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Preface

Actions speak louder than words: Action Semantics is now being used in
practical applications! This workshop surveyed recent achievements, demon-
strated tools, and coordinated projects. It was open to all.

Brief abstracts of the presentations were handed out at the workshop. Extended
abstracts/full papers were collected afterwards and are now published here.

There were 19 participants,1 all assumed to be familiar with the basic ideas
of Action Semantics.2 A list of the registered participants is given at the end.
Most of them also attended some or all of the CAAP/ESOP/CC conferences,
of which the workshop was a satellite meeting; but five participants travelled
specially to Edinburgh to participate in the workshop.

As can be seen from the workshop programme and from the following papers,
a lot of interesting work was presented and discussed during the one day.
Special thanks to the invited speakers, Dave Schmidt and Bo Stig Hansen for
their stimulating contributions, and to all the authors for keeping closely to a
tight schedule not only when giving their talks, but also when preparing their
papers for this Proceedings.

The final discussion session revealed plans for exciting new work, and possi-
bilities for further collaboration. A second workshop on action semantics will
be held within a year or two; no definite venue has yet been fixed, although one
proposal is to hold it as a satellite meeting of TAPSOFT'95 in Aarhus (22–26
May 1995). In the meantime, the action semantics mailing list3 can be used
for reporting new results, further coordination of projects, and for discussing
features of action semantics and related frameworks.

The workshop was organised by Peter D. Mosses (BRICS, Dept. of Computer
Science, Univ. of Aarhus, Denmark) and David A. Watt (Computing Science
Dept., Univ. of Glasgow, Scotland). The workshop organisers thank the organ-
isers of CAAP/ESOP/CC and the support staff at the Department of Computer
Science, University of Edinburgh, for the provision of facilities and assistance.
They also gratefully acknowledge funding and sponsorship from:

BRICS (Basic Research in Computer Science,
Centre of the Danish National Research Foundation)

COMPASS (ESPRIT Basic Research Working Group 6112)

1H. Moura (Brazil) was unable to attend; his paper was presented by D. A. Watt.
2A bibliography of published work on Action Semantics is available by anonymous FTP

from ftp.daimi.aau.dk in the file pub/action/bibliography/action.bib.
3Subscription: send a request marked `AS Mailing List' with your name and e-mail address

to pdmosses@daimi.aau.dk.
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14.00–14.30 R. Lämmel, G. Riedewald (Univ. Rostock)
Pascal definition in the system LDL 60

BREAK

Session 4 Action Analysis

14.45–15.15 H. Moura (Caixa Econ. Fed., Brazil)
The ACTRESS compiler generator and action transformations 80

15.15–15.45 D. F. Brown (INMOS Ltd / SGS-THOMSON), D. A. Watt (Univ. Glasgow)
Sort inference in the ACTRESS compiler generation system 81

15.45–16.15 P. Ørbæk (Univ. Aarhus)
OASIS: An optimizing action-based compiler generator 99

BREAK

iii



(continued) page

Session 5 Action Interpretation

16.30–17.00 K.-G. Doh (Univ. Aizu, Japan)
Towards partial evaluation of actions 115

17.00–17.30 D. A. Watt (Univ. Glasgow)
Using ASF+SDF to interpret and transform actions 129

Session 6 Discussion

17.30–18.00 Chaired by P. D. Mosses (Univ. Aarhus)
Current and future projects 143

END OF WORKSHOP

iv



The Facets of Action Semantics: 
Some Principles and Applications 

(Extended Abstract) 

Kyung-Goo Doh David A. Schmidt 
The University of Aizu* Kansas State university' 

Abstract 
A distinguishing characteristic of action semantics is its facet system, which 

defines the variety of information flows in a language definition. The facet 
system can be analyzed to validate the well-formedness of a language definition, 
to infer the typings of its inputs and outputs, and to calculate the operational 
semantics of programs. 

We present a single framework for doing all of the above. The framework 
exploits the internal subsorting structure of the facets so that sort checking, 
static analysis, and operational semantics are related, sound instances of the 
same underlying analysis. The framework also suggests that action semantics's 
extensibility can be understood as a kind of "weakening rule" in a "logic" of 
actions. 

In this paper, the framework is used to perform type inference on specific 
programs, to justify meaning-preserving code transformations, and to "stage" 
an action semantics definition of a programming language into a static seman- 
tics stage and a dynamic semantics stage. 

1 Introduction 

Perhaps the most distinctive aspect of action semantics is its structure of facets. The 
facets provide a "road map" to the nature of a programming language, and in this 
paper we show how the internal structure of the facets also indicate the kinds of 
analyses that can be undertaken upon the language. In particular, the subsorting 
hierarchy of a facet specifies a hierarchy of properties of the facet. 

Actions can be viewed as operations upon values from facets. We encode the 
actions7 operations as sequents in a logic. In addition to providing a simple pre- 
sentation, the logic lets us encode the extensibility feature of action semantics as a 

*Fukushima 965-80, Japan, kg-doh&-aizu.ac.jp 
 anh hat tan, Kansas 66506, U.S.A., schmidt@cis.ksu.edu . Supported by NSF Grant CCR-93- 

02962. 



weakening rule in the logic. The sequent-based format lets us state simple descrip- 
tions of operational semantics of actions, property extraction, and action equivalence. 
In particular, much of the technical requirements of abstract interpretation come "for 
free" in the representation. Finally, a staging analysis on action-semantics-coded 
language definitions can be undertaken. 

The theme arising from this work is that the facet structure indicates the primary 
features of a language and guides the user and implementor to important properties 
and equivalences. 

The structure of this paper goes as follows: Section 2 describes the facets and their 
orderings. Section 3 defines the inference system for actions and gives examples. Sec- 
tion 4 defines action equivalence in a given context and in context families. Section 5 
explains the relationship between abstract interpretation and our framework. Section 
6 adapts the framework to analyze semantics definitions for staging. The last section 
concludes the paper. 

2 Facets of Actions 

datum 

1 I / \  ...... 1 .  ...... I 
true false ...... 

YtT\ 
......... {2,3,4} ....... 

Figure 1: Sorts in Functional Facet 

Data in action notation are organized into facets [8, 101. The functional facet 
contains temporary values ("transient information") that are organized into the sorts 
(types) value, rational, integer, {2,3,4}, 2, truth-value, true, false, cell, token, etc. Notice 

2 



that an "element", like 2, is also a sort, 2 [7]. (read as {2} if you wish.) The sorts 
are ordered based on subsort(subset) inclusion. Figure 1 shows a possible ordering 
of sorts in the functional facet. We use the notation < for subsort ordering. For 
example, 2 < {2,3,4} < integer < rational < value < datum.  

The declarative facet contains (identifier ,functional-facet-sort ) bindings ( "scoped 
information"), which can also be considered as records [I, 51. Figure 2 shows a sample 
declarative facet. For example, {x=2, y=true}, is a record where x binds to 2 and 
y to true. Similarly, {x=integer, y=truth-value}, is a record including at least two 
fields, x and y, where x binds to integer and y to truth-value. This record can also be 
read as the sort of those records that binds x to some integer and y to some truth 
value. The records are ordered so that pl < p2 iff for every (t = v2) ? p2, there is a 
(t = vl) E pi such that vl < v2. For example, {a=2, b=true} < {a=integer,b=true} < 
{a=value,b=truth-value} < {a=value} < {}. 

Figure 2: Some Sorts in Declarative Facet 

The imperative facet contains storage structures. The storage structure is repre- 
sented as a map from cell to value or uninitialized where uninitialized < datum. Cells 
are also ordered: truth-value-cell < cell, integer-cell < rational-cell < cell, and so on. 

Actions often regive values from combinations of facets, so it is helpful to give a 



structure for these combinations. See Figure 3. Let F be an element of the above 
lattice; an example is 2, {x=2}, which is a T, p element. We call such an element a 
context. We give ordering to contexts as follows: 

Figure 3: Facet Hierarchy 

Definition 2.1 (Context ordering) Let Fl and F2 be contexts. I\ :Â¥ Fa if (facets 
of rz) C (facets of F1) and for every 72  G F2, 71 < 7 2  where 71 is the corresponding 
facet element of Fl. 

For example, 2,{x=true} 5 2,{x=truth-value} 5 integer 5 (). (The element () is the 
only element in the basic facet.) 

3 Inference Rules for Actions 

An action needs input from facets to perform: for example, when a functional-facet 
element, 2, and a declarative-facet element, {x=3}, are provided as inputs, the action 
give sum(it,the integer bound to x) outputs 5. But what if integer and {x=integer} 
are inputed to this action? The output should be integer. This might arise in type 
inference. We formalize the semantics of actions by presenting inference rules that can 



Action = "complete" 1 "regive" 1 [ "give" Yielder ] 1 
[ "bind" Yielder "to" Yielder ] 1 "rebind" 1 
[ "store" Yielder "in" Yielder I] 1 [ "allocate" Yielder ] 1 
[ Yielder "then" "either" Action "or" Action ] 1 
[ Action "and" Action ] 1 
[ Action "and" "then" Action ] 1 
[ Action "then" Action ] 1 
[ "furthermore" Action "hence" Action ] 1 
[ Action "before" Action ] 

Yielder = [ C { Yielder. }&Ã ] I "it" I [ "the" "given" Data ] 1 
[ "the" "given" Data "#" natural ] 1 
[ "the" Data "bound" "to" Yielder I] 1 
[ "the" Data "stored" "in" Yielder ] 1 
[ Yielder "," Yielder ] 1 [ "(" Yielder ")" ] 

Data = "datum" 1 "value" 1 "truth-value" 1 "integer" 1 
"rational" 1 "cell" 1 "truth-value-cell" 1 "integer-cell" 1 
"rational-cell" 1 "token" 1 - - - 1 "{2,3,4}" 1 - - - 1 "2" 1 - - -  

Figure 4: Syntax of Action Notation 



describe computation as well as static analysis in the same framework. The syntax 
of the actions we deal with is defined in Figure 4. 

In the inference system, a sequent T I- A G 7 reads as "within context T, action 
A has sort 7." Here are some sound examples: 

0 I- give 2 E datum 
() I- give 2 E integer 
O I- give 2 E 2 
{x=3} I- give 2 â 2 
2, {x=3} I- give sum(it,the integer bound to x) E 5 
2,{x=3} I- give sum(it,the integer bound to x) G integer 
2,{x=integer} I- give sum(it,the integer bound to x) E datum 

As in the above examples, an action can have many possible T,-y pairs. However, for 
fixed To, there is a least To such that Fo I- A E 70 holds. We call this the "least 
sorting property". The action give 2 can have sorts, datum, integer, 2, etc., in context 
(), but it has the least sort, 2. Similarly, an action, give sum(it,the integer bound to 
x), has least sort integer in context 2,{x=integer}. 

The inference rules for yielders are presented in Figure 5. Constants with no 
arguments, e.g., rational, integer, 3, true, etc., yield themselves. For operations with 
more than one argument, rule (Y2) says that if x , . . . , Yn have sorts 7-1, . . . , Tn7 then 
[ C ( K .  . . , Yn) ] has sort C'(r1,. . . , rn), where C' stands for sorting operation for C. 
For example, sum (3,4) yields 7, sum (integer,4) yields integer, and so on. In the 
functional context, T, it yields T and [ the given D j yields T if T < D is true. A 
constraint, T < D, ensures that the given datum is a subsort of D. The inference rule 
for [ the D bound to Y ] asserts that in context T, Y must yield a token t ,  a binding 
(t = r )  must be found in the context T, and T < D must hold for [ the D bound to 
Y ] to yield T. The other rules work similarly. Notice that a rule like (Y3) requires a 
context of merely T. For example, 2 I- it ? 2 holds. but we require 2, {x = 2} I- it â 2 
to hold as well. To obtain this, we add rule (YlO), a "weakening" rule, which safely 
expands a context without altering the underlining deduction. The weakening rule 
also appears crucial to understanding an important modularity principle of action 
semantics: the understanding of an action is not altered if the action is embedded in 
an extended context. For example, the semantics of the action, it, should be unaltered 
if the context, 2, is enriched to 2,{x=2} due to extensions in the language's design. 

Figure 6 defines inference rules for actions. The rules are read like the ones in 
Figure 5. The rules for the combinators and, and then, etc., assume that the action is 
interference-free, that is, the action is atomic. Interference is considered at the end 
of the paper. For reasons to be made clear shortly, or is replaced by then either - or. 

These inference rules define the operational semantics of actions as well as property 
extraction. For example, consider an action, give the integer bound to x. Given the 



T < D  
(y4) 

T I- [ t h e  given D :  Da ta  ] E T 

T' = component# n T T' < D 
(Y5) 

T t [ t h e  given D :  Da ta  # n :  natural ] 6 TI 

r t Y 6 t  t < t o k e n  r < { t = r }  T < D  
f6* r t [ the  D :  Da ta  bound t o  Y :Yielder ] 6 T 

r ,  a Y 6 T r < Dcel l  a l l o c a t e d ? ( ~ ,  a) i n i t i a l i z e d ? ( r ,  a )  
(Y7) I?, u t [ t h e  D :  Da ta  stored in  Y :Yielder ] E u a t  T 

( w e a k e n i n g  r u l e )  

Figure 5: Rules for Yielders 



0 I- complete E () r I- regive ? r 

r t y < - ~  
(A3) I' I- [ give Y :Yielder ] E r (A4) p I- rebind ? p 

I' I- Yl ? t t < token I' I- Y2 ? r T < value 
(A5) I' I- [ bind Yl:Yielder to Y2:Yielder ] E {< = r} 

(A6) 
I?, u 1- Yl ? 7-1 TI < value I', u I- Y2 ? 7-2 r 2  < cell compatible?(rl, 7-2) allocated?(r., a 

r, u I- [ store Yl :Yielder in Y2 :Yielder ] ? overlay(map 7-2 t o  ri, u) 

l?,u I- Y ? r r <  cell 
r, u I- [ allocate Y :Yielder 1 ? r, overlay(map r to  uninitialized, u) 

I ' I - Y E t r u e  r l - A 1 â ‚  
(A8) r I- [ Y :Yielder then either Al :Action or A; :Action j ? 7 

r I- Y ? false I' I- Aa ? 7 
r I- [ Y :Yielder then either Al :Action or A2 :Action 1 ? 7 

I ' I - A 1  E r i  I ' I - A 2 6 r 2  
I? I- [ Al : Action and A2 :Action ] E (TI, 7-2) 

I 'I -  A1 â r r , r t  A2 â ‚  
l 2  r I- [ Al :Action then A2 :Action ] 6 7 

r , p  I- AI E p1,ul I ' , O ~ ~ ~ ~ ~ Y ( P I , P ) , ~ I  I- A2 7 
r, p I- [ furthermore Al :Action hence A2 :Action ] ? 7 

r, p I- A1 ? PI, o-1 r, overlay(p1, p), ~1 I- A2 ? p2,0-2 
I', p I- [ Al :Action before A2 : Action ] 6 overlay (p2, pi), 0-2 

(A151 
r i < F 2  r 2 I - A E 7 2  72571 (weakening rule) 

F1 t- A :Action 6 71 

Figure 6: Rules for Actions 



input facet, To = {x=2,y=true}, the following proof tree can be drawn to calculate 
the operational semantics of the action: 

To t x  G x  x  token To < { x  = 2} 2 < integer 

\ I / / 
To t the integer bound t o  x  6 2 

I 
TO t give the integer bound t o  x  G 2 

This tree indeed shows that, given context To, the action produces 2. The same tree 
can be drawn for property extraction (e-g., type checking). Given input facet, T i  = 
{ x  = integer,y=truth-value}, we can calculate: 

( ) t X â ‚  
(weakening] 

T o t x e x  x  5 token To 5 { x  = integer} integer < integer 

\ I / .  A 
TO t the integer bound t o  x  G integer 

I 
To I- give the integer bound to  x  G integer 

When we write F t A G 7, we assert existence of derivation with I' I- A G 7 
at the root. In practice, we can draw the derivation tree like a Prolog goal tree and 
apply the weakening rule only when absolutely necessary (i.e., as close to leaves of 
the tree as possible). Alternatively, we can view the derivation tree as a parse tree 
decorated with inherited (F) and synthesized (7) attributes at the nodes. 

A usual property is the least sorting property: for a give context, To, an action, A, 
has a least sort, To: To t A G 70 holds, and for all 7 such that To: To t A G 7 holds, 
yo <: 7. The least sorting property holds for the rules in Figure 5 and 6. (But it can 
fail when the usual version of or is added, e.g., () I- give 1 or give 2 G 1 and () I- give 
1 or give 2 G 2, but neither 1 nor 2 is least.) This is exploited in the next section. 

4 Equivalence of Actions 

Applications such as compiling and code improvement require the notion of equiv- 
alence of actions [9]. We write F t Al = A2 G 7 to state that T t Al G 7 if and 
only if I? t A2 G 7. Two actions, Al and A2, are equivalent in a context, T, if 
they have the same properties. Formally stated, we write I? t Al = A2 to state Vy, 



I' I- Al = A2 6 7. When I' I- Al = A2 holds, then Al and A2 are interchangeable 
in context I'. The chore of checking for equivalence is greatly simplified by the least 
sorting property: I' I- Al = A2 holds if and only if I' I- Al = Af E 70 where 70 is 
the least sort for Al and A2 with respect to I'. For example, {x=2} I- give the integer 
bound to  x EE give 2 holds, since the least sorts for both actions is 2. This allows the 
simplification of the action bind x t o  2 hence give the integer bound t o  x into bind x t o  
2 hence give 2. Since () I- bind x t o  2 hence give 2 EE give 2 holds, we can simplify the 
original action to just give 2. Such transformations are common during compile-time 
processing of a program. 

There is another kind of equivalence, with respect to a family of contexts. To 
motivate this equivalence, consider the equivalence integer t give it = give sum (it,it). 
Although the two actions are equivalent with respect to context integer, this does not 
imply, for an integer, n, that n I- give it =. give sum (it ,it) holds. Therefore, a different 
form of equivalence is needed. 

Let a symbolic expression, like T < integer, refer to a set of contexts, namely those 
contexts r such that T < integer holds. For our purposes, a symbolic sort expression 
is a sort expression containing placeholders, possibly constrained by inequations. Ex- 
amples are T ,  T if T < integer (written as T < integer for short), and {x=r,y=rf} if 
r < T'. Similarly, a symbolic context expression is a context consisting of symbolic 
sort expressions. 

We can use the inference rules in Figures 5 and 6 to construct derivations of the 
form I' I- A G 7, where I' and 7 are symbolic contexts expressions and symbolic sort 
expressions, respectively. For example, we can derive r < integer I- give the given 
integer E r ,  since r < integer lets us build the proof tree. 

A crucial property of derivations with symbolic expressions is soundness. The 
inference rules are sound because, for all ground substitutions, U, if I' I- A ? 7 
holds, then so does UI' I- A 6 U7. (A substitution, U, is ground, for 7 if 247 
contains no placeholders. U is ground for I' in a similar way. Also, U must make all 
constraints true.) A second, important property is principal sorting. For symbolic 
context expression, F, 7 is the principal sort, if for all ground substitutions, U, U7 is 
the least sort for A with respect to context UI'. With the aid of soundness and an 
algorithm that calculates principal sorting, we have this result: 

Theorem 4.1 For symbolic context expression, I', ifF I- Ai ?E 7 and I' I- A2 E 7 
hold, then for all ground substitutions U, UT I- Al = A2. 

The algorithm for calculating principal sorting should be obvious, but there is 
the problem that principal sorting is not upheld by the rules for conditional choice. 
Consider the example it then either give 1 or give 2 in the context r < truth-value. The 
rule for the conditional gives us 1 U 2 = {I, 2}, which is sound but not principal. A 
principal scheme would be (r < true Ã‘ 1) U (T < false Ã‘> 2)) but adding conditional 
schemes is comput ationally prohibitive. 



Fortunately, sound but nonprincipal schemes can be used in code improvement. 
Since {1,2} is sound for the above example, and T' < {1,2} I- give the given integer 
G T' is sound and principal, we have that r < truth-value I- (it then either give 1 or 
give 2) then give the given integer = (it then either give 1 or give 2) then give it. This 
kind of transformation is common within compilation algorithms. 

5 Comparison to Abstract Interpretation 

The development of equivalence with respect to symbolic contexts has a strong rela- 
tionship to cousot-cousot-style abstract interpretation [2]. In this section, we try to 
explain this relationship. An analysis by means of abstract interpretation is under- 
taken in four stages: 

1. For the given domain of concrete, computational values, C (e.g., C = (N+B)̂ ,), 
we formulate a domain of abstract values, A (e.g., A = {-L,nat,bool,T}, ordered 
in the usual way). 

2. Next, we define abstraction and concretization maps, abs: PbC + A and conc: 
A + PbC, respectively, such that abs and conc form a Galois connection [6]. 
Note that PbC is the lower powerdomain of C. (For example, abs is the lifting 
of abso: C + A, abso(-L) = -L, abso(n) = nut, abso(b) = bool, and conc is 
conc(-L) = {-L}, conc(nat) = NJ., conc(boo1) = Bs., and conc(T) = C.) 

3. Then, we define the abstract interpretation, [-Iabs, and prove that it is safe with 
respect to the concrete ("standard") interpret ation, [-I cone. The safety criterion 
is: c ~ n c ( [ E ] ~ ~ ~ ( a b s  F)) 3 [Elconc I?, for program E and context F. 

4. Finally, we prove that the desired program transformation can be performed 
based on the results of the abstract interpretation. So, we rewrite [-Iconc into a 
"cache semantics" or "sticky semantics", which remembers for each subphrase 
Eo, of E, the abstract context, Fo, that appears at EO. A correspondence be- 
tween the sticky semantics and the concrete semantics must be proved. Finally, 
if we wish to replace Eo by El, we must prove, for Po, the context that appears 
at Eo, for all concrete contexts I' ? cone Fo, that [Eo]concI' = [Ei]concF holds. 

The idea described above are straightforward, but the technical detail is heavy. In 
contrast, in the framework described in the earlier sections, stages 1 through 4 come 
more easily: 

1. The abstract domain's values and the concrete domain's values are the sorts in 
the facet. (e.g., 2, true, and integer, truth-value.) 

2. The relationship between "concrete" and "abstract" values is given already by 
the subsorting relation (e-g., 2 < integer). Indeed, a symbolic sort expression 
like r < integer defines a down-closed set - an element of a lower power-domain. 



3. The safety of the "abstract" analysis follows from the monotonicity of the in- 
ference rules. (For example, since 2 < integer, it must be that TI < ~2 in 2 
I" A. â TI and integer I" A. â T ~ . )  

4. The "sticky" semantics is given by a derivation To I" A. ? 70 (FO is the abstract 
context of Ao), and the condition under which A. can be transformed to Al is 
To I- A. E Al. 

We must emphasize that the framework in this paper contains no short-cuts or 
it  magic" - the same steps as those required for abstract-interpretation-based code 

transformations are required here, but the structuring of the facets makes the for- 
mulation clearer. This is the main point of the present paper - the structure of a 
language's facets indicates the purposes, properties and potential equivalences in the 
language. Note also that the structure of the facets limit us in the properties we 
can and cannot naturally analyze - the facet structure in Figure 1 is natural for type 
inference, but useless for, say, available expressions analysis. It is the responsibility 
of the language designer to define facet structures whose sorts indicate the properties 
of importance of the language. 

Finally, the usual issue regarding analysis of while-loops and recursion remain: 
The analysis of the infinite action represented by a while-loop must be "folded" into 
a finite action and its analysis. 

6 Analysis of Language Definitions 

So far we have developed a method of calculating meaning and properties of action 
denotations of specific programs. In this section, we show that the same framework 
can be applied to analyze and stage language definitions. In particular, we show that 
analysis of a language definition extracts a set of static constraints-checking ("type- 
checking") rules. Those rules constitute the "static semantics" of the language and 
motivate the construction of a residual ("dynamic") semantics. That is, the language 
definition has been "staged". The example that follows makes these points clear. 

Consider the following semantics equation. 

evaluate 1 eqO .^Expression ] = evaluate E then give equal-to-zero(the given integer) 

Let's try to build a proof tree of the right-hand side of the equation: 

To I" evaluate E E rn To,17] I" give equal-to-zero(the given integer) 6 [?I 
\ (A121 / 

Fo I" evaluate E then give equal-to-zero(the given integer) c I7] 

We cannot go on because we do not know what to fill in the box, [̂ l However, we 
can finish the analysis if we guess an induction hypothesis, Fo I" evaluate E integer. 
The complete proof is: 



Fo, integer h 

FO, integer I- 
Fo I- evaluate E ? integer 

\T 

o,integer I- 

Fo t evaluate E then give 

integer < integer 

(+) 
the given integer ? integer integer < value 

(q2) / 
equal-to-zero(the given integer) 6 truth-value 

(A 
give equal-to-zero(the given integer) ? truth-value 

(A121 / 
equal-to-zero(the given integer) G trut h-value 

Thus we can assert that if Fo I- evaluate E G integer holds, then To t evaluate [ eqO 
E:Expression ] G truth-value holds. This assertion can be reformatted as 

Fo I- evaluate E G integer 
Fo I- evaluate [eqO E : Expression] E truth value (1) 

which is a static typing rule for [eqO E : Expression]. Also given this information, we 
can see that 

rotinteger t give equal-to-zero(the given integer) = give equal-to-zero@) 

holds. Therefore, if E satisfies the hypothesis of the typing law, we obtain: 

To t [ eqO E:Expression ] = evaluate .̂ Expression then give equal-to-zero(it) (2) 

The semantics equation has been staged into a "staticn component (1) and a "dy- 
namic" (actually, a residual) one (2). 

Now remaining is the question of how to determine the induction hypothesis. The 
answer is to use the symbol sort expressions from Section 4. In the above example, 
we say that Fo t evaluate E G TO holds. Then we draw the proof tree as follows: 

TO < integer 

1 (Y4) 
Fo,ro t the given integer G TO TO < value 

1 (Y2) / 
To, 7-0 t equal-to-zero(the given integer) G truth-value 

TO I- evaluate E G TO I (A31 

\" 0, TO I- give equal-to-zero(the given integer) G truth-value 

(A121 / 
TO I- evaluate E then give equal-to-zero(the given integer) (E truth-value 

In the process of completing the derivation, the constraint TO < integer is acquired. 
This makes the induction hypothesis To t evaluate E 6 TO and TO < integer. This 
approach is developed in detail in [4, 31. 



7 Conclusion 

We have shown the application of the facet structure of action semantics to language 
definition, interpretation, and analysis. Although no new methods for analysis are 
given, existing methods become clearer and simpler when expressed within the facet 
framework. 

The development in this paper has been for an interference-free variant of action 
semantics. We title this variant of action semantics atomic action semantics, because 
the analyses and equivalences assume that the actions are indivisible - atomic. The 
extension of the action semantics by interference should add another facet (perhaps 
the communicative one), and as promoted earlier in the paper, the extension should 
not affect the existing understanding of the atomic actions. Hence, facets and actions 
for interference are extensions, and a bisimulation equivalence can be defined for the 
extensions. 

Finally, we have not treated divergence and failure as actions' outcomes. Di- 
vergence corresponds to nonderivability, but failure should be denoted by the sort, 
nothing. Unlike the treatment in [8], nothing appears at the top (and not the bottom) 
of a facet's subsorting hierarchy, due to the need to preserve monotonicity of the 
inference rules. 
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Abstract 

Action notation (AN) is the specification language of action seman- 
tics [Mos92]. This paper discusses AN'S design, semantics, pragmatic 
properties, and expressive power. 

Often we have the choice between actions and yielders as descrip- 
tion domain. Actions are more extensible and also, in a certain sense, 
have better semantics. A new semantics for yielders is proposed that 
overcomes their deficiencies in these respects. 

A new formulation of AN'S operational semantics is sketched that 
uses evaluation contexts. They make certain changes and extensions 
of AN feasible. A first application is a new semantics for critical 
regions. Then AN is extended with the notion of continuations which 
is used to describe control operators like call/cc and got o. The idea 
of subcontinuations turns out to embody the concepts we will need. 

Introduction 

This paper discusses a range of issues concerning the design and semantics of AN. 
The overall theme is the requirements we put on AN as a specification language 
in action semantic descriptions (ASDs). AN must have an intuitive semantics 
and an adequate expressive power and must yield extensible ASDs. 

A specification language should not just have unlimited expressive power, it 
should also guarantee, or at least suggest, descriptions with a realistic compu- 
tational content. The applications of action semantics to automatic compiler 
generation [MW94, 0rb941 support that the primitives of AN are indeed possible 
to implement. This is an additional requirement to AN that is important for the 
following discussions. 

Section 2 discusses and proposes a revision of the concept of yielders in AN. 
This is done by a reduction of AN to a simple, unparameterized kernel. In 
section 3, this kernel notation is given an operational semantics using evaluation 



contexts. This opens up for a revision of the semantics of critical regions, in 
section 4, and an extension with continuations, in section 5. 

Yielders 

AN incorporates data operations via actions of the form: 

give data-operation (jgiven datum#il - . given datum#ira[) . 

In [Mos92] the argument sort of give- was extended to arbitrary yielders and 
other primitive actions also got parameterized by yielder arguments. Yielders 
are compounds of data operations and accesses to state information. A yielder is 
evaluated atomically as part of a transition of a primitive action. 

In ASDs this extended AN alleviates some of the explicit control flow and data 
flow that only serve uninteresting bookkeeping purposes. The parameterized AN 
with yielders renders more fluent ASDs. 

This section first presents an example that highlights the difference between 
actions and yielders in semantic descriptions. Then some changes are proposed 
to improve upon certain semantic and pragmatic properties of yielders. 

2.1 Example 

Suppose we have this simple imperative language fragment with assignment and 
a composition construct whose components are evaluated in arbitrary, interleaved 
order. 

Strnt = [ Stmt "11" Stmt I] 1 [ Ident ":=" Expr 1 . 
Expr = Ident 1 [ Expr "+" Expr I] - 

exec - :: Stmt -+ action[storing] 

(1) exec 1 Sl:Stmt "11" S2:Strnt I] = exec Si and exec S2 . 

How many possible outcomes does the following program have when executed in 
a state where x is 0 and y is 1 ? 

At least two different outcomes must be possible, corresponding to left-to-right 
and right-to-left execution of the two statements. But we would expect more 
fine-grained interleavings to be possible too. 

Consider these two ASDs of assignment and expressions, one that maps ex- 
pressions to actions: 



(2) exec [ 7:ldent ":=" E:Expr I] = eval E then store it in the cell bound to  I . 

eval - :: Expr Ã‘Ã action[giving integer] 

(3) eval 1:ldent = give the integer stored in the cell bound t o  I . 

(4) eval 1 El:Expr "+" E2:Expr I] = 1 eval f i  and eval E2 
then give sum of them . 

and one that maps expressions to yielders: 

(2) exec [ 7:ldent ":=" E:Expr I] = store eval E in the cell bound t o  I . 

eval _ :: Expr Ã‘ yielder[yielding integer] 

(3) eval I: ldent = the integer stored in the cell bound t o  I . 

(4) eval [ El:Expr "+" E2:Expr I] = sum of (eval El, eval E2) . 

It is fair to say that this choice, between actions and yielders as description 
domain for expressions, is essentially the only choice we have to make in this 
description. 

These two ASDs are not equivalent. The second description is very coarse- 
grained. An assignment is executed as one atomic transition: In one step, the 
entire compound expression is evaluated and stored. The example program only 
has the first two possible outcomes. 

The first description is more fine-grained and has more possible interleavings 
and hence two extra possible outcomes: 

The second ASD may not be very realistic-an experienced AS user would 
never write it like that-yet a novice might be lured into this use of yielders by 
the analogy of the roles of actions/yielders in AN and of statements/expressions 
in imperative languages. Of course one should know the semantics of AN before 
embarking on any ASD and it shouldn't be a surprise that these two ASDs are 
not equivalent. Still, the exact semantic difference may not be obvious (where 
exactly to put indivisibly in the first ASD to make the two equivalent?). 

The semantic difference reflects that the second ASD packs an arbitrary 
amount of computations into one indivisible computation step. The atomicity 
of yielder evaluation is a very strong computational concept. It is a concept that 



is otherwise used sparsely in AN (must be made explicit with indivisibly), it is not 
very natural in the computational model of AN (cf. the analysis in section 4)) 
and it is rarely what we want and need in semantic descriptions. In general, 
the indivisible evaluation of yielders doesn't seem to be exploited in ASDs. It 
seems reasonable to demand that indivisible execution of several computation 
primitives must be explicitly enclosed in indivisibly. 

For the language fragment above, the first, fine-grained description seems to 
be closest to our computational intuitions and to the operation of computers: 
It makes one transition per primitive state access operation and one transition 
per primitive state update operation. So if we change the semantics of yielders 
to be more fine-grained, indivisible evaluation will always require explicit use of 
indivisibly, and the two ASDs above become semantically equivalent. 

2.2 Fine-grained semantics 

To give a new semantics for yielders, define them as abbreviations for primitive 
actions that access state information. And define actions that are parameterized 
with yielders as abbreviations for unparameterized actions that read their inputs 
from the given transients. 

store Yi:yielder in Y2:yielder = (give Yi and give Ya) then update . 

give the bindable bound t o  <:token = findt . 

give the storable stored in Y:yielder = give Y then contents . 

give data-operation (I Yl . - . Yn 1) = 
1 give Yi and - -  - and give Yn 
then 
give data-operation (jgiven daturn#l - - - given daturn#n[) . 

A compound yielder expands to a compound action that evaluates subterms 
interleaved. This changes the semantics of yielders. The evaluation of a yielder 
is now split into several primitive actions that make one transition per primitive 
state access operation. 

The elaborate AN with yielders and parameterized actions is reduced to a 
simple kernel of unparameterized actions: update, find, con tents etc. give becomes 
the only parameterized action, its parameters have the form of a data-operation 
working on given transients. This simple kernel notation is essentially just the 
old, unparameterized version of AN before the introduction of yielders [Mos83]. 

When we use the translation rules, the two ASDs from before are translated 
into the same simple, unparameterized ASD: 

(2) exec I[ 1:ldent ":=" E:Expr ] = 1 eval E and findI 
then update . 



(3) eval 1:ldent = findI then contents . 

(4) eval Ei:Expr "+" E2:Expr lj = 1 eval El and eval E2 
then give sum of (given datum#l ,  

given datum#2) , 

So we see that the new semantics makes the two natural ASDs equivalent. And 
the second, coarse-grained description gets a more intuitive (?), fine-grained in- 
terpretation. 

2.3 Extensibility 

There is a second problem concerning the choice we often have between yielders 
and actions. If we choose yielders, we commit ourselves to a much more restricted 
description domain. Yielders only describe finite computations without side- 
effects. For instance if we add a diverging expression to the language fragment 
from before: 

Expr = Ident 1 [f Expr "+" Expr 1] 1 1 "0" 1 

exec _ :: Stmt  -+ action[storing 11 ] 

then the first ASD, that uses actions, is easily extended: 

eval - :: Expr Ã‘ action[giving integer 1 1 diverging ] ] . 

(5 )  1 eval "W = diverge . I  

The second ASD has to be completely rewritten from yielders into actions to 
accommodate the extension with divergence 

How can this be remedied? Recall that the elaborate notion of yielders is 
reduced to just the yielders of the form: a data-operation working on the given 
transients. Even if we hold on to the simple kernel that the whole of AN is 
reduced to, we could have an even richer notion of yielders to begin with, and 
still reduce it to this simple kernel. 

How can we enrich yielders to also include effects in the most simple way? 
First observe that give maps yielders into actions that gives transients but have 
no other effects: 

give _ :: yielder[yielding data] -+ action[giving data] . 



These two sorts are nearly isomorphic. Every deterministic action A that gives 
transients and does nothing else can be approximated by give YA for some 
yielder YA.' We can extend yielders to make them completely isomorphic to 
actions giving transients, by means of a new yielder: 

the data given by - :: action[giving data] Ã‘? yielder[yielding data] . 

which is the inverse of give- , and a corresponding rule that reduces this new 
yielder to the simple kernel notation: 

give the data given by a:action = a . 

The aim is to make yielders as extensible as actions, such that, even if we have 
chosen to describe something with yielders, we can still extend it with divergence 
and side-effects. What we need to do is to extend the sort of yielders even more, 
such that they become isomorphic to the sort of actions giving transients, or 
diverging, and possibly with side-effects: 

affecting = diverging 1 committing 1 storing 1 communicating 1 ... . 
give - :: yielder[yielding data 1 1 affecting 1 ] 

+ actionigiving data 1 1 affecting 1 ] . 
the data given by - :: action[giving data 

+ yielderfyielding 

This can be accomplished simply by extending the domain of the data given by - . 
This larger sort of yielders gives the headroom we need in semantic descriptions. 
Now we can easily extend the second ASD, that uses yielders, to diverge: . eval - :: Expr + yielder[yielding integer 1 1 diverging 1 ] 

( 5 )  1 eval "ft" = the nothing given by diverge . I  

And both ASDs again translate into the same kernel notation description: 

( 5 )  leva1 "ft" = diverge - 1  

lAn action A:action[giving data] without any "internal" non-determinism (i.e. A's 
outcome is determined by its income) can be written as A' = give YA. (Note that A 
cannot enact abstractions.) The two actions A, A' will be equivalent except that A 
may impose a more deterministic sequence of its state accesses than A'. Thus, with an 
appropriate definition of an implementation relation, &, meaning "less deterministic 
than", we have A' A.  Because A, A' are actions without side-effects, enclosing 
them in indivisibly- makes the time sequence of state accesses indifferent, hence we have 
indivisibly A' = indivisibly A. 



2.4 Yielders vs. Actions 
A comparison with standard denotational semantics will clarify the pragmatic 
issues involved in the choice between yielders and actions as description domain 
in ASDs. 

Consider the following terms of some ordinary programming language: 

They will be instances of some syntactic categories that are mapped to certain se- 
mantic domains by the semantic functions for any denotational or action semantic 
description. Here are some examples of semantic domains and denotations for the 
example language terms, first in standard denotational semantics and secondly 
in action semantics: 

semantic domain 

7 
V = B + Z + L +  ... 

v, 
Env-t Vl 

Sto+ Env+ V, 
(V -+ Ans) + Env+ Ans 

integer 
data 

yielder 

action 

1 
~2 1 

1 ~ 2  11 J-v 
Ap. 1 ~ 2  11 AP. ki(not(~x))] ^ - ~ n v - t v ~  

Ao-Ap. t/.2lJ Ao-Ap. (not(px))J J-... 
XfiXp .~(~~ l )  AKAP.K(LI (not (pa;))) J-... 

the nothing 
1 not the truth-value given by 

bound to "x" diverge 
give not the 

give1 truth-valueboundto diverge 
It I f  x 

In denot ational semantics, the denotations are very sensitive to the underlying 
model. (This becomes much more conspicuous when side-effects of other kinds 
than divergence are included.) In action semantics, this is not the case. There is 
essentially just the choice between yielders (that include data) and actions. Note 
that because integer<data< yielder, the change of description domain from integer 
into yielder doesn't affect denotations (they are all implicitly injected into the 
enlarged domain). But the sorts yielder and action are disjoint and all denotations 
are sensitive to this choice between domains. 

The pragmatic gain from our extension of the sort yielder above is the ability 
to write yielder-denotations such as the nothing given by diverge. One might argue 



that this enhanced expressiveness of yielders is an attempt to patch up the con- 
sequences of a wrong choice of semantic domain in the first place. If we look at 
the problem in this way, then a more thorough solution is to make yielder a direct 
subsort of action. Then we would have data<yielder<action and whatever we de- 
scribe, the denotations should not change when we extend (or restrict) semantic 
domains. 

In practice, this would mean that: 

give - :: yielder -+ action[giving data] . 

give Y:yielder = Y . 

which implies e.g.: 

(Yi,Y2) = give (Y1,Y2) = give Yl and give Y2 = Yl and Y2 . 

and the expansion of parameterized into unparameterized actions looks like this: 

store - in - :: yielder, yielder Ã‘ action[completing 1 storing] 

update : action[completing 1 storing] . 
store Yl:yielder in Y2:yielder = (Yl and Y2) then update 

In section 2.3 we showed that yielders must be extended to ensure extensibility of 
ASDs that use yielders. Instead of having (almost?) yielder = actionigiving data], 
we must extend to yielder = action[giving data 1 affecting]. 

We might even give up the concept of yielders altogether. The arguments of 
parameterized actions could be just arbitrary actions. Then the above expansions, 
with actions instead of yielders, specifies that give- is just the identity unary action 
combinator, and tupling (- , -) is the same as the binary action combinator and. 
In general, each primitive parameterized action is performed by interleaving the 
argument actions followed by performing some primitive unparameterized action 
on the given data. 

This scheme has a minimum of overlapping concepts and it is a thorough solu- 
tion that maximizes AN'S contribution to the extensibility AS. But the semantics 
of AN may become less transparent at some points. A disadvantage of allowing 
actions as arguments of "primitive" actions like store-in- is that control flow is 
no longer determined purely by the standard combinators but will be hidden in 
parameterized actions and data operations too (arguments are implicitly inter- 
leaved). 

All the changes and extensions to yielders discussed above are highly tentative. 
The reduction of AN to an unparameterized kernel expounded in sections 2.2-2.3 
ended up in the notation of an earlier version of AN [Mos83]. It has been used 
as description language in its own right [DS93] which indicates that it would be 
a sensible kernel notation. The rest of this paper will use this kernel notation. 



3 Operational Semantics 

This section sketches an operational semantics of the simple, unparameterized 
kernel notation. Another formalism will be used than the structural operational 
semantics in [Mos92, App.C]. This new formulation may make it easier to do 
operational reasoning about actions and action equivalences. In this paper, the 
main benefit will be that it will enable us to extend AN with continuations. The 
key concepts are: 

An evaluation context [FF87] is an action term with a hole at a legal point of 
execution in the term. An evaluation context is either just a hole, a hole in the 
LHS of any binary action combinator, or a hole in the RHS of any interleaving 
action combinator (like and or or): 

evaluation-context E ::= [ I  \ E binary A \ A interleaving E . 

We will only describe the functional and declarative facets. 
An intermediate configuration decomposes into an evaluation context with a 

redex filled into its hole. 

intermediate configuration ::= E[R] 

This decomposition is not necessarily unique. If there is an interleaving combi- 
nator in the configuration, then we have the choice between choosing a redex on 
the LHS or the RHS of the interleaving combinator. 

A redex is something that can make a primitive transition directly, i.e. a 
primitive action fed with transients and bindings which we write as follows: 

redex R ::= (d:data, b:bindings) b P:primitive-action . 

And the outcome of an action is to give transients, to produce bindings, or to fail. 

outcome ::= give d \ produce b 1 fail . 

Here are some examples of transitions: 

E[ (d ,b )  b f ind t ]  -  ̂^[give ( b  at t ) ]  . 
E[(d ,b )  b bindt]  -+ ^[produce (map t to d ) ]  . 
^(abstraction of a,b) b enact] Ã‘ Â£'[((),empty-map t> a] . 

A configuration that is decomposed into an evaluation context E filled with a 
redex makes a transition into the same evaluation context E filled with an ap- 
propriate outcome. In t he last transition, the unparameterized enact expects an 
abstraction as transients, which it invokes with empty transients and bindings. 

A lot of technical details are omitted here, e.g. how to transport the transients 
and bindings to the redex, and how to consume the outcome into the evaluation 
context such that it can decompose to do the next transition. But the core of the 



approach is that the execution of compound terms is determined by the algebraic 
specification of evaluation contexts (there are no structural rules as found in 
structural operational semantics). 

This formulation of the operational semantics has an important property: In 
every configuration, the evaluation context of a decomposition is a concrete entity 
that represents the context, or "the rest of the program", or the continuation. 
It can also be seen as a program pointer. The following sections will exploit 
this property in semantic formulations that would be difficult in a structural 
operational semantics. 

Critical Regions 

As a first application of the new formulation of AN'S operational semantics, this 
section considers a new semantics for indivisibly. 

The current structural operational semantics of indivisibly is 

a:action +* t:terminated =+ indivisibly a ~r t . 

The body of indivisibly is executed as one big step. This is a very clear and 
straightforward semantics that prevents such a "critical region" from being in- 
terleaved with something else. 

There are some quirks, though: What if a critical region diverges? This is 
prohibited in [Mos92] but that means that it is undecidable whether an action 
is legal.2 Also, the programming concepts involved in indivisibly are powerful 
and not easily implementable. Communication with other agents is shut down 
or delayed during the execution of a critical region. Some uses of indivisibly do 
not use, and are even in conflict with, these properties regarding communication 
and divergence. For instance uses of indivisibly in semantic reasoning to specify 
non-interference [Mos92, B.4.11. Preferably, the semantics of indivisibly should 
only model non-interference and be closer to realistic implementations. 

What if we instead added the following transitions to our new formulation of 
the operational semantics? 

(entry) E[ (d ,b )  t> indivisibly a ]  Ã‘ Â£'[indivisibl ( d , b )  t> a] . 

(exit)  E[indivisibly t ]  + E [ t ]  . 

Then we have to make sure that between entry and exit of a critical region 
nothing else is interleaved. 

'This is undecidable for other reasons too (other examples of illegal actions are 
actions that violate sort restrictions of various kinds, e.g. by trying to bind something 
that is not of sort bindable or by trying to give something that is a proper sort and 
not an individual), yet this undecidability is an undesirable property that we ought to 
minimize. 



Evaluation contexts provide us with a notion of "program pointer", and this 
we can use to keep track of a currently operating critical region. Split the sort of 
intermediate configurations into those that are inside a critical region, and those 
that are not: 

intermediate configuration ::= critical 1 uncritical . 

Then uncritical are those configurations with a redex not wrapped in indivisibly 
by the enclosing evaluation context: 

uncritical u ::= U[(d,b) b a ]  . 

uncritical-context U ::= [ I  \ U sequential a 1 
U interleaving u \ u interleaving U . 

And in a critical the redex is inside indivisibly: 

critical c ::= Â£'[indivisibl Ef[(d,b) t> a]]  . 

evaluation-context E ::= [ I  1 indivisibly E \ E sequential a 1 
E interleaving u \ u interleaving E 

The algebraic specification of the sort evaluation-context tells the full story: 

0 Critical regions can be nested. 

If there is an active critical region (the configuration is critical), the redex 
must be chosen therein (the hole in the evaluation context must be on the 
critical side of any interleaving combinator because the un-chosen side has 
to be uncritical by the definition of evaluation-context). 

The two sides of an interleaving combinator cannot both be critical because 
initially they must both be uncritical and when one side gets critical, the 
other side is excluded until the critical becomes uncritical again. 

This improves the semantics for critical regions on some points: It deviates 
less from the rest of the operational semantics of AN, it only models that a 
critical region cannot be interleaved with anything else, and it gives a natural 
interpretation of divergence inside critical regions. 

5 Continuations 

Continuations are a powerful programming technique in functional programming. 
They may be hard to understand but they do have a precise formal semantics. 
Yet, it is impossible to give a straightforward ASD of continuations. To remedy 
this deficiency of AS, this section extends AN with continuations. Later on 
further justification for this extension will be sought by using AN'S continuations 
to describe control constructs in imperative languages too. 



5.1 callcc and throw 

Lets focus on SML/NJ7s callcc and throw. They manipulate a program's con- 
tinuations as first-class values. 

Evaluation contexts provide the machinery to give an operational semantics 
to continuations: When we decompose an intermediate configuration into an 
evaluation context E and a redex, then the redex represents the program's cur- 
rent operation, and the evaluation context E represents the program's current 
continuation, "the rest of the program". 

callcc copies the current continuation and applies its argument to it. throw 
throws away the current continuation E, and reinstates the continuation El with 
outcome v. 

callcc and throw have straightforward formal semantics, both operational 
and denotational. Therefore we would expect to be able to describe continuations 
in AS too, but we cannot in any reasonable way. Continuations are a "notion 
of computation" missing in AN (as admitted in [Mos92, p.2111). To describe 
callcc and throw in AS, we need to extend AN with similar control operators. 

Let copycc in- be a unary action combinator and let throw-with- be a primitive 
action with a continuation- and a value-parameter. throw-with- can be expanded 
into unparameterized notation as before where throw is an unparameterized action 
that expects a continuation and a value-parameter on the given transients: 

throw Yi with Y2 = (give Yl and give Yz) then throw . 

Continuations fit in smoothly with the operational semantics for AN that was 
sketched in section 3: 

E[(d,b) b copycc in a] + E[((E,d).b) b a] . 
E[((E',d), b )  b throw] + E1[give d] . 

copycc copies the current continuation and pushes it in front of the current tran- 
sients. throw expects a continuation as first component of the transients and 
reinstates it with the rest of the current transients. 

Now we can easily make an ASD of SML/NJ including callcc and throw. 
(There is nothing to it because the troublesome control operators are just trans- 
lated into the corresponding actions.) 

value = abstraction 1 continuation 1 

eval _ :: Expr + action 

(1) eval 1 "fn" I:ldent "=>" E:Expr 1 = 
give abstraction of 

furthermore bind token of I to given valuer1 
hence eval E . 



(2) eval [ El:Expr E2:Expr ]I = 1 eval El and then eval E2 
then enact application of  given abstraction#! 

t o  given value#2 . 

(3) eval [ "callcc" E:Expr 1 = eval E then 
copycc in enact application o f  given a bstraction#2 

t o  given continuation#! . 

(4) eval [ "throw" El : Expr E2:Expr I = 
1 eval El and then eval Â£ 

then throw given continuation#! with given value#2 . 

Note that SML is a deterministic language with an explicit left-to-right evaluation 
order. What is the impact of this on the semantics of continuations? To see this, 
consider the following expressions that one would expect to be equivalent: 

7 
( c a l l c c  ( f n  k => throw f ) )  e CY f e 

They are with SML's left-to-right evaluation of function and argument. In 
Scheme where the evaluation order is unspecified, either left-to-right or right-to- 
left, the equivalence also holds. 

But if we write "and" instead of "and then" in the SML/NJ ASD, such that 
any interleaving evaluation is possible, then the equivalence ceases to hold. An 
example: 

( c a l l c c  ( f n  k => throw ( f n  x => x ) ) )  ( p r i n t  "hello")  
7 

CY ( fn  x => x) ( p r i n t  "hello")  
CY p r i n t  "hel lo"  

c a l l c c  may copy the current continuation (or context) just before p r i n t  "hello".  
But before the continuation is reinstated by throw, "hel lo"  may be printed. 
Then throw will rewind the RHS of the context and "hel lo"  is printed again. 

What we see here is that continuations are a global notion, that becomes 
uncontrollable if paired with non-sequentiality. The above SML/N J ASD doesn't 
have interleavings and there is no problem. But are copycc and throw sensible 
operations in AN as such if it is possible to program something as counterintuitive 
as actions that rewind their contexts? 

5.2 Pascal's goto 

To substantiate this problem, consider the following application of AN'S copycc 
and throw to describe goto in a Pascal-like language. 



A block consists of declarations and a body: 

l a b e l  1 
f u n c t i o n  f ( . . . ) l a b e l  m 

b e g i n  ... g o t o  m ... end 
f u n c t i o n  g( ... ) b e g i n  ... g o t o  1 ... end 
v a r i a b l e  x 
b e g i n  g o t o  1 

1: X : = f  + g  
end 

The block's labels are visible inside the blocks in the declarations. So it is possible 
to jump within the body of a block or to the body of an enclosing block. 

This is a fragment of an ASD using continuations: 

(1) activate [I ~ : ~ a b e l *   un unction* v:Variable* 
"begin" ~ : S t m t *  "end" I) = 

furthermore declare L before declare F before declare V 
hence run S . 

(2) declare [I "label" I:ldent ] = indirectly bind token of I t o  unknown . 

(3) declare - - - 

(4) run ( ~ ~ : ~ t m t *  S2:Unlabeled-Stmt) = run Sl and then exec S2 . 

( 5 )  run (s1:Stmt* I ":" S2:Unlabeled-Stmt) = 
copycc in 

redirect token of I t o  given continuation#! 
and then run Sl 

and then exec S2 . 

(6) run ( ) = complete . 

(7) exec [I "goto" I:ldent I] = throw the continuation bound t o  token of I with () . 

(8) exec [I I:ldent ":=" E:Expr ] = 
eval E then store it in the cell bound to  token o f  I . 

(9) eval [I El "+" E2 ] = ( eval El and eval E2 ) then give sum of them . 



The body of a block starts with a series of copyccs that copy the continuations 
to be bound to the labels. 

The interleaving evaluation of f and g in f + g clashes with the use of 
continuations in the ASD: The continuation (or context) that f copies and binds m 
to, includes the interleaved evaluation of g. When f throws this continuation and 
got o m, then the evaluation of g is rewound to the state when the m-continuation 
was once copied. This is certainly not the intended semantics of goto. We 
definitely expect a local goto not to have such bizarre global effects. 

5.3 Subcontinuat ions 

Recall the semantics of copycc and throw. copycc copies its global context, pos- 
sibly including interleaved computations. When this global context is thrown, 
interleaved computations are rewound to their state at the time of copycc. This 
way, something in an interleaved branch may, inadvertently, be executed twice. 

There exist several proposals for control delimiters to tame the global power of 
continuations [Fel88, DF901. Subcontinuations [HDA94] is the idea most relevant 
for our purposes. Subcontinuations have been proposed for concurrent settings, 
and they address exactly the problems posed by interleaving  action^.^ 

Introduce a unary action combinator spawn-as- with some kind of identifica- 
tion id, and a local version of copycc called copyin- with a parameter referring to 
an enclosing spawn. copy only captures the local context inside the correspond- 
ing spawn. Call such a local context a subcontext or subcontinuation. When we 
throw a subcontinuation we only replace the appropriate subcontext: 

E[(d,b) b spawn id as a] -+ Â£'[spaw id as (d,b) t> a] . 

E[Sid[(d, b) b COPY id in a]] + E[Sid[((Sid,d). b) b a] . 

E[Sid[((S!,,d), b) > throw]] -+ E[S:d[gi~e dl] . 
where Sid is a subcontext of the form spawn id as Â£'-,i , and Â£'-,i is an evaluation 
context without occurrences of spawn id as . 

The point is that now we can put a spawn around our copys and thereby 
enforce locality on our continuation-manipulations. When we copy and throw 
subcontinuations, we don't affect the context outside the corresponding spawn. 

This doesn't solve all our problems. copy and throw can still do counterin- 
tuitive computations that rewind their contexts. But now we have the means 
to control this undesirable feature; it is only within the subcontext in question 

3[Mor94] is a different approach that, in parallel settings, makes control operators 
simulate the behaviour of sequential execution. This also ensures some locality such 
that the goto-example would work. But in a semantic specification language like AN, 
a more primitive semantics with tighter control of locality and scope of continuations 
seems preferable. 



that such rewinding takes place. Therefore these operations may still not be al- 
together reassuring, but they are a powerful description tool and the locality of 
the new operations seem to be expressive of exactly the locality we need. 

In the semantics of our SML/NJ fragment, we put a spawn at the root of the 
program, and all cal lccs  copy everything within that global spawn. 

In the "Pascal" semantics we can now enclose every block in its own spawn 
and make local labels local. Now it is only the body of f that is replaced and 
affected when f makes a local goto m. 

(1) activate [ L :L~  bel*  un unction* v:Varia ble* 
"begin" ~ : S t m t *  "end" 1 = 

furthermore declare L before declare F before declare V 
hence 

1 generate a block-id then spawn it as 1 run S . 

(2) run (si:strnt* I ":" S2:Unlabeled-Stmt) = 

redirect token of I t o  given continuation#! 

give given block-id#2 then 1 run Sl I I and then 
and then exec S2 . 

5.4 Control filters 

Why hasn't this powerful description tool of continuations been part of AS right 
from its origin? 

There is a big problem with the continuation-description of gotos: We might 
want to describe clean up on exit from a block. And there is no way to combine 
this obligation to clean up with the throwing of continuations. 

As an example, suppose we relinquish local variables on exit from a block as 
follows: 

(1) activate [ L : L ~  bel*  un unction* v:Variable* 
"begin" s : ~ t m t *  "end" j = 

furthermore declare L before declare F before declare V 
hence 

generate a block-id then spawn it as run S 
1 thereafter relinquish V 1 . 



What should Al thereafter A2 mean? Certainly, on normal completion of Al, 
At should be executed. But what if the body is left by means of a got o to an 
enclosing block, i.e. Al throws a subcontinuation? 

There is a concept of control-filters associated with subcontinuations that 
meets out purposes very nicely: The idea is to let throw slide out through the 
subcontext it replaces. During this, all control-filters that are encountered are 
executed on the way out. In our case, Al thereafter A2 is a control-filter that 
insists that A2 is executed, even if a subcontinuation is thrown by Al. 

Using the expressiveness of evaluation contexts, we can write the semantics 
of throw and thereafter like this: 

E[Tid[((Sidf d ) .  b )  b throw]] -+ Â£'[^[giv dl]  . 
E[E4[((Sidf d) ,  b) b throw] thereafter a] + 

E[((Sidfd),b) b throw thereafter a] . 

evaluation-context E ::= . . . 1 throw S with d thereafter E . 

where Tid is of the form spawn id as EYid , and E-,id is an evaluation context 
without occurrences of either spawn id as or thereafter . (The flow of transients 
and bindings through thereafter should probably be chosen like trap.) 

This also links the semantics of continuations and the semantics of escape and 
trap. Subcontinuations subsume these exception handling actions. 

Subcontinuations could form a powerful control facet in AN. The syntax of 
the constructs presented here may not be particularly well-chosen and several 
semantic details have to be worked out. But the subcontinuation operations 
seem to come close to the control concepts we really need for the description of 
real programming languages. 

Conclusion 

A range of topics concerning AN has been explored in this paper. 
First we proposed a new, fine-grained semantics for yielders, and a way to 

make ASDs that use yielders more extensible. This we did by reducing the 
elaborate, parameterized AN to a simple, unparameterized kernel. 

Then, we formulated the operational semantics of this AN kernel in terms 
of evaluation contexts. The applications of this formulation were to revise the 
semantics of critical regions and to extend AN with continuations. 

The latter made it possible to describe the control operators callcc and 
throw. Then the mismatch of interleavings and continuations led to the con- 
cept of subcont inuations. Coupled with control-filters, subcontinuations appear 
to embody the concepts we need in ASDs. This was the case in the example of 
gotos. 
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What is ANDF? 

Stands for: Architecture Neutral Distribution Format 

of the Open Software Foundation (OSF). 

Description: General intermediate language which 

may be used as target when compiling usual high-level 

languages. 

Source program C Ada . . . 

ANDF producer 0 0 

ANDF code 

ANDF installer 0 0 * g o  

Target code MIPS MC68000 . . . 

int f ac ( int arg) 

i 

int res = 1; 

while (arg > 1) { 

res := res * arg; 
arg-- ; 

1 

return res; 

1 



7 

Example Program 
Factorial in ANDF 

DEFINE int:sort = INTEGER(0..2"32-1) 

def fac = 

proc(arg:int) : int 

variable res := 1:int 

labelled 
startat 11 

11: goto 12 ifnot 
c (arg:int) >l:int; 

res : = c (res: int) *c (arg: int) ; 

arg := c(arg:int)-1:int; 

got0 11; 

12 : return c (r : int) 

r Â¥ 

Compound Data Representations 

struct S { unsigned char c; S* n; } 

Storage Layout 

aligned: 
T T 

In ANDF 

COMPOUND ( s z ) 
where sz = 

pad(size(INTEGER(0. .255) ) , 
alignment (POINTER) ) 

+ size (POINTER) 



ANDF Alignment and Size Algebras 

Are sizes and alignments natural numbers? 

When can sizes be added? 

Alignment requirements are partially ordered by 

implication, e.g.: 

a l i g n m e n t  (POINTER) =2 

a l i g n m e n t  ( INTEGER(0.  .255)  ) 

Sizes of data representations are divided into classes 

(types) according to their alignment requirements: 

s i z e  ( r )  : S I Z E  ( a l i g n m e n t  ( r )  ) 

s i  : SIZE (a1 ) A $2 :SIZE (a2 ) A (ai =Ã a2) 

s l  + s2 : S I Z E  (al ) 

Note: The size algebra is not quite right. In the ANDF 

specification an algebra of offsets is used instead. 

ANDF Specification Challenges 
and their Solution in Action Semantics 

Under-specified language notions, e.g., alignment 

and size. 

AN: algebraic specification 

Partial functions (intended non-termination) 

AN: operational semantics 

Under-specified order of evaluation 

AN; actions composed with "and 

Abnormal sequencing (jumps) 

AN: escape-with, trap 

Concurrency (future extension of ANDF) 

AN: communicative facet 



ANDF Formal Specification 

General Requirements 

1. Must be unambiguous, consistent and complete 

regarding the meaning of ANDF language 

constructs and features. 

corr 2. Must leave open all possibilities of making 

implementations. 

3. Must be comprehensible and concise. 

4. Must have a maintainable form. 

5.  Should support stepwise developments of 

implementations. 

6. Should support the kinds of proofs which are 

relevant for the anticipated usersluses. 

ect 
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ANDF Formal Specification 

Specification Language Requirements 

1. Must support modularisation. 

2. Must be supported by tools to help eliminate simple 

kinds of errors, e.g., grammatical errors, use of 

identifiers not declared, and type errors. 

3. Must be supported by tools for easy production of 

revised specifications, e.g., automatic pretty printing 

and automatic formula and line numbering. 

I 4. Must be supported by a proof editinglchecking tool. 



ANDF Formal Specification 

The RAISE Specification Language (RSL) 

Supports algebraic as well as model-oriented, VDM 

like specification. 

Applicative, imperative and concurrent specification 

styles. 

Full featured module notion. 

Supported by a commercial toolkit: 

- syntax-directed editor 

- type checker 

- proof editor 

- LaTeX pretty printer 

- library with version control 

- code generators for executable subset 

ANDF Formal Specification 

Choice of Specification Language 

Action Notation does not have the tool support 

required. 

RSL has, if used straight-forwardly, some weaknesses: 

Not as comprehensible and concise. 

Difficult description of intended partiality. 

Otherwise, it meets all requirements. 

Solution: Embed (a subset of) Action Notation in RSL. 



r 

ANDF Formal Specification 

Action Notation in RSL 

Abstract syntax for Action Notation 

Action = ConstantAct 1 DyadicAct 1 MonadicAct ... 
ConstantAct == ESCAPE 1 COMPLETE 1 ... 
DyadicAct = Action * InfixActOp * Action 

InfixActOp == THEN 1 AND 1 OR 1 ... 

Example 

(All THEN, (A2, OR, A3)) 

Operational Semantics 

Stepped: Action * State Ã‘ (Action * State)-set 

ANDF Formal Specification 
Overall structure 

syntax with macro 

expand 

ANDF syntax without macros and 

conditional code 

evaluate 

stepped 

I 
Set of possible execution traces 



ANDF Formal Specification 

Example: 

Action Semantics for "bitwise and" 

((evaluate(arg1 ), AND, evaluate(arg2)), 

THEN, 

(GIVE(bitwise-and(the-GIVEN-integer(l), 

the-GIVEN-integer(2) )), OR, 

(check-undefargs, 

THEN, 

undefandargs))} 

Results: A complete specification of ANDF abstract 

syntax, static semantics and dynamic semantics 

(800 pages134000 lines) 

Ressources: 2 man years 

Hardest challenges: 

Not overspecifying the semantics 

Interpreting the informal description correctly 

Uses: 

Reference for precise semantics 

Basis for development of ANDF interpreter 
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Abstract 

Action semantics is compared to evolving algebra based language spec- 
ifications. After a short introduction to and a general comparison of these 
two frameworks, we discuss different aspects of the frameworks relevant to 
language documentation and programming tool development. 

1 Introduction 

In the last twenty years, many different frameworks for the formal specification 
of programming languages have been developed: e.g. denotational, structural op- 
erational, action, and evolving algebra semantics. Whereas a lot of work has 
been spent to develop these frameworks and to apply them to more and more 
realistic languages, almost no effort has been made so far to compare and relate 
the different approaches. Comparisons should reveal for which class of languages 
a specification framework is most appropriate and for which language implemen- 
tation tasks a framework provides a suitable formal basis. Relating frameworks 
should help to improve or even combine them in order to exploit the advantages 
of different frameworks. 

In this extended abstract, we summarize a comparison between action seman- 
tics and evolving algebra semantics. Section 2 provides tiny introductions into 
these frameworks and compares the underlying specification principles. Section 
3 discusses the frameworks with respect to language documentation and tool 
development. 



2 General Comparison 

Action semantics is an oprational language specification framework developed by 
P. Mosses (see [4]). An action semantics specification consists of three parts: 
(1.) the context-free syntax; (2.) the specification of data types and auxiliary 
actions (based on an elaborate set of predefined data types and actions); (3.) 
the semantic functions mapping each syntax tree into a (composed) action. The 
semantic functions are inductively defined over the syntax trees, composing the 
action for a tree from the actions of its subtrees. Actions are semantic entities 
used to express control behaviour (possibly nondeterministic, parallel) and the 
manipulation of sophisticated implicit computation environments consisting of 
name bindings, stored information, temporary results, and data communicated 
between distributed actions. Actions are described by applying action combi- 
nators to primitive actions. All parts of an action semantics description are 
completely formalized by so-called universal algebras. 

Evolving algebras are an operational specification framework developed by 
Y. Gurevich (the following comparison is based on the introduction in [3]; for 
evolving algebras with several demons cf. [2]). They are used to specify the dy- 
namic semantics of programming languages (other applications are protocol and 
architecture specification). Syntax and static semantics are usually described in 
an informal way, but confer [5] where attributed occurrence algebras are used 
for these purposes. An evolving algebra specification consists of a set of rules 
describing how configurations are related to possible successor configurations. 
A configuration includes all information necessary for expressing the dynamic 
behaviour of a program, in particular it incorporates the program itself. Configu- 
rations are formally modeled by first-order algebras. The semantics of a program 
is given by the set of its traces/runs starting with an initial configuration. Evolv- 
ing algebras support modularization based on the rule set and the configuration 
structure: Different aspects of the language specification are handled by different 
rules allowing e.g. to seperate the value propagation in expression evaluation from 
control flow aspects or aspects concerning parallel execution from the rest of the 
specification. Beside this, evolving algebras enable very loose specifications of 
configurations, thereby supporting different refinement techniques. 

The different specification principles and properties of action semantics and 
evolving algebras are summarized in the following table: 



specification principle 

composition principle of 
semantics 
computation 

composed action 1 lation based on rich pro- 

action semantics 

according to syntax tree 

environment 
specification method 

evolving algebra 

according to configura- 
structure 
implicit with local and 

11 of powerful action corn- 1 dependent computation 

tion structure 
explicit and global (part 

global parts 
mapping syntax tree to 

design principle 

11 binators (language 1 model (from scratch) 

of configuration) 
specifying transition re- 

using sophisticated set 
gram representations 
designing a language 

main semantic entities 

I1 1 semantics 
range of formalization 

3 Using Language Specifications 

independent) 
equivalent classes of 

Language specifications are written for different purposes. In this section, we 
sketch a comparison of action semantics and evolving algebras w.r.t. language 
document ation and tool development. 

sets of traces over 
actions 
syntax and semantics 

3.1 Reading & Writing Language Specificat ions 

algebras 
focussing on dynamic 

When language specifications are used mainly for language documentation and 
standardization purposes, the main comparison criteria are readability, appli- 
cability to a wide language class, reusability of existing specifications, and the 
complexity of writing specification. 

A general advantage of action semantics over evolving algebras is that it pro- 
vides (a) a standardized, elegant, and sorted notation covering the whole task of 
language specification and (b) a well-developed module concept. For the other 
aspects of the comparison two factors are of major importance: 

1. Can knowledge of the specification framework be assumed? 

2. Is the specified language essentially a variant or mixture of existing imper- 
ative or functional languages? 

If a good knowledge of action semantics is assumed, the rather large number of 
predefined actions with all their incorporated know-how are a great help for read- 
ing and writing specifications. Otherwise, evolving algebras have the advantage 
that they are easier to learn, so that one can concentrate on the design of the 
language specification. (The importance of this advantage in practical situations 
should not be underestimated.) 



In case that (2.) is true, the specification knowledge built into the action facets 
and the clear specification methodology of action semantics can be very helpful 
to guide the specification process and allow for reuse and adaption of existing 
specification parts. Whereas reuse and adaption is possible in evolving algebras 
as well, the management of transient information and the use of language-specific 
tasks1 are the primitive the can cause some overhead. 

On the other hand, when it comes to the specification of languages with new 
inventive constructs (where formal specification is essential to gain clarity from 
the very beginning), the fixed methodology of action semantics (mapping syntax 
trees to actions) can create unnecessary difficulties or even unsolvable problems 
(continuation handling, dynamic program modification) whereas the flexibility of 
evolving algebras allows to design suitable specifications for languages based on 
extremly different paradigms (e.g. logical languages, object oriented languages 
making extensive use of messages as call mechanism, assembler languages, ..). 
The main advantage of evolving algebras in this respect is that they enable to 
specify the dynamic semantics over the most appropriate static structure which 
may be much richer than abstract syntax trees. 

3.2 Developing Language-Specific Tools 

Developing language-specific tools (e.g. language-based editors, browsers, inter- 
preters, compilers, optimizer, program analyser) from language specifications is 
a major issue of language design and implementation. Up to now, different tools 
are based on different, unconnected specification techniques; e.g. many tools are 
based on attribute grammars, but optimization methods need flow graph rep- 
resentations. An integrated framework where tool development is considered as 
specification refinement could support use and reuse of specifications and increase 
the correctness of programming tools. With this goal in mind, a comparison of 
action semantics and evolving algebras can be summarized as follows: 

Action Semantics: The advantage of action semantics is that optimization 
and implementation technology can be based on actions, i.e. is language 
independent. Therefore action semantics is a good candidate for automatic 
compiler generation. On the other hand, it is difficult to express language- 
specific optimizations and even harder to use an action semantics specifi- 
cation as a basis for interactive tools, because a distinction between static 
and dynamic semantics is not supported by the framework. 

Evolving Algebras: The strength of evolving algebras is the stepwise de- 
velopment of tools starting with the language specification. The flexibility 
of evolving algebras allows to perform refinements in the framework itself: 

'The basic operations of a language are usually called tasks in evolving algebra specifications; 
such a task can be considered as a language-specific action. 
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e.g. the possibility to explicitly distinguish between static and dynamic 
aspects or to integrate control flow graph based optimizations. Whereas 
refinement of data types can be performed in both frameworks, refinement 
of the basic operations (usually called tasks in evolving algebras) can only 
be done within evolving algebras. In addition to this, having the programs 
(possibly including attributes and control informations) as part of the con- 
figurations is a big advantage for interactive applications. 

A very interesting aspect is to compare the suitability of the frameworks for 
verification tools. The advantage of action semantics in this respect is certainly 
that it provides completely formal specifications and an explicit notion of program 
equivalence whereas in evolving algebra specifications syntax, static semantics, 
and a program equivalence notion is often kept informal. The strength of evolving 
algebras lies in correctness proofs of compilation schemes (cf. e.g. [I]) and as a 
foundation for interactive program verifier. 

4 Conclusions 

We compared action semantics to evolving algebra based language specifications 
and discussed their application to different tasks of language design and imple- 
mentation. The goal of the comparison was not only to provide some criteria that 
may guide people to chose between action semantics and evolving algebra for a 
specification task, but to encourage to close the gap between these frameworks 
in order to combine their respective advantages. 
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Abstract 
We consider the problem of automatically deriving correct compilers 
from Natural Semantics specifications [Kahn 87, NN 921 of 
programming languages. Our method is based on the idea that a 
programming language is inherently a specification of a computation 
done in stages. Certain phrases in a language expression are intended to 
be evaluated at compile time whereas others are left until run time. We 
divide the computation described in the semantics into two parts: a 
compile time translator and a run time executor. 

1 Introduction 

Staging transformations were introduced in [JS 861 as a general approach to separating 
stages or phases of a computation based on the availability of data. We consider two 
general strategies for staging: partial evaluation and pass separation. In both cases we 
assume given an interpreter interp, a source program prog and its data data the task of 
separating the computations formed by interp(prog,data). 

Partial Evaluation is the process of specialising a program with respect to part 
of its input in order to generate a residual program. In our case we are interested in 
calculating interpprog such that: 

interpproe data = interp (prog,data) 

Thus, the partial evaluation step represents the compilation phase of the computation, 
and the application of the residual program to the original program's data represents 
the evaluation phase. The drawback of this approach is that the generated code is in 
the partial evaluator's output language, typically the language the interpreter is 
written in. Partial evaluation will not devise a target language suitable for the source 
language or invent new runtime data structures. However, partial evaluation is 
automatable and has an established research base [JGS 931. 

Pass separation is the process of constructing from a program p a pair of 
programs p\,pz such that [JS 861: 

The computation p(x,y) can therefore be split into a first stage computing pl(x),  
yielding some value v, followed by a second stage computing p2(v,y). In our 



compilation scenario, if we define p to be an interpreter for a programming language, 
x to be a program in that language and y to be some input data to program x then pi 
becomes the compiler and p2 executes this compiled code on the data. 

Hannan presents a series of transformations that automate this split in [Han 91aI. 
They can separate an interpreter into a translator and corresponding evaluator, each 
presented as a sequence of rewrite rules, by generating a command language that acts 
on the given state components. Unfortunately, the technique does not generate new 
run time data structures automatically or perform any compile time computation 
(such as replacing identifiers by their memory locations). 

We present a method of overcoming these deficiencies by analysing how the 
environment is used so that appropriate run time data structures are introduced. 
Followed by performing an initial pass separation to evaluate and encode the compile 
time computation back into the syntax. We extend the above equation as follows: 

Along with the corresponding diagram showing the various components of our 
framework: 

Natural Semantics Specification 

Data Structures 

Converl to Term 
Rewriting System 

r 
Pass Se~aration for 

( Term ~ iwr i t ing  ~ y s t e m s .  

We introduce appropriate data 
structures into the semantics, 
generating what  we  call 
Implementation Oriented Semanticsl in 
order to create a distinctive split 
between compile time binding 
information and run time objects. 
Compile time computation will be 
carried out by the generated 
contextual analyser that converts 
syntactical terms into active syntax. 
This allows us to specialise the 
Implementation Oriented Semantics to 
deal solely with the run time 
behaviour of a source program 
described by the active syntax. 
These residual semantic rules! called 
the Active Semantics! are converted 
down to term rewriting systemsf 
producing an Abstract Interpreter! on 
which Hannan's pass separation 
technique is applied. 

(Abstract compiler) 



2 Natural Semantics 

An operational semantics is concerned with how to execute programs and not merely 
with what the result of an execution is. It does so by assigning meaning to each 
language construct in terms of some underlying abstract machine or inference system. 
A natural semantics describes how the overall results of executions are obtained by 
specifying the relationship between the initial and the final state for each language 
construct. Specifications are given in terms of transition relations of the form: 

env I- (P,  s)  +T s' 

which can be read as in the context env, the execution of the phrase P (from the 
syntactic class 3 in state s will terminate and the resulting state will be st. A rule has 
the general form: 

We shall consider a simple imperative language which has the following syntax: 

c E CMD, d E DEC, a E A-EXP, b E B-EXP, v E VAR, n E NUM, t E BOOL 

a ::= n I v I a1 + a2 I a1 - a2 I a1 X a2 
b ::= true I false lal  =a2 I bl ~b~ 14 
c ::= v : = a lcl ; c2 I if b then cl elsec2 I while b do c I begin d ; c end 
d ::= v : = a ; d I &  

Due to the lack of space we shall concentrate on the rules for assignment and the 
while loop that demonstrate some of the more interesting features of our approach. 

Assign 
env I- (a,M) +a k 

env I- (v := a, M )  +c M[env v] + k 

env I- (b, M )  jb tt 

env I- (c  ,M) +c M' 

env I- (while b do c, M') +" M" 
env I- (while b do c, M )  jC M" 

env F (while b do c, M )  jC M 



3 Implementation Oriented Semantics 

The initial phase of our framework is similar to a partial evaluator's, namely that we 
analyse the semantics in order to deduce what computation can be undertaken at 
compile time. However, the main thrust of our analysis is to decide how best to 
implement the language at run time as opposed to a partial evaluator's which will 
attempt to undertake as much computation at compile time as possible. 

Thus, we are concerned with the flow of declarative and transient information 
described by the semantics. For the former! we are interested in splitting 
environments into symbol tables and associated run time memories. In our simple 
imperative language all bindings are static such that variables can be allocated 
memory cells at compile time. However, if we add procedures with static bindings to 
the language then our symbol table will consist of mappings from identifiers to level 
and displacement pairs, along with a run time stack of activation records. Alternatively! 
if our procedures have dynamic bindings then we are forced to leave the environment 
as a run time data structure and introduce dumps to maintain the flow of information. 

For transient information, such as the results of expressions, we need to 
introduce suitable data structures to maintain the values of intermediate results for as 
long as they are required, This will normally consist of either register or stack 
introduction. 

In our example language we introduce a stack to evaluate both boolean and 
arithmetic expressions. We model the environment with a symbol table and a pointer, 
top, to the next free location in the memory. 

Assign 

(symy -- top) I- (while b do cy ( sY M')) +c (Sy M") 

(symy top) I- (while b do cy ( sY M)) +c (Sy M") -- 

(symy top) I- (by (Sy M)) +b (ff: SY MI 
While j a k e  -- 

(symy top) I- (while b do cy (sY M)) +c (Sy M) -- 

Compile time data structures and computations are underlined. 



4 Contextual Analyser Generator 

Using the annotated semantics of the previous section we can perform our first pass 
separation by generating functions that convert source programs into active syntax 
terms along with a specialised version of the semantics. 

The Contextual Analyser will consist of a series of functions mapping syntactic 
phrases of a source program onto their corresponding active syntactic representations. 
The reason for which contextual information is passed to each function is so that 
compile time evaluation can be undertaken and inserted into the new active syntactic 
term. Typical examples of this will be to replace strings representing basic values by 
the basic values themselves and to replace identifiers by their run time locations 
(stored in the compile time symbol table). 

Contextual Analyser 

= Assign(addr, arg) 
where 

addr = sym v 
=g = A ( 1 4  ,(sym, top)) 

The compile time behaviour of a source program will have been computed by 
the Contextual Analyser so that a residual semantic description will be sufficient to 
describe the remaining run tirne behaviour. 

Active Semantics 

Assign 
(Assign(addr, a) ,  (s, M ) )  -+ ( S ,  M[addr] + k )  

While-true ( c  ,(S, M ) )  -+ (S ,  M') (While(b, c),(s, M')) -+ (S ,  M") 
(While(b, c), (s, M ) )  -+ (S ,  M") 



5 Converting Active Semantics into Term Rewriting Systems 

If we consider that an inference rule has a simple conclusion A and possibly many 
premises A1 ... % then we might read a rule as saying: "to prove A we should prove A1 
and ... and An1'. The aim of this section is to show how we can derive an Abstract 
Interpreter for active syntax terms that corresponds to a depth first left to right proof 
search through the Active Semantics. Howeverl to be able to translate inference rules 
to term rewriting rules we need to eliminate the need for backtracking. Consider the 
case when we have a proof state (WhiIe(b,c),(S,~)) for which both While-true and 
WhileJalse are candidates, but at most one is applicable. We deal with the problem in 
a similar manner to the factorization of context free production rules with common 
initial segments. The two rules used to define the while loop are factored by 
introducing a new language constructor, Loopt which is "activated" after the boolean 
test is accomplished [dasilva 901. 

Factorized Semantics 

Assign 

While 

( a , ( S , W )  -+ ( k :S ,M)  
(Assign(a&r,a) , (~,  M ) )  -+ (S ,  M[a&r] +- k )  

(b ,  (s, M I )  -+ (bv: s, M )  ( L O O P ( ~ , C ) , ( ~ V :  s, M I )  -+ (s, M') 
(While(b, c) ,  (s, M ) )  -+ (S ,  M') 

( c  ,(S,  M ) )  -+ (S ,  M') (WhiIe(b,c) , (~,  M')) -+ (S ,  M") 
Loop-true 

(Loop(b, c),  (tt: s, M ) )  -+ (s, M") 

We translate each factorized rule into a rewrite rule by following the left to 
right ordering of the premises; inserting suitable instructions when the output state of 
one transition does not match the input state of the subsequent one. If we consider the 
rule for assignment then the output state of the arithmetic sub expression does not 
match the output state of the conclusion. Thus, we introduce a new instructionl 
STORE(a&r), which will place the result of the expression into the memory cell 
belonging to that particular variable. 



Abstract Machine 

< ev(Assign(addr,a)):C, (SM) > a < ev(a):STORE(addr):C, (SM) > 
< STORE(addr):C, (k:SM) > => < C, (S,M[addr]+k) > 
< ev(While(b,c)): C, (SM) > 3 < ev(b):ev(L~~p(b,c)) :C,  (SM) > 
< ev (L~~p(b , c ) ) :C ,  (tt:SM) > a < ev(c):ev(While(b,c)):C, (S,M) > 
< ev(Loop(b,c)):C, ( f f S , M )  > a < C, (syM) > 

These rules form part of the abstract interpreter for active syntax terms and should be 
viewed as an evaluation model for the Active Semantics. 

6 Pass Separation on Abstract Machines 

The second pass separation that we apply aims to generate an abstract compiler that 
lifts the active syntax terms out of the abstract machine by rewriting them to a 
sequence of instructions, along with an abstract executor that evaluates these 
instructions on some initial state. Transformations which achieve this are presented in 
[Han 91a] and are completely mechanical and automatic. 

The rules of the abstract machine are of the form < p,s > =̂ ,c < pr,s' >. Pass 
separation involves constructing two sets %,% of rewrite rules such that 
<u ,v>GiR  < u',v'> iff u Sac uc and < u c y v > S R x  <u',v'>. Where we view the rules 

as forming an abstract compiler, while the rules & form the corresponding 
abstract executor. 

Abstract Compiler 

Abstract Executor 

< STORE(addr):C, (k:S,M) > =>x < C, (S,M[addr]+k) > 
< LOOP(b,c):C, ( t t :S,M) > =>x < c@b@LOOP(b,c):C,(S,M) > 
< LOOP(b,c):C, ( f f :SM)  > a x  < C, (SM) > 

An interesting product of Hannan's staging transformations is the construction 
of a semantics-directed machine architecture. Other approaches require the language 
designer to either specify their language using a fixed and sufficiently powerful 
combinator language, such as Action Semantics [Mosses 921, or to transform their 
semantics into a compiler and executor pair by choosing special purpose combinators 
themselves [Wand 821. 



7 Summary 

We have presented a framework for generating compilers based on the notion that the 
various constructs of a programming language have times of meanings as well as 
meanings. We have achieved this by extending Hannan's pass separation technique to 
include the contextual analysis phase and the conversion from inference rules to term 
rewriting rules. However! much work still remains. We have yet to formalise a 
suitable binding time analysis that would enable us to introduce the appropriate data 
structures; or looked at how to map the resulting abstract executors on to real 
hardware by extending the refinements given in [Han 91bl. 
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A Demonstration of ASD 
The Action Semantic Description Tools 

Arie van Deursen* Peter D. ~ o s s e s t  

Introduction Action Semantics is a framework for describing the semantics of 
programming languages [4, 61. One of the main advantages of Action Semantics 
over other frameworks is that it scales up smoothly to the description of larger 
practical languages, such as Standard Pascal [5] .  An increasing number of re- 
searchers and practitioners are starting to use action semantics in preference to 
other frameworks. 

The ASD tools include facilities for parsing, synt ax-directed (and textual) 
editing, checking, and interpret at ion of action semantic descriptions. Such facili- 
ties significantly enhance accuracy and productivity when writing large specifica- 
tions, and are also particularly useful for students learning about the framework. 
The notation supported by the ASD tools is a direct ASCII representation of 
the standard notation used for action semantic descriptions in the literature, as 
defined in [4, Appendices B-F]. 

Action Semantic Descriptions The notation used in action semantic de- 
scriptions can be divided into four kinds: 

Meta-Notation, used for introducing and specifying the other notations; 

Action Notation, a fixed notation used for expressing so-called actions, which 
represent the semantics of programming constructs; 

Data Notation, a fixed notation used for expressing the data processed by ac- 
tions; and 

'Email: arie@cwi.nl. Address: CWI, P.O. Box 94079, 1090 GB Amsterdam, The Nether- 
lands. Supported by the EC under ESPRIT project 2177 Generation of Interactive Program- 
ming Environments and the Netherlands Organization for Scientific Research NWO project 
Incremental Program Generators 

t ~ m a i l :  pdmosses@daimi.aau.dk. Address: BRICS (Basic Research in Computer Science, 
a Centre of the Danish National Research Foundation), Department of Computer Science, 
University of Aarhus, N y Munkegade Bldg . 540, DK-8000 Aarhus C, Denmark. 



Specific No t  at ion, introduced in particular action semantic descriptions to spec- 
ify the abstract syntax of the programming language, the semantic functions 
that map abstract syntax to semantic entities, and the semantic entities 
themselves (extending the fixed action and data notation with new sorts 
and operations). 

Compared with conventional frameworks for algebraic specification, the meta- 
notation is unusual in that it allows operations on sorts, not only on individual 
values. Its foundations are given by the framework of Unified Algebras [3]. More- 
over, so-called mix-fix notation for operations is allowed, thus there is no fixed 
grammar for terms. This is a crucial feature, because action notation includes 
many infix combinators (e.g., Al and then A2, which expresses sequencing of the 
actions All A2) and mix-fix primitive actions (e.g., bind I to D). The specific 
notation introduced by users tends to follow the same style. 

T h e  Platform The ASD tools are implemented using the ASF+SDF system 
[I, 21. In the ASF+SDF approach to tool generation, the syntax of a language is 
described using the Syntax Definition Formalism SDF, which defines context-free 
syntax and signature at the same time. Functions operating on terms over such a 
signature are defined using (conditional) equations in the algebraic specification 
formalism ASF. Typical functions describe type checking, interpreting, compil- 
ing, etc., of programs. These functions are executed by interpreting the algebraic 
specifications as term rewriting systems. Moreover, from SDF definitions, parsers 
can be generated, which in turn are used for the generation of syntax-directed 
editors. ASF+SDF modules allow hiding and mutual dependence. (The ASD 
demonstration assumes that the basic features of ASF+SDF are already known, 
so as to focus attention on this application of the system.) 

The ASF+SDF system currently runs on, e.g., Sun4 and Silicon Graphics 
workstations, and uses X-Windows. It is based on the Centaur system (developed 
by, amongst others, INRIA) so a Centaur licence is required.l Once one has 
installed the ASF+SDF system, all that is needed before using the ASD tools is 
to get a copy of the ASD modules and user guide, together with a configuration 
file that specifies the effects of the various buttons in the ASD interface; these 
items are freely available by FTP. 

T h e  Implementation ASD modules written in the Meta-Notation are trans- 
lated to ASF+SDF modules, using the ASF+SDF system itself. Concerning the 
unusual features of the Meta-Notation: sort operations are dealt with by gen- 
erating (in some cases) extra sorts in the ASF+SDF module; and the arbitrary 
mix-fix operations are catered for by a two-phase generation scheme. 

'Academic institutions currently pay FF600 for a copy of the complete Centaur/ASFtSDF 
distribution tape. 



The Demonstration The main features of ASD are demonstrated in turn: 

Editing: A previously-prepared action semantic description (a.s.d.) is read into 
the system. A (deliberate) typo prevents it from being parsed immediately, 
but clicking on the error message moves the cursor to the point where cor- 
rection is needed. After correction the a.s.d. parses OK, and by clicking at 
various points, the structural focus is moved around to exhibit the recog- 
nised grouping. Changing part of a term requires reparsing only of the 
changed part, exploiting the incrementality of ASF+SDF. However, when 
the introduced (mix-fix) symbols of the a.s.d. are changed, the initially- 
generated term parser becomes obsolete, and terms remain unparsed until 
a new parser is generated (by pressing a button). 

Parser Generation: An a.s.d. module containing a grammar is read in. A but- 
ton press generates an ASF+SDF module containing an equivalent gram- 
mar, allowing the next step. 

Program Parsing: An actual program in the described language is edited; If 
it can be parsed, a button press transforms it into the abstract syntax 
not ation used in action semantics. 

Semantics Generation: An a.s.d. module specifying semantic functions (by 
semantic equations, as in denotational semantics) is read in. A button press 
generates an ASF+SDF module that can execute the semantic equations as 
rewrite rules, which allows the next step. 

Program Semantics: Given these rewrite rules and an actual program in ab- 
stract syntax notation, a button press can map this program to its corre- 
sponding action term. 

Sort Checking: The ASF+SDF modules generated in the preceding steps incor- 
porate basic sort-checking of the usage of operations in terms, exploiting 
the so-called functionality axioms specified in a.s.d.s. 

Further features are currently being implemented. 
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Hardware and Software Requirements 

For installing and demonstrating the ASD system: 

Disk Space 

200 Mbytes needed to install and store ASD. 

Workstation 

Minimum 32 Mbytes main memory needed for running the demonstration. 

Preferably Silicon Graphics, running with: 
- Operating System IRIX Release 4.05F (or higher), 
- MIPS R4010/R4000. 

Alternatively: 
Sparc running SunOS 4.1 (not Solaris), or 
Silicon Graphics with MIPS R2000/3000. 

Standard Unix software needed: X-Windows, twm. 

Colour screen desirable, but not essential. 
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Abstract. LDL is a system supporting the design of procedural programming languages and 
generating prototype interpreters directly from language definitions. Language definitions are 
based on GSFs - a kind of attribute grammars - and the denotational semantics approach. 
Semantics is defined in a two-level approach more or less similar to action semantics. First a 
term representing the semantic meaning is constructed and afterwards this term is interpreted. 
To derive (within the system LDL) a prototype interpreter of a language its language 
definition must be transformed to Prolog. Language definitions within LDL and the 
transformations into Prolog are considered using a PASCAL-like language as an example. 
The underlying approach for language definition, especially semantics definition, is compared 
with other approaches. Moreover it is sketched how our approach to language definition could 
be adapted for interconnecting attribute grammars (GSFs) and action semantics which would 
allow a more appropriate semantics definition (including static semantics) than in the case of 
pure action semantics. 

1 Introduction 

This paper is structured as follows. The subsections 1.1, 1.2 establish some basic 
knowledge about the system LDL, language definitions applied in LDL and the 
derived LDL prototype interpreters implemented as Prolog programs. In section 
1.3 a PASCAL-like language MYPAS serving as running example for this paper is 
introduced. In sections 2 and 3 we discuss the formalisms for language definition 
applied in LDL, i.e. GSFs (a kind of attribute grammars) and denotational 
semantics, and the implementation of such language definitions for purposes of 
prototyping interpreters. GSFs are considered more in detail, since we want to 
sketch at the end of the paper (section 5: Conclusion and Future work) how GSFs 
- especially GSFs of that specific form we are applying in the system LDL - could 
be useful to be interconnected with action semantics descriptions. In Section 4 we 
give references to some related work. 

1 .I Structure of LDL - Languaae Development Laboratory 

Keeping in mind Koskimies' statement ([Kgl]) "The concept of an attribute 
grammar is too primitive to be nothing but a basic framework, the 'machine 
language' of language implementation." LDL offers a higher-level tool supporting 
the definition of (at least procedural) languages and their implementation in form of 
a prototype interpreter. For this purpose the LDL library (Fig. 1) contains 
predefined language constructs together with their static and dynamic semantics 
and the Prolog implementation of these. The (dynamic) semantics components are 
correct w.r.t. the usual denotational definition. The knowledge base and the tool 



for language design ensure the derivation of correct prototype interpreters from 
these correct components. Moreover, LDL derives test program generators 
producing syntactically correct programs satisfying the context conditions of the 
defined language and possessing certain additional properties. 

Library of 
1 I language 
I I components 

Tool for 
language design 

I I 

Fig. 1 : Structure of the LDL system 

1.2 Language definitions and prototvpe interpreters within LDL 

The language definitions and the corresponding prototype interpreters in the 
system LDL are based on the idea from [R91] and exploit GSFs (GSF - Grammar 
of Syntactical Functions) - a kind of attribute grammars - and denotational 
semantics descriptions for the language definition. 

The development of prototype interpreters is based on the following ideas: 

Because GSFs and Prolog programs are closely related, after some 
modifications a language definition in form of a GSF can directly be used as the 
core of a prototype interpreter written in Prolog and applicable for syntactical 
and semantic analysis. 

Denotational semantics descriptions can be implemented as logical programs by 
defining term representations of elements of any domain and by transforming 
the functional equations into definite clauses. 

The semantics definition can be a stepwise process. First, we could be 
interested only in the calling structure of the semantic functions of a given 
source program. Finally, we are interested in the execution (interpretation) of 
the source program. Thus our semantics definition consists of two levels: 

1. The meaning of a program is a term consisting of names of semantic 
functions in the GSF sense which can be considered as the abstract 
syntactical structure of the program. It can be defined using a GSF with 
special production rule patterns (see subsection 2.2). 

2. Based on the denotational approach the interpretation of terms is defined. 

Before computing the meaning of a source program according to the two levels 
of the semantics definition its context conditions are checked (evaluation of the 
auxiliary syntactical functions in the GSF sense). 



The structure of a prototype interpreter can be seen from Fig. 2. 

The prototype interpreter operates as follows: 

A source program is read token by token from a text file. 

Each token is classified by a scanner. The scanner is invoked by a special 
operator preceding each terminal within the Prolog version of the GSF. 

The parsing and checking of context conditions is interconnected with 
scanning. If the context-free basic grammar of the GSF describing the source 
language is an LL(k)-grammar the Prolog system itself can be used 
straightforwardly for parsing, whereas LR(k)-grammars require to include a 
special parser into the prototype interpreter. 

Recognizing a language construct its meaning in form of a term is constructed 
by connecting the meanings of its subconstructs. 

The term representing the meaning of the whole program is interpreted, i.e. the 
function names of the term are associated with functions transforming a given 
program state into a new one, where a state is usually an assignment of values 
to program variables. 

Source program 

1 Scanner I 

Semantic analyser + P: Prolog version of the GSF definition 
of the source language 

Semantic analyser: Prolog clauses 
defining context conditions 

Term interpreter: Prolog clauses 
defining (dynamic) semantics 

Input of the Output of the 
source program source program 

Fig.2: Structure of a prototype interpreter 

1.3 MYPAS - a PASCAL-like languaae developed by LDL 

MYPAS is a PASCAL-like language which has been designed to consider a non- 
trivial example of an imperative language in the system LDL. MYPAS was an 
experiment to explore possibilities for the transformation of denotational semantics 
into logical programs 1 Prolog programs ([La93]). 



MYPAS does not contain the following PASCAL-constructs: 
sets, enumerated / subrange types 
records with variants 
CASE statement 
some standard procedures / functions 
forward 

Additionally to PASCAL the following constructs have been included: 
structured result types for functions 
break / continue statements 

The LDL prototype interpreter of MYPAS can be applied to interprete non-trivial 
MYPAS programs and has passed several tests, for example the heavy scope test 
for static binding from [WG84]), standard algorithms (e.g. for sorting or matrix 
calculations) and little applications (e.g. file-oriented data management programs). 
Up to now we have not compared the speed of the prototype interpreters with the 
speed known for other systems dealing with prototype interpreters derived from 
formal language definitions. However we expect the term interpretation (i.e. the 
implementation of the denotational semantics) to be comparable in speed with the 
approach of executing denotational semantics in a functional language like SML. In 
general the speed of interpretation and the size of inputs which can be processed by 
LDL prototype interpreters strongly depends on the fact whether features of 
Prolog are exploited within the term interpreter (we did so for MYPAS) in 
difference to deriving pure logical programs with a clean declarative meaning 
(allowing provable correctness as for the LDL prototype interpreter of the 
language VSPL, see [LR94]). 

Only to give an idea on the size of the obtained prototype interpreter definition we 
mention numbers of clauses and file sizes (including comments for any clause) for 
all its parts in Table 1. 

Figure 3 represents the structure of the prototype interpreter definition more in 
detail. The immediate parts are derived from the language definition consisting of a 
GSF and a denotational semantics description. The abstract data types offer 
(reusable) services for the semantic analysis and the term interpretation. 

Part of definition 
GSF 
static semantics 
dynamic semantics 
applied modules 
S 

Table 1 : Size of parts of the MYPAS definition 

Clauses 
234 
269 
201 
161 
865 

KB ASCII 
28 
2 1 
24 
26 
99 



Immediate parts of prototype Interpreter definition 

I Abstract data types 

1 Auxiliary modules I 

Fig.3: Structure of the MYPAS prototype interpreter definition 

2 GSFs - Grammars of Syntactical Functions 

2.1 Definition of GSFs 

The GSF formalism ([Rgl]) is closely related to the DCG ([PW80]) and RAG 
([CD87]) formalisms, but, other than these, it has been derived from two-level 
grammars during 1971-1972 with the aim to obtain an executable and more 
readable form of two-level grammars. A GSF definition consists of two parts: 

a GSF scheme defining the rough structure of the syntax and semantics of a 
language 
a GSF interpretation refining the GSF scheme. 

Roughly speaking a GSF is a parametrized context-free grammar extended by 
relations over the parameters. For historical and practical reasons, in the following 
definitions these relations are classified into auxiliary syntactical functions and 
semantic functions. Defining a programming language auxiliary syntactical 
functions and semantic functions can be used to define the static and dynamic 
semantics, respectively. 

Definition 1 (GSF scheme): 
A GSF scheme is a tuple S = 4, A, SF, V, C, AR, R>, 
where B = <N, T, RO,ST> is a reduced context-free grammar (N set of 
nonterminals - here called names of syntactical functions, T set of terminals - 
names of basic syntactical functions, R' set of production rules, ST e N start 
symbol) - the basic grammar of the GSF, and A, SF, V and C are finite sets of 
names of auxiliary syntactical functions, names of semantic functions, variables 
and constants resp.. V U C is the set of parameters. R is a finite set of production 
rule patterns, each of the form 



where foeN, f l ,  ..., fie N U T, h i  ,,.., hs e A U SF, 
pfO,l,--,phs,nhs e v u c and 
fo: f l ,  ..., fr e R' (2)  

N, T, A, and SF are pairwise disjoint. V and C are disjoint too. The arity AR maps 
each function name (element of N U T U A U SF) into the set of integers (number 
of parameters of a function). g(P1, ..., Pn) is called syntactical function, basic 
syntactical function, semantic function or auxiliary syntactical function if g e N, 
g e T, g e SF, g e A resp. Each syntactical function ST(P1,. ..,Pn) occurring on the 
left-hand side of some production rule pattern is a start element of the GSF. 

Example 1 (Excerpt of the GSF scheme of MYPAS): 

% concatenation of statements 
sm-list(SIST) : statement~SllST)111;111sm~list(S21ST)l 

CONCAT(SlSllS2). 
sm-list(SIST) : SKIP(S). 

% concrete statements 
statement(SIST) : assign-statement(SIST). 
statement(SIST) : if-statement(SIST). 

% assign statement 
assign-statement(SIST) : leÂ£t~value(Ell~llS~) 

!I . . = I! lexpression(E21T~lST)l 

CHECK-ASSIGN-TYPES(TllT2tST)l 
ASSIGN(Sl EllE2) . 

% if statement with optional else-part 
if-statement (St ST) : l'iflllexpression(EITl ST) 

llthenll sm-list (Sll ST) 
elsesart (S2 ST) 
I1 f i 11 

I 

Is~BooLEm~TYPE(TlsT) 1 

IF(SrElSlrS2)- 

elseaart (St ST) : llelsell sm-list (Sl ST) . 
elseaart (St ST) : SKIP (S) . 
sm-list, statement, assign-statement, if-statement, left-value, expression, else-part e N, 
'1.lI 11.-'I , , .- , "if ', "then1', I1else1', "fil' e T, 
CHECK-ASSIGN-TYPES, IS-BOOLEAN-TYPE 6 A, 
CONCAT, SKIP, ASSIGN, IF e SF, 
S9Sl,S2,sT,E,E1,E2,T,Tl,T2 6 V. 

From the definition it can be seen that a GSF scheme defines the context-free basic 
structure of a language and the dependencies between auxiliary syntactical andor 



semantic functions. To determine the meaning of a language construct we need to 
know concrete parameter domains and the meaning of auxiliary syntactical and 
semantic functions. 

Definition 2 (GSF, interpretation): 
Suppose S = d3, A, SF, V, C, AR, W is a GSF scheme as introduced in the 
previous definition. A GSF is a pair 4 ,  IP>, where IP = &I, D, I, F> is an 
interpretation consisting of a family D of domains, a function I associating with 
each element f e A U SF an n-ary relation on the domains from D (n=m(f)), a 
function M assigning to the i-th parameter position of a function name f a 
particular domain M(f,i) e D and the forbidden symbol F. 
f(v1, ..., vn) with Vi e M(f,i) is called an instance of the function f(P1, ..., Pn). 
Moreover, the following conditions must be satisfied: 

A variable occurring on the i-th parameter position of a function f(P1 ,..., Pn) 
stands for a value from M(f,i). It represents the same value whenever it occurs 
in a given production rule pattern. 
A constant occurring on the i-th parameter position of f is an element from the 
domain M(f,i). 
EfeAUSF,M(f)=n,andaieM(f,i) , i=l,  ..., n, 

thenf(al,,.., an)= {&,if(al ,  ..., an)eI(f) 
{ F, else 

where E denotes the empty string. 
For each production rule pattern there are variables occurring as well in the 
syntactical functions as in auxiliary or semantic functions. 

Example 2 (Continuation of Example 1): 
If S, E denote the sets of meanings of statements and expressions resp., ST is the 
set of all possible symbol tables, T the set of all types, then the function M 
(domains of parameter positions of function names ) can be defined by the Table 2. 

Table 2: Domains of parameter positions of GSF of MYPAS 

66 

f \  
sm-list 
statement 
assign-statement 
if-statement 
left-value 
expression 
else-part 
CHECK-ASSIGN-TYPES 
IS-BOOLEAN-TYPE 
CONCAT 
s m  
ASSIGN 
IF 

S 
S 
S 
S 
E 
E 
S 
T 
T 
S 
s 
S 
S 

ST 
ST 
ST 
ST 
T 
T 
ST 
T 
ST 
S 

E 
E 

ST 
ST 

ST 

S 

E 
S S 



The relations associated with the names of auxiliary syntactical and semantic 
functions are described here only informally. 

I(CmCK-ASSIGN-TWES) = { (t 1 ,tz,st) I t i  ,t2 e T are types valid for the 
lefi-hand and right-hand side of an assignment; st e ST defines user types} 

I(1S-BOOLEAN-TYPE) = { (t,st) I t e T denotes the boolean type; st e ST 
defines user types} 

I(SKIP) = { s I s e S is the meaning of the empty statement } 

I(C0NCAT) = { (s,sl,s2) I s e S is the meaning of a concatenation of 
statements with the meanings sl,s2 e S } 

I(ASS1GN) = { (s, e l ,  e2) I s e S is the meaning of an assignment depending on 
the meanings el,e2 e E of the left-hand and the right-hand side} 

I(IF) = { (s,e,sl,s2) I s e S is the meaning of an IF-statement where e e E is the 
meaning of the conditional expression and sl,s2 e S are the meanings of the 
THENBLSE-path resp. } 

H 

To generate a word by a GSF fust suitable production rule patterns must be turned 
into context-free production rules replacing each variable occurring in the given 
production rule pattern by a value from its corresponding domain. This substitution 
process is controlled by the relations also occurring in the production rule pattern. 

Definition 3 (Derived context-free production rule): 
Suppose G = <S, Ib is a GSF with the GSF scheme S = <B,A,SF,V,C,AR,b and 
the interpretation IP = <M, D, I, F> as introduced above. Then 

FO : Fl,  ..., Fr. (3) 
is a context-free production rule derived from the production rule pattern (1) if 
(3) is a result of consistently replacing each variable occurring in (1) by a value 
from its corresponding domain (Fi, i=O,l, ..., n is an instance of fi( ...)) in such a way 
that the instances Hi, ..., Hs of the auxiliary syntactical functions and semantic 
functions occurring in (1) yield E. 

H 

Definition 4 (Word, Language): 
Let G be a GSF defmed as above. A string w consisting of terminals of G 
(instances of basic functions) is a word generated by G iff there is an instance 
ST(v1, ..., vn) of some start element ST(P1, ..., Pn) of G such that 
ST(v1, ..., vn) =&=> w applying a suitable set of context-free production rules 
derived from the set of production rule patterns of G. In an analogous way 
subwords can be defined. 
The language L(G) generated by the GSF G is the set of words generated by G. 

H 

Based on the language generated by a GSF it is possible to associate relations with 
the names of syntactical functions and a meaning with each word. 



Definition 5 (Relation associated with a syntactical function): 
Let G be a GSF defmed as above and f a given name of a syntactical function. 
Rel(f) is a n-ary relation (n=AR(f)) and ER(f) a (n+l)-ary relation associated with 

* f, where (VI ,.. .,vn) â Rel(f) and (w, VI  ,. . .,vn) G ER(Q iff f(v1, ..., vn) ===> W, 
UW' e L(G), Vie M(f,i), i=l, ..., n. 

w 

Now the meaning of a word (subword) w can be defmed as the tuple (vl, ..., vn) iff 
(w, VI ,..., vn) â ER(ST) ( (w, VI ,..., vn) 6 ER(f), f G N, f # ST). It can also be 
identified with a subtuple of this tuple, 

Example 3: 
With the syntactical function statement(S, ST) from Example 1 we can associate 
the relation ER(statement) = { (w, s, st) I s is the meaning of the statement w 
generated by statement(s, st), where st is a symbol table containing the declarations 
visible in w } . 

2.2 Specific application of GSFs in the svstem LDL 

In our applications usually the jirst parameter of each syntactical function is 
assumed to denote the meaning of subwords generated by the syntactical function. 
Then the meaning of the syntactical function of the left-hand side of a production 
rule pattern is computed by a semantic function from the meanings of the right- 
hand side syntactical functions. Thus, only the following two kinds of production 
rule patterns are possible: 

First kind: 
f(c ,... ) :  b. c e C , f e N ,  

b sequence of parameterless basic syntactical functions. 
Remark: We suppose that basic syntactical functions with non-empty 
parameter lists are defined by implicitly given rules of the fxst kind, e.g. 
identifier(x) : 'XI. This mirrors the situation in compilers that identifiers and 
other classes of terminals are recognized by lexical analysers. 



Interested readers may refer to [RL93], where the nice property of GSFs with such 
production rule patterns to defme the meaning of a word (subword) as a 
homomorphic image of the structure of the word (subword) is considered. 

Because of our two-level approach exploiting 
GSFs for syntactical I semantical analysis and term generation 
denotational semantics for dynamic semantics (term interpretation) 

formally we want to use a GSF for associating with each word generated by the 
GSF as its meaning its syntactical structure in form of a term. Therefore after the 
consideration of relations between context-free grammars I GSFs and algebras we 
introduce the notion of a syntactical algebra associated with a GSF. 

It is well-known that a context-free grammar can be considered as a heterogeneous 
algebra ([ADJ77]). Let be G=(N,T,P,S) a context-free grarnmar, where N is the set 
of nonterminals, T is the set of terminals, P is the set of production rules and S e N 
is the start symbol. Considering G as algebra N can be identified with the set of 
sorts. To each production rule p e P 

X0 -> a() Xl a1 ... Xn an, * where Xi e N, i = 0 ,..., n, aj e T , j = 0 ,..., n, an operator OP with the profiie 
eX1 ... Xn,Xo> is assigned in a one-to-one manner. Let be 0 the set of all 
operators constructed. 0 together with the profiles of the operators is an N-sorted 
signature. Now a syntactical algebra SA can be defined as follows: 

SA = <{SAsls 6 N,{OPSA}O~ e O h  WP 
SAs = L(s) (the set of all strings from T generated by s) 
opSA(xl ,..., xn) = a() xl  a1 ... Xn an 

if op is defined as above 

A more abstract syntactical algebra is the N-sorted term algebra T(0). But if G is 
reduced and unambigous then both algebras are isomorphic. 

It is possible to construct a syntactical algebra associated with a GSF as the 
syntactical algebra of its context-free basic grammar. But GSFs enable a second 
approach. The parameters occurring in the parameter lists of the syntactical 
functions can be used to refine the sorts and the signature given by the context-free 
basic grammar of the GSF scheme. 

Definition 6 (Syntactical algebra associated with a GSF): 
Let G be a GSF as defmed above. A syntactical algebra associated with G is a 
term algebra based on the following signature Sig (signature associated with G): 

1. Suppose Ref maps each name of a syntactical function into the set of integers 
(Ref selects a refinement parameter; 0 5 Ref(f) 5 AR(f); Ref(f)=O means there 
is no refinement parameter). Then the set of sorts of Sig is 

{ fv 1 f e N U T' A v e M(f,Ref(f)) (fv is f if Ref(f)=o), where 
TI is the set of names of basic syntactical functions with non-empty parameter - -  - 
lists and M(f, Ref(f)) is the dom& of the Ref(f)-th parameter position off. 



2. Suppose 
fo(-,Pf~,Ref(f~),-) : fl(-,Pfl,Ref(fl),...),... 

fr(-,Pfr,Ref(fr),-), 
hi( ...) ,..., hs( ...). 

is a production rule pattern of the GSF scheme of G, 
fo( ..., vo ,...) : fl( ..., ~ 1 ,  ...),..., fr( ..., vr ,... ), (**) 

hi( ...) ,..., hs( ...). 
is a result of substituting Vi e M(fi, Ref(fi)) for the Ref(fi)-th parameter position 
of fi and there is a context-free production rule derived from (**). Then we 
introduce an operator o: flvl x ... x frvr -> fovO. The operators are associated 
with the rules (**) in a one-to-one manner. The set of operators constructed as 
above for each production rule pattern (*) of the GSF scheme of G is the set of 
operators of the signature Sig. 

Â 

We obtain a GSF associating with each word generated by the GSF as its meaning 
its syntactical structure in form of a term of the syntactical algebra associated with 
the GSF by combining production rule patterns of form (4) with the refinement 
concept. From the refinement concept it follows that it would be useful if the 
semantic functions SM(po,pl, ...,pr) occurring in production rule patterns of 
second kind would be refined by the refinement parameters of the syntactical 
functions too. Then the production rule patterns and their interpretation are defined 
as follows: 

Let G=<S,IP> be the GSF, 0 a signature and T(0) the term algebra associated 
with G. Remember that 0 denotes both the signature and the set of operators of 
the signature. 

First kind of production rule patterns: 
f(0b, ...) : b. 

b sequence of parameterless basic syntactical functions, 
ob e 0 operator associated with the rule 

Second kind of production rule patterns: (5)  
fo(p0, ..., Pfo,Ref(fo), ... ) : bo,fi(pl,...,Pfi,~ef(fi),...),bi 

fr(pr,...,Pfr,Ref(fr),-),br, 
al( ...) ,..., as(...), 
SM(P~,P 1 ,..-,~r,Pf~,Ref(fo),-.Pfr,~ef(fr))- 

fo e N, f l ,  ..., fr e N U T, 
bo,. . . ,br sequences of parameterless basic syntactical functions, 
a1 ,..., as e A, SM e SF, pi ,  ...,pr â V U C ,  Po e V. 

Let Op = {Op,w}, where w = v1 ... vr vo with vi e M(fi,Ref(fi)), i = 0,1, ..., r, is 
the set of operators of Sig associated with the production rule pattern p. The 
interpretation IP=<M,D,I,F> must possess the following properties: 

1. M(fi( ..., vi, ...), 1), Vi e M(fi,Ref(fi)), i = 0,1, ..., r, is the set of all terms which 
are syntactical structures of the subwords derived from instances of 
fi( ..., vi ,... ), i.e. M(fi( ..., vi ,... ),l) T(0)fivi 



Remark: Because fi(. . . ,vi,. . .) with a constant (vi) as Ref(fi)-th parameter 
can be considered as a function derived from fi(. . .) M(fi(. . . ,vi,. . .), 1) makes 
sense. 

Remark: Because vo,vl, ..., Vr are constants, SM(po,...,pr,~~,v1 ,-.vr) can 
be considered as a new semantic function with r+l parameters which is a 
specialization of the original semantic function SM(p0, ...,pr) in (4). 

Remark: The interpretation I(SM) defines the meaning po as term 
constructed from the meanings of the subwords derived from the 
syntactical functions of the right-hand side by using an operator which is 
unique for the actual combination of values for the refinement parameters. 

2.3 Proloa-Implementation of GSFs 

The production rule patterns of GSFs together with the interpretation of auxiliary 
syntactical and semantic functions resemble Prolog clauses. The question arises 
whether a GSF rule can be interpreted as a Prolog clause. Using the following 
interpretation the answer is 'YES': 

For each variable occurring in the production rule pattern (1) the following holds 

then (Fo =*=> t i  ... tr), where Fo : Fl,  ..., Fr. with the instances H i  ,..., Hs of 
the auxiliary syntactical functions and the semantic functions is a context-free 
production rule derived from the production rule pattern (1). 

To exploit given Prolog systems for treating GSFs as Prolog programs requires 
some modifications of the production rule patterns of a GSF and some additional 
expense: 

The notation must be changed into the Prolog notation. 
Basic syntactical functions must be preceded by the special symbol @. This 
symbol will be used as an operator realizing the scan of terminals. 
Auxiliary syntactical functions and semantic functions will be labelled by # and 
& resp. which are considered as operators realizing the evaluation of the 
functions. 



Because the right-hand sides of Prolog clauses are treated from left to right the 
auxiliary syntactical functions and semantic functions must be rearranged in 
correspondence with this order. To avoid infiite loops the order of clauses 
must be rearranged too. 
Prolog clauses realizing the operators @, #, & must be added. 

Moreover the following properties arise from this approach: 
If the context-free basic grammar of the GSF is an LL(k)-grammar then there is 
no need of a parser because the Prolog system itself can be exploited. 
Otherwise a parser must be added. 
The implementation of # and & can be done in several steps ([R91]). 
Under certain circumstances some parameter positions can be omitted. For 
example the parameter positions for symbol tables usually can be omitted and 
the symbol table can be managed in the Prolog database (as done in the 
Examples 4 and 5). 

Note the difference between these modifications and transformations of DCG rules 
into Prolog clauses. The latter approach causes that terminals are changing from a 
syntactical element of the DCG into an argument of a predicate. In our approach a 
terminal of the GSF is still at the same place in the Prolog clause but now preceded 
by a special operator which realizes the scan of terminals. 

Example 4 (Prolog version of Example I): 

% concatenation of statements 
smlist (S) : - statement (Sl) , @I1; It , 

smlist (S2) , 
& concat(S,Sl,S2). 

sm-list (S) : - & skip(S) . 
% concrete statements 
statement (S) : - assign-statement (S) . 
statement(S) :- ifstatement(S) . 
. . . 
% assign statement 
assignstatement(S) :- left-value(El,Tl), 

Q II : = 11 ,expression(E2,T2), 

# checkassign~types(Tl,T2), 
& assign(S,El,E2). 

% if statement with optional else-part 
ifstatement (S) :- @"if ll,expression(E,T) , 

# isbooleantype (T) , 
@"then", smlist (Sl) , 
elseaart (S2 ) , 
@ I 1  fill 

I 

& if(S,E,Sl,S2). 

elseaart (S) : - @"else", sm-list (S) . 
else_part(S) :- & skip(S). 



The straightforward approach to implement the auxiliary syntactical functions is to 
implement the interpretation I of a name f of an auxiliary syntactical function by a 
predicate named f. Then the operator # working within the Prolog version of GSF 
as a marker of auxiliary syntactical functions must be implemented simply by the 
following clause: 

(# X) :- call(X). 

Example 5 (Prolog clauses defining context conditions for Example 4): 

% checking types for assign statement 
check_assigntypes(realtype,integertype) :- ! .  
check_assigntypes(Tl,T2) :- 
matchtypes(Tl,T2), ! .  
check-assigntypes (usertype (Id) , T) : - 
typedef (usertype (Id) , TD) , 
check_assign_types(TD,T), !. 

% translating user types 
type-def (usertype (Id) ,Type) : - ! , 
statenv(Id,typedef(T)), % querying the global symbol table 
type-def (T, Type) . 
type-def (TIT). 

% defining an equality between types 
match-types (TIT) : - ! . 
match_types(T,pointertype(undeftype)) :- !, 
type_def(T,pointertype(-)) . 

match_types(pointertype(undeftype),T) :- 
type_def(T,pointertype(_)). 

% testing a type to be the boolean type 
is boo lean type(^) :- type_def(T,booleantype), 

It remains to discuss the implementation of the semantic functions which are 
marked by &. In subsection 2.2 (see (5)) we have described an interpretation (for 
names of semantic functions) guaranteeing the meaning of a word to be its 
syntactical structure in form of a term of the syntactical algebra associated with the 
GSF. The reader may remember the last remark of (5) in order to realize that the 
following implementation of & is a proper solution: 

(& X) :- X =. . [OPI [POIPIS-and-Refs]] ,PO =. . [OPIPIs-and-Refs] . 

So the resulting term is indeed a term constructed from the meanings of the 
subconstructs. As operator symbol the name of the semantic function itself is 
applied which is obviously not unique for any combination of values for the 
refinement parameters. However, by taking the values of the refinement parameters 
into the term, the uniqueness is still satisfied, since the operator symbol may be 
considered as beeing qualified by the refinement parameter positions within the 
term. 



Example 6 (A simple MYPAS program): 

1. PROGRAM Count; 
2. VAR x : INTEGER; 

BEGIN 
3. Read (x) ; 
4. WHILE 
5. x > o  

DO 
6. x := x - 1; 
7. WriteLn(x) ; 

OD ; 
END. 

Example 7 (The term generated for the program from Example 6): 

1. prog(input,output, 
block ( 
concatd ( 

2. concatd(vardec([x],integertype),nodec), 
nodec) , 
concat ( 

3 .  read (default (input) , [id (x) 1 , [ integertype] ) , 
concat ( 

4. while ( 
5. op(id(x), const(O), agt) , 

concat ( 
6. assign(id(x), op(id(x), const(l), minus)), 

concat ( 
7. writeln(default(output), [id(x)l, [integertype]) , 

skip)) 1 , 
skip) ) ) 

3 Denotational semantics 

3.1 Preface 

Denotational semantics descriptions as required in the system LDL and 
approach to their implementation are considered in [La93], [RL93], [LR94]. 
will only sketch some ideas concerning this topic in subsections 3.2 and 3.3. 

the 
We 

Concerning the implementation of denotational semantics as a logical program it 
should pointed out, that there are two extrema. First it is possible to use a well- 
defined transformation from recursive function definitions into pure logical 
programs with a clean declarative semantics beeing a good basis for stating about 
correctness. Second an analysis of the language and its language definition together 
with standard techniques from compiler construction may result in more 
sophisticated transformations to derive a logical program (not a pure logical 
program, rather a real Prolog program) offering the term interpreter. 



3.2 Demands on the denotational semantics definitions 

In our language definitions we apply denotational semantics definitions to assign 
dynamic semantics to the terms generated by the corresponding GSF. Thus a basic 
requirement is that the syntactical domains of the denotational description can be 
identified with the sets of terms beeing the underlying sets of the syntactical 
algebra associated with the GSF. 

The derivation of a logical program from a recursive function definition becomes 
easier when functional domains have been flattened. Indeed, our constructive 
approach sketched in [LR94] assumes the absence of functional domains. The 
following transformations are applied to reach this goal: 

Representing functions by sequences: Certain (so-called semi-finite) functions 
may be considered as sequences of tupels. These are functions like f with 
f: Dl -> (D2 + { undef }I), where Dl, D2 are arbitrary semantic domains, 
{ x I x e Dl  A f(x) # undef } is a finite set. f can be considered as 
f' e (Dl x D2)* consisting of all pairs <xi,yi>, xi e Dl, yi e D2, 
yi = f(xi) 4- undef. It is straightforward to defme auxiliary operators for 
application and modification. 

Freezing computation of meanings: The denotational semantics of certain non- 
trivial language constructs demands to pass meanings through the semantics 
description or to consider them as intermediate results which e.g. have to be 
bound in an environment. Functional domains introduced this way can be 
omitted by working on (syntactical) terms. For example, the meaning of an 
imperative procedure declaration (as bound in the environment) usually would 
be a function mapping the actual parameter to a state-transition function. To 
avoid this functional domain we consider (meanings of) procedure declarations 
simply as terms beeing more or less equal to the syntactical procedure 
declarations. So we can achieve a late application of semantic functions to 
syntactical elements at positions where all arguments of the semantic functions 
are known instead of working on intermediate meanings. This approach is also 
sufficient to implement continuation semantics. 

Avoiding higher-order operators: Some functional domains are introduced 
only for pararneterlresult domains of auxiliary higher-order operators which are 
used to figure out common parts of semantic definitions into operators. A usual 
example are composition operators with error propagation. Functional domains 
introduced this way can be omitted by using the definition of a operator in 
positions where this operator is applied instead of the operator itself. 



Curried -> Uncurried functions: Since we are interested rather in execution 
(interpretation) of programs than in computation of meanings we can apply 
uncurried versions of semantic functions instead of their curried original 
versions. By this simple transformation we can avoid domains for meanings 
which are often functional entities (as described by semantic functions of usual 
denotational semantics descriptions) , 

3.3 Implementation as louical program 

The transformation of a recursive function definition into a logical program 
consists of two subtasks: 

1. Definition of representations for elements of domains: For any element of any 
syntactical and semantic domain we need a representation within the logical 
program. For that purpose we apply ground term representations. In [RL93] 
we systematically define a bijective function mapping elements of domains to 
terms of a term algebra w.r.t. a signature derived from the domain equations. 

2. Transformation of functional equations into definite clauses: To model 
functions we derive predicates (definite clauses) having input and output 
parameter positions. Some basic transformation ideas are considered: 

Ad hoc implementations: For basic operations ad hoc implementations can 
be developed. 

Term construction instead of functions: For some simple functions the 
corresponding predicate need not to be derived, since the applications of 
these functions can be modelled within the logical program by term 
construction. For example, because of the term representation of elements 
projections, injections w.r.t. sum domains and list operation as U, a, 

w.r.t. domains of sequences can be simulated by term construction. 

Composition by conjunction of atomic formulae: A nested application like 
fn(fn- 1 (. . .f2(f 1 (xo)) . . .)) is modelled as conjunction of atomic formulae 
pfl (Xo,Xl ),~f2(Xl,X2) ,...,pfn- 1 (Xn-2,Xn- 1 ),pfn(Xn- 1 ,Xn) where the 
predicates pfi are intended to implement the functions fi and Xo should be 
bound to the representation of xo. We start with the innermost application 
taking the left-to-right processing of right-hand sides of clauses by Prolog 
systems into consideration. The intermediate results are passed from left to 
right from the output positions to the input positions. 

Example 8 
(Excerpt of Prolog clauses defining the term interpretation for MYPAS): 

% interpretation of commands 
interpret(skip) :- !. 
interpret(con~at(Sl~S2)) :- !,ccom(Sl,S2,Cont), 

interpret (Cont ) . 
interpret (Term) : - ccom (Term, skip, Cont) , 

interpret (Cont) . 



% semantics of concatenation 
ccom(concat(Sl,S2) ,C,R) :- 
! ,ccom(Sl,concat(S2,C) ,R) . 

% . . .  of if statement 
ccom(if (E,Sl,S2) ,C,concat(S,C)) :- 

! , reval (Val, E) , 
( Val == true,!, 
s = Sl 

s = s 2  
1 .  

% commands defined by direct semantics 
ccom(Com,C,C) :- com(Com) . 

% assignment 
com(assign(LHS,RHS)) :- leval(LVal,LHS), 

reval (RVal , RHS) , 
update (LVal, RVal) . 

Remark: This term interpretation has been derived from a 
denotational semantics description written in continuation style. 
Continuations are modelled here as terms representing statements. 

Â 

4 Related work 

Paulson's semantic grammars ([Pau82]) give also a descriptional formalism 
exploiting attribute grammars and denotational semantics. In difference to our 
approach semantic grammars define semantics rather in an one-level manner by 
allowing attributes to be elements from arbitrary semantic domains (Functional 
entities are written in lambda notation.). Our two-level approach is very similar to 
Lee's High-Level semantics ([L89]) consisting of a macro semantics and at least 
one micro semantics. The construction of terms is there described by semantic 
equations instead of using attribute grammars as in our case. Other related work is 
considered in [RL93]. 

5 Conclusion and Future work 

For the language 1 prototype interpreter definitions as discussed in this paper the 
semantic functions of a GSF were assumed to be interpreted in such a way that 
they describe the semantic meaning of an input word as a term constructed from 
the meanings of its subwords. 

Although it is allowed (and useful) to enrich the term structure by results of the 
semantic analysis (refinement concept) such a term will be considered more likely 
as an abstract syntactical structure of the input word. Thus it would be 
straightforward to take the syntactical algebra associated with a GSF as abstract 
syntax definition for an action semantics description. The action semantics 



description could take profit from the semantic analysis described within the GSF, 
since the results of the analysis could be made available within the generated terms 
using the refinement concept. 

A different approach to the interconnection of GSFs and action semantics would 
be to define the generation of actions by the semantic functions. Relating GSFs 
with action semantics descriptions this way would allow to describe static 
semantics separately at the level of the attribute grammar. The specific form of 
GSFs as described in subsection 2.2 always constructs meanings directly from 
submeanings eventually applying refinement parameters. This compositional 
behaviour of the semantic functions of those GSFs seems to be useful also in the 
context of action generation, since one basic demand on action semantics 
descriptions is their compositional form. 

Although it is possible to exploit action semantics itself for definition of static 
semantics (see e.g. [WM87]), there is no obvious way to take profit from the static 
analysis within the dynamic semantics description when describing both (static and 
dynamic semantics) by a separate action semantics description. Therefore we 
suggest to interconnect GSFs and action semantics as motivated above. The details 
of this interconnection and the consideration of other alternatives (for example 
other kinds of attribute grammars) are points for future work. 
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The ACTRESS Compiler Generator 
and Action Transformations (Abstract ) 

Hermano Moura* 
Caixa Economica Federal, Brazil 

Actress is a semantics-directed compiler generation system based on action 
semantics. Its aim is to generate compilers whose performance is closer to hand- 
written compilers than the ones generated by other semantics-directed compiler 
generators. Actress generates a compiler for a language based solely on the 
language's action semantic description. We describe the process by which this is 
achieved. 

A compiler for action notation is the core of the generated compilers. It 
translates actions to object code. Action notation can be seen as the intermediate 
language of every generated compiler. 

A conventional hand-written compiler eliminates, whenever possible, refer- 
ences to identifiers at compile time. Some storage allocation is often performed 
at compile-time too. We can see both steps as transformations whose main objec- 
tive is to improve the quality of the object code. The compiler writer, based on 
his knowledge of properties of the source language, implements these "transfor- 
mations" as best as he can. In the context of Actress we adopt a similar approach. 
We introduce a set of transformations, called action transformations, which allow 
the systematic and automatic elimination of bindings in action notation for stat- 
ically scoped languages. They also allocate storage statically whenever possible. 
We formalise and implement these action transformations. The transformations 
may be included in generated compilers. We show that this inclusion improves 
the quality of the object code generated by Actress' compilers. 

In general, action transformations are a way to do some static processing of 
actions. Transforming actions corresponds to partially performing them, leaving 
less work to be done at performance time. Thus, transformed actions are more 
efficient. 

A full paper on this topic was presented at CC794, see: 

Moura, H., and Watt, D. A. (1994) Action transformations in the 
ACTRESS compiler generator, in Compiler Construction - 5th Inter- 
national Conference CC'94 (ed. Fritzson, P.), vol. 786, Lecture Notes 
in Computer Science, Springer-Verlag, pages 16-30. 

'SQN 206, Bloco I, Apto 103, Brasilia, DF, Brazil. Email: hermano@cic.unb.br 
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Sort Inference in the 
ACTRESS Compiler Generator 

Deryck F. Brown* David A. ~ a t t t  

Abstract 
ACTRESS accepts the action-semantic description of a source language, and from 
it generates a compiler. The generated compiler translates its source program 
to an action, performs sort inference on this action, (optionally) simplifies it 
by transformations, and finally translates it to object code. The sort inference 
phase provides valuable information for the subsequent transformation and code 
generation phases. In this paper we study the problem of sort inference on actions. 

1 Introduction 

ACTRESS is an action-semantics directed compiler generator [4]. That is to say, it 
accepts a formal description of the syntax and action semantics [8, 141 of a particu- 
lar programming language, the source language, and from this formal description it 
automatically generates a compiler that translates the source language to C object code. 

The generated compiler first translates each source program to an action, which we 
call the program action. Then it sort-checks the program action. Finally, it (optionally) 
transforms the program action, and translates it to C object code. The program action 
serves as an intermediate representation of the source program's semantics. 

Sort checking is important, not only to discover sort errors in the program action, 
but also to infer sort information necessary for effective transformation and code 
generation. Sort inference on action notation is a challenging problem. Records, 
subsorts, and polymorphism are all involved. Action notation itself is much richer than 
the various A-calculi usually studied by type theorists. 

This paper describes our work on sort inference. The rest of the paper is structured 
as follows. Section 3 is a brief description of the ACTRESS compiler generation system. 
Section 4 explains the general notion of sort in action notation, and the slightly simpler 
notion of sort adopted in ACTRESS. Section 5 describes our sort inference algorithm, 
and the sort inference rules that guide it. Section 6 surveys related work, and Section 7 
concludes. 

'INMOS Ltd, 10 Priory Road, Bristol BS8 lTU, England. E-mail: deryck@pact . srf . ac . uk. 
~ e ~ a r t m e n t  of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland. E-mail: 

daw@dcs.glasgow.ac.uk. 



2 Action Notation 

Action semantics was developed by Mosses and Watt [8, 141. As compared with other 
methods, action semantics has unusually good pragmatic qualities: action-semantic 
descriptions are easy to read, to write, and to modify. 

An action is a computational entity, which can be performed. When performed, 
an action either completes (terminates normally) or fails (terminates abnormally) or 
diverges (does not terminate at all). Actions are performed in a designated order 
(control flow). They can pass data to one another (data flow), in several forms: 
transients (data that disappear unless used immediately), bindings (data bound to 
identifiers, propagating over a designated scope), and storage (data stored in cells, 
remaining stable unless overwritten or deallocated). 

Action notation provides a number of action primitives, action combinators, and 
yielders. An action primitive represents a single computational step, such as giving 
a transient datum, binding an identifier to a datum, storing a datum in a cell, or 
immediately completing. An action combinator combines one or two sub-actions 
into a composite action, and governs the control flow and data flow between these 
sub-actions. There are action combinators that correspond to sequential composition, 
functional composition, choice, iteration, and so on. Finally, some primitive actions 
include yielders, which are used to access data passed to the action (transients, bindings, 
or storage). The action primitives, action combinators, and yielders of the ACTRESS 
subset are sumrnarised in Table 1'. 

An action-semantic description of a programming language C specifies a mapping 
from the phrases of C (expressions, commands, declarations, etc.) to action notation. 
An action-semantic description is structured like a denotational description, with se- 
mantic functions and semantic equations, but the denotations of phrases are expressed 
in action notation. 

The ACTRESS Compiler Generator 

ACTRESS is a compiler (and interpreter) generation system developed at the University 
of Glasgow by Brown, Moura, and Watt [4]. It provides a collection of modules that 
operate on actions (represented internally as trees). These modules include: 

Cheeky is the action notation sort checker. This infers the sorts of the given 
action and all its sub-actions. The sort of an action includes the sorts of all 
transients and bindings passed into and out of that action. The sort checker 
discovers any sub-action that must fail due to a sort error (such as attempting to 
use an integer where a truth value is expected). The sort checker simply replaces 
any such ill-sorted sub-action by 'fail'. Finally, the sort checker annotates the 
action with the inferred sorts. 

l ~ o r  historical reasons, this version of action notation differs slightly from that given in Mosses[8] 
and Watt[14]. 
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complete Completes immediately (i.e., does nothing). 
fail Fails immediately. 
give Y Gives the datum yielded by Y, labelled 0. 
give Y label #n Gives the datum yielded by Y, labelled n. 
bind k to Y Produces a single binding, of identifier k to 

the datum yielded by Y. 
recursively As 'bind', but allows the binding of k to be used in 
bind k ti Y evaluating Y. 

store Yl in Y2 Stores the datum yielded by Yl in the cell yielded by Y2. 
allocate a S Finds an unreserved cell of sort S, reserves it, and gives it. 
enact Y Performs the action incorporated by the abstraction 

yielded by Y. 
Combinator Informal meaning 
Al or A2 Performs either Al or A2. If the chosen sub-action fails, 

the other sub-action is chosen. 
Al else A2 Tests a given truth value, and then performs A1 if it is 

true or A2 if it is false. 
unfolding A Performs A iteratively. Dummy action 'unfold', 

whenever encountered inside A, is replaced by A. 
Al and A2 Performs Al and A2 collaterally. 

Any transients given by Al and A2 are merged. 
Any bindings produced by Al and A2 are merged. 

Al and then A2 Performs Al and A2 sequentially. 
Otherwise behaves like 'Al and A2'. 

AT, then A2 Performs Al and A2 sequentially. 
Transients given by A1 are given to A2. 

Al hence A2 Performs A1 and A2 sequentially. 
Bindings produced by A1 propagate to A2. 

Al moreover At Performs Al and A2 sequentially. 
Bindings produced by A2 override those produced by Al . 

Al before A2 Performs Al and A2 sequentially. 
Bindings produced by Al and At are accumulated. 

furthermore A Performs A. Bindings produced by A override the 
received bindings. 

Yielder Informal meaning 
the S The given transient datum labeled 0. It must be of sort S. 
the S#n The given transient datum labeled n. It must be of sort S. 
the S bound to k The datum currently bound to identifier k. 

It must be of sort S. 
the S stored in Y The datum currently contained in the cell yielded by Y. 

It must be of sort s 
abstraction A The abstraction that incorporates action A. 
closure Y The abstraction yielded by Y, with the current bindings 

supplied to the incorporated action. 
Yl with Y2 The abstraction yielded by Yl, with the transient datum 

yielded by Y2 given to the incorporated action. 
L 

Table 1: Action primitives. action cornbinators and yielders. 



Encoded is the action notation code generator. This translates the annotated 
action to C object code. 

Other modules are generated by ACTRESS from the formal description of a particular 
source language C: 

Parsec is a parser for C. This parser is generated using the standard parser 
generator, m l  yacc: 

parsec = mlyacc(syntaxc) (1) 

where syntaxc is a syntactic description of language C. 

Actc is an actioneer for C. This is a module that translates a parsed C program to 
the corresponding program action. This module is generated using the actioneer 
generator actgen: 

where semanticsc is an action-semantic description of language C. The action- 
eer generator treats the latter simply as a syntax-directed translation from C to 
action notation. 

Composition of the generated parser and actioneer for C with the action notation sort 
checker and code generator yields a compiler for language C: 

compilec = encodeA o checkd o actc o parsec (3) 

Finally, we have recently added a new module to ACTRESS: 

Trans  f ormA is the action transformer, which attempts to simplify a given action 
by applying action transformations. 

This module may be used to construct compilers that generate smaller and faster object 
code, at the expense of increased compilation time: 

compile',- = encodeA o trans f ormd o checkd o actc o parsec (4) 

4 Sorts 

4.1 Data Sorts in Standard Action Notation 

The theoretical foundation of action notation is Mosses' unified algebras [8]. This 
algebraic framework elegantly solves some of the problems that beset older algebraic 
frameworks, by the simple expedient of abandoning the usual sharp distinction between 
values and sorts. 



truth-value = false I true 

nothing 

(a) truth-values 

nothing 

(b) truth-values and naturals 

Figure 1 : Example sort hierarchies 

In a unified algebra, a sort is just a classification of individuals. No distinction is 
made between an individual and the singleton sort that classifies just that individual. 
Sorts are partially ordered by a subsort relation, '2'. The least sort, nothing, is the 
classification of no individuals. The join of two sorts, sl \ s2, is their least upper bound, 
and the meet of two sorts, sl & s2, is their greatest lower bound. The notation 'x : s' 
asserts that x is an individual and belongs to sort s. 

In Figure l(a), the universe of discourse consists of the truth values. The individuals 
are false and true. The sorts are nothing, false, true, and false 1 true. In this example, 
nothing and truth-value = false 1 true are the only proper sorts, i.e., sorts that are not 
individuals. The nodes of the graph represent the sorts (individuals being shaded black 
and proper sorts white); the edges of the graph represent the '2' relation. 

In Figure l(b), the universe of discourse consists of not only the truth values but 
also the natural numbers (individuals 0, 1 ,  2, . . . ). In this example there are many 
sorts, of which only a few are shown. Among the interesting proper sorts are 0 1 1 1 2, 
1 1 2 1 3 1 . . . (also known as positive-integer), 0 1 1 1 2 1 3 1 . . . (also known as 
natural), and truth-value 1 natural. There are also some less useful sorts, such as 
2 I true. 

One benefit of unified algebras is that operations may be defined uniformly over 
proper sorts as well as individuals. For example, the operation 'successor -' not only 
maps 0 to 1, 1 to 2, . . . ; it also maps 0 1 1 to 1 1 2, . . . , and positive-integer to 
naturaL2 

'Indeed, these infinite sorts are defined by the recursive equations positive-integer = successor 
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(data sorts) s ::= nothing 1 bi \ bs \ SC[S] 1 s 1 s \ s & s 1 datum 

(basic individuals) bi ::= false 1 true 1 0 1 1 1 2 1 . . . 

(basic sorts) bs ::= truth-value I integer 1 . . . 

(sort constructors) sc ::= list 1 cell 1 . . . 
Table 2: Syntax of data sorts in ACTRESS 

The operation 'list[-]' maps sorts of data to sorts of lists. For example, list[truth- 
value] is the sort of all lists of truth values, list[I] is the sort of all lists of ones3, 
list[natural] is the sort of all lists of natural numbers, and list[truth-value 1 natural] is 
the sort of all lists of truth values and natural numbers (a sort of heterogeneous lists). 

For nearly all practical purposes, we may view sorts as sets, nothing as the empty 
set, ':' as set membership, '5' as set inclusion, 'I' as set union, and '&' as set 
intersection. 

4.2 Data Sorts in ACTRESS Action Notation 

The action notation sort checker can deal only with finitely expressible sort terms. 
Therefore it restricts sort terms to those generated by the BNF grammar in Table 2. 

This class of sorts has the following useful properties [3]: 

The basic individuals are partitioned into a number of basic sorts, such that every 
basic individual belongs to a unique basic sort. Thus we can talk about the basic 
sort of a given basic individual. 

Individuals of constructed sorts are not expressible. This is because such in- 
dividuals are constructed using ordinary data operations, and the sort checker 
makes no attempt to evaluate such terms. For example, the individual list of 1 
and 2 might be represented by the term: concatenation of (list of 1, list of 2). 
The resulting individual value cannot be determined by the sort checker, without 
making use of the definition of concatenation. 

Every sort term can be reduced to a finite canonical sort term, which is of the 
form si 1 . . . 1 sn, where n > 0 and each S{ is either a basic individual or a basic 
sort or a sort constructor applied to a canonical sort term. In particular, '&' can 
always be eliminated. 

natural; natural = 0 1 positive-integer (disjoint). 
^ate that 'list[-]' maps an individual to a sort. 



There are algorithms to compute 'a; : s', 'sl < s2', and 'sl & s2', for arbitrary 
basic individuals x and arbitrary sort terms s, sl, s2. 

4.3 Action Sorts in Standard Action Notation 

In standard action notation, the sort action classifies all actions. A subsort of actions 
is characterised either by restricting its incomes (the data it may use), or by restricting 
its outcomes (e.g., whether it completes, fails, or diverges, and what data it passes out 
if it does complete), or by restricting both its incomes and its outcomes. For example: 
the sort 'action [using current bindings]' classifies actions that use the bindings 
propagated into them; the sort 'action [giving a value]' classifies actions that each 
gives a datum of sort value; the sort 'action [binding]' classifies actions that produce 
bindings; the sort 'action [storing]' classifies actions that effect changes in storage; 
and the sort 'action [binding] [using current bindings]' classifies actions that both 
use and produce bindings. 

4.4 Action Sorts in ACTRESS Action Notation 

The action notation sort checker is not concerned with all possible classifications of 
actions. For one thing, it cannot concern itself with whether an action may diverge or 
not4 Also, it does not concern itself with storage, for reasons to be explained shortly. 
It does concern itself with transients and bindings. 

The sort of a set of bindings may be represented by a record sort. For example, 
the record sort {x: integer, y: truth-value}, represents the fact that x is bound to an 
unknown datum of sort integer and y is bound to an unknown datum of sort truth- 
value. Other examples of record sorts are {x: integer, y: true}, where in this case 
y is known to be bound to true, and {x: 6, y: true}, where in this case both x and y 
are bound to known data. This notation is legitimate, because the individuals 6 and 
true are themselves sorts. It is also convenient, because the sort of a set of bindings 
informs us concisely which identifiers are bound to known data (those whose sorts are 
individuals) and which are bound to unknown data (those whose sorts are proper sorts). 

These record sorts are similar to the record types studied by Wand, Cardelli, Mitchell 
and others [5, 12, 131. The domain of each record sort must be known, i.e., there must 
be no variables ranging over the domain of a record sort. We can use record sorts to 
represent the sorts of bindings, during sort inference of a particular action, since the 
domain of each set of bindings (a set of identifiers) will be known statically. Similarly, 
we can use record sorts to represent the sorts of transients, since the domain of each 
set of transients (a set of labels) will also be known statically. However, we cannot use 
record sorts to represent the sorts of stores, since the domain of a store (a set of cells) 
will, in general, be determined only dynamically. 

41n other words, it cannot solve the halting problem! 



(sort schemes) ss ::= . . . \ 6 

(action sort schemes) as ::= ( t ,  b) Ã‡Ã‘ (t', b') \ nothing 

(yielder sort schemes) ys : := ( t  , b) -  ̂ss 

(fields) f ::= ss 1 absent 

(transients) t  --- . {Il:  fi, . . . 
t' ::= {11: f l y  . . . 

nothing 

(bindings) b  ::= {k l :  f l ,  ... , k n :  fn} [p17]  
b' ..- - -  {ki: ~ I S - - ^ :  fn}[p] 

Table 3: Syntax of action sorts in ACTRESS 

While record sorts can be used to specify the sorts of individual actions, they are 
not sufficient to describe sort inference over actions. For this, we need to extend the 
record sorts into record sort schemes. This extension follows the extension of record 
types into record schemes given in [13]. We extend the notation as follows. We extend 
sorts to sort schemes which include sort variables, denoted by 0, which range over 
sorts. Also, instead of mapping field names to sorts directly, record sort schemes map 
names to field schemes. A field scheme can be: a sort scheme, ss, indicating that the 
field is definitely present in the record sort scheme; absent, indicating that the field is 
definitely absent from the record scheme; or a field variable, A, giving no information 
about the presence or absence of the field. Finally, a record sort scheme may have a 
row variable ( p  or 7 )  affixed to it. Row variables are used to represent possible extra 
unknown fields. 

Combining these ideas with those of Even and Schmidt [7], we write the sort 
scheme of an action A as follows: 

A : ( t )  b) 'Ã‘> (t') b') (5)  

where t  and b  are the record sort schemes of the transients and bindings used by A, and 
where t' and b' are the record sort schemes of transients and bindings passed out of A 
(assuming that it completes). If an action is ill-sorted, we write A : nothing. 

More precisely, the action notation sort checker deals with action sort schemes 
generated by the BNF grammar in Table 3. Not specified are I (labels, used to identify 
transients) and k  (tokens, or identifiers). 

For example: 

bind "nS' to  7 : ( { } y l ,  {}74 - ({I, { n :  7 } )  

bind "nSS t o  the integer # I  : ( { I  : integer^, { } ^ }  Ã‡Ã‘ ({}, { n :  integer}) 



give s u m  (the integer #I ,  the integer #2) label #3 : 
({I : integer, 2:  integer}^^, {}ye) - ({3: integer}, {}) 

furthermore bind "x" to the integer bound to "y" : 
({}ys, {y: integer}^) - ({}, {x: integer, y: integer}^) 

Unlike Wand [13], we use two different classes of row variables. This reflects the 
different uses of the information given to an action. Firstly, any transients or bindings 
explicitly used within the body of an action appear explicitly in its sort scheme. 

The row variables 7, represent the sorts of any transients or bindings that are passed 
into actions but not used ('garbage'). Since no action is obliged to use all the transients 
or bindings passed into it, most actions have y-variables affixed to the t and b parts of 
their sorts. 

The row variables pi represent transients or bindings that are passed into actions 
but just propagated out of them. The action 'rebind' (which propagates the bindings 
it receives) is the simplest example of this. This action is polymorphic, and its sort 
contains a p-variable to reflect this polym~rphism.~ Actions derived from 'rebind', 
such as 'furthermore A', are also polymorphic. When writing a sort, we assume that 
all free variables are implicitly universally quantified. 

When a record sort scheme has a row variable affixed to it, the row variable may 
be instantiated to any record sort with a disjoint domain. For example, consider the 
following action sort: 

give the cell bound to "v" : ({}T~, {v:  ell}^^) - ({O: cell}, {}) 

In {v: cell}y2, therow variable y2 could be instantiated to {x: integer, y: truth-value}, 
representing the possibility that the action may receive (but ignores) bindings for x and 
y. There are, of course, many other possibilities. However, {v: integer} is not a 
possibility, because of the duplicate v field. In {}yl, the row variable y1 could be in- 
stantiated to any record sort scheme, representing the possibility that the above action 
may receive any transients (but ignores them). 

4.5 Abstraction Sorts in ACTRESS Action Notation 

An abstraction incorporates an action, which is performed whenever the abstraction 
is enacted. It follows that abstraction sorts are isomorphic to action sorts. Since 
abstractions are classified as data, we augment the data sorts of Table 2 with abstraction 
sorts: 

(data sorts) s ::= . . . 1 abstraction(t, 6 )  - (tf, bf) 

Compare the polymorphic function (Ax.x), whose type may be written r Ã‘Ã r, where r is a type 
variable. 



5 Sort Inference in Action Notation 

5.1 Sort Inference Rules 

Using the action sort notation introduced in Section 4.4, our next step is to write down 
sort inference rules for ACTRESS action notation. We use the following judgments for 
assigning sorts to actions A and yielders Y, respectively: 

Here Â is the sort environment, containing (among other things), sort information about 
constants such as false, true, truth-value, and integer, and about operations such as 
sum(-,_). 

The following are typical rules for basic actions and combinators: 

Â £ t A l : ( t l , b l ) ~ ( t ~ , b \ )  Â£ tA2: ( t2 ,b2 )+( t i , b2  
( A M D - m N )  Â t- Al and then A2 : 

(union ti t2,union bl 6 2 )  'Ã‘ (merge t i  tL  merge b\ b;) 

(combine ti t2,  combine bi b2) <Ã‘ (join ti  t& join bi b;) 

The auxiliary operation union unites two record sort schemes, taking the pairwise 
meet of any sorts associated with the same fields. For example: 

union{w: sl, X :  s2}p1 {x:  53, y: s4} = {w: sl,  X :  (s2 & s3), y: s4}p2, 
where pi is instantiated to {y :  s4}p2 

union{w: sl, X :  s2}p1 {x: 53, Y :  s ^p i  = {w: sl,  X :  (s2 & s3), y: s4}p3, 
where pl is instantiated to {y :  s4}p3, and p2 is instantiated to {w: s l } f3  

In these examples, if the sort 5 2  & s3 is nothing, then the action is ill-sorted. 
The auxiliary operation merge concatenates two record sort schemes, insisting that 

their domains are disjoint. For example: 

merge{w: s1}pl {x: s2, y: s3} = {w: si,  X :  s2, y: s3}p2, 
where pi is instantiated to {x:  absent, y: absent}p2 



merge{w: sl}pl {x: s2, y: s3}p2 = {w: sly X: 52, y: s3}p3, 
where pi is instantiated to {x: absent, y: absent}^, 
and p2 is instantiated to {w: absent}p3 

The auxiliary operations combine and join are peculiar to the (OR) rule, and reflect 
the fact that only one sub-action is performed by this combinator. The combine 
operation is similar to the union operation, except that it takes the pairwise join of any 
sorts associated with the same fields. For example: 

The join operation also forms the pairwise join of the sorts, but it insists on the 
domains of the record sorts being identical. Its use in rule (OR) enforces a deliberate 
restriction, that the transients and bindings passed out of the two sub-actions of 'or' 
must have identical domains - we forbid conditional transients and bindings. For 
example: 

The following are the most important rules that deal with bindings: 

& t Y : (t, b) -A S; s & bindable # nothing 
(BIND) & t bind k t o  Y : (t, b) w ( { }  {k: s & bindable}) 

s & 0 # nothing 
& I- the s bound to k : ({}fi, {k: O}yj) -A s & 0 

&I-Al:(t l ,bi)t- . (t[ ,b[);  Â£tA2:(t2,b2)-(tk7bk) b [=b2  
(HENCE) 

& t Al hence A2 : (union ti (2, 61) - (merge t\ t k  b'y) 

Rule (BIND) is straightforward. Rule (BOUND) infers that the yielder 'the s bound 
to k' expects to receive a binding of k to a datum of sort 0. Here 0 is a sort variable, 
which is to be instantiated to some actual sort that satisfies the stated constraint that 
s & 0 # nothing. The sort variable 0 will be instantiated to a particular sort, depending 
on the received bindings. For example, if 0 is instantiated to a subsort s' < s, then the 
yielder's result sort will be narrowed to s & s' = s'. (In the extreme case 0 might be 
instantiated to an individual, whereupon the yielder's result sort will be instantiated to 
that individual.) However, if 0 is instantiated to a supersort of s, then the inference rule 
indicates a place where a run-time sort check is required, since the datum bound to k 
might turn out at run-time not to be of sort s. 

In rule (HENCE), the antecedent 'b[ = 62' insists that the sort of bindings produced 
by Al be unified with the sort of bindings received by A2. For example: 

b[ = {x: 61, y: s2} and b2 = {x: sly y: s3}. These can be made equal by 
replacing both b[ and b2 by their meet, {x: 51, y: (52 & s3)}. If 5 2  & s3 = 
nothing, b[ and b2 cannot be made equal, therefore we have inferred that 'Al 
hence A2' is ill-sorted. 



To be concrete, if s2 = 7 and s3 = integer, then s2 & s3 = 7. In other words, 
having already inferred that A2 expects a binding of "y" to an unknown integer, 
we have now inferred from the context of A2 that the integer is, in fact, 7. 

Or if 5 2  = truth-value and s3 = integer, then s2 & s3 = nothing. In other words, 
Al binds "y" to a truth value, but As expects a binding of "y" to an integer. Clearly 
'Al hence As' is ill-sorted. 

bi = {x: s l ,  y: s2} and b2 = {x: si} .̂ These can be made equal by instantiat- 
ing 71 to {y: s2}. In other words, we have inferred that A2 receives a binding of 
"y" to a datum of sort 5 2  (which it ignores) as well as a binding of "x" to a datum 
of sort s1. 

b{ = {x: s l ,  y: s2} and bz = {x: s l ,  Z: s3}71. These cannot be made equal, 
however we instantiate 71. Therefore we have inferred that 'Al hence A2' is 
ill-sorted. 

The following rules show how we infer the sorts of 'unfolding' actions: 

[unfold : asu]Â t A : as; a s  = asu 
(UNFOLDING) 

Â I- unfolding A : a s  

[unfold : as]Â I- unfold : US 

We insist that, inside 'unfolding A', every occurrence of 'unfold' has the same 
sort asu, which can be unified with the sort as  of A itself. This restriction excludes 
polymorphic 'unfolding' actions6. However, it does not exclude the 'unfolding' 
actions that occur in practical situations, such as the semantics of loops in programming 
languages. 

The following are some of the rules that deal with abstractions: 

(ABSTRACTION) 
8 A0 : 00, &o) ̂  bo) 

& t abstraction A. : abstraction(to, bo) '--)Â (to, by) 

Â I- Y : (t, b) -> abstraction({}, {}) - (to, bo) 
(ENACT) 

Â I- enact Y : (t, b) - (to, bo) 

Â t Y : (t, b) -  ̂abstraction(to, bo) '-Ã (to, bo) 
(CLOSURE) Â t closure Y : (t, union b bo) -> abstraction(to, {}) 'Ã‘ (t'o, bo) 

(WITH) Â \- y-i : (t2, b2) 0 s2; to = {O: so}; so & s2 # nothing 
& I- Yi with Y2 : (union ti t2, union bl b2) -> abstraction({}, bo) c-̂  (to, bo) 

6For which sort inference is undecidable [l 11. 
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Rule (ABSTRACTION) shows the isomorphism between the sort of 'abstraction Ao' 
and the sort of the incorporated action Ao. Rule (ENACT) insists that the transients and 
bindings required by the abstraction's incorporated action are empty. Suppose that this 
is not the case, e.g., that the incorporated action expects to receive non-empty bindings; 
then the 'enact' action will fail, since this action does not itself supply any bindings 
to the incorporated action. (Only the 'closure' operation does so.) 

Rule (CLOSURE) infers the sort of bindings required to form the closure of an 
abstraction, principally the bindings bo required by the incorporated action (united with 
the bindings b required to evaluate Y). The sort of the resulting abstraction indicates 
that it requires no bindings (as required for use in an 'enact' action). 

Rule (WITH) is slightly more complicated. Firstly, the abstraction must receive a 
single transient datum labelled 0 (the antecedent to = {O: so}). Secondly, the sort 
so of this transient must be consistent with the sort 5 2  of the datum actually supplied 
(so & 5 2  # nothing). Again, the sort of the resulting abstraction is made to have empty 
input transients. 

Space does not permit us to present all the sort inference rules here. They are 
presented in full in [3]. 

5.2 Sort Inference Algorithm 

Our sort inference algorithm is based on the Even-Schmidt algorithm [7], but is 
improved in several important respects. Our algorithm achieves a greater measure of 
internal uniformity, by using record schemes for both transients and bindings. It infers 
exactly which transients and bindings an action uses, using ^-variables to represent 
transients and bindings passed to the action but not used. It infers action sorts more 
precisely, by using a more refined sort hierarchy (Figure 1). Not least, it handles a much 
larger and more representative subset of action notation, including choice, iteration, and 
abstractions, all of which are essential for writing useful action-semantic descriptions. 

Our algorithm consists of three passes. The first pass annotates the given action 
with record schemes, in accordance with the sort inference rules. The second pass uses 
reduces all sorts to canonical form, in particular, eliminating all occurrences of '&'. It 
also removes all field and row variables. Field variables are no longer required, and 
may be eliminated by instantiating them to absent, and then simplifying the record 
sorts. Row variables can be eliminated if it is assumed that no transients and bindings 
are passed to the program action. In effect, any p-variable at the top-level is instantiated 
to {}, and any 7-variables can be safely discarded7. The third pass marks places where 
run-time sort checks are required, replaces ill-sorted actions by 'fail', and simplifies 
the program action. 

7 ~ n  unusual form of 'garbage collection' ! 



5.3 An Example of Sort Inference 

Consider the following little program in a simple imperative language: 

let const b true; 
var x: int 

in while b do x := - x 

This would be mapped to the following program action: 

urthermore 
1 give true then bind " b  to the value 
before 
1 allocate a cell then bind "x" to the cell 

ience 
unfolding 

give the value bound to " b  or 
give the value stored in the cell bound to "b" 

then 
give the value bound to "x" or 
give the value stored in the cell bound to "x" 

then give negation (the integer) 
then store the value in the cell bound to "x" 

and then unfold 
else complete 

First consider the action on line 2. Application of rules (GIVE)' and (BIND) to the 
sub-actions gives: 

give true : ({}TI , { } 7 2 )  ^ ({o: true} { }) 
bind " b  to the value : ({O: O1}m {}y4) - ({}, {b: (value & 01})) 

Application of rule (THEN)' now forces unification of the first sub-action's outgoing 
transients record sort {O: true} with the second sub-action's incoming transients record 
sort {O: 01}y3. Thus the sort variable Ol is instantiated to true. The resulting sort 
assignments are: 

bind " b  to the value : ({O: true}y3, {}y4) - ({}, {b: true}) 
give true then bind " b  to the value : ({}yl, {}ys) += ({}, {b: true}) 

The action on line 4 is assigned the following sort: 

allocate a cell then bind "xy' to the cell : ({}ye, {}y7) c-̂  ({}, {x: cell}) 

8 ( ~ ~ ~ ~ )  is not shown in this paper, but is analogous to (BIND). 
'(THEN) also is not shown in this paper, but is analogous to (HENCE). 



and the 'before' action on lines 2-4 is assigned the following sort: 

. . . before . . . : ({}78, {}y9) - ({}, {b: true, x: cell}) 

Application of rules (BOUND), (STORED), and (GIVE) to the actions on lines 7 and 8 gives: 

give the value bound to " b  
: ({}710, {b: 02}711) ^ ({o: (02 value)}, {I) 

give the value stored in the cell bound to " b  
: ({}712, {b: 03}713) ^ ({o: (O4 & value)}, {I) 

subject to the constraints O2 &value # nothing, 6$ & cell # nothing, and e4 &value # 
nothing. Application of rule (OR) to the 'or' action on lines 7-8 now gives: 

give the value bound to " b  or 
give the value stored in the cell bound to " b  

: ({}714, {b: (02 I 03)}715) ^ ({o: (02 & value) 1 (O4 & value)}, { 1) 
Eventually, application of rule (HENCE) will instantiate the sort variables & and O3 to 
true. Thus the antecendent O3 &cell # nothing is not satisfied, and the action on line 8 
is ill-sorted. This action can be replaced by 'fail', and the identity 'A or fail = A' can 
be used to simplify the 'or' action to 'give the value bound to "b"'. 

A similar argument applies to the other 'or' action, on lines 10-1 1. Because of the 
binding x : cell, however, this 'or' action is simplified to 'give the value stored in 
the cell bound to "x"'. 

Finally, consider the sort inferred for the 'unfolding' action on lines 6-15. Initially, 
in the (UNFOLDING) rule, we take asu = ({}pi, {}p2) c-̂  ({}p3, {}p4), and proceed with 
sort inference of the sub-action. Rule (ELSE)" will cause p3 and p4 to be instantiated to 
{} when they are join-ed with the sort of complete: 

: ({}7l67 {}7l7) ^ ({I, {I) 
( . . . and then unfold) else complete : (. . . , . . .) '-> ({}, {}) 

The variables pl and p2 are instantiated when applying rule (AND-THEN). When the sort 
variables are also instantiated, {}pi and {}pi become {}7'8 and {b: true, c: ~ e l l } 7 ~ ~ ,  
respectively. The final sorts assigned to the actions are: 

unfolding . . . : ({}y18, {b: true, x: C ~ I I } ~ ~ ~ )  - ({}, {}) 
unfold : ({}718, {b: true, x: ~ e l l } 7 ~ ~ )  - ({}, {}) 

6 Related Work 

As well as the work described in this paper, sort inference for action notation is a central 
theme of the mainly theoretical work of Schmidt's group at Kansas State University 

"The 'else' combinator is related to the 'or' combinator, and has a similar rule. 
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[7, 61, and forms part of the more practical compiler-generation work of Palsberg at 
Aarhus University [lo]. 

In [7], Even and Schmidt study the sort properties of a small dialect of action nota- 
tion, and present a sort inference algorithm for this dialect. They assign 'kinds' as well 
as sorts to actions, and allow actions to be composed only if they are kind-compatible. 
(For example, they do not permit an action that produces bindings to be composed with 
an action that uses no bindings.) Their action sorts are based on record schemes, similar 
to those used in this paper. Their dialect of action notation is very small indeed: it lacks 
yielders, and it lacks some important combinators such as 'or' and '~nfolding ' .~~ A 
fundamental limitation is that they require abstractions to be already annotated by their 
sorts. Nevertheless, Even and Schmidt's work has strongly influenced our own. Our 
main contributions have been removal of the unnecessary 'kind' structure, extension to 
a more representative subset of action notation, proper treatment of abstractions, and 
formalisation of the sort inference algorithm by a complete set of inference rules [3]. 

In [6], Doh and Schmidt address a related problem in sort inference. On the as- 
sumption that the described language is statically typed, they show how to extract 
static type inference rules from the semantic equations of an action-semantic descrip- 
tion. We intend to develop this work and apply it to ACTRESS. At present, every 
ACTRESS-generated compiler includes the action notation sort checker, which is rather 
a sledgehammer to crack what might be a small nut (if the source language happens 
to have a simple type system). Instead, we aim to generate a language-specific sort 
checker from the action-semantic description.12 Also, we are currently studying how 
to infer (as opposed to just assuming) whether the source language is statically typed. 
ACTRESS will not restrict the source language, however. It will continue to accept 
semantic descriptions of both dynamically-typed and statically-typed languages, but 
will recognise the latter special case and exploit it to generate compilers that avoid 
generating run-time sort checks.13 

Palsberg's compiler generation system CANTOR [lo] takes a pragmatic approach to 
sort inference (which is not a central part of his work). His sort-checker assumes that, 
for each action and sub-action A, the sorts of the transients and bindings passed into 
A are initially known, and uses these to infer the sorts of the transients and bindings 
passed out of A. His algorithm is consequently much simpler than ours, avoiding the 
heavy machinery of row variables, record schemes, unification, and so on. However, 
when A is the sub-action of 'unfolding', or the body of an abstraction, the sorts of the 
transients and bindings passed into A are not initially known. In these cases Palsberg's 
sort-checker resorts to ad hoc means to continue. 

llHowever, their methods can be extended to remove some of these limitations 1111. 
"An alternative approach would be to generate a conventional type-checker from the language's 

static-semantic description. Of itself this would be straightforward, but there would be no guarantee 
that the given static semantics is sound with respect to the language's dynamic semantics. 

13Analogously, ACTRESS will continue to accept both dynamically-scoped and statically-scoped lan- 
guages, but will recognise the latter special case and exploit it to generate compilers that avoid generating 
code to manipulate bindings at run-time [9]. 



Recently, Aiken et al. [I, 21 have applied type inference with type constraints to 
the problem of analysing a dynamically-typed A-calculus to identify the places where 
run-time type checks are necessary. The type system they use has several features in 
common with the sort system of action notation: individuals as types, subtypes, and 
intersection and union of types, They also have conditional types, and their algorithm, 
instead of relying on unification, builds and solves a system of constraints of the form 
Ti < Tj, where and rj are certain kinds of types. 

7 Conclusion 

In this paper, we aimed to show that sort inference in action notation is a difficult 
problem. In fact, for the unrestricted notation, sort inference is undecidable. However, 
we believe that the sort inference performed within the ACTRESS compiler generator 
provides one of the most sophisticated analyses of action notation to date. Indeed, 
ACTRESS remains unique in its ability to handle actions requiring runtime sort checks. 
However, we also recognise that better performance could be obtained by generating 
a language-specific sort checker, using information gained from analysing the action 
semantics specification of the language. We are currently investigating how our analysis 
of actions can be extended to deal with an entire specification, and also what properties 
of the language may be apparent from such an analysis. In particular, we are interested 
in guaranteeing the absence of runtime sort checks for any program in the specified 
language. 
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Abstract 

Action Semantics is a new and interesting foundation for semantics based compiler 
generation. In this paper we present several analyses of actions, and apply them in a 
compiler generator capable of generating efficient, optimizing compilers for procedural and 
functional languages with higher order recursive functions. The automatically generated 
compilers produce code that is comparable with code produced by handwritten compilers. 

1 Introduction 

Semantics based compiler generation has long been a goal in computer science. Automatic 
generation of compilers from semantic descriptions of programming languages relieves pro- 
grammers and language theorists from much of the burden of writing compilers. 

We describe the OASIS (Optimizing Action-based Semantic Implementation System) com- 
piler generator, and especially the analyses that provide the information enabling the code 
generator to produce good quality code. 

The generated compilers expand a given abstract syntax tree to the equivalent action by way 
of the action semantics for the language. All analyses are applied to the expanded action. The 
system is capable of generating compilers for procedural, functional (lazy and eager) and object 
oriented languages. After analysis, the action is translated to native SPARC code. For further 
details, see [18]. 

A short introduction to Action Notation is given first, and in the following section we describe 
a type-checker for actions, whose raison d'etre is to allow us to dispense with all run-time type 
checks. 

We then proceed to describe the various analyses that are carried out on the type checked 
action. Most of the analyses are set up in an abstract interpretation framework. The analyses 
annotate the action with approximate information about its run-time behavior. 

The results of the analyses are used by a code generator, generating code for the SPARC 
processor. The code generator also employs a couple of optimization techniques on its own, 
namely a storage cache used to avoid dummy stores and reloads, and a peephole optimizer 
responsible for filling delayslots and removing no-op code. 

*This work was partially funded by BRICS at the Comp. Sci. Dept. of Aarhus University. This article also 
appears in the CC'94 proceedings, volume 786 of LNCS, all references should point to that article. 



Finally we compare the performance of the generated compilers for a procedural and a 
functional language with handwritten compilers for similar languages, and relate our results to 
previous approaches to compiler generation. 

The results are very encouraging as our automatically generated compilers emit code that 
performs within a factor 2 of code produced by handwritten compilers. This is a major perfor- 
mance enhancement in relation to earlier approaches to compiler generation based on Action 
Semantics [20, 19,3], as well as compared to other semantics based compiler generators. 

2 Action Notation 

Action Semantics is a formalism for the description of the dynamic semantics of programming 
languages, developed by Mosses and Watt [17]. Based on an order-sorted algebraic framework, 
an action semantic description of a programming language specifies a translation from abstract 
terms of the source language to Action Notation. 

Action Notation is designed to allow comprehensible and accessible semantic descriptions of 
programming languages; readability and modularity are emphasized over conciseness. Action 
semantic descriptions scale up well, and considerable reuse of descriptions is possible among 
related languages. An informal introduction to Action Notation, as well as the formal semantics 
of the notation, can be found in [17]. 

The semantics of Action Notation is itself defined by a structural operational semantics, and 
actions reflect the gradual, stepwise, execution of programs. The performance of an action can 
terminate in one of three ways: It may complete, indicating normal termination; it may fail, to 
indicate the abortion of the current alternative; or it may escape, corresponding to exceptional 
termination which may trapped. Finally, the performance of an action may diverge, ie. end up 
in an infinite loop. 

Actions may be classified according to which facet of Action Notation they belong. There 
are five facets: 

the basic facet, dealing with control flow regardless of data. 

0 the functional facet, processing transient information, actions are given and give data. 

the declarative facet, dealing with bindings (scoped information), actions receive and 
produce bindings. 

the imperative facet, dealing with loads and stores in memory (stable information), actions 
may reserve and unreserve cells of the storage, and change the contents of the cells. 

the communicative facet, processingpermanent information, actions may send and receive 
messages communicated between processes. 

In general, imperative and communicative actions actions are committing, which prevents 
backtracking to alternative actions on failure. There are also hybrid actions that deal with more 
than one facet. Below are some example action constructs: 

'complete': the simplest action. Unconditionally completes, gives no data and produces 
no bindings. Not committing. 



'Al and A2': a basic action construct. Each sub-action is given the same data as the 
combined action, and each receives the same bindings as the combined construct. The 
data given by the two sub-actions is tupled to form the data given by the combined 
action, (the construct is said to be functionally conducting). The performance of the two 
sub-actions may be interleaved. 

'Ai or A2': a basic action construct, represents non-deterministic choice between the 
two sub-actions. Either A1 or A2 is performed. If Al fails without committing A2 is 
performed, and vice versa. 

'store Yl in Y2': an imperative action. Evaluates the yielder Y\ and stores the result in 
the cell yielded by Y2. Commits and completes when Y\ evaluates to a storable and & 
evaluates to a cell. 

An action term consists of constructs from two syntactic categories, there are action con- 
structs like those described above, and there are yielders that we will describe below. Yielders 
may be evaluated in one step to yield a value. Below are a few example yielders: 

'sum(Yi, Y2)': evaluates the yielders Y\ and and forms the sum of the two numbers. 

'the given D#n': picks out the n'th element of the tuple of data given to the containing 
action. Yields the empty sort nothing unless the n'th item of the given data is of sort D. 

'the D stored in Y': provided that Y yields a cell, it yields the intersection of the contents 
of that cell and the sort D. 

As an example we give below an action semantics for a simple call-by-value A-calculus with 
constants. 

2.1 Abstract Syntax 

needs: Numbers/Integers(integer) , Strings(string) . 

grammar: 

(1) Expr = 5 "lambda" Var "." Expr I] 1 ff Expr "(" Expr ")" j 1 
[ Expr "+" Expr j 1 integer 1 Var . 

(2) Var = string . 

2.2 Semantic Functions 

includes: Abstract Syntax . 

introduces: evaluate _ . 

evaluate _ :: Expr Ã‘ action . 

(1) evaluate /:integer = give I . 
(2) evaluate V:Var = give the datum bound to V . 



(3) evaluate [ "lambda" V:Var "." E:Expr ] = 
give the closure abstraction of 

furthermore bind V to the given datum#1 
hence evaluate E . 

(4) evaluate [ El :Expr "(" E2:Expr ")" I] = 
1 evaluate El and evaluate E2 
then enact application the given abstraction#l to the given datum#2 . 

(5) evaluate [[ Ei:Expr "+" E2:Expr I] = 
1 evaluate El and evaluate E2 
then give the sum of them . 

2.3 Semantic Entities 

includes: Action Notation . 

datum = abstraction 1 integer 1 a . 

bindable = datum . 

token = string . 

Type Checking 

The main purpose of the type-checker for action notation is to eliminate the need for run-time 
type-checking. If we hope to gain a run-time performance comparable to traditional compiled 
languages such as C and Pascal, we need to eliminate run-time type-checks, otherwise values 
would have to carry tags around identifying their type, and we would immediately suffer the 
penalty of having to load and store the tags as well as the actual values. We are thus lead to 
choose a wholly static type system. 

Our type-checker is related to the one given by Palsberg in [20], but our type-checker is also 
capable of handing unfoldings that are not tail-recursive. This imposes some problems, since 
fixpoints have to be computed in the type lattice. Like Palsberg's type-checker, our type-checker 
can be viewed as an abstract interpretation of the action over the type lattice. 

The type-checker has been proved safe with respect to the structural operational semantics 
of a small subset of Action Notation [18], but we will not go into details about the proof here, 
we just give the structure of the proof. It should be straightforward, but tedious, to extend the 
proof to the larger subset accepted by OASIS. 

First a type inference system for a small subset of Action Notation is defined. It is shown 
that the inference system has the Subject Reduction property with respect to the operational 
semantics of Action Notation. Second, the type checking algorithm is proved sound with respect 
to the inference system. Finally subject reduction and soundness are combined to prove the 
safety of the type checker. Below we state the main safety result: 

The type-checker is safe in the sense that, i f  the type-checker infers a certain type for 
the outcome of an action then, when that action is actually performed, the outcome 
indeed has the inferred type. 



As a corollary to the safety property, we have proved that all run-time type-checks can be 
omitted. 

4 Analyses 

The main reason for the good run-times that we are able to achieve for the produced code, is the 
analyses that we apply to the action generated from the semantics. The analyses consist of the 
following stages: 

forward analysis, incorporating constant analysis, constant propagation, commitment 
analysis and termination analysis. 

backwards flow analysis, used to shorten the lifetime of registers. 

heap analysis, determines which frames can be allocated on the stack, and which need to 
be allocated on the heap. 

tail-recursion detection, checking whether unfoldings are tail-recursive or not. 

4.1 Forward Flow Analysis 

The forward flow analysis is essentially an abstract interpretation of the action over a product 
of several complete lattices. The various parts of the analysis are interleaved in order to obtain 
better results than would be possible had the analyses been done one after the other. 

The forward analyses can be divided up into the following parts: 

constant analysis, determines whether bound values are static or dynamic. 

constant propagation and folding, propagates constants and folds expressions with 
constant arguments into constants. 

commitment analysis, approximates the commitment nature of the action. 

termination analysis, approximates the termination mode of the action. 

All of the analyses are set up in an abstract interpretation framework [5]. They are all 
essentially intra-procedural, so each abstraction is not analyzed in relation of all of its enactions 
(calls). 

Constant propagation and folding is a well-known technique often used in compilers to 
reduce constant expressions to constants. There is nothing special about our constant propagation 
technique for actions. For example if the two arguments propagated to a "sum" yielder are 
constant, the sum is folded into a constant at compile time, and propagated further as a constant. 
The other parts of the forward analysis are more interesting. 



4.1.1 Constant Analysis 

Since the constant analysis is integrated with the constant propagation, we use the following 
lattice of abstract values for this part of the analysis: 

SD = ({(Static, v), Dynamic}, <) 

where for all values v : (Static, v) < Dynamic. 
The above lattice differs from the traditional lattice used in binding time analyses (eg. in 

[I]) by incorporating the statically known value with the Static tag. This only buys us a 
marginal benefit, but it is simply the obvious thing to do when the constant analysis and constant 
propagation are integrated. 

A binding of a constant (Static) value need not have space allocated in the frame of the 
enclosing abstraction, as the bound value can be inserted statically wherever it is referenced. 
Bindings of dynamic values are associated with a cell (a memory location) in the relevant frame, 
and when a value is bound at run-time, it is stored in the cell, and it is retrieved from that cell 
whenever the bound value is referenced. 

Arguments to abstractions are assumed to be dynamic. We do not attempt to do inter- 
procedural constant analysis. The need for such an analysis is not too great for ordinary 
imperative languages, where fewer and larger procedural abstractions dominate. Also, an intra- 
procedural analysis can be done more efficiently. We avoid the compile-time performance 
problems often associated with inter-procedural abstract interpretations. 

Likewise, the analysis assumes that the contents of memory cells are dynamic. All loads and 
stores in Action Notation go through pointers, and storing a value to wherever a dynamic pointer 
points may over-write the contents of any cell of the same type. This problem with dynamic 
pointers is usually known as aliasing problems in traditional compilers. Since the performance 
of sub-actions may be interleaved, it is hard to guarantee that the contents of a cell has not been 
over-written by an unknown value at any given point of the performance. 

4.1.2 Commitment Analysis 

Actions may or may not commit. If an action commits it means that it has made some irreversible 
change to the state of the machine, such as having stored a value in a cell or having sent a message 
to another process. 

We are interested in knowing whether an action may commit and subsequently fail (ie. err) 
within an "Ai or A T  construct. If this is the case, the "or" can't trap the failure, a run-time error 
should be indicated and the program stopped (in the absence of commitment, an alternative 
action may be performed). In the CANTOR system [20, 191, a significant amount of run-time 
is used to check for such committed failures. Our analysis is able to statically determine the 
possibility of committed failures in most cases, thus much fewer run-time checks need to be 
inserted. The lattice used by the commitment analysis looks like this: 

may-err 
I 

may-commit 

never -commitffilways-commi t s v 



Commitment of ground actions such as "store Y1 in Y? is determined by the type checker. 
Commitment of combined actions such as "Ai and A2" is determined by commitment of the 
sub-actions and the results of the termination analysis on the sub-actions. For unfoldings a fixed 
point is computed. 

4.1.3 Termination Analysis 

The termination analysis computes approximate knowledge about the termination mode of sub- 
actions. There are many benefits to be drawn from such knowledge. For example, suppose we 
have the action "A, then AT.  If the termination analysis is able to guarantee that the sub-action 
Al always fails, no code need to be generated for A2! 

The termination analysis abstractly interprets the action over the power-set of the four 
possible termination modes (complete, fail, escape and diverge) ordered by subset inclusion: 

CFED = (P{AC, AF, AE, AD}, C) 

The termination mode of ground actions is determined by the type checker and influenced 
by the propagated constants. The termination mode of combined actions is determined by the 
termination mode of the sub-actions. 

The termination- and commitment analyses have been formally specified in [18], although 
soundness still remains to be proven. 

4.2 Backwards Analysis 

The backwards analysis is used to shorten the lifetime of transient values. This analysis traces 
the data-flow backwards and increases counters in the abstract compile-time representations of 
values each time such values are used, ie. stored to memory, written to standard output or passed 
as parameters to an abstraction. 

During code generation, the same counters are decreased at each point of usage and when the 
counter reaches zero, the register holding the value can safely be discarded for eventual re-use. 
This analysis is similar to the computation of live variables in traditional optimizing compilers. 

4.3 Heap Analysis 

Since abstractions are first class values in action notation, they can be given as transient data, 
returned from abstractions and stored in memory. As we deal with statically scoped languages, 
we need to provide abstractions with their correct static environment when they are enacted 
(called). 

In traditional languages with first class abstractions, such as Scheme, all frames (or activation 
records) are typically allocated on the heap and it is up to a garbage collector to release the 
associated memory when it is no longer used. In order to avoid spending lots of time doing 
garbage collection, and to avoid heap allocated frames for programs in traditional imperative 
languages such as Pascal, we employ the heap analysis1. The heap analysis is yet another 
abstract interpretation of the action, this time over the following domain: 

OP({SA, PC}), C) 
'This analysis was initially called closure analysis for obvious reasons, but that term has a more specific and 

different meaning in Copenhagen, so it was renamed. 



The analysis traverses the action and marks each abstraction with an element from the above 
domain as explained in the following: 

SA stands for stores abstraction, it means that the abstraction may store, give, or escape with 
an abstraction, ie. an abstraction may leak out of scope. PC stands forprovides closure, it means 
that the abstraction provides (part of) the closure for another abstraction, ie. it has a syntactically 
nested abstraction. Only if an abstraction is marked {SA, PC} need the corresponding frame be 
allocated on the heap. Note that the top-most or global frame can always be allocated on the 
stack as it will exist until the program terminates. 

Thanks to this analysis, an action semantics for full Pascal will never give rise to code 
needing heap allocated closures, as it is impossible for a procedure in Pascal to leak out of 
scope. 

4.4 Tail Recursion 

In order to implement standard while loops efficiently by the "unfolding" construct, we need 
to be able to detect tail-recursive unfoldings, so as not to incur the overhead of a procedure 
call for each iteration of the loop. The action semantic equation for a while construct would 
typically look something like: 

execute [ "while" ̂ Expression "do" ̂ Statements 1 = 
evaluate E then 

unfolding 
1 check the given truth-value then execute S then unfold 
or 
1 check not the given truth-value . 

In full generality, "unfold" may cause a recursive call. The tail-recursion detector traverses 
the body of the unfolding and marks "unfolds" as tail-recursive or recursive depending on 
whether any part of the loop-body may be executed after the "unfold". If there is just one 
recursive "unfold" in the body of a loop, then all "unfolds" in that loop are treated as recursive. 

5 Code Generation 

The code generator generates assembly code for the SPARC processor from the action tree 
annotated by the preceding analyses. The assembly code is generated in one pass, and registers 
are allocated on an as-needed basis. 

As much of the code generator as possible is kept machine-independent, to facilitate easy 
porting of the code generator to other RISC processors. One machine-independent part of the 
code generator is the storage cache. It serves the purpose of minimizing the number of load 
and store operations in basic blocks. When a value is loaded from a known memory location 
into a register, an association between the register and the location is kept, such that a later load 
from the same address can be coded as a cheap register copy. Storing the contents of a register 
in a known memory location keeps the association between the location and the register in the 
same way, and the actual store is delayed until the last possible moment within the same basic 
block to avoid two stores to the same location just after each other. (This may not be entirely 
beneficial on a RISC architecture, where loads and stores should be spread out, but it was easier 
to implement than a full graph-coloring register allocation algorithm). 



A machine-dependent part of the code generator is the peephole optimizer. A peephole 
optimizer is a traditional optimization technique, that is often used to remove dummy instruction 
sequences and to simplify instructions. Our peephole optimizer does not attempt to eliminate 
all dummy instructions, but is geared towards fixing deficiencies in the code generated by our 
specific code generator. 

The code generator is pretty intricate, as there are lots of special cases to consider when one 
tries to generate good code for a realistic machine such as the SPARC. Perhaps a code generator 
generator such as iBurg [8] could be used clean this up. 

6 Overview 

The action compiler and compiler generator consists of many parts written in different languages2. 
This section gives an overview of the different parts and their interaction. 

The compiler generator (gencomp) takes an action semantics written as a Scheme [4] 
program, and produces a compiler written in Perl [24]. Scheme was chosen because it was easy 
to implement a few macros in Scheme that make it painless to write a semantics using Scheme 
syntax. Also, it was felt that not too much time should be spent on this part of the compiler 
generator, as work is in progress that will make it possible to write action semantics in the 
ASF+SDF system [l 11. 

The generated compiler driver (or front-end) is written in Perl for ease of implementation. 
The driver parses command-line options, calls the different parts of the compiler and takes care 
of cleaning up if something goes wrong, such as a syntax error in the given program etc. 

The compiler takes a textual representation of an abstract syntax tree (AST) for a program in 
the source language, and produces, if all goes well, executable code for the SPARC processor. 
The AST could easily be produced by, say, a YACC or Bison generated parser for the source 
language. 

The first step of the compiler is to massage the input AST into something resembling a 
Scheme program, and combine it with the Scheme representation of the semantics for the source 
language. 

The second step runs a Scheme interpreter on the semantics and the munged program, and 
writes a textual representation of the action corresponding to the program to a file. Currently, 
the free s c m  implementation of the Scheme standard [4] is used. 

Step three runs the action compiler on the produced action, and produces assembly code for 
the SPARC processor. This is the major step of the process. The action compiler consists of 
approximately 10,000 lines of C++ code [21], plus a lexical analyzer generated by Flex and an 
action parser generated by Bison. 

The fourth step of the compiler assembles the output from the action compiler and links the 
object module with a small run-time support library providing primitive input/output routines. 
The run-time library is written in traditional C [lo]. 

The produced object program reads from standard input and writes to standard output. 

2 ~ h e  OASIS system is available by anonymous ftp from f tp. daimi. aau. dk in the directory 
/pub/action/systems/ 



7 Comparisons 

Here we compare the performance of our compiler generator with handwritten compilers and 
other approaches to compiler generation. We consider two example languages: HypoPL and 
FunImp. 

The procedural language HypoPL contains integers, booleans, arrays, the usual control 
structures (while-loops and conditionals) and generally nested procedures. The syntax and 
semantics for HypoPL can be found in [12, 19, 181. The functional (eager) language FunImp 
contains higher order recursive functions as well as mutable data. The syntax and semantics for 
FunImp is derived from the language considered in [22], and is defined in [I 81. 

All our timings, except for the run-times of the generated code, are made on an ordinary 
33 MHz 386-based PC with 20 MB RAM, running the Linux operating system (version 0.99). 
The generated SPARC code was run on a Sun Microsystems SparcStation ELC running SunOS 
4.1.1. 

Generating a compiler for Lee's HypoPL language [12, 131 takes 0.8 seconds. Using the 
generated compiler to compile the HypoPL bubblesort program takes 3.9 seconds. As explained 
in a previous section, this involves running the Per1 interpreter, the Scheme interpreter and 
the action compiler, and the result is an assembly file suitable for the SPARC assembler. The 
assembly code consists of roughly 250 instructions, ie. 1000 bytes when assembled. 

Comparing these figures with what Palsberg obtained with the CANTOR system [20, 191 
shows that the compilers we generate are two orders of magnitude faster than his, and that the 
code size is also two orders of magnitude smaller than his. It should be noted that Palsberg's 
tests were also run on a Sun SparcStation ELC. 

The tables below show some results from using the generated HypoPL compiler to compile 
some example programs (the same programs as used in [20, 191): 

bubble: A bubblesort program, bubblesorts 500 integers. 

sieve: The sieve of Eratosthenes, finds all primes below 512, repeated 400 times. 

euclid: Euclid's method of finding the greatest common divisor of two numbers (1023 
and 37), repeated 30,000 times. 

fib: Computes the 46'th Fibonacci number 10,000 times. (The 46'th number in the series 
is the largest that will fit in a 32 bit twos complement integer.) 

The table below lists the compile times of various programs. The first column lists the time 
it takes to compile the HypoPL program to assembly, the second column lists the time it takes 
to compile the action generated from the HypoPL program, and the last column lists the time it 
takes to compile an equivalent C program with optimization turned on. All times are in seconds. 

sieve 
euclid 
fib 

Program 
bubble 

HypoPL 
3.9 

Action 
0.9 

C-opt 
0.6 



The figures above indicate that something could be gained by integrating the processing of 
the semantic functions with the action compiler, instead of relying on a Scheme interpreter to 
expand the program to an action. 

The generated HypoPL compiler is on average 6.5 times slower than the hand-written C 
compiler. Much of this slowdown stems from the Scheme interpreter. The action compiler 
itself compiles an action within a factor two of the time it takes to compile the equivalent C 
program. This is what one would expect, as the action is at least twice as large (textually) as the 
corresponding C program. 

The "code size" column in the table below is a simple line count of the generated assembly 
files. The actual number of instructions is smaller because of a little overhead, such as assembler 
directives, labels and so forth. All times are in seconds. The fourth column gives the run-time 
for an equivalent program written in C and compiled with the GNU C compiler (gcc 2 . 4  .3) .  
The last column states the run-time for the C program compiled with full optimization turned 
on. 

1 Program I Code size I Run-time I C-runtime I C-opt 1 
I bubble 

I 

254 1 0.4 1 0.4 i 0 2  1 

The above table shows that the run-times for all four programs are within a factor 1.7 of 
code generated by a hand-written C compiler. If we let the C compiler do its best at optimizing 
the program, our code is still at most 4 times slower. The main reason why our code is so much 
slower than optimized C code is the lack of a global register allocator. Another reason is that 
HypoPL allows general nesting of procedures, something that C doesn't. This has an impact 
on performance, since a HypoPL compiler (in the absence of a corresponding analysis) cannot 
take the same shortcuts as a C compiler can when accessing variables. 

Unrolling the sieve program a number of times, to obtain a source program ten times as 
large (539 lines) yield compile times (19 seconds) about ten times longer than for the small 
program (2 seconds), as one would expect, since the analyses are of linear complexity. Keeping 
the actual amount of computation constant, we get the same run-times for the small and large 
program. The code size scales linearly too, of course. 

The figures show that code generated with the OASIS system is about two orders of magnitude 
faster than code generated with the CANTOR system 

sieve 
euclid 
fib 

7.1 FUNIMP versus s cm 

Here we make a performance comparison between Scheme and the generated FUNIMP compiler. 
The example program is a recursive Fibonacci function. 

The first column below shows the number of seconds it takes to compute the result in 
interpreted Scheme, the second column is for the Scheme program compiled to C and then 
to machine code by the Hobbit [23] compiler. The last column shows the run-time for the 
OASIS-compiled FUNIMP program. Again our results are within a factor two of a hand-written 
compiler. 

211 
144 
93 

1.2 
2.1 
0.8 

0.7 
1.4 
0.7 

0.3 
0.7 
0.5 



1 s c m  I Compiled Scheme 1 FUNIMP 1 

The main difference between the code we generate for f i b  and the code that HobbitJC 
generates, is that our implementation of the conditional is less than optimal, due to the symmetric 
nature of the "or" action construct and our non-optimal implementation of the "check" construct. 
Our code actually computes the truth value, whereas C need only test the condition. Comparing 
against an optimized, equivalent hand-written C program, shows that our code is about 3 times 
slower. 

7.2 Lee and Pleban 

Comparing performance against Lee's system [12, 131 is difficult since it ran on much slower 
hardware than what is available today. Comparing the time that it took for that system to compile 
a HypoPL program to the time it takes for OASIS on more modem hardware would be unfair. 
Also, traditional compiler technology has improved since his comparisons with the traditional 
compilers of then, making a comparison based on those relative figures difficult. 

Lee's system is based on High Level Semantics, where the static semantics is separated 
from the dynamic semantics, and he explicitly gives a so-called micro semantics tailored for 
the processor. Giving a new micro-semantics in his system would equal writing a new code 
generator part to the action compiler. If one were to write a micro-semantics targeting the 
SPARC processor, then it would be realistic to assume that code produced by a HypoPL 
compiler generated from the high level semantics system could be as good as the code produced 
by a HypoPL compiler generated by the OASIS system. 

However, it seems that all optimizations in Lee's system happens at the micro-semantic 
level, hence a new micro semantics will be difficult to write. 

7.3 Kelsey and Hudak 

In [9] Kelsey and Hudak describe their compiler generator based on denotational semantics. 
In their system one writes denotational descriptions of languages in a variant of Scheme, and 
the system then performs several transformations on the resulting Scheme program, eventually 
arriving at assembly code for the Motorola 68020 processor. 

They evaluate the performance of their system by comparing code produced by a generated 
Pascal compiler with code produced by the standard Pascal compiler on the Apollo workstation 
they used. The quality of the produced code is as good as what the standard Pascal compiler can 
generate, all performance figures lie within a factor 1.5 of the Pascal-generated code. Assuming 
that the standard Pascal compiler on the Apollo is comparable to a standard C compiler, one 
will have to say that the performance of their system is on a par with the OASIS system. 

Apart from being based on denotational semantics, the main difference between their system 
and OASIS, is that their system transforms the meta-language (Scheme) until they reach some- 
thing that is close enough to assembly to warrant a mechanical substitution from Scheme terms 
to assembly code. In OASIS the meta-language (Action Notation) is not transformed, but merely 
annotated by the various phases of analysis, and then ultimately an intricate code generator is 
invoked to generate assembly. 



7.4 Bondorf and Palsberg 

Using the same subset of Action Notation as in [20], Bondorf and Palsberg in [2] present another 
compiler generator based on Action Semantics. The compiler generator partially evaluates a 
Scheme representation of the action generated from the semantics. The generated compilers are 
compared with compilers generated by the CANTOR system. In comparison with the CANTOR 
system, run-times of the produced Scheme code are improved by at most a factor of 4, including 
a hypothetical factor 5 that the authors think they would achieve, had they used a Scheme 
compiler instead of an interpreter. Since the produced object code from the OASIS system is two 
orders of magnitude faster than what the CANTOR generated compilers produce, our system is 
clearly superior to this partial evaluation approach to compiler generation. 

7.5 Actress 

Comparing performance against the ACTRESS system is difficult since only one small test 
program with timings is given in [3]. For the system that they had implemented at the time, 
they write that the code they produce (C code) is 69 times slower than the equivalent Pascal 
program compiled with a standard compiler. This is certainly slower than our system. With 
certain mechanical optimizations, that were not implemented at the time of their article, they 
improve performance to within a factor two of the Pascal compiler. No timings are given for 
how long it takes to compile a program with the generated compilers. 

The Actress approach to action compilation is closer to the approach by Kelsey and Hudak 
than it is to ours, in that they transform the action generated by the semantics to gain better 
run-times. 

Concluding Remarks and Future Work 

We have described several analyses based on Action Semantics, and have shown how they can be 
applied in a compiler generator capable of generating compilers that produce code comparable 
to code produced by handwritten compilers for similar languages. 

Even though Action Semantics was developed from a semantic perspective without regard 
for compilability and run-time efficiency, we have demonstrated that efficient compilers can be 
automatically generated from Action Semantic descriptions. 

However, there are various shortcomings of the current version of the system. The type 
system is probably too strict, and some sort of type inference like the system by Even and 
Schmidt [7] would be an advantage, if it could be modified in a way that would allow us to 
dispense with - most or all - run-time type checks. Moreover, many useful data-types are not 
easily expressible in the system, such as lists and records. Again the type system would have to 
be extended to cater for them. 

There is still ample room for improvements of the code quality. The contents of memory 
cells should be tracked, and loop optimizations such as strength reduction could be applied. One 
possible way to obtain better code would be to transform the action tree to some other internal 
form better suited for low level optimizations, such as RTL (Register Transfer Language) [16,15] 
or structured RTL [14]. 

A few experiments have been made with the specification and generation of compilers 
for object oriented languages. A small language with classes, objects, block structure and 



inheritance has been specified and a compiler has been generated. We simply employ the ability 
of OASIS to handle higher order abstractions to model objects and methods. However, the 
current system is not capable of resolving non-virtual method-calls at compile time, as further 
analysis would be needed to accomplish that. 

Work is currently going on to formally specify the various analyses described in this paper, 
and to prove their safety with respect to the operational semantics of Action Notation. 

Further work could go in the direction of using the results of analyses on actions to say 
something about the source program. It would also be useful to analyze the semantic equations 
themselves (akin to the work by Doh and Schmidt [6]), this could perhaps cut down on the time 
it takes to compile actions to assembly. Generally it would be advantageous to analyze as much 
as possible in the compiler generation phase, as opposedthe compilation phase. Typically one 
will apply the generated compilers more often that the compiler generator. 
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Towards Partial Evaluation of Actions 
(Abstract with Appendix) 

Kyung-Goo Doh 
The University of Aizu* 

Abstract 

Partial evaluation technique has been proven to be useful in many aspects 
in computing, e.g., program transformation, compiler generation, etc. In this 
paper, we present an action tranformation technique based on partial evalua- 
tion. A binding-time analysis transforms a program action into an equivalent 
two-level action, annotated either "static" or "dynamic". Then the two-level 
action is partially evaluated (reduced) to a residual action by blindly following 
annotation. 

Appendix 

Action transformation by partial evaluation is described in inference rule format. 
The syntax and semantics of action notation are given in Figures 1-4, and the syntax 
of some two-level action notation is shown in Figure 5. Partial evaluation is done 
in 2 stages: (1) binding-time analysis transforms an action into an quivalent two- 
level action by annotating the action with binding-time information - either static 
or dynamic (see Figures 6-9); (2) the two-level action is partially evaluated into a 
residual action (see Figures 10-13). 

*hkushima 965-80, Japan, kg-doh@u-aizu.ac.jp 
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Action = "complete1' 1 "regive1' 1 [ "give1' Yielder 1 1 
"rebind" 1 [ "produce1' Yielder 1 [ "bind" token "to" Yielder 1 1 
[ "store" Yielder "in1' Yielder 1 1 
[ "allocate" ("natural" 1 "truth-value1') llcell'' 1 1 
[ Yielder "either" Action "or" Action 1 1 
[ Action "and" Action 1 1 
[ Action "and" "then1' Action 1 1 
[ Action Action 1 1 
[ llfurthermorei' Action "hence1' Action 1 1 
[ Action "before1' Action 1 

Yielder = "true" 1 "false" 1 natural 1 
[ Operator Yielder 1 1 "them1' 1 "it" 1 
[ "the" "given" Data 1 [ "the" "given" Data "#" natural 1 1 
[ "the" Data "bound1' "to" token 1 1 
[ "the" Data "stored" "in" Yielder 1 1 
[ Yielder "," Yielder 1 1 [ "(" Yielder ")" 1 

Data = lidatum'' 1 "value" 1 lltruth-valuel' 1 "natural 1 
ldcell" 1 lltruth-value-cellll 1 "natural-cell" 1 "tokenll 1 
. . . 1 "{2,3,4}" 1 . . . 1 "2" 1 . . . 

Figure 1: Syntax of Action Notation 



() I- true true () I- false E false () I- n : natural â n 

r I - Y c T  T ~ o ~ ~ f  
I' t [ 0 : Operator Y :Yielder 1 E T I  

T S D  
T I- [ t h e  given D : Data 1 E T 

T I  = component# n T T I  5 D 
T I- [ t h e  given D: Data # n:  natural 1 E T I  

p < { t = ~ }  T S D  
p t [ t h e  D: Data bound t o  t :  token ] E T 

I', o I- Y E T T 5 Dcell  allocated?(r, c) initialized?(r, o) 
I?, o I- [ the D: Data stored in Y :Yielder ] E o at  T 

I ' l S I ' 2  r 2 t y â ‚ ¬ 7  72571 
(weakening rule) 

I'l I- Y :Yielder E yl 

Figure 2: Operational Semantics for Yielders 



~ I - Y ~ T  
() I- complete l () r t regive e r I? I- [give Y :Yielder ] l r 

r t y e p  

p I- rebind ? p I? I- [ produce Y:Yielder ] E p 

I? I- Y e r r < value 

I? I- [ bind t: token t o  Y :Yielder ] e {t = r }  

r , u  I- Yl ? TI TI < value r',u I- Y2 ? TZ compatible?(~~,r~) allocated?(~2, a) 
r ,  u h [ store Yl :Yielder in Yz :Yielder ] ? overlay(map TZ to TI, u) 

r = new natural cell(a) 

a I- [ allocate natural cell ] 6 r, overlay(map r t o  uninitialized, a) 

r = new truth value cell(a) 

a t [ allocate truth value cell ] e r,overlay(map r to  uninitialized, a) 

Figure 3: Operational Semantics for Actions (1) 



r I - Y e t r u e  F I - A 1 6 7  

r I- 1 Y :Yielder then either Al :Action or As :Action ] E 7 

r I- Y E false I' I- A2 E 7 

r I- [ Y :Yielder then either Al :Action or A2: Action ] E 7 

r I - A I E ~ l  r h A 2 E T 2  
I' I- [ Al : Action and A2 : Action ] E (rl, 3-2) 

I' I- A1 E 71,o-1 r,ci I- A2 E 72,0-2 

I' I- [ Al : Action and then A2 : Action ] ? 7 2 , 0 2  

I? I- Al â T r , ~  I- A2 E 7 
I- [ Al :Action then A2 :Action ] E 7 

r, p I- A1 E pi, o-1 r, overlay (PI, P), o-1 I- A2 E 7 
I?, p I- [ furthermore Al : Action hence A2 : Action I] E 7 

r , p  I- AI E pl,cl r , o v e r l a ~ ( ~ ~ , p ) , o - ~  I- E p2,c2 
r, p I- [ Ai : Action before A2 :Action ] ? overlay(p2, pi), o-2 

I\<r2 r 2 I - A E 7 2  72571 (weakening rule) 
I\ I- A: Action E 71 

Figure 4: Operational Semantics for Actions (2) 



Action2 = "complete" 1 "regive" 1 [ "give" Yielder2 ] 1 
"rebind" 1 [ "produce" Yielder2 ] 1 
[ "bind" token "to" Yielder2 ] 1 
[ "store" Yielder2 "in" Yielder2 ] 1 
[ "allocate" ("natural" 1 "truth-value") "cell" ] 1 
[ "lift-action" Action2 ]I 1 
[ Yielder2 "static" "then" "either" Action2 "or" Action2 ] 1 
[ Yielder2 "dynamic" "then" "either" Action2 "or" Action2 ] 1 
[ Action2 "static" "and" Action2 ] 1 
[ Action2 "dynamic" "and" Action2 ] 1 
[ Action2 "static" "then" Action2 ] 1 
[ Action2 "dynamic" "then" Action2 ] 1 
. . . 

Yielder2 = "true" 1 "false" 1 natural 1 
[ Static-Operator "(" Yielder2 "," Yielder2 ")'I ] 1 
[ Dynamic-Operator "(" Yielder2 ",'I Yielder2 ")" ] 1 
stat ic" "them" 1 "dynamic" "them" 1 
'Cstatic,, "it#* 1 "dynamic" "it1' 1 
[ "the" "given" "static" Data I] 1 
[ "the" "given" "dynamic" Data ] 1 
[ "the" "given" "static" Data "#I1 natural ] 1 
[ "the" "given" "dynamic" Data "#" natural ] 1 
[ "the" "static" Data "bound" "to" token ] 1 
[ "the" "dynamic" Data "bound" "to" token ] 1 
[ "the" Data "stored" "in" token ] 1 
[ "lift" Yielder2 1) 1 

Data = "datum" 1 "value" 1 "truth-value" 1 
"cell" 1 "truth-value-cell" 1 "natural- 
. "{2,3,4}" 1 ... l " 2 "  1 ... 

"natural" 1 
cell" 1 "token" 1 

Figure 5: Syntax of 2-Level Action Notation 



() I- true G true, known 

() I- false G false, known 

() I- n : natural G natural to  string(n), known 

I' I- Y ? r1,known I' t Y2 E r2, known 
I' I- [ sum (Y,, yi) ] E [ static sum(rl, 7-2) I, known 

I' I- Yl E r1,known I' I- Y2 E r2,unknown 
I' I- [sum (Y,, yi) ] E [ dynamic sum([lift r1], r2) I], unknown 

I' I- Y, 6 r1,unknown I' I- Y2 E r2,known 

I' t [ sum (x, la) ] E [ dynamic sum(rl, [lift r2]) 1, unknown 

I' I- Yl E r1,unknown I' I- Y2 G r2,unknown 

I' I- [ sum (Y,, yi) ] G [ dynamic sum(rl, r2) 1, unknown 

U r  = known U r  = unknown 

r I- them ? [static them], r r I- them G [dynamic them], r 

T = known r = unknown 

r I- it E [static it], known r I- it E [dynamic it], unknown 

Figure 6: Binding-Time Analysis for Yielders (1) 



UT = known 

T I- [ the given D: Data ] ? [ the given static D 1, T 

UT = unknown 

T I- [ the given D: Data ] [ the given dynamic D ], T 

component# n T = known 

T I- [ t he  given D # n ] ? [ the  given static D#n ]I, known 

component# n T = unknown 

T I- [ the given D # n I e [ the given dynamic D#n I, unknown 

~ ( p  at  t )  = known 

p  I- [ the D bound t o  t ] E [ the static D bound t o  t 1, p  at t 

~ ( p  at t )  = unknown 

p  I- [ the  D bound t o  t ] E [ t he  dynamic D bound t o  t ], p  at t 

I- y e 7,P 
I' I- [ t he  D stored in Y ] e [ t he  D stored in 7 ], unknown 

-- - 

Figure 7: Binding-Time Analysis for Yielders (2) 



() I- complete (= complete, () 

r  I- regive 6  regive, r  

r I- [give Y  ] e [give r  ],r 

p I- rebind 6 rebind,/? 

r i- Y e o 

r I - Y e r  
r I- [ bind t t o  Y  1 ? [ bind t to  r  I], {t = r }  

r k v i 6 T i  r i - & < E T 2  

I- [ store vi in Y2 ] 6 [store TI in rz ], () 

() I- [ allocate natural cell ] 6 I allocate natural cell ], unknown 

-- 

() I- I allocate truth value cell ] E [ allocate truth value cell 1, unknown 

Figure 8: Binding-Time Analysis for Some Actions (1) 



r I- Y <E T, known I? I- Al ? yl,pl Y t A2 E 72,/?2 
F I- [ Y then either A1 or A2 Jj E [ r static then either 71 or 7 2  I, u p2 

I? I- Y E r,unknown TI- Al?  71,p1 F I- A2 ? 72,p2 
r I- [ Y then either Al or A2 I ? [ r dynamic then either 71 or 7 2  I, u p2 

I? I- A1 â ri,/?i Up l=known  I? I- A2 <E r2 ,&  U/31=known 

I? I- [ A1 and A2 1 ? [ TI static and r2 I, (/31,&) 

I? I- A1 â r1,Q-i Up l=known F I- A2 ? r2,p2 U/?l=unknown 

I' I- [ A1 and A2 ] ? [ [lift action rl] dynamic and r2 1, (pi, p2) 

I- A1 â r1,/31 U p 1  = unknown I? I- A2 ? r2,& Upl  = known 

I- [ A1 and A2 ] G [ TI dynamic and [lift action r2j ]I, (PI, /I2) 

I- A1 e TI, /?I U PI = unknown F I- A2 ? 7-2, /^ U PI = unknown 
F I- [ Ai and A2 ] c [ 7-1 dynamic and r 2  1, (PI, ,&) 

F I- [ A1 then A2 I E [ TI static then 7 2  1, p2 

r h- A i  ? ~ i , / 3 1  r,pi I- A2 ? y2,& LI Dl = unknown static?(^} 

I? [ A l t h e n  A21 ? [ ~ 2 ] , & ?  

r I- A i  â ri,/?i F,Qi I- A2 ? 72,p2 U pi = unknown dynamic?(&,) 

I- [ A1 then A2 ] ? [ TI dynamic then 7 2  I, fti 

Figure 9: Binding-Time Analysis for Some Actions (2) 



() I- true C true 

() I- false G false 

r t y i ~ ~ ~  r t y 2 e T 2  

I- [ dynamic sum(%, y2) ] E [sum(r1, 7-2) I 

T I- [ static them ] G r 

r t [ dynamic them ] E them 

T I- [ static it ] G T r t [ dynamic it ] c it 

Figure 10: Partial Evaluation for Yielders (1) 



r t [ the  given static D lj E r 

r I- [ the given dynamic D ] l [ the given D ] 

T t [ the  given static D#n ] G component# n r 

r t [ the  given dynamic D#n ] G [ the  given D#n ] 

p t [ the static D bound t o  t ] G p at t 

p I- [ t he  dynamic D bound t o  t ] G [ t he  D bound t o t  ] 

r t [ t h e  D stored in Y lj (= [ t he  D stored in Y ] 

~ F Y G ~  
I' t [ lift Y lj G build data(7) 

Figure 11: Partial Evaluation for Yielders (2) 



() t complete 6 () 

T I- regive r 

r t y e r  
I' t [give Y  j E r 

p t rebind 6 p 

r t y e ~  

r t y ~ r  
r t [ bind t t o  Y  ] 6 {t = r }  

r ,  a I- [ store Vi in % ] E [ store in fi ] 

u I- [ allocate natural cell ] 6 [ allocate natural cell ] 

I' I- [ lift action A ] 6 build action(7) 

Figure 12: Partial Evaluation for Actions (1) 



I' t [ Y static then either Al or A2 ] ? 7 

I? t Y ? false I' I- A2 ? 7 
I' t [ Y static then either Al or A2 ] ? 7 

r t Y ? ~ i  r t A i E 7 1  I ' t A 2 â ‚ ¬  
r t [ Y dynamic then either Al or A2 I] ? [ TI then either 71 or 7~ ] 

~ I - A I ( E ~ I  r t ~ ~ < = 7 ~  
r t [ Al dynamic and A2 I] E [ 71 and 7 2  ] 

I? I- [ Al static then A2 I] ? 7 

r t  Al <= T r,r t A 2 â  7 
I' I- [ Al dynamic then A2 ] ? [ T then 7 j 

Figure 13: Partial Evaluation for Actions (2) 



Using ASF+SDF to 
Interpret and Transform Actions 

David A. Watt * 

Abstract 

ASF+SDF is a very natural tool for prototyping action notation. We can specify the syntax of 
action notation in the usual way. SDF generates a backtracking parser that discovers ill-formed and 
ambiguous action terms. We can specify the operational semantics of action notation by rewrite 
rules that define the effects of performing actions, evaluating yielders, and so on. ASF's term- 
rewriting engine does the rest. We can go further and add equations that encode the laws of action 
notation; ASF interprets these as rewrite rules. Thus action terms (whether input by the user, or 
generated by translation from a source language) are automatically simplified. 

This report summarises progress towards building a robust action notation prototyper. It discusses 
the problems in making it acceptably efficient, the possibility of incorporating the more 
sophisticated transformations developed in the ACTRESS project, and the prospects of using the 
prototyper (in conjunction with van Deursen and Mosses' ASD Tools) to test realistic action- 
semantic specifications. 

Introduction 

Semantic prototyping is a valuable tool for designers and specifiers of programming 
languages. The idea of prototyping is to take a formal specification of a programming 
language, and use it to build a quick (but poor-quality) implementation. 

Prototyping is an key element of what I call language engineering (and what Uwe Pleban 
has called the language designer's workbench). The new language design is first embodied 
in a formal specification. This exercise is itself an effective way to expose irregularities in 
the language design. Then the formal specification is used to build a prototype, which is 
used to run small test programs in the new language. This gives feedback to the language 
designer, allows the specification itself to be tested, and even allows ordinary programmers 
to gain some initial experience with the new language. The design, specification, and 
prototyping stages are then iterated, until the design stabilises. Finally, one or more true 
compilers are constructed. In this stage, the formal specification is available at least as a 
guide to the compiler writers, but ideally they could use a semantics-directed compiler 
generator. It makes sense to defer the most expensive stage, compiler construction, until 
after the language design has stabilised. 

Note the central role of the formal specification in language engineering. The benefits of 
prototyping and compiler generation give the language designer a strong incentive to write 
the formal specification - and at an early stage, not as an afterthought. 

* Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland. E-mail: 
daw@dcs.gla.ac.uk. 



Various approaches to semantic prototyping have been tried, usually based on expressing 
denotational or natural-semantic specifications in a programming language such as Algol 68 
(Pagan 1979), ML (Watt 1986), or Prolog (Despeyroux 1988). I have explored the 
possibility of prototyping action semantics using ML (Watt 1991). An action can be 
modelled by an ML function that maps incoming information to a result; an action 
combinator can be modelled by an ML function that maps actions to actions; and so on. 
Careful choice of names and priorities1 for the ML functions allows action terms to be 
expressed quite recognisably: 

furthermore 
( allocateacell then 

( store zero (*in*) it andthen 
bind "x" (*to*) it ) ) 

hence 
give (sum (integer storedin (cell boundto "x"), one)) 

I have applied this prototyping method to toy languages, but never to a real language. The 
effort of manually transcribing a semantic specification from standard action notation to the 
ML syntax is just too great.2 Worse, all the data operations (which would normally be 
specified algebraically) have to be manually implemented in ML. 

Recently, Peter Mosses introduced me to ASF+SDF3 (Klint 1993a, 1993b). This is an 
extremely powerful and flexible system for processing language specifications. The 
specified language could be as simple as Boolean expressions or as complex as a real 
programming language. The specifier introduces sorts, introduces (mixfix) operations over 
these sorts, and defines these operations by (conditional) equations. 

Specifying syntax: In the specification of a programming language's abstract syntax, the 
sorts are phrase sorts (nonterminals), and the operations are abstract-syntax-tree 
constructor operations. Appropriate choice of mixfix constructor operations allows the 
abstract syntax to resemble concrete syntax. Indeed, SDF automatically generates parsers 
from such syntactic specifications. There are facilities for specifying priorities, and left- or 
right-associativity . 

Specifying semantics: In the specification of a simple language such as Boolean 
expressions, equations can be used to specify its semantics in the algebraic style. In the 
denotational specification of a programming language, the equational notation can be used 
to express semantic equations. In the operational specification of a programming language, 
conditional equations can be used to express inference rules. In any case, ASP interprets 
the equations as left-to-right rewrite rules, and a term-rewriting engine allows the 
specification to be executed. 

Mosses expressed the action semantics of a toy programming language, Pico, as an 
ASF+SDF specification. He specified the syntax of Pico and the syntax of (a subset of) 
action notation. He specified the semantics of Pico by means of operations corresponding 
to semantic functions, defined by means of equations corresponding to semantic equations. 

ML functions are prefix by default. However, a binary function can be declared to be infix, and assigned a 
priority number. Mixfix functions cannot be declared. 

This translation could be automated. My pilot version of the action notation compiler (predating the 
ACTRESS project) had an option to translate action notation to the ML syntax. 

ASF+SDF = Algebraic Specification Formalism + Syntactic Definition Formalism. 



Using this specification he could enter Pico programs and translate them to action notation. 
The only missing feature was a means of executing the action notation! 

This prompted me to undertake, as an ASF+SDF familiarisation exercise, development of 
an action interpreter. I also perceived that ASF+SDF would be ideal for expressing useful 
algebraic properties of action notation, and I speculated that it would be useful for 
experimenting with more complicated action transformations. I have largely achieved the 
first two of these objectives, and have made a start on the third. This report gives an 
informal account of progress to date. It can be read, either as a detailed discussion of 
prototyping of action notation, or as a case study of a non-trivial application of ASF+SDF. 

2 Action Syntax 

My first step was to specify the syntax of actions (and yielders and data terms) in SDF 
notation. This was quite straightforward - see Box 1. Using this specification I could use 
ASF+SDF to enter and edit action notation terms. Because operations may be mixfix, I was 
able to mimic standard action notation very closely. However, only parentheses are 
available for grouping; the use of vertical lines and indentation for this purpose is not 
supported. The action shown in Section 1 would be expressed as follows: 

furthermore 
( allocate a cell then 

( store 0 in it and then 
bind 'x' to it ) ) 

hence 
give sum (the integer stored in the cell bound to 'x' ), 1) 

In certain details, I designed my action notation grammar in such a way as to facilitate my 
later specifications of action interpretation and transformation. In particular, I introduced 
the sorts SimpleAction, Prefixcombinator, and Infixcombinator for these reasons. 

3 Action Interpretation 

Information flows from action to action in three facets: transient data (functional facet), 
bindings (declarative facet), and storage (imperative facet). When an action is performed, 
its outcome may be to complete, escape, fail, or diverge. Also, the action may or may not 
commit. 

I introduced the sort Info to represent the information flowing into an action, and the sort 
Result to represent the outcome, commitment, and information flowing out of an action - 
see Box 2. 

No transient data or bindings flow out of an action that fails, so the fields d and b in the 
Result term (failed, corn, d, b, s) are actually redundant. However, I found it simplest to 
represent failed results uniformly with completed results, on the understanding that in a 
failed result the fields d and b will be empty. A similar point applies to escaped results, in 
which the b field will be empty. There is no need to represent the result of a divergent 
action: performing such an action will be represented by an infinite rewriting. 

I introduced the operation "performed" to represent the effect of performing an action with 
incoming information. This operation will map an action and an Info term to a Result term. 



Similarly, I introduced the operation "evaluated" to represent the effect of evaluating a 
yielder, this time yielding a Data term. (Data itself has a fairly conventional algebraic 
specification, not shown here.) 

Now it is straightforward to specify how simple actions such as "complete", "fail", "give", 
and "bind" are performed - see Box 2. The performance of an "unfolding" action is 
specified by means of the auxiliary operation "unfolded (A, A')", which substitutes A' for 
each (free) occurrence of "unfold" in A. 

sorts Action SimpleAction Yielder Prefixcombinator InfixCombinator ... 

context-free syntax 

SimpleAction 

complete 
fail 
give Yielder 
bind Token to Yielder 
store Yielder in Yielder 

unfold 
unfolding Action 
Prefixcombinator Action 
Action InfixCombinator Action 
'(" Action ")" 

furthermore 
or 
and 
and then 
hence 
moreover 

Data 

it 
given Data 
the Data bound to Token 
the Data stored in Yielder 

IdentityOp Yielder 
PrefixOp Yielder 
Yielder InfixOp Yielder 
'(I1 Yielder ")I1 

a 
sum 
is 
I1 I1 , 

Action 

SimpleAction 
SimpleAction 
SimpleAction 
SimpleAction 
SimpleAction 

Action 
Action 
Action 
Action 
Action 

Yielder 

Yielder 
Yielder 
Yielder 
Yielder 

Yielder 
Yielder 
Yielder 
Yielder 

IdentityOp 
PrefixOp 
InfixOp 
InfixOp 

{ left 
{ bracket 

{ left } 
{ bracket } 

Box 1 Syntax of action notation. 
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sorts Info Outcome Commitment Result 

context-free syntax 

Data "," Bindings "," Storage Ã‘ 

completed 
escaped 
failed 

committed Ã‘ 

uncommitted Ã‘ 

max "(" Commitment "," Commitment ")" Ã‘ 

' ( "  Outcome "," Commitment "," Info ")" Ã‘ 

performed Action "(I' Info ")" Ã‘ 

evaluated Yielder "(" Info ")" Ã‘ 

unfolded "(" Action "," Action ")It Ã‘ 

equations 

[complete] 

[fail] 

[bind] 

[store] 

[unfolding] 

Info 

Outcome 
Outcome 
Outcome 

Commitment 
Commitment 
Commitment 

Result 

Result 

Data 

Action 

performed complete (d, b, s) = (completed, uncommitted, (), {}, s) 

performed fail (d, b, s) = (failed, uncommitted, (), {}, s) 

evaluated Y (d, b, s) = d ' ,  d' # nothing 

performed (give Y) (d, b, s) = (completed, uncommitted, d', {}, s) 

evaluated Y (d, b, s) = d ' ,  the bindable yielded by d' # nothing 

performed (bind kto Y) (d, b, s) = (completed, uncommitted, (), {k- d'}, s) 

evaluated Y, (d, b, s) = d' , the storable yielded by d' # nothing , 
evaluated Y2 (d, b, s) = c , the cell yielded by c # nothing , 
status of c in s # unreserved 

performed (store Y, in Y2) (d, b, s) = (completed, committed, (), {}, $c'-> d']) 

performed (unfolding A) (d, b, s) = 
performed unfolded (A, unfolding A) (d, b, s) 

... 

unfolded (SA, A') = SA %% SA -+ SimpleAction 

unfolded (unfold, A') = A'  

unfolded (unfolding A, A') = unfolding A 

unfolded (pc A, A') = pc unfolded (A, A') %% PC Ã‘ Prefixcombinator 

unfolded ( A  ic Ay, A') = %% ic Ã‘ Infixcombinator 
unfolded (All A') ic unfolded (A2, A') 

Box 2 Interpretation of simple actions. 



The action notation subset considered here has a natural semantics (Moura 1993). The 
judgment for performing an action is: 

(inf) I- A => res (1) 

meaning that res is the result of performing action A when information inf flows into it. 
The inference rules for the "and then" infix combinator are reproduced here? 

(d, by s) I- Al => (completed, cornl, dl ,  bl , sl) 
(d, by sl)  I- A2 a (completed, corn2, d2, b2, s2) 

bf = bl 0 b2 b' # clash 
(2) 

(d, by s) I- Al and then A2 a (completed, max (cornl , corn2), (dl , d2), bf, s2) 

(d, b, s) I- Al a (completed, cornl, dl ,  bl, s l)  
(d, b, $1) I- A2 a (completed, corn2, d2, b2, s2) 

b f = b l C b 2  bf=clash 
(3) 

(d, by s) I- Al and then Az a (failed, max (cornl , corn& (), { }, 52) 

(d, by s) I- Al =Ã (completed, cornl, dl ,  bl, sl) 

(d, by sl) I- A2 a (out2, corn2, d2, b2, s2) out2 # completed 
(4) 

(d, b, s) I- Al and then A2 =Ã (out2, max (cornl, corn2), d2, b2, $2) 

(d, by s) I- Al a (outl, cornl, dl ,  bl , sl) out1 # completed 
(5) 

(d, by s) I- Al and then AT, a (outl, corn\, dl,  bl, s l )  

The intended purpose of ASF+SDF is for writing and executing specifications. So the most 
natural method (indeed!) for prototyping an action interpreter is simply to transcribe 
inference rules (2)-(5) into ASF conditional equations - see Box 3. Judgment (1) is 
expressed as "performed A (inf) = res". 

This method works, but performance is unacceptably slow. I estimate that the time required 
to perform an action is O(nc), where n is the action size (after any unfolding) and c is about 
4. The reason for this is the straightforward but naive way in which term rewriting is 
currently implemented in ASF. Given a term of the form "performed (Al and then A2) (d, b, 
s)", the term-rewriting engine will try each of equations [and-then-11 to [and-then-41 in 
turn.5 If any premise in an equation fails, that equation is abandoned and another equation 
is tried instead. Notice that equations [and-then-11 through [and-then-41 all contain a premise 
that involves reducing the term "performed A, (d, b, s)", and three of them likewise contain a 
premise that involves reducing the term "performed A2 (d, b, s1)". Thus the sub-actions Al 

^ I have slightly modified Moura's inference rules to conform to the terminology used in this report, and I 
have added commitments. 

The order in which the equations are tried is implementation-dependent. 
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and A2 are performed several times, until the outcome of "A) and then Ay" is determined. 
Similar effects happen with other infix combinators.6 

I therefore tried an alternative method, based on factoring out the common computations - 
see Box 4. The term "performed (Ai and then A2) (int)" is first rewritten to "continued resi and 
then A2 (in/)", where resi is the result of performing A]. If and only if the outcome field of 
resi is completed, the term "continued resi and then A2 (in/)" is in turn rewritten to 
"concluded resi and then resy", where re+ is the result of performing A2. The same auxiliary 
operations "continued" and "concluded" are used to specify the performance of other action 
combinations (not shown here). 

This method seems to solve the efficiency problem. I estimate that performance time is now 
O(n), where n is the action size after any unfolding. 

Yet another method is possible, based on the style used in the definitive operational 
semantics of action notation (Mosses 1992). The basic principle of this method is that 
actions are performed gradually. For example, "Ai and then Ay" is performed roughly as 
follows. The 'first' primitive action of Ai is performed; then Ai 'is performed, where Ai 'is 
the remainder of Ai after removing that primitive action. If Ai is vacuous (as a consequence 
of previously removing all primitive actions), then A2 is performed. 

equations 

... 

performed Ai (dl b, s) = (completed, cornil dl, bi, si) , 
performed A2 (dl b, si) = (completed, corn2, d2, b2, Q , 
b' = bi @ & , b' # clash 

performed (Ai and then A2) (d, b, s) = 
(completed, max (corni, corn2), (dl, d2), b', ~ g )  

performed Ai (dl b, s) = (completed, corni, dl, bi, si) , 
performed A2 (dl b, si) = (completed, corn2, d2, b2, +) , 
b' = bi @by, b' = clash 

performed (Ai and then A2) (d, b, s) = (failed, corni max corn2, (), {}, +) 

performed Ai (dl b, s) = (completed, corni, dl, bil si) , 
performed A2 (d, b, sl) = (out2, corn2, d2, b2, ~ g )  , out2 # completed 

performed (Ai and then A2) (dl b, s) = (out2, max (corni , corn2), d2, bz, +) 

performed Ai (dl b, s) = (outi, corni, dl, bi, si) , outi # completed 

performed (Ai and then A2) (d, b, s) = (out,, corni, dl, bi, si) 

. . . 

Box 3 Interpretation of composite actions - natural semantics method. 

^ ASF+SDF includes a facility for compiling equations to C. Paul Klint has informed me that a future 
version of this compiler will automatically factor out common premises from a group of equations. (It is a 
form of common subexpression elimination.) This should eliminate the problem discussed here. 



I have not yet tried this method. It might prove to be impracticable, because splitting a 
complex action into a primitive action and a remainder must entail a lot of term 
construction. Unlike the natural semantics method, however, the operational semantics 
method could be used to specify interleaving and concurrency. Thus I might be forced to 
adopt the operational semantics method anyway, when I eventually extend the interpreter to 
the whole of action notation. 

context-free 

equations 

. . . 

syntax 

. . . 

continued Result InfixCombinator Action "(" Info ")" -> Result 

concluded Result InfixCombinator Result + Result 

. . . 

performed Al (in0 = resl 

performed (Al and then As) (in0 = continued resl and then A2 (in0 

performed A2 (d, b, s1) = res, 

continued (completed, cornl, dl, bi, sl) and then A2 (d, b, s) = 
concluded (completed, cornl , dl, bll s1) and then res2 

outl # completed 

continued (outi, cornl, infl) and then A2 (in0 = (outl, cornl, infl) 

b' = bl 0 b, , b' # clash 

concluded (completed, corni, dl , bl , s1) 
and then (completed, corn2, d2, by, &) = 

(completed, max (cornl, corn2), (dl, d2), b', s,) 

b' = bi 0 b, , b' # clash 

concluded (completed, cornl, dl, bl, s1) 
and then (completed, corn2, d2, b2, &) = 

(failed, max (~0m- i~  coma), 0 ,  {I, s,) 

out2 # completed 

concluded (completed, cornl, infl) and then (out2, corn2, inf2) = 
(out2, max (corni, corn2), ink) 

Box 4 Interpretation of composite actions - factored natural semantics method. 
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4 Action Transformation 

The ACTRESS project (Brown et al. 1992, Brown & Watt 1994, Moura & Watt 1994) has 
developed a variety of action transformations. An ACTRESS-generated compiler translates 
the source program to its denotation, the program action; then it sort-checks the program 
action, transforms it, and finally translates it to (C) object code. Action transformations are 
essential if the object code is to be acceptably efficient. However, the effort of 
programming these transformations in ML, the ACTRESS implementation language, proved 
to be considerable. 

Before implementing these transformations in ML, Hermano Moura formalised them, and 
prototyped them by transcription of his inference rules into Prolog. It would have been 
much more convenient if ASF+SDF had been available to him at the time. This is because 
term rewriting is a very natural paradigm for expressing code transformations. 

The ACTRESS action transformer (Moura 1993, Moura & Watt 1994) implements four 
transformations: 

Algebraic simplification: application of the algebraic laws of action notation. 

Transient elimination: essentially constant propagation, and elimination of 
redundant "give" actions. 

Binding elimination: replacement of applied occurrences of tokens by the (statically 
known) data to which they are bound, and elimination of redundant "bind" actions. 

Storage allocation: replacement of "allocate" actions (dynamic storage allocation) by 
static storage allocation, where possible. 

At the time of writing, I have implemented algebraic simplification in ASF+SDF, and partly 
implemented binding elimination. These are outlined in the following subsections. 

4.1 Algebraic Simplification 

Action notation enjoys a variety of nice algebraic laws (Mosses 1992). For example, "fail" 
is a unit of "or", and "complete" is a unit of "and" and of "and then". These laws, and 
others, are easily expressed as equations in ASF+SDF - see Box 5. 

Now any action term will be automatically simplified by application of the equations of Box 
5. This is so whether the term is entered using the ASF+SDF editor, or generated by 
translation from a source program, or generated by application of other transformations. 

I have not expressed all the laws of action notation as equations. In particular, I have not 
yet encountered any need to exploit the fact that all infix combinators are associative, and 
that some are commutative. In any case, ASF+SDF has no special facility for specifying 
associativity and c~mrnutativity.~ 

^ Of course, expressing the commutative property by an ordinary equation results in infinite rewriting. 
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4.2 Binding Elimination 

If an action has been generated by translation from a source program, it is often found that 
many or all bindings can be eliminated from the action - especially if the source language is 
statically scoped. 

The basic principle of binding elimination is as follows. A term of the form "the d'bound to 
/(" (an applied occurrence of token k), in a scope where it is known that k is bound to datum 
d, may be replaced by the term "8 (more properly, "the d' yielded by 8). If all applied 
occurrences of k can be replaced in this way, the "bind" action that produced the binding of 
k to d may be eliminated (more properly, replaced by "complete"). 

This can be expressed in ASF+SDF - see Box 6. My method is as follows: 

If an action A produces known bindings, replace it by "A' producing b". Here b is 
the set of known bindings produced by A, and action A' is obtained from A by 
eliminating the "bind" actions that produced these known bindings. 

Replace "(A, producing b) hence A T  by "A, hence (A2 receiving b)". 

Simplify "A receiving by' by using b to replace all scoped applied occurrences of 
tokens bound in b. 

The specifications of "producing" and "receiving" are shown in Boxes 6(a) and (b). 

equations 

[or-11 

[or-21 

[and-11 

[and-21 

[and-then-11 

[and-then-21 

[and-then-31 

[and-then-41 

. . . 

[give] 

[bind] 

. . . 

fail or A = A 

Aorfail = A 

complete and A = A 

A and complete = A 

complete and then A = A 

A and then complete = A 

escape and then A = escape 

fail and then A = fail 

. . . 

give nothing = fail 

bind Yto nothing = fail 

. . . 

Box 5 Algebraic simplification of actions. 

138 



The following is an example of binding elimination, together with algebraic simplification: 

( bind 'x' to 7 
( allocate a cell then bind 'y' to it ) and 
bind 'z' to true ) 

hence 
store the integer bound to 'x' in the cell bound to 'y' 

[bind-11 in Box 6(a) 

( complete binding {'x' '-> 7} and 
( allocate a cell then bind 'y' to it ) and 
complete binding {'z' '-> true} ) 

hence 
store the integer bound to 'x' in the cell bound to 'y' 

=> [and-1 , and-2, producing] in Box 6(a) 

( complete and 
( allocate a cell then bind 'y' to it ) and 
complete ) binding {'x' '-> 7, 'z' '-> true} 

hence 
store the integer bound to 'x' in the cell bound to 'y' 

context-free syntax 

Action producing Bindings -> Action 

equations 

. . . . . . 

[bind-11 bind kto d = complete producing { k w  d} 

[and-11 (Al producing bl) and A2 = (Al and A2) producing bl 

[and-21 Al and (A2 producing by) = (Al and A2) producing b2 

[hence-I] (Al producing bl) hence A2 = Al hence (A2 receiving bl) 

[hence-21 Al hence (A2 producing by) = (Al hence A2) producing by 

b '  = bl -domain (out-bindings (A2)) 
[moreover-1 ] 

(AI producing bl) moreover A2 = (Al moreover A2) producing b '  

[moreover-21 Al moreover (A2 producing b2) = (A1 moreover A2) producing b2 

0 . .  . . . 

[producing] A producing bl producing b2 = A producing bl G3 b2 

Box 6(a) Binding elimination in actions - "producing". 
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=> [and-1, and-21 in Box 5 

( allocate a cell then bind 'y' to it ) producing {'x' '-> 7, 'z' '-> true} 
hence 

store the integer bound to 'x' in the cell bound to 'y' 

=> [hence-11 in Box 6(a) 

( allocate a cell then bind 'y' to it ) 
hence 
( store the integer bound to 'x' in the cell bound to 'y' ) receiving {'x' I+ 7, 'z' '-> true} 

=* [store, bound-1, bound-21 in Box 6(b) 

( allocate a cell then bind 'y' to it ) 
hence 

store 7 in the cell bound to 'y' 

context-f ree 

equations 

[complete] 

[give] 

[given] 

[bind-21 

[store] 

[and-31 

[hence-31 

[moreover-31 

. . . 

syntax 

Action receiving Bindings -> Action 
Yielder receiving Bindings -Ã Yielder 

complete receiving b = complete 

(give Y) receiving b = give (Y receiving b) 

(given d) receiving b = given d 

(bind k to Y) receiving b = bind k to (Y receiving b) 

bat k # nothing 

(the d bound to k) receiving b = the d yielded by (bat A) 

bat k = nothing 

(the d bound to A) receiving b = the d bound to k 

(store Yl in Y2) receiving b = store (Yl receiving b )  in (Y2 receiving b )  

(Al and A2) receiving b = (Al receiving b) and (A2 receiving b) 

(Al hence A2) receiving b = (Al receiving b) hence A2 

(Al moreover A2) receiving b = (Al receiving b) moreover (A2 receiving b) 

. . . 

Box 6(b) Binding elimination in actions - "receiving". 
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Conclusion and Further Work 

My experience with ASF+SDF has on the whole been positive. Term rewriting is a 
powerful computational model, and very natural for language translation, transformation, 
and interpretation. SDF relieves the specifier of excessive attention to syntactic details, 
neatly combines abstract and concrete syntactic specification, and supports mixfix 
operations. 

However, ASF+SDF has pitfalls for the unwary (among whom I include myself). The 
efficiency of term rewriting is highly sensitive to the way in which the equations are 
written, as discussed in Section 3.1 believe that programmers need a mental model of the 
way in which their programs are executed on a machine. This is in conflict with the 
deliberate concealment, on methodological grounds, of such a model from the users of 
ASF+SDF (Klint 1993b). 

There are also syntactic pitfalls. It is all too easy for the specifier to introduce ambiguities, 
especially involving mixfix operations. SDF detects ambiguity only when parsing particular 
terms; it cannot of course detect ambiguity of the context-free grammar. The specifier can 
suppress some ambiguities by assigning priorities and associativities to operations, but then 
there is a risk that some terms will be parsed differently from the specifier's intentions. 
Finally, the lexical and context-free syntax sometimes interact in unexpected ways. Peter 
Mosses pointed out a lovely example: if I and tare variables, "list" can be parsed as " I  is f '! 

ASF+SDF is an impressive piece of software engineering. It supports incremental 
development of modular specifications: if the equations of module M are changed, only M 
is re-compiled; if the interface part of M is changed, only those modules that import M are 
re-compiled. I took advantage of this to impose an elaborate modular structure on my action 
interpreter and transformer (not discussed in this report). On the down side, the user 
interface of ASF+SDF is somewhat eccentric. Also, ASF+SDF requires massive 
computational power. 

The work described here is incomplete. So far I have specified a large subset of action 
notation, but an important omission is the communicative facet. I have also omitted a few 
rarely-used action primitives and combinators. 

I have specified a restricted form of transient elimination, and binding elimination for 
known bindings only. As shown in (Moura 1993, Moura & Watt 1994), all bindings can 
be eliminated from a statically-scoped action. An action that binds a token to an unknown 
datum is replaced by one that stores the unknown datum in a known cell, and each applied 
occurrence of that token is replaced by a fetch from that known cell. This works very well 
in the context of an ACTRESS-generated compiler, where storage is mapped to a global 
array, but it would be less useful in the context of the prototype described here. 

The action interpreter (and transformer) can be coupled to an action semantics of a 
programming language, also specified as an ASF+SDF specification. Then the user can use 
the ASF+SDF editor to enter programs in that language. Each program is translated to an 
action, and the latter may be (transformed and) interpreted. 

However, the ASF+SDF specification language is rather different from the specification 
language of (Mosses 1992), and much editing would have to be done to convert a given 
action-semantic specification. For this reason, Arie van Deursen and Peter Mosses have 
written a system that translates a specification from the standard specification language to 
the ASF+SDF specification language. Their system also performs useful consistency 
checks on the specification. This system, Action Semantic Description Tools (van Deursen 
& Mosses 1994), is itself implemented in ASF+SDF. ASD Tools has already been used to 
check and translate the large specifications Data Notation, Action Notation, AD Action 



Semantics (Mosses 1992), and the current draft of Pascal Action Semantics (Mosses & 
Watt 1994). 

The way forward, then, is to extend the action interpreter to cover the whole of action 
notation (including the communicative facet), make it more robust, and integrate it with 
ASD Tools. This will allow us to test specifications like Pascal Action Semantics 
thoroughly.8 The result will be a valuable prototyping tool for language designers and 
specifiers who use action semantics. 
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Current and Future Projects 

Discussion chaired by Peter D. Mosses 

This discussion session took place at the end of a long and exhausting 
day. There was time only for the participants of the workshop to give brief 
indications of the topics that they hope to investigate in the near future. More 
time for coordination of projects should clearly have been allocated in the 
programme of the workshop. 

The following list of topics may give an impression of the work being carried 
out by the participantsI in action semantics and related fields. It is based on 
rough notes taken during the discussion; apologies to anyone who mentioned 
topics that didn't get properly recorded. Abbreviations: a x .  action notation/ 
ass. action semantics/ a.s.d. action semantic descriptions. 

publishing up-to-date a.s.d.s of Standard MLl Standard PascalI . . . 
investigating a.s.d.s of logic programming, VHDL/ . . . 
studying the ANDF-FSI reformulating in standard notation 
analysis of stackability in higher-order cases 
improved type inference for a.n. 
lifting analysis from a.n. to programming languages 
partial evaluation of a n  
static action semantics 
use of attribute grammars in ass. 
evolving algebra semantics for a.n. 
use of a.n. in evolving algebras 
language1 design based on a.n. 
comparing LDL to a.s./ investigating possibility of generating a.n. 
comparing ACP to communicative a.n. 
development of ASD toolsI using ASF+SDF 
implementation of interpreters and compilers for a.n. 
tutorial on a.s. (at FMEt94) 
software specification using a.n. 
proof techniques for action equivalence 
improved operational semantics for a.n. 

Please inform the action semantics mailing list when starting new projects (a 
footnote in the Preface tells how to subscribe)/ and when new papers on action 
semantics and related topics become available. 
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Cadlab – Universität Paderborn
Bahnhofstr. 32
D-33102 Paderborn
GERMANY
E-mail: wolfgang@cadlab.de

Peter ØRBÆK
Dept. of Computer Science
University of Aarhus
Ny Munkegade, Bldg. 540
DK-8000 Aarhus C
DENMARK
E-mail: poe@daimi.aau.dk

Jens PALSBERG
161 Cullinane Hall
College of Computer Science
Northeastern University
360 Huntington Avenue
Boston, MA 02115
USA
E-mail: palsberg@ccs.neu.edu

Arnd POETZSCH-HEFFTER
Fakultät für Informatik
Technische Universität
D-80290 München
GERMANY
E-mail:
poetzsch@informatik.tu-muenchen.de

Günter RIEDEWALD
Universität Rostock
FB Informatik
D-18051 Rostock
GERMANY
E-mail: gri@informatik.uni-rostock.de

David SCHMIDT
Computing and Info. Sciences Dept.
Kansas State Univ.
Nichols Hall
Manhattan, KS 66506
USA
E-mail: schmidt@cis.ksu.edu

David A. WATT
Department of Computing Science
University of Glasgow
Glasgow G12 8QQ
SCOTLAND
E-mail: daw@dcs.gla.ac.uk

Ms G. WINDALL
CIT School
University of Greenwich
Wellington Street
London SE18 6PF
ENGLAND
E-mail: g.windall@greenwich.ac.uk

145



Recent Publications in the BRICS Notes Series

NS-94-1 Peter D. Mosses, editor.Proc. 1st International Workshop
on Action Semantics(Edinburgh, 14 April, 1994), number
NS-94-1 in BRICS Notes Series, Department of Computer
Science, University of Aarhus, May 1994. BRICS. 145 pp.


	Preface
	PROGRAMME
	Foundations
	Kyung-Goo Doh and David A. Schmidt. The Facets of Action Semantics: Some Principles and Applications (Extended Abstract)
	Søren B. Lassen. Design and Semantics of Action Notation

	Applications and Relations to Other Frameworks
	Jens Ulrik Toft and Bo Stig Hansen. The Formal Specification of ANDF
	Arnd Poetzsch-Heffter. Comparing Action Semantics and Evolving Algebra B ased Specifications with Respect to Applications
	Stephen McKeever. A Framework for Generating Compilers from Natural Semantics Specifications

	Systems (with Demonstrations)
	Günter Riedewald and Ralf Lämmel. PASCAL definition in the system LDL
	Arie van Deursen and Peter D. Mosses Demonstration of ASD; The Action Semantic Description Tools

	Action Analysis
	Hermano Moura. The ACTRESS Compiler Generator and Action Transformations (Abstract )
	Deryck F. Brown and David A. Watt. Sort Inference in the ACTRESS Compiler Generator
	Peter Ørbæk. OASIS: An Optimizing Action-based Compiler Generator

	Action Interpretation
	Kyung-Goo Doh. Towards Partial Evaluation of Actions (Abstract with Appendix)
	David A. Watt. Using ASF+SDF to Interpret and Transform Actions
	Current and Future Projects. Discussion chaired by Peter D. Mosses




