Rippling on both sides of the induction conclusion using (1) yields (7)

and then with (3) on the LHS gives (8).

(x� y + y
"
) � z = (x� (y � z)) + y � z

"

(7)

((x� y) � z) + y � z
"

= (x� (y � z)) + y � z
"

(8)

As the wavefronts are now at the top of each term, we have successfully rippled-

out both sides of the equality. We can complete the proof by simplifying with the

induction hypothesis.

The example illustrates how rippling preserves skeletons during rewriting. Pro-

vided rippling does not get blocked (no wave-rule applies yet we are not completely

rippled-out), we are guaranteed to be able to simplify with the induction hypothesis

(called fertilization in [2]). This explains the highly goal directed nature of rippling.

We can also ripple wavefronts towards the position of universally quanti�ed

variables in the induction hypothesis. Such positions are called sinks because wave-

fronts can be absorbed there; when we appeal to the induction hypothesis, univer-

sally quanti�ed variables will be matched with the content of the sinks. Rippling

towards sinks at the leaves of terms is called rippling-in. Wavefronts are oriented

with arrows pointing out (upwards) or in (downwards) indicating if they are moving

towards the root or leaves. Transverse wave-rules like (4) are used to turn outward

directed wavefronts inwards.

3 Ordering Simple Wave-Rules

In this section we consider only simply annotated terms (whose wavefronts have a

single wavehole). In the next section we generalize to orders for generally annotated

terms with multiple waveholes. We begin with motivation, explaining generally the

kinds of orders we wish to de�ne. Afterwards, we propose several concrete measures

that are similar, though simpler, to those given by Bundy et. al. in [3]. They are

able to order all the wave-rules given in [3] and in addition allow rule orientations

not possible using the measure given there (see x7).
We consider annotated terms as decorated trees where the tree is the skeleton

and the wavefronts are boxes decorating the nodes. See, for example, the �rst tree

in Fig. 1 which represents the term s(U)
"

� s(V)
"

. Our orders are based on

assigning measures to annotation in these trees. We can de�ne progressively simpler

orders by simplifying these annotated trees to capture the notion of progress during

rippling that we wish to measure.

To begin with, since rippling is skeleton preserving, we needn't account for the

contents of the skeleton in our orderings. That is, we can abstract away function

symbols in the skeleton, for example, mapping each function to a variadic function

constant *". This gives, for example, the second tree in Fig. 1. In x6.2, we return

4

55

�

s(U)
"�
�
�
�� A

A
A
AA
s(V)

"

=)

�

s(�)
"�
�
�
�� A

A
A
AA
s(�)

"

=)

0

1
�
�
�
�� C

C
C
CC
1

=)

2
664

0

2

3
775

1

Figure 1: De�ning a measure on annotated terms.

to this abstraction and examine termination orderings that do allow the skeleton to

be changed during rewriting.

A further abstraction is to ignore the names of function symbols within wave-

fronts and assign some kind of numeric weight to wave-fronts. For example, we

may tally up the values associated with each function symbol as in a Knuth-Bendix

ordering. The simplest kinds of weights that we may assign to wave-fronts measure

their width and their size. Width is the number of nested function symbols between

the root of the wavefront and the wavehole. Size is the number of function symbols

and constants in a wavefront. For simplicity, we will consider just the width unless

otherwise stated. This gives, for example, the third tree in Fig. 1. Of course, there

are problem domains where we want our measure to reect more of the structure

of wave-fronts. x6.1 contains an example of this showing how the actual contents

may be compared using a conventional term ordering.

Finally, a very simple notion of progress during rippling is simply that wave-

fronts move up or down through the skeleton tree. Under this view, the tree struc-

ture may be ignored: it is not important which branch a wave-front is on, only its

height in the skeleton tree. Under this notion of progress, we can apply an abstrac-

tion that maps the tree onto a list, level by level. For instance, we can use the sum

of the weights at a given depth. Applying this abstraction gives the �nal tree in

Fig. 1. Again, note that depths are relative to the skeleton and not depth in the

erased term tree.

To make this more formal and concrete, we introduce some de�nitions. A posi-

tion is simply a path address (written \Dewey decimal style") in the term tree of the

skeleton and the subterm of t at position p is denoted by t=p. If s is a subterm of t

at position p, its depth is the length of p. The height of t, written jtj, is the maximal

depth of any subterm in t. For an annotated term t, the out-weight of a position p

is the sum of the weights of the (possibly nested) outwards oriented wavefronts at

p. The in-weight is de�ned identically except for inward directed wavefronts. We

now de�ne a measure on terms corresponding to the �nal tree in Fig. 1 based on

weights of annotation relative to their depths.

De�nition 2 (Out/In Measure) The out-measure, MO(t) (in-measure, MI(t))

of an annotated term t is a list whose i-th element is the sum of out-weights (in-

weights) for all term positions in t at depth i.

For example, in the following palindrome function over lists (\::" is in�x cons)

palin(H :: T
"
; Acc)) H :: palin(T; H :: Acc)

#

)

"

(9)

and the skeleton of both sides is palin(T;Acc) and the out-measure of the LHS is

[0,1] and the RHS is [1,0]. The in-measures are [0,0] and [0,1] respectively.

We now de�ne a well-founded ordering on these measures which reects the

progress that we want rippling to make during rewriting. Consider, a simple wave-

5

56

rule like (1),

s(U)
"

� V) (U � V) + V
"

:

The LHS out-measure is [0; 1], and the RHS is [1; 0]. Rippling has progressed here

as the one out-oriented wavefront has moved up the term. In general, rippling

progresses if one out-oriented wavefront moves up or disappears, while nothing

deeper moves downwards. If the out-measure on a term before rippling is [l1; :::; lk]

and after [r1; :::; rk] then there must be some depth j where lj > rj and for all i > j

we have li = ri. This is simply the lexicographic order on the reverse of the two lists

(compared with > on the natural numbers).2 Progress for in-oriented wavefronts

is similar and reects that these wavefronts should move towards leaves; that is,

we use the lexicographic order on the in-measures. Of course, both outward and

inward oriented wavefronts may occur in the same rule. For example, consider (9).

As in [3], we de�ne a composite ordering on the out and in measures. We order

the out measure before the in measure since this enables us to ripple wavefronts

out and either to reach the top of the term, or at some point to turn the wavefront

down and to ripple it in towards the leaves.

De�nition 3 (Composite Ordering) t � s i� hMO(t);MI(t)i >o hMO(s);MI(s)i
where >o is the lexicographic order on pairs whose �rst components are compared

with >revlex and the second with >lex, the reversed and unreversed lexicographic

order on lists of equal length.

Given the well-foundedness of > on the natural numbers and that lexicographic

combinations of well-founded orders are well-founded we can conclude the following.

Lemma 1 The composite ordering is well-founded.

We lack space here to discuss implementations of rippling. Two di�erent imple-

mentations are considered in [3] and [12]. For both calculi, � (and �� of the next

section) is monotonic and stable over the substitutions produced during rippling.

It follows from standard techniques that if all wave-rules are oriented so that l � r

then rippling terminates [8].

4 Ordering Multi-Wave-Rules

We now generalize our order for simply annotated terms to those with generalized

annotation, that is, multiple waveholes in a single wavefront. Wave-rules involving

such terms are called multi-wave-rules in [3] and we have already seen an example

of this in (6). The binomial equation is another example.

binom(s(X)
"

; s(Y)
"

) = binom(X; s(Y)
"

) + binom(X;Y)

"

(10)

We de�ne orders for generally annotated terms in a uniform way from the pre-

vious ordering by reducing generally annotated terms to sets of simply annotated

terms and extending � to such sets. This reduction is accomplished by considering

ways that general annotation can be weakened to simple annotation by \absorbing"

waveholes. Weakening a multi-wave term like (10) erases some of the waveholes

(underlining) though always leaving at least one wavehole. A wavefront is maxi-

mally weak when it has exactly one wavehole. A term is maximally weak when all

2Note that these lists are the same length as the skeletons of both sides are identical; however,

when we generalize the measure to multi-holed waves, the skeletons may have di�erent depths and

we pad with trailing zeros where necessary.

6

57

its wavefronts are maximally weak. Maximally weak terms are simply annotated

and this allows us to use the previously de�ned measure � on these terms.

Returning to the binomial example, (10) has only the following two weakenings.

binom(s(X)
"

; s(Y)
"

) = binom(X; s(Y)
"

) + binom(X;Y)

"

(11)

binom(s(X)
"

; s(Y)
"

) = binom(X; s(Y)) + binom(X;Y)
"

(12)

Both of these are maximally weak as each wavefront has a single hole.

Let weakenings(s) be the set of maximal weakenings of a term s. We now de�ne

an ordering on generally annotated terms l and r.

De�nition 4 (General ordering) l �� r i� weakenings(s) �� weakenings(t)

where �� is the multiset ordering over the order � on simply annotated terms.

This order is sensible as all the elements of the weakening sets are simply annotated

and can be compared with �. Also observe that if l and r are simply annotated

then their weakenings are flg and frg and l �� r agrees with l � r. In general, we

will drop the superscript on �� and use context (e.g., at least one argument has

multiple holes) to disambiguate.

As the multi-set extension of a well-founded ordering is well-founded [10] we

immediately have the following lemma.

Lemma 2 �� is well-founded.

As an example, consider (10). The LHS weakenings are

fbinom(s(X)
"

; s(Y)
"

)g :

The RHS weakenings are

f binom(X; s(Y)
"

) + binom(X;Y)

"

; binom(X + s(Y)) + binom(X;Y)
"

g :

The sole member of the �rst set is �-greater than both members of the second set.

This equation is measure decreasing and hence a wave-rule when used left to right.

5 Parsing

These orders are simple and admit simple mechanization. We begin with simply

annotated terms and then sketch the generalization to multi-waves. We have im-

plemented the routines we describe and in x7 we report on practical experience.

A wave-rule l ! r must satisfy two properties: the preservation of the skeleton,

and a reduction of the measure. We achieve these separately. An annotation phase

�rst annotates l and r with unoriented wavefronts so their skeletons are identical;

this guarantees that rippling is skeleton preserving. An orientation phase then

orients the wavefronts so that l � r. We sum this up by the slogan

WAVE-RULE = ANNOTATION + ORIENTATION : (13)

7

58

5.1 Annotation

To annotate terms we can use the ground di�erence uni�cation algorithm given

in [1]. Since parsing is an o�-line computation (performed once before theorem

proving), it is also reasonable to �nd skeleton preserving annotation via generate-

and-test: generate candidate annotations and test if the resulting terms have the

same skeleton. Consider, for example, annotating the recursive de�nition of the

palindrome function. There are four possible skeletons: palin(T;Acc), T , Acc, and

H. The �rst of these corresponds to the annotation

palin(H :: T ;Acc)) H :: palin(T; H :: Acc)) : (14)

The remaining annotations are trivial in that both sides are completely within

wavefronts except for some subterm at the leaves. For example,

palin(H :: T;Acc)) H :: palin(T;H :: Acc)) :

Such trivial wave-rules can usually be ignored as they they make no progress moving

wavefronts (although they can be used for wavefront normalization, see x6.1).

5.2 Orientation

Given annotated, but unoriented rules, we must now orient them by placing arrows

on the wavefronts. We do this by picking an orientation for wavefronts on the LHS

of the wave-rule and �nding an orientation on the RHS such that l � r. In Clam

the wave-rules used are oriented with wavefronts on the LHS exclusively out or in.

Other combinations are, of course, possible. In general the number of wavefronts,

n in the LHS is very small, typically one or two in [3]; hence, it is not much extra

e�ort to consider all 2n orientations and for each of these generate an orientation

for the RHS.3 In practice this is manageable; see x7.
For each orientation of l we must orient r. If l contains at least one outward ori-

ented wavefront there will always be a measure decreasing orientation of r, namely

with all wavefronts oriented in. However, orienting wavefronts inwards prohibits

later rippling out whilst orienting outwards does not. If rippling-out blocks, we can

always redirect wave-rules inwards with the rewrite rule. F (X)
"

) F (X)
#

. This

rule is structure preserving and measure decreasing. Hence, we orient r's annota-

tion so that it is measure decreasing and �-maximal; that is, for all orientations ro,

if l � ro then r � ro (� is the union of the identity relation with �).
One can �nd a maximal orientation using generate and test, but it is possible

to do much better. Below we sketch an algorithm, linear in jrj. Its input is two

annotated terms l and r where l is oriented and r unoriented. The output is r

oriented and �-maximal. In what follows, suppose jlj (and hence jrj) equals k. Let
t"i be the sum of out-weights at depth i, t#i be the sum of in-weights at depth i,

and flip(t; d; n) be the operation that non-deterministically ips down n arrows in

t at depth d (there may be multiple choices corresponding to di�erent branches or

multiple wavefronts at the same position). We assume below that l has at least

one wavefront oriented up. If this is not the case then all of r's wavefronts must

be oriented down and this is a maximal orientation i� l � r. Otherwise orientation

proceeds as follows. We �rst orient all the wavefronts in r upwards and then execute

the �rst of the following statements that succeeds.

1. choose the maximum i such that l"i > r"i and 8j 2 fi+ 1::kg:flip(r; j; r"j � l"j)

3This requires of course an implementation that e�ciently indexes wave-rules so that extra

wave-rules do not degrade the performance of rippling.

8

59

2. 8i 2 f0::kg:flip(r; i; r"i � l"i) and succeed if MI(l) >lex MI(r)

3. choose the minimum i such that l"i 6= 0, flip(r; i; r"i � l"i � 1) and 8j 2 fi +
1::kg:flip(r; j; r"j � l"j)

Each of the three statements can be executed in linear time. Note that the �rst

two may fail (there does not exist a maximum i in the �rst case, or in the second

the test MI(l) >lex MI(r) fails) but the third case will always succeed.

Lemma 3 The orientation algorithm computes all �-maximal r where l � r.

Proof (sketch): If the �rst statement succeeds then 8j 2 fi + 1::kg:l"j = r"j and

l"i > r"i so MO(l) >revlex MO(r) and r is maximal. Otherwise, 8i:l"i � r"i so we

ip arrows down to equate out-orders and test MI(l) >lex MI(r). If this succeeds,

we have a maximal r. Otherwise we still have 8i:l"i � r"i but ipping arrows in

r to equate out-orders is insu�cient as r then has a larger in-order. However, by

assumption, l has at least one outward wavefront with a least depth i, so we can

ip enough arrows at this depth so ri = li � 1. Thus l � r and r is maximal. 2

This parser for simply annotated terms is correct (it only returns wave-rules)

and complete (it returns all maximal wave-rules under the orderings we de�ne).

As an example, consider (9) with the LHS oriented all out. We begin by orienting

both wavefronts in the RHS out. The two sides thus have the measures h[0; 1]; [0; 0]i
and h[1; 1]; [0; 0]i respectively. Hence step 1 fails. Moreover, if we equate the out-

measures by turning down the annotation at depth 0, this gives the RHS a measure

of h[0; 1]; [1; 0]i so step 2 fails. Finally we succeed in step 3 by turning down the

arrow at depth 1 giving the RHS a measure of h[1; 0]; [0; 1]i. The resulting oriented
annotation is given in (9).

5.3 Multi-waves and sinks

The above ideas generalize easily to multi-wave-rules. For reasons of space we

only sketch this. We generate skeleton preserving annotations analogous to the

single-hole case but allow multi-holed wavefronts. Usually both sides are simply

annotated and we may use the above orientation algorithm. Alternatively, after

�xing an orientation for the LHS of the wave-rule we may orient the RHS by cycling

through possible orientations. For each orientation we compare the weakenings of

the two sides under the multi-set ordering over our measure and we pick the RHS

orientation with the greatest measure. There are various ways the e�ciency of this

can be enhanced. E.g. we need only compute weakenings of each side once; with

\orientation variables" we may propagate the di�erent orientations we select for the

RHS to orientations on the weakening set before comparison under the multi-set

measure.

One kind of annotation we haven't yet discussed in our measures is sinks (see x2).
This is deliberate as we can safely ignore sinks in both the measure and the parser.

Sinks only serve to decrease the applicability of wave-rules by creating additional

preconditions; that is, we only ripple inwards if there is a sink underneath the

wavefront. But if rippling terminates without such a precondition, it terminates

with it as well. Sinks (and also recent additions to rippling such as colours [15])

can be seen as not e�ecting the termination of rippling but rather the utility of

rippling. That is, they increase the chance that we will be able to fertilize with the

hypothesis successfully.

9

60

6 Extensions to Rippling

By introducing new termination orders for rippling, we can combine rippling with

conventional term rewriting. Such extensions greatly extend the power and appli-

cability of rippling both within and outwith induction. In addition, by design, our

orderings are not dependent upon rippling preserving skeletons. This allows us to

use rippling in new domains involving, for example, mutual recursion or de�nition

unfolding where the skeleton needs to be modi�ed; such applications were previously

outside the scope of rippling. We feel that these extensions o�er the promise of the

\best of both worlds": that is, the highly goal directed nature of rippling combined

with the exibility and uniformity of conventional rewriting. To test these ideas,

we have implemented an Annotated Rewrite System, a simple PROLOG program

which manipulates annotated terms, and in which we can mix conventional term

rewriting and rippling. All the examples below have been proven by this system.

6.1 Unblocking

Rippling can sometimes become blocked. Usually the blockage occurs due to the

lack of a wave-rule to move the di�erences out of the way; in such a situation

the wave-rule may be speculated automatically using techniques presented in [13].

However, sometimes the proof becomes blocked because a wavefront needs to be

rewritten so that it matches either a wave-rule (to allow further rippling) or a sink

(to allow fertilization). This is best illustrated by an example.

Consider the following theorem, where rev is naive reverse, qrev is tail-recursive

reverse using an accumulator, <> is in�x append, and :: in�x cons.

8L;M: qrev(L;M) = rev(L) <> M (15)

To prove this theorem, we perform an induction on L. The induction hypothesis is

qrev(l;M) = rev(l) <> M

and the induction conclusion is

qrev(h :: l
"

; bmc) = rev(h :: l
"

) <> bmc : (16)

where m is a skolem constant which sits in a sink, annotated with \b c".
We will use wave-rules taken from the recursive de�nition of qrev, and rev.

rev(H :: T
"
)) rev(T) <> (H :: nil)

"

(17)

qrev(H :: T
"
; L)) qrev(T; H :: L

#
) (18)

On the LHS, we ripple with (18) to give

qrev(l;

�
h ::m

#
�
) = rev(h :: l

"
) <> bmc :

On the RHS, we ripple with (17) and then (4), the associativity of <> to get

qrev(l;

�
h :: m

#
�
) = rev(l) <> (

�
(h :: nil) <> m

#
�
): (19)

Unfortunately, the proof is now blocked. We can neither further ripple nor fertil-

ize with the induction hypothesis. The problem is that we need to simplify the

wavefront on the righthand side. Clam currently uses an ad-hoc method to try to

10

61

perform wavefront simpli�cation when rippling becomes blocked. In this case (19)

is rewritten to

qrev(l;

�
h ::m

#
�
) = rev(l) <> (

�
h ::m

#
�
) :

Fertilization with the induction hypothesis can now occur.

In general, unblocking steps are not sanctioned under the measure proposed ear-

lier, or that given in [3]; their uncontrolled application during rippling can lead to

non-termination. But we can easily create new orders where unblocking steps are

measure decreasing. These new orders allows us to combine rippling with conven-

tional rewriting of wavefronts in an elegant and powerful way. Namely, unblocking

rules will be measure decreasing wave-rules accepted by the parser and applied like

other wave-rules.

We de�ne an unblocking ordering by giving (as before) an ordering on simply

annotated terms, which can then be lifted to an order on multi-wave terms. To order

simply annotated terms, we take the lexicographic order of the simple wave-rule

measure proposed above (using size of the wavefront as the notion of weight) paired

with >wf , an order on the contents of wavefronts. As a simply annotated term may

still contain multiple wavefronts, this second order is lifted to a measure on sets

of wavefronts by taking its multi-set extension. The �rst part of the lexicographic

ordering will ensure that anything which is normally measure decreasing remains

measure decreasing and the second part will allow us to orient rules that only

manipulate wavefronts. This combination provides a termination ordering that

allows us to use rippling to move wavefronts about the skeleton and conventional

rewriting to manipulate the contents of these wavefronts.

For the reverse example, the normalization ordering is very simple; we use the

following wave-rules.

nil <> L
) L (20)

(H :: T) <> L
#

) H :: (T <> L)
#

(21)

The �rst is already parsed as a wave-rule using our standard measures, but we need

to add the second. This rule doesn't change the size of the wavefront or its position

but only its form. Hence we want this to be decreasing under some normalization

ordering. There are many such orderings; here we take >wf to be the recursive

path ordering [7] on the terms in the wavefront where <> has a higher precedence

than :: and all other function symbols have an equivalent but lower priority. The

measure of the LHS of (21) is now greater than that of the RHS as its wavefront is

(H :: T) <> � which is greater than H :: (T <> �) in the recursive path ordering

(to convert wavefronts into well formed terms, waveholes are marked with the new

symbol *).

Unblocking steps which simplify wavefronts are useful in many proofs enabling

both immediate fertilization (as in this example) and continued rippling. Wavefronts

can even be unblocked using a di�erent set of rules to that used for rippling.

6.2 Mutual Recursion and Skeleton Simpli�cation

Rippling can also become blocked because the skeleton (and not a wavefront) needs

to be rewritten. This happens in proofs involving mutually recursive functions,

de�nition unfolding, and other kinds of rewriting of the skeleton. Consider

8x: even(s(s(0)) � x)

11

62

where even has the following wave-rules.

even(s(U)
"

)) odd(U) (22)

odd(s(U)
"

)) even(U) (23)

Note that (22) and (23) are not wave-rules in the conventional sense since they

are not skeleton preserving. However, they do decrease the annotation measure.

Rules (22) and (23) can be viewed as a more general type of wave-rule of the

form LHS) RHS which satisfy the constraint skeleton(LHS) � skeleton(RHS)

where � is some equivalence relation. In this case, the equivalence relation includes

the granularity relation in which even(x) and odd(x) are in the same equivalence

class. Rippling with this more general class of wave-rules still gives us a guarantee of

termination. However weakening the structure preservation requirement can reduce

the utility of rippling since now we are only guaranteed to rewrite the conclusion

into a member of the equivalence class of the hypothesis.

To prove the theorem, we will also need the following wave-rules.

s(U)
"

+ V) s(U + V)
"

(24)

U + s(V)
"

) s(U + V)
"

(25)

The theorem can be proved without (25) but this requires a nested induction and

generalization, complications which need not concern us here.

The proof begins with induction on x. The induction hypothesis is

even(s(s(0)) � n)

and the induction conclusion is

even(s(s(0)) � s(n)
"

): (26)

Unfortunately rippling is immediately blocked. To continue the proof, we simplify

the skeleton of the induction conclusion by exhaustively rewriting (26) using the

unannotated version of (1) and the following rules.

0� V) 0 (27)

0 + V) V (28)

This gives

even(s(n)
"

+ s(n)
"

): (29)

Note that the skeleton was changed by this rewriting. The induction hypothesis can,

however, be rewritten using the same rules so that it matches the skeleton of (29).

Of course, arbitrary rewriting of the skeleton may not preserve the termination of

rippling. To justify these unblocking steps we therefore introduce a new termination

order which combines lexicographically a measure on the skeleton with the measure

on annotations.4 We then admit rewrite rules provided their application decreases

this combined measure. This new order allows us to combine rippling with conven-

tional rewriting of the skeleton in an elegant and powerful way. In this case, the

4With more complex theorems, the height of the skeleton may increase; the addition of the

height of the skeleton to the order ensures termination in such situations.

12

63

recursive path order on skeletons (with precedence � > + > s > 0) is again ade-

quate. Note that though termination is guaranteed, again skeleton preservation has

been weakened. Since the skeleton can be changed during rippling, we are no longer

able to guarantee that we can fertilize at the end of rippling. However, provided

the skeleton is rewritten identically in both the hypotheses and the conclusion, we

will still be able to fertilize.

To return to the proof, rippling (29) with (24) gives

even(s(n+ s(n)
"

)

"

):

Then with (25) gives

even(s(s(n + n))
"

):

We now ripple with the mutually recursive de�nition of even, (22),

odd(s(n + n)
"

):

Note that this step also changes the skeleton. However, as the measure decreases

and as the skeleton stays in the same equivalence class, such rewriting is permitted.

Finally rippling with (23) gives

even(n + n):

This matches the (rewritten) induction hypothesis and so completes the proof.

The power of rippling is greatly enhanced by its combination with traditional

rewriting. For example, proofs involvingmutually recursive functions, or other kinds

of skeleton simpli�cation (e.g., de�nition unfolding) were not previously possible

with rippling. The use of conventional term rewriting to simplify the skeleton is a

natural dual to the use of conventional rewriting to simplify wavefronts; indeed they

are orthogonal and can be combined to allow even more sophisticated rewriting.

6.3 Other Applications

Rippling has found several novel uses of outside of induction. For example, it has

been used to sum series [14], to prove limit theorems [15], and guide equational

reasoning [11]. However, new domains, especially non-inductive ones, require new

orderings to guide proof. For example, consider the PRESS system [6].5 To solve

algebraic equations, PRESS uses a set of methods which apply rewrite rules. The

three main methods are: isolation, collection, and attraction. Below are examples

of rewrite rules used by each of these methods.

ATTRACTION : log(U) + log(V)
"

) log(U � V)
"

COLLECTION : U � U
") U2

"

ISOLATION : U2
"

= V) U = �pV
#

PRESS uses preconditions and not annotation to determine rewrite rule appli-

cability. Attraction must bring occurrences of unknowns closer together. Collection

must reduce the number of occurrences of unknowns. Finally, isolation must make

progress towards isolating unknowns on the LHS of the equation. These require-

ments can easily be captured by annotation and PRESS can thus be implemented

5Due to space constraints, we only sketch this application. The idea of reconstructing PRESS

with rippling was �rst suggested by Nick Free and Alan Bundy.

13

64

by rippling. The above wave-rules suggest how this would work. PRESS wave-

rules are structure preserving, where the preserved structure is the unknowns. The

ordering de�ned on these rules reects the well-founded progress achieved by the

PRESS methods. Namely, we lexicographically combine orderings on the number

of waveholes for collection, their distance (shortest path between waveholes in term

tree) for attraction, and our width measure on annotation weight for isolation.

7 Related Work and Experience

The measures and orders we give are considerably simpler than those in [3]. There,

the properties of structure preservation and the reduction of a measure are inter-

twined. Bundy et al. describe wave-rules schematically and show that any in-

stance of these schemata is skeleton preserving and measure decreasing under an

appropriately de�ned measure. Mixing these two properties makes the de�nition of

wave-rules very complex. For example, the simplest kind of wave-rule proposed are

so-called longitudinal wave-rules (which ripple-out) de�ned as rules of the form,

�(�1(�
1

1
; ::; �

p1
1
)
"

; ::; �n(�
1

n; ::; �
pn
n)

"

)) �(�($1

1
; ::; $1

n); ::; �($
k
1
; ::; $k

n))
"

that satisfy a number of side conditions. These include: each $
j
i is either an

unrippled wavefront, �i(�
1

i ; : : : ; �
pi
i) , or is one of the waveholes, �

l
i; for each j, at

least one $
j
i must be a wavehole. �, the �is, and � are terms with distinguished

arguments; � may be empty, but the �is and � must not be. There are other

schemata for traverse wave-rules and creational wave-rules6. These schemata are

combined in a general format, so complex that in [3] it takes four lines to print. It

is notationally involved although not conceptually di�cult to demonstrate that any

instance of these schemata is a wave-rule under our size and width measures.

Consider the longitudinal schema given above. It is clear that evey skeleton

on the RHS is a skeleton of the LHS because of the constraint on the $i
j . What

is trickier to see is that it is measure decreasing. Under our order this is the

case if LHS �� RHS. We can show something stronger, namely, for every r 2
weakenings(RHS): 9l 2 weakenings(LHS): l � r. To see this observe that any such

r must be a maximal weakening of

r0 = �(�($1

1
; : : : ; $1

n); : : : ; �($
j
1
; : : : ; $j

n); :::�($
k
1
; : : : ; $k

n))
"

for some j 2 f1::kg. Corresponding to r0 is an l0 which is a weakening of the LHS

where l0 = �(t1; :::; tn) and the ti correspond to the ith subterm of �($
j
1
; : : : ; $j

n)

in r0: if $
j
i is an unrippled wavefront then ti = $

j
i = �i(�

1

i ; : : : ; �
pi
i) , and alterna-

tively if $j
i a wavehole �li then ti = �i(�

1

i ; : : : ; �
l
i; : : : ; �

pi
i) . Now r is a maximal

weakening of r0 so there is a series of weakening steps from r to r0. Each of these

weakenings occurs in a $
j
i and we can perform the identical weakening steps in the

corresponding ti in l0 leading to a maximal weakening l. As l and r are maximally

weak they may be compared under �. Their only di�erences are that r has an

additional wavefront at its root and is missing a wavefront at each $
j
i correspond-

ing to a wavehole. The depth of $
j
i is greater than the root and at this depth the

6Creational wave-rules are used to move wavefronts between terms during induction proofs by

destructor induction. They complicate rippling in a rather specialized and uninteresting way. Our

measures could be easily generalized to include such creational rules.

14

65

out-measure of l is greater than r (under any of the weights de�ned in x3) and at

all greater depths they are identical. Hence l � r.

Similar arguments hold for the other schemata given in [3] and from this we

can conclude that wave-rules acceptable under their de�nition are acceptable under

ours. Moreover it is easy to construct simple examples that are wave-rules under

our formalism but not theirs; for example, the following two rules are measure

decreasing but are not instances of their schema.

rot(s(X)
"

; H :: T
"
; Acc)) rot(X;T; H :: Acc

"
)

0 +X
") X

Aside from being more powerful, there are additional advantages to the approach

taken here. Our notion of wave-rules and measures are signi�cantly simpler and

therefore easier to understand. As a result, they are easier to implement. The

de�nition of wave-rules given in [3] is not what is recognized by the Clam wave-

rule parser as it returns invalid wave-rules under either our de�nition or that of [3]

and misses many valid ones. For example, Clam's current parser fails to �nd even

wave-rules as simple as the following.

divides(X + Y
"

; Y)) s(divides(X;Y))
"

We have therefore implemented the parser described in x5. The parser is sim-

ple, just a couple of pages of Prolog, yet allows new orderings based on di�erent

annotation measures to be easily incorporated. Although parsing is in the worst

case exponential in the size of the rewrite rule, the parser typically takes under 5

seconds to return a complete set of maximal wave-rules (which seems reasonable for

an o�-line procedure). The parser is part of our annotated rewrite system and will

be shortly integrated into the Clam theorem prover.

8 Conclusions

An ordering for proving the termination of rippling along with a schematic de-

scription of wave-rules was �rst given in [3]. We have simpli�ed, generalized and

improved both this termination ordering, and the description of wave-rules. In

addition, we have shown that di�erent termination orderings for rippling can be

pro�tably used within and outwith induction. Such new orderings can combine the

highly goal directed features of rippling with the exibility and uniformity of more

conventional term rewriting. We have, for example, given two new orderings which

allow unblocking, de�nition unfolding, and mutual recursion to be added to rip-

pling in a principled (and terminating) fashion; such extensions greatly extend the

power of the rippling heuristic. To support these extensions, we have implemented

a simple Annotated Rewrite System which annotates and orients rewrite rules, and

with which we can rewrite annotated terms. We have used this system to perform

experiments combining rippling and conventional term rewriting. We con�dently

expect that this combination of rippling and term rewriting has an important rôle

to play in many areas of theorem proving and automated reasoning.

References

[1] D. Basin and T. Walsh. Di�erence uni�cation. In Proceedings of the 13th

IJCAI. International Joint Conference on Arti�cial Intelligence, 1993.

15

66

[2] R.S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.

ACM monograph series.

[3] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A

heuristic for guiding inductive proofs. Arti�cial Intelligence, 62:185{253, 1993.

[4] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system.

In M.E. Stickel, editor, 10th International Conference on Automated Deduction.

1990.

[5] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extensions to the

rippling-out tactic for guiding inductive proofs. In M.E. Stickel, editor, 10th

International Conference on Automated Deduction, pages 132{146. Springer-

Verlag, 1990.

[6] A. Bundy and B. Welham. Using meta-level inference for selective applica-

tion of multiple rewrite rules in algebraic manipulation. Arti�cial Intelligence,

16(2):189{212, 1981.

[7] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer

Science, 17(3):279{301, March 1982.

[8] N. Dershowitz. Termination of Rewriting. In J.-P. Jouannaud, editor, Rewriting

Techniques and Applications. Academic Press, 1987.

[9] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, volume B. North-Holland,

1990.

[10] N. Dershowitz and Z. Manna. Proving termination with multiset orderings.

Comms. ACM, 22(8):465{476, 1979.

[11] D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, 10th International

Conference on Automated Deduction. 1990.

[12] D. Hutter. Colouring terms to control equational reasoning. An Expanded Ver-

sion of PhD Thesis: Mustergesteuerte Strategien f�ur Beweisen von Gleichheiten

(Universit�at Karlsruhe, 1991), in preparation.

[13] A. Ireland and A. Bundy. Using failure to guide inductive proof. Technical

report, Dept. of Arti�cial Intelligence, University of Edinburgh, 1992.

[14] T. Walsh, A. Nunes, and A. Bundy. The use of proof plans to sum series. In

D. Kapur, editor, 11th Conference on Automated Deduction. 1992.

[15] T. Yoshida, A. Bundy, I. Green, T.Walsh, and D. Basin. Coloured rippling: the

extension of a theorem proving heuristic. Technical Report, Dept. of Arti�cial

Intelligence, University of Edinburgh, 1993. Under review for ECAI-94.

16

67

Recent Publications in the BRICS Notes Series

NS-94-2 David Basin.Induction Based on Rippling and Proof Plan-
ning. Mini-Course. August 1994, 62 pp.

NS-94-1 Peter D. Mosses, editor.Proc. 1st International Workshop
on Action Semantics(Edinburgh, 14 April, 1994), number
NS-94-1 in BRICS Notes Series, Department of Computer
Science, University of Aarhus, May 1994. BRICS. 145 pp.

	Slides
	Part I: Rippling and Proof Planning
	Part II: Formalization of Rippling
	Part III: Proof Search and Critics
	Part IV: Synthesis
	Part V: Rippling in Other Settings (& Comparisons)

	David A. Basin: Logic Frameworks for Logic Programs
	David A. Basin and Toby Walsh:Termination Orderings for Rippling

