
B
R

IC
S

N
S

-94-1
P

eterD
.M

osses
(editor):

1stW
orkshop

on
A

C
T

IO
N

S
E

M
A

N
T

IC
S

BRICS
Basic Research in Computer Science

Proceedings of the
First International Workshop on

ACTION SEMANTICS
14 April 1994, Edinburgh, Scotland

Peter D. Mosses (editor)

BRICS Notes Series NS-94-1

ISSN 0909-3206 May 1994

See back inner page for a list of recentpublications in the BRICS
Notes Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Proceedings of the First International Workshop on

ACTION SEMANTICS

14 April 1994 — Edinburgh, Scotland

Peter D. Mosses (editor)

Preface

Actions speak louder than words: Action Semantics is now being used in
practical applications! This workshop surveyed recent achievements, demon-
strated tools, and coordinated projects. It was open to all.

Brief abstracts of the presentations were handed out at the workshop. Extended
abstracts/full papers were collected afterwards and are now published here.

There were 19 participants,1 all assumed to be familiar with the basic ideas
of Action Semantics.2 A list of the registered participants is given at the end.
Most of them also attended some or all of the CAAP/ESOP/CC conferences,
of which the workshop was a satellite meeting; but five participants travelled
specially to Edinburgh to participate in the workshop.

As can be seen from the workshop programme and from the following papers,
a lot of interesting work was presented and discussed during the one day.
Special thanks to the invited speakers, Dave Schmidt and Bo Stig Hansen for
their stimulating contributions, and to all the authors for keeping closely to a
tight schedule not only when giving their talks, but also when preparing their
papers for this Proceedings.

The final discussion session revealed plans for exciting new work, and possi-
bilities for further collaboration. A second workshop on action semantics will
be held within a year or two; no definite venue has yet been fixed, although one
proposal is to hold it as a satellite meeting of TAPSOFT'95 in Aarhus (22–26
May 1995). In the meantime, the action semantics mailing list3 can be used
for reporting new results, further coordination of projects, and for discussing
features of action semantics and related frameworks.

The workshop was organised by Peter D. Mosses (BRICS, Dept. of Computer
Science, Univ. of Aarhus, Denmark) and David A. Watt (Computing Science
Dept., Univ. of Glasgow, Scotland). The workshop organisers thank the organ-
isers of CAAP/ESOP/CC and the support staff at the Department of Computer
Science, University of Edinburgh, for the provision of facilities and assistance.
They also gratefully acknowledge funding and sponsorship from:

BRICS (Basic Research in Computer Science,
Centre of the Danish National Research Foundation)

COMPASS (ESPRIT Basic Research Working Group 6112)

1H. Moura (Brazil) was unable to attend; his paper was presented by D. A. Watt.
2A bibliography of published work on Action Semantics is available by anonymous FTP

from ftp.daimi.aau.dk in the file pub/action/bibliography/action.bib.
3Subscription: send a request marked `AS Mailing List' with your name and e-mail address

to pdmosses@daimi.aau.dk.

ii

PROGRAMME First International Workshop on ACTION SEMANTICS

THURSDAY 14 APRIL 1994 page

Session 1 Foundations

09.00–10.00 INVITED LECTURE:
D. A. Schmidt (Kansas State Univ.), K.-G. Doh (Univ. Aizu)
The facets of action semantics: some principles and applications 1

10.00–10.30 S. B. Lassen (Univ. Aarhus)
Design and semantics of action notation 16

BREAK

Session 2 Applications and Relations to Other Frameworks

11.00–11.30 INVITED LECTURE:
B. S. Hansen (Tech. Univ. Denmark), J. U. Toft (DDC Intl.)
The formal specification of ANDF: an application of action semantics 34

11.30–12.00 A. Poetzsch-Heffter (Tech. Univ. Munich)
Comparing action semantics and evolving algebra based specifications
with respect to applications 43

12.00–12.30 S. McKeever (Oxford Univ.)
A framework for generating compilers from Natural Semantics
specifications 48

LUNCH

Session 3 Systems (with Demonstrations)

13.30–14.00 A. van Deursen (CWI, Amsterdam), P. D. Mosses (Univ. Aarhus)
A demonstration of ASD, the action semantics description tools 56

14.00–14.30 R. Lämmel, G. Riedewald (Univ. Rostock)
Pascal definition in the system LDL 60

BREAK

Session 4 Action Analysis

14.45–15.15 H. Moura (Caixa Econ. Fed., Brazil)
The ACTRESS compiler generator and action transformations 80

15.15–15.45 D. F. Brown (INMOS Ltd / SGS-THOMSON), D. A. Watt (Univ. Glasgow)
Sort inference in the ACTRESS compiler generation system 81

15.45–16.15 P. Ørbæk (Univ. Aarhus)
OASIS: An optimizing action-based compiler generator 99

BREAK

iii

(continued) page

Session 5 Action Interpretation

16.30–17.00 K.-G. Doh (Univ. Aizu, Japan)
Towards partial evaluation of actions 115

17.00–17.30 D. A. Watt (Univ. Glasgow)
Using ASF+SDF to interpret and transform actions 129

Session 6 Discussion

17.30–18.00 Chaired by P. D. Mosses (Univ. Aarhus)
Current and future projects 143

END OF WORKSHOP

iv

The Facets of Action Semantics:
Some Principles and Applications

(Extended Abstract)

Kyung-Goo Doh David A. Schmidt
The University of Aizu* Kansas State university'

Abstract
A distinguishing characteristic of action semantics is its facet system, which

defines the variety of information flows in a language definition. The facet
system can be analyzed to validate the well-formedness of a language definition,
to infer the typings of its inputs and outputs, and to calculate the operational
semantics of programs.

We present a single framework for doing all of the above. The framework
exploits the internal subsorting structure of the facets so that sort checking,
static analysis, and operational semantics are related, sound instances of the
same underlying analysis. The framework also suggests that action semantics's
extensibility can be understood as a kind of "weakening rule" in a "logic" of
actions.

In this paper, the framework is used to perform type inference on specific
programs, to justify meaning-preserving code transformations, and to "stage"
an action semantics definition of a programming language into a static seman-
tics stage and a dynamic semantics stage.

1 Introduction

Perhaps the most distinctive aspect of action semantics is its structure of facets. The
facets provide a "road map" to the nature of a programming language, and in this
paper we show how the internal structure of the facets also indicate the kinds of
analyses that can be undertaken upon the language. In particular, the subsorting
hierarchy of a facet specifies a hierarchy of properties of the facet.

Actions can be viewed as operations upon values from facets. We encode the
actions7 operations as sequents in a logic. In addition to providing a simple pre-
sentation, the logic lets us encode the extensibility feature of action semantics as a

*Fukushima 965-80, Japan, kg-doh&-aizu.ac.jp
 anh hat tan, Kansas 66506, U.S.A., schmidt@cis.ksu.edu . Supported by NSF Grant CCR-93-

02962.

weakening rule in the logic. The sequent-based format lets us state simple descrip-
tions of operational semantics of actions, property extraction, and action equivalence.
In particular, much of the technical requirements of abstract interpretation come "for
free" in the representation. Finally, a staging analysis on action-semantics-coded
language definitions can be undertaken.

The theme arising from this work is that the facet structure indicates the primary
features of a language and guides the user and implementor to important properties
and equivalences.

The structure of this paper goes as follows: Section 2 describes the facets and their
orderings. Section 3 defines the inference system for actions and gives examples. Sec-
tion 4 defines action equivalence in a given context and in context families. Section 5
explains the relationship between abstract interpretation and our framework. Section
6 adapts the framework to analyze semantics definitions for staging. The last section
concludes the paper.

2 Facets of Actions

datum

1 I / \ 1 I
true false

YtT\
......... {2,3,4}

Figure 1: Sorts in Functional Facet

Data in action notation are organized into facets [8, 101. The functional facet
contains temporary values ("transient information") that are organized into the sorts
(types) value, rational, integer, {2,3,4}, 2, truth-value, true, false, cell, token, etc. Notice

2

that an "element", like 2, is also a sort, 2 [7]. (read as {2} if you wish.) The sorts
are ordered based on subsort(subset) inclusion. Figure 1 shows a possible ordering
of sorts in the functional facet. We use the notation < for subsort ordering. For
example, 2 < {2,3,4} < integer < rational < value < datum.

The declarative facet contains (identifier ,functional-facet-sort) bindings ("scoped
information"), which can also be considered as records [I, 51. Figure 2 shows a sample
declarative facet. For example, {x=2, y=true}, is a record where x binds to 2 and
y to true. Similarly, {x=integer, y=truth-value}, is a record including at least two
fields, x and y, where x binds to integer and y to truth-value. This record can also be
read as the sort of those records that binds x to some integer and y to some truth
value. The records are ordered so that pl < p2 iff for every (t = v2) ? p2, there is a
(t = vl) E pi such that vl < v2. For example, {a=2, b=true} < {a=integer,b=true} <
{a=value,b=truth-value} < {a=value} < {}.

Figure 2: Some Sorts in Declarative Facet

The imperative facet contains storage structures. The storage structure is repre-
sented as a map from cell to value or uninitialized where uninitialized < datum. Cells
are also ordered: truth-value-cell < cell, integer-cell < rational-cell < cell, and so on.

Actions often regive values from combinations of facets, so it is helpful to give a

structure for these combinations. See Figure 3. Let F be an element of the above
lattice; an example is 2, {x=2}, which is a T, p element. We call such an element a
context. We give ordering to contexts as follows:

Figure 3: Facet Hierarchy

Definition 2.1 (Context ordering) Let Fl and F2 be contexts. I\ :Â¥ Fa if (facets
of rz) C (facets of F1) and for every 72 G F2, 71 < 7 2 where 71 is the corresponding
facet element of Fl.

For example, 2,{x=true} 5 2,{x=truth-value} 5 integer 5 (). (The element () is the
only element in the basic facet.)

3 Inference Rules for Actions

An action needs input from facets to perform: for example, when a functional-facet
element, 2, and a declarative-facet element, {x=3}, are provided as inputs, the action
give sum(it,the integer bound to x) outputs 5. But what if integer and {x=integer}
are inputed to this action? The output should be integer. This might arise in type
inference. We formalize the semantics of actions by presenting inference rules that can

Action = "complete" 1 "regive" 1 ["give" Yielder] 1
["bind" Yielder "to" Yielder] 1 "rebind" 1
["store" Yielder "in" Yielder I] 1 ["allocate" Yielder] 1
[Yielder "then" "either" Action "or" Action] 1
[Action "and" Action] 1
[Action "and" "then" Action] 1
[Action "then" Action] 1
["furthermore" Action "hence" Action] 1
[Action "before" Action]

Yielder = [C { Yielder. }&Ã] I "it" I ["the" "given" Data] 1
["the" "given" Data "#" natural] 1
["the" Data "bound" "to" Yielder I] 1
["the" Data "stored" "in" Yielder] 1
[Yielder "," Yielder] 1 ["(" Yielder ")"]

Data = "datum" 1 "value" 1 "truth-value" 1 "integer" 1
"rational" 1 "cell" 1 "truth-value-cell" 1 "integer-cell" 1
"rational-cell" 1 "token" 1 - - - 1 "{2,3,4}" 1 - - - 1 "2" 1 - - -

Figure 4: Syntax of Action Notation

describe computation as well as static analysis in the same framework. The syntax
of the actions we deal with is defined in Figure 4.

In the inference system, a sequent T I- A G 7 reads as "within context T, action
A has sort 7." Here are some sound examples:

0 I- give 2 E datum
() I- give 2 E integer
O I- give 2 E 2
{x=3} I- give 2 â 2
2, {x=3} I- give sum(it,the integer bound to x) E 5
2,{x=3} I- give sum(it,the integer bound to x) G integer
2,{x=integer} I- give sum(it,the integer bound to x) E datum

As in the above examples, an action can have many possible T,-y pairs. However, for
fixed To, there is a least To such that Fo I- A E 70 holds. We call this the "least
sorting property". The action give 2 can have sorts, datum, integer, 2, etc., in context
(), but it has the least sort, 2. Similarly, an action, give sum(it,the integer bound to
x), has least sort integer in context 2,{x=integer}.

The inference rules for yielders are presented in Figure 5. Constants with no
arguments, e.g., rational, integer, 3, true, etc., yield themselves. For operations with
more than one argument, rule (Y2) says that if x , . . . , Yn have sorts 7-1, . . . , Tn7 then
[C (K . . . , Yn)] has sort C'(r1,. . . , rn), where C' stands for sorting operation for C.
For example, sum (3,4) yields 7, sum (integer,4) yields integer, and so on. In the
functional context, T, it yields T and [the given D j yields T if T < D is true. A
constraint, T < D, ensures that the given datum is a subsort of D. The inference rule
for [the D bound to Y] asserts that in context T, Y must yield a token t , a binding
(t = r) must be found in the context T, and T < D must hold for [the D bound to
Y] to yield T. The other rules work similarly. Notice that a rule like (Y3) requires a
context of merely T. For example, 2 I- it ? 2 holds. but we require 2, {x = 2} I- it â 2
to hold as well. To obtain this, we add rule (YlO), a "weakening" rule, which safely
expands a context without altering the underlining deduction. The weakening rule
also appears crucial to understanding an important modularity principle of action
semantics: the understanding of an action is not altered if the action is embedded in
an extended context. For example, the semantics of the action, it, should be unaltered
if the context, 2, is enriched to 2,{x=2} due to extensions in the language's design.

Figure 6 defines inference rules for actions. The rules are read like the ones in
Figure 5. The rules for the combinators and, and then, etc., assume that the action is
interference-free, that is, the action is atomic. Interference is considered at the end
of the paper. For reasons to be made clear shortly, or is replaced by then either - or.

These inference rules define the operational semantics of actions as well as property
extraction. For example, consider an action, give the integer bound to x. Given the

T < D
(y4)

T I- [t h e given D : Da ta] E T

T' = component# n T T' < D
(Y5)

T t [t h e given D : Da ta # n : natural] 6 TI

r t Y 6 t t < t o k e n r < { t = r } T < D
f6* r t [the D : Da ta bound t o Y :Yielder] 6 T

r , a Y 6 T r < Dcel l a l l o c a t e d ? (~ , a) i n i t i a l i z e d ? (r , a)
(Y7) I?, u t [t h e D : Da ta stored in Y :Yielder] E u a t T

(w e a k e n i n g r u l e)

Figure 5: Rules for Yielders

0 I- complete E () r I- regive ? r

r t y < - ~
(A3) I' I- [give Y :Yielder] E r (A4) p I- rebind ? p

I' I- Yl ? t t < token I' I- Y2 ? r T < value
(A5) I' I- [bind Yl:Yielder to Y2:Yielder] E {< = r}

(A6)
I?, u 1- Yl ? 7-1 TI < value I', u I- Y2 ? 7-2 r 2 < cell compatible?(rl, 7-2) allocated?(r., a

r, u I- [store Yl :Yielder in Y2 :Yielder] ? overlay(map 7-2 t o ri, u)

l?,u I- Y ? r r < cell
r, u I- [allocate Y :Yielder 1 ? r, overlay(map r to uninitialized, u)

I ' I - Y E t r u e r l - A 1 â ‚
(A8) r I- [Y :Yielder then either Al :Action or A; :Action j ? 7

r I- Y ? false I' I- Aa ? 7
r I- [Y :Yielder then either Al :Action or A2 :Action 1 ? 7

I ' I - A 1 E r i I ' I - A 2 6 r 2
I? I- [Al : Action and A2 :Action] E (TI, 7-2)

I 'I - A1 â r r , r t A2 â ‚
l 2 r I- [Al :Action then A2 :Action] 6 7

r , p I- AI E p1,ul I ' , O ~ ~ ~ ~ ~ Y (P I , P) , ~ I I- A2 7
r, p I- [furthermore Al :Action hence A2 :Action] ? 7

r, p I- A1 ? PI, o-1 r, overlay(p1, p), ~1 I- A2 ? p2,0-2
I', p I- [Al :Action before A2 : Action] 6 overlay (p2, pi), 0-2

(A151
r i < F 2 r 2 I - A E 7 2 72571 (weakening rule)

F1 t- A :Action 6 71

Figure 6: Rules for Actions

input facet, To = {x=2,y=true}, the following proof tree can be drawn to calculate
the operational semantics of the action:

To t x G x x token To < { x = 2} 2 < integer

\ I / /
To t the integer bound t o x 6 2

I
TO t give the integer bound t o x G 2

This tree indeed shows that, given context To, the action produces 2. The same tree
can be drawn for property extraction (e-g., type checking). Given input facet, T i =
{ x = integer,y=truth-value}, we can calculate:

() t X â ‚
(weakening]

T o t x e x x 5 token To 5 { x = integer} integer < integer

\ I / . A
TO t the integer bound t o x G integer

I
To I- give the integer bound to x G integer

When we write F t A G 7, we assert existence of derivation with I' I- A G 7
at the root. In practice, we can draw the derivation tree like a Prolog goal tree and
apply the weakening rule only when absolutely necessary (i.e., as close to leaves of
the tree as possible). Alternatively, we can view the derivation tree as a parse tree
decorated with inherited (F) and synthesized (7) attributes at the nodes.

A usual property is the least sorting property: for a give context, To, an action, A,
has a least sort, To: To t A G 70 holds, and for all 7 such that To: To t A G 7 holds,
yo <: 7. The least sorting property holds for the rules in Figure 5 and 6. (But it can
fail when the usual version of or is added, e.g., () I- give 1 or give 2 G 1 and () I- give
1 or give 2 G 2, but neither 1 nor 2 is least.) This is exploited in the next section.

4 Equivalence of Actions

Applications such as compiling and code improvement require the notion of equiv-
alence of actions [9]. We write F t Al = A2 G 7 to state that T t Al G 7 if and
only if I? t A2 G 7. Two actions, Al and A2, are equivalent in a context, T, if
they have the same properties. Formally stated, we write I? t Al = A2 to state Vy,

I' I- Al = A2 6 7. When I' I- Al = A2 holds, then Al and A2 are interchangeable
in context I'. The chore of checking for equivalence is greatly simplified by the least
sorting property: I' I- Al = A2 holds if and only if I' I- Al = Af E 70 where 70 is
the least sort for Al and A2 with respect to I'. For example, {x=2} I- give the integer
bound to x EE give 2 holds, since the least sorts for both actions is 2. This allows the
simplification of the action bind x t o 2 hence give the integer bound t o x into bind x t o
2 hence give 2. Since () I- bind x t o 2 hence give 2 EE give 2 holds, we can simplify the
original action to just give 2. Such transformations are common during compile-time
processing of a program.

There is another kind of equivalence, with respect to a family of contexts. To
motivate this equivalence, consider the equivalence integer t give it = give sum (it,it).
Although the two actions are equivalent with respect to context integer, this does not
imply, for an integer, n, that n I- give it =. give sum (it ,it) holds. Therefore, a different
form of equivalence is needed.

Let a symbolic expression, like T < integer, refer to a set of contexts, namely those
contexts r such that T < integer holds. For our purposes, a symbolic sort expression
is a sort expression containing placeholders, possibly constrained by inequations. Ex-
amples are T , T if T < integer (written as T < integer for short), and {x=r,y=rf} if
r < T'. Similarly, a symbolic context expression is a context consisting of symbolic
sort expressions.

We can use the inference rules in Figures 5 and 6 to construct derivations of the
form I' I- A G 7, where I' and 7 are symbolic contexts expressions and symbolic sort
expressions, respectively. For example, we can derive r < integer I- give the given
integer E r , since r < integer lets us build the proof tree.

A crucial property of derivations with symbolic expressions is soundness. The
inference rules are sound because, for all ground substitutions, U, if I' I- A ? 7
holds, then so does UI' I- A 6 U7. (A substitution, U, is ground, for 7 if 247
contains no placeholders. U is ground for I' in a similar way. Also, U must make all
constraints true.) A second, important property is principal sorting. For symbolic
context expression, F, 7 is the principal sort, if for all ground substitutions, U, U7 is
the least sort for A with respect to context UI'. With the aid of soundness and an
algorithm that calculates principal sorting, we have this result:

Theorem 4.1 For symbolic context expression, I', ifF I- Ai ?E 7 and I' I- A2 E 7
hold, then for all ground substitutions U, UT I- Al = A2.

The algorithm for calculating principal sorting should be obvious, but there is
the problem that principal sorting is not upheld by the rules for conditional choice.
Consider the example it then either give 1 or give 2 in the context r < truth-value. The
rule for the conditional gives us 1 U 2 = {I, 2}, which is sound but not principal. A
principal scheme would be (r < true Ã‘ 1) U (T < false Ã‘> 2)) but adding conditional
schemes is comput ationally prohibitive.

Fortunately, sound but nonprincipal schemes can be used in code improvement.
Since {1,2} is sound for the above example, and T' < {1,2} I- give the given integer
G T' is sound and principal, we have that r < truth-value I- (it then either give 1 or
give 2) then give the given integer = (it then either give 1 or give 2) then give it. This
kind of transformation is common within compilation algorithms.

5 Comparison to Abstract Interpretation

The development of equivalence with respect to symbolic contexts has a strong rela-
tionship to cousot-cousot-style abstract interpretation [2]. In this section, we try to
explain this relationship. An analysis by means of abstract interpretation is under-
taken in four stages:

1. For the given domain of concrete, computational values, C (e.g., C = (N+B)̂ ,),
we formulate a domain of abstract values, A (e.g., A = {-L,nat,bool,T}, ordered
in the usual way).

2. Next, we define abstraction and concretization maps, abs: PbC + A and conc:
A + PbC, respectively, such that abs and conc form a Galois connection [6].
Note that PbC is the lower powerdomain of C. (For example, abs is the lifting
of abso: C + A, abso(-L) = -L, abso(n) = nut, abso(b) = bool, and conc is
conc(-L) = {-L}, conc(nat) = NJ., conc(boo1) = Bs., and conc(T) = C.)

3. Then, we define the abstract interpretation, [-Iabs, and prove that it is safe with
respect to the concrete ("standard") interpret ation, [-I cone. The safety criterion
is: c ~ n c ([E] ~ ~ ~ (a b s F)) 3 [Elconc I?, for program E and context F.

4. Finally, we prove that the desired program transformation can be performed
based on the results of the abstract interpretation. So, we rewrite [-Iconc into a
"cache semantics" or "sticky semantics", which remembers for each subphrase
Eo, of E, the abstract context, Fo, that appears at EO. A correspondence be-
tween the sticky semantics and the concrete semantics must be proved. Finally,
if we wish to replace Eo by El, we must prove, for Po, the context that appears
at Eo, for all concrete contexts I' ? cone Fo, that [Eo]concI' = [Ei]concF holds.

The idea described above are straightforward, but the technical detail is heavy. In
contrast, in the framework described in the earlier sections, stages 1 through 4 come
more easily:

1. The abstract domain's values and the concrete domain's values are the sorts in
the facet. (e.g., 2, true, and integer, truth-value.)

2. The relationship between "concrete" and "abstract" values is given already by
the subsorting relation (e-g., 2 < integer). Indeed, a symbolic sort expression
like r < integer defines a down-closed set - an element of a lower power-domain.

3. The safety of the "abstract" analysis follows from the monotonicity of the in-
ference rules. (For example, since 2 < integer, it must be that TI < ~2 in 2
I" A. â TI and integer I" A. â T ~ .)

4. The "sticky" semantics is given by a derivation To I" A. ? 70 (FO is the abstract
context of Ao), and the condition under which A. can be transformed to Al is
To I- A. E Al.

We must emphasize that the framework in this paper contains no short-cuts or
it magic" - the same steps as those required for abstract-interpretation-based code

transformations are required here, but the structuring of the facets makes the for-
mulation clearer. This is the main point of the present paper - the structure of a
language's facets indicates the purposes, properties and potential equivalences in the
language. Note also that the structure of the facets limit us in the properties we
can and cannot naturally analyze - the facet structure in Figure 1 is natural for type
inference, but useless for, say, available expressions analysis. It is the responsibility
of the language designer to define facet structures whose sorts indicate the properties
of importance of the language.

Finally, the usual issue regarding analysis of while-loops and recursion remain:
The analysis of the infinite action represented by a while-loop must be "folded" into
a finite action and its analysis.

6 Analysis of Language Definitions

So far we have developed a method of calculating meaning and properties of action
denotations of specific programs. In this section, we show that the same framework
can be applied to analyze and stage language definitions. In particular, we show that
analysis of a language definition extracts a set of static constraints-checking ("type-
checking") rules. Those rules constitute the "static semantics" of the language and
motivate the construction of a residual ("dynamic") semantics. That is, the language
definition has been "staged". The example that follows makes these points clear.

Consider the following semantics equation.

evaluate 1 eqO .^Expression] = evaluate E then give equal-to-zero(the given integer)

Let's try to build a proof tree of the right-hand side of the equation:

To I" evaluate E E rn To,17] I" give equal-to-zero(the given integer) 6 [?I
\ (A121 /

Fo I" evaluate E then give equal-to-zero(the given integer) c I7]

We cannot go on because we do not know what to fill in the box, [̂ l However, we
can finish the analysis if we guess an induction hypothesis, Fo I" evaluate E integer.
The complete proof is:

Fo, integer h

FO, integer I-
Fo I- evaluate E ? integer

\T

o,integer I-

Fo t evaluate E then give

integer < integer

(+)
the given integer ? integer integer < value

(q2) /
equal-to-zero(the given integer) 6 truth-value

(A
give equal-to-zero(the given integer) ? truth-value

(A121 /
equal-to-zero(the given integer) G trut h-value

Thus we can assert that if Fo I- evaluate E G integer holds, then To t evaluate [eqO
E:Expression] G truth-value holds. This assertion can be reformatted as

Fo I- evaluate E G integer
Fo I- evaluate [eqO E : Expression] E truth value (1)

which is a static typing rule for [eqO E : Expression]. Also given this information, we
can see that

rotinteger t give equal-to-zero(the given integer) = give equal-to-zero@)

holds. Therefore, if E satisfies the hypothesis of the typing law, we obtain:

To t [eqO E:Expression] = evaluate .̂ Expression then give equal-to-zero(it) (2)

The semantics equation has been staged into a "staticn component (1) and a "dy-
namic" (actually, a residual) one (2).

Now remaining is the question of how to determine the induction hypothesis. The
answer is to use the symbol sort expressions from Section 4. In the above example,
we say that Fo t evaluate E G TO holds. Then we draw the proof tree as follows:

TO < integer

1 (Y4)
Fo,ro t the given integer G TO TO < value

1 (Y2) /
To, 7-0 t equal-to-zero(the given integer) G truth-value

TO I- evaluate E G TO I (A31

\" 0, TO I- give equal-to-zero(the given integer) G truth-value

(A121 /
TO I- evaluate E then give equal-to-zero(the given integer) (E truth-value

In the process of completing the derivation, the constraint TO < integer is acquired.
This makes the induction hypothesis To t evaluate E 6 TO and TO < integer. This
approach is developed in detail in [4, 31.

7 Conclusion

We have shown the application of the facet structure of action semantics to language
definition, interpretation, and analysis. Although no new methods for analysis are
given, existing methods become clearer and simpler when expressed within the facet
framework.

The development in this paper has been for an interference-free variant of action
semantics. We title this variant of action semantics atomic action semantics, because
the analyses and equivalences assume that the actions are indivisible - atomic. The
extension of the action semantics by interference should add another facet (perhaps
the communicative one), and as promoted earlier in the paper, the extension should
not affect the existing understanding of the atomic actions. Hence, facets and actions
for interference are extensions, and a bisimulation equivalence can be defined for the
extensions.

Finally, we have not treated divergence and failure as actions' outcomes. Di-
vergence corresponds to nonderivability, but failure should be denoted by the sort,
nothing. Unlike the treatment in [8], nothing appears at the top (and not the bottom)
of a facet's subsorting hierarchy, due to the need to preserve monotonicity of the
inference rules.

References

[I] L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism. ACM Computing Surveys, 17(4):471-522, 1985.

[2] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs. In Proceedings of the 4th Annual ACM Symposium
on Principles of Programming Languages, pages 238-252, 1977.

[3] K.-G. Doh and D. A. Schmidt. Extraction of strong typing laws from action
semantics definitions. In ESOP'92, Proc. European Symposium on Programming,
Rennes, volume 582 of Lecture Notes in Computer Science 349, pages 151-166.
Springer-Verlag, 1992.

[4] K.-G. Doh and D. A. Schmidt. Action semantics-directed prototyping. Computer
Languages, 19(4):213-233, 1993.

[5] S. Even and D. A. Schmidt. Category-sorted algebra-based action semantics.
Theoretical Computer Science, 77:71-95, 1990.

[6] A. Melton, D. A. Schmidt, and G. Strecker. Galois connections and computer
science applications. In D. H. Pitt et al., editors, Category Theory and Computer
Programming, number 240 in Lecture Notes in Computer Science, pages 299-312,
Guildford, UK, Sept. 1986.

[7] P. D. Mosses. Unified algebras and action semantics. In STACS'89, Proceedings
of Symposium on Theoretical Aspects of Computer Science, Paderborn. Lecture
Notes in Computer Science 349, Springer-Verlag, 1989.

[8] P. D. Mosses. Action Semantics. Cambridge Tracts in Theoretical Computer
Science 26. Cambridge University Press, 1992.

[9] H. Moura and D. A. Watt. Action transformations in the ACTRESS compiler
generator. In CC'94, Proceedings of the 5th International Conference on Com-
piler Construction, Edinburgh, Lecture Notes in Computer Science 786. Springer-
Verlag, 1994.

[lo] D. A. Watt. Programming Language Syntax and Semantics. Prentice-Hall Inter-
national, Englewood Cliffs, New Jersey, 1991.

Design and Semantics of Action Notation

S. B. Lassen,
Aarhus University, Denmark
email: thalesadairni . aau . dk

Abstract

Action notation (AN) is the specification language of action seman-
tics [Mos92]. This paper discusses AN'S design, semantics, pragmatic
properties, and expressive power.

Often we have the choice between actions and yielders as descrip-
tion domain. Actions are more extensible and also, in a certain sense,
have better semantics. A new semantics for yielders is proposed that
overcomes their deficiencies in these respects.

A new formulation of AN'S operational semantics is sketched that
uses evaluation contexts. They make certain changes and extensions
of AN feasible. A first application is a new semantics for critical
regions. Then AN is extended with the notion of continuations which
is used to describe control operators like call/cc and got o. The idea
of subcontinuations turns out to embody the concepts we will need.

Introduction

This paper discusses a range of issues concerning the design and semantics of AN.
The overall theme is the requirements we put on AN as a specification language
in action semantic descriptions (ASDs). AN must have an intuitive semantics
and an adequate expressive power and must yield extensible ASDs.

A specification language should not just have unlimited expressive power, it
should also guarantee, or at least suggest, descriptions with a realistic compu-
tational content. The applications of action semantics to automatic compiler
generation [MW94, 0rb941 support that the primitives of AN are indeed possible
to implement. This is an additional requirement to AN that is important for the
following discussions.

Section 2 discusses and proposes a revision of the concept of yielders in AN.
This is done by a reduction of AN to a simple, unparameterized kernel. In
section 3, this kernel notation is given an operational semantics using evaluation

contexts. This opens up for a revision of the semantics of critical regions, in
section 4, and an extension with continuations, in section 5.

Yielders

AN incorporates data operations via actions of the form:

give data-operation (jgiven datum#il - . given datum#ira[) .

In [Mos92] the argument sort of give- was extended to arbitrary yielders and
other primitive actions also got parameterized by yielder arguments. Yielders
are compounds of data operations and accesses to state information. A yielder is
evaluated atomically as part of a transition of a primitive action.

In ASDs this extended AN alleviates some of the explicit control flow and data
flow that only serve uninteresting bookkeeping purposes. The parameterized AN
with yielders renders more fluent ASDs.

This section first presents an example that highlights the difference between
actions and yielders in semantic descriptions. Then some changes are proposed
to improve upon certain semantic and pragmatic properties of yielders.

2.1 Example

Suppose we have this simple imperative language fragment with assignment and
a composition construct whose components are evaluated in arbitrary, interleaved
order.

Strnt = [Stmt "11" Stmt I] 1 [Ident ":=" Expr 1 .
Expr = Ident 1 [Expr "+" Expr I] -

exec - :: Stmt -+ action[storing]

(1) exec 1 Sl:Stmt "11" S2:Strnt I] = exec Si and exec S2 .

How many possible outcomes does the following program have when executed in
a state where x is 0 and y is 1 ?

At least two different outcomes must be possible, corresponding to left-to-right
and right-to-left execution of the two statements. But we would expect more
fine-grained interleavings to be possible too.

Consider these two ASDs of assignment and expressions, one that maps ex-
pressions to actions:

(2) exec [7:ldent ":=" E:Expr I] = eval E then store it in the cell bound to I .

eval - :: Expr Ã‘Ã action[giving integer]

(3) eval 1:ldent = give the integer stored in the cell bound t o I .

(4) eval 1 El:Expr "+" E2:Expr I] = 1 eval f i and eval E2
then give sum of them .

and one that maps expressions to yielders:

(2) exec [7:ldent ":=" E:Expr I] = store eval E in the cell bound t o I .

eval _ :: Expr Ã‘ yielder[yielding integer]

(3) eval I: ldent = the integer stored in the cell bound t o I .

(4) eval [El:Expr "+" E2:Expr I] = sum of (eval El, eval E2) .

It is fair to say that this choice, between actions and yielders as description
domain for expressions, is essentially the only choice we have to make in this
description.

These two ASDs are not equivalent. The second description is very coarse-
grained. An assignment is executed as one atomic transition: In one step, the
entire compound expression is evaluated and stored. The example program only
has the first two possible outcomes.

The first description is more fine-grained and has more possible interleavings
and hence two extra possible outcomes:

The second ASD may not be very realistic-an experienced AS user would
never write it like that-yet a novice might be lured into this use of yielders by
the analogy of the roles of actions/yielders in AN and of statements/expressions
in imperative languages. Of course one should know the semantics of AN before
embarking on any ASD and it shouldn't be a surprise that these two ASDs are
not equivalent. Still, the exact semantic difference may not be obvious (where
exactly to put indivisibly in the first ASD to make the two equivalent?).

The semantic difference reflects that the second ASD packs an arbitrary
amount of computations into one indivisible computation step. The atomicity
of yielder evaluation is a very strong computational concept. It is a concept that

is otherwise used sparsely in AN (must be made explicit with indivisibly), it is not
very natural in the computational model of AN (cf. the analysis in section 4))
and it is rarely what we want and need in semantic descriptions. In general,
the indivisible evaluation of yielders doesn't seem to be exploited in ASDs. It
seems reasonable to demand that indivisible execution of several computation
primitives must be explicitly enclosed in indivisibly.

For the language fragment above, the first, fine-grained description seems to
be closest to our computational intuitions and to the operation of computers:
It makes one transition per primitive state access operation and one transition
per primitive state update operation. So if we change the semantics of yielders
to be more fine-grained, indivisible evaluation will always require explicit use of
indivisibly, and the two ASDs above become semantically equivalent.

2.2 Fine-grained semantics

To give a new semantics for yielders, define them as abbreviations for primitive
actions that access state information. And define actions that are parameterized
with yielders as abbreviations for unparameterized actions that read their inputs
from the given transients.

store Yi:yielder in Y2:yielder = (give Yi and give Ya) then update .

give the bindable bound t o <:token = findt .

give the storable stored in Y:yielder = give Y then contents .

give data-operation (I Yl . - . Yn 1) =
1 give Yi and - - - and give Yn
then
give data-operation (jgiven daturn#l - - - given daturn#n[) .

A compound yielder expands to a compound action that evaluates subterms
interleaved. This changes the semantics of yielders. The evaluation of a yielder
is now split into several primitive actions that make one transition per primitive
state access operation.

The elaborate AN with yielders and parameterized actions is reduced to a
simple kernel of unparameterized actions: update, find, con tents etc. give becomes
the only parameterized action, its parameters have the form of a data-operation
working on given transients. This simple kernel notation is essentially just the
old, unparameterized version of AN before the introduction of yielders [Mos83].

When we use the translation rules, the two ASDs from before are translated
into the same simple, unparameterized ASD:

(2) exec I[1:ldent ":=" E:Expr] = 1 eval E and findI
then update .

(3) eval 1:ldent = findI then contents .

(4) eval Ei:Expr "+" E2:Expr lj = 1 eval El and eval E2
then give sum of (given datum#l ,

given datum#2) ,

So we see that the new semantics makes the two natural ASDs equivalent. And
the second, coarse-grained description gets a more intuitive (?), fine-grained in-
terpretation.

2.3 Extensibility

There is a second problem concerning the choice we often have between yielders
and actions. If we choose yielders, we commit ourselves to a much more restricted
description domain. Yielders only describe finite computations without side-
effects. For instance if we add a diverging expression to the language fragment
from before:

Expr = Ident 1 [f Expr "+" Expr 1] 1 1 "0" 1

exec _ :: Stmt -+ action[storing 11]

then the first ASD, that uses actions, is easily extended:

eval - :: Expr Ã‘ action[giving integer 1 1 diverging]] .

(5) 1 eval "W = diverge . I

The second ASD has to be completely rewritten from yielders into actions to
accommodate the extension with divergence

How can this be remedied? Recall that the elaborate notion of yielders is
reduced to just the yielders of the form: a data-operation working on the given
transients. Even if we hold on to the simple kernel that the whole of AN is
reduced to, we could have an even richer notion of yielders to begin with, and
still reduce it to this simple kernel.

How can we enrich yielders to also include effects in the most simple way?
First observe that give maps yielders into actions that gives transients but have
no other effects:

give _ :: yielder[yielding data] -+ action[giving data] .

These two sorts are nearly isomorphic. Every deterministic action A that gives
transients and does nothing else can be approximated by give YA for some
yielder YA.' We can extend yielders to make them completely isomorphic to
actions giving transients, by means of a new yielder:

the data given by - :: action[giving data] Ã‘? yielder[yielding data] .

which is the inverse of give- , and a corresponding rule that reduces this new
yielder to the simple kernel notation:

give the data given by a:action = a .

The aim is to make yielders as extensible as actions, such that, even if we have
chosen to describe something with yielders, we can still extend it with divergence
and side-effects. What we need to do is to extend the sort of yielders even more,
such that they become isomorphic to the sort of actions giving transients, or
diverging, and possibly with side-effects:

affecting = diverging 1 committing 1 storing 1 communicating 1
give - :: yielder[yielding data 1 1 affecting 1]

+ actionigiving data 1 1 affecting 1] .
the data given by - :: action[giving data

+ yielderfyielding

This can be accomplished simply by extending the domain of the data given by - .
This larger sort of yielders gives the headroom we need in semantic descriptions.
Now we can easily extend the second ASD, that uses yielders, to diverge: . eval - :: Expr + yielder[yielding integer 1 1 diverging 1]

(5) 1 eval "ft" = the nothing given by diverge . I

And both ASDs again translate into the same kernel notation description:

(5) leva1 "ft" = diverge - 1

lAn action A:action[giving data] without any "internal" non-determinism (i.e. A's
outcome is determined by its income) can be written as A' = give YA. (Note that A
cannot enact abstractions.) The two actions A, A' will be equivalent except that A
may impose a more deterministic sequence of its state accesses than A'. Thus, with an
appropriate definition of an implementation relation, &, meaning "less deterministic
than", we have A' A. Because A, A' are actions without side-effects, enclosing
them in indivisibly- makes the time sequence of state accesses indifferent, hence we have
indivisibly A' = indivisibly A.

2.4 Yielders vs. Actions
A comparison with standard denotational semantics will clarify the pragmatic
issues involved in the choice between yielders and actions as description domain
in ASDs.

Consider the following terms of some ordinary programming language:

They will be instances of some syntactic categories that are mapped to certain se-
mantic domains by the semantic functions for any denotational or action semantic
description. Here are some examples of semantic domains and denotations for the
example language terms, first in standard denotational semantics and secondly
in action semantics:

semantic domain

7
V = B + Z + L + ...

v,
Env-t Vl

Sto+ Env+ V,
(V -+ Ans) + Env+ Ans

integer
data

yielder

action

1
~2 1

1 ~ 2 11 J-v
Ap. 1 ~ 2 11 AP. ki(not(~x))] ^ - ~ n v - t v ~

Ao-Ap. t/.2lJ Ao-Ap. (not(px))J J-...
XfiXp .~(~~ l) AKAP.K(LI (not (pa;))) J-...

the nothing
1 not the truth-value given by

bound to "x" diverge
give not the

give1 truth-valueboundto diverge
It I f x

In denot ational semantics, the denotations are very sensitive to the underlying
model. (This becomes much more conspicuous when side-effects of other kinds
than divergence are included.) In action semantics, this is not the case. There is
essentially just the choice between yielders (that include data) and actions. Note
that because integer<data< yielder, the change of description domain from integer
into yielder doesn't affect denotations (they are all implicitly injected into the
enlarged domain). But the sorts yielder and action are disjoint and all denotations
are sensitive to this choice between domains.

The pragmatic gain from our extension of the sort yielder above is the ability
to write yielder-denotations such as the nothing given by diverge. One might argue

that this enhanced expressiveness of yielders is an attempt to patch up the con-
sequences of a wrong choice of semantic domain in the first place. If we look at
the problem in this way, then a more thorough solution is to make yielder a direct
subsort of action. Then we would have data<yielder<action and whatever we de-
scribe, the denotations should not change when we extend (or restrict) semantic
domains.

In practice, this would mean that:

give - :: yielder -+ action[giving data] .

give Y:yielder = Y .

which implies e.g.:

(Yi,Y2) = give (Y1,Y2) = give Yl and give Y2 = Yl and Y2 .

and the expansion of parameterized into unparameterized actions looks like this:

store - in - :: yielder, yielder Ã‘ action[completing 1 storing]

update : action[completing 1 storing] .
store Yl:yielder in Y2:yielder = (Yl and Y2) then update

In section 2.3 we showed that yielders must be extended to ensure extensibility of
ASDs that use yielders. Instead of having (almost?) yielder = actionigiving data],
we must extend to yielder = action[giving data 1 affecting].

We might even give up the concept of yielders altogether. The arguments of
parameterized actions could be just arbitrary actions. Then the above expansions,
with actions instead of yielders, specifies that give- is just the identity unary action
combinator, and tupling (- , -) is the same as the binary action combinator and.
In general, each primitive parameterized action is performed by interleaving the
argument actions followed by performing some primitive unparameterized action
on the given data.

This scheme has a minimum of overlapping concepts and it is a thorough solu-
tion that maximizes AN'S contribution to the extensibility AS. But the semantics
of AN may become less transparent at some points. A disadvantage of allowing
actions as arguments of "primitive" actions like store-in- is that control flow is
no longer determined purely by the standard combinators but will be hidden in
parameterized actions and data operations too (arguments are implicitly inter-
leaved).

All the changes and extensions to yielders discussed above are highly tentative.
The reduction of AN to an unparameterized kernel expounded in sections 2.2-2.3
ended up in the notation of an earlier version of AN [Mos83]. It has been used
as description language in its own right [DS93] which indicates that it would be
a sensible kernel notation. The rest of this paper will use this kernel notation.

3 Operational Semantics

This section sketches an operational semantics of the simple, unparameterized
kernel notation. Another formalism will be used than the structural operational
semantics in [Mos92, App.C]. This new formulation may make it easier to do
operational reasoning about actions and action equivalences. In this paper, the
main benefit will be that it will enable us to extend AN with continuations. The
key concepts are:

An evaluation context [FF87] is an action term with a hole at a legal point of
execution in the term. An evaluation context is either just a hole, a hole in the
LHS of any binary action combinator, or a hole in the RHS of any interleaving
action combinator (like and or or):

evaluation-context E ::= [I \ E binary A \ A interleaving E .

We will only describe the functional and declarative facets.
An intermediate configuration decomposes into an evaluation context with a

redex filled into its hole.

intermediate configuration ::= E[R]

This decomposition is not necessarily unique. If there is an interleaving combi-
nator in the configuration, then we have the choice between choosing a redex on
the LHS or the RHS of the interleaving combinator.

A redex is something that can make a primitive transition directly, i.e. a
primitive action fed with transients and bindings which we write as follows:

redex R ::= (d:data, b:bindings) b P:primitive-action .

And the outcome of an action is to give transients, to produce bindings, or to fail.

outcome ::= give d \ produce b 1 fail .

Here are some examples of transitions:

E[(d ,b) b f ind t] - ̂^[give (b at t)] .
E[(d ,b) b bindt] -+ ^[produce (map t to d)] .
^(abstraction of a,b) b enact] Ã‘ Â£'[((),empty-map t> a] .

A configuration that is decomposed into an evaluation context E filled with a
redex makes a transition into the same evaluation context E filled with an ap-
propriate outcome. In t he last transition, the unparameterized enact expects an
abstraction as transients, which it invokes with empty transients and bindings.

A lot of technical details are omitted here, e.g. how to transport the transients
and bindings to the redex, and how to consume the outcome into the evaluation
context such that it can decompose to do the next transition. But the core of the

approach is that the execution of compound terms is determined by the algebraic
specification of evaluation contexts (there are no structural rules as found in
structural operational semantics).

This formulation of the operational semantics has an important property: In
every configuration, the evaluation context of a decomposition is a concrete entity
that represents the context, or "the rest of the program", or the continuation.
It can also be seen as a program pointer. The following sections will exploit
this property in semantic formulations that would be difficult in a structural
operational semantics.

Critical Regions

As a first application of the new formulation of AN'S operational semantics, this
section considers a new semantics for indivisibly.

The current structural operational semantics of indivisibly is

a:action +* t:terminated =+ indivisibly a ~r t .

The body of indivisibly is executed as one big step. This is a very clear and
straightforward semantics that prevents such a "critical region" from being in-
terleaved with something else.

There are some quirks, though: What if a critical region diverges? This is
prohibited in [Mos92] but that means that it is undecidable whether an action
is legal.2 Also, the programming concepts involved in indivisibly are powerful
and not easily implementable. Communication with other agents is shut down
or delayed during the execution of a critical region. Some uses of indivisibly do
not use, and are even in conflict with, these properties regarding communication
and divergence. For instance uses of indivisibly in semantic reasoning to specify
non-interference [Mos92, B.4.11. Preferably, the semantics of indivisibly should
only model non-interference and be closer to realistic implementations.

What if we instead added the following transitions to our new formulation of
the operational semantics?

(entry) E[(d ,b) t> indivisibly a] Ã‘ Â£'[indivisibl (d , b) t> a] .

(exit) E[indivisibly t] + E [t] .

Then we have to make sure that between entry and exit of a critical region
nothing else is interleaved.

'This is undecidable for other reasons too (other examples of illegal actions are
actions that violate sort restrictions of various kinds, e.g. by trying to bind something
that is not of sort bindable or by trying to give something that is a proper sort and
not an individual), yet this undecidability is an undesirable property that we ought to
minimize.

Evaluation contexts provide us with a notion of "program pointer", and this
we can use to keep track of a currently operating critical region. Split the sort of
intermediate configurations into those that are inside a critical region, and those
that are not:

intermediate configuration ::= critical 1 uncritical .

Then uncritical are those configurations with a redex not wrapped in indivisibly
by the enclosing evaluation context:

uncritical u ::= U[(d,b) b a] .

uncritical-context U ::= [I \ U sequential a 1
U interleaving u \ u interleaving U .

And in a critical the redex is inside indivisibly:

critical c ::= Â£'[indivisibl Ef[(d,b) t> a]] .

evaluation-context E ::= [I 1 indivisibly E \ E sequential a 1
E interleaving u \ u interleaving E

The algebraic specification of the sort evaluation-context tells the full story:

0 Critical regions can be nested.

If there is an active critical region (the configuration is critical), the redex
must be chosen therein (the hole in the evaluation context must be on the
critical side of any interleaving combinator because the un-chosen side has
to be uncritical by the definition of evaluation-context).

The two sides of an interleaving combinator cannot both be critical because
initially they must both be uncritical and when one side gets critical, the
other side is excluded until the critical becomes uncritical again.

This improves the semantics for critical regions on some points: It deviates
less from the rest of the operational semantics of AN, it only models that a
critical region cannot be interleaved with anything else, and it gives a natural
interpretation of divergence inside critical regions.

5 Continuations

Continuations are a powerful programming technique in functional programming.
They may be hard to understand but they do have a precise formal semantics.
Yet, it is impossible to give a straightforward ASD of continuations. To remedy
this deficiency of AS, this section extends AN with continuations. Later on
further justification for this extension will be sought by using AN'S continuations
to describe control constructs in imperative languages too.

5.1 callcc and throw

Lets focus on SML/NJ7s callcc and throw. They manipulate a program's con-
tinuations as first-class values.

Evaluation contexts provide the machinery to give an operational semantics
to continuations: When we decompose an intermediate configuration into an
evaluation context E and a redex, then the redex represents the program's cur-
rent operation, and the evaluation context E represents the program's current
continuation, "the rest of the program".

callcc copies the current continuation and applies its argument to it. throw
throws away the current continuation E, and reinstates the continuation El with
outcome v.

callcc and throw have straightforward formal semantics, both operational
and denotational. Therefore we would expect to be able to describe continuations
in AS too, but we cannot in any reasonable way. Continuations are a "notion
of computation" missing in AN (as admitted in [Mos92, p.2111). To describe
callcc and throw in AS, we need to extend AN with similar control operators.

Let copycc in- be a unary action combinator and let throw-with- be a primitive
action with a continuation- and a value-parameter. throw-with- can be expanded
into unparameterized notation as before where throw is an unparameterized action
that expects a continuation and a value-parameter on the given transients:

throw Yi with Y2 = (give Yl and give Yz) then throw .

Continuations fit in smoothly with the operational semantics for AN that was
sketched in section 3:

E[(d,b) b copycc in a] + E[((E,d).b) b a] .
E[((E',d), b) b throw] + E1[give d] .

copycc copies the current continuation and pushes it in front of the current tran-
sients. throw expects a continuation as first component of the transients and
reinstates it with the rest of the current transients.

Now we can easily make an ASD of SML/NJ including callcc and throw.
(There is nothing to it because the troublesome control operators are just trans-
lated into the corresponding actions.)

value = abstraction 1 continuation 1

eval _ :: Expr + action

(1) eval 1 "fn" I:ldent "=>" E:Expr 1 =
give abstraction of

furthermore bind token of I to given valuer1
hence eval E .

(2) eval [El:Expr E2:Expr]I = 1 eval El and then eval E2
then enact application of given abstraction#!

t o given value#2 .

(3) eval ["callcc" E:Expr 1 = eval E then
copycc in enact application o f given a bstraction#2

t o given continuation#! .

(4) eval ["throw" El : Expr E2:Expr I =
1 eval El and then eval Â£

then throw given continuation#! with given value#2 .

Note that SML is a deterministic language with an explicit left-to-right evaluation
order. What is the impact of this on the semantics of continuations? To see this,
consider the following expressions that one would expect to be equivalent:

7
(c a l l c c (f n k => throw f)) e CY f e

They are with SML's left-to-right evaluation of function and argument. In
Scheme where the evaluation order is unspecified, either left-to-right or right-to-
left, the equivalence also holds.

But if we write "and" instead of "and then" in the SML/NJ ASD, such that
any interleaving evaluation is possible, then the equivalence ceases to hold. An
example:

(c a l l c c (f n k => throw (f n x => x))) (p r i n t "hello")
7

CY (fn x => x) (p r i n t "hello")
CY p r i n t "hel lo"

c a l l c c may copy the current continuation (or context) just before p r i n t "hello".
But before the continuation is reinstated by throw, "hel lo" may be printed.
Then throw will rewind the RHS of the context and "hel lo" is printed again.

What we see here is that continuations are a global notion, that becomes
uncontrollable if paired with non-sequentiality. The above SML/N J ASD doesn't
have interleavings and there is no problem. But are copycc and throw sensible
operations in AN as such if it is possible to program something as counterintuitive
as actions that rewind their contexts?

5.2 Pascal's goto

To substantiate this problem, consider the following application of AN'S copycc
and throw to describe goto in a Pascal-like language.

A block consists of declarations and a body:

l a b e l 1
f u n c t i o n f (. . .) l a b e l m

b e g i n ... g o t o m ... end
f u n c t i o n g(...) b e g i n ... g o t o 1 ... end
v a r i a b l e x
b e g i n g o t o 1

1: X : = f + g
end

The block's labels are visible inside the blocks in the declarations. So it is possible
to jump within the body of a block or to the body of an enclosing block.

This is a fragment of an ASD using continuations:

(1) activate [I ~ : ~ a b e l * un unction* v:Variable*
"begin" ~ : S t m t * "end" I) =

furthermore declare L before declare F before declare V
hence run S .

(2) declare [I "label" I:ldent] = indirectly bind token of I t o unknown .

(3) declare - - -

(4) run (~ ~ : ~ t m t * S2:Unlabeled-Stmt) = run Sl and then exec S2 .

(5) run (s1:Stmt* I ":" S2:Unlabeled-Stmt) =
copycc in

redirect token of I t o given continuation#!
and then run Sl

and then exec S2 .

(6) run () = complete .

(7) exec [I "goto" I:ldent I] = throw the continuation bound t o token of I with () .

(8) exec [I I:ldent ":=" E:Expr] =
eval E then store it in the cell bound to token o f I .

(9) eval [I El "+" E2] = (eval El and eval E2) then give sum of them .

The body of a block starts with a series of copyccs that copy the continuations
to be bound to the labels.

The interleaving evaluation of f and g in f + g clashes with the use of
continuations in the ASD: The continuation (or context) that f copies and binds m
to, includes the interleaved evaluation of g. When f throws this continuation and
got o m, then the evaluation of g is rewound to the state when the m-continuation
was once copied. This is certainly not the intended semantics of goto. We
definitely expect a local goto not to have such bizarre global effects.

5.3 Subcontinuat ions

Recall the semantics of copycc and throw. copycc copies its global context, pos-
sibly including interleaved computations. When this global context is thrown,
interleaved computations are rewound to their state at the time of copycc. This
way, something in an interleaved branch may, inadvertently, be executed twice.

There exist several proposals for control delimiters to tame the global power of
continuations [Fel88, DF901. Subcontinuations [HDA94] is the idea most relevant
for our purposes. Subcontinuations have been proposed for concurrent settings,
and they address exactly the problems posed by interleaving action^.^

Introduce a unary action combinator spawn-as- with some kind of identifica-
tion id, and a local version of copycc called copyin- with a parameter referring to
an enclosing spawn. copy only captures the local context inside the correspond-
ing spawn. Call such a local context a subcontext or subcontinuation. When we
throw a subcontinuation we only replace the appropriate subcontext:

E[(d,b) b spawn id as a] -+ Â£'[spaw id as (d,b) t> a] .

E[Sid[(d, b) b COPY id in a]] + E[Sid[((Sid,d). b) b a] .

E[Sid[((S!,,d), b) > throw]] -+ E[S:d[gi~e dl] .
where Sid is a subcontext of the form spawn id as Â£'-,i , and Â£'-,i is an evaluation
context without occurrences of spawn id as .

The point is that now we can put a spawn around our copys and thereby
enforce locality on our continuation-manipulations. When we copy and throw
subcontinuations, we don't affect the context outside the corresponding spawn.

This doesn't solve all our problems. copy and throw can still do counterin-
tuitive computations that rewind their contexts. But now we have the means
to control this undesirable feature; it is only within the subcontext in question

3[Mor94] is a different approach that, in parallel settings, makes control operators
simulate the behaviour of sequential execution. This also ensures some locality such
that the goto-example would work. But in a semantic specification language like AN,
a more primitive semantics with tighter control of locality and scope of continuations
seems preferable.

that such rewinding takes place. Therefore these operations may still not be al-
together reassuring, but they are a powerful description tool and the locality of
the new operations seem to be expressive of exactly the locality we need.

In the semantics of our SML/NJ fragment, we put a spawn at the root of the
program, and all cal lccs copy everything within that global spawn.

In the "Pascal" semantics we can now enclose every block in its own spawn
and make local labels local. Now it is only the body of f that is replaced and
affected when f makes a local goto m.

(1) activate [L :L~ bel* un unction* v:Varia ble*
"begin" ~ : S t m t * "end" 1 =

furthermore declare L before declare F before declare V
hence

1 generate a block-id then spawn it as 1 run S .

(2) run (si:strnt* I ":" S2:Unlabeled-Stmt) =

redirect token of I t o given continuation#!

give given block-id#2 then 1 run Sl I I and then
and then exec S2 .

5.4 Control filters

Why hasn't this powerful description tool of continuations been part of AS right
from its origin?

There is a big problem with the continuation-description of gotos: We might
want to describe clean up on exit from a block. And there is no way to combine
this obligation to clean up with the throwing of continuations.

As an example, suppose we relinquish local variables on exit from a block as
follows:

(1) activate [L : L ~ bel* un unction* v:Variable*
"begin" s : ~ t m t * "end" j =

furthermore declare L before declare F before declare V
hence

generate a block-id then spawn it as run S
1 thereafter relinquish V 1 .

What should Al thereafter A2 mean? Certainly, on normal completion of Al,
At should be executed. But what if the body is left by means of a got o to an
enclosing block, i.e. Al throws a subcontinuation?

There is a concept of control-filters associated with subcontinuations that
meets out purposes very nicely: The idea is to let throw slide out through the
subcontext it replaces. During this, all control-filters that are encountered are
executed on the way out. In our case, Al thereafter A2 is a control-filter that
insists that A2 is executed, even if a subcontinuation is thrown by Al.

Using the expressiveness of evaluation contexts, we can write the semantics
of throw and thereafter like this:

E[Tid[((Sidf d) . b) b throw]] -+ Â£'[^[giv dl] .
E[E4[((Sidf d) , b) b throw] thereafter a] +

E[((Sidfd),b) b throw thereafter a] .

evaluation-context E ::= . . . 1 throw S with d thereafter E .

where Tid is of the form spawn id as EYid , and E-,id is an evaluation context
without occurrences of either spawn id as or thereafter . (The flow of transients
and bindings through thereafter should probably be chosen like trap.)

This also links the semantics of continuations and the semantics of escape and
trap. Subcontinuations subsume these exception handling actions.

Subcontinuations could form a powerful control facet in AN. The syntax of
the constructs presented here may not be particularly well-chosen and several
semantic details have to be worked out. But the subcontinuation operations
seem to come close to the control concepts we really need for the description of
real programming languages.

Conclusion

A range of topics concerning AN has been explored in this paper.
First we proposed a new, fine-grained semantics for yielders, and a way to

make ASDs that use yielders more extensible. This we did by reducing the
elaborate, parameterized AN to a simple, unparameterized kernel.

Then, we formulated the operational semantics of this AN kernel in terms
of evaluation contexts. The applications of this formulation were to revise the
semantics of critical regions and to extend AN with continuations.

The latter made it possible to describe the control operators callcc and
throw. Then the mismatch of interleavings and continuations led to the con-
cept of subcont inuations. Coupled with control-filters, subcontinuations appear
to embody the concepts we need in ASDs. This was the case in the example of
gotos.

Acknowledgements. I would like to thank Peter Mosses and Olivier Danvy
for valuable discussions and guidance in parts of this work.

References

[DF90] 0. Danvy and A. Filinski. Abstracting control. In Conference of LISP
and Functional Programming, pages 151-160. ACM, 1990.

[DS93] Kyung-Goo Doh and David Schmidt. Action semantics-directed proto-
typing. Comput. Lung., 19(4):213-233, 1993.

[Fel88] Matthias Felleisen. The theory and practice of first-class prompts. In
POPL, pages 180-190. ACM, 1988.

[FF87] Matthias Felleisen and Daniel P. Friedman. Control operators, the
SECD-machine, and the A-calculus. In Martin Wirsing, editor, Formal
Description of Programming Concepts 111, Proc. IFIP TC2 Working
Conference, Gl. Avernces, 1986. IFIP, North-Holland, 1987.

[HDA94] Robert Hieb, R. Kent Dybvig, and Claude W. Anderson. Subcontinu-
ations. LISP and Symbolic Computation, 7(1):83-110, 1994.

[Mor94] Luc Moreau. The PCKS-machine: an abstract machine for sound eval-
uation of parallel functional programs with first-class continuations. In
Programming Languages and Systems - ESOP'94, volume 788 of Lec-
ture Notes in Computer Science, pages 424438. Springer-Verlag, 1994.

[Mos83] Peter D. Mosses. Abstract semantic algebras! In Dines Bjgrner, edi-
tor, Formal Description of Programming Concepts 11, Proc. IFIP TC2
Working Conference, Garmisch-Partenkirchen, 1982. IFIP, North-
Holland, 1983.

[Mos92] Peter D. Mosses. Action Semantics. Number 26 in Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1992.

[MW94] H. Moura and D. Watt. Action transformations in the ACTRESS com-
piler generator. In CC'94, volume 786 of Lecture Notes in Computer
Science. Springer-Verlag, 1994.

[0rb94] Peter 0rbaek. OASIS: an optimizing action-based compiler generator.
In CC994, volume 786 of Lecture Notes in Computer Science. Springer-
Verlag, 1994.

The Formal Specification of ANDF

An Application of Action Semantics

Jens Ulrik Toft DDC International AIS

Bo Stig Hansen Technical University of Denmark

ESPRIT PROJECT 6062 ornilglue

Contents

1. What is ANDF?

2. ANDF Examples

3. Specification Challenges

4. Requirements

5. Specification of ANDF using Action Notation and

RSL

6. Conclusion

What is ANDF?

Stands for: Architecture Neutral Distribution Format

of the Open Software Foundation (OSF).

Description: General intermediate language which

may be used as target when compiling usual high-level

languages.

Source program C Ada . . .

ANDF producer 0 0

ANDF code

ANDF installer 0 0 * g o

Target code MIPS MC68000 . . .

int f ac (int arg)

i

int res = 1;

while (arg > 1) {

res := res * arg;
arg-- ;

1

return res;

1

7

Example Program
Factorial in ANDF

DEFINE int:sort = INTEGER(0..2"32-1)

def fac =

proc(arg:int) : int

variable res := 1:int

labelled
startat 11

11: goto 12 ifnot
c (arg:int) >l:int;

res : = c (res: int) *c (arg: int) ;

arg := c(arg:int)-1:int;

got0 11;

12 : return c (r : int)

r Â¥

Compound Data Representations

struct S { unsigned char c; S* n; }

Storage Layout

aligned:
T T

In ANDF

COMPOUND (s z)
where sz =

pad(size(INTEGER(0. .255)) ,
alignment (POINTER))

+ size (POINTER)

ANDF Alignment and Size Algebras

Are sizes and alignments natural numbers?

When can sizes be added?

Alignment requirements are partially ordered by

implication, e.g.:

a l i g n m e n t (POINTER) =2

a l i g n m e n t (INTEGER(0. .255))

Sizes of data representations are divided into classes

(types) according to their alignment requirements:

s i z e (r) : S I Z E (a l i g n m e n t (r))

s i : SIZE (a1) A $2 :SIZE (a2) A (ai =Ã a2)

s l + s2 : S I Z E (al)

Note: The size algebra is not quite right. In the ANDF

specification an algebra of offsets is used instead.

ANDF Specification Challenges
and their Solution in Action Semantics

Under-specified language notions, e.g., alignment

and size.

AN: algebraic specification

Partial functions (intended non-termination)

AN: operational semantics

Under-specified order of evaluation

AN; actions composed with "and

Abnormal sequencing (jumps)

AN: escape-with, trap

Concurrency (future extension of ANDF)

AN: communicative facet

ANDF Formal Specification

General Requirements

1. Must be unambiguous, consistent and complete

regarding the meaning of ANDF language

constructs and features.

corr 2. Must leave open all possibilities of making

implementations.

3. Must be comprehensible and concise.

4. Must have a maintainable form.

5. Should support stepwise developments of

implementations.

6. Should support the kinds of proofs which are

relevant for the anticipated usersluses.

ect

7

ANDF Formal Specification

Specification Language Requirements

1. Must support modularisation.

2. Must be supported by tools to help eliminate simple

kinds of errors, e.g., grammatical errors, use of

identifiers not declared, and type errors.

3. Must be supported by tools for easy production of

revised specifications, e.g., automatic pretty printing

and automatic formula and line numbering.

I 4. Must be supported by a proof editinglchecking tool.

ANDF Formal Specification

The RAISE Specification Language (RSL)

Supports algebraic as well as model-oriented, VDM

like specification.

Applicative, imperative and concurrent specification

styles.

Full featured module notion.

Supported by a commercial toolkit:

- syntax-directed editor

- type checker

- proof editor

- LaTeX pretty printer

- library with version control

- code generators for executable subset

ANDF Formal Specification

Choice of Specification Language

Action Notation does not have the tool support

required.

RSL has, if used straight-forwardly, some weaknesses:

Not as comprehensible and concise.

Difficult description of intended partiality.

Otherwise, it meets all requirements.

Solution: Embed (a subset of) Action Notation in RSL.

r

ANDF Formal Specification

Action Notation in RSL

Abstract syntax for Action Notation

Action = ConstantAct 1 DyadicAct 1 MonadicAct ...
ConstantAct == ESCAPE 1 COMPLETE 1 ...
DyadicAct = Action * InfixActOp * Action

InfixActOp == THEN 1 AND 1 OR 1 ...

Example

(All THEN, (A2, OR, A3))

Operational Semantics

Stepped: Action * State Ã‘ (Action * State)-set

ANDF Formal Specification
Overall structure

syntax with macro

expand

ANDF syntax without macros and

conditional code

evaluate

stepped

I
Set of possible execution traces

ANDF Formal Specification

Example:

Action Semantics for "bitwise and"

((evaluate(arg1), AND, evaluate(arg2)),

THEN,

(GIVE(bitwise-and(the-GIVEN-integer(l),

the-GIVEN-integer(2))), OR,

(check-undefargs,

THEN,

undefandargs))}

Results: A complete specification of ANDF abstract

syntax, static semantics and dynamic semantics

(800 pages134000 lines)

Ressources: 2 man years

Hardest challenges:

Not overspecifying the semantics

Interpreting the informal description correctly

Uses:

Reference for precise semantics

Basis for development of ANDF interpreter

w

References

Jens I? Nielsen and Jens Ulrik Toft. Formal Specification

of AND6 Existing Subset. Technical report DDC-1

2021 04lRPTl19, issue 2, DDC International NS, 1994.

Jens Ulrik Toft. Feasibility of using RSL as the

Specification Language for the ANDF Formal

Specification. Technical report DDC-1 2021 04lRPTl12,

issue 2, DDC International NS, 1993.

Bo Stig Hansen and Jergen Bundgaard. The Role of

the ANDF Formal Specification. Technical report DDC-1

2021 04lRPTl5, issue 2, DDC International A&, 1992.

Copies can be obtained by contacting Jens Ulrik Toft:

jut@ddci.dk

Comparing Action Semantics and
Evolving Algebra B ased Specifications

with Respect to Applications

Amd Poetzsch-Heffter
Fakultat fur Informatik
Technische Universitat

D-80290 Munchen
poetzschQinformat ik. tu-muenchen.de

Abstract

Action semantics is compared to evolving algebra based language spec-
ifications. After a short introduction to and a general comparison of these
two frameworks, we discuss different aspects of the frameworks relevant to
language documentation and programming tool development.

1 Introduction

In the last twenty years, many different frameworks for the formal specification
of programming languages have been developed: e.g. denotational, structural op-
erational, action, and evolving algebra semantics. Whereas a lot of work has
been spent to develop these frameworks and to apply them to more and more
realistic languages, almost no effort has been made so far to compare and relate
the different approaches. Comparisons should reveal for which class of languages
a specification framework is most appropriate and for which language implemen-
tation tasks a framework provides a suitable formal basis. Relating frameworks
should help to improve or even combine them in order to exploit the advantages
of different frameworks.

In this extended abstract, we summarize a comparison between action seman-
tics and evolving algebra semantics. Section 2 provides tiny introductions into
these frameworks and compares the underlying specification principles. Section
3 discusses the frameworks with respect to language documentation and tool
development.

2 General Comparison

Action semantics is an oprational language specification framework developed by
P. Mosses (see [4]). An action semantics specification consists of three parts:
(1.) the context-free syntax; (2.) the specification of data types and auxiliary
actions (based on an elaborate set of predefined data types and actions); (3.)
the semantic functions mapping each syntax tree into a (composed) action. The
semantic functions are inductively defined over the syntax trees, composing the
action for a tree from the actions of its subtrees. Actions are semantic entities
used to express control behaviour (possibly nondeterministic, parallel) and the
manipulation of sophisticated implicit computation environments consisting of
name bindings, stored information, temporary results, and data communicated
between distributed actions. Actions are described by applying action combi-
nators to primitive actions. All parts of an action semantics description are
completely formalized by so-called universal algebras.

Evolving algebras are an operational specification framework developed by
Y. Gurevich (the following comparison is based on the introduction in [3]; for
evolving algebras with several demons cf. [2]). They are used to specify the dy-
namic semantics of programming languages (other applications are protocol and
architecture specification). Syntax and static semantics are usually described in
an informal way, but confer [5] where attributed occurrence algebras are used
for these purposes. An evolving algebra specification consists of a set of rules
describing how configurations are related to possible successor configurations.
A configuration includes all information necessary for expressing the dynamic
behaviour of a program, in particular it incorporates the program itself. Configu-
rations are formally modeled by first-order algebras. The semantics of a program
is given by the set of its traces/runs starting with an initial configuration. Evolv-
ing algebras support modularization based on the rule set and the configuration
structure: Different aspects of the language specification are handled by different
rules allowing e.g. to seperate the value propagation in expression evaluation from
control flow aspects or aspects concerning parallel execution from the rest of the
specification. Beside this, evolving algebras enable very loose specifications of
configurations, thereby supporting different refinement techniques.

The different specification principles and properties of action semantics and
evolving algebras are summarized in the following table:

specification principle

composition principle of
semantics
computation

composed action 1 lation based on rich pro-

action semantics

according to syntax tree

environment
specification method

evolving algebra

according to configura-
structure
implicit with local and

11 of powerful action corn- 1 dependent computation

tion structure
explicit and global (part

global parts
mapping syntax tree to

design principle

11 binators (language 1 model (from scratch)

of configuration)
specifying transition re-

using sophisticated set
gram representations
designing a language

main semantic entities

I1 1 semantics
range of formalization

3 Using Language Specifications

independent)
equivalent classes of

Language specifications are written for different purposes. In this section, we
sketch a comparison of action semantics and evolving algebras w.r.t. language
document ation and tool development.

sets of traces over
actions
syntax and semantics

3.1 Reading & Writing Language Specificat ions

algebras
focussing on dynamic

When language specifications are used mainly for language documentation and
standardization purposes, the main comparison criteria are readability, appli-
cability to a wide language class, reusability of existing specifications, and the
complexity of writing specification.

A general advantage of action semantics over evolving algebras is that it pro-
vides (a) a standardized, elegant, and sorted notation covering the whole task of
language specification and (b) a well-developed module concept. For the other
aspects of the comparison two factors are of major importance:

1. Can knowledge of the specification framework be assumed?

2. Is the specified language essentially a variant or mixture of existing imper-
ative or functional languages?

If a good knowledge of action semantics is assumed, the rather large number of
predefined actions with all their incorporated know-how are a great help for read-
ing and writing specifications. Otherwise, evolving algebras have the advantage
that they are easier to learn, so that one can concentrate on the design of the
language specification. (The importance of this advantage in practical situations
should not be underestimated.)

In case that (2.) is true, the specification knowledge built into the action facets
and the clear specification methodology of action semantics can be very helpful
to guide the specification process and allow for reuse and adaption of existing
specification parts. Whereas reuse and adaption is possible in evolving algebras
as well, the management of transient information and the use of language-specific
tasks1 are the primitive the can cause some overhead.

On the other hand, when it comes to the specification of languages with new
inventive constructs (where formal specification is essential to gain clarity from
the very beginning), the fixed methodology of action semantics (mapping syntax
trees to actions) can create unnecessary difficulties or even unsolvable problems
(continuation handling, dynamic program modification) whereas the flexibility of
evolving algebras allows to design suitable specifications for languages based on
extremly different paradigms (e.g. logical languages, object oriented languages
making extensive use of messages as call mechanism, assembler languages, ..).
The main advantage of evolving algebras in this respect is that they enable to
specify the dynamic semantics over the most appropriate static structure which
may be much richer than abstract syntax trees.

3.2 Developing Language-Specific Tools

Developing language-specific tools (e.g. language-based editors, browsers, inter-
preters, compilers, optimizer, program analyser) from language specifications is
a major issue of language design and implementation. Up to now, different tools
are based on different, unconnected specification techniques; e.g. many tools are
based on attribute grammars, but optimization methods need flow graph rep-
resentations. An integrated framework where tool development is considered as
specification refinement could support use and reuse of specifications and increase
the correctness of programming tools. With this goal in mind, a comparison of
action semantics and evolving algebras can be summarized as follows:

Action Semantics: The advantage of action semantics is that optimization
and implementation technology can be based on actions, i.e. is language
independent. Therefore action semantics is a good candidate for automatic
compiler generation. On the other hand, it is difficult to express language-
specific optimizations and even harder to use an action semantics specifi-
cation as a basis for interactive tools, because a distinction between static
and dynamic semantics is not supported by the framework.

Evolving Algebras: The strength of evolving algebras is the stepwise de-
velopment of tools starting with the language specification. The flexibility
of evolving algebras allows to perform refinements in the framework itself:

'The basic operations of a language are usually called tasks in evolving algebra specifications;
such a task can be considered as a language-specific action.

46

e.g. the possibility to explicitly distinguish between static and dynamic
aspects or to integrate control flow graph based optimizations. Whereas
refinement of data types can be performed in both frameworks, refinement
of the basic operations (usually called tasks in evolving algebras) can only
be done within evolving algebras. In addition to this, having the programs
(possibly including attributes and control informations) as part of the con-
figurations is a big advantage for interactive applications.

A very interesting aspect is to compare the suitability of the frameworks for
verification tools. The advantage of action semantics in this respect is certainly
that it provides completely formal specifications and an explicit notion of program
equivalence whereas in evolving algebra specifications syntax, static semantics,
and a program equivalence notion is often kept informal. The strength of evolving
algebras lies in correctness proofs of compilation schemes (cf. e.g. [I]) and as a
foundation for interactive program verifier.

4 Conclusions

We compared action semantics to evolving algebra based language specifications
and discussed their application to different tasks of language design and imple-
mentation. The goal of the comparison was not only to provide some criteria that
may guide people to chose between action semantics and evolving algebra for a
specification task, but to encourage to close the gap between these frameworks
in order to combine their respective advantages.

References

[I] E. B6rger and D. Rosenzweig. The WAM-definition and compiler correctness.
Technical Report TR-14/92, dipartimento di inforrnatica, universita di Pisa,
1992.

[2] P. Glavan and D. Rosenzweig. Communicating evolving algebras. In E. B.
et al., editor, Computer Science Logic, pages 182-215, 1992. LNCS 702.

[3] Y. Gurevich. Evolving Algebras, volume 43, pages 264-284. EATCS Bulletin,
1991.

[4] P. Mosses. Action Semantics. Cambridge University Press, 1992. "Tracts in
Theoretical Computer Science".

[5] A. Poetzsch-Heffter. Developing efficient interpreters based on formal lan-
guage specifications. In P. Fritzson, editor, Compiler Construction, 1994.
LNCS 786.

A Framework for Generating Compilers
from Natural Semantics Specifications

Stephen McKeever
swrn@comlab.ox.ac.uk

Programming Research Group,
Oxford University

Abstract
We consider the problem of automatically deriving correct compilers
from Natural Semantics specifications [Kahn 87, NN 921 of
programming languages. Our method is based on the idea that a
programming language is inherently a specification of a computation
done in stages. Certain phrases in a language expression are intended to
be evaluated at compile time whereas others are left until run time. We
divide the computation described in the semantics into two parts: a
compile time translator and a run time executor.

1 Introduction

Staging transformations were introduced in [JS 861 as a general approach to separating
stages or phases of a computation based on the availability of data. We consider two
general strategies for staging: partial evaluation and pass separation. In both cases we
assume given an interpreter interp, a source program prog and its data data the task of
separating the computations formed by interp(prog,data).

Partial Evaluation is the process of specialising a program with respect to part
of its input in order to generate a residual program. In our case we are interested in
calculating interpprog such that:

interpproe data = interp (prog,data)

Thus, the partial evaluation step represents the compilation phase of the computation,
and the application of the residual program to the original program's data represents
the evaluation phase. The drawback of this approach is that the generated code is in
the partial evaluator's output language, typically the language the interpreter is
written in. Partial evaluation will not devise a target language suitable for the source
language or invent new runtime data structures. However, partial evaluation is
automatable and has an established research base [JGS 931.

Pass separation is the process of constructing from a program p a pair of
programs p\,pz such that [JS 861:

The computation p(x,y) can therefore be split into a first stage computing pl(x),
yielding some value v, followed by a second stage computing p2(v,y). In our

compilation scenario, if we define p to be an interpreter for a programming language,
x to be a program in that language and y to be some input data to program x then pi
becomes the compiler and p2 executes this compiled code on the data.

Hannan presents a series of transformations that automate this split in [Han 91aI.
They can separate an interpreter into a translator and corresponding evaluator, each
presented as a sequence of rewrite rules, by generating a command language that acts
on the given state components. Unfortunately, the technique does not generate new
run time data structures automatically or perform any compile time computation
(such as replacing identifiers by their memory locations).

We present a method of overcoming these deficiencies by analysing how the
environment is used so that appropriate run time data structures are introduced.
Followed by performing an initial pass separation to evaluate and encode the compile
time computation back into the syntax. We extend the above equation as follows:

Along with the corresponding diagram showing the various components of our
framework:

Natural Semantics Specification

Data Structures

Converl to Term
Rewriting System

r
Pass Se~aration for

(Term ~ iwr i t ing ~ y s t e m s .

We introduce appropriate data
structures into the semantics,
generating what we call
Implementation Oriented Semanticsl in
order to create a distinctive split
between compile time binding
information and run time objects.
Compile time computation will be
carried out by the generated
contextual analyser that converts
syntactical terms into active syntax.
This allows us to specialise the
Implementation Oriented Semantics to
deal solely with the run time
behaviour of a source program
described by the active syntax.
These residual semantic rules! called
the Active Semantics! are converted
down to term rewriting systemsf
producing an Abstract Interpreter! on
which Hannan's pass separation
technique is applied.

(Abstract compiler)

2 Natural Semantics

An operational semantics is concerned with how to execute programs and not merely
with what the result of an execution is. It does so by assigning meaning to each
language construct in terms of some underlying abstract machine or inference system.
A natural semantics describes how the overall results of executions are obtained by
specifying the relationship between the initial and the final state for each language
construct. Specifications are given in terms of transition relations of the form:

env I- (P, s) +T s'

which can be read as in the context env, the execution of the phrase P (from the
syntactic class 3 in state s will terminate and the resulting state will be st. A rule has
the general form:

We shall consider a simple imperative language which has the following syntax:

c E CMD, d E DEC, a E A-EXP, b E B-EXP, v E VAR, n E NUM, t E BOOL

a ::= n I v I a1 + a2 I a1 - a2 I a1 X a2
b ::= true I false lal =a2 I bl ~b~ 14
c ::= v : = a lcl ; c2 I if b then cl elsec2 I while b do c I begin d ; c end
d ::= v : = a ; d I &

Due to the lack of space we shall concentrate on the rules for assignment and the
while loop that demonstrate some of the more interesting features of our approach.

Assign
env I- (a,M) +a k

env I- (v := a, M) +c M[env v] + k

env I- (b, M) jb tt

env I- (c ,M) +c M'

env I- (while b do c, M') +" M"
env I- (while b do c, M) jC M"

env F (while b do c, M) jC M

3 Implementation Oriented Semantics

The initial phase of our framework is similar to a partial evaluator's, namely that we
analyse the semantics in order to deduce what computation can be undertaken at
compile time. However, the main thrust of our analysis is to decide how best to
implement the language at run time as opposed to a partial evaluator's which will
attempt to undertake as much computation at compile time as possible.

Thus, we are concerned with the flow of declarative and transient information
described by the semantics. For the former! we are interested in splitting
environments into symbol tables and associated run time memories. In our simple
imperative language all bindings are static such that variables can be allocated
memory cells at compile time. However, if we add procedures with static bindings to
the language then our symbol table will consist of mappings from identifiers to level
and displacement pairs, along with a run time stack of activation records. Alternatively!
if our procedures have dynamic bindings then we are forced to leave the environment
as a run time data structure and introduce dumps to maintain the flow of information.

For transient information, such as the results of expressions, we need to
introduce suitable data structures to maintain the values of intermediate results for as
long as they are required, This will normally consist of either register or stack
introduction.

In our example language we introduce a stack to evaluate both boolean and
arithmetic expressions. We model the environment with a symbol table and a pointer,
top, to the next free location in the memory.

Assign

(symy -- top) I- (while b do cy (sY M')) +c (Sy M")

(symy top) I- (while b do cy (sY M)) +c (Sy M") --

(symy top) I- (by (Sy M)) +b (ff: SY MI
While j a k e --

(symy top) I- (while b do cy (sY M)) +c (Sy M) --

Compile time data structures and computations are underlined.

4 Contextual Analyser Generator

Using the annotated semantics of the previous section we can perform our first pass
separation by generating functions that convert source programs into active syntax
terms along with a specialised version of the semantics.

The Contextual Analyser will consist of a series of functions mapping syntactic
phrases of a source program onto their corresponding active syntactic representations.
The reason for which contextual information is passed to each function is so that
compile time evaluation can be undertaken and inserted into the new active syntactic
term. Typical examples of this will be to replace strings representing basic values by
the basic values themselves and to replace identifiers by their run time locations
(stored in the compile time symbol table).

Contextual Analyser

= Assign(addr, arg)
where

addr = sym v
=g = A (1 4 ,(sym, top))

The compile time behaviour of a source program will have been computed by
the Contextual Analyser so that a residual semantic description will be sufficient to
describe the remaining run tirne behaviour.

Active Semantics

Assign
(Assign(addr, a) , (s, M)) -+ (S , M[addr] + k)

While-true (c ,(S, M)) -+ (S , M') (While(b, c),(s, M')) -+ (S , M")
(While(b, c), (s, M)) -+ (S , M")

5 Converting Active Semantics into Term Rewriting Systems

If we consider that an inference rule has a simple conclusion A and possibly many
premises A1 ... % then we might read a rule as saying: "to prove A we should prove A1
and ... and An1'. The aim of this section is to show how we can derive an Abstract
Interpreter for active syntax terms that corresponds to a depth first left to right proof
search through the Active Semantics. Howeverl to be able to translate inference rules
to term rewriting rules we need to eliminate the need for backtracking. Consider the
case when we have a proof state (WhiIe(b,c),(S,~)) for which both While-true and
WhileJalse are candidates, but at most one is applicable. We deal with the problem in
a similar manner to the factorization of context free production rules with common
initial segments. The two rules used to define the while loop are factored by
introducing a new language constructor, Loopt which is "activated" after the boolean
test is accomplished [dasilva 901.

Factorized Semantics

Assign

While

(a , (S , W) -+ (k :S ,M)
(Assign(a&r,a) , (~, M)) -+ (S , M[a&r] +- k)

(b , (s, M I) -+ (bv: s, M) (L O O P (~ , C) , (~ V : s, M I) -+ (s, M')
(While(b, c) , (s, M)) -+ (S , M')

(c ,(S, M)) -+ (S , M') (WhiIe(b,c) , (~, M')) -+ (S , M")
Loop-true

(Loop(b, c), (tt: s, M)) -+ (s, M")

We translate each factorized rule into a rewrite rule by following the left to
right ordering of the premises; inserting suitable instructions when the output state of
one transition does not match the input state of the subsequent one. If we consider the
rule for assignment then the output state of the arithmetic sub expression does not
match the output state of the conclusion. Thus, we introduce a new instructionl
STORE(a&r), which will place the result of the expression into the memory cell
belonging to that particular variable.

Abstract Machine

< ev(Assign(addr,a)):C, (SM) > a < ev(a):STORE(addr):C, (SM) >
< STORE(addr):C, (k:SM) > => < C, (S,M[addr]+k) >
< ev(While(b,c)): C, (SM) > 3 < ev(b):ev(L~~p(b,c)) :C, (SM) >
< ev (L~~p(b , c)) :C , (tt:SM) > a < ev(c):ev(While(b,c)):C, (S,M) >
< ev(Loop(b,c)):C, (f f S , M) > a < C, (syM) >

These rules form part of the abstract interpreter for active syntax terms and should be
viewed as an evaluation model for the Active Semantics.

6 Pass Separation on Abstract Machines

The second pass separation that we apply aims to generate an abstract compiler that
lifts the active syntax terms out of the abstract machine by rewriting them to a
sequence of instructions, along with an abstract executor that evaluates these
instructions on some initial state. Transformations which achieve this are presented in
[Han 91a] and are completely mechanical and automatic.

The rules of the abstract machine are of the form < p,s > =̂ ,c < pr,s' >. Pass
separation involves constructing two sets %,% of rewrite rules such that
<u ,v>GiR < u',v'> iff u Sac uc and < u c y v > S R x <u',v'>. Where we view the rules

as forming an abstract compiler, while the rules & form the corresponding
abstract executor.

Abstract Compiler

Abstract Executor

< STORE(addr):C, (k:S,M) > =>x < C, (S,M[addr]+k) >
< LOOP(b,c):C, (t t :S,M) > =>x < c@b@LOOP(b,c):C,(S,M) >
< LOOP(b,c):C, (f f :SM) > a x < C, (SM) >

An interesting product of Hannan's staging transformations is the construction
of a semantics-directed machine architecture. Other approaches require the language
designer to either specify their language using a fixed and sufficiently powerful
combinator language, such as Action Semantics [Mosses 921, or to transform their
semantics into a compiler and executor pair by choosing special purpose combinators
themselves [Wand 821.

7 Summary

We have presented a framework for generating compilers based on the notion that the
various constructs of a programming language have times of meanings as well as
meanings. We have achieved this by extending Hannan's pass separation technique to
include the contextual analysis phase and the conversion from inference rules to term
rewriting rules. However! much work still remains. We have yet to formalise a
suitable binding time analysis that would enable us to introduce the appropriate data
structures; or looked at how to map the resulting abstract executors on to real
hardware by extending the refinements given in [Han 91bl.

References

[daSilva 901 da Silva,F., Towards a Formal Framework for Evaluation of Operational
Semantics Specifications. LFCS Report ECS-LFCS-90-126, Edinburgh
University (1990).

[Han 91a] HannanJ., Staging Transformations for Abstract Machines.
Proceedings of the ACM SIGPLAN Symposium on Partial
Evaluation and Semantics Based Program Manipulation (1991),
130-141.

[Han 91b] Hannan,J.! Making Abstract Machines Less Abstract. Fifth ACM
Conference on Functional Programming Languages and
Computer Architecture, LNCS 523 (1991), 618-635.

[JGS 931 Jones,N., Gomard,C., Sestoft,P./ Partial Evaluation -and Automatic
Program Generation. Prentice Hall International Series in Computer
Science (1993).

US 861 Jmring/U./ Scherlis/W., Compilers and Staging Transformations.
Sixteenth ACM Symposium on Principles of Programming
Languages (1986), 281-292.

[Kahn 871 Kahn,G./ Natural Semantics. Fourth Annual Symposium On
Theoretical Aspects of Computer Science, LNCS 247 (1987), 22-39.

[Mosses 921 Mosses,P./ Actions Semantics. Cambridge Tracts in Theoretical
Computer Science (1992).

[NN 921 Nielson!H., Nielson/F., Semantics with Applications. John Wiley &
Sons (1992).

[Wand 821 Wand,M., Semantics-Directed Machine Architecture. Ninth ACM
Symposium on Principles of Programming Languages (1982), 234-
241.

A Demonstration of ASD
The Action Semantic Description Tools

Arie van Deursen* Peter D. ~ o s s e s t

Introduction Action Semantics is a framework for describing the semantics of
programming languages [4, 61. One of the main advantages of Action Semantics
over other frameworks is that it scales up smoothly to the description of larger
practical languages, such as Standard Pascal [5] . An increasing number of re-
searchers and practitioners are starting to use action semantics in preference to
other frameworks.

The ASD tools include facilities for parsing, synt ax-directed (and textual)
editing, checking, and interpret at ion of action semantic descriptions. Such facili-
ties significantly enhance accuracy and productivity when writing large specifica-
tions, and are also particularly useful for students learning about the framework.
The notation supported by the ASD tools is a direct ASCII representation of
the standard notation used for action semantic descriptions in the literature, as
defined in [4, Appendices B-F].

Action Semantic Descriptions The notation used in action semantic de-
scriptions can be divided into four kinds:

Meta-Notation, used for introducing and specifying the other notations;

Action Notation, a fixed notation used for expressing so-called actions, which
represent the semantics of programming constructs;

Data Notation, a fixed notation used for expressing the data processed by ac-
tions; and

'Email: arie@cwi.nl. Address: CWI, P.O. Box 94079, 1090 GB Amsterdam, The Nether-
lands. Supported by the EC under ESPRIT project 2177 Generation of Interactive Program-
ming Environments and the Netherlands Organization for Scientific Research NWO project
Incremental Program Generators

t ~ m a i l : pdmosses@daimi.aau.dk. Address: BRICS (Basic Research in Computer Science,
a Centre of the Danish National Research Foundation), Department of Computer Science,
University of Aarhus, N y Munkegade Bldg . 540, DK-8000 Aarhus C, Denmark.

Specific No t at ion, introduced in particular action semantic descriptions to spec-
ify the abstract syntax of the programming language, the semantic functions
that map abstract syntax to semantic entities, and the semantic entities
themselves (extending the fixed action and data notation with new sorts
and operations).

Compared with conventional frameworks for algebraic specification, the meta-
notation is unusual in that it allows operations on sorts, not only on individual
values. Its foundations are given by the framework of Unified Algebras [3]. More-
over, so-called mix-fix notation for operations is allowed, thus there is no fixed
grammar for terms. This is a crucial feature, because action notation includes
many infix combinators (e.g., Al and then A2, which expresses sequencing of the
actions All A2) and mix-fix primitive actions (e.g., bind I to D). The specific
notation introduced by users tends to follow the same style.

T h e Platform The ASD tools are implemented using the ASF+SDF system
[I, 21. In the ASF+SDF approach to tool generation, the syntax of a language is
described using the Syntax Definition Formalism SDF, which defines context-free
syntax and signature at the same time. Functions operating on terms over such a
signature are defined using (conditional) equations in the algebraic specification
formalism ASF. Typical functions describe type checking, interpreting, compil-
ing, etc., of programs. These functions are executed by interpreting the algebraic
specifications as term rewriting systems. Moreover, from SDF definitions, parsers
can be generated, which in turn are used for the generation of syntax-directed
editors. ASF+SDF modules allow hiding and mutual dependence. (The ASD
demonstration assumes that the basic features of ASF+SDF are already known,
so as to focus attention on this application of the system.)

The ASF+SDF system currently runs on, e.g., Sun4 and Silicon Graphics
workstations, and uses X-Windows. It is based on the Centaur system (developed
by, amongst others, INRIA) so a Centaur licence is required.l Once one has
installed the ASF+SDF system, all that is needed before using the ASD tools is
to get a copy of the ASD modules and user guide, together with a configuration
file that specifies the effects of the various buttons in the ASD interface; these
items are freely available by FTP.

T h e Implementation ASD modules written in the Meta-Notation are trans-
lated to ASF+SDF modules, using the ASF+SDF system itself. Concerning the
unusual features of the Meta-Notation: sort operations are dealt with by gen-
erating (in some cases) extra sorts in the ASF+SDF module; and the arbitrary
mix-fix operations are catered for by a two-phase generation scheme.

'Academic institutions currently pay FF600 for a copy of the complete Centaur/ASFtSDF
distribution tape.

The Demonstration The main features of ASD are demonstrated in turn:

Editing: A previously-prepared action semantic description (a.s.d.) is read into
the system. A (deliberate) typo prevents it from being parsed immediately,
but clicking on the error message moves the cursor to the point where cor-
rection is needed. After correction the a.s.d. parses OK, and by clicking at
various points, the structural focus is moved around to exhibit the recog-
nised grouping. Changing part of a term requires reparsing only of the
changed part, exploiting the incrementality of ASF+SDF. However, when
the introduced (mix-fix) symbols of the a.s.d. are changed, the initially-
generated term parser becomes obsolete, and terms remain unparsed until
a new parser is generated (by pressing a button).

Parser Generation: An a.s.d. module containing a grammar is read in. A but-
ton press generates an ASF+SDF module containing an equivalent gram-
mar, allowing the next step.

Program Parsing: An actual program in the described language is edited; If
it can be parsed, a button press transforms it into the abstract syntax
not ation used in action semantics.

Semantics Generation: An a.s.d. module specifying semantic functions (by
semantic equations, as in denotational semantics) is read in. A button press
generates an ASF+SDF module that can execute the semantic equations as
rewrite rules, which allows the next step.

Program Semantics: Given these rewrite rules and an actual program in ab-
stract syntax notation, a button press can map this program to its corre-
sponding action term.

Sort Checking: The ASF+SDF modules generated in the preceding steps incor-
porate basic sort-checking of the usage of operations in terms, exploiting
the so-called functionality axioms specified in a.s.d.s.

Further features are currently being implemented.

References

[I] J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM
Press Frontier Series. The ACM Press in co-operation with Addison-Wesley,
1989.

[2] P. Klint. A meta-environment for generating programming environments.
A CM Transactions on Software Engineering Methodology, 2(2): 176-201, 1993.

[3] P. D. Mosses. Unified algebras and institutions. In LICS'89, Proc. 4th Ann.
Symp. on Logic in Computer Science, pages 304-312. IEEE, 1989.

[4] P. D. Mosses. Action Semantics, volume 26 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1992.

[5] P. D. Mosses and D. A. Watt. Pascal action semantics. Version 0.6. Available
by FTP from ftp.daimi.aau.dk in pub/action/pascal, Mar. 1993.

[6] D. A. Watt. Programming Language Syntax and Semantics. Prentice-Hall,
1991.

Hardware and Software Requirements

For installing and demonstrating the ASD system:

Disk Space

200 Mbytes needed to install and store ASD.

Workstation

Minimum 32 Mbytes main memory needed for running the demonstration.

Preferably Silicon Graphics, running with:
- Operating System IRIX Release 4.05F (or higher),
- MIPS R4010/R4000.

Alternatively:
Sparc running SunOS 4.1 (not Solaris), or
Silicon Graphics with MIPS R2000/3000.

Standard Unix software needed: X-Windows, twm.

Colour screen desirable, but not essential.

PASCAL definition in the system LDL

Giinter Riedewald, Ralf Likmnel
Universitat Rostock, Fachbereich Informatik

1805 1 Rostock, Germany
E-mail: (gri I rlaernrnel) @ informatik.uni-rostock.de

Abstract. LDL is a system supporting the design of procedural programming languages and
generating prototype interpreters directly from language definitions. Language definitions are
based on GSFs - a kind of attribute grammars - and the denotational semantics approach.
Semantics is defined in a two-level approach more or less similar to action semantics. First a
term representing the semantic meaning is constructed and afterwards this term is interpreted.
To derive (within the system LDL) a prototype interpreter of a language its language
definition must be transformed to Prolog. Language definitions within LDL and the
transformations into Prolog are considered using a PASCAL-like language as an example.
The underlying approach for language definition, especially semantics definition, is compared
with other approaches. Moreover it is sketched how our approach to language definition could
be adapted for interconnecting attribute grammars (GSFs) and action semantics which would
allow a more appropriate semantics definition (including static semantics) than in the case of
pure action semantics.

1 Introduction

This paper is structured as follows. The subsections 1.1, 1.2 establish some basic
knowledge about the system LDL, language definitions applied in LDL and the
derived LDL prototype interpreters implemented as Prolog programs. In section
1.3 a PASCAL-like language MYPAS serving as running example for this paper is
introduced. In sections 2 and 3 we discuss the formalisms for language definition
applied in LDL, i.e. GSFs (a kind of attribute grammars) and denotational
semantics, and the implementation of such language definitions for purposes of
prototyping interpreters. GSFs are considered more in detail, since we want to
sketch at the end of the paper (section 5: Conclusion and Future work) how GSFs
- especially GSFs of that specific form we are applying in the system LDL - could
be useful to be interconnected with action semantics descriptions. In Section 4 we
give references to some related work.

1 .I Structure of LDL - Languaae Development Laboratory

Keeping in mind Koskimies' statement ([Kgl]) "The concept of an attribute
grammar is too primitive to be nothing but a basic framework, the 'machine
language' of language implementation." LDL offers a higher-level tool supporting
the definition of (at least procedural) languages and their implementation in form of
a prototype interpreter. For this purpose the LDL library (Fig. 1) contains
predefined language constructs together with their static and dynamic semantics
and the Prolog implementation of these. The (dynamic) semantics components are
correct w.r.t. the usual denotational definition. The knowledge base and the tool

for language design ensure the derivation of correct prototype interpreters from
these correct components. Moreover, LDL derives test program generators
producing syntactically correct programs satisfying the context conditions of the
defined language and possessing certain additional properties.

Library of
1 I language
I I components

Tool for
language design

I I

Fig. 1 : Structure of the LDL system

1.2 Language definitions and prototvpe interpreters within LDL

The language definitions and the corresponding prototype interpreters in the
system LDL are based on the idea from [R91] and exploit GSFs (GSF - Grammar
of Syntactical Functions) - a kind of attribute grammars - and denotational
semantics descriptions for the language definition.

The development of prototype interpreters is based on the following ideas:

Because GSFs and Prolog programs are closely related, after some
modifications a language definition in form of a GSF can directly be used as the
core of a prototype interpreter written in Prolog and applicable for syntactical
and semantic analysis.

Denotational semantics descriptions can be implemented as logical programs by
defining term representations of elements of any domain and by transforming
the functional equations into definite clauses.

The semantics definition can be a stepwise process. First, we could be
interested only in the calling structure of the semantic functions of a given
source program. Finally, we are interested in the execution (interpretation) of
the source program. Thus our semantics definition consists of two levels:

1. The meaning of a program is a term consisting of names of semantic
functions in the GSF sense which can be considered as the abstract
syntactical structure of the program. It can be defined using a GSF with
special production rule patterns (see subsection 2.2).

2. Based on the denotational approach the interpretation of terms is defined.

Before computing the meaning of a source program according to the two levels
of the semantics definition its context conditions are checked (evaluation of the
auxiliary syntactical functions in the GSF sense).

The structure of a prototype interpreter can be seen from Fig. 2.

The prototype interpreter operates as follows:

A source program is read token by token from a text file.

Each token is classified by a scanner. The scanner is invoked by a special
operator preceding each terminal within the Prolog version of the GSF.

The parsing and checking of context conditions is interconnected with
scanning. If the context-free basic grammar of the GSF describing the source
language is an LL(k)-grammar the Prolog system itself can be used
straightforwardly for parsing, whereas LR(k)-grammars require to include a
special parser into the prototype interpreter.

Recognizing a language construct its meaning in form of a term is constructed
by connecting the meanings of its subconstructs.

The term representing the meaning of the whole program is interpreted, i.e. the
function names of the term are associated with functions transforming a given
program state into a new one, where a state is usually an assignment of values
to program variables.

Source program

1 Scanner I

Semantic analyser + P: Prolog version of the GSF definition
of the source language

Semantic analyser: Prolog clauses
defining context conditions

Term interpreter: Prolog clauses
defining (dynamic) semantics

Input of the Output of the
source program source program

Fig.2: Structure of a prototype interpreter

1.3 MYPAS - a PASCAL-like languaae developed by LDL

MYPAS is a PASCAL-like language which has been designed to consider a non-
trivial example of an imperative language in the system LDL. MYPAS was an
experiment to explore possibilities for the transformation of denotational semantics
into logical programs 1 Prolog programs ([La93]).

MYPAS does not contain the following PASCAL-constructs:
sets, enumerated / subrange types
records with variants
CASE statement
some standard procedures / functions
forward

Additionally to PASCAL the following constructs have been included:
structured result types for functions
break / continue statements

The LDL prototype interpreter of MYPAS can be applied to interprete non-trivial
MYPAS programs and has passed several tests, for example the heavy scope test
for static binding from [WG84]), standard algorithms (e.g. for sorting or matrix
calculations) and little applications (e.g. file-oriented data management programs).
Up to now we have not compared the speed of the prototype interpreters with the
speed known for other systems dealing with prototype interpreters derived from
formal language definitions. However we expect the term interpretation (i.e. the
implementation of the denotational semantics) to be comparable in speed with the
approach of executing denotational semantics in a functional language like SML. In
general the speed of interpretation and the size of inputs which can be processed by
LDL prototype interpreters strongly depends on the fact whether features of
Prolog are exploited within the term interpreter (we did so for MYPAS) in
difference to deriving pure logical programs with a clean declarative meaning
(allowing provable correctness as for the LDL prototype interpreter of the
language VSPL, see [LR94]).

Only to give an idea on the size of the obtained prototype interpreter definition we
mention numbers of clauses and file sizes (including comments for any clause) for
all its parts in Table 1.

Figure 3 represents the structure of the prototype interpreter definition more in
detail. The immediate parts are derived from the language definition consisting of a
GSF and a denotational semantics description. The abstract data types offer
(reusable) services for the semantic analysis and the term interpretation.

Part of definition
GSF
static semantics
dynamic semantics
applied modules
S

Table 1 : Size of parts of the MYPAS definition

Clauses
234
269
201
161
865

KB ASCII
28
2 1
24
26
99

Immediate parts of prototype Interpreter definition

I Abstract data types

1 Auxiliary modules I

Fig.3: Structure of the MYPAS prototype interpreter definition

2 GSFs - Grammars of Syntactical Functions

2.1 Definition of GSFs

The GSF formalism ([Rgl]) is closely related to the DCG ([PW80]) and RAG
([CD87]) formalisms, but, other than these, it has been derived from two-level
grammars during 1971-1972 with the aim to obtain an executable and more
readable form of two-level grammars. A GSF definition consists of two parts:

a GSF scheme defining the rough structure of the syntax and semantics of a
language
a GSF interpretation refining the GSF scheme.

Roughly speaking a GSF is a parametrized context-free grammar extended by
relations over the parameters. For historical and practical reasons, in the following
definitions these relations are classified into auxiliary syntactical functions and
semantic functions. Defining a programming language auxiliary syntactical
functions and semantic functions can be used to define the static and dynamic
semantics, respectively.

Definition 1 (GSF scheme):
A GSF scheme is a tuple S = 4, A, SF, V, C, AR, R>,
where B = <N, T, RO,ST> is a reduced context-free grammar (N set of
nonterminals - here called names of syntactical functions, T set of terminals -
names of basic syntactical functions, R' set of production rules, ST e N start
symbol) - the basic grammar of the GSF, and A, SF, V and C are finite sets of
names of auxiliary syntactical functions, names of semantic functions, variables
and constants resp.. V U C is the set of parameters. R is a finite set of production
rule patterns, each of the form

where foeN, f l , ..., fie N U T, h i ,,.., hs e A U SF,
pfO,l,--,phs,nhs e v u c and
fo: f l , ..., fr e R' (2)

N, T, A, and SF are pairwise disjoint. V and C are disjoint too. The arity AR maps
each function name (element of N U T U A U SF) into the set of integers (number
of parameters of a function). g(P1, ..., Pn) is called syntactical function, basic
syntactical function, semantic function or auxiliary syntactical function if g e N,
g e T, g e SF, g e A resp. Each syntactical function ST(P1,. ..,Pn) occurring on the
left-hand side of some production rule pattern is a start element of the GSF.

Example 1 (Excerpt of the GSF scheme of MYPAS):

% concatenation of statements
sm-list(SIST) : statement~SllST)111;111sm~list(S21ST)l

CONCAT(SlSllS2).
sm-list(SIST) : SKIP(S).

% concrete statements
statement(SIST) : assign-statement(SIST).
statement(SIST) : if-statement(SIST).

% assign statement
assign-statement(SIST) : leÂ£t~value(Ell~llS~)

!I . . = I! lexpression(E21T~lST)l

CHECK-ASSIGN-TYPES(TllT2tST)l
ASSIGN(Sl EllE2) .

% if statement with optional else-part
if-statement (St ST) : l'iflllexpression(EITl ST)

llthenll sm-list (Sll ST)
elsesart (S2 ST)
I1 f i 11

I

Is~BooLEm~TYPE(TlsT) 1

IF(SrElSlrS2)-

elseaart (St ST) : llelsell sm-list (Sl ST) .
elseaart (St ST) : SKIP (S) .
sm-list, statement, assign-statement, if-statement, left-value, expression, else-part e N,
'1.lI 11.-'I , , .- , "if ', "then1', I1else1', "fil' e T,
CHECK-ASSIGN-TYPES, IS-BOOLEAN-TYPE 6 A,
CONCAT, SKIP, ASSIGN, IF e SF,
S9Sl,S2,sT,E,E1,E2,T,Tl,T2 6 V.

From the definition it can be seen that a GSF scheme defines the context-free basic
structure of a language and the dependencies between auxiliary syntactical andor

semantic functions. To determine the meaning of a language construct we need to
know concrete parameter domains and the meaning of auxiliary syntactical and
semantic functions.

Definition 2 (GSF, interpretation):
Suppose S = d3, A, SF, V, C, AR, W is a GSF scheme as introduced in the
previous definition. A GSF is a pair 4 , IP>, where IP = &I, D, I, F> is an
interpretation consisting of a family D of domains, a function I associating with
each element f e A U SF an n-ary relation on the domains from D (n=m(f)), a
function M assigning to the i-th parameter position of a function name f a
particular domain M(f,i) e D and the forbidden symbol F.
f(v1, ..., vn) with Vi e M(f,i) is called an instance of the function f(P1, ..., Pn).
Moreover, the following conditions must be satisfied:

A variable occurring on the i-th parameter position of a function f(P1 ,..., Pn)
stands for a value from M(f,i). It represents the same value whenever it occurs
in a given production rule pattern.
A constant occurring on the i-th parameter position of f is an element from the
domain M(f,i).
EfeAUSF,M(f)=n,andaieM(f,i) , i=l, ..., n,

thenf(al,,.., an)= {&,if(al , ..., an)eI(f)
{ F, else

where E denotes the empty string.
For each production rule pattern there are variables occurring as well in the
syntactical functions as in auxiliary or semantic functions.

Example 2 (Continuation of Example 1):
If S, E denote the sets of meanings of statements and expressions resp., ST is the
set of all possible symbol tables, T the set of all types, then the function M
(domains of parameter positions of function names) can be defined by the Table 2.

Table 2: Domains of parameter positions of GSF of MYPAS

66

f \
sm-list
statement
assign-statement
if-statement
left-value
expression
else-part
CHECK-ASSIGN-TYPES
IS-BOOLEAN-TYPE
CONCAT
s m
ASSIGN
IF

S
S
S
S
E
E
S
T
T
S
s
S
S

ST
ST
ST
ST
T
T
ST
T
ST
S

E
E

ST
ST

ST

S

E
S S

The relations associated with the names of auxiliary syntactical and semantic
functions are described here only informally.

I(CmCK-ASSIGN-TWES) = { (t 1 ,tz,st) I t i ,t2 e T are types valid for the
lefi-hand and right-hand side of an assignment; st e ST defines user types}

I(1S-BOOLEAN-TYPE) = { (t,st) I t e T denotes the boolean type; st e ST
defines user types}

I(SKIP) = { s I s e S is the meaning of the empty statement }

I(C0NCAT) = { (s,sl,s2) I s e S is the meaning of a concatenation of
statements with the meanings sl,s2 e S }

I(ASS1GN) = { (s, e l , e2) I s e S is the meaning of an assignment depending on
the meanings el,e2 e E of the left-hand and the right-hand side}

I(IF) = { (s,e,sl,s2) I s e S is the meaning of an IF-statement where e e E is the
meaning of the conditional expression and sl,s2 e S are the meanings of the
THENBLSE-path resp. }

H

To generate a word by a GSF fust suitable production rule patterns must be turned
into context-free production rules replacing each variable occurring in the given
production rule pattern by a value from its corresponding domain. This substitution
process is controlled by the relations also occurring in the production rule pattern.

Definition 3 (Derived context-free production rule):
Suppose G = <S, Ib is a GSF with the GSF scheme S = <B,A,SF,V,C,AR,b and
the interpretation IP = <M, D, I, F> as introduced above. Then

FO : Fl, ..., Fr. (3)
is a context-free production rule derived from the production rule pattern (1) if
(3) is a result of consistently replacing each variable occurring in (1) by a value
from its corresponding domain (Fi, i=O,l, ..., n is an instance of fi(...)) in such a way
that the instances Hi, ..., Hs of the auxiliary syntactical functions and semantic
functions occurring in (1) yield E.

H

Definition 4 (Word, Language):
Let G be a GSF defmed as above. A string w consisting of terminals of G
(instances of basic functions) is a word generated by G iff there is an instance
ST(v1, ..., vn) of some start element ST(P1, ..., Pn) of G such that
ST(v1, ..., vn) =&=> w applying a suitable set of context-free production rules
derived from the set of production rule patterns of G. In an analogous way
subwords can be defined.
The language L(G) generated by the GSF G is the set of words generated by G.

H

Based on the language generated by a GSF it is possible to associate relations with
the names of syntactical functions and a meaning with each word.

Definition 5 (Relation associated with a syntactical function):
Let G be a GSF defmed as above and f a given name of a syntactical function.
Rel(f) is a n-ary relation (n=AR(f)) and ER(f) a (n+l)-ary relation associated with

* f, where (VI ,.. .,vn) â Rel(f) and (w, VI ,. . .,vn) G ER(Q iff f(v1, ..., vn) ===> W,
UW' e L(G), Vie M(f,i), i=l, ..., n.

w

Now the meaning of a word (subword) w can be defmed as the tuple (vl, ..., vn) iff
(w, VI ,..., vn) â ER(ST) ((w, VI ,..., vn) 6 ER(f), f G N, f # ST). It can also be
identified with a subtuple of this tuple,

Example 3:
With the syntactical function statement(S, ST) from Example 1 we can associate
the relation ER(statement) = { (w, s, st) I s is the meaning of the statement w
generated by statement(s, st), where st is a symbol table containing the declarations
visible in w } .

2.2 Specific application of GSFs in the svstem LDL

In our applications usually the jirst parameter of each syntactical function is
assumed to denote the meaning of subwords generated by the syntactical function.
Then the meaning of the syntactical function of the left-hand side of a production
rule pattern is computed by a semantic function from the meanings of the right-
hand side syntactical functions. Thus, only the following two kinds of production
rule patterns are possible:

First kind:
f(c ,...) : b. c e C , f e N ,

b sequence of parameterless basic syntactical functions.
Remark: We suppose that basic syntactical functions with non-empty
parameter lists are defined by implicitly given rules of the fxst kind, e.g.
identifier(x) : 'XI. This mirrors the situation in compilers that identifiers and
other classes of terminals are recognized by lexical analysers.

Interested readers may refer to [RL93], where the nice property of GSFs with such
production rule patterns to defme the meaning of a word (subword) as a
homomorphic image of the structure of the word (subword) is considered.

Because of our two-level approach exploiting
GSFs for syntactical I semantical analysis and term generation
denotational semantics for dynamic semantics (term interpretation)

formally we want to use a GSF for associating with each word generated by the
GSF as its meaning its syntactical structure in form of a term. Therefore after the
consideration of relations between context-free grammars I GSFs and algebras we
introduce the notion of a syntactical algebra associated with a GSF.

It is well-known that a context-free grammar can be considered as a heterogeneous
algebra ([ADJ77]). Let be G=(N,T,P,S) a context-free grarnmar, where N is the set
of nonterminals, T is the set of terminals, P is the set of production rules and S e N
is the start symbol. Considering G as algebra N can be identified with the set of
sorts. To each production rule p e P

X0 -> a() Xl a1 ... Xn an, * where Xi e N, i = 0 ,..., n, aj e T , j = 0 ,..., n, an operator OP with the profiie
eX1 ... Xn,Xo> is assigned in a one-to-one manner. Let be 0 the set of all
operators constructed. 0 together with the profiles of the operators is an N-sorted
signature. Now a syntactical algebra SA can be defined as follows:

SA = <{SAsls 6 N,{OPSA}O~ e O h WP
SAs = L(s) (the set of all strings from T generated by s)
opSA(xl ,..., xn) = a() xl a1 ... Xn an

if op is defined as above

A more abstract syntactical algebra is the N-sorted term algebra T(0). But if G is
reduced and unambigous then both algebras are isomorphic.

It is possible to construct a syntactical algebra associated with a GSF as the
syntactical algebra of its context-free basic grammar. But GSFs enable a second
approach. The parameters occurring in the parameter lists of the syntactical
functions can be used to refine the sorts and the signature given by the context-free
basic grammar of the GSF scheme.

Definition 6 (Syntactical algebra associated with a GSF):
Let G be a GSF as defmed above. A syntactical algebra associated with G is a
term algebra based on the following signature Sig (signature associated with G):

1. Suppose Ref maps each name of a syntactical function into the set of integers
(Ref selects a refinement parameter; 0 5 Ref(f) 5 AR(f); Ref(f)=O means there
is no refinement parameter). Then the set of sorts of Sig is

{ fv 1 f e N U T' A v e M(f,Ref(f)) (fv is f if Ref(f)=o), where
TI is the set of names of basic syntactical functions with non-empty parameter - - -
lists and M(f, Ref(f)) is the dom& of the Ref(f)-th parameter position off.

2. Suppose
fo(-,Pf~,Ref(f~),-) : fl(-,Pfl,Ref(fl),...),...

fr(-,Pfr,Ref(fr),-),
hi(...) ,..., hs(...).

is a production rule pattern of the GSF scheme of G,
fo(..., vo ,...) : fl(..., ~ 1 , ...),..., fr(..., vr ,...), (**)

hi(...) ,..., hs(...).
is a result of substituting Vi e M(fi, Ref(fi)) for the Ref(fi)-th parameter position
of fi and there is a context-free production rule derived from (**). Then we
introduce an operator o: flvl x ... x frvr -> fovO. The operators are associated
with the rules (**) in a one-to-one manner. The set of operators constructed as
above for each production rule pattern (*) of the GSF scheme of G is the set of
operators of the signature Sig.

Â

We obtain a GSF associating with each word generated by the GSF as its meaning
its syntactical structure in form of a term of the syntactical algebra associated with
the GSF by combining production rule patterns of form (4) with the refinement
concept. From the refinement concept it follows that it would be useful if the
semantic functions SM(po,pl, ...,pr) occurring in production rule patterns of
second kind would be refined by the refinement parameters of the syntactical
functions too. Then the production rule patterns and their interpretation are defined
as follows:

Let G=<S,IP> be the GSF, 0 a signature and T(0) the term algebra associated
with G. Remember that 0 denotes both the signature and the set of operators of
the signature.

First kind of production rule patterns:
f(0b, ...) : b.

b sequence of parameterless basic syntactical functions,
ob e 0 operator associated with the rule

Second kind of production rule patterns: (5)
fo(p0, ..., Pfo,Ref(fo), ...) : bo,fi(pl,...,Pfi,~ef(fi),...),bi

fr(pr,...,Pfr,Ref(fr),-),br,
al(...) ,..., as(...),
SM(P~,P 1 ,..-,~r,Pf~,Ref(fo),-.Pfr,~ef(fr))-

fo e N, f l , ..., fr e N U T,
bo,. . . ,br sequences of parameterless basic syntactical functions,
a1 ,..., as e A, SM e SF, pi , ...,pr â V U C , Po e V.

Let Op = {Op,w}, where w = v1 ... vr vo with vi e M(fi,Ref(fi)), i = 0,1, ..., r, is
the set of operators of Sig associated with the production rule pattern p. The
interpretation IP=<M,D,I,F> must possess the following properties:

1. M(fi(..., vi, ...), 1), Vi e M(fi,Ref(fi)), i = 0,1, ..., r, is the set of all terms which
are syntactical structures of the subwords derived from instances of
fi(..., vi ,...), i.e. M(fi(..., vi ,...),l) T(0)fivi

Remark: Because fi(. . . ,vi,. . .) with a constant (vi) as Ref(fi)-th parameter
can be considered as a function derived from fi(. . .) M(fi(. . . ,vi,. . .), 1) makes
sense.

Remark: Because vo,vl, ..., Vr are constants, SM(po,...,pr,~~,v1 ,-.vr) can
be considered as a new semantic function with r+l parameters which is a
specialization of the original semantic function SM(p0, ...,pr) in (4).

Remark: The interpretation I(SM) defines the meaning po as term
constructed from the meanings of the subwords derived from the
syntactical functions of the right-hand side by using an operator which is
unique for the actual combination of values for the refinement parameters.

2.3 Proloa-Implementation of GSFs

The production rule patterns of GSFs together with the interpretation of auxiliary
syntactical and semantic functions resemble Prolog clauses. The question arises
whether a GSF rule can be interpreted as a Prolog clause. Using the following
interpretation the answer is 'YES':

For each variable occurring in the production rule pattern (1) the following holds

then (Fo =*=> t i ... tr), where Fo : Fl, ..., Fr. with the instances H i ,..., Hs of
the auxiliary syntactical functions and the semantic functions is a context-free
production rule derived from the production rule pattern (1).

To exploit given Prolog systems for treating GSFs as Prolog programs requires
some modifications of the production rule patterns of a GSF and some additional
expense:

The notation must be changed into the Prolog notation.
Basic syntactical functions must be preceded by the special symbol @. This
symbol will be used as an operator realizing the scan of terminals.
Auxiliary syntactical functions and semantic functions will be labelled by # and
& resp. which are considered as operators realizing the evaluation of the
functions.

Because the right-hand sides of Prolog clauses are treated from left to right the
auxiliary syntactical functions and semantic functions must be rearranged in
correspondence with this order. To avoid infiite loops the order of clauses
must be rearranged too.
Prolog clauses realizing the operators @, #, & must be added.

Moreover the following properties arise from this approach:
If the context-free basic grammar of the GSF is an LL(k)-grammar then there is
no need of a parser because the Prolog system itself can be exploited.
Otherwise a parser must be added.
The implementation of # and & can be done in several steps ([R91]).
Under certain circumstances some parameter positions can be omitted. For
example the parameter positions for symbol tables usually can be omitted and
the symbol table can be managed in the Prolog database (as done in the
Examples 4 and 5).

Note the difference between these modifications and transformations of DCG rules
into Prolog clauses. The latter approach causes that terminals are changing from a
syntactical element of the DCG into an argument of a predicate. In our approach a
terminal of the GSF is still at the same place in the Prolog clause but now preceded
by a special operator which realizes the scan of terminals.

Example 4 (Prolog version of Example I):

% concatenation of statements
smlist (S) : - statement (Sl) , @I1; It ,

smlist (S2) ,
& concat(S,Sl,S2).

sm-list (S) : - & skip(S) .
% concrete statements
statement (S) : - assign-statement (S) .
statement(S) :- ifstatement(S) .
. . .
% assign statement
assignstatement(S) :- left-value(El,Tl),

Q II : = 11 ,expression(E2,T2),

checkassign~types(Tl,T2),
& assign(S,El,E2).

% if statement with optional else-part
ifstatement (S) :- @"if ll,expression(E,T) ,

isbooleantype (T) ,
@"then", smlist (Sl) ,
elseaart (S2) ,
@ I 1 fill

I

& if(S,E,Sl,S2).

elseaart (S) : - @"else", sm-list (S) .
else_part(S) :- & skip(S).

The straightforward approach to implement the auxiliary syntactical functions is to
implement the interpretation I of a name f of an auxiliary syntactical function by a
predicate named f. Then the operator # working within the Prolog version of GSF
as a marker of auxiliary syntactical functions must be implemented simply by the
following clause:

(# X) :- call(X).

Example 5 (Prolog clauses defining context conditions for Example 4):

% checking types for assign statement
check_assigntypes(realtype,integertype) :- ! .
check_assigntypes(Tl,T2) :-
matchtypes(Tl,T2), ! .
check-assigntypes (usertype (Id) , T) : -
typedef (usertype (Id) , TD) ,
check_assign_types(TD,T), !.

% translating user types
type-def (usertype (Id) ,Type) : - ! ,
statenv(Id,typedef(T)), % querying the global symbol table
type-def (T, Type) .
type-def (TIT).

% defining an equality between types
match-types (TIT) : - ! .
match_types(T,pointertype(undeftype)) :- !,
type_def(T,pointertype(-)) .

match_types(pointertype(undeftype),T) :-
type_def(T,pointertype(_)).

% testing a type to be the boolean type
is boo lean type(^) :- type_def(T,booleantype),

It remains to discuss the implementation of the semantic functions which are
marked by &. In subsection 2.2 (see (5)) we have described an interpretation (for
names of semantic functions) guaranteeing the meaning of a word to be its
syntactical structure in form of a term of the syntactical algebra associated with the
GSF. The reader may remember the last remark of (5) in order to realize that the
following implementation of & is a proper solution:

(& X) :- X =. . [OPI [POIPIS-and-Refs]] ,PO =. . [OPIPIs-and-Refs] .

So the resulting term is indeed a term constructed from the meanings of the
subconstructs. As operator symbol the name of the semantic function itself is
applied which is obviously not unique for any combination of values for the
refinement parameters. However, by taking the values of the refinement parameters
into the term, the uniqueness is still satisfied, since the operator symbol may be
considered as beeing qualified by the refinement parameter positions within the
term.

Example 6 (A simple MYPAS program):

1. PROGRAM Count;
2. VAR x : INTEGER;

BEGIN
3. Read (x) ;
4. WHILE
5. x > o

DO
6. x := x - 1;
7. WriteLn(x) ;

OD ;
END.

Example 7 (The term generated for the program from Example 6):

1. prog(input,output,
block (
concatd (

2. concatd(vardec([x],integertype),nodec),
nodec) ,
concat (

3 . read (default (input) , [id (x) 1 , [integertype]) ,
concat (

4. while (
5. op(id(x), const(O), agt) ,

concat (
6. assign(id(x), op(id(x), const(l), minus)),

concat (
7. writeln(default(output), [id(x)l, [integertype]) ,

skip)) 1 ,
skip)))

3 Denotational semantics

3.1 Preface

Denotational semantics descriptions as required in the system LDL and
approach to their implementation are considered in [La93], [RL93], [LR94].
will only sketch some ideas concerning this topic in subsections 3.2 and 3.3.

the
We

Concerning the implementation of denotational semantics as a logical program it
should pointed out, that there are two extrema. First it is possible to use a well-
defined transformation from recursive function definitions into pure logical
programs with a clean declarative semantics beeing a good basis for stating about
correctness. Second an analysis of the language and its language definition together
with standard techniques from compiler construction may result in more
sophisticated transformations to derive a logical program (not a pure logical
program, rather a real Prolog program) offering the term interpreter.

3.2 Demands on the denotational semantics definitions

In our language definitions we apply denotational semantics definitions to assign
dynamic semantics to the terms generated by the corresponding GSF. Thus a basic
requirement is that the syntactical domains of the denotational description can be
identified with the sets of terms beeing the underlying sets of the syntactical
algebra associated with the GSF.

The derivation of a logical program from a recursive function definition becomes
easier when functional domains have been flattened. Indeed, our constructive
approach sketched in [LR94] assumes the absence of functional domains. The
following transformations are applied to reach this goal:

Representing functions by sequences: Certain (so-called semi-finite) functions
may be considered as sequences of tupels. These are functions like f with
f: Dl -> (D2 + { undef }I), where Dl, D2 are arbitrary semantic domains,
{ x I x e Dl A f(x) # undef } is a finite set. f can be considered as
f' e (Dl x D2)* consisting of all pairs <xi,yi>, xi e Dl, yi e D2,
yi = f(xi) 4- undef. It is straightforward to defme auxiliary operators for
application and modification.

Freezing computation of meanings: The denotational semantics of certain non-
trivial language constructs demands to pass meanings through the semantics
description or to consider them as intermediate results which e.g. have to be
bound in an environment. Functional domains introduced this way can be
omitted by working on (syntactical) terms. For example, the meaning of an
imperative procedure declaration (as bound in the environment) usually would
be a function mapping the actual parameter to a state-transition function. To
avoid this functional domain we consider (meanings of) procedure declarations
simply as terms beeing more or less equal to the syntactical procedure
declarations. So we can achieve a late application of semantic functions to
syntactical elements at positions where all arguments of the semantic functions
are known instead of working on intermediate meanings. This approach is also
sufficient to implement continuation semantics.

Avoiding higher-order operators: Some functional domains are introduced
only for pararneterlresult domains of auxiliary higher-order operators which are
used to figure out common parts of semantic definitions into operators. A usual
example are composition operators with error propagation. Functional domains
introduced this way can be omitted by using the definition of a operator in
positions where this operator is applied instead of the operator itself.

Curried -> Uncurried functions: Since we are interested rather in execution
(interpretation) of programs than in computation of meanings we can apply
uncurried versions of semantic functions instead of their curried original
versions. By this simple transformation we can avoid domains for meanings
which are often functional entities (as described by semantic functions of usual
denotational semantics descriptions) ,

3.3 Implementation as louical program

The transformation of a recursive function definition into a logical program
consists of two subtasks:

1. Definition of representations for elements of domains: For any element of any
syntactical and semantic domain we need a representation within the logical
program. For that purpose we apply ground term representations. In [RL93]
we systematically define a bijective function mapping elements of domains to
terms of a term algebra w.r.t. a signature derived from the domain equations.

2. Transformation of functional equations into definite clauses: To model
functions we derive predicates (definite clauses) having input and output
parameter positions. Some basic transformation ideas are considered:

Ad hoc implementations: For basic operations ad hoc implementations can
be developed.

Term construction instead of functions: For some simple functions the
corresponding predicate need not to be derived, since the applications of
these functions can be modelled within the logical program by term
construction. For example, because of the term representation of elements
projections, injections w.r.t. sum domains and list operation as U, a,

w.r.t. domains of sequences can be simulated by term construction.

Composition by conjunction of atomic formulae: A nested application like
fn(fn- 1 (. . .f2(f 1 (xo)) . . .)) is modelled as conjunction of atomic formulae
pfl (Xo,Xl),~f2(Xl,X2) ,...,pfn- 1 (Xn-2,Xn- 1),pfn(Xn- 1 ,Xn) where the
predicates pfi are intended to implement the functions fi and Xo should be
bound to the representation of xo. We start with the innermost application
taking the left-to-right processing of right-hand sides of clauses by Prolog
systems into consideration. The intermediate results are passed from left to
right from the output positions to the input positions.

Example 8
(Excerpt of Prolog clauses defining the term interpretation for MYPAS):

% interpretation of commands
interpret(skip) :- !.
interpret(con~at(Sl~S2)) :- !,ccom(Sl,S2,Cont),

interpret (Cont) .
interpret (Term) : - ccom (Term, skip, Cont) ,

interpret (Cont) .

% semantics of concatenation
ccom(concat(Sl,S2) ,C,R) :-
! ,ccom(Sl,concat(S2,C) ,R) .

% . . . of if statement
ccom(if (E,Sl,S2) ,C,concat(S,C)) :-

! , reval (Val, E) ,
(Val == true,!,
s = Sl

s = s 2
1 .

% commands defined by direct semantics
ccom(Com,C,C) :- com(Com) .

% assignment
com(assign(LHS,RHS)) :- leval(LVal,LHS),

reval (RVal , RHS) ,
update (LVal, RVal) .

Remark: This term interpretation has been derived from a
denotational semantics description written in continuation style.
Continuations are modelled here as terms representing statements.

Â

4 Related work

Paulson's semantic grammars ([Pau82]) give also a descriptional formalism
exploiting attribute grammars and denotational semantics. In difference to our
approach semantic grammars define semantics rather in an one-level manner by
allowing attributes to be elements from arbitrary semantic domains (Functional
entities are written in lambda notation.). Our two-level approach is very similar to
Lee's High-Level semantics ([L89]) consisting of a macro semantics and at least
one micro semantics. The construction of terms is there described by semantic
equations instead of using attribute grammars as in our case. Other related work is
considered in [RL93].

5 Conclusion and Future work

For the language 1 prototype interpreter definitions as discussed in this paper the
semantic functions of a GSF were assumed to be interpreted in such a way that
they describe the semantic meaning of an input word as a term constructed from
the meanings of its subwords.

Although it is allowed (and useful) to enrich the term structure by results of the
semantic analysis (refinement concept) such a term will be considered more likely
as an abstract syntactical structure of the input word. Thus it would be
straightforward to take the syntactical algebra associated with a GSF as abstract
syntax definition for an action semantics description. The action semantics

description could take profit from the semantic analysis described within the GSF,
since the results of the analysis could be made available within the generated terms
using the refinement concept.

A different approach to the interconnection of GSFs and action semantics would
be to define the generation of actions by the semantic functions. Relating GSFs
with action semantics descriptions this way would allow to describe static
semantics separately at the level of the attribute grammar. The specific form of
GSFs as described in subsection 2.2 always constructs meanings directly from
submeanings eventually applying refinement parameters. This compositional
behaviour of the semantic functions of those GSFs seems to be useful also in the
context of action generation, since one basic demand on action semantics
descriptions is their compositional form.

Although it is possible to exploit action semantics itself for definition of static
semantics (see e.g. [WM87]), there is no obvious way to take profit from the static
analysis within the dynamic semantics description when describing both (static and
dynamic semantics) by a separate action semantics description. Therefore we
suggest to interconnect GSFs and action semantics as motivated above. The details
of this interconnection and the consideration of other alternatives (for example
other kinds of attribute grammars) are points for future work.

References

77]Goguen, J.A.; Thatcher, J.W.; Wagner, E.G.; Wright, J.B.:
Initial algebra semantics and continous algebras
JACM 24 (1977) 1,68-95

11 Alblas, H.; Melichar, B. (Eds.) : Attribute grammars, Applications
and Systems, Proc. of the International Summer School SAGA,
Prague, Czechoslowakia, June 1991, LNCS # 545, Springer-Verlag

[CD87] Courcelle, B.; Deransart, P.: Proofs of partial correctness for attribute
grammars with application to recursive procedures and
logic programming, RR No. 322, INRIA Rocquencourt, 1984

[K91] Koskimies, K.: Object-orientation in attribute grammars,
In: [AM91], 297-329

[L89] Lee, P.: Realistic compiler generation, MIT Press 1989

[La931 Lammel, R.: Prolog-Implementation denotationaler
Semantikbeschreibungen, Diplomarbeit,
Universitat Rostock, FB Infonnatik, Jan. 1993

[LR94] Ltimmel, R.; Riedewald, G.:
Provable Correctness of Prototype Interpreters in LDL
In: Fritzson, P.A. (Ed.): Compiler Construction
5th International Conference, CC '94, Edinburgh, U.K., April 1994,
Proceedings, LNCS # 786, Springer-Verlag, 218 - 232

[Pat1821 Paulson, L.: A semantics-directed compiler generator,
In: Proceedings of the Ninth Annual ACM Symposium
on Principles of Programming Languages, 1982, Albuquerque,
New Mexico, 224-239

[PW80] Pereira, F.N.G.; Warren, D.H.D.: Definite Clause Grammars for
language analysis: a survey of the formalism and comparison
with augmented transition networks
Artificial Intelligence, 13 - 3 (1980), 231-278

[R91] Riedewald, G.: Prototyping by using an attribute grammar as a logic
program, In: [AM91], 401-437

[XU931 Riedewald, G.; Lammel, R.: Provable Correctness of Prototype Interpreters in LDL
Preprint CS-9-93, Sept. '93, Universitat Rostock, FB Informatik

[WG84] Waite, W.M.; Goos, G.: Compiler Construction, Springer-Verlag, 1984

[WM87]Watt, D. A.; Mosses, P.D.: Pascal: Static Action Semantics. Draft,
Version 0.3 1, 1987

The ACTRESS Compiler Generator
and Action Transformations (Abstract)

Hermano Moura*
Caixa Economica Federal, Brazil

Actress is a semantics-directed compiler generation system based on action
semantics. Its aim is to generate compilers whose performance is closer to hand-
written compilers than the ones generated by other semantics-directed compiler
generators. Actress generates a compiler for a language based solely on the
language's action semantic description. We describe the process by which this is
achieved.

A compiler for action notation is the core of the generated compilers. It
translates actions to object code. Action notation can be seen as the intermediate
language of every generated compiler.

A conventional hand-written compiler eliminates, whenever possible, refer-
ences to identifiers at compile time. Some storage allocation is often performed
at compile-time too. We can see both steps as transformations whose main objec-
tive is to improve the quality of the object code. The compiler writer, based on
his knowledge of properties of the source language, implements these "transfor-
mations" as best as he can. In the context of Actress we adopt a similar approach.
We introduce a set of transformations, called action transformations, which allow
the systematic and automatic elimination of bindings in action notation for stat-
ically scoped languages. They also allocate storage statically whenever possible.
We formalise and implement these action transformations. The transformations
may be included in generated compilers. We show that this inclusion improves
the quality of the object code generated by Actress' compilers.

In general, action transformations are a way to do some static processing of
actions. Transforming actions corresponds to partially performing them, leaving
less work to be done at performance time. Thus, transformed actions are more
efficient.

A full paper on this topic was presented at CC794, see:

Moura, H., and Watt, D. A. (1994) Action transformations in the
ACTRESS compiler generator, in Compiler Construction - 5th Inter-
national Conference CC'94 (ed. Fritzson, P.), vol. 786, Lecture Notes
in Computer Science, Springer-Verlag, pages 16-30.

'SQN 206, Bloco I, Apto 103, Brasilia, DF, Brazil. Email: hermano@cic.unb.br

80

Sort Inference in the
ACTRESS Compiler Generator

Deryck F. Brown* David A. ~ a t t t

Abstract
ACTRESS accepts the action-semantic description of a source language, and from
it generates a compiler. The generated compiler translates its source program
to an action, performs sort inference on this action, (optionally) simplifies it
by transformations, and finally translates it to object code. The sort inference
phase provides valuable information for the subsequent transformation and code
generation phases. In this paper we study the problem of sort inference on actions.

1 Introduction

ACTRESS is an action-semantics directed compiler generator [4]. That is to say, it
accepts a formal description of the syntax and action semantics [8, 141 of a particu-
lar programming language, the source language, and from this formal description it
automatically generates a compiler that translates the source language to C object code.

The generated compiler first translates each source program to an action, which we
call the program action. Then it sort-checks the program action. Finally, it (optionally)
transforms the program action, and translates it to C object code. The program action
serves as an intermediate representation of the source program's semantics.

Sort checking is important, not only to discover sort errors in the program action,
but also to infer sort information necessary for effective transformation and code
generation. Sort inference on action notation is a challenging problem. Records,
subsorts, and polymorphism are all involved. Action notation itself is much richer than
the various A-calculi usually studied by type theorists.

This paper describes our work on sort inference. The rest of the paper is structured
as follows. Section 3 is a brief description of the ACTRESS compiler generation system.
Section 4 explains the general notion of sort in action notation, and the slightly simpler
notion of sort adopted in ACTRESS. Section 5 describes our sort inference algorithm,
and the sort inference rules that guide it. Section 6 surveys related work, and Section 7
concludes.

'INMOS Ltd, 10 Priory Road, Bristol BS8 lTU, England. E-mail: deryck@pact . srf . ac . uk.
~ e ~ a r t m e n t of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland. E-mail:

daw@dcs.glasgow.ac.uk.

2 Action Notation

Action semantics was developed by Mosses and Watt [8, 141. As compared with other
methods, action semantics has unusually good pragmatic qualities: action-semantic
descriptions are easy to read, to write, and to modify.

An action is a computational entity, which can be performed. When performed,
an action either completes (terminates normally) or fails (terminates abnormally) or
diverges (does not terminate at all). Actions are performed in a designated order
(control flow). They can pass data to one another (data flow), in several forms:
transients (data that disappear unless used immediately), bindings (data bound to
identifiers, propagating over a designated scope), and storage (data stored in cells,
remaining stable unless overwritten or deallocated).

Action notation provides a number of action primitives, action combinators, and
yielders. An action primitive represents a single computational step, such as giving
a transient datum, binding an identifier to a datum, storing a datum in a cell, or
immediately completing. An action combinator combines one or two sub-actions
into a composite action, and governs the control flow and data flow between these
sub-actions. There are action combinators that correspond to sequential composition,
functional composition, choice, iteration, and so on. Finally, some primitive actions
include yielders, which are used to access data passed to the action (transients, bindings,
or storage). The action primitives, action combinators, and yielders of the ACTRESS
subset are sumrnarised in Table 1'.

An action-semantic description of a programming language C specifies a mapping
from the phrases of C (expressions, commands, declarations, etc.) to action notation.
An action-semantic description is structured like a denotational description, with se-
mantic functions and semantic equations, but the denotations of phrases are expressed
in action notation.

The ACTRESS Compiler Generator

ACTRESS is a compiler (and interpreter) generation system developed at the University
of Glasgow by Brown, Moura, and Watt [4]. It provides a collection of modules that
operate on actions (represented internally as trees). These modules include:

Cheeky is the action notation sort checker. This infers the sorts of the given
action and all its sub-actions. The sort of an action includes the sorts of all
transients and bindings passed into and out of that action. The sort checker
discovers any sub-action that must fail due to a sort error (such as attempting to
use an integer where a truth value is expected). The sort checker simply replaces
any such ill-sorted sub-action by 'fail'. Finally, the sort checker annotates the
action with the inferred sorts.

l ~ o r historical reasons, this version of action notation differs slightly from that given in Mosses[8]
and Watt[14].

82

J

complete Completes immediately (i.e., does nothing).
fail Fails immediately.
give Y Gives the datum yielded by Y, labelled 0.
give Y label #n Gives the datum yielded by Y, labelled n.
bind k to Y Produces a single binding, of identifier k to

the datum yielded by Y.
recursively As 'bind', but allows the binding of k to be used in
bind k ti Y evaluating Y.

store Yl in Y2 Stores the datum yielded by Yl in the cell yielded by Y2.
allocate a S Finds an unreserved cell of sort S, reserves it, and gives it.
enact Y Performs the action incorporated by the abstraction

yielded by Y.
Combinator Informal meaning
Al or A2 Performs either Al or A2. If the chosen sub-action fails,

the other sub-action is chosen.
Al else A2 Tests a given truth value, and then performs A1 if it is

true or A2 if it is false.
unfolding A Performs A iteratively. Dummy action 'unfold',

whenever encountered inside A, is replaced by A.
Al and A2 Performs Al and A2 collaterally.

Any transients given by Al and A2 are merged.
Any bindings produced by Al and A2 are merged.

Al and then A2 Performs Al and A2 sequentially.
Otherwise behaves like 'Al and A2'.

AT, then A2 Performs Al and A2 sequentially.
Transients given by A1 are given to A2.

Al hence A2 Performs A1 and A2 sequentially.
Bindings produced by A1 propagate to A2.

Al moreover At Performs Al and A2 sequentially.
Bindings produced by A2 override those produced by Al .

Al before A2 Performs Al and A2 sequentially.
Bindings produced by Al and At are accumulated.

furthermore A Performs A. Bindings produced by A override the
received bindings.

Yielder Informal meaning
the S The given transient datum labeled 0. It must be of sort S.
the S#n The given transient datum labeled n. It must be of sort S.
the S bound to k The datum currently bound to identifier k.

It must be of sort S.
the S stored in Y The datum currently contained in the cell yielded by Y.

It must be of sort s
abstraction A The abstraction that incorporates action A.
closure Y The abstraction yielded by Y, with the current bindings

supplied to the incorporated action.
Yl with Y2 The abstraction yielded by Yl, with the transient datum

yielded by Y2 given to the incorporated action.
L

Table 1: Action primitives. action cornbinators and yielders.

Encoded is the action notation code generator. This translates the annotated
action to C object code.

Other modules are generated by ACTRESS from the formal description of a particular
source language C:

Parsec is a parser for C. This parser is generated using the standard parser
generator, m l yacc:

parsec = mlyacc(syntaxc) (1)

where syntaxc is a syntactic description of language C.

Actc is an actioneer for C. This is a module that translates a parsed C program to
the corresponding program action. This module is generated using the actioneer
generator actgen:

where semanticsc is an action-semantic description of language C. The action-
eer generator treats the latter simply as a syntax-directed translation from C to
action notation.

Composition of the generated parser and actioneer for C with the action notation sort
checker and code generator yields a compiler for language C:

compilec = encodeA o checkd o actc o parsec (3)

Finally, we have recently added a new module to ACTRESS:

Trans f ormA is the action transformer, which attempts to simplify a given action
by applying action transformations.

This module may be used to construct compilers that generate smaller and faster object
code, at the expense of increased compilation time:

compile',- = encodeA o trans f ormd o checkd o actc o parsec (4)

4 Sorts

4.1 Data Sorts in Standard Action Notation

The theoretical foundation of action notation is Mosses' unified algebras [8]. This
algebraic framework elegantly solves some of the problems that beset older algebraic
frameworks, by the simple expedient of abandoning the usual sharp distinction between
values and sorts.

truth-value = false I true

nothing

(a) truth-values

nothing

(b) truth-values and naturals

Figure 1 : Example sort hierarchies

In a unified algebra, a sort is just a classification of individuals. No distinction is
made between an individual and the singleton sort that classifies just that individual.
Sorts are partially ordered by a subsort relation, '2'. The least sort, nothing, is the
classification of no individuals. The join of two sorts, sl \ s2, is their least upper bound,
and the meet of two sorts, sl & s2, is their greatest lower bound. The notation 'x : s'
asserts that x is an individual and belongs to sort s.

In Figure l(a), the universe of discourse consists of the truth values. The individuals
are false and true. The sorts are nothing, false, true, and false 1 true. In this example,
nothing and truth-value = false 1 true are the only proper sorts, i.e., sorts that are not
individuals. The nodes of the graph represent the sorts (individuals being shaded black
and proper sorts white); the edges of the graph represent the '2' relation.

In Figure l(b), the universe of discourse consists of not only the truth values but
also the natural numbers (individuals 0, 1 , 2, . . .). In this example there are many
sorts, of which only a few are shown. Among the interesting proper sorts are 0 1 1 1 2,
1 1 2 1 3 1 . . . (also known as positive-integer), 0 1 1 1 2 1 3 1 . . . (also known as
natural), and truth-value 1 natural. There are also some less useful sorts, such as
2 I true.

One benefit of unified algebras is that operations may be defined uniformly over
proper sorts as well as individuals. For example, the operation 'successor -' not only
maps 0 to 1, 1 to 2, . . . ; it also maps 0 1 1 to 1 1 2, . . . , and positive-integer to
naturaL2

'Indeed, these infinite sorts are defined by the recursive equations positive-integer = successor

85

(data sorts) s ::= nothing 1 bi \ bs \ SC[S] 1 s 1 s \ s & s 1 datum

(basic individuals) bi ::= false 1 true 1 0 1 1 1 2 1 . . .

(basic sorts) bs ::= truth-value I integer 1 . . .

(sort constructors) sc ::= list 1 cell 1 . . .
Table 2: Syntax of data sorts in ACTRESS

The operation 'list[-]' maps sorts of data to sorts of lists. For example, list[truth-
value] is the sort of all lists of truth values, list[I] is the sort of all lists of ones3,
list[natural] is the sort of all lists of natural numbers, and list[truth-value 1 natural] is
the sort of all lists of truth values and natural numbers (a sort of heterogeneous lists).

For nearly all practical purposes, we may view sorts as sets, nothing as the empty
set, ':' as set membership, '5' as set inclusion, 'I' as set union, and '&' as set
intersection.

4.2 Data Sorts in ACTRESS Action Notation

The action notation sort checker can deal only with finitely expressible sort terms.
Therefore it restricts sort terms to those generated by the BNF grammar in Table 2.

This class of sorts has the following useful properties [3]:

The basic individuals are partitioned into a number of basic sorts, such that every
basic individual belongs to a unique basic sort. Thus we can talk about the basic
sort of a given basic individual.

Individuals of constructed sorts are not expressible. This is because such in-
dividuals are constructed using ordinary data operations, and the sort checker
makes no attempt to evaluate such terms. For example, the individual list of 1
and 2 might be represented by the term: concatenation of (list of 1, list of 2).
The resulting individual value cannot be determined by the sort checker, without
making use of the definition of concatenation.

Every sort term can be reduced to a finite canonical sort term, which is of the
form si 1 . . . 1 sn, where n > 0 and each S{ is either a basic individual or a basic
sort or a sort constructor applied to a canonical sort term. In particular, '&' can
always be eliminated.

natural; natural = 0 1 positive-integer (disjoint).
^ate that 'list[-]' maps an individual to a sort.

There are algorithms to compute 'a; : s', 'sl < s2', and 'sl & s2', for arbitrary
basic individuals x and arbitrary sort terms s, sl, s2.

4.3 Action Sorts in Standard Action Notation

In standard action notation, the sort action classifies all actions. A subsort of actions
is characterised either by restricting its incomes (the data it may use), or by restricting
its outcomes (e.g., whether it completes, fails, or diverges, and what data it passes out
if it does complete), or by restricting both its incomes and its outcomes. For example:
the sort 'action [using current bindings]' classifies actions that use the bindings
propagated into them; the sort 'action [giving a value]' classifies actions that each
gives a datum of sort value; the sort 'action [binding]' classifies actions that produce
bindings; the sort 'action [storing]' classifies actions that effect changes in storage;
and the sort 'action [binding] [using current bindings]' classifies actions that both
use and produce bindings.

4.4 Action Sorts in ACTRESS Action Notation

The action notation sort checker is not concerned with all possible classifications of
actions. For one thing, it cannot concern itself with whether an action may diverge or
not4 Also, it does not concern itself with storage, for reasons to be explained shortly.
It does concern itself with transients and bindings.

The sort of a set of bindings may be represented by a record sort. For example,
the record sort {x: integer, y: truth-value}, represents the fact that x is bound to an
unknown datum of sort integer and y is bound to an unknown datum of sort truth-
value. Other examples of record sorts are {x: integer, y: true}, where in this case
y is known to be bound to true, and {x: 6, y: true}, where in this case both x and y
are bound to known data. This notation is legitimate, because the individuals 6 and
true are themselves sorts. It is also convenient, because the sort of a set of bindings
informs us concisely which identifiers are bound to known data (those whose sorts are
individuals) and which are bound to unknown data (those whose sorts are proper sorts).

These record sorts are similar to the record types studied by Wand, Cardelli, Mitchell
and others [5, 12, 131. The domain of each record sort must be known, i.e., there must
be no variables ranging over the domain of a record sort. We can use record sorts to
represent the sorts of bindings, during sort inference of a particular action, since the
domain of each set of bindings (a set of identifiers) will be known statically. Similarly,
we can use record sorts to represent the sorts of transients, since the domain of each
set of transients (a set of labels) will also be known statically. However, we cannot use
record sorts to represent the sorts of stores, since the domain of a store (a set of cells)
will, in general, be determined only dynamically.

41n other words, it cannot solve the halting problem!

(sort schemes) ss ::= . . . \ 6

(action sort schemes) as ::= (t , b) Ã‡Ã‘ (t', b') \ nothing

(yielder sort schemes) ys : := (t , b) - ̂ss

(fields) f ::= ss 1 absent

(transients) t --- . {Il: fi, . . .
t' ::= {11: f l y . . .

nothing

(bindings) b ::= {k l : f l , ... , k n : fn} [p17]
b' ..- - - {ki: ~ I S - - ^ : fn}[p]

Table 3: Syntax of action sorts in ACTRESS

While record sorts can be used to specify the sorts of individual actions, they are
not sufficient to describe sort inference over actions. For this, we need to extend the
record sorts into record sort schemes. This extension follows the extension of record
types into record schemes given in [13]. We extend the notation as follows. We extend
sorts to sort schemes which include sort variables, denoted by 0, which range over
sorts. Also, instead of mapping field names to sorts directly, record sort schemes map
names to field schemes. A field scheme can be: a sort scheme, ss, indicating that the
field is definitely present in the record sort scheme; absent, indicating that the field is
definitely absent from the record scheme; or a field variable, A, giving no information
about the presence or absence of the field. Finally, a record sort scheme may have a
row variable (p or 7) affixed to it. Row variables are used to represent possible extra
unknown fields.

Combining these ideas with those of Even and Schmidt [7], we write the sort
scheme of an action A as follows:

A : (t) b) 'Ã‘> (t') b') (5)

where t and b are the record sort schemes of the transients and bindings used by A, and
where t' and b' are the record sort schemes of transients and bindings passed out of A
(assuming that it completes). If an action is ill-sorted, we write A : nothing.

More precisely, the action notation sort checker deals with action sort schemes
generated by the BNF grammar in Table 3. Not specified are I (labels, used to identify
transients) and k (tokens, or identifiers).

For example:

bind "nS' to 7 : ({ } y l , {}74 - ({I, { n : 7 })

bind "nSS t o the integer # I : ({ I : integer^, { } ^ } Ã‡Ã‘ ({}, { n : integer})

give s u m (the integer #I , the integer #2) label #3 :
({I : integer, 2: integer}^^, {}ye) - ({3: integer}, {})

furthermore bind "x" to the integer bound to "y" :
({}ys, {y: integer}^) - ({}, {x: integer, y: integer}^)

Unlike Wand [13], we use two different classes of row variables. This reflects the
different uses of the information given to an action. Firstly, any transients or bindings
explicitly used within the body of an action appear explicitly in its sort scheme.

The row variables 7, represent the sorts of any transients or bindings that are passed
into actions but not used ('garbage'). Since no action is obliged to use all the transients
or bindings passed into it, most actions have y-variables affixed to the t and b parts of
their sorts.

The row variables pi represent transients or bindings that are passed into actions
but just propagated out of them. The action 'rebind' (which propagates the bindings
it receives) is the simplest example of this. This action is polymorphic, and its sort
contains a p-variable to reflect this polym~rphism.~ Actions derived from 'rebind',
such as 'furthermore A', are also polymorphic. When writing a sort, we assume that
all free variables are implicitly universally quantified.

When a record sort scheme has a row variable affixed to it, the row variable may
be instantiated to any record sort with a disjoint domain. For example, consider the
following action sort:

give the cell bound to "v" : ({}T~, {v: ell}^^) - ({O: cell}, {})

In {v: cell}y2, therow variable y2 could be instantiated to {x: integer, y: truth-value},
representing the possibility that the action may receive (but ignores) bindings for x and
y. There are, of course, many other possibilities. However, {v: integer} is not a
possibility, because of the duplicate v field. In {}yl, the row variable y1 could be in-
stantiated to any record sort scheme, representing the possibility that the above action
may receive any transients (but ignores them).

4.5 Abstraction Sorts in ACTRESS Action Notation

An abstraction incorporates an action, which is performed whenever the abstraction
is enacted. It follows that abstraction sorts are isomorphic to action sorts. Since
abstractions are classified as data, we augment the data sorts of Table 2 with abstraction
sorts:

(data sorts) s ::= . . . 1 abstraction(t, 6) - (tf, bf)

Compare the polymorphic function (Ax.x), whose type may be written r Ã‘Ã r, where r is a type
variable.

5 Sort Inference in Action Notation

5.1 Sort Inference Rules

Using the action sort notation introduced in Section 4.4, our next step is to write down
sort inference rules for ACTRESS action notation. We use the following judgments for
assigning sorts to actions A and yielders Y, respectively:

Here Â is the sort environment, containing (among other things), sort information about
constants such as false, true, truth-value, and integer, and about operations such as
sum(-,_).

The following are typical rules for basic actions and combinators:

Â £ t A l : (t l , b l) ~ (t ~ , b \) Â£ tA2: (t2 ,b2)+(t i , b2
(A M D - m N) Â t- Al and then A2 :

(union ti t2,union bl 6 2) 'Ã‘ (merge t i tL merge b\ b;)

(combine ti t2, combine bi b2) <Ã‘ (join ti t& join bi b;)

The auxiliary operation union unites two record sort schemes, taking the pairwise
meet of any sorts associated with the same fields. For example:

union{w: sl, X : s2}p1 {x: 53, y: s4} = {w: sl, X : (s2 & s3), y: s4}p2,
where pi is instantiated to {y : s4}p2

union{w: sl, X : s2}p1 {x: 53, Y : s ^p i = {w: sl, X : (s2 & s3), y: s4}p3,
where pl is instantiated to {y : s4}p3, and p2 is instantiated to {w: s l } f3

In these examples, if the sort 5 2 & s3 is nothing, then the action is ill-sorted.
The auxiliary operation merge concatenates two record sort schemes, insisting that

their domains are disjoint. For example:

merge{w: s1}pl {x: s2, y: s3} = {w: si, X : s2, y: s3}p2,
where pi is instantiated to {x: absent, y: absent}p2

merge{w: sl}pl {x: s2, y: s3}p2 = {w: sly X: 52, y: s3}p3,
where pi is instantiated to {x: absent, y: absent}^,
and p2 is instantiated to {w: absent}p3

The auxiliary operations combine and join are peculiar to the (OR) rule, and reflect
the fact that only one sub-action is performed by this combinator. The combine
operation is similar to the union operation, except that it takes the pairwise join of any
sorts associated with the same fields. For example:

The join operation also forms the pairwise join of the sorts, but it insists on the
domains of the record sorts being identical. Its use in rule (OR) enforces a deliberate
restriction, that the transients and bindings passed out of the two sub-actions of 'or'
must have identical domains - we forbid conditional transients and bindings. For
example:

The following are the most important rules that deal with bindings:

& t Y : (t, b) -A S; s & bindable # nothing
(BIND) & t bind k t o Y : (t, b) w ({ } {k: s & bindable})

s & 0 # nothing
& I- the s bound to k : ({}fi, {k: O}yj) -A s & 0

&I-Al:(t l ,bi)t- . (t[,b[); Â£tA2:(t2,b2)-(tk7bk) b [=b2
(HENCE)

& t Al hence A2 : (union ti (2, 61) - (merge t\ t k b'y)

Rule (BIND) is straightforward. Rule (BOUND) infers that the yielder 'the s bound
to k' expects to receive a binding of k to a datum of sort 0. Here 0 is a sort variable,
which is to be instantiated to some actual sort that satisfies the stated constraint that
s & 0 # nothing. The sort variable 0 will be instantiated to a particular sort, depending
on the received bindings. For example, if 0 is instantiated to a subsort s' < s, then the
yielder's result sort will be narrowed to s & s' = s'. (In the extreme case 0 might be
instantiated to an individual, whereupon the yielder's result sort will be instantiated to
that individual.) However, if 0 is instantiated to a supersort of s, then the inference rule
indicates a place where a run-time sort check is required, since the datum bound to k
might turn out at run-time not to be of sort s.

In rule (HENCE), the antecedent 'b[= 62' insists that the sort of bindings produced
by Al be unified with the sort of bindings received by A2. For example:

b[= {x: 61, y: s2} and b2 = {x: sly y: s3}. These can be made equal by
replacing both b[and b2 by their meet, {x: 51, y: (52 & s3)}. If 5 2 & s3 =
nothing, b[and b2 cannot be made equal, therefore we have inferred that 'Al
hence A2' is ill-sorted.

To be concrete, if s2 = 7 and s3 = integer, then s2 & s3 = 7. In other words,
having already inferred that A2 expects a binding of "y" to an unknown integer,
we have now inferred from the context of A2 that the integer is, in fact, 7.

Or if 5 2 = truth-value and s3 = integer, then s2 & s3 = nothing. In other words,
Al binds "y" to a truth value, but As expects a binding of "y" to an integer. Clearly
'Al hence As' is ill-sorted.

bi = {x: s l , y: s2} and b2 = {x: si} .̂ These can be made equal by instantiat-
ing 71 to {y: s2}. In other words, we have inferred that A2 receives a binding of
"y" to a datum of sort 5 2 (which it ignores) as well as a binding of "x" to a datum
of sort s1.

b{ = {x: s l , y: s2} and bz = {x: s l , Z: s3}71. These cannot be made equal,
however we instantiate 71. Therefore we have inferred that 'Al hence A2' is
ill-sorted.

The following rules show how we infer the sorts of 'unfolding' actions:

[unfold : asu]Â t A : as; a s = asu
(UNFOLDING)

Â I- unfolding A : a s

[unfold : as]Â I- unfold : US

We insist that, inside 'unfolding A', every occurrence of 'unfold' has the same
sort asu, which can be unified with the sort as of A itself. This restriction excludes
polymorphic 'unfolding' actions6. However, it does not exclude the 'unfolding'
actions that occur in practical situations, such as the semantics of loops in programming
languages.

The following are some of the rules that deal with abstractions:

(ABSTRACTION)
8 A0 : 00, &o) ̂ bo)

& t abstraction A. : abstraction(to, bo) '--)Â (to, by)

Â I- Y : (t, b) -> abstraction({}, {}) - (to, bo)
(ENACT)

Â I- enact Y : (t, b) - (to, bo)

Â t Y : (t, b) - ̂abstraction(to, bo) '-Ã (to, bo)
(CLOSURE) Â t closure Y : (t, union b bo) -> abstraction(to, {}) 'Ã‘ (t'o, bo)

(WITH) Â \- y-i : (t2, b2) 0 s2; to = {O: so}; so & s2 # nothing
& I- Yi with Y2 : (union ti t2, union bl b2) -> abstraction({}, bo) c-̂ (to, bo)

6For which sort inference is undecidable [l 11.

92

Rule (ABSTRACTION) shows the isomorphism between the sort of 'abstraction Ao'
and the sort of the incorporated action Ao. Rule (ENACT) insists that the transients and
bindings required by the abstraction's incorporated action are empty. Suppose that this
is not the case, e.g., that the incorporated action expects to receive non-empty bindings;
then the 'enact' action will fail, since this action does not itself supply any bindings
to the incorporated action. (Only the 'closure' operation does so.)

Rule (CLOSURE) infers the sort of bindings required to form the closure of an
abstraction, principally the bindings bo required by the incorporated action (united with
the bindings b required to evaluate Y). The sort of the resulting abstraction indicates
that it requires no bindings (as required for use in an 'enact' action).

Rule (WITH) is slightly more complicated. Firstly, the abstraction must receive a
single transient datum labelled 0 (the antecedent to = {O: so}). Secondly, the sort
so of this transient must be consistent with the sort 5 2 of the datum actually supplied
(so & 5 2 # nothing). Again, the sort of the resulting abstraction is made to have empty
input transients.

Space does not permit us to present all the sort inference rules here. They are
presented in full in [3].

5.2 Sort Inference Algorithm

Our sort inference algorithm is based on the Even-Schmidt algorithm [7], but is
improved in several important respects. Our algorithm achieves a greater measure of
internal uniformity, by using record schemes for both transients and bindings. It infers
exactly which transients and bindings an action uses, using ^-variables to represent
transients and bindings passed to the action but not used. It infers action sorts more
precisely, by using a more refined sort hierarchy (Figure 1). Not least, it handles a much
larger and more representative subset of action notation, including choice, iteration, and
abstractions, all of which are essential for writing useful action-semantic descriptions.

Our algorithm consists of three passes. The first pass annotates the given action
with record schemes, in accordance with the sort inference rules. The second pass uses
reduces all sorts to canonical form, in particular, eliminating all occurrences of '&'. It
also removes all field and row variables. Field variables are no longer required, and
may be eliminated by instantiating them to absent, and then simplifying the record
sorts. Row variables can be eliminated if it is assumed that no transients and bindings
are passed to the program action. In effect, any p-variable at the top-level is instantiated
to {}, and any 7-variables can be safely discarded7. The third pass marks places where
run-time sort checks are required, replaces ill-sorted actions by 'fail', and simplifies
the program action.

7 ~ n unusual form of 'garbage collection' !

5.3 An Example of Sort Inference

Consider the following little program in a simple imperative language:

let const b true;
var x: int

in while b do x := - x

This would be mapped to the following program action:

urthermore
1 give true then bind " b to the value
before
1 allocate a cell then bind "x" to the cell

ience
unfolding

give the value bound to " b or
give the value stored in the cell bound to "b"

then
give the value bound to "x" or
give the value stored in the cell bound to "x"

then give negation (the integer)
then store the value in the cell bound to "x"

and then unfold
else complete

First consider the action on line 2. Application of rules (GIVE)' and (BIND) to the
sub-actions gives:

give true : ({}TI , { } 7 2) ^ ({o: true} { })
bind " b to the value : ({O: O1}m {}y4) - ({}, {b: (value & 01}))

Application of rule (THEN)' now forces unification of the first sub-action's outgoing
transients record sort {O: true} with the second sub-action's incoming transients record
sort {O: 01}y3. Thus the sort variable Ol is instantiated to true. The resulting sort
assignments are:

bind " b to the value : ({O: true}y3, {}y4) - ({}, {b: true})
give true then bind " b to the value : ({}yl, {}ys) += ({}, {b: true})

The action on line 4 is assigned the following sort:

allocate a cell then bind "xy' to the cell : ({}ye, {}y7) c-̂ ({}, {x: cell})

8 (~ ~ ~ ~) is not shown in this paper, but is analogous to (BIND).
'(THEN) also is not shown in this paper, but is analogous to (HENCE).

and the 'before' action on lines 2-4 is assigned the following sort:

. . . before . . . : ({}78, {}y9) - ({}, {b: true, x: cell})

Application of rules (BOUND), (STORED), and (GIVE) to the actions on lines 7 and 8 gives:

give the value bound to " b
: ({}710, {b: 02}711) ^ ({o: (02 value)}, {I)

give the value stored in the cell bound to " b
: ({}712, {b: 03}713) ^ ({o: (O4 & value)}, {I)

subject to the constraints O2 &value # nothing, 6$ & cell # nothing, and e4 &value #
nothing. Application of rule (OR) to the 'or' action on lines 7-8 now gives:

give the value bound to " b or
give the value stored in the cell bound to " b

: ({}714, {b: (02 I 03)}715) ^ ({o: (02 & value) 1 (O4 & value)}, { 1)
Eventually, application of rule (HENCE) will instantiate the sort variables & and O3 to
true. Thus the antecendent O3 &cell # nothing is not satisfied, and the action on line 8
is ill-sorted. This action can be replaced by 'fail', and the identity 'A or fail = A' can
be used to simplify the 'or' action to 'give the value bound to "b"'.

A similar argument applies to the other 'or' action, on lines 10-1 1. Because of the
binding x : cell, however, this 'or' action is simplified to 'give the value stored in
the cell bound to "x"'.

Finally, consider the sort inferred for the 'unfolding' action on lines 6-15. Initially,
in the (UNFOLDING) rule, we take asu = ({}pi, {}p2) c-̂ ({}p3, {}p4), and proceed with
sort inference of the sub-action. Rule (ELSE)" will cause p3 and p4 to be instantiated to
{} when they are join-ed with the sort of complete:

: ({}7l67 {}7l7) ^ ({I, {I)
(. . . and then unfold) else complete : (. . . , . . .) '-> ({}, {})

The variables pl and p2 are instantiated when applying rule (AND-THEN). When the sort
variables are also instantiated, {}pi and {}pi become {}7'8 and {b: true, c: ~ e l l } 7 ~ ~ ,
respectively. The final sorts assigned to the actions are:

unfolding . . . : ({}y18, {b: true, x: C ~ I I } ~ ~ ~) - ({}, {})
unfold : ({}718, {b: true, x: ~ e l l } 7 ~ ~) - ({}, {})

6 Related Work

As well as the work described in this paper, sort inference for action notation is a central
theme of the mainly theoretical work of Schmidt's group at Kansas State University

"The 'else' combinator is related to the 'or' combinator, and has a similar rule.

95

[7, 61, and forms part of the more practical compiler-generation work of Palsberg at
Aarhus University [lo].

In [7], Even and Schmidt study the sort properties of a small dialect of action nota-
tion, and present a sort inference algorithm for this dialect. They assign 'kinds' as well
as sorts to actions, and allow actions to be composed only if they are kind-compatible.
(For example, they do not permit an action that produces bindings to be composed with
an action that uses no bindings.) Their action sorts are based on record schemes, similar
to those used in this paper. Their dialect of action notation is very small indeed: it lacks
yielders, and it lacks some important combinators such as 'or' and '~nfolding ' .~~ A
fundamental limitation is that they require abstractions to be already annotated by their
sorts. Nevertheless, Even and Schmidt's work has strongly influenced our own. Our
main contributions have been removal of the unnecessary 'kind' structure, extension to
a more representative subset of action notation, proper treatment of abstractions, and
formalisation of the sort inference algorithm by a complete set of inference rules [3].

In [6], Doh and Schmidt address a related problem in sort inference. On the as-
sumption that the described language is statically typed, they show how to extract
static type inference rules from the semantic equations of an action-semantic descrip-
tion. We intend to develop this work and apply it to ACTRESS. At present, every
ACTRESS-generated compiler includes the action notation sort checker, which is rather
a sledgehammer to crack what might be a small nut (if the source language happens
to have a simple type system). Instead, we aim to generate a language-specific sort
checker from the action-semantic description.12 Also, we are currently studying how
to infer (as opposed to just assuming) whether the source language is statically typed.
ACTRESS will not restrict the source language, however. It will continue to accept
semantic descriptions of both dynamically-typed and statically-typed languages, but
will recognise the latter special case and exploit it to generate compilers that avoid
generating run-time sort checks.13

Palsberg's compiler generation system CANTOR [lo] takes a pragmatic approach to
sort inference (which is not a central part of his work). His sort-checker assumes that,
for each action and sub-action A, the sorts of the transients and bindings passed into
A are initially known, and uses these to infer the sorts of the transients and bindings
passed out of A. His algorithm is consequently much simpler than ours, avoiding the
heavy machinery of row variables, record schemes, unification, and so on. However,
when A is the sub-action of 'unfolding', or the body of an abstraction, the sorts of the
transients and bindings passed into A are not initially known. In these cases Palsberg's
sort-checker resorts to ad hoc means to continue.

llHowever, their methods can be extended to remove some of these limitations 1111.
"An alternative approach would be to generate a conventional type-checker from the language's

static-semantic description. Of itself this would be straightforward, but there would be no guarantee
that the given static semantics is sound with respect to the language's dynamic semantics.

13Analogously, ACTRESS will continue to accept both dynamically-scoped and statically-scoped lan-
guages, but will recognise the latter special case and exploit it to generate compilers that avoid generating
code to manipulate bindings at run-time [9].

Recently, Aiken et al. [I, 21 have applied type inference with type constraints to
the problem of analysing a dynamically-typed A-calculus to identify the places where
run-time type checks are necessary. The type system they use has several features in
common with the sort system of action notation: individuals as types, subtypes, and
intersection and union of types, They also have conditional types, and their algorithm,
instead of relying on unification, builds and solves a system of constraints of the form
Ti < Tj, where and rj are certain kinds of types.

7 Conclusion

In this paper, we aimed to show that sort inference in action notation is a difficult
problem. In fact, for the unrestricted notation, sort inference is undecidable. However,
we believe that the sort inference performed within the ACTRESS compiler generator
provides one of the most sophisticated analyses of action notation to date. Indeed,
ACTRESS remains unique in its ability to handle actions requiring runtime sort checks.
However, we also recognise that better performance could be obtained by generating
a language-specific sort checker, using information gained from analysing the action
semantics specification of the language. We are currently investigating how our analysis
of actions can be extended to deal with an entire specification, and also what properties
of the language may be apparent from such an analysis. In particular, we are interested
in guaranteeing the absence of runtime sort checks for any program in the specified
language.

Acknowledgments
Hermano Moura, the third member of the ACTRESS group, has made innumerable com-
ments and suggestions on the work reported here. We have benefited from numerous
interactions with David Schmidt and Kyung-Goo Doh of Kansas State University. Pe-
ter Mosses and Phil Wadler have also, at various times, provided valuable inputs. We
are happy to acknowledge all their contributions.

References

[I] A. Aiken and E. L. Wimmers. Type inclusion constraints and type inference. In
Functional Programming and Computer Architecture '93, pages 3141,1993.

[2] A. Aiken, E. L. Wirnmers, and T. K. Lakshman. Soft typing with conditional
types. In Proceedings of the 21st Conference on Principles of Programming
Languages, 1994.

[3] D. F. Brown. Sort inference in action semantic specifications. PhD thesis,
Department of Computing Science, University of Glasgow, 1994. In preparation.

[4] D. F. Brown, H. Moura, and D. A. Watt. ACTRESS: an action semantics directed
compiler generator. In Compiler Construction '92, Lecture Notes in Computer
Science, pages 95-109. Springer-Verlag, 1992.

[5] L. Cardelli and J. C. Mitchell. Operations on records. In Workshop on Math-
ematical Foundations of Programming Language Semantics, Lecture Notes in
Computer Science. Springer, 1989.

[6] K. Doh and D. A. Schmidt. Extraction of strong typing laws from action semantics
definitions. In ESOP '92, volume 582 of Lecture Notes in Computer Science.
Springer-Verlag, 1992.

[7] S. Even and D. A. Schmidt. Type inference for action semantics. In N. Jones,
editor, ESOP '90, 3rd European Symposium on Programming, volume 432 of
Lecture Notes in Computer Science, pages 118-133, Copenhagen, Denmark,
1990. Springer-Verlag, Berlin, Germany.

[8] P. D. Mosses. Action Semantics. Cambridge Tracts in Theoretical Computer
Science 26. Cambridge University Press, 1993.

[9] H. Moura and D. A. Watt. Action transformations in the ACTRESS compiler
generator. In Compiler Construction 5th International Conference, CC '94,
Lecture Notes in Computer Science, pages 16-30. Springer-Verlag, 1994.

[lo] J. Palsberg. A provably correct compiler generator. In ESOP '92, volume 582 of
Lecture Notes in Computer Science, pages 41 8434. Springer-Verlag, 1992.

[l 11 D. A. Schmidt, Apr. 1991. Personal communication.

[12] M. Wand. Complete type inference for simple objects. In Proceedings of the 2nd
IEEE Symposium on Logic in Computer Science, 1987.

[13] M. Wand. Type inference for record concatenation and simple objects. In Pro-
ceedings of the 4th IEEE Symposium on Logic in Computer Science, 1989.

[14] D. A. Watt. Programming Language Syntax and Semantics. Prentice Hall Inter-
national Series in Computer Science. Prentice Hall, Heme1 Hempstead, England,
1991.

OASIS: An Optimizing
Action-based Compiler Generator

Peter 0rbaek <poe@daimi . aau . dk>*

April 25,1994

Abstract

Action Semantics is a new and interesting foundation for semantics based compiler
generation. In this paper we present several analyses of actions, and apply them in a
compiler generator capable of generating efficient, optimizing compilers for procedural and
functional languages with higher order recursive functions. The automatically generated
compilers produce code that is comparable with code produced by handwritten compilers.

1 Introduction

Semantics based compiler generation has long been a goal in computer science. Automatic
generation of compilers from semantic descriptions of programming languages relieves pro-
grammers and language theorists from much of the burden of writing compilers.

We describe the OASIS (Optimizing Action-based Semantic Implementation System) com-
piler generator, and especially the analyses that provide the information enabling the code
generator to produce good quality code.

The generated compilers expand a given abstract syntax tree to the equivalent action by way
of the action semantics for the language. All analyses are applied to the expanded action. The
system is capable of generating compilers for procedural, functional (lazy and eager) and object
oriented languages. After analysis, the action is translated to native SPARC code. For further
details, see [18].

A short introduction to Action Notation is given first, and in the following section we describe
a type-checker for actions, whose raison d'etre is to allow us to dispense with all run-time type
checks.

We then proceed to describe the various analyses that are carried out on the type checked
action. Most of the analyses are set up in an abstract interpretation framework. The analyses
annotate the action with approximate information about its run-time behavior.

The results of the analyses are used by a code generator, generating code for the SPARC
processor. The code generator also employs a couple of optimization techniques on its own,
namely a storage cache used to avoid dummy stores and reloads, and a peephole optimizer
responsible for filling delayslots and removing no-op code.

*This work was partially funded by BRICS at the Comp. Sci. Dept. of Aarhus University. This article also
appears in the CC'94 proceedings, volume 786 of LNCS, all references should point to that article.

Finally we compare the performance of the generated compilers for a procedural and a
functional language with handwritten compilers for similar languages, and relate our results to
previous approaches to compiler generation.

The results are very encouraging as our automatically generated compilers emit code that
performs within a factor 2 of code produced by handwritten compilers. This is a major perfor-
mance enhancement in relation to earlier approaches to compiler generation based on Action
Semantics [20, 19,3], as well as compared to other semantics based compiler generators.

2 Action Notation

Action Semantics is a formalism for the description of the dynamic semantics of programming
languages, developed by Mosses and Watt [17]. Based on an order-sorted algebraic framework,
an action semantic description of a programming language specifies a translation from abstract
terms of the source language to Action Notation.

Action Notation is designed to allow comprehensible and accessible semantic descriptions of
programming languages; readability and modularity are emphasized over conciseness. Action
semantic descriptions scale up well, and considerable reuse of descriptions is possible among
related languages. An informal introduction to Action Notation, as well as the formal semantics
of the notation, can be found in [17].

The semantics of Action Notation is itself defined by a structural operational semantics, and
actions reflect the gradual, stepwise, execution of programs. The performance of an action can
terminate in one of three ways: It may complete, indicating normal termination; it may fail, to
indicate the abortion of the current alternative; or it may escape, corresponding to exceptional
termination which may trapped. Finally, the performance of an action may diverge, ie. end up
in an infinite loop.

Actions may be classified according to which facet of Action Notation they belong. There
are five facets:

the basic facet, dealing with control flow regardless of data.

0 the functional facet, processing transient information, actions are given and give data.

the declarative facet, dealing with bindings (scoped information), actions receive and
produce bindings.

the imperative facet, dealing with loads and stores in memory (stable information), actions
may reserve and unreserve cells of the storage, and change the contents of the cells.

the communicative facet, processingpermanent information, actions may send and receive
messages communicated between processes.

In general, imperative and communicative actions actions are committing, which prevents
backtracking to alternative actions on failure. There are also hybrid actions that deal with more
than one facet. Below are some example action constructs:

'complete': the simplest action. Unconditionally completes, gives no data and produces
no bindings. Not committing.

'Al and A2': a basic action construct. Each sub-action is given the same data as the
combined action, and each receives the same bindings as the combined construct. The
data given by the two sub-actions is tupled to form the data given by the combined
action, (the construct is said to be functionally conducting). The performance of the two
sub-actions may be interleaved.

'Ai or A2': a basic action construct, represents non-deterministic choice between the
two sub-actions. Either A1 or A2 is performed. If Al fails without committing A2 is
performed, and vice versa.

'store Yl in Y2': an imperative action. Evaluates the yielder Y\ and stores the result in
the cell yielded by Y2. Commits and completes when Y\ evaluates to a storable and &
evaluates to a cell.

An action term consists of constructs from two syntactic categories, there are action con-
structs like those described above, and there are yielders that we will describe below. Yielders
may be evaluated in one step to yield a value. Below are a few example yielders:

'sum(Yi, Y2)': evaluates the yielders Y\ and and forms the sum of the two numbers.

'the given D#n': picks out the n'th element of the tuple of data given to the containing
action. Yields the empty sort nothing unless the n'th item of the given data is of sort D.

'the D stored in Y': provided that Y yields a cell, it yields the intersection of the contents
of that cell and the sort D.

As an example we give below an action semantics for a simple call-by-value A-calculus with
constants.

2.1 Abstract Syntax

needs: Numbers/Integers(integer) , Strings(string) .

grammar:

(1) Expr = 5 "lambda" Var "." Expr I] 1 ff Expr "(" Expr ")" j 1
[Expr "+" Expr j 1 integer 1 Var .

(2) Var = string .

2.2 Semantic Functions

includes: Abstract Syntax .

introduces: evaluate _ .

evaluate _ :: Expr Ã‘ action .

(1) evaluate /:integer = give I .
(2) evaluate V:Var = give the datum bound to V .

(3) evaluate ["lambda" V:Var "." E:Expr] =
give the closure abstraction of

furthermore bind V to the given datum#1
hence evaluate E .

(4) evaluate [El :Expr "(" E2:Expr ")" I] =
1 evaluate El and evaluate E2
then enact application the given abstraction#l to the given datum#2 .

(5) evaluate [[Ei:Expr "+" E2:Expr I] =
1 evaluate El and evaluate E2
then give the sum of them .

2.3 Semantic Entities

includes: Action Notation .

datum = abstraction 1 integer 1 a .

bindable = datum .

token = string .

Type Checking

The main purpose of the type-checker for action notation is to eliminate the need for run-time
type-checking. If we hope to gain a run-time performance comparable to traditional compiled
languages such as C and Pascal, we need to eliminate run-time type-checks, otherwise values
would have to carry tags around identifying their type, and we would immediately suffer the
penalty of having to load and store the tags as well as the actual values. We are thus lead to
choose a wholly static type system.

Our type-checker is related to the one given by Palsberg in [20], but our type-checker is also
capable of handing unfoldings that are not tail-recursive. This imposes some problems, since
fixpoints have to be computed in the type lattice. Like Palsberg's type-checker, our type-checker
can be viewed as an abstract interpretation of the action over the type lattice.

The type-checker has been proved safe with respect to the structural operational semantics
of a small subset of Action Notation [18], but we will not go into details about the proof here,
we just give the structure of the proof. It should be straightforward, but tedious, to extend the
proof to the larger subset accepted by OASIS.

First a type inference system for a small subset of Action Notation is defined. It is shown
that the inference system has the Subject Reduction property with respect to the operational
semantics of Action Notation. Second, the type checking algorithm is proved sound with respect
to the inference system. Finally subject reduction and soundness are combined to prove the
safety of the type checker. Below we state the main safety result:

The type-checker is safe in the sense that, i f the type-checker infers a certain type for
the outcome of an action then, when that action is actually performed, the outcome
indeed has the inferred type.

As a corollary to the safety property, we have proved that all run-time type-checks can be
omitted.

4 Analyses

The main reason for the good run-times that we are able to achieve for the produced code, is the
analyses that we apply to the action generated from the semantics. The analyses consist of the
following stages:

forward analysis, incorporating constant analysis, constant propagation, commitment
analysis and termination analysis.

backwards flow analysis, used to shorten the lifetime of registers.

heap analysis, determines which frames can be allocated on the stack, and which need to
be allocated on the heap.

tail-recursion detection, checking whether unfoldings are tail-recursive or not.

4.1 Forward Flow Analysis

The forward flow analysis is essentially an abstract interpretation of the action over a product
of several complete lattices. The various parts of the analysis are interleaved in order to obtain
better results than would be possible had the analyses been done one after the other.

The forward analyses can be divided up into the following parts:

constant analysis, determines whether bound values are static or dynamic.

constant propagation and folding, propagates constants and folds expressions with
constant arguments into constants.

commitment analysis, approximates the commitment nature of the action.

termination analysis, approximates the termination mode of the action.

All of the analyses are set up in an abstract interpretation framework [5]. They are all
essentially intra-procedural, so each abstraction is not analyzed in relation of all of its enactions
(calls).

Constant propagation and folding is a well-known technique often used in compilers to
reduce constant expressions to constants. There is nothing special about our constant propagation
technique for actions. For example if the two arguments propagated to a "sum" yielder are
constant, the sum is folded into a constant at compile time, and propagated further as a constant.
The other parts of the forward analysis are more interesting.

4.1.1 Constant Analysis

Since the constant analysis is integrated with the constant propagation, we use the following
lattice of abstract values for this part of the analysis:

SD = ({(Static, v), Dynamic}, <)

where for all values v : (Static, v) < Dynamic.
The above lattice differs from the traditional lattice used in binding time analyses (eg. in

[I]) by incorporating the statically known value with the Static tag. This only buys us a
marginal benefit, but it is simply the obvious thing to do when the constant analysis and constant
propagation are integrated.

A binding of a constant (Static) value need not have space allocated in the frame of the
enclosing abstraction, as the bound value can be inserted statically wherever it is referenced.
Bindings of dynamic values are associated with a cell (a memory location) in the relevant frame,
and when a value is bound at run-time, it is stored in the cell, and it is retrieved from that cell
whenever the bound value is referenced.

Arguments to abstractions are assumed to be dynamic. We do not attempt to do inter-
procedural constant analysis. The need for such an analysis is not too great for ordinary
imperative languages, where fewer and larger procedural abstractions dominate. Also, an intra-
procedural analysis can be done more efficiently. We avoid the compile-time performance
problems often associated with inter-procedural abstract interpretations.

Likewise, the analysis assumes that the contents of memory cells are dynamic. All loads and
stores in Action Notation go through pointers, and storing a value to wherever a dynamic pointer
points may over-write the contents of any cell of the same type. This problem with dynamic
pointers is usually known as aliasing problems in traditional compilers. Since the performance
of sub-actions may be interleaved, it is hard to guarantee that the contents of a cell has not been
over-written by an unknown value at any given point of the performance.

4.1.2 Commitment Analysis

Actions may or may not commit. If an action commits it means that it has made some irreversible
change to the state of the machine, such as having stored a value in a cell or having sent a message
to another process.

We are interested in knowing whether an action may commit and subsequently fail (ie. err)
within an "Ai or A T construct. If this is the case, the "or" can't trap the failure, a run-time error
should be indicated and the program stopped (in the absence of commitment, an alternative
action may be performed). In the CANTOR system [20, 191, a significant amount of run-time
is used to check for such committed failures. Our analysis is able to statically determine the
possibility of committed failures in most cases, thus much fewer run-time checks need to be
inserted. The lattice used by the commitment analysis looks like this:

may-err
I

may-commit

never -commitffilways-commi t s v

Commitment of ground actions such as "store Y1 in Y? is determined by the type checker.
Commitment of combined actions such as "Ai and A2" is determined by commitment of the
sub-actions and the results of the termination analysis on the sub-actions. For unfoldings a fixed
point is computed.

4.1.3 Termination Analysis

The termination analysis computes approximate knowledge about the termination mode of sub-
actions. There are many benefits to be drawn from such knowledge. For example, suppose we
have the action "A, then AT. If the termination analysis is able to guarantee that the sub-action
Al always fails, no code need to be generated for A2!

The termination analysis abstractly interprets the action over the power-set of the four
possible termination modes (complete, fail, escape and diverge) ordered by subset inclusion:

CFED = (P{AC, AF, AE, AD}, C)

The termination mode of ground actions is determined by the type checker and influenced
by the propagated constants. The termination mode of combined actions is determined by the
termination mode of the sub-actions.

The termination- and commitment analyses have been formally specified in [18], although
soundness still remains to be proven.

4.2 Backwards Analysis

The backwards analysis is used to shorten the lifetime of transient values. This analysis traces
the data-flow backwards and increases counters in the abstract compile-time representations of
values each time such values are used, ie. stored to memory, written to standard output or passed
as parameters to an abstraction.

During code generation, the same counters are decreased at each point of usage and when the
counter reaches zero, the register holding the value can safely be discarded for eventual re-use.
This analysis is similar to the computation of live variables in traditional optimizing compilers.

4.3 Heap Analysis

Since abstractions are first class values in action notation, they can be given as transient data,
returned from abstractions and stored in memory. As we deal with statically scoped languages,
we need to provide abstractions with their correct static environment when they are enacted
(called).

In traditional languages with first class abstractions, such as Scheme, all frames (or activation
records) are typically allocated on the heap and it is up to a garbage collector to release the
associated memory when it is no longer used. In order to avoid spending lots of time doing
garbage collection, and to avoid heap allocated frames for programs in traditional imperative
languages such as Pascal, we employ the heap analysis1. The heap analysis is yet another
abstract interpretation of the action, this time over the following domain:

OP({SA, PC}), C)
'This analysis was initially called closure analysis for obvious reasons, but that term has a more specific and

different meaning in Copenhagen, so it was renamed.

The analysis traverses the action and marks each abstraction with an element from the above
domain as explained in the following:

SA stands for stores abstraction, it means that the abstraction may store, give, or escape with
an abstraction, ie. an abstraction may leak out of scope. PC stands forprovides closure, it means
that the abstraction provides (part of) the closure for another abstraction, ie. it has a syntactically
nested abstraction. Only if an abstraction is marked {SA, PC} need the corresponding frame be
allocated on the heap. Note that the top-most or global frame can always be allocated on the
stack as it will exist until the program terminates.

Thanks to this analysis, an action semantics for full Pascal will never give rise to code
needing heap allocated closures, as it is impossible for a procedure in Pascal to leak out of
scope.

4.4 Tail Recursion

In order to implement standard while loops efficiently by the "unfolding" construct, we need
to be able to detect tail-recursive unfoldings, so as not to incur the overhead of a procedure
call for each iteration of the loop. The action semantic equation for a while construct would
typically look something like:

execute ["while" ̂ Expression "do" ̂ Statements 1 =
evaluate E then

unfolding
1 check the given truth-value then execute S then unfold
or
1 check not the given truth-value .

In full generality, "unfold" may cause a recursive call. The tail-recursion detector traverses
the body of the unfolding and marks "unfolds" as tail-recursive or recursive depending on
whether any part of the loop-body may be executed after the "unfold". If there is just one
recursive "unfold" in the body of a loop, then all "unfolds" in that loop are treated as recursive.

5 Code Generation

The code generator generates assembly code for the SPARC processor from the action tree
annotated by the preceding analyses. The assembly code is generated in one pass, and registers
are allocated on an as-needed basis.

As much of the code generator as possible is kept machine-independent, to facilitate easy
porting of the code generator to other RISC processors. One machine-independent part of the
code generator is the storage cache. It serves the purpose of minimizing the number of load
and store operations in basic blocks. When a value is loaded from a known memory location
into a register, an association between the register and the location is kept, such that a later load
from the same address can be coded as a cheap register copy. Storing the contents of a register
in a known memory location keeps the association between the location and the register in the
same way, and the actual store is delayed until the last possible moment within the same basic
block to avoid two stores to the same location just after each other. (This may not be entirely
beneficial on a RISC architecture, where loads and stores should be spread out, but it was easier
to implement than a full graph-coloring register allocation algorithm).

A machine-dependent part of the code generator is the peephole optimizer. A peephole
optimizer is a traditional optimization technique, that is often used to remove dummy instruction
sequences and to simplify instructions. Our peephole optimizer does not attempt to eliminate
all dummy instructions, but is geared towards fixing deficiencies in the code generated by our
specific code generator.

The code generator is pretty intricate, as there are lots of special cases to consider when one
tries to generate good code for a realistic machine such as the SPARC. Perhaps a code generator
generator such as iBurg [8] could be used clean this up.

6 Overview

The action compiler and compiler generator consists of many parts written in different languages2.
This section gives an overview of the different parts and their interaction.

The compiler generator (gencomp) takes an action semantics written as a Scheme [4]
program, and produces a compiler written in Perl [24]. Scheme was chosen because it was easy
to implement a few macros in Scheme that make it painless to write a semantics using Scheme
syntax. Also, it was felt that not too much time should be spent on this part of the compiler
generator, as work is in progress that will make it possible to write action semantics in the
ASF+SDF system [l 11.

The generated compiler driver (or front-end) is written in Perl for ease of implementation.
The driver parses command-line options, calls the different parts of the compiler and takes care
of cleaning up if something goes wrong, such as a syntax error in the given program etc.

The compiler takes a textual representation of an abstract syntax tree (AST) for a program in
the source language, and produces, if all goes well, executable code for the SPARC processor.
The AST could easily be produced by, say, a YACC or Bison generated parser for the source
language.

The first step of the compiler is to massage the input AST into something resembling a
Scheme program, and combine it with the Scheme representation of the semantics for the source
language.

The second step runs a Scheme interpreter on the semantics and the munged program, and
writes a textual representation of the action corresponding to the program to a file. Currently,
the free s c m implementation of the Scheme standard [4] is used.

Step three runs the action compiler on the produced action, and produces assembly code for
the SPARC processor. This is the major step of the process. The action compiler consists of
approximately 10,000 lines of C++ code [21], plus a lexical analyzer generated by Flex and an
action parser generated by Bison.

The fourth step of the compiler assembles the output from the action compiler and links the
object module with a small run-time support library providing primitive input/output routines.
The run-time library is written in traditional C [lo].

The produced object program reads from standard input and writes to standard output.

2 ~ h e OASIS system is available by anonymous ftp from f tp. daimi. aau. dk in the directory
/pub/action/systems/

7 Comparisons

Here we compare the performance of our compiler generator with handwritten compilers and
other approaches to compiler generation. We consider two example languages: HypoPL and
FunImp.

The procedural language HypoPL contains integers, booleans, arrays, the usual control
structures (while-loops and conditionals) and generally nested procedures. The syntax and
semantics for HypoPL can be found in [12, 19, 181. The functional (eager) language FunImp
contains higher order recursive functions as well as mutable data. The syntax and semantics for
FunImp is derived from the language considered in [22], and is defined in [I 81.

All our timings, except for the run-times of the generated code, are made on an ordinary
33 MHz 386-based PC with 20 MB RAM, running the Linux operating system (version 0.99).
The generated SPARC code was run on a Sun Microsystems SparcStation ELC running SunOS
4.1.1.

Generating a compiler for Lee's HypoPL language [12, 131 takes 0.8 seconds. Using the
generated compiler to compile the HypoPL bubblesort program takes 3.9 seconds. As explained
in a previous section, this involves running the Per1 interpreter, the Scheme interpreter and
the action compiler, and the result is an assembly file suitable for the SPARC assembler. The
assembly code consists of roughly 250 instructions, ie. 1000 bytes when assembled.

Comparing these figures with what Palsberg obtained with the CANTOR system [20, 191
shows that the compilers we generate are two orders of magnitude faster than his, and that the
code size is also two orders of magnitude smaller than his. It should be noted that Palsberg's
tests were also run on a Sun SparcStation ELC.

The tables below show some results from using the generated HypoPL compiler to compile
some example programs (the same programs as used in [20, 191):

bubble: A bubblesort program, bubblesorts 500 integers.

sieve: The sieve of Eratosthenes, finds all primes below 512, repeated 400 times.

euclid: Euclid's method of finding the greatest common divisor of two numbers (1023
and 37), repeated 30,000 times.

fib: Computes the 46'th Fibonacci number 10,000 times. (The 46'th number in the series
is the largest that will fit in a 32 bit twos complement integer.)

The table below lists the compile times of various programs. The first column lists the time
it takes to compile the HypoPL program to assembly, the second column lists the time it takes
to compile the action generated from the HypoPL program, and the last column lists the time it
takes to compile an equivalent C program with optimization turned on. All times are in seconds.

sieve
euclid
fib

Program
bubble

HypoPL
3.9

Action
0.9

C-opt
0.6

The figures above indicate that something could be gained by integrating the processing of
the semantic functions with the action compiler, instead of relying on a Scheme interpreter to
expand the program to an action.

The generated HypoPL compiler is on average 6.5 times slower than the hand-written C
compiler. Much of this slowdown stems from the Scheme interpreter. The action compiler
itself compiles an action within a factor two of the time it takes to compile the equivalent C
program. This is what one would expect, as the action is at least twice as large (textually) as the
corresponding C program.

The "code size" column in the table below is a simple line count of the generated assembly
files. The actual number of instructions is smaller because of a little overhead, such as assembler
directives, labels and so forth. All times are in seconds. The fourth column gives the run-time
for an equivalent program written in C and compiled with the GNU C compiler (gcc 2 . 4 .3) .
The last column states the run-time for the C program compiled with full optimization turned
on.

1 Program I Code size I Run-time I C-runtime I C-opt 1
I bubble

I

254 1 0.4 1 0.4 i 0 2 1

The above table shows that the run-times for all four programs are within a factor 1.7 of
code generated by a hand-written C compiler. If we let the C compiler do its best at optimizing
the program, our code is still at most 4 times slower. The main reason why our code is so much
slower than optimized C code is the lack of a global register allocator. Another reason is that
HypoPL allows general nesting of procedures, something that C doesn't. This has an impact
on performance, since a HypoPL compiler (in the absence of a corresponding analysis) cannot
take the same shortcuts as a C compiler can when accessing variables.

Unrolling the sieve program a number of times, to obtain a source program ten times as
large (539 lines) yield compile times (19 seconds) about ten times longer than for the small
program (2 seconds), as one would expect, since the analyses are of linear complexity. Keeping
the actual amount of computation constant, we get the same run-times for the small and large
program. The code size scales linearly too, of course.

The figures show that code generated with the OASIS system is about two orders of magnitude
faster than code generated with the CANTOR system

sieve
euclid
fib

7.1 FUNIMP versus s cm

Here we make a performance comparison between Scheme and the generated FUNIMP compiler.
The example program is a recursive Fibonacci function.

The first column below shows the number of seconds it takes to compute the result in
interpreted Scheme, the second column is for the Scheme program compiled to C and then
to machine code by the Hobbit [23] compiler. The last column shows the run-time for the
OASIS-compiled FUNIMP program. Again our results are within a factor two of a hand-written
compiler.

211
144
93

1.2
2.1
0.8

0.7
1.4
0.7

0.3
0.7
0.5

1 s c m I Compiled Scheme 1 FUNIMP 1

The main difference between the code we generate for f i b and the code that HobbitJC
generates, is that our implementation of the conditional is less than optimal, due to the symmetric
nature of the "or" action construct and our non-optimal implementation of the "check" construct.
Our code actually computes the truth value, whereas C need only test the condition. Comparing
against an optimized, equivalent hand-written C program, shows that our code is about 3 times
slower.

7.2 Lee and Pleban

Comparing performance against Lee's system [12, 131 is difficult since it ran on much slower
hardware than what is available today. Comparing the time that it took for that system to compile
a HypoPL program to the time it takes for OASIS on more modem hardware would be unfair.
Also, traditional compiler technology has improved since his comparisons with the traditional
compilers of then, making a comparison based on those relative figures difficult.

Lee's system is based on High Level Semantics, where the static semantics is separated
from the dynamic semantics, and he explicitly gives a so-called micro semantics tailored for
the processor. Giving a new micro-semantics in his system would equal writing a new code
generator part to the action compiler. If one were to write a micro-semantics targeting the
SPARC processor, then it would be realistic to assume that code produced by a HypoPL
compiler generated from the high level semantics system could be as good as the code produced
by a HypoPL compiler generated by the OASIS system.

However, it seems that all optimizations in Lee's system happens at the micro-semantic
level, hence a new micro semantics will be difficult to write.

7.3 Kelsey and Hudak

In [9] Kelsey and Hudak describe their compiler generator based on denotational semantics.
In their system one writes denotational descriptions of languages in a variant of Scheme, and
the system then performs several transformations on the resulting Scheme program, eventually
arriving at assembly code for the Motorola 68020 processor.

They evaluate the performance of their system by comparing code produced by a generated
Pascal compiler with code produced by the standard Pascal compiler on the Apollo workstation
they used. The quality of the produced code is as good as what the standard Pascal compiler can
generate, all performance figures lie within a factor 1.5 of the Pascal-generated code. Assuming
that the standard Pascal compiler on the Apollo is comparable to a standard C compiler, one
will have to say that the performance of their system is on a par with the OASIS system.

Apart from being based on denotational semantics, the main difference between their system
and OASIS, is that their system transforms the meta-language (Scheme) until they reach some-
thing that is close enough to assembly to warrant a mechanical substitution from Scheme terms
to assembly code. In OASIS the meta-language (Action Notation) is not transformed, but merely
annotated by the various phases of analysis, and then ultimately an intricate code generator is
invoked to generate assembly.

7.4 Bondorf and Palsberg

Using the same subset of Action Notation as in [20], Bondorf and Palsberg in [2] present another
compiler generator based on Action Semantics. The compiler generator partially evaluates a
Scheme representation of the action generated from the semantics. The generated compilers are
compared with compilers generated by the CANTOR system. In comparison with the CANTOR
system, run-times of the produced Scheme code are improved by at most a factor of 4, including
a hypothetical factor 5 that the authors think they would achieve, had they used a Scheme
compiler instead of an interpreter. Since the produced object code from the OASIS system is two
orders of magnitude faster than what the CANTOR generated compilers produce, our system is
clearly superior to this partial evaluation approach to compiler generation.

7.5 Actress

Comparing performance against the ACTRESS system is difficult since only one small test
program with timings is given in [3]. For the system that they had implemented at the time,
they write that the code they produce (C code) is 69 times slower than the equivalent Pascal
program compiled with a standard compiler. This is certainly slower than our system. With
certain mechanical optimizations, that were not implemented at the time of their article, they
improve performance to within a factor two of the Pascal compiler. No timings are given for
how long it takes to compile a program with the generated compilers.

The Actress approach to action compilation is closer to the approach by Kelsey and Hudak
than it is to ours, in that they transform the action generated by the semantics to gain better
run-times.

Concluding Remarks and Future Work

We have described several analyses based on Action Semantics, and have shown how they can be
applied in a compiler generator capable of generating compilers that produce code comparable
to code produced by handwritten compilers for similar languages.

Even though Action Semantics was developed from a semantic perspective without regard
for compilability and run-time efficiency, we have demonstrated that efficient compilers can be
automatically generated from Action Semantic descriptions.

However, there are various shortcomings of the current version of the system. The type
system is probably too strict, and some sort of type inference like the system by Even and
Schmidt [7] would be an advantage, if it could be modified in a way that would allow us to
dispense with - most or all - run-time type checks. Moreover, many useful data-types are not
easily expressible in the system, such as lists and records. Again the type system would have to
be extended to cater for them.

There is still ample room for improvements of the code quality. The contents of memory
cells should be tracked, and loop optimizations such as strength reduction could be applied. One
possible way to obtain better code would be to transform the action tree to some other internal
form better suited for low level optimizations, such as RTL (Register Transfer Language) [16,15]
or structured RTL [14].

A few experiments have been made with the specification and generation of compilers
for object oriented languages. A small language with classes, objects, block structure and

inheritance has been specified and a compiler has been generated. We simply employ the ability
of OASIS to handle higher order abstractions to model objects and methods. However, the
current system is not capable of resolving non-virtual method-calls at compile time, as further
analysis would be needed to accomplish that.

Work is currently going on to formally specify the various analyses described in this paper,
and to prove their safety with respect to the operational semantics of Action Notation.

Further work could go in the direction of using the results of analyses on actions to say
something about the source program. It would also be useful to analyze the semantic equations
themselves (akin to the work by Doh and Schmidt [6]), this could perhaps cut down on the time
it takes to compile actions to assembly. Generally it would be advantageous to analyze as much
as possible in the compiler generation phase, as opposedthe compilation phase. Typically one
will apply the generated compilers more often that the compiler generator.

9 Acknowledgements

I want to thank Peter D. Mosses for encouragements and guidance in the preparation of the
article. I also want to thank Ole L. Madsen for reading a draft of the paper. I must also thank
the anonymous referees for useful and guiding feedback.

References

[I] A. Bondorf. Automatic Autoprojection of Higher Order Recursive Equations. In N. Jones,
editor, Proceedings of the 3rd European Symposium on Programming (ESOP 90), volume
432 of LNCS, pages 70-87, Copenhagen, May 1990. Springer-Verlag.

121 A. Bondorf and J. Palsberg. Compiling Actions by Partial Evaluation. In Proceed-
ings of Conference on Functional Programming Languages and Computer Architecture
(FPCA '93), 1993.

[3] D. F. Brown, H. Moura, and D. A. Watt. ACTRESS: an Action Semantics Directed Compiler
Generator. In Proceedings of the 1992 Workshop on Compiler Construction, Paderborn,
Germany, volume 641 of LNCS. Springer-Verlag, 1992.

[4] W. Clinger and J. R. (editors). ~ e v i s e d ~ Report on the Algorithmic Language Scheme.
Technical report, MIT, 199 1.

[S] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Conference
Proceedings of the Fourth ACM Symposium on Principles of Programming Languages,
pages 238-252, Los Angeles, January 1977.

[6] K.-G. Doh and D. A. Schmidt. Extraction of Strong Typing Laws from Action Semantics
Definitions. In B. Krieg-Briickner, editor, Proceedings of the 4 'th European Symposium on
Programming (ESOP 92), volume 582 of LNCS, pages 151-166, Rennes, February 1992.
Springer-Verlag.

[7] S. Even and D. A. Schmidt. Type Inference for Action Semantics. In N. Jones, editor,
Proceedings of the 3rd European Symposium on Programming (ESOP 90), volume 432 of
LNCS, pages 118-133, Copenhagen, May 1990. Springer-Verlag.

181 C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engineering a Simple, Efficient Code
Generator Generator. Technical report, AT&T Bell Labs, 1992.

[9] R. Kelsey and P. Hudak. Realistic Compilation by Program Transformation. In Proceedings
of the 16Yh ACM Symposium on Principles of Programming Languages, pages 281-292,
January 1989.

[lo] B. W. Kernighan and D. M. Richie. The C Programming Language. Prentice-Hall, 1978.

[1 11 P. Klint. A meta-environment for generating programming environments. In J. A. Bergstra
and L. M. G. Feijs, editors, Algebraic Methods ZZ: Theory, Tools and Applications, volume
490 of LNCS, pages 105-124, Mierlo, September 1989. Springer-Verlag.

[12] P. Lee and U. F. Pleban. A Realistic Compiler Generator on High-Level Semantics. In
Proceedings of the 14thACM Symposium on Principles of Programming Languages, pages
286295,1987.

[13] P. Lee and U. F. Pleban. An Automatically Generated, Realistic Compiler for an Imper-
ative Programming Language. In Proceedings of the ACM SZGPL,AN988 Conference on
Programming knguage Design and Zmplementation, pages 222-232, June 1988.

1141 C. McConnel. Tree-Based Code Optimization. PhD thesis, University of Illinois Urbana
Champaign, March 1992. Draft.

[I51 C. McConnel and R. E. Johnson. Using SSA Form in a Code Optimizer. Technical report,
UIUC, 1991.

[16] C. McConnel, J. D. Roberts, and C. B. Schoening. The RTL System. Technical report,
UIUC, October 1990.

1171 P. D. Mosses. Action Semuntics. Cambridge University Press, 1992. Number 26 in the
Cambridge Tracts in Theoretical Computer Science series.

[I81 P. Drbzk. Analysis and Optimization of Actions. M.Sc. dissertation, Com-
puter Science Department, Aarhus University, Denmark, September 1993. URL:
ftp://Â£tp.daimi.aau.dk/pub/empl/poe/index.html

[19] J. Palsberg. A Provably Correct Compiler Generator. In B. Krieg-Briickner, editor,
Proceedings of the 4th European Symposium on Programming (ESOP 92), volume 582 of
LNCS, pages 418434, Rennes, February 1992. Springer-Verlag.

1201 J. Palsberg. Provably Correct Compiler Generation. PhD thesis, Computer Science
Department at Aarhus University, January 1992.

1211 B. Stroustrup and M. A. Ellis. The Annotated C++ Reference Manual. Addison-Wesley,
1990.

1221 J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Journal of
Functionul Programming, 2(3):245-27 1, July 1992.

1231 T. Tammet. Hobbit: A Scheme to C compiler. Unpublished, (available by ftp from
cs.indiana.edu:/pub/scheme-repositow),l993.

[24] L. Wall and R. L. Schwartz. Programming Perl. O'Reilly and Associates, 1991.

Towards Partial Evaluation of Actions
(Abstract with Appendix)

Kyung-Goo Doh
The University of Aizu*

Abstract

Partial evaluation technique has been proven to be useful in many aspects
in computing, e.g., program transformation, compiler generation, etc. In this
paper, we present an action tranformation technique based on partial evalua-
tion. A binding-time analysis transforms a program action into an equivalent
two-level action, annotated either "static" or "dynamic". Then the two-level
action is partially evaluated (reduced) to a residual action by blindly following
annotation.

Appendix

Action transformation by partial evaluation is described in inference rule format.
The syntax and semantics of action notation are given in Figures 1-4, and the syntax
of some two-level action notation is shown in Figure 5. Partial evaluation is done
in 2 stages: (1) binding-time analysis transforms an action into an quivalent two-
level action by annotating the action with binding-time information - either static
or dynamic (see Figures 6-9); (2) the two-level action is partially evaluated into a
residual action (see Figures 10-13).

*hkushima 965-80, Japan, kg-doh@u-aizu.ac.jp

115

Action = "complete1' 1 "regive1' 1 ["give1' Yielder 1 1
"rebind" 1 ["produce1' Yielder 1 ["bind" token "to" Yielder 1 1
["store" Yielder "in1' Yielder 1 1
["allocate" ("natural" 1 "truth-value1') llcell'' 1 1
[Yielder "either" Action "or" Action 1 1
[Action "and" Action 1 1
[Action "and" "then1' Action 1 1
[Action Action 1 1
[llfurthermorei' Action "hence1' Action 1 1
[Action "before1' Action 1

Yielder = "true" 1 "false" 1 natural 1
[Operator Yielder 1 1 "them1' 1 "it" 1
["the" "given" Data 1 ["the" "given" Data "#" natural 1 1
["the" Data "bound1' "to" token 1 1
["the" Data "stored" "in" Yielder 1 1
[Yielder "," Yielder 1 1 ["(" Yielder ")" 1

Data = lidatum'' 1 "value" 1 lltruth-valuel' 1 "natural 1
ldcell" 1 lltruth-value-cellll 1 "natural-cell" 1 "tokenll 1
. . . 1 "{2,3,4}" 1 . . . 1 "2" 1 . . .

Figure 1: Syntax of Action Notation

() I- true true () I- false E false () I- n : natural â n

r I - Y c T T ~ o ~ ~ f
I' t [0 : Operator Y :Yielder 1 E T I

T S D
T I- [t h e given D : Data 1 E T

T I = component# n T T I 5 D
T I- [t h e given D: Data # n: natural 1 E T I

p < { t = ~ } T S D
p t [t h e D: Data bound t o t : token] E T

I', o I- Y E T T 5 Dcell allocated?(r, c) initialized?(r, o)
I?, o I- [the D: Data stored in Y :Yielder] E o at T

I ' l S I ' 2 r 2 t y â ‚ ¬ 7 72571
(weakening rule)

I'l I- Y :Yielder E yl

Figure 2: Operational Semantics for Yielders

~ I - Y ~ T
() I- complete l () r t regive e r I? I- [give Y :Yielder] l r

r t y e p

p I- rebind ? p I? I- [produce Y:Yielder] E p

I? I- Y e r r < value

I? I- [bind t: token t o Y :Yielder] e {t = r }

r , u I- Yl ? TI TI < value r',u I- Y2 ? TZ compatible?(~~,r~) allocated?(~2, a)
r , u h [store Yl :Yielder in Yz :Yielder] ? overlay(map TZ to TI, u)

r = new natural cell(a)

a I- [allocate natural cell] 6 r, overlay(map r t o uninitialized, a)

r = new truth value cell(a)

a t [allocate truth value cell] e r,overlay(map r to uninitialized, a)

Figure 3: Operational Semantics for Actions (1)

r I - Y e t r u e F I - A 1 6 7

r I- 1 Y :Yielder then either Al :Action or As :Action] E 7

r I- Y E false I' I- A2 E 7

r I- [Y :Yielder then either Al :Action or A2: Action] E 7

r I - A I E ~ l r h A 2 E T 2
I' I- [Al : Action and A2 : Action] E (rl, 3-2)

I' I- A1 E 71,o-1 r,ci I- A2 E 72,0-2

I' I- [Al : Action and then A2 : Action] ? 7 2 , 0 2

I? I- Al â T r , ~ I- A2 E 7
I- [Al :Action then A2 :Action] E 7

r, p I- A1 E pi, o-1 r, overlay (PI, P), o-1 I- A2 E 7
I?, p I- [furthermore Al : Action hence A2 : Action I] E 7

r , p I- AI E pl,cl r , o v e r l a ~ (~ ~ , p) , o - ~ I- E p2,c2
r, p I- [Ai : Action before A2 :Action] ? overlay(p2, pi), o-2

I\<r2 r 2 I - A E 7 2 72571 (weakening rule)
I\ I- A: Action E 71

Figure 4: Operational Semantics for Actions (2)

Action2 = "complete" 1 "regive" 1 ["give" Yielder2] 1
"rebind" 1 ["produce" Yielder2] 1
["bind" token "to" Yielder2] 1
["store" Yielder2 "in" Yielder2] 1
["allocate" ("natural" 1 "truth-value") "cell"] 1
["lift-action" Action2]I 1
[Yielder2 "static" "then" "either" Action2 "or" Action2] 1
[Yielder2 "dynamic" "then" "either" Action2 "or" Action2] 1
[Action2 "static" "and" Action2] 1
[Action2 "dynamic" "and" Action2] 1
[Action2 "static" "then" Action2] 1
[Action2 "dynamic" "then" Action2] 1
. . .

Yielder2 = "true" 1 "false" 1 natural 1
[Static-Operator "(" Yielder2 "," Yielder2 ")'I] 1
[Dynamic-Operator "(" Yielder2 ",'I Yielder2 ")"] 1
stat ic" "them" 1 "dynamic" "them" 1
'Cstatic,, "it#* 1 "dynamic" "it1' 1
["the" "given" "static" Data I] 1
["the" "given" "dynamic" Data] 1
["the" "given" "static" Data "#I1 natural] 1
["the" "given" "dynamic" Data "#" natural] 1
["the" "static" Data "bound" "to" token] 1
["the" "dynamic" Data "bound" "to" token] 1
["the" Data "stored" "in" token] 1
["lift" Yielder2 1) 1

Data = "datum" 1 "value" 1 "truth-value" 1
"cell" 1 "truth-value-cell" 1 "natural-
. "{2,3,4}" 1 ... l " 2 " 1 ...

"natural" 1
cell" 1 "token" 1

Figure 5: Syntax of 2-Level Action Notation

() I- true G true, known

() I- false G false, known

() I- n : natural G natural to string(n), known

I' I- Y ? r1,known I' t Y2 E r2, known
I' I- [sum (Y,, yi)] E [static sum(rl, 7-2) I, known

I' I- Yl E r1,known I' I- Y2 E r2,unknown
I' I- [sum (Y,, yi)] E [dynamic sum([lift r1], r2) I], unknown

I' I- Y, 6 r1,unknown I' I- Y2 E r2,known

I' t [sum (x, la)] E [dynamic sum(rl, [lift r2]) 1, unknown

I' I- Yl E r1,unknown I' I- Y2 G r2,unknown

I' I- [sum (Y,, yi)] G [dynamic sum(rl, r2) 1, unknown

U r = known U r = unknown

r I- them ? [static them], r r I- them G [dynamic them], r

T = known r = unknown

r I- it E [static it], known r I- it E [dynamic it], unknown

Figure 6: Binding-Time Analysis for Yielders (1)

UT = known

T I- [the given D: Data] ? [the given static D 1, T

UT = unknown

T I- [the given D: Data] [the given dynamic D], T

component# n T = known

T I- [t he given D # n] ? [the given static D#n]I, known

component# n T = unknown

T I- [the given D # n I e [the given dynamic D#n I, unknown

~ (p at t) = known

p I- [the D bound t o t] E [the static D bound t o t 1, p at t

~ (p at t) = unknown

p I- [the D bound t o t] E [t he dynamic D bound t o t], p at t

I- y e 7,P
I' I- [t he D stored in Y] e [t he D stored in 7], unknown

-- -

Figure 7: Binding-Time Analysis for Yielders (2)

() I- complete (= complete, ()

r I- regive 6 regive, r

r I- [give Y] e [give r],r

p I- rebind 6 rebind,/?

r i- Y e o

r I - Y e r
r I- [bind t t o Y 1 ? [bind t to r I], {t = r }

r k v i 6 T i r i - & < E T 2

I- [store vi in Y2] 6 [store TI in rz], ()

() I- [allocate natural cell] 6 I allocate natural cell], unknown

--

() I- I allocate truth value cell] E [allocate truth value cell 1, unknown

Figure 8: Binding-Time Analysis for Some Actions (1)

r I- Y <E T, known I? I- Al ? yl,pl Y t A2 E 72,/?2
F I- [Y then either A1 or A2 Jj E [r static then either 71 or 7 2 I, u p2

I? I- Y E r,unknown TI- Al? 71,p1 F I- A2 ? 72,p2
r I- [Y then either Al or A2 I ? [r dynamic then either 71 or 7 2 I, u p2

I? I- A1 â ri,/?i Up l=known I? I- A2 <E r2 ,& U/31=known

I? I- [A1 and A2 1 ? [TI static and r2 I, (/31,&)

I? I- A1 â r1,Q-i Up l=known F I- A2 ? r2,p2 U/?l=unknown

I' I- [A1 and A2] ? [[lift action rl] dynamic and r2 1, (pi, p2)

I- A1 â r1,/31 U p 1 = unknown I? I- A2 ? r2,& Upl = known

I- [A1 and A2] G [TI dynamic and [lift action r2j]I, (PI, /I2)

I- A1 e TI, /?I U PI = unknown F I- A2 ? 7-2, /^ U PI = unknown
F I- [Ai and A2] c [7-1 dynamic and r 2 1, (PI, ,&)

F I- [A1 then A2 I E [TI static then 7 2 1, p2

r h- A i ? ~ i , / 3 1 r,pi I- A2 ? y2,& LI Dl = unknown static?(^}

I? [A l t h e n A21 ? [~ 2] , & ?

r I- A i â ri,/?i F,Qi I- A2 ? 72,p2 U pi = unknown dynamic?(&,)

I- [A1 then A2] ? [TI dynamic then 7 2 I, fti

Figure 9: Binding-Time Analysis for Some Actions (2)

() I- true C true

() I- false G false

r t y i ~ ~ ~ r t y 2 e T 2

I- [dynamic sum(%, y2)] E [sum(r1, 7-2) I

T I- [static them] G r

r t [dynamic them] E them

T I- [static it] G T r t [dynamic it] c it

Figure 10: Partial Evaluation for Yielders (1)

r t [the given static D lj E r

r I- [the given dynamic D] l [the given D]

T t [the given static D#n] G component# n r

r t [the given dynamic D#n] G [the given D#n]

p t [the static D bound t o t] G p at t

p I- [t he dynamic D bound t o t] G [t he D bound t o t]

r t [t h e D stored in Y lj (= [t he D stored in Y]

~ F Y G ~
I' t [lift Y lj G build data(7)

Figure 11: Partial Evaluation for Yielders (2)

() t complete 6 ()

T I- regive r

r t y e r
I' t [give Y j E r

p t rebind 6 p

r t y e ~

r t y ~ r
r t [bind t t o Y] 6 {t = r }

r , a I- [store Vi in %] E [store in fi]

u I- [allocate natural cell] 6 [allocate natural cell]

I' I- [lift action A] 6 build action(7)

Figure 12: Partial Evaluation for Actions (1)

I' t [Y static then either Al or A2] ? 7

I? t Y ? false I' I- A2 ? 7
I' t [Y static then either Al or A2] ? 7

r t Y ? ~ i r t A i E 7 1 I ' t A 2 â ‚ ¬
r t [Y dynamic then either Al or A2 I] ? [TI then either 71 or 7~]

~ I - A I (E ~ I r t ~ ~ < = 7 ~
r t [Al dynamic and A2 I] E [71 and 7 2]

I? I- [Al static then A2 I] ? 7

r t Al <= T r,r t A 2 â 7
I' I- [Al dynamic then A2] ? [T then 7 j

Figure 13: Partial Evaluation for Actions (2)

Using ASF+SDF to
Interpret and Transform Actions

David A. Watt *

Abstract

ASF+SDF is a very natural tool for prototyping action notation. We can specify the syntax of
action notation in the usual way. SDF generates a backtracking parser that discovers ill-formed and
ambiguous action terms. We can specify the operational semantics of action notation by rewrite
rules that define the effects of performing actions, evaluating yielders, and so on. ASF's term-
rewriting engine does the rest. We can go further and add equations that encode the laws of action
notation; ASF interprets these as rewrite rules. Thus action terms (whether input by the user, or
generated by translation from a source language) are automatically simplified.

This report summarises progress towards building a robust action notation prototyper. It discusses
the problems in making it acceptably efficient, the possibility of incorporating the more
sophisticated transformations developed in the ACTRESS project, and the prospects of using the
prototyper (in conjunction with van Deursen and Mosses' ASD Tools) to test realistic action-
semantic specifications.

Introduction

Semantic prototyping is a valuable tool for designers and specifiers of programming
languages. The idea of prototyping is to take a formal specification of a programming
language, and use it to build a quick (but poor-quality) implementation.

Prototyping is an key element of what I call language engineering (and what Uwe Pleban
has called the language designer's workbench). The new language design is first embodied
in a formal specification. This exercise is itself an effective way to expose irregularities in
the language design. Then the formal specification is used to build a prototype, which is
used to run small test programs in the new language. This gives feedback to the language
designer, allows the specification itself to be tested, and even allows ordinary programmers
to gain some initial experience with the new language. The design, specification, and
prototyping stages are then iterated, until the design stabilises. Finally, one or more true
compilers are constructed. In this stage, the formal specification is available at least as a
guide to the compiler writers, but ideally they could use a semantics-directed compiler
generator. It makes sense to defer the most expensive stage, compiler construction, until
after the language design has stabilised.

Note the central role of the formal specification in language engineering. The benefits of
prototyping and compiler generation give the language designer a strong incentive to write
the formal specification - and at an early stage, not as an afterthought.

* Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland. E-mail:
daw@dcs.gla.ac.uk.

Various approaches to semantic prototyping have been tried, usually based on expressing
denotational or natural-semantic specifications in a programming language such as Algol 68
(Pagan 1979), ML (Watt 1986), or Prolog (Despeyroux 1988). I have explored the
possibility of prototyping action semantics using ML (Watt 1991). An action can be
modelled by an ML function that maps incoming information to a result; an action
combinator can be modelled by an ML function that maps actions to actions; and so on.
Careful choice of names and priorities1 for the ML functions allows action terms to be
expressed quite recognisably:

furthermore
(allocateacell then

(store zero (*in*) it andthen
bind "x" (*to*) it))

hence
give (sum (integer storedin (cell boundto "x"), one))

I have applied this prototyping method to toy languages, but never to a real language. The
effort of manually transcribing a semantic specification from standard action notation to the
ML syntax is just too great.2 Worse, all the data operations (which would normally be
specified algebraically) have to be manually implemented in ML.

Recently, Peter Mosses introduced me to ASF+SDF3 (Klint 1993a, 1993b). This is an
extremely powerful and flexible system for processing language specifications. The
specified language could be as simple as Boolean expressions or as complex as a real
programming language. The specifier introduces sorts, introduces (mixfix) operations over
these sorts, and defines these operations by (conditional) equations.

Specifying syntax: In the specification of a programming language's abstract syntax, the
sorts are phrase sorts (nonterminals), and the operations are abstract-syntax-tree
constructor operations. Appropriate choice of mixfix constructor operations allows the
abstract syntax to resemble concrete syntax. Indeed, SDF automatically generates parsers
from such syntactic specifications. There are facilities for specifying priorities, and left- or
right-associativity .

Specifying semantics: In the specification of a simple language such as Boolean
expressions, equations can be used to specify its semantics in the algebraic style. In the
denotational specification of a programming language, the equational notation can be used
to express semantic equations. In the operational specification of a programming language,
conditional equations can be used to express inference rules. In any case, ASP interprets
the equations as left-to-right rewrite rules, and a term-rewriting engine allows the
specification to be executed.

Mosses expressed the action semantics of a toy programming language, Pico, as an
ASF+SDF specification. He specified the syntax of Pico and the syntax of (a subset of)
action notation. He specified the semantics of Pico by means of operations corresponding
to semantic functions, defined by means of equations corresponding to semantic equations.

ML functions are prefix by default. However, a binary function can be declared to be infix, and assigned a
priority number. Mixfix functions cannot be declared.

This translation could be automated. My pilot version of the action notation compiler (predating the
ACTRESS project) had an option to translate action notation to the ML syntax.

ASF+SDF = Algebraic Specification Formalism + Syntactic Definition Formalism.

Using this specification he could enter Pico programs and translate them to action notation.
The only missing feature was a means of executing the action notation!

This prompted me to undertake, as an ASF+SDF familiarisation exercise, development of
an action interpreter. I also perceived that ASF+SDF would be ideal for expressing useful
algebraic properties of action notation, and I speculated that it would be useful for
experimenting with more complicated action transformations. I have largely achieved the
first two of these objectives, and have made a start on the third. This report gives an
informal account of progress to date. It can be read, either as a detailed discussion of
prototyping of action notation, or as a case study of a non-trivial application of ASF+SDF.

2 Action Syntax

My first step was to specify the syntax of actions (and yielders and data terms) in SDF
notation. This was quite straightforward - see Box 1. Using this specification I could use
ASF+SDF to enter and edit action notation terms. Because operations may be mixfix, I was
able to mimic standard action notation very closely. However, only parentheses are
available for grouping; the use of vertical lines and indentation for this purpose is not
supported. The action shown in Section 1 would be expressed as follows:

furthermore
(allocate a cell then

(store 0 in it and then
bind 'x' to it))

hence
give sum (the integer stored in the cell bound to 'x'), 1)

In certain details, I designed my action notation grammar in such a way as to facilitate my
later specifications of action interpretation and transformation. In particular, I introduced
the sorts SimpleAction, Prefixcombinator, and Infixcombinator for these reasons.

3 Action Interpretation

Information flows from action to action in three facets: transient data (functional facet),
bindings (declarative facet), and storage (imperative facet). When an action is performed,
its outcome may be to complete, escape, fail, or diverge. Also, the action may or may not
commit.

I introduced the sort Info to represent the information flowing into an action, and the sort
Result to represent the outcome, commitment, and information flowing out of an action -
see Box 2.

No transient data or bindings flow out of an action that fails, so the fields d and b in the
Result term (failed, corn, d, b, s) are actually redundant. However, I found it simplest to
represent failed results uniformly with completed results, on the understanding that in a
failed result the fields d and b will be empty. A similar point applies to escaped results, in
which the b field will be empty. There is no need to represent the result of a divergent
action: performing such an action will be represented by an infinite rewriting.

I introduced the operation "performed" to represent the effect of performing an action with
incoming information. This operation will map an action and an Info term to a Result term.

Similarly, I introduced the operation "evaluated" to represent the effect of evaluating a
yielder, this time yielding a Data term. (Data itself has a fairly conventional algebraic
specification, not shown here.)

Now it is straightforward to specify how simple actions such as "complete", "fail", "give",
and "bind" are performed - see Box 2. The performance of an "unfolding" action is
specified by means of the auxiliary operation "unfolded (A, A')", which substitutes A' for
each (free) occurrence of "unfold" in A.

sorts Action SimpleAction Yielder Prefixcombinator InfixCombinator ...

context-free syntax

SimpleAction

complete
fail
give Yielder
bind Token to Yielder
store Yielder in Yielder

unfold
unfolding Action
Prefixcombinator Action
Action InfixCombinator Action
'(" Action ")"

furthermore
or
and
and then
hence
moreover

Data

it
given Data
the Data bound to Token
the Data stored in Yielder

IdentityOp Yielder
PrefixOp Yielder
Yielder InfixOp Yielder
'(I1 Yielder ")I1

a
sum
is
I1 I1 ,

Action

SimpleAction
SimpleAction
SimpleAction
SimpleAction
SimpleAction

Action
Action
Action
Action
Action

Yielder

Yielder
Yielder
Yielder
Yielder

Yielder
Yielder
Yielder
Yielder

IdentityOp
PrefixOp
InfixOp
InfixOp

{ left
{ bracket

{ left }
{ bracket }

Box 1 Syntax of action notation.

132

sorts Info Outcome Commitment Result

context-free syntax

Data "," Bindings "," Storage Ã‘

completed
escaped
failed

committed Ã‘

uncommitted Ã‘

max "(" Commitment "," Commitment ")" Ã‘

' (" Outcome "," Commitment "," Info ")" Ã‘

performed Action "(I' Info ")" Ã‘

evaluated Yielder "(" Info ")" Ã‘

unfolded "(" Action "," Action ")It Ã‘

equations

[complete]

[fail]

[bind]

[store]

[unfolding]

Info

Outcome
Outcome
Outcome

Commitment
Commitment
Commitment

Result

Result

Data

Action

performed complete (d, b, s) = (completed, uncommitted, (), {}, s)

performed fail (d, b, s) = (failed, uncommitted, (), {}, s)

evaluated Y (d, b, s) = d ' , d' # nothing

performed (give Y) (d, b, s) = (completed, uncommitted, d', {}, s)

evaluated Y (d, b, s) = d ' , the bindable yielded by d' # nothing

performed (bind kto Y) (d, b, s) = (completed, uncommitted, (), {k- d'}, s)

evaluated Y, (d, b, s) = d' , the storable yielded by d' # nothing ,
evaluated Y2 (d, b, s) = c , the cell yielded by c # nothing ,
status of c in s # unreserved

performed (store Y, in Y2) (d, b, s) = (completed, committed, (), {}, $c'-> d'])

performed (unfolding A) (d, b, s) =
performed unfolded (A, unfolding A) (d, b, s)

...

unfolded (SA, A') = SA %% SA -+ SimpleAction

unfolded (unfold, A') = A'

unfolded (unfolding A, A') = unfolding A

unfolded (pc A, A') = pc unfolded (A, A') %% PC Ã‘ Prefixcombinator

unfolded (A ic Ay, A') = %% ic Ã‘ Infixcombinator
unfolded (All A') ic unfolded (A2, A')

Box 2 Interpretation of simple actions.

The action notation subset considered here has a natural semantics (Moura 1993). The
judgment for performing an action is:

(inf) I- A => res (1)

meaning that res is the result of performing action A when information inf flows into it.
The inference rules for the "and then" infix combinator are reproduced here?

(d, by s) I- Al => (completed, cornl, dl , bl , sl)
(d, by sl) I- A2 a (completed, corn2, d2, b2, s2)

bf = bl 0 b2 b' # clash
(2)

(d, by s) I- Al and then A2 a (completed, max (cornl , corn2), (dl , d2), bf, s2)

(d, b, s) I- Al a (completed, cornl, dl , bl, s l)
(d, b, $1) I- A2 a (completed, corn2, d2, b2, s2)

b f = b l C b 2 bf=clash
(3)

(d, by s) I- Al and then Az a (failed, max (cornl , corn& (), { }, 52)

(d, by s) I- Al =Ã (completed, cornl, dl , bl, sl)

(d, by sl) I- A2 a (out2, corn2, d2, b2, s2) out2 # completed
(4)

(d, b, s) I- Al and then A2 =Ã (out2, max (cornl, corn2), d2, b2, $2)

(d, by s) I- Al a (outl, cornl, dl , bl , sl) out1 # completed
(5)

(d, by s) I- Al and then AT, a (outl, corn\, dl, bl, s l)

The intended purpose of ASF+SDF is for writing and executing specifications. So the most
natural method (indeed!) for prototyping an action interpreter is simply to transcribe
inference rules (2)-(5) into ASF conditional equations - see Box 3. Judgment (1) is
expressed as "performed A (inf) = res".

This method works, but performance is unacceptably slow. I estimate that the time required
to perform an action is O(nc), where n is the action size (after any unfolding) and c is about
4. The reason for this is the straightforward but naive way in which term rewriting is
currently implemented in ASF. Given a term of the form "performed (Al and then A2) (d, b,
s)", the term-rewriting engine will try each of equations [and-then-11 to [and-then-41 in
turn.5 If any premise in an equation fails, that equation is abandoned and another equation
is tried instead. Notice that equations [and-then-11 through [and-then-41 all contain a premise
that involves reducing the term "performed A, (d, b, s)", and three of them likewise contain a
premise that involves reducing the term "performed A2 (d, b, s1)". Thus the sub-actions Al

^ I have slightly modified Moura's inference rules to conform to the terminology used in this report, and I
have added commitments.

The order in which the equations are tried is implementation-dependent.

134

and A2 are performed several times, until the outcome of "A) and then Ay" is determined.
Similar effects happen with other infix combinators.6

I therefore tried an alternative method, based on factoring out the common computations -
see Box 4. The term "performed (Ai and then A2) (int)" is first rewritten to "continued resi and
then A2 (in/)", where resi is the result of performing A]. If and only if the outcome field of
resi is completed, the term "continued resi and then A2 (in/)" is in turn rewritten to
"concluded resi and then resy", where re+ is the result of performing A2. The same auxiliary
operations "continued" and "concluded" are used to specify the performance of other action
combinations (not shown here).

This method seems to solve the efficiency problem. I estimate that performance time is now
O(n), where n is the action size after any unfolding.

Yet another method is possible, based on the style used in the definitive operational
semantics of action notation (Mosses 1992). The basic principle of this method is that
actions are performed gradually. For example, "Ai and then Ay" is performed roughly as
follows. The 'first' primitive action of Ai is performed; then Ai 'is performed, where Ai 'is
the remainder of Ai after removing that primitive action. If Ai is vacuous (as a consequence
of previously removing all primitive actions), then A2 is performed.

equations

...

performed Ai (dl b, s) = (completed, cornil dl, bi, si) ,
performed A2 (dl b, si) = (completed, corn2, d2, b2, Q ,
b' = bi @ & , b' # clash

performed (Ai and then A2) (d, b, s) =
(completed, max (corni, corn2), (dl, d2), b', ~ g)

performed Ai (dl b, s) = (completed, corni, dl, bi, si) ,
performed A2 (dl b, si) = (completed, corn2, d2, b2, +) ,
b' = bi @by, b' = clash

performed (Ai and then A2) (d, b, s) = (failed, corni max corn2, (), {}, +)

performed Ai (dl b, s) = (completed, corni, dl, bil si) ,
performed A2 (d, b, sl) = (out2, corn2, d2, b2, ~ g) , out2 # completed

performed (Ai and then A2) (dl b, s) = (out2, max (corni , corn2), d2, bz, +)

performed Ai (dl b, s) = (outi, corni, dl, bi, si) , outi # completed

performed (Ai and then A2) (d, b, s) = (out,, corni, dl, bi, si)

. . .

Box 3 Interpretation of composite actions - natural semantics method.

^ ASF+SDF includes a facility for compiling equations to C. Paul Klint has informed me that a future
version of this compiler will automatically factor out common premises from a group of equations. (It is a
form of common subexpression elimination.) This should eliminate the problem discussed here.

I have not yet tried this method. It might prove to be impracticable, because splitting a
complex action into a primitive action and a remainder must entail a lot of term
construction. Unlike the natural semantics method, however, the operational semantics
method could be used to specify interleaving and concurrency. Thus I might be forced to
adopt the operational semantics method anyway, when I eventually extend the interpreter to
the whole of action notation.

context-free

equations

. . .

syntax

. . .

continued Result InfixCombinator Action "(" Info ")" -> Result

concluded Result InfixCombinator Result + Result

. . .

performed Al (in0 = resl

performed (Al and then As) (in0 = continued resl and then A2 (in0

performed A2 (d, b, s1) = res,

continued (completed, cornl, dl, bi, sl) and then A2 (d, b, s) =
concluded (completed, cornl , dl, bll s1) and then res2

outl # completed

continued (outi, cornl, infl) and then A2 (in0 = (outl, cornl, infl)

b' = bl 0 b, , b' # clash

concluded (completed, corni, dl , bl , s1)
and then (completed, corn2, d2, by, &) =

(completed, max (cornl, corn2), (dl, d2), b', s,)

b' = bi 0 b, , b' # clash

concluded (completed, cornl, dl, bl, s1)
and then (completed, corn2, d2, b2, &) =

(failed, max (~0m- i~ coma), 0 , {I, s,)

out2 # completed

concluded (completed, cornl, infl) and then (out2, corn2, inf2) =
(out2, max (corni, corn2), ink)

Box 4 Interpretation of composite actions - factored natural semantics method.

136

4 Action Transformation

The ACTRESS project (Brown et al. 1992, Brown & Watt 1994, Moura & Watt 1994) has
developed a variety of action transformations. An ACTRESS-generated compiler translates
the source program to its denotation, the program action; then it sort-checks the program
action, transforms it, and finally translates it to (C) object code. Action transformations are
essential if the object code is to be acceptably efficient. However, the effort of
programming these transformations in ML, the ACTRESS implementation language, proved
to be considerable.

Before implementing these transformations in ML, Hermano Moura formalised them, and
prototyped them by transcription of his inference rules into Prolog. It would have been
much more convenient if ASF+SDF had been available to him at the time. This is because
term rewriting is a very natural paradigm for expressing code transformations.

The ACTRESS action transformer (Moura 1993, Moura & Watt 1994) implements four
transformations:

Algebraic simplification: application of the algebraic laws of action notation.

Transient elimination: essentially constant propagation, and elimination of
redundant "give" actions.

Binding elimination: replacement of applied occurrences of tokens by the (statically
known) data to which they are bound, and elimination of redundant "bind" actions.

Storage allocation: replacement of "allocate" actions (dynamic storage allocation) by
static storage allocation, where possible.

At the time of writing, I have implemented algebraic simplification in ASF+SDF, and partly
implemented binding elimination. These are outlined in the following subsections.

4.1 Algebraic Simplification

Action notation enjoys a variety of nice algebraic laws (Mosses 1992). For example, "fail"
is a unit of "or", and "complete" is a unit of "and" and of "and then". These laws, and
others, are easily expressed as equations in ASF+SDF - see Box 5.

Now any action term will be automatically simplified by application of the equations of Box
5. This is so whether the term is entered using the ASF+SDF editor, or generated by
translation from a source program, or generated by application of other transformations.

I have not expressed all the laws of action notation as equations. In particular, I have not
yet encountered any need to exploit the fact that all infix combinators are associative, and
that some are commutative. In any case, ASF+SDF has no special facility for specifying
associativity and c~mrnutativity.~

^ Of course, expressing the commutative property by an ordinary equation results in infinite rewriting.

137

4.2 Binding Elimination

If an action has been generated by translation from a source program, it is often found that
many or all bindings can be eliminated from the action - especially if the source language is
statically scoped.

The basic principle of binding elimination is as follows. A term of the form "the d'bound to
/(" (an applied occurrence of token k), in a scope where it is known that k is bound to datum
d, may be replaced by the term "8 (more properly, "the d' yielded by 8). If all applied
occurrences of k can be replaced in this way, the "bind" action that produced the binding of
k to d may be eliminated (more properly, replaced by "complete").

This can be expressed in ASF+SDF - see Box 6. My method is as follows:

If an action A produces known bindings, replace it by "A' producing b". Here b is
the set of known bindings produced by A, and action A' is obtained from A by
eliminating the "bind" actions that produced these known bindings.

Replace "(A, producing b) hence A T by "A, hence (A2 receiving b)".

Simplify "A receiving by' by using b to replace all scoped applied occurrences of
tokens bound in b.

The specifications of "producing" and "receiving" are shown in Boxes 6(a) and (b).

equations

[or-11

[or-21

[and-11

[and-21

[and-then-11

[and-then-21

[and-then-31

[and-then-41

. . .

[give]

[bind]

. . .

fail or A = A

Aorfail = A

complete and A = A

A and complete = A

complete and then A = A

A and then complete = A

escape and then A = escape

fail and then A = fail

. . .

give nothing = fail

bind Yto nothing = fail

. . .

Box 5 Algebraic simplification of actions.

138

The following is an example of binding elimination, together with algebraic simplification:

(bind 'x' to 7
(allocate a cell then bind 'y' to it) and
bind 'z' to true)

hence
store the integer bound to 'x' in the cell bound to 'y'

[bind-11 in Box 6(a)

(complete binding {'x' '-> 7} and
(allocate a cell then bind 'y' to it) and
complete binding {'z' '-> true})

hence
store the integer bound to 'x' in the cell bound to 'y'

=> [and-1 , and-2, producing] in Box 6(a)

(complete and
(allocate a cell then bind 'y' to it) and
complete) binding {'x' '-> 7, 'z' '-> true}

hence
store the integer bound to 'x' in the cell bound to 'y'

context-free syntax

Action producing Bindings -> Action

equations

.

[bind-11 bind kto d = complete producing { k w d}

[and-11 (Al producing bl) and A2 = (Al and A2) producing bl

[and-21 Al and (A2 producing by) = (Al and A2) producing b2

[hence-I] (Al producing bl) hence A2 = Al hence (A2 receiving bl)

[hence-21 Al hence (A2 producing by) = (Al hence A2) producing by

b ' = bl -domain (out-bindings (A2))
[moreover-1]

(AI producing bl) moreover A2 = (Al moreover A2) producing b '

[moreover-21 Al moreover (A2 producing b2) = (A1 moreover A2) producing b2

0

[producing] A producing bl producing b2 = A producing bl G3 b2

Box 6(a) Binding elimination in actions - "producing".

139

=> [and-1, and-21 in Box 5

(allocate a cell then bind 'y' to it) producing {'x' '-> 7, 'z' '-> true}
hence

store the integer bound to 'x' in the cell bound to 'y'

=> [hence-11 in Box 6(a)

(allocate a cell then bind 'y' to it)
hence
(store the integer bound to 'x' in the cell bound to 'y') receiving {'x' I+ 7, 'z' '-> true}

=* [store, bound-1, bound-21 in Box 6(b)

(allocate a cell then bind 'y' to it)
hence

store 7 in the cell bound to 'y'

context-f ree

equations

[complete]

[give]

[given]

[bind-21

[store]

[and-31

[hence-31

[moreover-31

. . .

syntax

Action receiving Bindings -> Action
Yielder receiving Bindings -Ã Yielder

complete receiving b = complete

(give Y) receiving b = give (Y receiving b)

(given d) receiving b = given d

(bind k to Y) receiving b = bind k to (Y receiving b)

bat k # nothing

(the d bound to k) receiving b = the d yielded by (bat A)

bat k = nothing

(the d bound to A) receiving b = the d bound to k

(store Yl in Y2) receiving b = store (Yl receiving b) in (Y2 receiving b)

(Al and A2) receiving b = (Al receiving b) and (A2 receiving b)

(Al hence A2) receiving b = (Al receiving b) hence A2

(Al moreover A2) receiving b = (Al receiving b) moreover (A2 receiving b)

. . .

Box 6(b) Binding elimination in actions - "receiving".

140

Conclusion and Further Work

My experience with ASF+SDF has on the whole been positive. Term rewriting is a
powerful computational model, and very natural for language translation, transformation,
and interpretation. SDF relieves the specifier of excessive attention to syntactic details,
neatly combines abstract and concrete syntactic specification, and supports mixfix
operations.

However, ASF+SDF has pitfalls for the unwary (among whom I include myself). The
efficiency of term rewriting is highly sensitive to the way in which the equations are
written, as discussed in Section 3.1 believe that programmers need a mental model of the
way in which their programs are executed on a machine. This is in conflict with the
deliberate concealment, on methodological grounds, of such a model from the users of
ASF+SDF (Klint 1993b).

There are also syntactic pitfalls. It is all too easy for the specifier to introduce ambiguities,
especially involving mixfix operations. SDF detects ambiguity only when parsing particular
terms; it cannot of course detect ambiguity of the context-free grammar. The specifier can
suppress some ambiguities by assigning priorities and associativities to operations, but then
there is a risk that some terms will be parsed differently from the specifier's intentions.
Finally, the lexical and context-free syntax sometimes interact in unexpected ways. Peter
Mosses pointed out a lovely example: if I and tare variables, "list" can be parsed as " I is f '!

ASF+SDF is an impressive piece of software engineering. It supports incremental
development of modular specifications: if the equations of module M are changed, only M
is re-compiled; if the interface part of M is changed, only those modules that import M are
re-compiled. I took advantage of this to impose an elaborate modular structure on my action
interpreter and transformer (not discussed in this report). On the down side, the user
interface of ASF+SDF is somewhat eccentric. Also, ASF+SDF requires massive
computational power.

The work described here is incomplete. So far I have specified a large subset of action
notation, but an important omission is the communicative facet. I have also omitted a few
rarely-used action primitives and combinators.

I have specified a restricted form of transient elimination, and binding elimination for
known bindings only. As shown in (Moura 1993, Moura & Watt 1994), all bindings can
be eliminated from a statically-scoped action. An action that binds a token to an unknown
datum is replaced by one that stores the unknown datum in a known cell, and each applied
occurrence of that token is replaced by a fetch from that known cell. This works very well
in the context of an ACTRESS-generated compiler, where storage is mapped to a global
array, but it would be less useful in the context of the prototype described here.

The action interpreter (and transformer) can be coupled to an action semantics of a
programming language, also specified as an ASF+SDF specification. Then the user can use
the ASF+SDF editor to enter programs in that language. Each program is translated to an
action, and the latter may be (transformed and) interpreted.

However, the ASF+SDF specification language is rather different from the specification
language of (Mosses 1992), and much editing would have to be done to convert a given
action-semantic specification. For this reason, Arie van Deursen and Peter Mosses have
written a system that translates a specification from the standard specification language to
the ASF+SDF specification language. Their system also performs useful consistency
checks on the specification. This system, Action Semantic Description Tools (van Deursen
& Mosses 1994), is itself implemented in ASF+SDF. ASD Tools has already been used to
check and translate the large specifications Data Notation, Action Notation, AD Action

Semantics (Mosses 1992), and the current draft of Pascal Action Semantics (Mosses &
Watt 1994).

The way forward, then, is to extend the action interpreter to cover the whole of action
notation (including the communicative facet), make it more robust, and integrate it with
ASD Tools. This will allow us to test specifications like Pascal Action Semantics
thoroughly.8 The result will be a valuable prototyping tool for language designers and
specifiers who use action semantics.

References

Brown, D.F., Moura, H., and Watt, D.A. (1992) ACTRESS: an action semantics directed compiler
generator, in Compiler Construction - 4th International Conference (ed. Kastens, U., and Pfahler,
P.), Springer-Verlag, 95--109.

Brown, D.F., and Watt, D.A. (1994) Sort inference in the ACTRESS compiler generation system, in these
proceedings.

Despeyroux, T. (1988) Typo1 - a formalism to implement natural semantics, Rapports Techniques 94,
INRIA, Sophia Antipolis, France.

Klint, P. (1993a) A meta-environment for generating programming environments, ACM Transactions on
Software Engineering and Methodology 2,2, 176-201.

Klint, P. (1993b) The ASF+SDF meta-environment - user's guide, CWI, Amsterdam.

Mosses, P.D. (1992) Action Semantics, Cambridge University Press.

Mosses, P.D., and Watt, D.A. (1994) Pascal action semantics, version 0.6, Computer Science Department,
Aarhus University, and Department of Computing Science, University of Glasgow.

Moura, H. (1993) Action notation transformations, PhD thesis, University of Glasgow.

Moura, H., and Watt, D.A. (1994) Action transformations in the ACTRESS compiler generator, in
Compiler Construction- 5th International Conference (ed. Fritzson, P.), Springer-Verlag, 16-30.

Pagan, F. (1979) Algol 68 as a metalanguage for denotational semantics, Computer Journal 22, 1, 63-66.

van Deursen, A., and Mosses, P.D. (1994) ASD - the Action Semantics Description Tools, in these
proceedings.

Watt, D.A. (1986) Executable semantic descriptions, Software-Practice and Experience 16, 1, 13-43.

Watt, D.A. (1991) Programming Language Syntax and Semantics, Prentice Hall International.

And at the same time subject the prototyping tool itself to a thorough test!

142

Current and Future Projects

Discussion chaired by Peter D. Mosses

This discussion session took place at the end of a long and exhausting
day. There was time only for the participants of the workshop to give brief
indications of the topics that they hope to investigate in the near future. More
time for coordination of projects should clearly have been allocated in the
programme of the workshop.

The following list of topics may give an impression of the work being carried
out by the participantsI in action semantics and related fields. It is based on
rough notes taken during the discussion; apologies to anyone who mentioned
topics that didn't get properly recorded. Abbreviations: a x . action notation/
ass. action semantics/ a.s.d. action semantic descriptions.

publishing up-to-date a.s.d.s of Standard MLl Standard PascalI . . .
investigating a.s.d.s of logic programming, VHDL/ . . .
studying the ANDF-FSI reformulating in standard notation
analysis of stackability in higher-order cases
improved type inference for a.n.
lifting analysis from a.n. to programming languages
partial evaluation of a n
static action semantics
use of attribute grammars in ass.
evolving algebra semantics for a.n.
use of a.n. in evolving algebras
language1 design based on a.n.
comparing LDL to a.s./ investigating possibility of generating a.n.
comparing ACP to communicative a.n.
development of ASD toolsI using ASF+SDF
implementation of interpreters and compilers for a.n.
tutorial on a.s. (at FMEt94)
software specification using a.n.
proof techniques for action equivalence
improved operational semantics for a.n.

Please inform the action semantics mailing list when starting new projects (a
footnote in the Preface tells how to subscribe)/ and when new papers on action
semantics and related topics become available.

LIST OF PARTICIPANTS

Dr E. BACON
CIT School
University of Greenwich
Wellington Street
London SE18 6PF
ENGLAND
E-mail:

Deryck F. BROWN
PACT
10 Priory Road
Clifton
Bristol, BS8 1TU
UK
E-mail: deryck@pact.srf.ac.uk

Arie van DEURSEN
CWI
P.O. Box 94079
NL-1090 GB Amsterdam
THE NETHERLANDS
E-mail: arie@cwi.nl

Kyung-Goo DOH
University of Aizu
Fukushima 965-80
JAPAN
E-mail: kg-doh@u-aizu.ac.jp

Bo Stig HANSEN
Department of Computer Science
Building 344
Technical University of Denmark
DK-2800 Lyngby
DENMARK
E-mail: bsh@id.dth.dk

D. HUNT
CIT School
University of Greenwich
Wellington Street
London SE18 6PF
ENGLAND
E-mail:

Ralf LÄMMEL
Universität Rostock
FB Informatik
D-18051 Rostock
GERMANY
E-mail:
rlaemmel@informatik.uni-rostock.de

Søren B. LASSEN
Dept. of Computer Science
University of Aarhus
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C
DENMARK
E-mail: thales@daimi.aau.dk

Stephen McKEEVER
Programming Research Group
Oxford University
Wolfson Building
Parks Road
Oxford OX1 3QD
ENGLAND
E-mail: swm@comlab.ox.ac.uk

Peter D. MOSSES
BRICS, Dept. of Computer Science
University of Aarhus
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C
DENMARK
E-mail: pdmosses@daimi.aau.dk

144

Hermano MOURA
Caixa Economica Federal
SQN 206, Bloco I, Apto 103
Brasilia, DF
BRAZIL
E-mail: hermano@cic.unb.br

Wolfgang MÜLLER
Cadlab – Universität Paderborn
Bahnhofstr. 32
D-33102 Paderborn
GERMANY
E-mail: wolfgang@cadlab.de

Peter ØRBÆK
Dept. of Computer Science
University of Aarhus
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C
DENMARK
E-mail: poe@daimi.aau.dk

Jens PALSBERG
161 Cullinane Hall
College of Computer Science
Northeastern University
360 Huntington Avenue
Boston, MA 02115
USA
E-mail: palsberg@ccs.neu.edu

Arnd POETZSCH-HEFFTER
Fakultät für Informatik
Technische Universität
D-80290 München
GERMANY
E-mail:
poetzsch@informatik.tu-muenchen.de

Günter RIEDEWALD
Universität Rostock
FB Informatik
D-18051 Rostock
GERMANY
E-mail: gri@informatik.uni-rostock.de

David SCHMIDT
Computing and Info. Sciences Dept.
Kansas State Univ.
Nichols Hall
Manhattan, KS 66506
USA
E-mail: schmidt@cis.ksu.edu

David A. WATT
Department of Computing Science
University of Glasgow
Glasgow G12 8QQ
SCOTLAND
E-mail: daw@dcs.gla.ac.uk

Ms G. WINDALL
CIT School
University of Greenwich
Wellington Street
London SE18 6PF
ENGLAND
E-mail: g.windall@greenwich.ac.uk

145

Recent Publications in the BRICS Notes Series

NS-94-1 Peter D. Mosses, editor.Proc. 1st International Workshop
on Action Semantics(Edinburgh, 14 April, 1994), number
NS-94-1 in BRICS Notes Series, Department of Computer
Science, University of Aarhus, May 1994. BRICS. 145 pp.

	Preface
	PROGRAMME
	Foundations
	Kyung-Goo Doh and David A. Schmidt. The Facets of Action Semantics: Some Principles and Applications (Extended Abstract)
	Søren B. Lassen. Design and Semantics of Action Notation

	Applications and Relations to Other Frameworks
	Jens Ulrik Toft and Bo Stig Hansen. The Formal Specification of ANDF
	Arnd Poetzsch-Heffter. Comparing Action Semantics and Evolving Algebra B ased Specifications with Respect to Applications
	Stephen McKeever. A Framework for Generating Compilers from Natural Semantics Specifications

	Systems (with Demonstrations)
	Günter Riedewald and Ralf Lämmel. PASCAL definition in the system LDL
	Arie van Deursen and Peter D. Mosses Demonstration of ASD; The Action Semantic Description Tools

	Action Analysis
	Hermano Moura. The ACTRESS Compiler Generator and Action Transformations (Abstract)
	Deryck F. Brown and David A. Watt. Sort Inference in the ACTRESS Compiler Generator
	Peter Ørbæk. OASIS: An Optimizing Action-based Compiler Generator

	Action Interpretation
	Kyung-Goo Doh. Towards Partial Evaluation of Actions (Abstract with Appendix)
	David A. Watt. Using ASF+SDF to Interpret and Transform Actions
	Current and Future Projects. Discussion chaired by Peter D. Mosses

