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Service Interaction Patterns
(Invited Talk)

John Evdemon
John.Evdemon@microsoft.com

Abstract
The traditional method for building a service requires a developer to ensure that

business logic is not hosted directly within the service itself. While this approach
helps make the service more flexible it does not address the biggest architectural
gap facing web services today: service interaction patterns (SIPs). A SIP occurs
when services engage in concurrent and interrelated interactions with other ser-
vices. Traditional web service architectures are designed to accommodate simple
point-to-point interactions - there is no concept of a logical flow or series of steps
from one service to another. Standards such as WS-BPEL are being developed
to address this gap. In this session we will discuss a “manifesto” for workflow-
enabled solutions, review emerging standards (BPEL, others) and address possible
misconceptions regarding these standards.
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Statically Typed Document Transformation:
An XTATIC Experience

Vladimir Gapeyev
University of Pennsylvania

François Garillot
École Normale Supérieure

Benjamin C. Pierce
University of Pennsylvania

Abstract

XTATIC is a lightweight extension of C� with native sup-
port for statically typed XML processing. It features XML
trees as built-in values, a refined type system based on
regular types à la XDUCE, and regular patterns for inves-
tigating and manipulating XML. We describe our experi-
ences using XTATIC in a real-world application: a program
for transforming XMLSPEC, a format used for authoring
W3C technical reports, into HTML. Our implementation
closely follows an existing one written in XSLT, facilitat-
ing comparison of the two languages and analysis of the
costs and benefits—both significant—of rich static typing
for XML-intensive code.

1 Introduction

A profusion of recent language designs, including
XDUCE [17, 18, 19], CDUCE [11, 2], XACT [25, 8],
XQUERY [4, 10], XJ [15], XOBE [23], and XTATIC [14, 26,
12, 13, 27], are founded on the belief that rich static type
systems based on regular tree languages can offer signif-
icant benefits for XML-intensive programming. Though
attractive, this belief can be questioned on a number of
counts. Are familiar XML processing idioms from untyped
settings easy to enrich with types, or are there important
idioms for which static typing is awkward or unwork-
able? Is it feasible to reimplement untyped applications
in a statically typed language in a “bug-for-bug compat-
ible” fashion? Does the need to please the typechecker
lead to too much repetitive boilerplate or too many type
annotations? Our aim is to put these questions to the
test by a detailed comparison of a non-trivial application
originally written in XSLT 1.0 [9] and a faithful reimple-
mentation of the same application in XTATIC.

For this experiment, we chose a task that has also been
used as a case study in the standard XSLT reference
[20, 21]: translation of structured documents from a
high-level document description language, XMLSPEC,
into XHTML. XMLSPEC is the format used for authoring
official W3C recommendations and drafts. This exam-
ple is non-trivial but of manageable size: the DTD for
XMLSPEC defines 102 elements and 57 type-like entities,
while the XHTML DTD defines 89 elements and 65 en-
tities; the XSLT stylesheet implementing the transforma-
tion is 770 lines long. Besides styling XMLSPEC elements
as HTML, its functions include formatting BNF gram-

mars, section numbering, setting up cross-references, and
generating the table of contents. A useful effect of emu-
lating a finished untyped application is that both costs
and benefits are visible all at once, rather than arising
and being dealt with incrementally, throughout the de-
sign and development process. To maximize the opportu-
nities for comparison, our XTATIC implementation closely
follows not only the behavior, but also, as far as possible,
the structure of the original XSLT implementation.

The contributions of the paper are as follows. First, we
draw attention to the XMLSPEC problem itself. This prob-
lem offers a good balance of size, complexity, and fa-
miliarity, and we hope that it can be re-used by others
as a common benchmark for XML processing languages.
Second, we present a detailed analysis of the costs and
benefits of expressive static types for XML manipulation,
both of which were substantial in this application. The
main cost is the difficulty of inferring appropriate types
for multiple, mutually recursive transformations. The
main benefit is the expected one: design flaws in the
XMLSPEC DTD—which show up in the XSLT stylesheet
as behavioral bugs—are instead exposed as type incon-
sistencies. Third, we demonstrate that the type sys-
tem and processing primitives of XTATIC are sufficiently
powerful and flexible to fix (or gracefully work around)
these bugs without modifying the XMLSPEC DTD. Fix-
ing some of them in the XSLT stylesheet appears more
difficult. Finally, reimplementing an existing stylesheet
gives us many opportunities for head-to-head compar-
isons of XSLT and XTATIC, highlighting areas where each
shines. In particular, we observe that XTATIC-style regu-
lar pattern matching is more natural than XSLT’s style—
structural recursion augmented with “context probing”—
when processing structures, such as the BNF grammar
descriptions found in XMLSPEC, where ordering is im-
portant. Conversely, XSLT is very convenient for straight-
forward structural traversions with local transformations,
where XTATIC requires a heavier explicit-dispatch control
flow. Also, XSLT’s data model, which treats the original
document as a resource for the computation, is more nat-
ural for certain tasks, though we can mimic some of its
uses with generic libraries in XTATIC.

Section 2 summarizes XMLSPEC and gives a high-level
explanation of the transformation task. Section 3 de-
scribes the main challenges of expressing the core XSLT
processing model in XTATIC. Section 4 compares the pro-
cessing of structured data such as BNF grammars in XSLT
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and XTATIC. Section 5 describes the auxiliary data struc-
tures that our application uses in place of the global doc-
ument access primitives offered by XSLT. We close with
an overview of other evaluations of XML processing lan-
guages in Section 6 and some concluding thoughts in Sec-
tion 7. The paper is intended to be self-contained, but it
does not present the motivations or technical details of
the XTATIC design in depth; for these, the reader is re-
ferred to our earlier papers, especially [14, 13], and to
Gapeyev’s forthcoming PhD dissertation.

2 The Problem

The history of both XSLT and XMLSPEC goes back to
1998, when the standards for XML and XSLT themselves
were still under development. Newer versions of the DTD
and the stylesheet (available from the XMLSPEC web
page, http://www.w3.org/2002/xmlspec/) continue to
be used for developing W3C specifications.

Our development is based on the 1998 version of
XMLSPEC—the one used for the original XML Recom-
mendation. Our primary reason for using this some-
what dated version was the public availability of the
XML sources for the Recommendation, which we used
as testing data; more recent W3C specifications, devel-
oped with newer versions of XMLSPEC, were only avail-
able only in formatted (HTML, PS, PDF) form when we
began the project. (Starting in September 2005, XML
sources of some newer W3C specification drafts—e.g.,
XPATH, XSLT, and XQUERY—have again become avail-
able.) The XMLSPEC Guide [29] is a useful resource for
understanding the XMLSPEC DTD (although it describes
a later, slightly more feature-rich version). The original
1998 XSLT stylesheet is described in detail in the 2nd edi-
tion of Michael Kay’s XSLT reference [20]. Both the DTD
and the stylesheet are available from the book’s web page
(http://www.wrox.com).

XMLSPEC is similar to more elaborate XML-based docu-
ment schemas, such as DOCBOOK (http://www.docbook.
org/) and the Text Encoding Initiative (http://www.
tei-c.org/), in that it encodes the “logical” structure
of a document so that the same information can be pre-
sented in different styles and media. Here, we consider
only the task of transforming an XMLSPEC document into
a single HTML page, as shown in Figure 1.

Since both XMLSPEC and XHTML are used for document
markup, there are many similarities between their DTDs.
In both, a valid document file has distinct sections for
meta-data and for the content proper. The content has
three kinds of markup: top-level, or sectional, for hier-
archical document organization; medium-, or paragraph-
level, for chunks of actual content; and low-, or phrase-
level, for the content flow itself. More interesting for
our task, though, are the differences, which stem from
differences in purpose between logical and presentation
markup: XMLSPEC uses markup to indicate the role of a
piece of text in the discussion of a subject matter, while
HTML uses markup to instruct a browser how a piece of
text should be visually presented to the reader.

For example, the hierarchical document structure is rep-

resented explicitly in XMLSPEC by nested sectional ele-
ments div1, . . . , div4, while in HTML it is implied by
heading elements h1, . . . , h6 that interrupt the flow of
paragraph-level markup. Both formats include generic
paragraph-level elements—for example, enumerated and
bulleted lists (ol and ul in HTML vs olist and ulist in
XMLSPEC) and paragraphs (p in both). But XMLSPEC

also defines special-purpose variants like blist, which is
a list containing only bibliographic entries, and vcnote—
a special kind of paragraph for technical snippets called
validity constraint notes. Finally, at the phrase level,
where HTML elements like em, i, b decorate the flow of
character text with visual emphasis and the anchor ele-
ment a provides simple linking points and links for exter-
nal resources or locations in the document, their XML-
SPEC counterparts play more semantically-loaded roles.
For example, a termdef element encloses a phrase that
defines the meaning of a term (whose occurence in the
definition is marked by a term element) and can be linked
to from other parts of the document by element termref.
There are many more elements for specific roles, such as
language keywords (kw), references (specref) to other
parts of the specification, etc. This semantic specializa-
tion of elements allows one to vary independently not
only their visual representation, but also additional pro-
cessing such as creation of indexes and glossaries.

Another category is XMLSPEC elements containing
“structured data” of various kinds. The most interest-
ing example is the scrap element, which encapsulates
BNF rules for grammar productions; its formatting is dis-
cussed in detail in Section 4.

Most of the task of an XMLSPEC to HTML transformer is
thus a straightforward (often literally one-to-one) map-
ping from XMLSPEC to HTML element tags. But there
are several aspects that are more interesting, including
displaying structured data in a readable form, computing
section numbers based on the hierarchical positioning of
div elements, creating a table of contents, with entries
hyperlinked to the corresponding sections, and format-
ting the cross-references occurring in the document so
that they properly mention features of the referent, such
as title or its computed section number.

3 Structural Recursion

The processing model of XSLT is rather different from
the explicit control flow of traditional programming lan-
guages, including XTATIC, being based on an implicit re-
cursive traversal of the input document. After introduc-
ing the XSLT processing model and sketching how an
XTATIC application can simulate it explicitly, this section
discusses the main challenges of making this implemen-
tation strictly typed: (1) structuring its code to accomo-
date the constraints of typing and (2) fixing the typing
bugs inherited from the stylesheet.

3.1 Implicit Structural Recursion in
XSLT

An XSLT stylesheet is a collection of templates, each speci-
fying a computation to be performed on document nodes
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<body>
<div1 id=’sec-intro’> <head>Introduction</head>
<p>XML is an application profile or restricted form of SGML
<bibref ref=’ISO8879’/>.</p>

<div2 id=’sec-origin-goals’> <head>Origin and Goals</head>
<p>The design goals for XML are:
<olist>
<item><p>XML shall be usable over...</p></item>
<item><p>XML shall support...</p></item>
</olist></p>
</div2>
<div2 id=’sec-terminology’> <head>Terminology</head>
<p>The terminology used to describe XML...</p>
</div2></div1>
</body>

<back>
<div1 id=’sec-bibliography’> <head>References</head>
<blist>
<bibl id=’ISO8879’ key=’ISO 8879’>
ISO. <emph>ISO 8879:1986(E). Standard Generalized Markup
Language (SGML).</emph> First edition 1986-10-15.
[Geneva]: ISO, 1986. </bibl>
</blist>
</div1>
</back>

Figure 1. A sample XMLSPEC document fragment and its rendering via HTML

that satisfy a specified test condition. The execution of
a stylesheet proceeds in a single recursive pass over the
input document, in document order. For each node en-
countered during the traversal, the run time system se-
lects the most specific template whose test is satisfied by
the node and executes it. Consider, for example, the fol-

lowing template:1

<xsl:template match="olist">
<ol> <xsl:apply-templates/> </ol>

</xsl:template>

The test (match="olist") says that the template is ap-
plicable to XMLSPEC olist elements; for each such
element, the template produces an HTML ol ele-
ment. The contents of the ol are the result of a fur-
ther recursive traversal of the input: the instruction
<xsl:apply-templates> designates the location receiv-
ing the result of applying the same procedure of select-
ing and executing an appropriate template, to each child
node of the olist, in order. Since, according to the XML-
SPEC DTD, the only possible children of olist are item
elements, the template that gets invoked on them is

<xsl:template match="item">
<li> <xsl:apply-templates/> </li>

</xsl:template>

which similarly constructs an HTML li element from
each XMLSPEC item element. The recursive descent of
the traversal terminates either on the document’s text
nodes, which get copied into the output, or on templates
that do not call others via <xsl:apply-templates/> or a
similar instruction.

1The XML-based syntax is a controversial aspect of
XSLT. Readers unfamiliar with the language only need
to know that elements starting with the xsl: prefix are
XSLT instructions, while others are literal elements con-
structing the output.

In general, the test condition in a template’s match at-
tribute is specified by an XSLT pattern, which is written in
the downward subset of XPATH. A template is applicable
to an element when its pattern matches it, i.e., there is
an ancestor node, starting from which the pattern (as a
path) would select the element. More than one template
can be applicable to a document node, but there is always
at least one, since XSLT predefines a default template ap-
plicable to any element, whose action is to proceed with
the traversal without producing any output. In the case
of multiple applicable templates, only one of them gets
selected for execution according to a set of priority rules
whose particulars are not important for this discussion.

The bulk of the XMLSPEC stylesheet consists of tem-
plates similar to these, performing simple tag-to-tag
transformations—sometimes augmented with other out-
put whose generation depends only on the current ele-
ment. This processing style, known as structural recur-
sion [1, 5, 6], is the backbone of the XSLT processing
model. However, since a simple one-pass structural re-
cursion alone would not be sufficient for many appli-
cations, XSLT augments it with more features, some of
which we will see later.

3.2 Types and Patterns in XTATIC

Before describing our implementation of the formatter,
let us pause, briefly, to review the XML types and patterns
found in XTATIC.

XTATIC’s types are composed from XML element tags
using the familiar regular expression operators of con-
catenation (“,”), alternation (“|”), repetition (“*”), and
non-empty repetition (“+”). They can also contain type
names, which are bound to their definitions by top-level
regtype declarations. For example, here is a fragment of
the XTATIC type declarations corresponding to the XML-
SPEC DTD:
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regtype s_olist [[ <olist> s_item+ </> ]]
regtype s_item [[ <item> s_obj_mix+ </> ]]
regtype s_obj_mix [[ s_p | s_olist | s_ulist |

... ]]

We use the prefix s_ for type names coming from XML-
SPEC, and, later, h_ for names coming from XHTML.
The double square brackets are used to separate regu-

lar types, patterns, and XML values from surrounding C�

code. (The ellipsis ... is not part of XTATIC syntax; it just
indicates that the definition of s_obj_mix is larger than
shown.)

The semantics of XML types is similar to that of regu-
lar expressions on strings: a type is the set of values
described by the type’s definition, except that the val-
ues are XML document fragments—i.e. sequences of
trees built from XML element tags and characters. For
example, the values of type s_item are single XML el-
ements of the form <item> . . .</item> whose contents
are non-empty sequences of elements described by the
union type s_obj_mix. The predefined type xml describes
all well-formed XML values. The brackets with no con-
tent, [[]], denote the type containing only the empty
sequence (when used where a type is expected), as well
as the empty sequence value itself (when used where a
value is expected).

A regular pattern is a type annotated with variables. For
example,

[[<olist> s_item first, s_item+ rest </>]]

is a pattern with variables first and rest that will be
bound to values of types s_item and s_item+ after a suc-
cessful match. An XML value matches a pattern when
the value belongs to the type obtained by erasing the
bound variables. These patterns are the main construct
that XTATIC programs use to analyze XML.

3.3 Explicit Structural Recursion in
XTATIC

Implementing an untyped equivalent of the XMLSPEC

stylesheet’s behavior in XTATIC is straightforward: it can
be written as a collection of mutually recursive static class
methods, one per template, plus a dispatcher method that
simulates the role of the XSLT run-time system. Figure 2
shows the fragments of this implementation correspond-
ing to the two XSLT templates discussed above.

The two template methods have a similar structure.
TemplateItem, for example, declares s_item, the type of
XMLSPEC elements on which it can operate, as its in-
put type; then, relying on the fact that the argument
elt can only contain an item element, it uses a pat-
tern assignment to extract the element’s content into the
variable cont; finally, it builds and returns the result-
ing HTML li element. The contents of li come from a
call to the method Dispatch, which plays the role of the
<xsl:apply-templates> instruction. Note that the pat-
tern in the assignment follows the definition of the type
s_item.

The Dispatch method uses a combination of C� while
and XTATIC match statements to consume the input se-
quence from the variable seq and produce the output se-
quence in the variable res. XTATIC’s match statement is

similar to C�’s switch, but its case tests are patterns and
therefore can assign fragments of the input to variables
for use in the clause’s body. The full code of Dispatch
contains a case for each XMLSPEC element, except for
elements involved in presenting structured data, which
are not covered by the dispatching framework (see Sec-
tion 4).

3.4 Typing the Recursion

Our goal, however, is to implement a well-typed
formatter—i.e., one whose output is, by construction,
valid HTML for any valid XMLSPEC input. Therefore, we
need to give more precise output types to our methods.

Almost every template method returns a sequence of one
or more HTML elements that it creates itself; in these
cases, the precise output type for the method can be in-
ferred from its code alone. For example, TemplateItem is
intended to return values of type h_li. Precise template
method types induce a precise result type for Dispatch,
which, instead of xml, now yields the union of the result
types of all the templates it invokes.

This type, however, is too large. For example, in order for
TemplateOlist to return a valid ol element, the static re-
sult type of the recursive call to Dispatch at this point
must contain only li elements. Thus, instead of a single
Dispatch method, we need to define several dispatchers,
each invoking only the subset of template methods suit-
able for a particular context and therefore ensuring ap-
propriate input and output types. For example, the typed
version of TemplateItem becomes:

static [[h_li]] TemplateItem ([[s_item]] elt){
[[<item>s_obj_mix+ cont</>]] = elt;
return [[<li>DispatchInItem(cont)</>]];

}

Besides the precise return type and the call to the cus-
tom dispatcher DispatchInItem, it also analyzes input
elt by a pattern that strictly follows the definition of type
s_item and therefore gives the variable cont a more pre-
cise type, on which DispatchInItem can rely.

In general, the dispatcher used by a template must be
prepared to handle any input that the template can pass
to it, and its output must be acceptable for the use the
template has for it. Any collection of dispatchers that
satisfy these constraints for all templates would give a
type-correct formatter. For a few of the templates, how-
ever, it is not possible to compose a well-typed dispatcher
from the template methods that would faithfully repro-
duce the operation of the stylesheet’s templates. These
are instances of genuine processing bugs in the original
XSLT application, which can only be fixed by modifying
existing or writing additional template code.

In a few cases, the bugs are caused by subtle incompat-
ibilities between XMLSPEC and HTML that are possible
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static [[xml]] TemplateOlist ([[s_olist]] elt){
[[<olist>xml cont</>]] = elt;
return [[<ol>Dispatch(cont)</>]];

}

static [[xml]] TemplateItem ([[s_item]] elt){
[[<item>xml cont</>]] = elt;
return [[<li>Dispatch(cont)</>]];

}

static [[xml]] Dispatch ([[xml]] seq) {
[[xml]] res = [[]];
while (!seq.Equals([[]])) {
match (seq) {

case [[s_olist elt, xml rest]]:
res = [[res, TemplateOlist(elt)]];
seq = rest;

case [[s_item elt, xml rest]]:
res = [[res, TemplateItem(elt)]];
seq = rest;

//...... }}
return res; }

Figure 2. A fragment of the untyped structural recursion code in XTATIC.

(though a bit tricky) to smooth out in XTATIC, but appar-
ently not in XSLT, so it is instructive to discuss them and
our solutions in some detail.

3.5 Bugs and Fixes

XMLSPEC defines an element ednote for recording ed-
itorial remarks. The DTD allows ednote to appear in
both paragraph- and phrase-level contexts, but the XSLT
stylesheet contains only one template for ednote, which
formats it as blockquote, a paragraph-level HTML ele-
ment presented in browsers as an indented paragraph.
Clearly, appearances of ednote in phrase-level contexts
(e.g., inside head elements of section titles) should be
formatted differently. To handle this, we implement a
second template method for ednote, with a phrase-level-
friendly return type. A dispatcher that has the ednote
element in its input type processes it with whichever of
the two template methods that is compatible with the dis-
patcher’s return type.

A similar, but trickier, problem arises in the formatting
of another phrase-level XMLSPEC element, quote. This
element is different from most others: rather than cre-
ating a new HTML element or two, the corresponding
template just surrounds the result of recursively format-
ting the quote’s contents with quotation mark characters.
The content type of quote is such that it gets transformed
into output belonging to the most general HTML phrase-
level type, h_Inline. One of the elements that can occur
inside h_Inline is the anchor element a, and the content
of the latter is described by the subtype h_a_content of
h_Inline, which disallows a elements, prohibiting nested
anchors. The quote element itself, however, can occur in
an XMLSPEC context that ends up formatted inside an a
element, possibly producing a nested anchor. The resolu-
tion in XTATIC is similar to the one for ednote: we write
two template methods for quote, both just adding quota-
tion marks, but to the results coming from two different
dispatchers.

The solutions for these two problems work because, by
explicitly implementing the recursive traversal as a com-
bination of calls to several distinct dispatcher methods,
our algorithm tracks (static) information about its cur-
rent context in the input document. In principle, an
XSLT stylesheet could also implement processing alter-
natives for ednote and quote elements, but making the
context-dependent decision of which one of them to in-

voke would be more difficult. (None of the several pos-
sibilities we can see is completely satisfactory. Using
more complex path patterns in match attributes, such as
div1/ednote and head/ednote, which test for the par-
ent element, would require writing as many templates
for ednote as there are possible parents—each such tem-
plate’s body duplicating one of the only two handlers. We
can write a single template for ednote that accesses the
parent node and determines its type via a <xsl:choose>
or a chain of <xsl:if> instructions, which again have to
list all the possibilities. Other options include use of tem-
plate modes and template parameters, but these are also
quite heavy.)

The typing bug that required the most sophisticated fix
in our reimplementation is caused by one of the most
straightforward-looking templates in the stylesheet:

<xsl:template match="p">
<p> <xsl:apply-templates/> </p>

</xsl:template>

This template transforms the XMLSPEC paragraph ele-
ment p into an HTML element of the same name. The
trouble is, an HTML p can contain only character data
and phrase-level elements, while an XMLSPEC p can also
contain select paragraph-level elements. Consequently,
this template can produce an HTML p with paragraph-
level elements, such as lists (ol, etc.), as children.

The sources of the XML Recommendation actually con-
tain quite a few instances of p elements that tickle this
bug. Since it affects validity of the generated HTML, the
bug was addressed in the later versions of the stylesheet
by a hack: when an element like ol appears inside a
paragraph, the stylesheet adds to the output tree a text
node whose content is “</p>”, then formats the ol, and
then generates another text node whose content is “<p>”.
This does not restore the validity of the in-memory tree
produced by the stylesheet, but only of its textual seri-
alization, implying that the stylesheet cannot be used in
pipelining scenarios without re-parsing and re-validation
of its output. We do not see any natural way to fix this
bug in XSLT without changing the XMLSPEC DTD.

Our method TemplateP implements the above fix in a
fully typed way. It uses a dispatcher that transforms
the contents of XMLSPEC p into a sequence of text and
phrase- and paragraph-level HTML elements, and then
processes it to find (with the use of XTATIC patterns)
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static [[h_block*]] FlowIntoBlocks ([[h_Flow]] flow) {
[[h_block*]] res = [[]];
while (!flow.Equals([[]])) {
match (flow) {

case [[(pcchar | h_inline | h_misc_inline)+ inl, h_Flow rest]]:
res = [[res, <p>inl</>]];
flow = rest;

case [[h_block+ blocks, h_Flow rest]]:
res = [[res, blocks]];
flow = rest;

case [[(h_form | h_noscript) unexpected, h_Flow rest ]]:
Error("Unexpected input in FlowIntoBlocks");
flow = rest;

case [[]]:Error("empty case");
}}
return res;

}
Figure 3. The method performing an HTML processing pass to detect implicit paragraphs.

longest subsequences of text and phrase-level elements
and wrap them as HTML p elements. Figure 3 shows the
method that performs the HTML processing pass. The
final result of TemplateP is paragraph-level content.

From what we have said so far, it might appear that
there is another way to implement TemplateP, not in-
volving HTML post-processing: we could use patterns to
find longest subsequences of XMLSPEC elements and text
to be transformed into phrase-level HTML, apply an ap-
propriate dispatcher to them, and wrap the results as p
elements. In fact, the approach we sketched above is
the only one that works, because of another problem—
this one caused by XMLSPEC termdef elements occur-
ring in the content of p. These elements are used to
designate boundaries of formal definitions in a specifica-
tion. As with quote, the processing of a termdef does not
create an HTML element—it just returns an anchor ele-
ment a followed by the sequence resulting from process-
ing the contents. This sequence can contain both phrase-
and paragraph-level elements. If termdef elements only
occurred surrounded by paragraph-level elements, we
could implement TemplateTermdef like TemplateP. How-
ever, when an occurrence of termdef in p is directly pre-
ceded by phrase-producing content and the result pro-
duced by the termdef also starts with phrase-level con-
tent, the two must be joined into a single HTML para-
graph. Therefore, to avoid creating spurious paragraph
breaks, we define TemplateTermdef to just return the
result of recursive processing of its contents. The lat-
ter joins the surrounding HTML and gets processed in
TemplateP to detect the paragraphs.

Along with these significant typing difficulties, XTATIC’s
typechecker uncovered several more minor bugs in the
stylesheet that also affected validity, but that were easy
to fix by small changes to the output.

4 Structured Data

XMLSPEC defines several collections of elements for
structured data. This section employs the most so-
phisticated of these—elements for representing BNF
grammars—as an example showing how XTATIC and

Figure 4. An HTML table generated from an XMLSPEC

grammar

XSLT handle the challenges of rendering structured data
for visual presentation.

4.1 BNF Productions

A grammar fragment is represented in XMLSPEC as a
sequence of production elements prod, each having the
structure described by the following DTD declaration:

<!ELEMENT prod (lhs, (rhs, (com|wfc|vc)*)+)>

That is, a production consists of a left-hand side con-
taining exactly one lhs element, which introduces the
non-terminal defined by the production, and a right-hand
side, which defines the unfolding of the non-terminal and
consists of a sequence of one or more element groups.
Each group contains exactly one rhs element, which rep-
resents a fragment of the unfolding (usually, an alter-
native BNF clause), possibly accompanied by side con-
ditions in the form of a comment (com), or a reference
to a well-formedness (wfc) or validity (vc) constraint. It
is not important to know about the internals of the ele-
ments inside prod. Each of them gets formatted in the
usual way as an HTML fragment to be placed inside a
table cell; the layout of this table is our present concern.

Figure 4 shows an example. The generated table has five
columns containing, respectively, an automatically gen-
erated sequence number for the production, the name of
the non-terminal being defined, the symbol ::=, the frag-
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ments of the non-terminal’s definition, and the comments
and constraints.

The challenge here is assigning appropriate contents to
the table’s cells based on the relative positioning of var-
ious elements in the flat sequence of prod’s children,
rather than by simply reflecting a nested structure that
is already present in the input.

4.2 XTATIC Solution

XTATIC’s patterns address this challenge naturally. Note
that, in each production, the element lhs contributes
only to the starting of the first table row corresponding
to the production, while the rest of the first row, as well
as each of the remaining rows, is generated from a small
“chunk” of prod’s children containing at most one rhs ele-
ment and at most one com, wfc or vc element. This chunk
can be described by the type

regtype xs_rhschunk
[[(s_rhs, xs_constr_mix?) | xs_constr_mix]]

regtype xs_constr_mix
[[s_com | s_wfc | s_vc]]

and, using this type, we can easily write patterns that split
the sequence of prod children into the chunks necessary
for creating the table row-by-row; the full code appears in
Figure 5. The method TemplateProd starts by extracting
from the production the name (lhs) of its non-terminal
and the first chunk of the definition. It uses these to con-
struct the first table row corresponding to the production
in the newly created variable res. The number placed in
the first table cell is extracted, based on the production’s
identifier (prodid), from an index data structure cre-
ated before processing the document (this process is de-
scribed in Section 5). The contents of chunk is processed
by a separate method, MkRhsChunk, which performs a
straightforward match on the two alternatives in the defi-
nition of xs_rhschunk type and invokes TemplateRhs and
DispatchFlow to process the chunk’s elements. The sec-
ond part of TemplateProd is a foreach statement that
iterates over the rest of the production by cutting con-
secutive chunks off it with the [[xs_rhschunk chunk]]
pattern, while adding to res a new table row for each
chunk.

4.3 XSLT Solution

Performing the same computation in XSLT is more diffi-
cult. We start with a high-level outline of the stylesheet’s
structure.

A child element of an instance of prod can be classi-
fied as a “starter” element if it provides data for the first
non-empty cell in the HTML table’s row; otherwise as a
“follow-up” element. Accordingly, the stylesheet defines
two templates for each child element type of prod: a
“cell” template that just performs formatting inside the
HTML table’s cell (in other words, a cell template is an or-
dinary structural recursion template in the sense of Sec-
tion 3), and a “starter” template that is supposed to be
executed only on starter elements, performing, among
other things, row padding with empty cells.

Now, the order of template execution on an instance of
prod is as follows. First, the template for prod detects
all the starter elements among the prod’s children and
invokes a type-appropriate starter template on each. The
starter template pads the row with empty cells (or, in case
of lhs, starts a new row, and makes cells with a running
sequence number and the ::= symbol), calls an appro-
priate cell template on the current element to format its
own cell, and finally formats any remaining cells in the
row by applying cell templates to the appropriate follow-
ing siblings of the current element.

This algorithm requires features of XSLT that go beyond
structural recursion—the ability to control selection of
both templates and nodes during traversal (to invoke ei-
ther starter or cell templates as appropriate) and to ob-
tain information about the surroundings of the current
node. The next few paragraphs review these XSLT fea-
tures.

The selection of templates to be considered for applica-
tion when executing xsl:apply-templates can be con-
trolled in XSLT by template modes. A template’s definition
can contain (in the start tag of xsl:template element) an
attribute mode specifying the mode of this template. E.g.,
the “cell” templates in our stylesheet are headed by tags
like

<xsl:template match="rhs" mode="cell">

Then, an xsl:apply-templates instruction that also
mentions the mode attribute, e.g.

<xsl:apply-templates mode="cell">

considers only the templates marked by the same mode.

To control the selection of nodes to be processed by fur-
ther traversal, the XSLT xsl:apply-templates instruc-
tion can be augmented with the attribute select speci-
fying the sequence of nodes to be processed next, instead
of the default children sequence of the current element.
For example, the prod template restricts further process-
ing to starter elements only by executing the instruction

<xsl:apply-templates
select="child::*
[self::lhs
or (self::rhs

and not(preceding-sibling::*
[1][self::lhs]))

or ((self::vc or self::wfc or self::com)
and not(preceding-sibling::*

[1][self::rhs]))
]"/>

The contents of select is an XPATH path expression that,
when applied to a node, produces a sequence (possibly
empty) of nodes from the document that are related to
the original node as specified by the path.

For our current purposes, we can think of an XPATH path

as an expression of the form2 a::n[q1] . . .[qk] where a

2More precisely, the construction described here is a
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static [[h_tr+]] TemplateProd ([[s_prod]] markup) {
[[<prod id=prodid> <lhs>pcdata lhs</>, (s_rhs, xs_constr_mix?) chunk,

xs_rhschunk* rest </prod>]] = markup;
[[h_tr+]] res =

[[ <tr valign=‘baseline‘>
<td><a name=prodid/>, ‘[‘,prodindex.Number(prodid),‘]‘</>,
<td>lhs</>, <td>‘::=‘</>, MkRhsChunk(chunk) </> ]];

foreach ([[xs_rhschunk chunk]] in rest) {
res = [[ res, <tr valign=‘baseline‘>

<td/>, <td/>, <td/>, MkRhsChunk(chunk) </tr> ]]; }
return res;

}
static [[h_td, h_td]] MkRhsChunk ([[xs_rhschunk]] chunk) {
match (chunk) {

case [[ s_rhs rhs, xs_constr_mix? constrOPT ]]:
return [[ <td>TemplateRhs(rhs)</>, <td>DispatchFlow(constrOPT)</>]];

case [[ xs_constr_mix constr ]]:
return [[ <td/>, <td>DispatchFlow(constr)</>]]; }

}
Figure 5. BNF production formatting in XTATIC.

is an axis, n is a node test, and qi are predicates. The
execution of a path consists of taking the sequence of
nodes specified by the axis a and successively pruning
it to contain only the nodes satisfying both the node
test n and all the predicates qi. XPATH predefines sev-
eral kinds of axes. The ones relevant to our examples
are self, that produces the single-element sequence con-
sisting of the current node, child, that gives the chil-
dren of the current node, and preceding-sibling and
following-sibling that give the corresponding sibling
elements of the current node. The preceding-sibling
axis produces the nodes in reverse document order, i.e.
the closest sibling comes first. A node test n is either an
element name (as in, e.g., self::lhs), which leaves the
node in the result only if the node’s name is the same
as the test’s, or a wildcard * (as in child::*), which is
satisfied by any node. A predicate q can be numeric or
boolean. A numeric predicate specifies a 1-based index
of the node to be selected from the current sequence.
E.g., the path preceding-sibling::*[1] selects the clos-
est sibling preceding the current node in the document
(or the empty sequence if the current node is the first
child of its parent). A boolean predicate is built, using
traditional boolean connectives and, or and not, from el-
ementary predicates, which coincide with path expres-
sions. When interpreted as a predicate, a path expression
is false when it returns the empty sequence, and is true
otherwise.

Taking these explanations into account, one can see
why the above select expression restricts operation of
xsl:apply-templates to elements that would start a new
row in the HTML table. Technically, the path selects (by
child::*) all children of prod that are (according to the
following predicate) either the lhs element, or an rhs
element not immediately preceded by the lhs, or a side
condition element not immediately preceded by an rhs.
The templates that get invoked on the elements so se-
lected are starter templates, since they, as well as the
xsl:apply-templates instruction, do not specify a mode
attribute. Since mode is specified by cell templates cor-

step expression s, and a general path expression p is ei-
ther a step s, or an expression of the form p/s.

responding to the same elements, the cell templates are
only invoked by instructions at the end of starter tem-
plates, like this one in the starter template for rhs:

<td><xsl:apply-templates mode="cell"
select="following-sibling::*
[1][self::vc or self::wfc or self::com]"/>

</td>

More detailed explanation of BNF formatting in the
stylesheet can be found in [20, 21].

4.4 Observations

The path expressions from the BNF formatting task
shown above are quite complicated—expressions of
such complexity rarely appear in document-oriented
stylesheets and their occurrences seem to indicate pro-
cessing of the islands of structured data embedded in-
side documents. The XPATH fragment needed for han-
dling structured data is more complicated and difficult
to master, we believe, than regular patterns, but it can
be learned. But even knowing this fragment, the major
difficulty for someone trying to understand how BNF for-
matting works in the XSLT stylesheet comes from the fact
that processing of a contiguous piece of data has to be
distributed across several non-contiguous pieces of code,
connections between which are only loosely indicated.
By contrast, the ability of XTATIC’s match statement to
keep together inspection and transformation of a piece
of data constituting a logical unit allowed us to write
processing methods (Figure 5) whose responsibilities can
be clearly specified in terms of their input-output behav-
ior and whose code explicitly indicates dependencies as
method calls.

Another small convenience available with regular pat-
terns but not with XPATH paths is the ability to name type
fragments and later reference them in patterns. For ex-
ample, our definition of the type xs_constr_mix could
have improved clarity of the later patterns, where it is
used multiple times, while no similar XPATH shortcut is
available for [self::vc or self::wfc or self::com],
which is also used several times in the stylesheet.
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5 Gathering Global Information

The data model of XSLT is more complex than the one
of XTATIC, supporting the notion of a document as a
container of interconnected nodes and a correspond-
ing assortment of basic operations that take advantage
of the richer data model. Several parts of the XML-
SPEC stylesheet rely on these additional XSLT features.
This section explains how we handled these tasks in
XTATIC, sometimes finding a generic reusable solution,
other times relying on properties specific to XMLSPEC.

In XTATIC, XML values are lightweight, immutable, share-
able trees, which must be inspected in a top-down fash-
ion. By contrase, given a node in XSLT, one can re-
trieve the root of the document it belongs to, explore the
document in any direction—including towards ancestors
and siblings—and randomly access nodes that have been
marked by special ID attributes, which are specified to
be globally unique within a valid document. Supporting
all this structure makes run-time representations of XSLT
values more heavyweight, but it also provides behind-
the-scenes infrastructure for several common document-
processing tasks that require information about the doc-
ument as a whole. These include generation of section
numbers, creating the table of contents, and formatting
cross-references. An XTATIC version of the XMLSPEC for-
matter has to handle these tasks by explicitly computing
a good deal of information that is automatically provided
to a stylesheet by the XSLT run-time system.

The XMLSPEC cross-referencing elements can be classi-
fied into three groups, depending on the computational
needs of their formatting: “hard-wired,” “fetched,” and
“synthesized.”

The XMLSPEC element for a hard-wired reference
like <termref def="dt-xml-doc"> XML documents
</termref> contains all the data that needs to ap-
pear in its HTML representation, which is <a href =
"#dt-xml-doc"> XML documents </a>. Such references
are straightforward to process both in XSLT and XTATIC.

In a fetched reference, data for the HTML presenta-
tion must be retrieved from the location in the in-
put document to which the reference points. The
elements wfc and vc (which appeared in Section 4)
are fetched elements. For example, the element <wfc
def="NoExternalRefs"/> points with its def attribute to
the element

<wfcnote id="NoExternalRefs">
<head>No External Entity References</head>
<p>Attribute values cannot contain

external entity references.</p>
</wfcnote>

and should be formatted as an HTML anchor

<a href="#NoExternalRefs">No External
Entity References</a>

whose contents are a heading fetched from the wfcnote
element. The stylesheet obtains the heading with the
XSLT instruction

<xsl:value-of select="id(@def)/head"/>

Here, @def is the value of the wfc’s def attribute, and
id() is a built-in XSLT function that, given a token, re-
turns the node of the current element that carries a so-
called ID attribute with the token as its value. In this
example, id() returns the above wfcnote element, and
the following XPATH expression extracts the contents of
its head child.

To replicate the functionality of id() in XTATIC, our for-
matter explicitly builds an index datastructure that maps
IDs to elements. Fortunately, this indexing procedure is
completely generic: our implementation is encapsulated
in an IdIndex class that can be reused in other appli-
cations requiring similar ID support. Its usage consists of
creating an IdIndex object, say idindex, at the beginning
of processing by passing the document’s root element to
the IdIndex constructor and then using method calls like
idindex.Id(x) to retrieve elements from the internally
maintained index.

A synthesized reference is yet more complicated: its
HTML formatting contains computed data not directly
present in the source document. For example, the el-
ement <specref ref="sec-predefined-ent"/> uses the
ID mechanism discussed above to point to the sectional
element that starts as follows:

<div2 id="sec-predefined-ent">
<head>Predefined Entities</head>

The HTML formatting of this reference,

<a href="#sec-predefined-ent">
[4.6 Predefined Entities]</a>

includes a computed section number.

The XSLT stylesheet computes the section number by
fetching the above div2 element via the id() function,
and then invoking on it the instruction

<xsl:number level="multiple"
count="inform-div1|div1|div2|div3|div4"
format="1.1 "/>

(which appears to have been specially designed for this
purpose!). This instruction uses the specifications in its
attributes to produce a formatted number.

To approximate the behavior of this instruction, we create
another index, encapsulated by the class NumberIndex,
that, for each sectional element in the document, maps
the element’s ID to the section’s number. Again, our im-
plementation is re-usable: the index’s creation is param-
eterized by a boolean function that recognizes section-
forming elements, and by an object of the Countkeeper
class that provides an ADT for keeping track of hierar-
chical section numbers and formatting them as strings.
These parameters roughly mimic the above three param-
eter attributes of xsl:number. We use another instance
of NumberIndex to keep track of the sequence numbers of
BNF grammar productions.
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The correct operation of NumberIndex depends on the ex-
istence of a unique identity for each sectional element—
something that comes for free from the data model in the
XSLT version. We use the id attribute, when one is pro-
vided, for this purpose. Otherwise (in XMLSPEC, id is
optional on div elements), we create the identity by con-
catenating the words from the (mandatory) head element
located under the div. In general, this does not guaran-
tee uniqueness. However, the stylesheet uses the same
trick to generate hyperlinks from the table of contents to
titles in the main body, so we assume it is sufficient for the
present application. With more effort, it should be pos-
sible to implement the interface of NumberIndex so that
it mimics the xsl:number instruction with better fidelity,
but we did not yet pursue this direction.

Besides reference formatting, computed sequence num-
bers stored in NumberIndex objects are used when creat-
ing section titles and grammar production entries while
formatting the body of the document, as well as dur-
ing creation of the table of contents. This differs from
the stylesheet, which invokes the xsl:number instruc-
tion anew whenever a number needs to be generated—
indeed, a naive XSLT implementation could end up re-
peating the same computation many times.

The table of contents itself is created by a separate doc-
ument traversal, after the creation of the indexes but
before formatting the document. It is implemented by
three nested foreach loops, one for each of the three sec-
tional levels (div1, div2, div3) that need to be reflected
in the table of contents. This almost literally repeats the
code in the stylesheet, which also uses explicit traversal
(xsl:for-each instructions) for this task.

Each of the tasks discussed in this section (creating the
table of contents and the indexes for IDs, section num-
bers, and production numbers) requires a pass over the
document in addition to the main formatting pass. We
experimented with combining some of these traversals
(e.g., formatting the table of contents concurrently with
the body of the specification, or creating all the indexes
together), but concluded that increased complexity of the
application code did not justify the minor efficiency gains.

Overall, we have been satisfied, in this application, with
the ability of the general-purpose facilities of XTATIC

(those it inherits from C�) to simulate the whole-
document features of XSLT, even without direct support
from XTATIC’s XML data model.

6 Related Work

Further details about XTATIC can be found in several
earlier papers. The core language design is presented
in [14], which shows how to integrate the object and tree
data models and establishes basic soundness results. A
technique for compiling regular patterns based on match-
ing automata is described in [26] and extended to include
type-based optimization in [28]. The run-time system
of XTATIC is described in [12]. A critical evaluation of
the main language design choices can be found in [13].
These papers, particularly [13], also offer detailed com-

parisons between XTATIC and a number of related lan-
guage designs; we refer the interested reader to these
existing discussions, rather than repeating them here.

Most of the recent crop of statically typed XML processing
languages have been tested on non-trivial applications,
but only rarely have these experiences been recorded in
print. A notable exception is the XQUERY Use Cases[7]—
a collection of small examples specifically designed to il-
lustrate typical tasks for which XQUERY is expected to be
used. Although they were created to illustrate the ca-
pabilities of particular features of XQUERY rather than
to address a particular large application, they reflect the
practical experience of the XQUERY editors and cover a
usefully diverse set of small transformation and extrac-
tion tasks. In the absence of more practical benchmarks,
the XQUERY use cases have been used to demonstrate ca-
pabilities of competing technologies, such as XSLT and
CQL [3].

Kay’s book [20, 21], which suggested the XMLSPEC ap-
plication for our project, contains two more case studies
of substantial XSLT applications: HTML-based browsing
of structured genealogical data and an XSLT solution to
the classic problem of a knight’s tour of the chessboard.
A brief overview of typing errors from more than a dozen
real-life XSLT stylesheets appears in [30].

7 Conclusions

XSLT and XTATIC are quite different animals. XSLT is
a high-level language with processing model founded
in structural recursion, path-based XML manipulation
primitives, and no static type system. XTATIC extends a
general-purpose programming language with a more fa-
miliar imperative processing model and processes XML
using regular patterns, which are tightly coupled to its
static XML type system. The experience described in this
paper shows that, like XSLT, XTATIC is well suited for im-
plementing at least some document-processing applica-
tions, and that, unlike XSLT, its flexible static XML type
system is capable of exposing a range of design and im-
plementation errors and facilitating fixes. We have also
observed that, even in this single application, there are
some practical programming tasks that are much better
served by XSLT than by XTATIC and some where XTATIC is
significantly better than XSLT.

Designing a strictly typed structural recursion to match
the behavior of an existing untyped implementation
turned out to be a surprisingly labor-intensive process.
The discussion in Section 3 demonstrates that mimicking
the implicit structural recursion of XSLT by explicit re-
cursive code is possible, even while ensuring strict static
typing, smoothing architectural incompatibilities of the
input and output DTDs, and maintaining a clean pro-
gram organization that bears a close resemblance to the
original XSLT code. Unfortunately, the details of the so-
lution described there required significant effort to dis-
cover, over multiple cycles of trial and error. A major
difficulty that one faces during type debugging is finding
answers to lots of questions about relationships between
types from a large collection that a DTD like XMLSPEC

or XHTML constitutes. We hope that reading about our
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experience could help programmers facing similar typ-
ing tasks to find their solutions faster. It is likely, how-
ever, that the amount and difficulty of work needed to
figure out a correct solution can be intimidating and pro-

hibitive for a typical XML-literate C� programmer in a
typical project. If worst comes to worst, XTATIC lets one
to escape typing quandaries (and postpone discovery of
typing problems till run time) by using the generic xml
type and unsafe casts. Taking these difficulties into ac-
count, the refined typing of XTATIC might be considered
overkill for one-time-use scripts, where it may be easier to
just fix the bugs upon running into their manifestations.
On the other hand, the benefits of early error discov-
ery and safety guarantees of well-typed code—compared
to the current mainstream technologies where only test-
ing is available—can outweigh the development costs in
projects aiming to create reusable document processing
tools.

Another conclusion from our experience is that XSLT
templates—especially in their simplest form, unburdened
by other XSLT features like non-downward paths—are a
very convenient approach to programming structural re-
cursion. A template-like construct for implementing local
structural recursion (i.e., traversals that can be explicitly
applied to chosen document fragments as opposed to be-
ing a carrier of the whole program’s computation) would
be a very useful addition to XML processing languages
with explicit control flow. It would be necessary, how-
ever, for this construct to be accompanied by expressive
and flexible typing rules that minimally burden the pro-
grammer.

However, having discussed these difficulties with XTATIC,
we should also emphasize that XSLT, for its part, turned
out to be convoluted (or worse) when faced with the
need to deviate from straightforward structural recur-
sion. For the most significant typing bugs discussed in
Section 3, we do not see how they could be eliminated
from the XSLT stylesheet in a natural and type-safe way
without revising the XMLSPEC DTD; also, processing of
structured data (Section 4) is much trickier in XSLT.

It would also be interesting to see how the original XML-
SPEC stylesheet might be adapted to a statically typed
variant of XSLT. Even though XSLT 1.0 [9] is officially
untyped, there is now a proposal [30] and implementa-
tion of data-flow based typechecking of XSLT stylesheets.
The draft of XSLT 2.0 [22] describes only a dynamic type
system, leaving possible static variants to the discretion
of implementations.

Some of the observations made in this paper in the con-
text of XTATIC and XSLT may be applicable to other
XML programming languages. The advantages of reg-
ular patterns over paths for processing structured data
(Section 4) would also hold in XDUCE and CDUCE, which
also use patterns as the primary data inspection mech-
anism, compared to XQUERY, XJ, XACT, or Cω, which
use paths. Any language in the XDuce family will have
to mimic the implicit structural recursion of XSLT by ex-
plicit traversal via mutually recursive functions, as we did
in Section 3. And since obtaining statically typed trans-
formations in these languages requires specifying types

of functions, they are likely to experience similar difficul-
ties statically typing this recursion. It is possible, how-
ever, that other features found in current descendants
of the original XDuce, such as Hosoya’s regular pattern
filters [16] and CDUCE’s overloaded functions with dy-
namic dispatch, could mitigate some of the difficulties.
On the other hand, we suspect that the nominal character
of the type systems of XQUERY, XJ, and Cω might compli-
cate the task. XACT citexact2003, by contrast, might have
an easier time with typing structural recursion, thanks
to its typechecking via data flow analysis, which requires
typing specifications only for inputs and outputs of whole
programs. (A new paper on XACT, presented at this work-
shop, introduces optional type annotations [24] with the
goal to improve modularity of typechecking; these might
interfere with the ease of the task in question.) Pro-
grams in all these languages, except XJ, XQUERY, and,
possibly, Cω, would need to maintain auxiliary data struc-
tures for global document information similar to ours
in Section 5, since all of them have chosen light-weight
shared tree representations for XML data. These are, of
course, only speculations on our part—real observations
can only come from implementations of similar applica-
tions in these languages.
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Abstract
XACT is an extension of Java for making type-safe XML transfor-
mations. Unlike other approaches, XACT provides a programming
model based on XML templates and XPath together with a type
checker based on data-flow analysis.

We show how to extend the data-flow analysis technique used in
the XACT system to support XML Schema as type formalism. The
technique is able to model advanced features, such as type deriva-
tions and overloaded local element declarations, and also datatypes
of attribute values and character data. Moreover, we introduce op-
tional type annotations to improve modularity of the type checking.

The resulting system supports a flexible style of programming
XML transformations and provides static guarantees of validity of
the generated XML data.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features; D.2.4 [Software Verification]: Valida-
tion; I.7.2 [Document and Text Processing]: Computing
Methodologies

General Terms
Languages, Design, Verification

Keywords
XML, XML Schema, Java, language design, static analysis

1 Introduction
The overall goal of the XACT project is to integrate XML into
general-purpose programming languages, in particular Java, such
that programming of XML transformations can become easier and
safer than with the existing approaches. Specifically, we aim for a
system that supports a high-level and flexible programming style,
permits an efficient runtime model, and has the ability to statically
guarantee validity of generated XML data.

In previous papers, see [15, 14], we have presented the first steps
of our proposal for a system that fulfills these requirements. Our
∗Supported by the Carlsberg Foundation contract number 04-0080.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

language, XACT, is an extension of Java where XML fragments
can be manipulated through a notion of XML templates using XPath
for navigation. Static guarantees of validity are provided by a spe-
cial data-flow analysis that builds on a lattice structure of summary
graphs.

The existing XACT system has two significant weaknesses: first,
it only supports DTD as schema language, and it is generally agreed
that DTD has insufficient expressiveness for modern XML applica-
tions; second, the data-flow analysis is a whole-program analysis
that has poor modularity properties and hence does not scale well
to larger programs. In this paper, we present an approach for at-
tacking these issues.

Contributions
We have previously shown a connection between summary graphs
and regular expression types [4, 10]. Also, it is known how reg-
ular expression types are related to RELAX NG schemas [7] and
how schemas written in XML Schema [22, 2] can be translated into
equivalent RELAX NG schemas [12]. We exploit these connections
in this paper. Our main contributions are the following:

• We present a translation from XML Schema to summary
graphs and an algorithm for validating summary graphs rela-
tive to schemas written in XML Schema, all via RELAX NG.
This provides the foundation for using XML Schema as type
formalism in XACT.

• We introduce optional typing in XACT so that XML template
variables can be optionally typed with schema constructs (ele-
ment names and simple or complex types). We show how this
can lead to a validity analysis which is more modular, in the
sense that it avoids iterating over the whole program.

Together, these improvements effectively remedy the weaknesses
mentioned earlier. Furthermore, the results can be seen as indica-
tions of the strength of summary graphs and the use of data-flow
analysis for validating XML transformations.

As an additional contribution, we identify a subset of RELAX
NG that is sufficient for translation from XML Schema and where
language inclusion checking is tractable.

Example
The resulting XACT language can be illustrated by a small toy
program that uses the new features. This program converts a
list of business cards represented in a special XML language into
XHTML, considering only the cards where a phone number is
present:
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import dk.brics.xact.*;
import java.io.*;

public class PhoneList {
static {
String[] ns =

{"b", "http://businesscard.org",
"h", "http://www.w3.org/1999/xhtml",
"s", "http://www.w3.org/2001/XMLSchema"};

XML.setNamespaceMap(ns);
}

XML<h:html[s:string TITLE, h:Flow MAIN]> wrapper;

void setWrapper(String color) {
wrapper =

[[<h:html>
<h:head>
<h:title><[s:string TITLE]></h:title>

</h:head>
<h:body bgcolor={color}>
<h:h1><[s:string TITLE]></h:h1>
<[h:Flow MAIN]>

</h:body>
</h:html>]];

}

XML<h:ul> makeList(XML<b:cardlist> x) {
XML r = [[<h:ul><[CARDS]></h:ul>]];
XMLIterator i =

x.select("//b:card[b:phone]").iterator();
while (i.hasNext()) {

XML c = i.next();
r = r.plug("CARDS",

[[<h:li>
<h:b><{c.select("b:name/text()")}></h:b>,
phone: <{c.select("b:phone/text()")}>

</h:li>
<[CARDS]>]]);

}
return r;

}

XML<h:html> transform(String url) {
XML cardlist = XML.get(url, "b:cardlist");
setWrapper("white");
return wrapper.plug("TITLE", "My Phone List")

.plug("MAIN", makeList(cardlist));
}

public static void main(String[] args) {
XML<h:html> x = new PhoneList().transform(args[0]);
System.out.println(x);

}
}

The general syntax for XML template constants and the meaning of
the methods select, plug, get, and various others are described
further in Section 2.

In the first part of the program, some global namespace decla-
rations are made. Schemas for these namespaces are supplied ex-
ternally (the schema for the business card XML language is shown
in Section 3). Then a field wrapper is defined, holding an XML
template that must be an html tree, potentially with TITLE gaps
and MAIN gaps, which may occur in place of fragments of type
string and Flow, respectively (all of appropriate namespaces).
The method setWrapper assigns such an XML template to the
wrapper field. This template has two gaps named TITLE and one
named MAIN. Additionally, it has one code gap where the value of
the color parameter is inserted. The method makeList iterates

through a list of card elements that have phone children and builds
an XHTML list. The method main loads in an XML document
containing a list of business card, invokes the setWrapper method,
then constructs a complete XHTML document by plugging values
into the TITLE and MAIN gaps using the makeList method, and fi-
nally outputs this document.

As an example, the program transforms the input

<cardlist xmlns="http://businesscard.org">
<card>

<name>John Doe</name>
<email>john.doe@widget.inc</email>
<phone>(202) 555-1414</phone>

</card>
<card>

<name>Zacharias Doe</name>
<email>zach@notmail.com</email>

</card>
<card>

<name>Jack Doe</name>
<email>jack@mailorder.edu</email>
<email>jack@geemail.com</email>
<phone>(202) 456-1414</phone>

</card>
</cardlist>

into an XHTML document that looks as follows:

Note that some XML variables in the program are declared by
the type XML, which represents all possible XML templates, and oth-
ers use a more constrained type, such as, the declaration of wrapper
or the signature of makeList. XACT now allows the programmer to
combine these two approaches. The static type checker uses data-
flow analysis to reason about variables that are declared using the
former approach, and it conservatively checks that the annotated
types are preserved by execution of the program. For this program,
one consequence is that the makeList method, whose signature is
fully annotated, can be type checked separately, and invocations of
this method can be type checked without considering its body. (We
discuss fields and side-effects in Section 7.) Also note that the type
checker can now reason about XML Schema types rather that being
limited to DTD.

Related Work
There are numerous other projects having similar goals as XACT;
the paper [19] contains a general survey of different approaches.
The ones that are most closely related to ours are XJ [9], Cω [1],
and XDuce and its descendants [10]. XACT is notably differ-
ent in two ways: first, although variants of XML templates are
widely used in Web application development frameworks, this
paradigm is not supported by other type-safe XML transformation
languages, which typically allow only bottom-up XML tree con-
struction; second, the annotation overhead is minimal since schema
types are only required at input and output, whereas the others re-
quire schema type annotations at all XML variable declarations. We
believe that both aspects in many cases makes the XACT program-
ming style more flexible. Furthermore, our data-flow analysis also
tracks all Java string operations via a separate analysis [6], which
enables XACT to reason about validity of attribute values and char-
acter data. (In fact, an additional consequence of the extensions
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described here is that our static analyzer can also model computed
names of elements and attributes.)

With the extensions proposed in this paper, XACT becomes
closer to XJ [9], which also uses XML Schema as type formalism
and XPath for navigation. Still, our use of optional type annotations
avoids a problem that can make the XJ type checker too rigid: with
mandatory type annotations at all variable declarations in XJ it is
impossible to type check a sequence of operations that temporarily
invalidates data. The types that are involved in XML transforma-
tions are often exceedingly complicated and difficult to write down,
and types for intermediate results often do not correspond to named
constructs in preexisting schemas. The benefits of type annotations
are that they can serve as documentation in the programs and they
can lead to faster type checking. By now supporting optional anno-
tations, XACT gets the best from the two worlds.

Moreover, XJ represents XML data as mutable trees, which in-
curs a need for expensive runtime checks to preserve data validity.
In XJ, subtyping is nominal, whereas our approach gives semantic
(or structural) subtyping. A discussion of subtyping can be found
in [8]. Note that although XML Schema does contain mechanisms
for declaring subtyping relationships nominally, the choice of sup-
porting XML Schema as type formalism in XACT does not force
us to use nominal subtyping. We use schemas only as notation for
defining sets of XML values—the internal structure of the notation
being used is irrelevant.

The XDuce language family is based on the notion of regular ex-
pression types. As mentioned earlier, a connection between regular
expression types and a variant of the summary graphs used in our
program analysis is shown in [4]. Also, the formal expressiveness
of regular expression types and RELAX NG both correspond to that
of regular tree languages. We return to these relations in Sections 5
and 6. As XACT, the XTATIC language [8], which is one of the
descendants of XDuce, incorporates XML into an object-oriented
language in an immutable style.

The Cω language adds XML support to C] by combining struc-
tural sequences, unions, and products with objects and simple val-
ues. The basic features of XML Schema may be encoded in the type
system, however little documentation of this is available. Rather
than use full XPath for navigation in XML trees as in XACT, Cω
uses a reminiscent notion of generalized member access that is
closer to ordinary programming notation.

The paper [18] describes a validity analysis for XSLT transfor-
mations, which is also based on summary graphs. The techniques
we present here for handling XML Schema as type formalism can
be transferred seamlessly to that analysis.

The type annotations we introduce are reminiscent of the notion
of programmer–designer contracts proposed in [3]. In both cases,
static declarations constrain how XML templates may be combined
in the programs.

The paper [20] contains a useful classification of schema lan-
guages in terms of categories of tree grammars: DTD corresponds
to local tree grammars where the content model of an element can
only depend on the name of the element; XML Schema corresponds
to the larger category of single-type tree grammars where elements
that are siblings and have the same name must have identical con-
tent models; and RELAX NG corresponds to the even more gen-
eral category of regular tree grammars, which is equivalent to tree
automata. With our new results, XACT supports single-type tree
grammars as type formalism.

Overview
In Sections 2 and 3 we begin by briefly recapitulating the design of
XACT and RELAX NG, and we characterize a subset of RELAX

NG, called Restricted RELAX NG, that we will use as an intermedi-
ate language in the program analysis. Then, in Section 4 we intro-
duce a variant of summary graphs. In Sections 5 and 6 we explain
how schemas written in XML Schema can be converted into sum-
mary graphs via Restricted RELAX NG, how to check validity of
summary graphs relative to Restricted RELAX NG schemas, and
how these results can be used in XACT to provide static guarantees
of XML transformations. In Section 7 we introduce optional typing
using XML Schema constructs and discuss the resulting language
design. Finally, we present our conclusions in Section 8.

Note that we here report on work in progress, and not all of what
we present has yet been implemented and tested in practice so we
cannot at this stage present experimental results. Also, the limited
space prevents us from going into details of our algorithms and of
the systems we build upon—instead, this paper aims to present an
informal overview of our ideas.

2 The XACT Programming Language
We begin with a brief overview of the XACT language as it looks be-
fore adding our new extensions. In XACT, XML data is represented
as templates, which are well-formed XML fragments that may con-
tain gaps in place of elements or attribute values. A gap is either a
name or a piece of code that evaluates to a string or an XML tem-
plate. As an example, the following XML template contains four
gaps: two named TITLE, one named MAIN, and one containing the
expression color:

<h:html>
<h:head>

<h:title><[TITLE]></h:title>
</h:head>
<h:body bgcolor={color}>

<h:h1><[TITLE]></h:h1>
<[MAIN]>

</h:body>
</h:html>

The special immutable class XML corresponds to the set of all pos-
sible XML templates. The central operations on this class are the
following:

constant: a static method that creates a template from
a constant string (the syntax [[foo]] is sugar for
XML.constant("foo") where quotes, whitespace, and gaps
have been transformed);

plug: inserts a given string or template into all gaps of a given
name in this template;

select: returns the sub-templates of this template that are se-
lected by a given XPath expression;

get: a static method that creates a template from a non-constant
string and checks (at runtime) that it is valid relative to a given
constant schema type;

cast: performs a runtime check of validity of this template rela-
tive to a given constant schema type;

analyze: instructs the static type checker to verify that this tem-
plate will always be valid relative to a given schema type when
the program runs; and

toString: converts this template to its textual representation.

A schema type is the name of an element (or, with our extension
from DTD to XML Schema, a simple type or a complex type) that
is declared in a schema. The language of a schema type is defined
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as the set of XML documents or document fragments that are valid
relative to the schema type. Note that in this version of XACT, be-
fore incorporating the extensions suggested in this paper, schema
types appear only at get, cast, and analyze operations. In partic-
ular, declarations use the general type XML.

The primary job of the static type checker is to verify that only
valid XML data can occur at program locations marked by analyze
operations, under the assumption that get and cast operations al-
ways succeed. (It also checks properties of plug and select oper-
ations, which is less relevant here.)

3 Defining a Subset of RELAX NG
A RELAX NG schema [7] is essentially a top-down tree automa-
ton that accepts a set of valid XML trees. It is described by
a grammar consisting of recursively defined patterns of various
kinds, including the following: element matches one element
with a given name and with contents and attributes described by
a sub-pattern; attribute similarly matches an attribute; text
matches any character data or attribute value; group, optional,
zeroOrMore, oneOrMore, and choice correspond to concatena-
tion, zero or one occurrence, zero or more occurrences, one or more
occurrences, and union, respectively; empty matches the empty se-
quence of nodes; and notAllowed corresponds to the empty lan-
guage. In addition, the pattern interleave matches all possible
mergings of the sequences that match its sub-patterns.

Note that attributes are described in the same expressions as the
content models. Still, attributes are considered unordered, as al-
ways in XML, and syntactic restrictions prevent an attribute name
from occurring more than once in any element. Mixing attributes
and contents in this way is useful for describing attribute–element
constraints.

To ensure regularity, there is an important restriction on recursive
pattern definitions: recursion is only allowed if passing through an
element pattern.

Element and attribute names can be described with name classes,
which can consist of lists of possible names and wildcards that
match all names, potentially restricted to a certain namespace or
excluding specific names.

To describe datatypes more precisely than with the text pattern,
RELAX NG relies on an external language, usually the datatype
part of XML Schema. Using the data pattern, such datatypes can
be referred to, and datatype facets can be constrained by a parameter
mechanism.

Furthermore, RELAX NG contains various modularization
mechanisms, which we can ignore here. As all other type-safe
XML transformation languages, we also ignore ID and IDREF at-
tributes from DTD and the equivalent compatibility features in RE-
LAX NG.

As mentioned in the introduction, we handle XML Schema via a
translation to RELAX NG, thus using RELAX NG as a convenient
intermediate language that avoids the many complicated technical
details of XML Schema. However, we only use a subset of RELAX
NG, which we call Restricted RELAX NG, being characterized as
follows.

First, we define some terminology that we need. We say that a
pattern p top-level-contains a pattern q if p and q are identical or
p contains q (as a child or further descendant) where contents of
element and attribute patterns are ignored. A content pattern
is a pattern that top-level contains one or more element, data, or
text patterns (or list or value patterns, which we otherwise ig-
nore here for simplicity). An attribute list pattern is a pattern that
top-level contains one or more attribute patterns.

A Restricted RELAX NG schema satisfies the following syntac-
tic requirements:

[single-type grammar] For every element pattern p, any two
element patterns that are top-level-contained by the child of p
and have non-disjoint name classes must have the same (iden-
tical) content. (This requirement limits the notation to single-
type grammars.)

[attribute context insensitivity] No attribute list pattern can be a
choice pattern. Also, every optional attribute list pattern
must have an attribute pattern as child. (This requirement
prohibits context sensitive attribute patterns.)

[interleaved content] Every pattern that has a child that top-level
contains an interleave content pattern must be a group or
element pattern. Also, a group pattern that top-level con-
tains an interleave content pattern must have only one con-
tent pattern child. (This requirement makes it easier to check
inclusion of interleave patterns, as explained in Section 6.)

We here consider ref patterns as abbreviations of the patterns be-
ing referred to. For every element and optional pattern that has
more than one child pattern, we treat the children as implicitly en-
closed by a group pattern. (Also, all mixed patterns are implicitly
desugared to interleave patterns in the usual way.)

Restricted RELAX NG has two important properties: first, it
is sufficient for making an exact and simple embedding of XML
Schema; second, it makes the summary graph validation in Sec-
tion 6 more tractable than using XML Schema directly or support-
ing full RELAX NG.

The following schema written in XML Schema may be used to
describe the input to the example program shown in Section 1:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:b="http://businesscard.org"
targetNamespace="http://businesscard.org"
elementFormDefault="qualified">

<element name="cardlist">
<complexType>

<sequence>
<element ref="b:card"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>

</complexType>
</element>

<element name="card" type="b:card_type"/>

<complexType name="card_type">
<sequence>

<element name="name" type="string"/>
<element name="email" type="string"

maxOccurs="unbounded"/>
<element name="phone" type="string"

minOccurs="0"/>
</sequence>

</complexType>

</schema>

Assuming cardlist as root element name, this can be translated
into the following Restricted RELAX NG schema (here using the
compact RELAX NG syntax):

default namespace = "http://businesscard.org"
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start = element cardlist { card* }
card = element card { card_type }
card_type = element name { xsd:string },

element email { xsd:string }+,
element phone { xsd:string }?

The translation from XML Schema to Restricted RELAX NG is
exact and the size of the output schema is proportional to the size
of the input schema. Most XML Schema constructs map directly to
RELAX NG, and we will not here explain the details of the trans-
lation. However, a few points are worth mentioning.

First, the all construct maps to the interleave pattern. Be-
cause of the limitations on the use of all in XML Schema, this
does not violate the [interleaved content] requirement.

Second, we can ignore default declarations since we only care
about validation and not of normalization of the input—except that
we treat an attribute or content model as optionally absent if a de-
fault is declared.

Third, wildcards can be converted into name classes. If
processContents of an element wildcard is set to skip, then we
make a recursive pattern that matches any XML tree.

Fourth, the most tricky parts of the translation involve type
derivations and substitution groups. Assume that an element e has
type t and there exists a type t ′ that is derived by extension from t.
In this case, an occurrence of e must match either t or t ′, and in the
latter case e must have a special attribute xsi:type with the value
t ′ (in the former case, the attribute is permitted but not required).
We handle this situation by encoding the xsi:type information in
the element name. More precisely, we create a new element pattern
whose name is the name of e followed by the string %t ′ and whose
content corresponds to the definition of t ′. Each reference to e is
then replaced by a choice between e and the variants with extended
types. The xsi:nil feature is handled similarly. Now assume that
another element f has type t ′ and is declared as in the substitution
group of e. This means that f elements are permitted in place of
e elements. In Restricted RELAX NG, this is expressed simply by
replacing all references to e elements by choices of e and f ele-
ments. Again, because of limitations on the all construct and the
substitution group mechanism in XML Schema, this cannot lead
to violations of the [single-type grammar] requirement, nor of the
general RELAX NG requirement that interleave branches must
be disjoint.

By the translation to Restricted RELAX NG, a schema type cor-
responds to a pattern definition:

• a simple type corresponds to a pattern, which we call a
simple-type pattern, that can only contain the constructs data,
choice, list, and value;

• a complex type corresponds to a pattern, which we call a
complex-type pattern, that consists of a group of two sub-
patterns—one describing a content model and one describing
attributes; and

• an element declaration corresponds to an element pattern that
contains a simple-type pattern or a complex-type pattern.

We use these observations in Section 6.

4 Summary Graphs in Validity Analysis
The static type checker in XACT works in two steps. First, a data-
flow analysis of the whole program is performed, using the standard
data-flow analysis framework [11] but with a highly specialized lat-
tice structure where abstract values are summary graphs. A sum-
mary graph is a finite representation of a potentially infinite set of

XML templates, much like a schema but tailor-made for use in the
program analysis [15]. Second, when the fixed point has been com-
puted, we check that the sets of templates represented by the result-
ing summary graphs are valid relative to the respective schemas.

To allow a smooth integration of XML Schema as a replacement
for DTD, we slightly modify the definition of summary graphs as
explained below and change the summary graph validation algo-
rithm accordingly and to work with Restricted RELAX NG (the
old algorithm supported DTD via an embedding into DSD2 [17]).

A summary graph, as it is defined in [15], has two parts: one that
is set up for the given program and remains fixed during the iterative
data-flow analysis, and one that changes monotonically during the
analysis.

The fixed part contains finite sets of nodes of various kinds: el-
ement nodes (NE ), attribute nodes (NA ), chardata nodes (NC ), and
template nodes (NT ). These node sets are determined by the use
of schemas, template constants, and XML operations in the program.
The former three sets represent the possible elements, attributes,
and chardata sequences that may arise when running the program.
The template nodes represent sequences of template gaps, which
either occur explicitly in template constants or implicitly due to
XML operations or schemas. Additionally, the fixed part speci-
fies a number of maps: name assigns a name to each element node
and attribute node; attr : NE → 2NA associates attribute nodes with
element nodes; contents : NE → NT connects element nodes with
descriptions of their contents; and gaps : NT → G∗ associates a se-
quence of gap names from a finite set G with each template node.

The changing part of a summary graph consist of:

• a set of root nodes R ⊆ NE ∪NT ;

• template edges T ⊆ NT ×G× (NT ∪NE ∪NC );

• string edges S : NC ∪NA → REG where REG are all regular
string languages over the Unicode alphabet; and

• a gap presence map P : G → 2NA∪NT ×2NA∪NT ×Γ×Γ where
Γ = 2{OPEN,CLOSED}.

The language of a summary graph is intuitively the set of XML tem-
plates that can be obtained by unfolding it, starting from a root node
and plugging elements, templates, and strings into gaps according
to the edges. A template edge (n1,g,n2) ∈ T informally means that
n2 may be plugged into the g gaps in n1, and a string edge S(n) = L
means that every string in L may be plugged into the gap in n. The
gap presence map, which we will not explain in further detail here,
is needed during the data-flow analysis to determine where template
gaps and attribute gaps occur. (For the curious reader, this is all for-
malized in [15].) We also define the language of an individual node
n in a summary graph: this is simply the language of the modified
summary graph where R is set to {n}.

As an example (borrowed from [15]), we can define a sum-
mary graph whose language is the set of ul lists with zero or more
li items that each contain a string from some language L. As-
sume that the fixed structure is given by NE = {1,4}, NA = /0,
NT = {2,3,5} (where all three are sequence nodes), NC = {6},
contents(1) = 2, contents(4) = 5, attr(1) = attr(4) = /0, name(1) =
{ul}, name(4) = {li}, gaps(2) = items, gaps(3) = g ·items,
and gaps(5) = text. The remaining components are as follows:

R = {1}
T = {(2,items,3),(3,items,3),(3,g,4),(5,text,6)}
S(6) = L

(For simplicity, we ignore the gap presence map.) This can be illus-
trated as follows:
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The boxes represent element nodes, rounded boxes are template
nodes, the circle is a chardata node, and the dots represent poten-
tially open template gaps.

For a given program, the family of summary graphs forms a
finite-height lattice, which is used in the data-flow analysis. To de-
termine the regular string languages used in the string edges, we
use a separate program analysis that provides conservative approx-
imations of the possible values of all string expression in the given
program [6].

We now introduce two small modifications to the definition of
summary graphs:

1. We let the name function return a regular set of names, rather
than a single name. This will be used to more easily model
name classes in Restricted RELAX NG. The definition of un-
folding is generalized accordingly: unfolding an element node
n yields an element whose name can be any string in name(n),
and similarly for attribute nodes. In case an unfolding leads to
an element with two attributes of the same name, one of them
is chosen arbitrarily and overrides the other.
To accommodate attribute declarations that have infinite name
classes and are repeated using zeroOrMore or oneOrMore,
we define the unfolding of an attribute node n where name(n)
is infinite such that it may produce more than one attribute.

2. We distinguish between two kinds of template nodes: se-
quence nodes and interleave nodes. The former have the
meaning of the old template nodes; the latter will be used to
model interleave patterns. We define the unfolding of an
interleave node as all possible interleavings of the unfoldings
of its gaps.

The data-flow transfer functions for operations remain as ex-
plained in [15] with only negligible changes as consequence of the
modifications of the summary graph definition, the only exceptions
being the ones we address in the following section.

Reflecting the [interleaved content] requirement in Restricted
RELAX NG, interleave nodes never appear nested within content
model descriptions1. The translation from Restricted RELAX NG
to summary graphs presented in the next section and the transfer
functions maintain this property of interleave nodes as an invariant.

With the generalization of the name function, we can in fact now
easily model computed names of elements and attributes—provided
that we add operations for this in the XML class, of course, and we
leave that to future work.

5 A Translation from Restricted RELAX NG
to Summary Graphs

To define the transfer functions for the operations get and cast,
we need an algorithm for translating the given schema type into a

1To state this more precisely, we first define that a node A top-
level-contains a node B if A and B are identical or B is reachable
from A where contents of element nodes and attribute nodes are ig-
nored, and a content node is a node that top-level-contains at least
one element node or chardata node. We now require the following:
every node that has a child that top-level contains an interleave con-
tent node must be a sequence or element node, and a sequence node
that top-level contains an interleave content node must have only
one content node child.

summary graph that has the same language. In [15], it is shown
how this can be done for DTD schemas; we now present a modified
algorithm that supports Restricted RELAX NG and then rely on the
translation from XML Schema to Restricted RELAX NG to map
from schema types to patterns.

Intuitively, this translation is straightforward: we may simply
view summary graphs as a graphical representation of Restricted
RELAX NG patterns, provided that we ignore the gap presence
component of the summary graphs and the regularity requirement
in Restricted RELAX NG. Due to the connection between RELAX
NG and regular expression types, this translation can also be seen
as a variant of the translation between regular expression types and
summary graphs shown in [4].

Given a Restricted RELAX NG pattern, we construct a summary
graph fragment as follows:

• First, we observe that name classes and simple-type patterns
all define regular string languages2 . Namespaces are han-
dled by expanding qualified names according to the applicable
namespace declarations.

• For an element pattern, we exploit the syntactic restrictions
described in Section 4. An element pattern generally consists
of a name class, a content model, and a collection of attribute
declarations. Thus, we convert it to an element node e and a
template node t with contents(e) = t. We define name(e) as
the regular string language corresponding to the name class.
The attribute declarations are converted recursively into at-
tribute nodes (as explained below), and attr(e) is set accord-
ingly. The content models is converted recursively into a sum-
mary graph fragment rooted by t.

• An attribute pattern is converted into an attribute node a.
We define name(a) in the same way as for element patterns,
and S(a) is set to the regular string language corresponding to
the sub-pattern describing the attribute values. If the attribute
is declared as optional using the optional pattern, the gap
presence map is set to record this (as in [15]).

• For patterns describing content models of elements, the pat-
terns text, group, optional, zeroOrMore, oneOrMore,
choice, and empty are handled exactly as the equivalent con-
structs in DTD content model definitions in the way explained
in [15]. Intuitively, each pattern corresponds to a tiny sum-
mary graph fragment that unfolds to the same language. A
data pattern becomes a chardata node s where S(s) is the cor-
responding regular string language. The interleave pattern
is translated in the same way as group, except that an inter-
leave node is used instead of a sequence node.

• Finally, the notAllowed pattern can be modeled as a template
node t where gaps(t) = g for some gap name g and t has no
outgoing template edges.

The set of root nodes R contains the single node that corresponds to
the whole pattern being translated. Recursion in pattern definitions
simply results in loops in the summary graph. The constructs from
RELAX NG that we have omitted in the description in Section 3
can be handled in a similar way as those mentioned here. Note that
the translation is exact: the language of the pattern is the same as
the language of the resulting summary graph.

As an example, translating the pattern
2We here ignore a few constraining facets that may be used on

the datatypes float and double. These are uncommon cases that
can be accommodated for without losing precision by slightly aug-
menting the definition of string edges.
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element ul { element li { xsd:integer }* }

results in the summary graph shown in Section 4, assuming that L
is the language of strings that match xsd:integer.

6 Validating Summary Graphs
When the data-flow analysis has computed a summary graph for
each XML expression in the XACT program, we check for each
analyze operation that the language of its summary graph is in-
cluded in the language of the specified schema type. If the check
fails, appropriate validity warnings are emitted. The entire analysis
is sound: if no validity warnings show up, the programmer can be
sure that, at runtime, the XML values that appear at the program
points marked by analyze operations will be valid relative to the
given schema types.

The old summary graph analyzer used in XACT is described in
[5]. That algorithm, which supports DTD through an embedding
into DSD2, as mentioned earlier, has proven successful in practice.
We here describe a variant that works with Restricted RELAX NG
instead of DSD2.

Given a summary graph node n ∈ NE ∪NT and a Restricted RE-
LAX NG pattern p where p is an element pattern, a simple-type
pattern, or a complex-type pattern (as defined in Section 3), we wish
to determine whether the language of n is included in the language
of p.

We begin by considering the case where n is not an interleave
node and p is not an interleave pattern. First, a context-free
grammar C is constructed from the part of the summary graph that
is top-level contained by n, considering element and chardata nodes
as terminals, template nodes as nonterminals, and ignoring attribute
nodes. Each chardata node terminal c is then replaced by a regular
grammar equivalent to S(c). If C is not linear, we apply a regu-
lar over-approximation [16] (which we also use in [6]). Thus, we
have a regular string language Ln over element nodes and Unicode
characters that describes the possible unfoldings of n (ignoring at-
tributes). Similarly, p defines a regular string language Lp over
element patterns and Unicode characters. To obtain a common vo-
cabulary, we now replace each element node n′ in Ln by 〈name(n′)〉
(where 〈 and 〉 are some otherwise unused characters), and similarly
for the element patterns in Lp. Then, we check that Ln is included
in Lp with standard techniques for regular string languages. (This
works because of the restriction to single-type grammars.) If this
check fails, a suitable validity error message is generated. Other-
wise, for each pair (n′, p′) of an element node in Ln and an element
pattern in Lp where name(n′) and name(p′) are non-disjoint, we
perform two checks. First, we check recursively that the language
of contents(n′) is included in the language of the content model of
p′. Second, we check that the attributes of n′ match those of p′:
for each attribute node a ∈ attr(n′), each name x ∈ name(a), and
each value y ∈ S(a), a corresponding attribute pattern must oc-
cur in p′—that is, one where x is in the language of its name class
and y is in the language of its sub-pattern; also, attribute pat-
terns occurring in p′ that are not enclosed by optional patterns
must correspond to one of the non-optional attribute nodes. Again,
a suitable validity error message is generated if the check fails.

For interleave nodes and interleave patterns, we exploit the
restriction on these constructs: they cannot appear nested within
content model descriptions. Additionally, in RELAX NG, the sub-
patterns of an interleave pattern must be disjoint (that is, no el-
ement name or text pattern occurs in more than one sub-pattern).
Thus, if p is an interleave pattern, we simply test each sub-
pattern in turn, projecting Ln onto the element names occurring in
the sub-pattern, and then check that all element names occurring

in Ln also occur in one of the sub-patterns. If n is an interleave
node, we use a generalized product construction to check inclusion
(specifically, the shuffleSubsetOf operation in [21]).

To avoid redundant computations (and to ensure termination, in
case of loops in the summary graph or recursive definitions in the
schema) we apply memoization such that a given pair (n, p) is only
processed once. If a loop is detected, we can coinductively assume
that the inclusion holds.

With this algorithm, we check for each root node n ∈ R that its
language is included in the language of the pattern corresponding
to the given schema type.

As an example of the case with an element node and an element
pattern, let n be element node 1 in the summary graph from Sec-
tion 4 and let p be the pattern shown in Section 5:

p = element ul { element li { xsd:integer }* }

The context-free grammar for the contents of Ln has the following
productions (where N2 is the start nonterminal and N4 is the only
terminal):

N2 → Nitems
2

Nitems
2 → N3 | ε

N3 → Ng
3 Nitems

3
Ng

3 → N4
Nitems

3 → N3 | ε

This grammar is linear, so the regular approximation is not applied.
The pattern p contains a single sub-pattern

p′ = element li { xsd:integer }

and by recursively comparing node 4 and p′ we find out that the
language of node 4 is included in the language of p′. We now see
that Ln ⊆ Lp, so we conclude that the language of element node 1
is in fact included in the language of the pattern.

With the exception of the regular approximation of the context-
free grammars mentioned above, the inclusion check is exact. Also,
since the schemas already define only regular languages, the ap-
proximation can only cause a loss of precision if the XML transfor-
mation defined by the XACT program introduces non-regularity in
the summary graphs, and our experience from [15] and [5] indicate
that this rarely results in false errors. In particular, the trivial iden-
tity function, which inputs XML data using get with some schema
type and immediately after applies analyze with the same schema
type, is guaranteed to type check without warnings for any schema
type. Moreover, we could replace the approximation by an algo-
rithm that checks inclusion of a context-free language in a regular
language, if full precision is considered more important than per-
formance.

An obvious alternative approach to the algorithm explained
above would be to exploit the connection with regular expression
types and apply the results from the XDuce project for checking
subtyping between general regular expression types [10] or to build
on Antimirov’s algorithm as in the XOBE project [13]. Our main
argument for choosing the algorithm explained above is that it has
been shown earlier that this approach is efficient for XACT pro-
grams. Also, unlike [23], our algorithm behaves much like existing
XML Schema validators, but validating summary graphs instead of
individual XML documents. Still, the relation between these differ-
ent inclusion checking algorithms is worth a further investigation.

As an interesting side-effect of our approach, we get an inclu-
sion checker for Restricted RELAX NG and hence also for XML
Schema and DTD: given two schemas, S1 and S2, convert S1 to a
summary graph SG using the algorithm described in Section 5 and
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then apply the algorithm presented above on SG and S2. (Alter-
natively, the algorithm presented above could be modified to work
directly with Restricted RELAX NG schemas instead of summary
graphs.) Preliminary results indicate that our approach is efficient:
on a standard PC, our implementation finds in a few seconds the
elements in XHTML 1.0 Transitional that are invalid according to
XHTML 1.0 Strict (and conversely, it reveals that Strict does not
imply Transitional, to our surprise). For schemas that go beyond lo-
cal tree grammars and use type derivations and all model groups,
we observe a similarly acceptable performance. Moreover, the val-
idator provides precise error messages in case validation fails.

As an interesting bonus feature, our validator can trivially be ex-
tended to precisely check element prohibitions (for example, that
form elements must not contain form elements in XHTML): in
XACT, we already have a technique for evaluating XPath loca-
tion paths on summary graphs, and element prohibitions can be
expressed as (simple) XPath location paths.

7 Optional Type Annotations
We will now extend XACT with optional type annotations such
that programmers may declare the intended schema types for XML
template variables, method parameters, and return values. Besides
being useful as in-lined documentation of programmer intentions,
type annotations can lead to better modularity properties of the va-
lidity analysis.

Every XML type may now optionally be annotated in the follow-
ing way where S and T1, . . . ,Tn are schema types and g1, . . . ,gn are
gap names:

XML<S[T1 g1, . . . ,Tn gn]>

The semantics of an annotated type is the language described by
S under the assumption that every occurrence of gap gi has been
plugged with a value in the language of schema type Ti.

In XML template constants, every template gap must now have
the form <[T g]>, where T is a schema type and g is the gap name.
This allows us to, at runtime, tag each gap g in an XML template
with a schema type.

In gap annotations in XML declarations and template constants,
we permit Kleene star of a schema type, T*, meaning that the gap
can be filled with a sequence of values from the language of T .
Kleene star annotations are occasionally needed because we cannot
always find existing schema types for sequences of values. As an
example, the XML Schema description of XHTML has no named
content type describing a sequence of li elements. Theoretically,
we could permit type annotations to be arbitrary regular expressions
over schema types or even small inlined XML Schema fragments,
but we have not yet observed the need for this.

Every assignment of an XML template v to a variable x whose
type annotation is t = S[T1 g1, . . . ,Tn gn] must, at runtime, satisfy
three constraints:

• All gaps occurring in v must be declared in t.

• For every gap g occurring in v, the language of its type tag
must be included in the language of the schema type for g as
declared in t.

• The value v must, under the assumption that all gaps were
plugged according to their type tags, belong to the language
of S.

We put similar constraints on return statements and method invoca-
tions, except that for return statements the return value is compared

with the declared return type, and for method invocations every ac-
tual parameter value is compared with the corresponding declared
parameter type. Moreover, every plug operation must respect gap
tags, that is, the value being plugged in to a gap g must belong to
the language of the tag of g.

The following describes a modification of our existing static pro-
gram analysis to support checking of the extra constraints intro-
duced by annotations.

First, the abstract representation of sets of XML templates is
extended to also keep track of the declared schema types of gap
names. For a given XACT program, we let T denote the finite set of
all types mentioned by gap annotations in template constants, and
we introduce a new summary graph component D : G → T map-
ping gap names to their declared type. The language of a summary
graph is not affected by this change.

This leads to extending the data-flow transfer function for the
constant operation to generate a summary graph with mappings
D(g) = T for every gap <T g> occurring in the given XML tem-
plate constant. (A simple syntactical check ensures that in each
template constant all gaps of the same name are declared with iden-
tical schema types.) The transfer function for the plug operation
simply unions the D mappings of its arguments. (Conflicts are
avoided by a check mentioned below.) All other transfer functions
act as the identity on the new D component.

To ensure type consistency of variables declared with annotated
XML types, we must validate all assignments to such variables. We
check, using the validation algorithm described in Section 6, that
the language of the inferred summary graph for the right-hand
side of an assignment is a subset of the language permitted by the
schema type annotation. However, this inclusion check is modi-
fied to treat gaps as if they were plugged with values correspond-
ing to their declared types. More precisely, for every gap g in the
inferred summary graph we apply the algorithm described in Sec-
tion 5 to construct a summary graph fragment SGg corresponding
to the schema type D(g) and then add template edges from all oc-
currences of g to the roots of SGg.

To ensure type consistency of template gaps, we perform an ad-
ditional check of every x.plug(g,y) operation using the summary
graphs SGx and SGy inferred by the data-flow analysis for x and y,
respectively. First, we check that the language of SGy is a subset of
the language of Dx(g) declared for g in SGx using the inclusion al-
gorithm presented in Section 6. Then, we check that all gap names
h occurring in both SGx and SGy are declared with identical types,
that is, Dx(h) = Dy(h).

As a product of the guaranteed type consistency of variables de-
clared with annotated XML types, reading from a variable can now
use the declared type instead of the inferred one. More precisely,
for every read from an XML typed variable x we normally use an
inferred summary graph to describe the set of possible template
values at that program point, but now, since all assignments to x
have already been checked for validity with respect to the declared
schema type for x, we can instead apply the algorithm from Sec-
tion 5 to obtain the summary graph corresponding to the declared
schema type.

Note that the support for type annotations leads to a program-
ming style where the explicit analyze operation is rarely needed—
instead, one may request a static type check by assigning to an an-
notated variable. This is the style required in other XML transfor-
mation languages.

It is well-known that type annotations in programming languages
enable more modular type checking. A component, whose interface
is fully annotated, can be type checked independently of its context,
and type checking the context can be performed without consider-
ing the body of the component. In our setting, this, for example,
corresponds to methods where all XML typed parameters and return
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types are annotated, and further, every non-local assignment and
read within the method body involves fields declared with anno-
tated types (the latter to constrain side-effects through field vari-
ables). As discussed in Section 1, annotations also have drawbacks,
however, in XACT, type annotations are optional. This allows the
programmer to mix annotated and unannotated XML types to get the
best from both worlds.

8 Conclusion
We have presented an approach for generalizing the XACT system
to support XML Schema as type formalism and permit optional
type annotations. Compared with other programming languages for
type-safe XML transformations, type annotations are permitted but
not mandatory, which allows the programmer to balance between
the pros and cons of type annotations.

The extension to XML Schema takes advantage of connections
between XML Schema, RELAX NG, and summary graphs. In par-
ticular, it involves a tractable subset of RELAX NG that we use as
an intermediate language in the static analysis.

The ideas presented in this paper will become available in the
next version of the XACT implementation.
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Name : Use Representation
Web server logs (CLF): Fixed-column ASCII records
Measure web workloads
AT&T provisioning data: Variable-width ASCII records
Monitor service activation
Call detail: Fraud detection Fixed-width binary records
AT&T billing data: Various Cobol data formats
Monitor billing process
Netflow: Data-dependent number of
Monitor network performance fixed-width binary records
Newick: Immune Fixed-width ASCII records
system response simulation in tree-shaped hierarchy
Gene Ontology: Variable-width ASCII records
Gene-gene correlations in DAG-shaped hierarchy
CPT codes: Medical diagnoses Floating point numbers
SnowMed: Medical clinic notes Keyword tags

Figure 1. Selected ad hoc data sources.

Abstract

This paper describes our experience designing and implementing
PADX, a system for querying large-scale ad hoc data sources with
XQuery. PADX is the synthesis and extension of two existing sys-
tems: PADS and Galax. With PADX, an analyst writes a declarative
data description of the physical layout of her ad hoc data, and the
PADS compiler produces customizable libraries for parsing the data
and for viewing it as XML. The resulting library is linked with an
XQuery engine, permitting the analyst to view and query her ad hoc
data sources using XQuery.

1 Introduction

Although enormous amounts of data exist in “well-behaved” for-
mats such as XML and relational databases, massive amounts also
exist in non-standard or ad hoc data formats. Figure 1 gives some
sense of the range and pervasiveness of such data. Ad hoc data
comes in many forms: ASCII, binary, EBCDIC, and mixed for-
mats. It can be fixed-width, fixed-column, variable-width, or even
tree-structured. It is often quite large, including some data sources
that generate over a gigabit per second [6]. It frequently comes with
incomplete and/or out-of-date documentation, and there are almost
always errors in the data. Sometimes these errors are the most in-
teresting aspect of the data, e.g., in log files where errors indicate
that something is going wrong in the associated system.

The lack of standard tools for processing ad hoc data forces analysts

∗Work carried out while at AT&T Labs Research.

to roll their own tools, leading to scenarios such as the following.
An analyst receives a new ad hoc data source containing poten-
tially interesting information and a list of pressing questions about
that data. Could she please provide the answers to the questions
as quickly as possible, preferably last week? The accompanying
documentation is outdated and missing important information, so
she first has to experiment with the data to discover its structure.
Eventually, she understands the data well enough to hand-code a
parser, usually in C or PERL. Pressed for time, she interleaves code
to compute the answers to the supplied questions with the parser.
As soon as the answers are computed, she gets a new data source
and a new set of questions to answer.

Through her heroic efforts, the data analyst answered the neces-
sary questions, but the approach is deficient in many respects. The
analyst’s hard-won understanding of the data ended up embedded
in a hand-written parser, where it is difficult for others to benefit
from her understanding. The parser is likely to be brittle with re-
spect to changes in the input sources. Consider, for example, how
tricky it is to figure out which $3’s should be $4’s in a PERL parser
when a new column appears in the data. Errors in the data also pose
a significant challenge in hand-coded parsers. If the data analyst
thoroughly checks for errors, then the error checking code dom-
inates the parser, making it even more difficult to understand the
semantics of the data format. If she is not thorough, then erroneous
data can escape undetected, potentially (silently!) corrupting down-
stream processing. Finally, during the initial data exploration and
in answering the specified questions, the analyst had to code how to
compute the questions rather than being able to express the queries
in a declarative fashion. Of course, many of these pitfalls can be
avoided with careful design and sufficient time, but such luxuries
are not available to the analyst. However, with the appropriate tool
support, many aspects of this process can be greatly simplified.

We have two tools, PADS [2, 8] and Galax [1, 7], each of which
addresses aspects of the analyst’s problem in isolation. The PADS
system allows analysts to describe ad hoc data sources declara-
tively and then generates error-aware parsers and tools for ma-
nipulating the sources, including statistical profiling tools. Such
support allows the analyst to produce a robust, error-aware parser
quickly. The Galax system supports declarative querying of XML
via XQuery. If Galax could be applied to ad hoc data, it would al-
low the analyst first to explore the data and then to produce answers
to her questions.

In this work, we strive to integrate PADS and Galax to solve the an-
alyst’s data-management problems for the large ad hoc data sources
that we have seen in practice. One approach would be to have PADS
produce a tool for converting ad hoc data to XML and then ap-
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Figure 2. Data analyst’s view of PADX

ply Galax to the resulting document. (In fact, PADS provides this
ability.) However, the typical factor of eight space blow up in this
conversion yields an unacceptable slowdown in performance. Con-
sequently, we chose to design and implement PADX1, a synthesis
and extension of PADS and Galax. Figure 2 depicts PADX from the
analyst’s perspective. The analyst provides a PADS description of
her ad hoc source, which is compiled into a library of components
for parsing her data and for viewing and querying it as XML. The
resulting libraries are linked together with the PADS and Galax run-
time systems into one PADX query executable, called a “query cor-
ral.2” At query time, the analyst provides her ad hoc data sources
and her query written in XQuery, and PADX produces the query’s
results.

Building PADX presented several problems. The first was semantic:
We had to decide how to view ad hoc data as XML and how to
express this view as a mapping from the PADS type system to XML
Schema, the basis of XQuery’s type system. A second problem
involved systems design and engineering. Building PADX required
evolving PADS and Galax in parallel, modifying the implementation
of Galax to support an abstract data model so that Galax could view
non-XML sources as XML, and augmenting PADS with the ability
to generate concrete instances of this data model. Our solutions to
these problems, which were necessary to build a working system,
are described in Sections 3 and 4. A third problem involves the scale
of data and efficiency of queries, in particular, how to efficiently
evaluate complex queries over large sources. Section 5 describes
how PADX currently handles large sources and the problems that
we face with respect to data scale and query performance.

We begin with a more detailed account of a scenario that illustrates
the data management tasks faced by AT&T data analysts and how
PADX simplifies these tasks. We then crack open the PADX architec-
ture, first describing PADS and Galax in isolation, and then describ-
ing our solutions to the problems described above. We conclude
with related work and a discussion of open problems.

1.1 Data-management scenario

In the telecommunications industry, the term provisioning refers to
the process of converting an order for phone service into the ac-
tual service. This process is complex, involving many interactions
with other companies. To discover potential problems proactively,
the Sirius project tracks AT&T’s provisioning process by compil-
ing weekly summaries of the state of certain types of phone service
orders. These summaries, which are stored in flat ASCII text files,

1Pronounced “paddocks”, an enclosed area for exercising race
horses.

2The equestrian metaphor is intentional: Getting these systems
to work together is like corralling race horses!

can contain more than 2.2GB of data per week.

The summaries store the processing date and one record per order.
Each order record contains a header followed by a nested sequence
of events. The header has 13 pipe separated fields: the order num-
ber, AT&T’s internal order number, the order version, four different
telephone numbers associated with the order, the zip code, a billing
identifier, the order type, a measure of the complexity of the order,
an unused field, and the source of the order data. Many of these
fields are optional, in which case nothing appears between the pipe
characters. The billing identifier may not be available at the time
of processing, in which case the system generates a unique identi-
fier, and prefixes this value with the string “no ii” to indicate the
number was generated. The event sequence represents the various
states a service order goes through; it is represented as a new-line
terminated, pipe separated list of state, timestamp pairs. There are
over 400 distinct states that an order may go through during provi-
sioning. It may be apparent from this description that English is a
poor language for describing data formats!

The analyst’s first task is to write a parser for the Sirius data format.
Like many ad hoc data sources, Sirius data can contain unexpected
or corrupted values, so the parser must handle errors robustly to
avoid corrupting the results of analyses. With PADS, the analyst
writes a declarative data description of the physical layout of her
data. The language also permits the analyst to describe expected
semantic properties of her data so that deviations can be flagged
as errors. The intent is to allow an analyst to capture in a PADS
description all that she knows about a given data source.

Figure 4 gives the PADS description for the Sirius data format. In
PADS descriptions, types are declared before they are used, so the
type that describes the entire data source, summary_t, appears at
the bottom of the description (Line 42). In the next section, we
use this example to give an overview of the PADS language. Here,
we simply note that the data analyst writes this description, and
the PADS compiler produces customizable C libraries and tools for
parsing, manipulating, and summarizing the data. The fact that use-
ful software artifacts are generated from PADS descriptions provides
strong incentive for keeping the descriptions current, allowing them
to serve as living documentation.

Analysts working with ad hoc data often want to query their data.
Questions posed by the Sirius analyst include “Select all orders
starting within a certain time window,” “Count the number of orders
going through a particular state,” and “What is the average time re-
quired to go from a particular event state to another particular event
state”. Such queries are useful for rapid information discovery and
for vetting errors and anomalies in data before that data proceeds to
a down-stream process or is loaded into a database.

With PADX, the analyst writes declarative XQuery expressions to
query her ad hoc data source. Because XQuery is designed to ma-
nipulate semi-structured data, its expressiveness matches ad hoc
data sources well. As a Turing-complete language, XQuery is pow-
erful enough to express all the questions above. For example, Fig-
ure 5 contains an XQuery expression that produces all orders that
started in October, 2004. In Section 4, we discuss in more detail
why XQuery is an appropriate query language for ad hoc data. One
benefit is that XQuery queries may be statically typed, which helps
detect common errors at compile time. For example, static typing
would raise an error if the path expression in Figure 5 referred to
ordesr instead of orders, or if the analyst erroneously compared
the timestamp value in tstamp to a string.
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0|15/Oct/2004:18:46:51
9152|9152|1|9735551212|0||9085551212|07988|no_ii152272|EDTF_6|0|APRL1|DUO|10|16/Oct/2004:10:02:10
9153|9153|1|0|0|0|0||152268|LOC_6|0|FRDW1|DUO|LOC_CRTE|1001476800|LOC_OS_10|17/Oct/2004:08:14:21

Figure 3. Tiny example of Sirius provisioning data.

1. Precord Pstruct summary_header_t {
2. "0|";
3. Punixtime tstamp;
4. };

5. Pstruct no_ramp_t {
6. "no_ii";
7. Puint64 id;
8. };

9. Punion dib_ramp_t {
10. Pint64 ramp;
11. no_ramp_t genRamp;
12. };

13. Pstruct order_header_t {
14. Puint32 order_num;
15. ’|’; Puint32 att_order_num;
16. ’|’; Puint32 ord_version;
17. ’|’; Popt pn_t service_tn;
18. ’|’; Popt pn_t billing_tn;
19. ’|’; Popt pn_t nlp_service_tn;
20. ’|’; Popt pn_t nlp_billing_tn;
21. ’|’; Popt Pzip zip_code;
22. ’|’; dib_ramp_t ramp;
23. ’|’; Pstring(:’|’:) order_type;
24. ’|’; Puint32 order_details;
25. ’|’; Pstring(:’|’:) unused;
26. ’|’; Pstring(:’|’:) stream;
27. };

28. Pstruct event_t {
29. Pstring(:’|’:) state;
30. ’|’; Punixtime tstamp;
31. };

32. Parray event_seq_t {
33. event_t[] : Psep(’|’) && Pterm(Peor);
34. };

35. Precord Pstruct order_t {
36. order_header_t order_header;
37. ’|’; event_seq_t events;
38. };

39. Parray orders_t {
40. order_t[];
41. };

42. Psource Pstruct summary_t{
43. summary_header_t summary_header;
44. orders_t orders;
45. };

Figure 4. PADS description for Sirius provisioning data.

(: Return orders started in October 2004 :)
$pads/Psource/orders/elt[events/elt[1]

[tstamp/rep >= xs:dateTime("2004-10-01:00:00:00")
and tstamp/rep < xs:dateTime("2004-11-01:00:00:00")]]

Figure 5. Query applied to Sirius provisioning data.

2 Using PADS to Access Ad Hoc Data

In this section, we give a brief overview of PADS, focusing on its
data description language and the portions of the libraries it gen-
erates that are relevant to PADX. More information about PADS is
available [2, 8].

2.1 PADS: The language

A PADS specification describes the physical layout and semantic
properties of an ad hoc data source. The language provides a
type-based model: basic types specify atomic data such as inte-
gers, strings, dates, etc., while structured types describe compound
data built from simpler pieces. The PADS library provides a collec-
tion of useful base types. Examples include 8-bit signed integers
(Pint8), 32-bit unsigned integers (Puint32), IP addresses (Pip),
dates (Pdate), and strings (Pstring). By themselves, these base
types do not provide sufficient information for parsing because they
do not indicate how the data is coded, i.e., in ASCII, EBCDIC, or
binary. To resolve this ambiguity, PADS uses the ambient coding.
By default, the ambient coding is ASCII, but programmers can cus-
tomize it as appropriate.

To describe more complex data, PADS provides a collection of struc-
tured types loosely based on C’s type structure. In particular, PADS
has Pstructs, Punions, and Parrays to describe record-like
structures, alternatives, and sequences, respectively. Penums de-
scribe a fixed collection of literals, while Popts provide convenient
syntax for optional data. A type may have an associated predicate
that determines whether a parsed value is indeed a legal value for
the type. For example, a predicate might require that one field of
a Pstruct is bigger than another or that the elements of a se-
quence are sorted. Programmers can specify such predicates using
PADS expressions and functions, written in a C-like syntax. Finally,
PADS Ptypedefs allow programmers to define new types that add
further constraints to existing types.

PADS types can be parameterized by values. This mechanism re-
duces the number of base types and permits the format and proper-
ties of later portions of the data to depend upon earlier portions. For
example, the base type Puint16_FW(:3:) specifies an unsigned
two byte integer physically represented by exactly three characters,
while the type Pstring(:’|’:) (e.g., Line 29) describes a string
terminated by a vertical bar. Parameters can be used with compound
types to specify the size of an array or the appropriate branch of a
union.

Pstructs describe ordered sequences of data with unrelated
types. In Figure 4, the type declaration for the Pstruct order_t
(Lines 35–38) contains an order header (order_header_t) fol-
lowed by the literal character ’|’, followed by an event sequence
(event_seq_t). PADS supports character, string, and regular ex-
pression literals.

Punions describe alternatives in the data format. For example,
the dib_ramp_t type (Lines 9–12) indicates that the ramp field in a
Sirius record can be either a Puint_64 or a string "no_ii" followed
by a Puint_64. During parsing, the branches of a Punion are tried
in order; the first branch that parses without error is taken.
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The order_header_t type (Lines 13–27) contains several anony-
mous uses of the Popt type. This type is syntactic sugar for a
stylized use of a Punion with two branches: the first with the in-
dicated type, and the second with the “void” type, which always
matches but never consumes any input.

PADS provides Parrays to describe varying-length sequences of
data all with the same type. The event_seq_t type (Lines 32–
34) uses a Parray to characterize the sequence of events an or-
der goes through during processing. This declaration indicates that
each element in the sequence has type event_t. It also specifies
that the elements will be separated by vertical bars, and that the
sequence will be terminated by an end-of-record marker (Peor).
In general, PADS provides a rich collection of array-termination
conditions: reaching a maximum size, finding a terminating literal
(including end-of-record and end-of-source), or satisfying a user-
supplied predicate over the already-parsed portion of the Parray.

Finally, the Precord (Line 35) and Psource (Line 42) annota-
tions deserve comment. The first indicates that the annotated type
constitutes a record, while the second means that the type consti-
tutes the totality of a data source. The notion of a record varies
depending upon the data encoding. ASCII data typically uses new-
line characters to delimit records, binary sources tend to have fixed-
width records, while COBOL sources usually store the length of
each record before the actual data. PADS supports each of these en-
codings of records and allows users to define their own encodings.

2.2 PADS: The generated library

From a description, the PADS compiler generates a C library for
parsing and manipulating the associated data source. From each
type in a PADS description, the compiler generates

• an in-memory representation,

• parsing and printing functions,

• a mask, which allows customization of generated functions,
and

• a parse descriptor, which describes syntactic and semantic er-
rors detected during parsing.

To give a feeling for the library that PADS generates, Figure 6 in-
cludes a fragment of the generated library for the Sirius event_t
declaration.

The C declarations for the in-memory representation (Line 1–4),
the mask (Line 5–9), and the parse descriptor (Line 10–17) all share
the structure of the PADS type declaration. The mapping to C for
each is straightforward: Pstructs map to C structs with appro-
priately mapped fields, Punions map to tagged unions coded as
C structs with a tag field and an embedded union, Parrays map
to a C struct with a length field and a dynamically allocated se-
quence, Penums map to C enumerations, Popts to tagged unions,
and Ptypedefs to C typedefs. Masks include auxiliary fields to
control behavior at the level of a structured type, and parse descrip-
tors include fields to record the state of the parse, the number of
detected errors, the error code of the first detected error, and the
location of that error.

The parsing functions, e.g. event_t_read on Line 19, take a mask
as an argument and returns an in-memory representation and a parse
descriptor. The mask allows the user to specify which constraints
the parser should check and which portions of the in-memory rep-

resentation it should fill in. This control allows the description-
writer to specify all known constraints about the data without wor-
rying about the run-time cost of verifying potentially expensive
constraints for time-critical applications.

Appropriate error-handling is as important as processing error-free
data. The parse descriptor marks which portions of the data con-
tain errors and specifies the detected errors. Depending upon the
nature of the errors and the desired application, programmers can
take the appropriate action: halt the program, discard parts of the
data, or repair the errors. If the mask requests that a data item be
verified and set, and if the parse descriptor indicates no error, then
the in-memory representation satisfies the semantic constraints on
the data.

Because we generate a parsing function for each type in a PADS
description, we support multiple-entry point parsing, which accom-
modates larger-scale data. For a small file, a programmer can call
the parsing function for the PADS type that describes the entire file
(e.g. summary_t_read) to read the whole file with one call. For
larger-scale data, programmers can sequence calls to parsing func-
tions that read manageable portions of the file, e.g., reading one
record at a time in a loop. The parsing code generated for Parrays
allows users to choose between reading the entire array at once or
reading it one element at a time, again to support parsing and pro-
cessing very large data sources. We return to the use of multiple-
entry point parsing functions in Section 5.

3 Using XQuery and Galax

In this section, we give a brief overview of XML, XQuery, and
Galax, focusing on Galax’s data-model support for viewing non-
XML data as XML. Given the subject of this workshop, we as-
sume the reader is already familiar with XML, XQuery, and XML
Schema.

XML [18] is a flexible format that can represent many classes of
data: structured documents with large fragments of marked-up text;
homogeneous records such as those in relational databases; and het-
erogeneous records with varied structure and content such as those
in ad hoc data sources. XML makes it possible for applications
to handle all these classes of data simultaneously and to exchange
such data in a standard format. This flexibility has made XML the
“lingua franca” of data integration and exchange.

XQuery [20] is a typed, functional query language for XML that
supports user-defined functions and modules for structuring large
queries. Its type system is based on XML Schema [21]. XQuery
contains XPath 2.0 [19] as a proper sub-language, which supports
navigation, selection, and extraction of fragments of XML docu-
ments. XQuery also includes expressions to construct new XML
values and to integrate or join values from multiple documents.

XQuery is a natural choice for querying ad hoc data. Like XML
data, ad hoc data is semi-structured, and XQuery is tailored to such
data. XQuery’s static type system detects type errors at com-
pile time, which is valuable when querying ad hoc sources: Long-
running queries on large ad hoc sources do not raise dynamic type
errors, and queries made obsolete by schema evolution are identi-
fied at compile time. XQuery is also ideal for specifying integrated
views of multiple sources. Although here we focus on querying
one ad hoc source at a time, XQuery supports simultaneous query-
ing of multiple sources. Lastly, XQuery is practical: It will soon
be a standard; numerous manuals already exist [5]; and it is widely
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1. typedef struct { // In-memory representation
2. order_header_t order_header;
3. event_seq_t events;
4. } event_t;

5. typedef struct { // Mask
6. Pbase_m compoundLevel; // Struct-level controls
7. order_header_t_m order_header;
8. event_seq_t_m events;
9. } event_t_m;

10. typedef struct { // Parse descriptor
11. Pflags_t pstate; // Normal, partial, or panicking
12. Puint32 nerr; // Number of detected errors
13. PerrCode_t errCode; // Error code of first detected error
14. Ploc_t loc; // Location of first error
15. order_header_t_pd order_header; // Nested header information
16. event_seq_t_pd events; // Nested event sequence information
17. } event_t_pd;

18. /* Parsing and printing functions */
19. Perror_t event_t_read (P_t *pads, event_t_m *m, event_t_pd *pd, event_t *rep);
20. ssize_t event_t_write2io (P_t *pads, Sfio_t *io, event_t_pd *pd, event_t *rep);

Figure 6. Fragment of the library generated for the event t declaration from Sirius data description.

implemented in commercial databases.

Galax is a complete, extensible, and efficient implementation of
XQuery 1.0 that supports XML 1.0 and XML Schema 1.0 and that
was designed with database systems research in mind. Its archi-
tecture is modular and documented [15], which makes it possible
for other researchers to experiment with a complete XQuery imple-
mentation. Its compiler produces evaluation plans in the first com-
plete algebra for XQuery [13], which permits experimental compar-
ison of query-compilation techniques. Lastly, its query optimizer
produces efficient physical plans that employ traditional and novel
join algorithms [13], which makes it possible to apply non-trivial
queries to large XML sources. Lastly, its abstract data model per-
mits experimenting with various physical representations of XML
and non-XML data sources. Galax’s abstract data model is the fo-
cus of the the rest of this section.

3.1 Galax’s Abstract Data Model

Galax’s abstract data model is an object-oriented realization of the
XQuery Data Model. The XQuery Data Model [17] contains tree
nodes, atomic values, and sequences of nodes and atomic values.
A tree node corresponds to an entire XML document or to an indi-
vidual element, attribute, comment, or processing-instruction. Al-
gebraic operators in a query-evaluation plan produced by Galax’s
query compiler access documents by applying methods in the data
model’s object-oriented interface.

Figure 7 contains part of Galax’s data model interface3 for a node
in the XQuery Data Model. Node accessors return information
such as a node’s name (node_name), the XML Schema type against
which the node was validated (type), and the node’s atomic-
valued data if it was validated against an XML Schema simple
type (typed_value). The parent, child, and attribute meth-
ods navigate the document and return a node sequence containing
the respective parent, child, or attribute nodes of the given node.

The first six methods in Figure 7 (Lines 5–11) access the physical

3Galax is implemented in O’Caml, so these signatures are in
O’Caml.

representation of a document. Therefore, a concrete instance of the
data model must provide their implementations. Galax provides
default implementations for the four descendant and ancestor axes
(Lines 13–16), which are defined recursively in terms of the child
and parent methods. These defaults may be overridden in concrete
data models that can provide more efficient implementations than
the defaults. For example, some representations permit axes to be
implemented by range queries over relational tables [11].

All the axis methods take an optional node-test argument, which is
a boolean predicate on the names or types of nodes in the given axis.
For example, the XQuery expression descendant::order returns
nodes in the descendant axis with name order. Galax compiles
this expression into a single axis/node-test operator that invokes the
corresponding methods in the abstract data model, delegating eval-
uation of node tests to the concrete data model. Some implemen-
tations, like PADX, can provide fast access to nodes by their name.
We describe PADX’s concrete data model in Section 4.

One other important feature of Galax’s abstract data model is that
sequences are represented by cursors (also known as streams), non-
functional lists that yield items lazily. Accessing the first item in
a sequence does not require that the entire sequence be material-
ized, i.e., evaluated eagerly. Galax’s algebraic operators produce
and consume cursors of values, which permits pipelined and short-
circuited evaluation of query plans.

In addition to the concrete data model for PADX,which we describe
in the next section, Galax has three other concrete data models:
a DOM-like representation in main memory and two “shredded”
representations, one in main memory and one in secondary storage
for very large documents (e.g. > 100MB). The shredded data model
partitions a document into tables of elements, attributes, and values
that can be indexed on node names and values [16].

4 Using PADX to Query Ad Hoc Data

Figure 8 depicts an internal view of the PADX architecture first
shown in Figure 2. Pre-existing components (in grey boxes) include
the PADS compiler, the Galax query engine, and the PADS runtime
system. In this section, we focus on the new components (in white
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1. type sequence = cursor
2. class virtual node :
3. object
4. (* Selected XQuery Data Model accessors *)
5. method virtual node_name : unit -> atomicQName option
6. method virtual type : unit -> (schema * atomicQName)
7. method virtual typed_value : unit -> atomicValue sequence

8. (* Required axes *)
9. method virtual parent : node_test option -> node option

10. method virtual child : node_test option -> node sequence
11. method virtual attribute : node_test option -> node sequence

12. (* Other axes *)
13. method descendant_or_self : node_test option -> node sequence
14. method descendant : node_test option -> node sequence
15. method ancestor_or_self : node_test option -> node sequence
16. method ancestor : node_test option -> node sequence

... Other accessors in XQuery Data Model ...

Figure 7. Signatures for methods in Galax’s abstract node interface
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Figure 8. Internal view of PADX Architecture

boxes) and describe the compiler and run-time support for viewing
PADS data as XML. From a PADS description, the compiler gen-
erates an XML Schema description that specifies the virtual XML
view of the corresponding PADS data, an XQuery prolog that im-
ports the generated schema and that associates the input data with
the correct schema type, and a type-specific library that provides the
virtual XML view of PADS values necessary to implement PADX’s
concrete data model.

Note that a query corral is customized for a particular PADS descrip-
tion, in particular, its concrete data model only supports views of
data sources that match the PADS description. To maintain the cor-
rect correspondence between a description, XML Schema, queries,
and data, the query corral explicitly contains the generated query
prolog, which imports the XML Schema that corresponds to the
underlying type-specific library. This guarantees that the user’s
XQuery program is statically typed, compiled, and optimized with
respect to the correct XML Schema and that the underlying data
model is an instance of this XML Schema. At runtime, the query
corral takes an XQuery program and a PADS data source and pro-
duces the query result in XML. We discuss the problem of produc-
ing native PADS values in Section 6.

4.1 Viewing PADS data as XML

The mapping from a PADS description to an XML Schema is
straight-forward. The interesting aspect of this mapping is that both

1. <xs:simpleType name="base_Puint32">
2. <xs:restriction base="xs:unsignedInt"/>
3. </xs:simpleType>
4. <xs:complexType name="val_Puint32">
5. <xs:choice>
6. <xs:element name="rep" type="p:base_Puint32"/>
7. <xs:element name="pd" type="p:Pbase_pd"/>
8. </xs:choice>
9. </xs:complexType>

10. <xs:complexType name="Pbase_pd">
11. <xs:sequence>
12. <xs:element name="pstate" type="p:Pflags_t"/>
13. <xs:element name="errCode" type="p:PerrCode_t"/>
14. <xs:element name="loc" type="p:Ploc_t"/>
15. </xs:sequence>
16. </xs:complexType>

Figure 9. Fragment of XML Schema for PADS base types.

PADS values that are error free and those containing errors are ac-
cessible in the XML view. We begin with the mapping of PADS

base types.

A default XML Schema, pads.xsd, contains the schema types that
represent the PADS base types shared by all PADS descriptions. Fig-
ure 9 contains a fragment of this schema. Every PADS base type is
mapped to the schema simple type that most closely subsumes the
value space of the given PADS base type. For example, the Puint32
base type maps to the schema type xs:unsignedInt (Lines 1–3).
Recall that all parsed PADS values have an in-memory representa-
tion and a parse descriptor, which records the state of the parse, the
error code for detected errors, and the location of those errors. The
XML view of a parsed value is a choice of the in-memory represen-
tation (rep), if no error occurred, or of the parse descriptor (pd), if
an error occurred (Lines 4–8). This light-weight view exposes the
parse descriptor only when an error occurs. The parse-descriptor
type for all base types is represented by the schema type Pbase_pd
(Line 10–14).

The fragment of the XML Schema in Figure 10 corresponds to the
description in Figure 4. Note that the schema imports the schema
for PADS base types (Line 5). Each compound type is mapped to a
complex schema type with a particular content model. A Pstruct
is mapped to a complex type that contains a sequence of local el-
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1. <xs:schema targetNamespace="file:/example/sirius.p"
2. xmlns="file:/example/sirius.p"
3. xmlns:xs="http://www.w3.org/2001/XMLSchema"
4. xmlns:p="http://www.padsproj.org/pads.xsd">
5. <xs:import namespace = "http://www.padsproj.org/pads.xsd".../>
6. ...
7. <xs:complexType name="order_header_t">
8. <xs:sequence>
9. <xs:element name="order_num" type="p:val_Puint32"/>

10. <xs:element name="att_order_num" type="p:val_Puint32"/>
11. <xs:element name="ord_version" type="p:val_Puint32"/>
12. <!-- More local element declarations -->
13. <xs:element name="pd" type="p:PStruct_pd" minOccurs="0"/>
14. </xs:sequence>
15. </xs:complexType>
16. <!-- More complex type declarations -->
17. <xs:complexType name="orders_t">
18. <xs:sequence>
19. <xs:element name="elt" type="order_t" maxOccurs="unbounded"/>
20. <xs:element name="length" type="p:Puint32"/>
21. <xs:element name="pd" type="p:Parray_pd" minOccurs="0"/>
22. </xs:sequence>
23. </xs:complexType>

...
24. <xs:element name="Psource" type="summary_t"/>
25. </xs:schema>

Figure 10. Fragment of XML Schema for Sirius PADS description.

ements, each of which corresponds to one field in the Pstruct.
For example, the Pstruct order_header_t is mapped to the
complex type order_header_t (Lines 7–15), which contains an
element declaration for the field order_num, among others. A
Punion is mapped to a complex type that contains a choice of
elements, each of which corresponds to one field in the Punion.

Each complex type also includes an optional pd element that corre-
sponds to the type’s parse descriptor (Lines 13 and 21). All parse-
descriptor types contain the parse state, error code, and location.
The parse-descriptor for compound types contain additional infor-
mation, e.g., Pstruct_pd contains the number of nested errors and
Parray_pd contains the index of the array item in which the first
error occurred. The pd element is absent if no errors occurred dur-
ing parsing, but if present, permits an analyst to easily identify the
kind and location of errors in the source data. For example, the fol-
lowing XQuery expression returns the locations of all orders that
contain at least one error: $pads/Psource/orders/elt/pd/loc.

The schema types for some compound types contain additional
fields from the PADS in-memory representation, e.g., arrays have
a length (Line 20). Note that Parray types do not associate a name
with each individual array item, so in the corresponding schema
type, the default element elt encapsulates each array item.

The PADS compiler generates a query prolog that specifies the en-
vironment in which all XQuery programs are typed and evaluated.
Figure 11 contains the query prolog for the schema in Figure 10.
The import schema declaration on Line 1 imports the schema in
Figure 10. This declaration puts all global element and type decla-
rations in scope for the query. The variable declaration on Line 2
specifies that the value of the variable $pads is provided externally
and that its type is a document whose top-level element is of type
Psource, defined on Line 24 in Figure 10. This declaration guar-
antees that the query is statically typed with respect to the correct
input type.

At run time, the user can specify the input data as a command-
line argument or by calling the XQuery fn:doc function on a PADS
source, e.g. pads:/example/sirius.data.

4.2 PADX Concrete Data Model

In Figure 8, the interface between Galax and PADS consists of two
modules: the generic PADX concrete data model, which implements
the Galax abstract data model, and a compiler-generated module, in
which each PADS type has a corresponding, type-specific node rep-
resentation providing the XML view of values of that type. We note
that the generic concrete data model is implemented in O’Caml and
the compiler-generated module is implemented in C, but to simplify
exposition, we present the compiler-generated module in O’Caml
syntax.

Figure 13 contains a fragment of the PADX concrete data model
for a node. This object provides a thin wrapper around the type-
specific node representation, padx_node_rep, whose interface is
in Figure 12. A node representation contains references to a PADS
value’s in-memory representation and parse descriptor. The node
representation interface returns the XML view of the PADS value,
including the value’s element name, its typed value, and parent.
The kth_child and kth_child_by_name methods return all of the
PADS value’s children in order and those with a given name in order,
respectively.

For some methods in Figure 13 (Lines 4–5), the concrete data model
simply invokes the corresponding type-specific methods. One ex-
ception is the child axis method (Lines 7–17), which we describe
in detail as it illustrates how the XML view of a PADS source is
materialized lazily. The child method takes an optional name-
test argument. We describe the case when the name-test is ab-
sent, which corresponds to the common expression child::*. The
child method creates a mutable counter k (Line 8), which contains
the index of the last child accessed, and a continuation function
lazy_child (Lines 11–16), which is invoked each time the child
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1. import schema default element namespace "file:/example/sirius.p";
2. declare variable $pads as document-node(Psource) external;

Figure 11. PADX generated query prolog

class virtual padx_node_rep :
object
(* Private data includes parsed value’s rep & pd *)
method node_name : unit -> string
method typed_value : unit -> item
method parent : unit -> padx_node_rep option
method kth_child : int -> padx_node_rep option
method kth_child_by_name : int -> string -> padx_node_rep option

end

Figure 12. The PADX node representation

1. class pads_node (nr : padx_node_rep) =
2. object
3. inherit Galax.node
4. method node_name () = nr#node_name()
5. method typed_value () = nr#typed_value()
6. (* ... Other data model accessors ... *)
7. method child name_test =
8. let k = ref 0 in
9. match name_test with

10. | None ->
11. let lazy_child () =
12. (incr k;
13. match nr#kth_child !k with
14. | Some cnr -> Some(new pads_node(cnr))
15. | None -> None)
16. in Cursor.cursor_of_function lazy_child
17. | Some (NameTest name) ->

(* Same as above, but call nr#kth_child_named *)
18. (* ... Other axes ... *)
19. end

Figure 13. Fragment of the PADX concrete data model
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cursor is poked. On each invocation, lazy_child increments the
counter and delegates to the kth_child method of the type-specific
node representation. For some PADS types, accessing the virtual kth

child does not require reading or parsing data, e.g., if the virtual
child is part of a complete PADS record. For other PADS types, e.g.,
Parrays that contain file records, accessing the virtual kth child
may require reading and parsing data. The kth_child method pro-
vides a uniform interface to all types and delegates the problem of
when to read and parse data to the underlying type-specific node
representation.

To illustrate type-specific compilation, we give the compiler-
generated node representation of an order_header_t value in
Figure 14. The object takes the name of the field that contains
the order_header_t value, which corresponds to the XML node
name, and the in-memory representation and parse descriptor of the
value. The kth_child method (Lines 9–15) takes an index and re-
turns the node representation of the field at that index. For example,
the first child (Line 11) corresponds to the field order_num, which
contains a Puint32 value. The kth_child_by_name method
(Lines 16–21) provides constant-time lookup of a child with a par-
ticular name: It looks up the index of the name in the associative
map name_map and then delegates to kth_child. Note that this
XML view of an order_header_t value corresponds to the schema
type order_header_t in Figure 10.

To summarize, the PADX concrete data model completely imple-
ments the Galax data model, making it possible to evaluate any
XQuery program over a PADS data source. Due to limited space,
we have omitted some details, such as how PADX guarantees that
each virtual node has a unique, immutable identity, as is required
by the Galax abstract data model. The data model’s most important
features are that it provides lazy access to virtual XML nodes in
the PADS source, it delegates navigation to type-specific node rep-
resentations, and it separates navigation of the virtual nodes from
data loading, which is discussed next.

4.3 Loading PADS data

The PADX abstract data model provides Galax with a random-
access view of a PADS data source. In particular, any virtual node
may be accessed in any order at any time during query evaluation
regardless of its physical location in the PADS data. This abstraction
permits the PADX concrete data model to decide when and how to
read and parse, or load, a data source.

PADX has three strategies for loading data, each of which use the
multiple-entry parsing functions generated by the PADS compiler.
The bulk strategy loads a complete PADS source before query eval-
uation begins, populating all the in-memory representations and
parse descriptors. With all data pre-fetched, bulk loading is the sim-
plest strategy to implement random access. However, because each
PADS value has a lot of associated meta-data, bulk loading incurs a
high memory cost and is only feasible for smaller data sources.

The on-demand, random-access strategy loads PADS data when
Galax accesses virtual nodes via the abstract data model. The strat-
egy maintains a fixed size buffer for loaded values and when the
buffer is filled, expels values in LIFO order. The default units
loaded are any PADS types annotated with Precord, which in-
dicates that the type denotes an atomic physical unit in the am-
bient coding. This default works well in practice, because many
PADS sources contain a header, one (or more) very large array(s)
of records, and a trailer. This strategy loads all the data before the

record array(s) and then loads each array item on demand, expelling
old records when the buffer is filled. A small amount of meta-data
is preserved for each expelled record, so that the virtual node con-
taining that data can be reconstructed on subsequent accesses.

The on-demand, sequential strategy is a restriction of the on-
demand, random-access strategy. It loads data on demand, but its
fixed-size buffer stores only one record at a time, and it supports
strictly sequential access to records, i.e., accessing records out of
order is prohibited. Given that the Galax abstract data model re-
quires random access, it is not obvious when this strategy can be
used, even though it has the smallest memory footprint of all three
and therefore could scale to very large sources. It turns out that
many common XQuery queries can be evaluated in one sequential
scan over the input document, and in these cases, the sequential
strategy is both semantically correct and time and space efficient.
We give examples of “one-scan” queries and their performance in
Section 5.

4.4 Ways to use PADX

Our focus so far has been on describing PADX’s internal architecture
to demonstrate the feasibility of viewing and querying ad hoc data
sources as though they were XML. We expect this use of PADX to be
convenient, because it supports rapid querying of transient data and
does not require an analyst to convert the data into another format
or load it into a database before being able to ask simple queries.
PADX can be used in other ways. For example, an analyst might
prefer to materialize a PADS source in XML and query her data
using a high-performance, commercial XML query engine. To do
this, the analyst simply runs the query “$pads”, which returns the
entire source materialized in XML, and then provides the result-
ing XML document to the query engine. Another use is to trans-
form the PADX view of a PADS source into the XML view required
by a database by some down-stream application. Such transforma-
tions can be easily expressed in XQuery and can be statically type
checked against the PADX and target XML schemata.

We note, however, that the size of an ad hoc data source is signifi-
cantly smaller than its representation in XML. For our two example
PADS sources, the ratio of the size of the original PADS data to its
size in XML using the mapping described in Section 4.1 ranges
from 1:7 to 1:8. Of course, this size increase depends on the PADS
types and field names in the PADS description, but even a reasonable
choice of names like those in Figure 4 results in a significant size in-
crease. We mention this size increase to give the reader some sense
of the relative scale of data sources that PADX can query compared
to those supported by native XML query engines.

5 Performance

Query performance in PADX depends on the efficiency of the under-
lying concrete data model; therefore its performance must be well
understood before we can understand the performance of particu-
lar query plans. We focus on the performance of the concrete data
model and measure the cost of accessing data via the PADS type-
specific parsing functions, the PADX type-specific node representa-
tions, and the generic PADX concrete data model. At the end of this
section, we give preliminary measurements on query performance.

We measured data model and query performance for two PADS
sources, Sirius and the Web server logs in Figure 1, on data sources
of 1 to 50MB in size. Our measurements were taken on an 1.67GHz
Intel Pentium M with 500MB real memory running Linux Redhat
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1. class order_header_t_node_rep
2. (field_name : string)
3. (rep : order_header_t)
4. (pd : order_header_t_pd) =
5. object
6. inherit padx_node_rep
7. method name() = field_name
8. ...
9. method kth_child idx =

10. match idx with
11. | 1 -> Some(new val_Puint32_node_rep("order_num", rep.order_num, pd.order_num_pd))
12. | 2 -> Some(new val_Puint32_node_rep("att_order_num", rep.att_order_num, pd.att_order_num_pd))
13. | ...
14. | 14 -> Some(new Pstruct_pd_node_rep("pd", pd))
15. | _ -> None

16. (* Chidren’s name map *)
17. let name_map = Associative_array.create [("order_num", 1); ("att_order_num", 2); ...; ("pd", 14)]
18. method kth_child_by_name child_name =
19. match Associative_array.lookup name_map child_name with
20. | None -> Cursor.empty_cursor()
21. | Some idx -> kth_child idx
22. end

Figure 14. Fragment of compiler-generated node representation for order header t

Data size (MB)
Source 1 5 10 20 50
Sirius 0.25 0.23 0.23 0.22 10.64

Web server 0.70 0.67 0.67 1.18 6.14
Table 1. Bulk strategy: load time per byte in µs

9.0. Each test was run five times, the high and low times were
dropped, and the mean of the remaining three times is the reported
time.

5.1 Concrete Data Model

We first measured the time to bulk load data sources of 5, 10, 20,
and 50MB by calling the PADS parsing functions, i.e., the lowest
level in the PADX data model. Table 1 gives the load time per byte
in microseconds. For smaller sources, load time is constant, but
eventually increases. For Sirius, the increasing load time is ob-
served at 50MB and for the Web server data at 20MB. We note that
for a PADS source, the memory overhead of a PADS parsed value
can be four to sixteen times the size of the raw data, depending on
the value’s type. In the cases where non-linear load time occurs, the
processes’ physical memory usage is close to or exceeds real mem-
ory, CPU utilization plummets, and the process begins to thrash.
These measurements indicate that the bulk strategy is only feasible
for smaller data sources.

Next, we measured load time using the on-demand sequential stat-
egy on sources of 5, 10, and 50 MB. We were particularly interested
in the overhead introduced at each level in the concrete data model.
Table 2 gives the load time per byte in microseconds (µs) for three
levels: reading the source by calling the PADS parsing functions di-
rectly, a depth-first walk of the virtual XML document by calling
the PADX node-representation functions, and a depth-first walk of
the virtual XML document by calling the PADX generic data model.
Recall that the node-rep functions are in C and the generic data
model is in O’Caml.

We observe that the load time per byte at each level is near constant
for increasing source size, but that each level incurs a substantial

PADX PADX
Data PADS node generic

Source size read rep DM
5MB 0.07 0.27 0.61

Sirius 10MB 0.06 0.26 0.56
50MB 0.06 0.25 0.56
5MB 0.54 0.78 1.63

Web server 10MB 0.53 0.74 1.61
50MB 0.53 0.74 1.58

Table 2. Sequential strategy: load time per byte in µs

cost compared to the lower levels. For the Sirius source, the PADX

node-representation is four times slower than the native PADS pars-
ing functions, but for the Web-server source, the PADX node rep-
resentation is only 44% slower. Understanding the source of this
difference requires further experiments with other sources.

For both sources, the generic concrete data model (in O’Caml)
is twice as slow as the node representation (in C). The interface
from the generic data model to the node representation crosses the
O’Caml-C boundary and uses data marshalling functions gener-
ated by the O’Caml IDL tool. We have noticed similar per-byte
read costs in the Galax secondary storage system [16], whose data-
model architecture is similar to that of PADX.

We also measured the time to load using the on-demand, random-
access strategy. In general, it was 10–15% slower than the on-
demand, sequential strategy.

These measurements indicate that the on-demand, sequential strat-
egy scales with increasing data size, and that there is a constant
overhead incurred at each level in the data model. Ideally, we would
like the cost of accessing data via the generic concrete data model
to be close to the PADS read cost, but this will require more engi-
neering effort.
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Data size (MB) 1 5 10 20 50
Time (seconds) 1.0 4.8 10.7 24.0 90.0
Table 3. PADX query evaluation time in seconds

5.2 Querying

Ultimately, PADX’s query performance depends on Galax, because
the Galax compiler produces and executes the query plans. Cur-
rently, Galax’s query compiler includes a variety of logical opti-
mizations for detecting joins and re-grouping constructs in XQuery
expressions. Another important optimization is detecting when a
query can be evaluated in one scan over the input document. Path
expressions that contain only descendant axes and no branches are
one example of the kind of queries that can be evaluated in one scan.
For example, the following query, which returns the locations of all
records containing some error in a Sirius source, can be evaluated
in one scan:

$pads/Psource/orders/elt/pd/loc

Detecting and evaluating one-scan queries (also known as stream-
able queries) is necessary in XML environments in which the XML
data is an infinite or bursty stream. Several query processors al-
ready exist in which streamable queries are evaluated directly over
a stream of tokens produced by SAX-style parsers [9, 14].

Streamable queries are important for PADX, because the resulting
plans can be evaluated on large PADS sources that are loaded on-
demand and sequentially. Table 3 contains the time in seconds to
evaluate the query above when applied to PADS data sources into
which we injected errors randomly in the file (12 errors per 1MB).
The query plan produced by Galax is not perfectly pipelined, thus
the execution time is super linear.

To understand the costs and benefits of other evaluation strategies,
we materialized the 1MB PADS source in Table 3, which yielded a
7.4MB XML document. We then used Galax to execute the above
query, using the same query execution plan, and applied it to the
7.4MB XML document loaded into the main-memory data model.
The execution time was 13.1s of which 12.9 was spent in document
parsing. To amortize the cost of document parsing time, we often
store documents in Galax’s secondary storage system. To compare
with this strategy, we stored the 7.4MB XML document in Galax’s
secondary storage system, which required 166MB of disk space.
We then ran the above query on the stored document. The execu-
tion time was 2.9s, almost three times slower than PADX applied to
the PADS data directly. For comparison with an independent query
processor, we evaluated the above query using Saxon [12], a popu-
lar XSLT and XQuery engine, applied to the 7.4MB document and
it executed in 6.3s.

In summary, our initial impressions are that evaluating streamable
XQuery expressions directly on a PADS source is feasible, efficient,
and convenient.

6 Discussion

The PADX system solves important data-management tasks: it sup-
ports declarative description of ad hoc data formats, its descriptions
serve as living documentation, and it permits exploration of ad hoc
data and vetting of erroneous data using a standard query language.
The resulting PADS descriptions and queries are robust to changes
that may occur in the data format, making it possible for more than
one person to profitably use and understand a PADX description and

related queries.

A PADX query corrall is an example of partially compiled query
engine, because its concrete data model is customized for a partic-
ular data format, but its queries are interpreted over an abstract data
model that delegates to the concrete model. This architecture places
PADX on the continuum between query architectures that provide
fully interpreted query plans applied to generic data models to ar-
chitectures that provide fully compiled query plans applied to cus-
tomized data model instances [10]. The latter architectures provide
very high performance on large scale data. PADX has some of the
benefits of such architectures but does not have the overhead of a
complete database system.

Others share our interest in declarative descriptions of ad hoc data
formats. Currently, the Global Grid Forum is working on a stan-
dard data-format description language for describing ad hoc data
formats, called DFDL [3, 4]. Like PADS, DFDL has a rich collection
of base types and supports a variety of ambient codings. Unlike
PADS, DFDL does not support semantic constraints on types nor de-
pendent types, e.g., it is not possible to specify that the length of
an array is determined by some field in the data. DFDL is an anno-
tated subset of XML Schema, which means that the XML view of
the ad hoc data is implicit in a DFDL description. DFDL is still be-
ing specified, so no DFDL-aware parsers or data analyzers exist yet.
We expect that bi-directional translation between PADS and DFDL
to be straightforward. Such a translation would make it possible for
DFDL users to use PADX to query their ad hoc data sources.

The steps in a data-management workflow that PADX addresses typ-
ically precede the steps that require a high-performance database
system, e.g., asking complex OLAP queries applied to long-lived,
archived data. Commercial database products do provide support
for parsing data in external formats so the data can be imported into
their database systems, but they typically support a limited number
of formats, e.g., COBOL copybooks, no declarative description of
the original format is exposed to the user for their own use, and
they have fixed methods for coping with erroneous data. For these
reasons, PADX is complementary to database systems.

We continue to focus on improving the usability and scalability of
PADX. Currently, PADX is not compositional, because the result of
evaluating a query is in native XML, not in a PADS format. Given
an arbitrary XQuery expression over a PADX source, an open prob-
lem is being able to infer a reasonable PADS format for the result
and produce the results in this format. We have already mentioned
the important problem of detecting when a query can be evaluated
in a single scan over an input document and of producing a fully
pipelined execution plan. Interestingly, this problem is important in
XML environments in which the XML data is an infinite or bursty
stream. We are working on improving Galax’s ability to detect
one-scan queries and to produce query plans that are indeed fully
pipelined and that use limited memory.
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[7] M. Fernández, J. Siméon, B. Choi, A. Marian, and G. Sur. Imple-
menting XQuery 1.0: The Galax Experience. In Proceedings of Inter-
national Conference on Very Large Databases (VLDB), pages 1077–
1080, Berlin, Germany, Sept. 2003.

[8] K. Fisher and R. Gruber. PADS: A domain-specifi c language for pro-
cessing ad hoc data. In Proceedings of the ACM SIGPLAN 2005 con-
ference on Programming language design and implementation, June
2005.

[9] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. West-
mann, M. J. Carey, and A. Sundararajan. The BEA streaming XQuery
processor. VLDB J., 13(3):294–315, 2004.

[10] R. Greer. Daytona and the fourth generation language cymbal. In
Proceedings of ACM Conference on Management of Data (SIGMOD),
1999.

[11] T. Grust, M. van Keulen, and J. Teubner. Staircase join: Teach a rela-
tional DBMS to watch its axis steps. In Proceedings of International
Conference on Very Large Databases (VLDB), pages 524–535, Berlin,
Germany, Sept. 2003.

[12] M. Kay. SAXON 8.0. SAXONICA.com.
http://www.saxonica.com/.
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Abstract

This paper presents the core type system and type inference
algorithm of OCamlDuce, a merger between OCaml and
XDuce. The challenge was to combine two type checkers
of very different natures while preserving the best proper-
ties of both (principality and automatic type reconstruction
on one side; very precise types and implicit subtyping on the
other side). Type inference can be described by two succe-
sive passes: the first one is an ML-like unification-based al-
gorithm which also extracts data flow constraints about XML
values; the second one is an XDuce-like algorithm which
computes XML types in a direct way. An optional prepro-
cessing pass, called strenghtening, can be added to allow
more implicit use of XML subtyping. This pass is also very
similar to an ML type checker.

1 Introduction

This paper presents the core type system of OCamlDuce, a
merger between OCaml [L+01] and XDuce [Hos00, HP00,
HP03, HVP00]. OCamlDuce source code, documentation
and sample applications are available at http://www.
cduce.org/ocaml.

OCaml is a widely-used general-purpose multi-paradigm
programming language with automatic type reconstruction
based on unification techniques. XDuce is a domain specific
and type-safe functional language adapted to writing trans-
formations of XML documents. It comes with a very precise
and flexible type system based on regular expression types
and a natural notion of subtyping. The basic type-checking
primitives for XDuce constructions are rather involved, but
the structure of the type checker is simple: types are com-
puted in a bottom-up way along the abstract syntax tree; the
input and output types of functions are explicitly provided by
the programmer. The high-level objective of the OCamlDuce
project is to enrich OCaml with XDuce features in order to
provide a robust development platform for applications that

need to deal with XML but which are not necessarily focused
on XML.

The challenge was to combine two type checkers of very dif-
ferent natures while preserving as much as possible the best
properties of both (principality and automatic type recon-
struction on one side; very precise types and implicit sub-
typing on the other side).

Our main guideline was to design a type system which can be
implemented by reusing existing implementations of OCaml
and CDuce [BCF03, Fri04]. (CDuce can be seen as a di-
alect of XDuce with first-class and overloaded functions –
for the merger with OCaml, we don’t consider these extra
features). Because of the complexity of OCaml’s type sys-
tem, it was out of question to reimplement it. The typing
algorithm we describe in this paper has been successfully im-
plemented simply by combining a slightly modified OCaml
type checker with the CDuce type checker, and by adding
some glue code. As a result, OCamlDuce is a strict exten-
sion of OCaml: programs which don’t use the new features
will be treated exactly the same by OCaml and OCamlDuce.
It is thus possible to compile any existing OCaml library
with OCamlDuce. Also, we believe our modifications to the
OCaml compiler are small enough to make it easy to main-
tain OCamlDuce in sync with future evolutions of OCaml.
Our experience so far confirms that.

Another guideline in the design of OCamlDuce was that
XDuce programs should be easily translatable to OCaml-
Duce in a mechanical way. In XDuce, all the functions are
defined at the toplevel and comes with an explicit signa-
ture. We can obtain an OCamlDuce program by some mi-
nor syntactical modifications (the new constructions in the
language are delimited to avoid grammatical overloading of
notations). Explicit function signatures are simply translated
to type annotations.

The design goals pushed us into the direction of simplicity.
We choosed to segregate XDuce values from regular ML val-
ues. Of course, a constructed ML value can contain nested
XDuce values, but from the point of view of ML, XDuce
values are black boxes, and similarly for types. Also, we de-
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cided not to have parametric polymorphism on XDuce types.
A type variable can of course be instantiated to an XDuce
type (or to a type which contains a nested XDuce type), but
it is not possible to force a generalized variable to be instan-
tiated only to XDuce types or to use a type variable within an
XDuce type. The technical presentation introduces a notion
of foreign type variables, but they are nothing more than a
technical device for inferring ground XDuce types.

Overview In Section 2, we give some intuitions about the
behavior of OCamlDuce’s type-checker.

The formalization of the type system will be developped
by abstracting away from details about XDuce. In Sec-
tion 3, we introduce an abstract notion of extension (for-
eign types and foreign operators) and show of XDuce can
be seen as an extension. In Section 4, we present the type-
system and type inference algorithm for a calculus made of
ML [Mil78, Dam85] plus an arbitrary extension. The basic
idea is to rely on standard techniques for ML type inference.
Indeed, we start from a type system which is an instance
of ML where foreign types are considered as atomic types
and foreign operators are explicitly annotated with their in-
put and output types. Then we present an algorithm to infer
these annotations. This algorithm is described as two suc-
cessive passes: the first one is a slightly modified version of
an ML type-checker, and the second one is a simple forward
computation on foreign types.

In Section 5, we present a preprocessing pass, called
strengthening, whose purpose is to make more programs ac-
cepted by the type system by allowing implicit use of sub-
typing.

In Section 6, we present other details of the concrete integra-
tion in OCaml. In Section 7, we compare our approach to
related works.

2 An example

In this section, we illustrate the behavior of OCamlDuce’s
type-checker on the following code snippet:

let f x = match x with
{{ [ (y::<a>_ | _)* ] }} -> {{ y @ y }}

let z1 =
f {{ [ <a>[] <b>[] <a>[<b>[]] ] }}

let z2 =
List.map f

[ {{ [ <a>[<a>[]] ] }};
{{ [ <a>[<c>[]] ] }} ]

The exemple is intended to illustrate the use of the OCaml
type checker to perform a data-flow analysis of XML values,
and also how OCaml features (here, higher-order functions
and data-structures) interact with XDuce features.

Double curly-braces {{...}} are used in OCamlDuce only
to avoid ambiguities in the grammar; they carry no typing
information. For instance, the symbol @ used for list con-
catenation in OCaml is re-used for denote XML sequence
concatenation. Similarly, the square brackets [...] are
used both to denote OCaml list literals (whose elements are
separated by semi-colons) and XML sequences literals when
used within double curly braces (their elements are separated
by whitespace). XML element literals are written in the form
<tag>content.

The first line of the program above declares a function
f which consists of an XML pattern matching on its ar-
gument, with a single branch. The XML pattern p =
[ (y::<a>_ | _)* ] extracts from an XML sequence
all the elements with a tag <a> and put them (in order) in the
capture variable y. The function is then used twice, includ-
ing once indirectly through a call to the function List.map
(from the OCaml standard library) of type ∀α, β.(α → β) →
α list → β list. For the purpose of explaining type-
checking, we will rewrite the body of the function f as:

let f x =
let y = match[y;p](x) in
{{ y @ y }}

The y and p parameters of the match operator represent the
capture variable under consideration and the pattern itself.

In OCamlDuce, XML values (elements, sequences, . . . ) and
regular OCaml values are kept appart. An XML value can of
course appear as part of an OCaml value (e.g. the XML ele-
ments which are put into an OCaml list), but an OCaml value
cannot appear within an XML value. The same applies to
types: an XML type can appear as part of a complex OCaml
type expression, but the converse is impossible. XML op-
erators can be applied to XML values and return new XML
values. In the example, we can see three kind of XML oper-
ators: XML literals (no argument), XML concatenation (two
arguments), and XML pattern matching (one argument).

The basic idea of the OCamlDuce type system is to infer
XML types for the inputs and outputs of XML operators.
This is done by introducing internally a new kind of type
variables, called XML type variables. Before proper type-
checking starts, each XML operator used in the program is
annotated with fresh XML type variables (in subscript po-
sition for the inputs, and in superscript position for the out-
puts):
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let f x =
let y = match[y;p]ι2

ι1(x) in
{{ y @ι5

ι3,ι4 y }}
let z1 =
f {{ [ <a>[] <b>[] <a>[<b>[]] ]ι6 }}

let z2 =
List.map f

[ {{ [ <a>[<a>[]] ]ι7 }};
{{ [ <a>[<c>[]] ]ι8 }} ]

The regular OCaml type-checker is then applied. It gives to
each XML operator an arrow type following the annotations
and then proceeds as usual (generalizes types of let-bound
identifiers, instantiates ML type-schemes when an identifier
is used, and performs unifications to make type compatible).

For instance, the concatenation operator in our example is
given the type ι3 → ι4 → ι5, and the type-checker performs
the following unifications: ι2 = ι3 = ι4 (the type for y),
ι1 = ι6 = ι7 = ι8 (the type for the argument of f). It also
produces the following types for the top-level identifiers:

val f : ι1 → ι5
val z1 : ι5
val z2 : ι5 list

Of course, we must still instantiate the XML type variables
with ground XML types. Each occurence of an XML op-
erator in the program gives one constraint on the instantia-
tion. Indeed, we can interpret each n-ary operator as as n-
ary function from XML types to XML types. If we choose
ι1 and ι2 as representatives for their classes of equivalence
modulo unification, the program is:

let f x =
let y = match[y;p]ι2

ι1(x) in
{{ y @ι5

ι2,ι2 y }}
let z1 =
f {{ [ <a>[] <b>[] <a>[<b>[]] ]ι1 }}

let z2 =
List.map f

[ {{ [ <a>[<a>[]] ]ι1 }};
{{ [ <a>[<c>[]] ]ι1 }} ]

from which we read the following constraints:

ι2 ≥ match[y;p](ι1)
ι5 ≥ ι2@ι2
ι1 ≥ [ <a>[] <b>[] <a>[<b>[]] ]
ι1 ≥ [ <a>[<a>[]] ]
ι1 ≥ [ <a>[<c>[]] ]

In this system, we consider match[y;p] as a function
from XML types to XML types, given by XDuce’s type in-
ference algorithm for pattern matching. Similarly, the oper-
ator @ is now intrepreted as a function from pair of types to
types.

The set of constraints generates dependencies between vari-
ables. We say that a variable on a left-hand side of a con-
straint depends on variables of the right-hand side. In our
example, the graph of dependencies between variables is
acyclic. In this case, we can topologically order the vari-
ables and find the least possible ground XML type for each
of them: we assign to a variable the union of all its lower
bounds. In the example, we will thus compute the following
instantiation:

ι1 = [ R1 ]
ι2 = match[y;p]([ R1 ]) = [ R2 ]
ι5 = ι2@ι2 = [ R2 R2 ]

where R1 is the regular epxression
(<a>[]<b>[]<a>[<b>[]])|<a>[<a>[]|<c>[]]]
and R2 is the regular expression
(<a>[]<a>[<b>[]])|<a>[<a>[]|<c>[]].

Type-checking is over: we have found an instantiation for
XML type variables which satisfies all the constraints. In
essence, the type-checker has collected all the XML types
that can flow to the input of the function, and then type-
checked the body of the function with the union of all these
types. In general, the OCaml type-checker is used to infer the
data flow of XML values in the programs. The way to solve
the resulting set of constraints by forward computation cor-
responds roughly to the structure of the XDuce type-checker.

Implicit subtyping Let’s see what happens if we add an
explicit type constraint for z1:

let z1 : {{[ <a>_* ]}} =
f {{ [ <a>[] <b>[] <a>[<b>[]] ] }}

The algorithm described above will infer a much less precise
type for z2 as well, which is unfortunate. The reason is that
the OCaml type-checker unifies ι5 with [ <a>_* ]. Ba-
sically, the unification-based type system forgets about the
direction of the data flow. There is some dose of implicit
subtyping in the algorithm, but only for the result of XML
operators (because of the way we interpet them as subtyping
- not equality - constraints).

In order to address this lack of implicit subtyping, we use
a preprocessing pass whose purpose is to detect which sub-
expressions are of kind XML and to introduce around them a
special unary XML operator id which behaves semantically
as the identity, but allows subtyping. This preprocessing pass
would rewrite the definition for z1 as:

let z1 : {{[ <a>_* ]}} =
idι10

ι9 (f {{[<a>[] <b>[] <a>[<b>[]]]ι1}})
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The variable ι9 will then be unified with ι5 and ι10 with
[ <a>_* ]. The additional constraint corresponding to
the id operator is thus simply:

[ <a>_* ] ≥ ι5

which is satisfied by the same instantiation for ι5 as in the
original example. As a consequence, the type for z2 is not
changed.

The preprocessing pass is quite simple. It consists of an-
other run of the OCaml type-checker, where all the XML
types are considered equal. This allows to identify which
sub-expressions are of kind XML. Section 5 describes for-
mally this pass.

Breaking cycles The key condition which allowed us to
compute an instantiation for XML type variables in the ex-
ample was the acyclicity of the constraints. This property
does not always hold. For instance, let’s extend the original
example with the following definition:

let z3 = f z1

Without the preprocessing pass mentionned above, this line
would force the OCaml type-checker to unify ι1 and ι5. The
preprocessing pass actually replaces this definition by:

let z3 = f idι12
ι11(z1)

The type-checker then unifies ι11 with ι5 and ι12 with ι1; the
resulting constraint for id is thus:

ι1 ≥ ι5

which corresponds to the fact that the output of f can flow
back to its input. We observe that the set of constraints has
now a cycle between variabls ι1, ι5 and ι2.

Our type-system cannot deal with such a situation. It would
issue an error explaining that the inferred data flow on XML
values has a cycle. The programmer is then required to break
explicitly this cycle by providing more type annotations. For
instance, the programmer could use the same annotation as
above on z1:

let z1 : {{[ <a>_* ]}} =
f {{ [ <a>[] <b>[] <a>[<b>[]] ] }}

or maybe he will prefer to annotate the input or output type
of f.

3 Abstract extension of ML

The previous section explained the behavior of OCaml-
Duce’s type checker on a example. It should be clear from
this example that the type system is largely independent of
the actual definitions of values, types, patterns and opera-
tors from XDuce and could be applied to other extensions
of OCaml as well. In this section, we will thus introduce an
abstract notion of extension and show how XDuce fits into
this notion. This more abstract presentation should help the
reader to understand the structure of the type checker, with-
out having to care about the details of XDuce type system.

Definition 1. An extension X is defined by:

• a set of ground foreign types T ;

• a subtyping relation ≤ on T , which is a partial order
with a finite least-upper bound operator �;

• a set of foreign operators O;

• for each operator o ∈ O: an arity n ≥ 0 and an ab-
stract semantics ô : T n → T which is monotone with
respect to ≤ on each of its argument.

We use the meta-variable τ to range over ground foreign
types. The foreign operators are used to model both foreign
value constructors and operations on these foreign values.
Since we are not going to formalize dynamic semantics, we
don’t need to distinguish between these two kinds of opera-
tors.

The monotonicity requirement on the abstract semantics en-
sures that our resolution strategy (taking the union of lower
bounds for each variables) for constraints is complete.

We don’t formalize in this paper the operational semantics of
operators. Instead, we assume informally that it is given and
compatible with the abstract semantics.

XDuce as an extension We now show how XDuce fea-
tures can be seen as an extension. We consider here a simple
version of XDuce, with the following kind of expressions:
element constructor a[e] (seen as a unary operator), empty
sequence (), concatenation e1, e2, and pattern matching
match e with p → e | . . . | p → e. OCamlDuce is actually
build on CDuce, which considers for instance XML element
constructors as ternary operators (the tag and a specification
for XML attributes are also considered as arguments).

The meta-variable p ranges over XDuce patterns. We don’t
need to recall here what they are. We just need to know
that for any pattern p we can define an accepted type �p�,
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a finite set of capture variable Var(p), and for any type τ
and any variable x in Var(p), a type match[x; p](τ) (which
represents the set of values possibly bound to x when the
input value is in τ and the pattern succeed)

Here is the formal definition of an extension X for XDuce.
We take for foreign types the XDuce types quotiented by
the equivalence induced by the subtyping relation (that is:
types with the same set-theoretic interpretation are consid-
ered equal). The least-upper bound operator � corresponds
to XDuce’s union type constructor (usually written |). We
use the following families of foreign operators:

• a unary operator for each XML label a, a unary opera-
tor;

• a binary operator corresponding to the concatenation;

• a constant operator corresponding to the empty se-
quence;

• for any pattern p and variable x in Var(p), a unary op-
erator written match[x; p] (its semantics is to return the
value bound to x when matching its argument against
the pattern p).

The abstract semantics for all these operators follows directly
from XDuce’s theory.

Element constructor, concatenation and the empty sequence
expressions can directly be seen as foreign operators. This
is not the case for a pattern matching match e with p1 →
e1 | . . . | pn → en. We are going to present an encoding
of pattern-matching in terms of operators and normal ML
expressions. This encoding is rather heavy; in practice, the
implementation deals with pattern matching directly.

First, we define the translation p → e of a single branch
where Var(p) = {x1, . . . , xn} as the expression:

λx.
let x1 = match[x1; p]x in
. . .
let xn = match[xn; p]x in
e

Then, the translation of match e with p1 → e1 | . . . | pn →
en is defined as:

let x = e in
dispatch[τ1, . . . , τn] x x (p′1 → e1) . . . (p′n → en)

where τi = �pi� and p′i = pi\(τ1 � . . . � τi−1) (the restric-
tion of pi to values which do not match any pattern form an
preceding branch). We have used in this translation a new

built-in ML constant dispatch[τ1, . . . , τn] of type scheme:
∀α.(τ1 � . . . � τn) → α → (α → β) → . . . → (α → β) →
β, which we assume to be present in the initial typing envi-
ronment. Its intuitive semantics is to drop the first argument
(it is used only to force the type-checker to verify that x has
type τ1 � . . .� τn, which corresponds to the XDuce’s pattern
matching exhaustivity condition), and to call the kth func-
tional argument (1 ≤ k ≤ n) on the second argument when
k is the smallest integer such that this argument has type τk.

In principle, the technique described in this paper could
be used to integrate many of the existing extensions to
the original XDuce design (such as attribute-element con-
straints [HM03] or XML filters [Hos04]) without any addi-
tional theoretical complexity. In its current form, however,
OCamlDuce integrates all the CDuce extensions except over-
loaded functions: XML attributes as extensible records, se-
quence and tree pattern-based iterators, strings as sequences
of characters (hence string regular expression types and pat-
terns), etc.

4 Type system

In this section, we present a type system and a type inference
algorithm for a fixed extension X . Our language will be the
kernel of an ML-like type system, enriched with types and
operators from the extension X .

Types and expressions The syntax of types and expres-
sions is given in Figure 1. We use a vector notation to repre-
sent tuples. E.g. �t stands for an n-tuple (t1, . . . , tn).

We assume a set of ML type constructors, ranged over by
the meta-variable P. Each ML type constructor comes with
a fixed arity and we assume all the types to be well-formed
with respect to these arities. The arrow → is considered as
a distinguished binary type constructor for which we use an
infix and right-associative syntax.

We assume given two infinite families of type variables and
foreign type variables, respectively ranged over by the meta-
variables α and ι. In an expression ∃α.e, the type variable
α is bound in e. Expressions are considered modulo α-
conversion of bound type variables. The construction ∃α.e
thus serves to introduce a fresh type variable α to be used in
a type annotation somewhere in e.

Foreign operators are annotated with the type of their argu-
ments (in subscript position) and of their result (in super-
script); the number of type arguments is assumed to be co-
herent with the arity of the foreign operator. However, in
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practice, the source language does not include the annota-
tions: they are automatically filled with fresh foreign type
variables by the compiler (we also use this convention in this
paper for some examples). Putting the annotations in the syn-
tax is just a way of simplifying the presentation. The main
technical contribution of the paper is an algorithm to infer
ground foreign types for the foreign type variables.

The ML(X) fragment We call ML(X) the fragment of
our calculus where all the foreign types are restricted to be
ground. Figure 2 defines a typing judgment Γ � e : t
for ML(X). It is exactly an instance of the ML type sys-
tem [Mil78, Dam85] if we see ground foreign types as
atomic ML types and ground-annotated foreign type oper-
ators oτ

�τ as built-in ML constants or constructors (we also
introduce explicit type annotation and type variable intro-
duction). We recall classical notions of type scheme, typing
environment and generalization. A type scheme is a pair of
a finite set ᾱ of type variables and of a type t, written ∀ᾱ.t.
The variables in ᾱ are considered bound in this scheme. We
write σ 	 t if the type t is an instance of the type scheme
σ. A typing environment is a finite mapping from program
variables to type schemes. The generalization of a type t
with respect to a typing environment Γ, written GenΓ(t) is
the type scheme ∀ᾱ.t where ᾱ is the set of variables which
are free in t, but not in Γ.

Type-soundness of the ML(X) fragment We assume that
a sound operational semantics is given for the ML(X) cal-
culus. This amounts to defining δ-reduction rules for the oτ

�τ

operators which are coherent with the abstract semantics for
the foreign operators. Well-typed expressions in ML(X) (in
an empty typing environment, or an environment which con-
tains built-in ML operators) cannot go wrong. We also as-
sume that the operational semantics for an oτ

�τ operator de-
pends only on o, not on the annotations �τ , τ . This allows us
to lift the semantics of ML(X) to the full calculus.

Typing problems A substitution φ is an idempotent func-
tion from types to types that maps type variables to types,
foreign type variables to foreign types, ground foreign types
to themselves, and that commutes with ML type construc-
tors. We use a post-fix notation to denote a capture-avoiding
application of this substitution to typing environments, ex-
pressions, types or constraints.

A substitution φ1 is more general than a substitution φ2 if
φ2 = φ2 ◦ φ1. (Or equivalently, because substitutions are
idempotent: there exists a substitution φ such that φ2 = φ ◦
φ1.)

A typing problem is a tuple (Γ, e, t). (Usually, t is a fresh
type variable.) A solution to this problem is a substitution φ
such that Γφ � eφ : tφ is a valid judgment in ML(X). We
will now rephrase this definition in terms of a typing judg-
ment on the full calculus. This judgment Γ �X e : t is
defined by the same rules as in Figure 2, except for foreign
operators, for which we take:

Γ �X oε
�ε : ε1 → . . . → εn → ε

Typing environment and type schemes that are used in the
judgment �X are allowed to contain foreign type variables.
We say that φ is a pre-solution to the typing problem
(Γ, e, t) if the assertion Γφ �X eφ : tφ holds. Of course,
the new rule for foreign operators forgets the constraints that
relates the input and output types of foreign operators. In
order to ensure type soundness, we must also enforce these
constraints.

Formally, we define a constraint C as a finite set of annotated
foreign operators oε

�ε. We write � C if all the elements of C
are of the form oτ

�τ with ô(�τ) ≤ τ . For an expression e,
we collect in a constraint C(e) all the instances of foreign
operators oε

�ε that appear in e. Note that for any substitution
φ, we have C(e)φ = C(eφ).

We are ready to rephrase the notion of solution.

Lemma 1. A substitution φ is a solution to the typing prob-
lem (Γ, e, t) if and only if the following three assertions
hold:

• Γφ, eφ and tφ do not contain foreign type variables;

• φ is a pre-solution to the typing problem;

• � C(eφ).

Type soundness Type soundness for our calculus is a triv-
ial consequence of the type soundness assumption for the
ML(X) fragment. Indeed, we can see a solution φ to a typ-
ing problem (Γ, e, t) as an elaboration into a well-typed pro-
gram in this fragment.

Type inference Let us consider a fixed typing problem
(Γ, e, t). We want to find solutions to this problem. Thanks
to Lemma 1, we will split this task into two different steps:

• find a most-general pre-solution φ0;

• instantiate the remaining foreign type variables so as to
satisfy the resulting constraint.6
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ε ::= Foreign types:
τ ground foreign type
ι foreign type variable

t ::= Types:
P �t constructed
α type variable
ε foreign type

e ::= Expressions:
x program variable
λx.e abstraction
e e application
let x = e in e local definition
(e : t) annotation
∃α.e existential variable
oε

�ε foreign operator

Figure 1: Types and expressions

Γ(x) 	 t

Γ � x : t
Γ, x : t1 � e : t2

Γ � λx.e : t1 → t2

Γ � e1 : t1 → t2 Γ � e2 : t1

Γ � e1e2 : t2

Γ � e1 : t1 Γ, x : GenΓ(t1) � e2 : t2

Γ � let x = e1 in e2 : t2

Γ � e : t
Γ � (e : t) : t

Γ � e[t0/α] : t
Γ � ∃α.e : t

ô(�τ) ≤ τ

Γ � oτ
�τ : τ1 → . . . → τn → τ

Figure 2: Type system for the ML(X) fragment

It is almost straightforward to adapt unification-based exist-
ing algorithms for ML type inference (and their implementa-
tions) to compute a most general pre-solution if there exists
a pre-solution, or to report a type error otherwise. Indeed,
the typing judgment �X is very close to a normal ML type
system. In particular, it satisfies a substitution lemma: if
Γ �X e : t, then Γφ �X eφ : tφ for any substitution φ.

Of course, if the typing problem has no pre-solution, it has
no solution as well. For the remaining of the discussion,
we assume given a most general pre-solution φ0. Let us
write V for the set of foreign type variables that appear in
(Γφ0, eφ0, tφ0) and C0 for the constraint C(eφ0).

A solution to the typing problem is in particular a pre-
solution. As a consequence, a substitution φ is a solution
if and only if φ = φ ◦ φ0 and if it maps foreign type vari-
ables in V to ground foreign types in such a way that � C0φ.
The “minimal” modification we need to bring to φ0 to get a
solution is to instantiate variables in V so as to validate C0.
Formally, we define a valuation as a function ρ : V → T
such that � C0ρ. To any valuation ρ, we can associate a solu-
tion φ defined by tφ = tφ0ρ and any solution is less general
than the solution obtained this way from some valuation. In
particular, a solution exists if and only if a valuation exists.
So we are now looking for a valuation.

We won’t give a complete algorithm to check for the exis-
tence of a valuation. This would lead to difficult constraint
solving problems which might be undecidable (this of course
depends on the extension X). Even if they are decidable for
a given extension, they might be intractable in practice and

so we prefer to stick to our design guideline that type infer-
ence shouldn’t be significantly more complicated than both
ML type inference and XDuce-like type inference. XDuce
computes in a bottom-up way, for each sub-expression, a
type which over approximates all the possible outcomes of
this sub-expression. The basic operations and their typing
discipline corresponds respectively to our foreign operators
and their static semantics. XDuce’s type system uses sub-
sumption only when necessary (e.g. to join the types of
the branches of a pattern matching, or when calling a func-
tion). So we can say that XDuce tries to compute a min-
imal type for each sub-expression, by applying basic type-
checking primitives. We will do the same, and to make it
work, we need some acyclicity property, which corresponds
to the bottom-up structure of XDuce’s type checker.

Definition 2. Let C be a constraint. We write ι1
C� ι2 if C

contains an element oε
�ε such that ι2 = ε and ι1 appears in �ε.

We say that C is acyclic if the directed graph defined by this
relation is acyclic.

Our type inference algorithm only deals with the case of an
acyclic constraint C0 (this condition does not depend on the
particular choice of the most general pre-solution). If the
condition is not met, we issue an error message. It is not
a type error with respect to the type system, but a situation
where the algorithm is incomplete.

Remark. The acyclicity criterion is of course syntactical (it
does not depend on the semantics of constraints but on their
syntax), but it is not defined in terms of a specific inference
algorithm. Instead, it is defined in terms of the most-general
pre-solution of an ML-like type system. In particular, it does
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not depend on implementation details such as the order in
which sub-expression are type-checked.

Below we furthermore assume that C0 is acyclic. We define
the function ρ0 : V → T by the following equation:

∀ι ∈ V. ιρ0 =
⊔

{ô(�ερ0) | oι
�ε ∈ C0}

The acyclicity condition ensures that this definition is well-
founded and yields a unique function ρ. Furthermore, this
function is a valuation if and only if the typing problem has
a solution. To check this property, only constraints whose
right-hand side is a ground foreign type need to be consid-
ered:

(1) ∀oτ
�ε ∈ C0. ô(�ερ0) ≤ τ

Also, any other valuation ρ is such that:

∀ι ∈ V. ιρ0 ≤ ιρ

In other words, under the acyclicity condition, we can check
in a very simple way whether a given typing problem has a
solution, and if this is the case, we can compute the smallest
valuation (for the point-wise extension of the subtyping rela-
tion). This computation only involves one call to the abstract
semantics for each application of a foreign operator in the
expression to be type-checked.

Remark. In some cases, it is possible to find manifest type
errors even when the constraint is not acyclic. In practice,
the computation of ρ0, the verification of (1), and the check
for acyclicity can be done in parallel, e.g. with a deep-first
graph traversal algorithm. It can detect some violation of (1)
before a cycle. In this case, we know that the typing problem
has no solution, and thus a proper type error can be issued.

Manually working around the incompleteness When the
algorithm described above infers a cyclic constraint, it can-
not detect whether the typing problem (Γ, e, t) has a solution
or not. However, we have the following property. If a solu-
tion φ exists, then we can always produce an expression e′

by adding annotations to e such that the algorithm succeeds
for the typing problem (Γ, e′, t) and that φ is equivalent (for
the equivalence induced by the more-general ordering) to the
solution φ0 computed by the algorithm.

In other words, even if the algorithm is not complete (be-
cause of the acyclicity condition) and makes a choice be-
tween most-general solutions (the smallest one for the sub-
typing relation), for any solution to a typing problem, the
programmer can always add annotations so that the algo-
rithm infers this very solution (or an equivalent one).

Partial operators The foreign operators were assumed to
be total. This means they should apply to any foreign value.

We can simulate partial operators by adding a new top ele-
ment � to the set of ground foreign types T , and by requiring
the abstract semantics of operators to be such that whenever
an argument is �, the result is also �. Since the typing algo-
rithm infers the smallest valuation for foreign type variables,
we can simply look at it and check that no foreign type vari-
able is mapped to �.

5 Strengthening

As we mentioned above, we can see the type system for the
calculus as an elaboration into its ML(X) fragment, which
immediatly gives type soundness.

In this section, we consider another elaboration from the cal-
culus into itself. Namely, this elaboration is intended to be
used as a preprocessing pass (rewriting expressions into ex-
pressions) in order to make the type system accept more pro-
grams. We call this elaboration procedure strengthening.

The issue addressed by strengthening is a lack of implicit
subsumption in our calculus. We already hinted at this issue
in Section 2. We will now give more examples.

Subsumption missing in action We consider the typing
problem (Γ1, e1, β) where Γ1 = {x : τ1, y : τ2, f : ∀α. α →
α → α} and e1 = f x y. It admits a solution if and only
if τ1 = τ2. In a system with implicit subtyping, we might
expect to give type τ = τ1 � τ2 to both x and y, so that the
application succeeds and the result type is τ .

Similarly, the expression (λx.x : τ1 → τ2) is not well-typed
even if τ1 ≤ τ2 (unless τ1 = τ2).

A naive solution Let us see how to implement the amount
of implicit subtyping we need to make these examples type-
check. The following rule could be a reasonable candidate
as an addition to the type system (we write �≤ for the new
typing judgment):

Γ �≤ e : τ τ ≤ τ ′

Γ �≤ e : τ ′

A concrete way to see this rule is that any subexpres-
sion e′ can be magically transformed to the application
idι2

ι1 e′, where id is a distinguished foreign operator such
that îd(τ) = τ and ι1, ι2 are fresh foreign type variables.

The type system extended with this rule would accept the
examples given above to illustrate the lack of implicit sub-
sumption. However, this rule as it stands would add a lot
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of complexity to the type inference algorithm. As a matter
of fact, the type system would not admit most-general pre-
solutions anymore. We can see this on a very simple exam-
ple with the typing problem ({x : τ}, x, α). We could argue
that a more liberal definition of being more-general should
allow some dose of subtyping. So let us consider the more
complex example Γ3 = {f : ∀α. α → α → α} and e3 =
λx.λy.λz.λg.g (f x y) (f x z). In ML, the inferred type
scheme would be ∀α, β.α → α → α → (α → α → β) →
β which forces the first three arguments to have the same
type. But if the arguments turn out to be of a foreign-type,
another family of types for the function is possible, namely
∀β.τ1 → τ2 → τ3 → ((τ1 � τ2) → (τ1 � τ3) → β) → β,
and these types cannot be obtained as instances of the ML
type scheme above (we can obtain ∀β.τ1 → τ2 → τ3 →
((τ1 � τ2 � τ3) → (τ1 � τ2 � τ3) → β) → β but this is less
precise).

A practical solution We will now describe a practical so-
lution. Instead of modifying the type system by adding a
new subsumption rule, we will formulate the extension as a
rewriting preprocessing pass. The rewriting consists in in-
serting applications of the identity foreign operator id. The
challenge is then to choose which sub-expressions e′ should
be rewritten to id e′. If we had an oracle to tell us so, the
composition of the rewriting pass and the type system of Sec-
tion 4 would be equivalent to the type system �≤. Unfortu-
nately, we don’t have such an oracle. We could try all the
possible choices of sub-expressions, and this would give a
complete type-checking algorithm for the type system �≤.

We prefer to use a computationally simpler solution. We
also expect it to be simpler to understand by the program-
mer. The idea is to use an incomplete oracle. The oracle
first runs a special version of an ML type-checker on the ex-
pression to be type-checked. This type-checker identifies all
the foreign types together. The effect is to find out which
sub-expressions have a foreign type in a principal derivation,
that is, which sub-expression have necessarily a foreign type
in all the possible derivations. The preprocessing pass con-
sists in adding an application of the identity operator above
all these sub-expressions and only those.

The important point here is that the oracle may be overly
conservative. Let us consider a type variable which has been
generalized in the principal derivation. In a non-principal
derivation, it could have been instead instantiated to a for-
eign type. If this derivation had been considered instead of
the principal one, the preprocessing pass would have added
more applications of the identity operator. Maybe this would
have been necessary in order to make the resulting expres-
sion type-check. An example is given by the expression
let h = e3 in (h : τ1 → τ2 → τ3 → ((τ1 � τ2) →

(τ1 � τ3) → t) → t) where e3 is from the example above.
Here, the preprocessing pass succeeds but does not change
the expression because no sub-expression has a foreign type
in the principal type derivation. The type-scheme inferred for
h is a pure ML type-schema, which makes the type-system
subsequently fail on the expression.

We believe that this restriction of the �≤ system is rea-
sonnable. It can be implemented very simply by reusing
the same type-checker as in Section 4 in a different mode
(where all the foreign types can be unified). The simple ex-
amples at the beginning of this section are now accepted.
Indeed, the preprocessing pass transforms the expressions to
f (id x) (id y) and ((λx.id x) : τ1 → τ2) respectively. This
allows the type system � to use subtyping where needed.

Properties The strenghtening pass cannot transform a
well-typed program into an ill-typed one. Note, however,
that it might break the acyclicity condition if it was already
met. See below for a way to relax the acyclicity condition.

Also, if strenghtening fails, the typing problem has no pre-
solution (for the typing judgment �), and thus no solution.
However, it is not true that if it succeeds, a pre-solution nec-
essarily exists (for the new program where applications of
the id operators have been added). As an example, let us
consider the situation where Γ = {x : τ1 → τ1, y : τ2 →
τ2, f : ∀α. α → α → α} and e = f x y. The preprocessing
succeeds, because all the foreign types are considered equal
but does not touch the expression (because no sub-expression
has a foreign type in a principal typing derivation). Still, the
next pass of the type inference algorithm attempts to unifiy
the types τ1 and τ2 and thus fails.

Relaxing the acyclicity condition Inserting applications
of the id operator can break the acyclicity condition. We
can actually relax this condition to deal with the id oper-
ator more carefully. Let us consider a constraint C with a

cycle ι1
C� . . .

C� ι1, such that all the edges in this cycle
come from elements of the form idι′

ι . Clearly, any valu-
ation ρ such that � Cρ will map all the ιi in the cycle to
the same ground foreign type. So instead of considering the
most-general pre-solution and then face a cyclic constraint,
we may as well unify all these ιi first: all the solutions can
still be obtained from this less-general pre-solution.

The relaxed condition is: There must be no cycle in the con-
straint except maybe cycles whose edges are all produced by
the id operator.

To illustrate the usefulness of the relaxed condition, let us
consider the expression e = fix(λg.λx.f c (g x)) with Γ =

44



{fix : ∀α.(α → α) → α, f : ∀α.α → α → α, c : τ}. The
strengthening pass builds a principal typing derivation for e
in a type algebra where all the foreign types are identified.
Here is such a derivation, where we write � for foreign types
and t = α → �, Γ′ = Γ, g : t, x : α (we collapse rules for
multiple abstraction and application):

Γ � fix : (t → t) → t

Γ′ � f : � → � → �

Γ′ � c : �

Γ′ � g : t Γ′ � x : α

Γ′ � g x : �

Γ′ � f c (g x) : �

Γ � λg.λx.f c (g x)) : t → t

Γ � e : α → �

On this principal derivation, we observe three sub-
expressions of a foreign type. Accordingly, strengthening in-
troduces three instances of the id operator and thus rewrites
the expression to:

e′ = fix(λg.λx.idι2
ι1 (f (idι4

ι3 c) (idι6
ι5 (g x))))

The type-checker which is then applied performs some uni-
fications: ι1 = ι4 = ι6, ι2 = ι5, ι3 = τ . We can for instance
assume that the computed most-general pre-solution maps ι4
and ι6 to ι1 and ι5 to ι2. The first and third instances of the
id operator in e′ thus generate the dependencies ι1

C0� ι2 and

ι2
C0� ι1. Strictly speaking, the constraint is cyclic, but we

can break the cycle simply by unifying ι1 and ι2. The small-
est valuation is then given by ι1ρ = τ . We would have ob-
tained the same solution if we had applied the type-checker
directly on e without the strengthening pass. In this exam-
ple, strengthening is useless and the relaxed acyclicity condi-
tion is just a way to break a cycle introduced by strenghten-
ing. We can easily imagine more complex examples where
strenghtening is really necessary but introduces cycles that
can be broken by the relaxed condition.

6 Integration in OCaml

We have described a type system for basic ML expressions.
Of course, OCaml is much more than an ML kernel. We
found no problem to extend it to deal with the whole OCaml
type system, including recursive types, modules, classes, and
other fancy features. The two ML-like typing passes (the
one used during strengthening and the one using for the real
type-checking) are done on whole compilation units (in the
toplevel, they are done on each phrase). The information

from the compilation unit interface (the .cmi file) is in-
tegrated before checking the acyclicity condition. Indeed,
this information acts as additional type annotations on the
values exported by the compilation unit and can thus con-
tribute to obtaining this condition. Also, in addition to type
annotations on expressions, OCaml provides several ways
to introduce explicit type informations (and thus obtain the
acyclicity condition): datatype definitions (explicit types for
constructor and exception arguments, record fields), module
signatures, type annotations on ML pattern variables.

OCaml subtyping OCaml comes with a structural subtyp-
ing relation (generated by object types and polymorphic vari-
ants subtyping and extended structurally by considering the
variance of ML type constructors). The use of this subtyping
relation in programs is explicit. The syntax is (e : t1 :> t2)
(sometimes, the type t1 can be inferred) and it simply checks
that t1 is a subtype of t2. Of course, the OCaml subtyping
relation has been extended in OCamlDuce to take XDuce
subtyping into account. For instance, if τ1 is a XDuce sub-
type of τ2 and e has type τ1list, then it is possible to coerce
it to type τ2 list: (e :> τ2 list).

Crossing the boundary In our system, XDuce values
are opaque from the point of view of ML and XDuce
types cannot be identified with other ML type construc-
tors. Sometimes, we need to convert values between the
two worlds. For instance, we have a foreign type String
which is different from OCaml string. This foreign
type conceptually represents immutable sequences of arbi-
trary Unicode characters, whereas the OCaml type should
be thought as representing mutable buffers of bytes. As
a consequence, we don’t even try to collapse these two
types into a single one. Instead, OCamlDuce comes with
a runtime library which exports conversion functions such
as Utf8.make: string -> String, Utf8.get:
String -> string, Latin1.make: string ->
Latin1, Utf8.get: Latin1 -> string. The
type Latin1 is a subtype of String: it represents all
the strings which are only made of latin-1 characters (latin-
1 is a subset of the Unicode character set). The function
Utf8.make checks at runtime that the OCaml string is a
valid representation of a Unicode string encoded in utf-8.

Similarly, we often need to translate between XDuce’s se-
quences and OCaml’s lists. For any XDuce type τ , we can
easily write two functions of types [τ∗] → τ list and
τ list → [τ∗] (the star between square brackets denotes
Kleene-star). Similarly, we can imagine a natural XDuce
counterpart of an OCaml product type τ1 × τ2, namely
[τ1 τ2], and coercion functions. However, writing this kind
of coercions by hand is tedious. OCamlDuce comes with
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built-in support to generate them automatically. This au-
tomatic system relies on a structural translation of some
OCaml types into XDuce types: lists and array are translated
to Kleene-star types, tuples are translated to finite-length
XDuce sequences, variant types are translated to union types,
etc. Some OCaml types such as polymorphic or functional
types cannot be translated. OCamlDuce comes with two
magic unary operators to_ml, from_ml (both written {:
...:} in the concrete syntax). The first one takes an XDuce
value and applies a structural coercion to it in order to obtain
an OCaml value; this coercion is thus driven by the output
type of the operator. The type-checker requires this type to
be fully known (polymorphism is not allowed). Similarly,
the operator from_ml takes an OCaml value and apply a
structural coercion in order to obtain an XDuce value. Since
the type of its input drives its behavior, the type-checker re-
quires this type to be fully known.

This system can be used to obtain coercions from complex
OCaml types (e.g. obtained from big mutually recursive def-
initions of concrete types) to XDuce types, whose values can
be seen as XML documents. This gives parsing from XML
and pretty-printing to XML for free.

7 Related work

The CDuce language itself comes with a typed interface with
OCaml. The interface was designed to: (i) let the CDuce pro-
grammers use existing OCaml libraries; (ii) develop hybrid
projects where some modules are implemented in OCaml
and other in CDuce. The interface is actually quite simple:
each monomorphic OCaml type t is mapped in a structural
way to a CDuce type t̂. A value defined in an OCaml mod-
ule can be used from CDuce (the compiler introduces a nat-
ural translation t → t̂). Similarly, it is possible to provide
an ML interface for a CDuce module: the CDuce compiler
checks that the values exported by the module are compati-
ble with the ML-to-CDuce translation of these types and pro-
duces stub code to apply a natural translation t̂ → t to these
values. This CDuce/OCaml interface is used by many CDuce
users and served as a basis to the to_ml and from_ml oper-
ators described in Section 6.

Sulzmann and Zhuo Ming Lu [SL05] pursue the same ob-
jective of combining XDuce and ML. However, their contri-
bution is orthogonal to ours. Indeed, they propose a compi-
lation scheme from XDuce into ML such that the ML rep-
resentation of XDuce values is driven by their static XDuce
type (implicit use of subtyping are translated to explicit coer-
cions). Their type system supports in addition used-defined
coercions from XDuce types to ML types. However, they
do not describe a type inference algorithm for their abstract

specification of a type system and do not study the interac-
tion between XDuce type-checking and ML type inference
(XDuce code can call ML functions but their type must be
fully known). These last points are precisely the issues tack-
led by our contribution. For instance, our system makes
it possible to avoid some type annotation on non-recursive
XDuce functions. Another difference is that in our approach,
the XDuce/CDuce type checker and back-end (compilation
of pattern matching) can be re-used without any modifica-
tion whereas their approach requires a complete reengineer-
ing of the XDuce part (because subtyping and pattern match-
ing relations must be enriched to produce ML code) and it is
not clear how some XDuce features such as the Any type
can be supported in a scenario of modular compilation. We
believe our approach is more robust with respect to exten-
sions of XDuce and that the XDuce-to-ML translation can be
seen as an alternative implementation technique for XDuce
which allows some interaction between XDuce and ML (the
same kind of interaction as what can be achieved with the
CDuce/OCaml interface described above).

The Xtatic project [GP03] is another example of the inte-
gration of XDuce types into a general purpose language,
namely C#. Since both C#’s and XDuce’s type checkers op-
erate with bottom-up propagation (explicit types for func-
tions/methods, no type inference), the structure of Xtatic
type-checker is quite simple. The real theoretical contribu-
tion is in the definition of a subtyping relation which com-
bines C# named subtyping (inheritance) and XDuce set-
theoretic subtyping. Since the resulting type algebra does
not have least-upper bounds, the nice locally-complete type
inference algorithm for XDuce patterns [HP02] cannot be
transferred to Xtatic. In Xtatic, XDuce types and C# types
are stratified, but the two algebras are mutually recursive:
XDuce types can appear in class definitions and C# classes
can be used as basic items in XDuce regular expression
types. This does not really introduce any difficulty because
C# types are not structural. The equivalent in OCamlDuce
would be to allow OCaml abstract types as part of XDuce
types, which would not be difficult, except for scoping rea-
sons (abstract types are scoped by the module system).

In the last ten years, a lot of research effort has been put into
developping type inference techniques for extensions of ML
with subtyping and other kinds of constraints. For instance,
the HM(X) framework [MOW99] could serve as a basis to
express the type system presented here. The main modifi-
cation to bring to HM(X) would be to make foreign-type
variables global. Another way to express it is to disallow
constraints in type-schemes (which is what we do in the cur-
rent presentation). We have chosen to present our system
in a setting closer to ML so as to make our message more
explicit: our system can be easily implemented on top of ex-
isting ML implementations.
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8 Conclusion and future work

We have presented a simple way to integrate XDuce into
OCaml. The modification to the ML type-system is small
enough so as to make it possible to easily extend existing
ML type-checkers.

Realistic-sized examples of code have been written in
OCamlDuce, such as an application that parses XML
Schema documents into an internal OCaml form and pro-
duces an XHTML summary of its content. Compared to
a pure OCaml solution, this OCamlDuce application was
easier to write and to get right: XDuce’s type system en-
sures that all possible cases in XML Schema are treated by
pattern-matching and that no invalid XHTML output can be
produced). We refer the reader to OCamlDuce’s website for
the source code of this application.

The main limitation of our approach is that it doesn’t allow
parametric polymorphism on XDuce types. Adding poly-
morphism to XDuce is an active research area. In a previous
work with Hosoya and Castagna [HFC05], we presented a
solution where polymorphic functions must be explictly in-
stantiated. Integrating this kind of polymorphism into the
same mechanism as ML polymorphism is challenging and
left for future work. The theory recently developped by
Vouillon [Vou06] could be a relevant starting point for such
a task.

Another direction for improvement is to further relax the
acyclicity conditions, that is, to accept more programs with-
out requiring extra type annotations. Once the set of con-
straints representing XML data flow and operations have
been extracted by the ML type-checker, we could use tech-
niques which are more involved than simple forward com-
putation over types. The static analysis algorithm used in
Xact [KMS04] could serve as a starting point in this direc-
tion.
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Abstract
We present an extension of XDuce, a programming language ded-
icated to the processing of XML documents, with polymorphism
and abstract types, two crucial features for programming in the
large. We show that this extension makes it possible to deal with
first class functions and eases the interoperability with other lan-
guages. A key mechanism of XDuce is its powerful pattern match-
ing construction and we mainly focus on this construction and its
interaction with abstract types. Additionally, we present a novel
type inference algorithm for XDuce patterns, which works directly
on the syntax of patterns.

1. Introduction
XDuce [14] is a programming language dedicated to the processing
of XML documents. It features a very powerful type system: types
are regular tree expressions [15] which correspond closely to the
schema languages used to specify the structure of XML documents.
The subtyping relation is extremely flexible as it corresponds to the
inclusion of tree automata. Another key feature is a pattern match-
ing construction which extends the algebraic patterns popularized
by functional languages by using regular tree expressions as pat-
terns [13].

In this paper, we aim at extending in a seamless way the XDuce
type system and pattern construction with ML-style prenex poly-
morphism and abstract types. These are indeed crucial features for
programming in the large in a strongly typed programming lan-
guage. In our extension, patterns are not allowed to break abstrac-
tion. This crucial property makes it possible to embed first class
functions and foreign values in a natural way into XDuce values.

In another paper [21], we present a whole calculus dealing with
polymorphism for regular tree types. Though most of the results
in that paper (in particular, the results related to subtyping) can be
fairly easily adapted for an extension of XDuce, a better treatment
of patterns is necessary. Indeed, a straightforward application of the
results would impose severe restrictions on patterns. For instance,
binders and wildcards would be required to occur only in tail
position. The present paper is therefore mostly focused on patterns
and overcomes these limitations.

Additionally, we present a novel type inference algorithm for
XDuce patterns, which works directly on the syntax of patterns,
rather than relying on a prior translation to tree automata. This way,
better type error messages can be provided, as the reported types are
closer to the types written by the programmer. In particular, type
abbreviations can be preserved, while they would be expanded by
the translation into tree automata.

The paper is organized as follows. We introduce the XDuce type
system (section 2) and present the extension (section 3). Then, we
formalize patterns (section 4) and provide algorithms for checking
patterns and performing type inference (section 5). Related works
are presented in section 6.

2. A Taste of XDuce
XDuce values are sequences of elements, where an element is
characterized by a name and a contents. (Elements may also contain
attributes, both in XDuce and XML. We omit attributes here for the
sake of simplicity.) This contents is itself a sequence of elements.
These values corresponds closely to XML documents, such as this
address book example.

<addrbook>
<person>

<name> Haruo Hosoya </name>
<email> hosoya </email>

</person>
<person>

<name> Jerome Vouillon </name>
<tel> 123 </tel>

</person>
</addrbook>

XDuce actually uses a more compact syntax, which we also adopt
in this paper:

addrbook[
person[name["Haruo Hosoya"], email["hosoya"]],
person[name["Jerome Vouillon"], tel["123"]]]

The shape of values can be specified using regular expression types.
A sequence of elements is described using a regular expression.
Mutually recursive type definitions make it possible to deal with
the nested nature of values. Here are the type definitions for address
books.

type Addrbook = addrbook[Person*]
type Person = person[Name,Email*,Tel?]
type Name = name[String]
type Email = email[String]
type Tel = tel[String]

These type definitions can be read as follows. An Addrbook value
is an element with name addrbook containing a sequence of any
number of Person values. A Person value is an element with
name person containing a Name value followed by a sequence of
Email values and optionally a Tel value. Values of type Name,
Email, and Tel are all composed of a single element containing
a string of characters.

There is a close correspondence between regular expression
types and tree automata [5]. As the inclusion problem between tree
automata is decidable, the subtyping relation can be simply defined
as language inclusion [15]. This subtyping relation is extremely
powerful. It includes associativity of concatenation (type A,(B,C)
is equivalent to type (A,B),C), distributivity rules (type A,(B|C)
is equivalent to type (A,B)|(A,C)).
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In order to present the next examples, we find it convenient to
use the following parametric type definition for lists:

type List{X} = element[X]*

Parametric definitions are not currently implemented in XDuce, but
are a natural extension and can be viewed as just syntactic sugar:
all occurrences of List{T} (for any type T) can simply be replaced
by the type element[T]* everywhere in the source code.

Another key feature of XDuce is regular expression patterns, a
generalization of the algebraic patterns popularized by functional
languages such as ML. These patterns are simply types annotated
with binders. Consider for instance this function which extracts the
names of a list of persons.

fun names (lst : Person*) : List{String} =
match lst with
() --->

()
| person [name [nm : String], Email*, Tel?],
rem : Person* --->

element [nm], names (rem)

The function names takes an argument lst of type Person* and
returns a value of type List{String}. The body of the function
is a pattern matching construction. The value of the argument lst
is matched against two patterns. If it is the empty sequence, then it
will match the first pattern () (the type () is the type of the empty
sequence ()), and the function returns the empty sequence. Other-
wise, the value must be a non-empty sequence of type Person*.
Thus, it is an element of name person followed by a sequence of
type Person*, and matches the second pattern. This second pat-
tern contains two binders nm and rem which are bound to the cor-
responding part of the value.

Some type inference is performed on patterns: the type of the
expression being matched is used to infer the type of the values
that may be bound to a binder. By taking advantage of this, the
function names can be rewritten more concisely using wildcard
patterns1 as follows. The type of the binders nm and rem are inferred
to be respectively String and Person* by the compiler.

fun names (l : Person*) : List{String} =
match l with
() --->

()
| person [name [nm : _], _], rem : _ --->

element [nm], names (rem)

3. Basic Ideas
We want to extend regular expression types and patterns with ML-
style polymorphism (with explicit type instantiation) and abstract
types. Such an extension is interesting for numerous reasons. First,
it makes it possible to describe XML documents in which arbitrary
subdocuments can be plugged. A typical example is the SOAP
envelop. Here is the type of SOAP messages and of a function that
extracts the body of a SOAP message.

type Soap_message{X} =
envelope[header[...], body[X]]

fun extract_body :
forall{X}. Soap_message{X} ---> X

A more important reason is that polymorphism is crucial for pro-
gramming in the large. It is intensively used for collection datas-
tructures. As an example, we present a generic map function over
lists. This function has two type parameters X and Y.

1 XDuce actually uses the pattern Any as a wildcard pattern.

fun map{X}{Y}
(f : X ---> Y)(l : List{X}) : List{Y} =

match l with
() --->

()
| element[x : _], rem : _ --->

element[f(x)], map{X}{Y}(f)(rem)

When using a polymorphic function, type arguments may have to
be explicitly given, as shown in the following expression where
the map function is applied to the identity function on integers and
to the empty list:

map{Int}{Int} (fun (x : Int) ---> x) ().

Indeed, it is possible to infer type arguments in simple cases, using
an algorithm proposed by Hosoya, Frisch and Castagna [12], but
not in general, as a best type argument does not necessarily exist:
the problem is harder in our case due to function types which are
contravariant on the left.

Abstract types facilitate interoperability with other languages.
Indeed, we can consider any type from the foreign language as an
abstract type as far as XDuce is concerned. For instance, the ML
type2 int can correspond to some XDuce type Int. This general-
izes to parametric abstract types: to the ML type int array would
correspond the polymorphic XDuce type Array{Int}. Further-
more, if the two languages share the same representation of func-
tions, ML function types can be mapped to XDuce function types
(and conversely). Thus, for instance, a function of type int--->int
can be written in either language and used directly in the other lan-
guage without cumbersome conversion.

In order to preserve abstraction and to deal with foreign values
that may not support any introspection, some patterns should be
disallowed. For instance, this function should be rejected by the
type checker as it tries to test whether a value x of some abstract
type Blob is the empty sequence.

fun f (x : Blob) : Bool =
match x with

() ---> true
| _ ---> false

Another restriction is that abstract types cannot be put directly
in sequences. Indeed, it does not make sense to concatenate two
values of the foreign language (two ML functions, for instance).
In order to be put into a sequence, they must be wrapped in an
element. As a type variable may be instantiated to an abstract type,
and as we want to preserve abstraction for type variables too, the
same restrictions apply to them: a pattern a[],X,b[] implicitly
asserts that the variable X stands for a sequence, and thus would
limit its polymorphism.

There are different ways to deal with type variables and abstract
types occurring syntactically in patterns. The simplest possibility is
not to allow them. Instead, one can use wildcards and rely on type
inference to assign polymorphic types to binders. This approach is
taken in the related work by Hosoya, Frisch and Castagna [12]. An-
other possibility is to consider that type variables should behave as
the actual types they are instantiated to at runtime. This is a natural
approach, but this implies that patterns do not preserve abstraction.
It is also challenging to implement this efficiently, though it may
be possible to get good results by performing pattern compilation
(and optimization) at run-time. Finally, it is not clear in this case
how abstract types should behave in patterns. We propose a middle-
ground, by restricting patterns so that their behaviors do not depend
on what type variables are instantiated to, and on what abstract

2 We consider here ML as the foreign language, as XDuce is currently im-
plemented in OCaml. But this would apply equally well to other languages.
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types stand for. In other words, patterns are not allowed to break
abstraction. As a consequence, type variables can be compiled as
wildcards. In other words, type variables and abstract types occur-
ring in patterns can be considered as annotations which are checked
at compile time but have no effect at run-time. We indeed feel it is
interesting to allow type variables and abstract types in patterns. A
first reason is that it is natural to use patterns to specify the parame-
ters of a functions. And we definitively want to put full types there.
For instance, we should be able to write such a function:

fun apply{X}{Y}
(funct[f : X ---> Y], arg[x : X]) : Y = f(x)

Another reason is that one may want to reuse a large type definition
containing abstract types in a pattern, and it would be inconvenient
to have to duplicate this definition, replacing abstract types with
wildcards. Finally, the check can be implemented easily: the type
inference algorithm can be used to find the type of the values that
may be matched against any of the type variables occurring in the
pattern, so one just has to check that this type is a subtype of the
type variable (this usually means that the type is either empty or
equal to the type variable, but some more complex relations are
possible, as we will see in section 4.3).

4. Specifications
We now specify our pattern matching construction, starting from
the data model, continuing with types and patterns, before finally
dealing with the whole construction.

4.1 Values

We assume given a set of names l and a set of foreign values e. A
value v is either a foreign value or a sequence f of elements l[v]
(with name l and contents v).

v ::= e foreign value
f sequence

f ::= l[v], . . . , l[v]

We write ε for the empty sequence, and f, f ′ for the concatenation
of two sequences f and f ′.

Note that strings of characters can be embedded in this syntax
by representing each character c as an element whose name is this
very character and whose contents is empty: c[ε]. This encoding
was introduced by Gapeyev and Pierce [9].

4.2 Patterns

We start by two comments clarifying the specification of patterns.
First, in all the examples given up to now, in a pattern element
L[T], the construction L stands for a single name. It actually corre-
sponds in general to a set of names. This turns out to be extremely
convenient in practice. For instance, this can be used to define char-
acter sets (remember that characters are encoded as names). Sec-
ond, abstract types and type variables are very close notions. Es-
sentially, the distinction is a difference of scope: an abstract type
stands for a type which is unknown to the whole piece of code
considered, while a type variable has a local scope (typically, the
scope of a function). Thus, for patterns, we can unify both no-
tions. Parametric abstract types can be handled by considering each
of their instances as a distinct type variable. Thus, the two types
Array{Int} and Array{Bool} correspond each to a distinct type
variable in our formalization of patterns. Similarly, each function
type T2--->T1 corresponds to a distinct type variable. We explain in
section 4.3 how subtyping can be expressed for these types.

As a running example, we consider the pattern matching code
in function map:

match l with

() ---> ...
| element[x : _], rem : List{X} ---> ...

where l has type List{X}.
Such a grammar-based syntax of patterns is convenient for writ-

ing patterns but typically does not reflect their internal represen-
tation in a compiler. For instance, it assumes a notion of pattern
names (such as List{X} or Name) which may be expanded away
at an early stage by the compiler. Binders may also be represented
in a different way. Finally, this notation is not precise about sub-
pattern identity: for instance, in the pattern a[ ]|b[ ], it in not
clear whether one should consider the two occurrences of the wild-
card pattern as two different subpatterns, or as a single subpattern.
The distinction matters as a compiler usually does not identify ex-
pressions which are structurally equal. In particular, one should be
careful not to use any termination argument that relies on struc-
tural equality. Another reason is that we need to be able to specify
precisely how a value is matched by a pattern. This is especially
important for type inference (section 4.9), where we get a different
result depending on whether we infer a single type for both occur-
rences of the wildcard pattern or a distinct type for each occurrence.

Thus, we define a more abstract representation of patterns which
provides more latitude for actual implementations. A pattern is a
rooted labeled directed graph. Intuitively, this graph can be under-
stood as an in-memory representation of a pattern: nodes stands for
memory locations and edges specify the contents of each memory
location. To be more accurate, a pattern is actually a hypergraph,
as edges may connect a node to zero, one or several nodes: for in-
stance, for a pattern (), there is an (hyper)edge with source the
location of the whole pattern and with no target, while for a pattern
P,Q, there is an (hyper)edge connecting the location of the whole
pattern to the location of subpatterns P and Q.

We assume given a family of name sets L, a set of type vari-
ables X and a set X of binders x. Formally, a pattern is a quadruple
(Π, φ, π0,B) of

• a finite set Π of pattern locations π;
• a mapping φ : Π → C(Π) from pattern locations to pattern

components p ∈ C(Π), defined below;
• a root pattern location π0 ∈ Π.
• a relation B ⊆ X × Π between binders and pattern locations.

Pattern components C(Π) are defined by the following grammar,
parameterized over the set Π of pattern locations.

p ::= L[π] element pattern
ε empty sequence pattern
π, π pattern concatenation
π ∪ . . . ∪ π pattern union
π∗ pattern repetition
� wildcard
X type variable

Binders do not appear directly in patterns. Instead they are specified
by a relation between binder names and pattern locations. This
allows us to simplify significantly the presentation of the different
algorithms on patterns. Indeed, most of them simply ignore binders.

As an example, the two patterns:

() and element[x:_],rem:List{X}

can be formally specified respectively as:

(Π, φ, 1, ∅) and (Π, φ, 2, {(x, 4), (rem, 5)})

where the set of pattern locations is:

Π = {1, 2, 3, 4, 5, 6, 7}
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Figure 1. Graphical Depiction of Two Patterns
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and the mapping from pattern locations to pattern components is
the function φ defined by:

φ(1) = ε
φ(2) = 3, 5 φ(3) = element[4] φ(4) = �
φ(5) = 6∗ φ(6) = element[7] φ(7) = X

(We write element for the name set containing only the name
element.) A graphical depiction of the formal representation of the
two patterns is given in figure 1. The two root locations 1 and 2 are
circled. Edges are labeled with the corresponding component. One
can see three kind of edges on this picture: the edges with labels ε,
� and X have no target; one edge with label , has two targets 3
and 5 and corresponds to the component 3, 5; some edges with
label * or element[ ] has a single target. Note that the locations 5
to 7 correspond to the expansion of type List{X}.

Not all patterns are correct. The most important restriction is
that cycles are not allowed except when going through an ele-
ment L[π′]: for instance, the pattern

Balanced = a[], Balanced, b[]

should be rejected, while the pattern

Tree = leaf[] | node[Tree, Tree]

is accepted. This restriction ensures that the set of values matching
a given pattern is a regular tree language3. The other restriction is
that pattern variables should not occur in sequences. For instance,

3 Actually this is not quite accurate due to type variables. In order to state
the regularity property precisely, the semantics of patterns should be defined

the patterns a[],X and X*, where X is a pattern variable, are re-
jected. Indeed, the semantics of a pattern variable may contain for-
eign values, which cannot be concatenated. These two restrictions
are formally specified using a well-formedness condition. First, we
define when a pattern location is in a sequence (figure 2). Then,
we define the well-formedness condition for pattern locations (fig-
ure 3). There is one rule per pattern component. For all rules but
one, in order to deduce that a pattern location is well-formed, one
must first show that its subpatterns are themselves well-formed.
This ensures that there is no cycle. The exception is the rule for
element patterns L[π′], hence cycles going through elements are
allowed. The rule for type variables X additionally requires that
the pattern location is not in a sequence. Finally, a pattern is well-
formed if all its locations are. These restrictions could also have
been enforced syntactically [11, 17], but we prefer to keep the syn-
tax as simple and uniform as possible. In the remainder of this pa-
per, all patterns are implicitly assumed to be well-formed.

4.3 Typing Environments

In order to provide a semantics to patterns, we assume given a class
of binary relations between values and types variables, which we
call typing environments. Equivalently, we can consider a typing
environment as a function from type variables to their semantics
which is a set of values). We have two motivations for restricting
ourselves to a class of such relations rather than allowing all rela-
tions. First, some type variables may have a fixed semantics, iden-
tical in all typing environments. This makes it possible to define
the type of a function T2--->T1 (assuming that T1 and T2 are pure
regular expression types, without type variables). The semantics of
some type variables may also be correlated to the semantics of other
type variables. For instance, the semantics of the type Array{X}
depends on the semantics of the type variable X. Second, for se-
mantic reasons, the semantics of any type, and thus the semantics
of type variables, may be required to satisfy some closure proper-
ties. This is the case for instance in the ideal model [16].

4.4 Pattern Matching

In order for the algorithms presented in this paper to be imple-
mentable, the family of name sets L should be chosen so that the
following predicates are decidable:

• the inclusion of a name in a name set: l � L;
• the non-emptiness of a name set: � L (that is, there exists a name

l such that l � L);
• the non-disjointness of two name sets: L1 � L2 (that is, there

exists a name l such that l � L1 and l � L2).

Furthermore, for technical reasons (see section 4.7), there must be
a name set � containing all names.

The semantics of a pattern (Π, φ, π0,B) is given in figure 4
using inductive rules. It it parameterized over a typing environment,
that is a relation v � X which provides a semantics to each
type variable. We define simultaneously the relation v � π (the
value v matches the pattern location π) and a relation f �∗ π (the
sequence f matches a repetition of the pattern location π). Then, a
value v matches a whole pattern if it matches its root location, that
is, v � π0.

A match of a value v against a location π is a derivation of
v � π. Given such a match, we define the submatches as the set of
assertions v′ � π′ which occur in the derivation. These submatches
indicate precisely which parts of the value is associated to each

in two steps. The first step would be a semantics in which values contain
variables matching the variables in the pattern. With this initial semantics,
the denotation of a pattern would indeed be a regular tree language. The
second step would correspond in substituting values for the type variables.
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Figure 4. Matching a Value against a Pattern v � π

location in the pattern. They can thus be used to define which value
to associate to each binder during pattern matching.

We choose to use a non-deterministic semantics: there may
be several ways to match a value against a given pattern. The
reasons are twofold. First, this yields much simpler specifications
and algorithms. Second, we don’t want to commit ourselves to a
particular semantics. Indeed, we may imagine that the programmer
is allowed to choose between different semantics, such as a first-
match policy (Perl style) or a longest match policy (Posix style).
Our algorithms will be sound in both cases, without any adaptation
needed.

4.5 Types

A pattern specifies a set of values: the set of values which matches
this pattern. So, patterns can be used as types. More precisely, we
define a type as a pattern (Π, φ, π0,B) with no wildcard � (that is,
φ(π) is different from the wildcard � for all locations π ∈ Π) and
no binder (the relation B is empty).

The wildcard has a somewhat ambiguous status: it stands for
any value when not in a sequence, but only stands for sequence
values when it occurs inside a sequence. For instance, the values
accepted by a pattern ,P are not the concatenations of the values
accepted by pattern and pattern P, as some values in pattern can-
not be concatenated. Due to this ambiguous status, type inference
would be more complicated if the wildcard pattern was allowed in
types.

4.6 Subtyping

We define a subtyping relation <: in a semantic way on the loca-
tions π1 ∈ Π1 and π2 ∈ Π2 of two patterns P1 = (Π1, φ1, π

0

1,B1)
and P2 = (Π2, φ2, π

0

2,B2) by π1 <: π2 if and only if, for all typ-
ing environments and for all values v, the assertion v � π1 implies
the assertion v � π2. Two patterns are in a subtype relation, writ-
ten P1 <: P2, if their root locations are. The actual algorithmic
subtyping relation used for type checking does not have to be as
precise as this semantics subtyping relation. This will simply result
in a loss of precision.

4.7 Bidirectional Automata and Disallowed Matchings

In the previous section, the semantics of patterns is specified in
a declarative way. In order to clarify the operational semantics

l[v], f
l

−→ l,v,f f, l[v]
r

−→ l,v,f

Figure 5. Value Decomposition v −→δ l,v,v
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v ∈ σ
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′

v ∈ σ
′

v ∈ σ

ACCEPT
σ ↓ v

v ∈ σ

Figure 6. Automaton Semantics v ∈ σ

of patterns, we now define a notion of tree automata, which we
call bidirectional automata. These automata are used in particular
to specify which patterns should be rejected. They capture the
idea that a value is matched from its root and that a sequence is
matched one element at a time from its extremities. Still, some
freedom is left over the implementation. In particular, the automata
do not mandate any specific strategy (such as left to right) for
the traversal of sequences. This is achieved thanks to an original
feature of the automata: at each step of their execution, the matched
sequence may be consumed from either side. This symmetry in the
definition of automata results in symmetric restrictions on patterns:
if a pattern is disallowed, then the pattern obtained by reversing
the order of all elements in all sequences is also disallowed. We
believe this is easier to understand for a programmer. Additionally,
this feature is a key ingredient for our type inference algorithm.

Formally, a bidirectional automaton is composed of

• a finite set Σ of states σ;
• an initial state σ0 ∈ Σ;
• a set of labeled transitions σ −→δ L,σ,σ;
• a set of epsilon transitions σ � σ;
• an immediate acceptance relation σ ↓ v.

The transitions are annotated by a tag δ ∈ {l, r} which indicates
on which side of the matched sequence they take place: either on
the left (tag l) or on the right (tag r). The semantics of automata
is given in figure 6: the relation v ∈ σ specifies when a value v
is accepted by a state σ of the automaton. A value is accepted
by a whole automaton if it is accepted by its initial state σ0. The
rule LABEL-TRANS states that, starting from a goal v ∈ σ, a
labeled transition σ −→δ L,σ1,σ2 may be performed provided that
the value v decomposes itself on side δ into a element with name l
and contents v1 followed by a value v2 (value decomposition is
specified in figure 5). The name l must furthermore be included
in the name set L. One then gets two subgoals v1 ∈ σ1 and
v2 ∈ σ2. The rule EPS-TRANS moves to another state of the
automaton while remaining on the same part of the value. Usually,
automata have a set of accepting states, which all accept the empty
sequence ε. Here, we use an accepting relation, so that a state
may accept whole values at once (rule ACCEPT). This is necessary
to deal with type variables X that match a possibly non-regular
set of values and with foreign values e which are not sequences.
The use of an epsilon transition relation simplify the translation
from patterns to automata. It also keeps the automata smaller.
Indeed, eliminating epsilon transitions may make an automaton
quadratically larger. Note that our automata are non-deterministic.
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Figure 7. Example of Bidirectional Automaton

Not all patterns could be translated into deterministic automata as
top down deterministic tree automata are strictly less powerful than
non-deterministic ones [5].

An example of bidirectional automaton is depicted in figure 7.
This automaton recognizes the sequence a[],b[]. It has four states
Σ = {ab, a, b, ε}. The initial state ab is circled. The labeled
transitions are all of the form σ −→δ L,ε,σ′ and are represented
by an arrow from state σ to state σ′ with label the pair δ, L. There
is no epsilon transition. The acceptance relation, not represented, is
reduced to ε ↓ ε. In order to recognize the sequence a[],b[], one can
first consume a[] from the left and then the remaining part b[] from
either side, or consume the part b[] before the part a[].

The automata we build below satisfy some commutation prop-
erties, which ensure that the strategy used to match a value is not
important. For instance, one can choose to consume values only
from the left, or only from the right, or any combination of these
two strategies. In all cases, the set of accepted values remain the
same. We do not state these properties.

We now specify the translation of a pattern (Π, φ, π0,B) into
an automaton. This translation is inspired by some algorithms by
Hopkins [10] and Antimirov [2] for building a non-deterministic
automaton using partial derivatives of a regular expression. The
way we apply the same operations symmetrically on both sides
of a pattern is inspired by Conway’s factors [6, 18]. At the root
of all these works is Brzozowski’s notion of regular expression
derivatives [3].

The key idea for the translation is that each state corresponds to
a regular expression that exactly matches what is accepted by the
state, and a transition corresponds to a syntactic transformation of
a regular expression into the regular expression of the next state.
In our case, one may have expected pattern locations to take the
role of regular expression. As they are not flexible enough, we
actually use finite sequences of pattern locations (plus some non-
binding variants). Thus, a state σ of the automaton is defined by the
following grammar.

s ::= π single pattern
∗π non-binding pattern repetition
� non-binding wildcard

σ ::= [s; . . . ; s] pattern sequence

We write [ ] for the empty pattern sequence, and σ; σ′ for the con-
catenation of the pattern sequences σ and σ′. The intuition behind
non-binding variants is the following. Suppose we match a value
a[],a[],a[] against a pattern A*. As we will see, this pattern re-
duces to something akin to A,A* by epsilon transitions. According
to the semantics of patterns, the beginning of the value a[] is in-
deed bound to the location of subpattern A, but the remaining part
a[],a[] is not bound to any location. Thus, the subpattern A* does
not correspond to a pattern location, but rather to a repetition of the
location of the subpattern A.

The initial state of the automaton is the sequence [π0] containing
only the root π0 of the pattern. The epsilon transitions, the labeled
transitions and the immediate acceptance relation are respectively
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Figure 9. Labeled Transitions σ −→δ L,σ,σ

[ ] ↓ ε [�] ↓ e
v � X φ(π) = X

[π] ↓ v

Figure 10. Immediate Acceptance Relation σ ↓ v

defined in figure 8, 9, and 10. The assertion σ � σ holds when
either assertion σ �

l σ or σ �
r σ holds. Note that the definition

of the immediate acceptance relation depends on the typing envi-
ronment.

As there is an infinite number of sequences σ, we define the
finite set of states Σ of the automaton as the set of sequences
reachable from the initial state [π0] of the automaton through the
transitions. The following lemma states that we define this way a
finite automaton.

LEMMA 1 (Finite Automaton). The number of states σ reachable
from the initial state [π0] through the transition relations is finite.

The number of states can however be exponential in the size of the
pattern due to sharing. A typical example is the type definitions
below.

type T = a[],a[] and U = T,T and V = U,U

We expect the state of the automata to be reasonable in practice.
Indeed, for patterns without sharing of locations, the bound is much
better: it is quadratic in the size of the pattern.

An example of translation is given in figure 11. The pattern
a[],b[] is represented using the same notation as in figure 1. For
the sake of simplicity, we do not represent the part of the automa-
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1
,

2
a[ ]

3
ε

4
b[ ]

5
ε

[4]
l, b

r, b
[1] [2; 4]

l, a

r, b

[ ]

[2]

l, a

r, a

Figure 11. Pattern and its Translation (Simplified)

φ(π) is a test

e � [π]

σ � σ
′

v � σ
′

v � σ

σ
δ

−→ L,σ1,σ2 v
δ

−→ l,v1,v2

l � L v1 � σ1

v � σ

σ
δ

−→ L,σ1,σ2 v
δ

−→ l,v1,v2

l � L v2 � σ2

v � σ

Figure 12. Disallowed Matching v � σ

ton corresponding to the element contents. The initial state of the
automaton is the sequence [1]. An epsilon transition yields from
this state to the state [2; 4]. Then, values can either be consumed
from the left or from the right. The first case correspond to a tran-
sition [2; 4] −→l a,[3],[4], depicted as an arrow from state [2; 4] to
state [4] with label l, a.

Some matchings of a value against a pattern should not be
allowed, either because they are not implementable, or because
they would break abstraction. As the automata describe the opera-
tional semantics of patterns, they are the right tool to specify which
matchings should be rejected. This disallowed matching relation
v � σ is defined in figure 12. Automaton matching can be viewed
as a dynamic process: for matching a value v against a pattern se-
quence σ, we start from the assertion v ∈ σ and try to consume
the whole value by applying repeatedly the rules in figure 6. We
should never arrive in a position where a test needs to be performed
on an external value. Therefore, in the definition of the disallowed
matching relation, there is one rule corresponding to epsilon transi-
tions and two rules corresponding to labeled transitions, depending
on whether the failure occurs in the element contents or in the se-
quence but outside this element. The last rule corresponds to an
immediate failure, where a test is performed on an external value.
The following pattern components are tests: L[π], ε, (π, π), and π∗.
Basically, a test is a pattern component that only accepts sequences.
For this last rule, we only need to consider the case when the pat-
tern sequence contains a single pattern location. Indeed, one can
easily show that the only way to arrive to a sequence which is not
of this form is through epsilon transitions, starting from a sequence
of this form. This specification of disallowed matchings is quite al-

MATCH-SEQ-EPS

ε � [ ]

MATCH-SEQ-SINGLE

v � π

v � [π]

MATCH-SEQ-STAR

f �∗ π

f � [∗π]

MATCH-SEQ-WILCARD

v � [�]

MATCH-SEQ-CONCAT

f � σ f
′

� σ
′

f, f
′

� σ; σ′

Figure 13. Matching a Value against a Pattern Sequence v � σ

gorithmic. Still, we are confident it can be understood intuitively
by a programmer.

We now relate the semantics of a pattern to the semantics of its
translation into an automaton. It is convenient to first extend the
semantics of pattern locations to pattern sequences (figure 13). We
then have the following result.

LEMMA 2. A value is matched by a pattern if and only if it is
matched by the corresponding automaton, as long as the matching
is allowed: if v � [π0] does not hold, then v ∈ [π0] if and only if
v � π0. More generally, for any value v and any state σ such that
v � σ does not hold, we have v ∈ σ if and only if v � σ.

The restriction to allowed matchings is important. Indeed, consider
the pattern (),_. It matches only sequences but it is translated into
an automaton that matches everything, as the empty sequence is
eliminated by epsilon transitions (rule DEC-CONCAT followed by
rule DEC-EPS together with rule DEC-LEFT).

Our automata are actually designed for analyzing patterns rather
than for being executed. They make it possible to focus on a partic-
ular part of a pattern by consuming subpatterns from both sides. For
instance, if we have a pattern A,B,C, we can focus on B by consum-
ing A on the left and C on the right. Thus, type inference can be per-
formed by consuming a type and a pattern in a synchronized way in
order to find out which parts of the type corresponds to which parts
of the pattern. For instance, if we have a type a[],T,b[] and a pat-
tern a[],(x : ),b[], we can compute that the type of the vari-
able x is T by simultaneously consuming the elements a[] and b[]
of the type and the pattern. For this to work, it must be possible to
associate a state to each part of a value matched by a pattern. As
a consequence, there is a slight mismatch between our definition
and what should be an actual implementation of patterns. First, the
rule for type variables in the definition of the acceptance relation is
important for analyzing patterns but would not be used in an actual
implementation, where matching against a type variable should al-
ways succeed. Second, when in state [�], only foreign values are
immediately accepted while sequence values are progressively de-
composed. Thus is crucial for type inference but cannot be imple-
mented: foreign values cannot be tested and thus an implementation
cannot adopt a different behavior depending on whether a value is a
sequence or a foreign value. A simple change is sufficient to adapt
the automaton: make the state [�] accept any value and remove any
transition from this state. Note that this change does not affect the
disallowed matching relation.

4.8 Pattern Matching Construction

We can now complete our specification of pattern matching. We
are only interested in how a value is matched in a pattern matching
construction: which branch is selected and which values are associ-
ated to the binders in this branch. We do not consider what happens
afterwards. Thus, we can ignore the body of each branch of the
construction and can formalize a pattern matching construction as
a list of patterns. It turns out to be convenient to share between all
patterns a set of pattern locations and a mapping from pattern lo-
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cation to pattern components. Therefore, a pattern construction is
characterized by:

• a set of pattern locations Π;
• a mapping φ : Π → C(Π);
• a family (πi) of root pattern locations (πi ∈ Π);
• a family (Bi) of binder relations (Bi ⊆ X × Π)

The i-th pattern is defined as Pi = (Π, φ, πi,Bi). For instance,
the pattern construction in the body of the function map presented
in section 4.2 can be specified by reusing the corresponding def-
initions of the set Π and mapping φ and defining (πi) and (Bi)
by

π1 = 1 B1 = ∅
π2 = 2 B2 = {(x, 4), (rem, 5)}

In order to type-check a pattern construction, the type T of the
values that may be matched by the pattern must be known. In
our example, this type is List{X}, which can be represented as
a pattern (R, ψ, 1, ∅) with

R = {1, 2, 3}

and

ψ(1) = 2∗ ψ(2) = element[3] ψ(3) = X.

The semantics of pattern matching is as follows. Given a
value v0 belonging to the input type T , a pattern Pi is chosen such
that the value v0 matches the root location πi of the pattern, that
is, so that there exists a derivation of v0 � πi. We then consider all
submatches, that is, all assertions v � π which occur in this deriva-
tion. This defines a relation M between locations and values. The
composition M◦ B = {(x, v) | ∃π.(x, π) ∈ B ∧ (π, v) ∈ M} of
this relation with the binder relation B is then expected to be a total
function from the set of binders of the pattern to parts of value v.
This function indicates which part of the value v is bound to each
binder x.

In order to ensure that this matching process succeeds for any
value of the input type T , the following checks must be performed:

• exhaustiveness: for all typing environments and for all values v
in the input type T , there must exists a pattern Pi such that the
value v matches the root location πi of this pattern;

• linearity: for all typing environments, for all values v in the
input type T and for all derivations v � πi where πi is the
root location of one of the patterns Pi, the composition M◦X
defined above must be a function.

These two checks are standard [13]. In our case, two additional
checks must be performed. Indeed, some matchings are not allowed
in order to preserve abstraction and for the patterns to be imple-
mentable. Furthermore, patterns are not implemented directly but
only after erasure. We define the erasure of a pattern (Π, φ, π0,B)
as the pattern (Π, φ′, π0,B) where:

φ
′(π) =

(
� if φ(π) is a type variable X

φ(π) otherwise.

An erased pattern is a pattern containing no pattern variable (that
is, φ(π) is different from any variable X for all locations π in the
pattern). The semantics remain the one given above, but applied to
the erased patterns. We thus have these two additional checks:

• allowed patterns: the erasure of each pattern Pi should be
allowed with respect to the input type T , that is, we must not
have v � πi for any value v in the input type T , any erasure of
pattern Pi, and any typing environment.

• preservation of the semantics: for all typing environments and
for all values v in T , the value v is matched the same way by
each pattern Pi and its erasure;

By “matched the same way”, we mean that, if there is a derivation
of v � πi in one of the patterns Pi, then there must be an identical
derivation in the erasure of pattern Pi (except for applications of
rule MATCH-ABSTRACT which should be replaced by applications
of rule MATCH-WILD), and conversely. Algorithms for perform-
ing all these checks are presented section 5. The linearity check
algorithm is actually omitted as it is standard and its presentation is
long.

4.9 Type Inference

An additional operation we are interested in is type inference:
we want to compute for each binder a type which approximates
the set of values that may be bound to it. From the semantics
of the pattern matching construction above, we can derive the
following characterization of this set of values. Consider an input
type (Π1, φ1, π

0

1, ∅) and a pattern (Π2, φ2, π
0

2,B2). Then, a value v
may be bound to a binder x if there exists a value v0 and a
location π ∈ Π2 such that:

• v0 � π0

1 (the value v0 belongs to the input type);
• v0 � π0

2 (the value is matched by the pattern);
• (x, π) ∈ B2 (the binder x is at location π in the pattern);
• there exists a derivation of v0 � π0

2 containing an occurrence of
the assertion v � π (the assertion v � π is a submatch).

Several algorithms for precise type inference have been pro-
posed [7, 13, 20]. These algorithms are tuned to a particular match-
ing policy (such as the first-match policy). With these algorithms,
the semantics of the type computed for a binder is exactly the set of
values that may be bound to it. (As binders are considered indepen-
dently, any correlation between them is lost, though.) For instance,
let us consider the following function.

fun f (x : (a[] | b[] | c[])) =
match x with

b[] ---> ...
| y : (a[] | b[] | d[]) ---> ...
| _ ---> ...

A precise type algorithm infers the type a[] for the binder y. In-
deed, values of type b[] are matched by the first line of the pat-
tern. Therefore, only values of type the difference between type
a[]|b[]|c[] and type b[], that is, type a[]|c[] may be matched
by the second pattern. Finally, the values matching the second pat-
tern must also have type a[]|b[]|d[], hence their type is the in-
tersection of a[]|c[] and a[]|b[]|d[], that is, a[]. Such a type
algorithm is implemented in CDuce and was initially implemented
in XDuce.

Difference is costly to implement. Besides, though this is not
apparent in the example above, difference operations may need
to be performed at many places in the pattern, especially when
binders are deeply nested. Hosoya proposed a simpler design [11],
remarking that with a non-deterministic semantics (in other words,
when the matching policy is left unspecified) no difference oper-
ation needs to be performed. An intersection operation still needs
to be performed, but only once per occurrence of a binder. So, in
our example, the second line of the pattern still matches values of
type b[]. Therefore, the type of y is the intersection of the initial
type a[]|b[]|c[] and the type a[]|b[], that is, a[]|b[].

In our case, even the intersection operations must be avoided.
Indeed, our types are not closed under intersection: for instance,
there is no type that corresponds to the intersection of two type
variables. Xtatic has the same issue [8, section 5.3]. The current
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implementation of Xtatic thus computes an approximation of the
intersection. Another reason to avoid intersection is that it is not a
syntactic operation on types in XDuce. Thus, in order to compute
an intersection, types must first be translated to automata and the
intersection must be translated back from an automaton to a type.
In the process, the type may become more complex. In the worst
case, the size of the intersection of two automata is quadratic in the
size of these automata. Also, some type abbreviations may be lost
during the successive translations.

What we propose is to infer types not for binders but for wild-
cards _ and compute the type of binders by substitutions. The key
idea is that the intersection of a type with a wildcard is the type it-
self. Thus, no intersection is actually needed. Consider for instance
the function below.

fun g (x : (a[],b[])) =
match x with
y : (_,(b[]|c[])) ---> ...

The type inferred for the wildcard is a[]. Thus, by substitution, the
type inferred for the binder y is a[],(b[]|c[]). We deliberately
gave an example for which the inferred type is not precise, in order
to emphasize the difference with other specifications of type infer-
ence. We expect this weaker form of type inference to perform well
in practice. In particular, type inference is still precise for wild-
cards (assuming a non-deterministic semantics). When needed, the
programmer can provide explicitly a more precise type. We exper-
imented with the examples provided with the XDuce distribution.
Only some small changes were necessary to get them to compile.
What we actually had to do was to replace by wildcards some ex-
plicit types which were not precise enough.

More formally, we define the semantics of a location π of the
pattern as the set of values v such that there exists a value v0 such
that the assertions v0 � π0

1 and v0 � π0

2 holds and the assertion
v � π is a submatch of a derivation of v0 � π0

2. The type inference
algorithm then consists in computing for each location correspond-
ing to a wildcard a type whose semantics is the semantics of this
location and substituting this type in place of the wildcard. The sub-
stitution may not preserve pattern well-formedness. In this case, the
type checking fails. But we believe this is unlikely to occur in prac-
tice, as this can only happen when a wildcard location is shared in
two different contexts. For instance, consider the type a[X] and the
pattern a[Q],Q where Q = . The type inferred for the wildcard is
X|() and substituting this type does not preserve well-formedness.
If the resulting pattern is well-formed, then it is a type: it does not
contain any wildcard. The type of a binder is the type correspond-
ing to the union of the locations the binder is associated to.

5. Algorithms on Patterns
We define a number of algorithms for type checking and type
inference for patterns. Each of these algorithms is specified in an
abstract way, by defining a relation over a finite domain using
inductive definitions. Actually implementing them is a constraint
solving issue. Standard techniques can be used, such as search
pruning (when an assertion is either obviously true or obviously
false), memoization (so as not to perform the same computation
several times), and lazy computation (in order not to compute
unused parts of the relation).

The size of the finite domain provides a bound on the complex-
ity of the algorithm. We don’t study the precise complexity of these
algorithms, as we believe this would not be really meaningful. In
particular, the complexity of all these algorithms is polynomial in
the sizes of the automata associated to the patterns it operates on,
but these sizes can be exponential in the size of the patterns. Our
experience on the subject leads us to believe that the algorithms
should perform well in practice.
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Figure 14. Type Propagation σ � σ

5.1 Exhaustiveness

The input of the algorithm is the input type T = (R,ψ, π, ∅)
and the different patterns Pi = (Π, φ, πi,Bi) of the pattern
construction. We define the union of the patterns Pi by P =
(Π ∪ {	}, φ′, 	, ∅) where the location 	 is assumed not to be in Π
and the mapping φ′ is such that φ′(	) = π1 ∪ . . . ∪ πn (the union
of all root locations) and φ′(π) = φ(π) for π ∈ Π One can easily
prove that the semantics of the pattern P is the union of the seman-
tics of the patterns Pi. Then, the pattern is exhaustive if and only if
T <: P .

Note that the union construction above can be applied to any fi-
nite set of patterns sharing a common mapping φ. This construction
is also used for type inference (section 5.6).

5.2 Type Propagation

This algorithm propagates type information in a pattern. It is used
both for checking whether a pattern is allowed (section 5.4) and for
type inference (section 5.6). The input of the algorithm is composed
of two patterns P1 = (Π1, φ1, π

0

1,B1) and P2 = (Π2, φ2, π
0

2,B2)
and a relation σ1 ↔ σ2 (where the sequences σ1 and σ2 range over
the states of the automata associated respectively to P1 and P2).
The relation controls when the type information is propagated
across an element. The algorithm is defined in figure 14 as a relation
σ1 � σ2. The roots of the two patterns are related (rule ROOT).
The relation is preserved by epsilon transition (rules DEC-LEFT
and DEC-RIGHT). The rules ENTER and SHIFT specify how the
relation is propagated to the contents of an element and aside an
element.

Though the rules are symmetric, the algorithm is used in an
asymmetric way. One of the pattern is actually always a type and
the algorithm can be read as propagating type information derived
from this type into the other pattern. Besides, we are not interested
in computing the whole relation σ1 � σ2. Rather, for some given
sequences σ1, the set of pattern sequences σ2 such that σ1 � σ2

must be computed.
As the algorithm is defined as a binary relation σ1 � σ2 over

the states of the automata associated to the patterns P1 and P2, it is
quadratic in the size of these automata.
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Pattern

φ(π) = L[π′] � L � π
′

� π

φ(π) = ε

� π

φ(π) = π1, π2 � π1 � π2

� π

φ(π) = π1 ∪ . . . ∪ πn � πi

� π

φ(π) = π
′∗

� π

φ(π) = �
� π

φ(π) = X

� π

Pattern sequence

� [ ] � [∗π] � [�]
� π

� [π]

� σ1 � σ2

� σ1; σ2

Figure 15. Non-Emptiness � π and � σ

5.3 Type Non-Emptiness

In order to check whether a pattern is allowed (section 5.4), it turns
out that we need an algorithm to decide whether, given a pattern
P = (Π, φ, π0,B), the semantics of a pattern location π or a
pattern sequence σ (belonging to the set of states of the automaton
associated to pattern P ) is empty, that is, whether there exists a
value v such that v � π or v � σ. These algorithms are defined
in figure 15 as two relations � π and � σ. Their properties can be
stated as follows.

LEMMA 3. Let π be a location in pattern P and σ be a state of the
automaton associated to pattern P . If there exists a value v such
that v � π, then � π. Likewise, if there exists a value v such that
v � σ, then � σ. The converse holds in any typing environment such
that for all type variables X there exists at least a value v such that
v � X.

The proof of the lemma is straightforward. The reason for the
restriction in the converse case can be seen on the last rule in
figure 15: if φ(π) = X, then we have � π. We thus need to ensure
that there exists a value v such that v � X .

The inference rules define a relation � π over the finite set of
pattern locations Π in pattern P . Each rule can be implemented in
constant time. Hence, computing the relation for all locations in
a pattern can be done in linear time in the size of the pattern P .
Likewise, the relation � σ can be computed in linear time in the
size of the automaton associated to the pattern P .

5.4 Disallowed Pattern

The algorithm checking whether a pattern P = (Π2, φ2, π
0

2,B2)
is allowed with respect to an input type T = (Π1, φ1, π

0

1,B1) is
based on an instance of the type propagation algorithm (section 5.2)
applied to the type T and the pattern P . For this instance, we take
σ1 ↔ σ2 iff � σ1. Intuitively, if we have a type L[T1],T2 and
a pattern L’[P1],P2 such that the sets L and L’ are not disjoint,
the type information T1 should be propagated in the pattern P1, but
only if there is indeed a value of type L[T1],T2, thus in particular
only if the semantics of type T2 is not empty. On the other hand,
as the implementation of the automaton may try to match a value
against the subpattern P1 before considering the subpattern P2,
nothing should be assumed about P2. The algorithm relies on the
following theorem.
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Figure 16. Non-Disjointness σ � σ

THEOREM 4. If the pattern P is disallowed with respect to the
type T , then there exists two locations π1 ∈ Π1 and π2 ∈ Π2

such that φ(π1) is a type variable X, the location π2 is a test (as
defined in section 4.7), and [π1] � [π2]. The converse holds in any
typing environment such that for all type variables X there exists a
foreign value e such that e � X.

The restriction in the converse case ensures that the relation � σ
really coincide with the non-emptiness of the sequence σ. It also
ensures that if φ(π1) = X and π2 is a test, then there exists a
foreign value e such that e � π2. From this and [π1] � [π2], one
can then show that the whole pattern is disallowed.

A naı̈ve implementation of the algorithm would compute all
pairs of locations π1 and π2 such that [π1] � [π2] and then
checks whether there exists a pair for which both φ(π1) is a type
variable X and the location π2 is a test. This implementation would
have the same complexity as the type propagation algorithm. An
immediate optimization is to stop propagating type information
whenever a type location π1 with no type variable below it is
reached.

5.5 Non-Disjointness

The type inference algorithm relies on an algorithm that, given a
type

T = (Π1, φ1, π
0

1,B1)

and an erased pattern

P = (Π2, φ2, π
0

2,B2),

decides the non-disjointness of the semantics of two pattern se-
quences σ1 and σ2 belonging to the states of the automata asso-
ciated respectively to the type T and the pattern P . The pattern P
is assumed to be allowed with respect to type T . The algorithm is
defined in figure 16 as a relation σ1 � σ2. It is based on a standard
algorithm for checking non-disjointness of tree automata, with a
special case for type variables X. Note that only transitions with
tag l are used. The relation would remain unchanged if this restric-
tion was removed.

The intended semantics of the algorithm is that σ1 � σ2 if
and only if there exists a value v such that v � σ1 and v � σ2.
However this does not hold for arbitrary sequences σ1 and σ2. The
completeness of the algorithm can be stated as follows.

LEMMA 5 (Completeness). Let σ1 and σ2 be two states of the
automata associated respectively to the type T and the pattern P .
We assume that:

• the pattern P is allowed with respect to type T;
• σ1 � σ2 (where this relation is the instance defined in sec-

tion 5.4 for checking for disallowed patterns);
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• the typing environment is such that for all type variables X
there exists at least a value v such that v � X.

Then, if σ1 � σ2, there exists a value v such that v � σ1 and
v � σ2.

The condition σ1 � σ2 together with the allowed pattern condition
ensures that, for instance, one never considers the type sequence [π]
with φ(π) = X against the pattern sequence [�; �] for which the
algorithm may give a wrong answer: one has [π] � [�; �] as the
sequence [�; �] reduces by epsilon transition to the sequence [�],
but there is not reason for the sequences [π] and [�; �] to share
a common value. The constraint on typing environments can be
easily understood by looking at the rule concerning type variables.

The soundness property is hard to state. Rather than defining
precisely when it holds, which would involve defining an additional
complex relation, we use the following somewhat imprecise state-
ment.

LEMMA 6 (Soundness). Let σ1 and σ2 be two sequences of the
automaton respectively associated to the input type and the input
pattern. In any position where the relation σ1 � σ2 is used in
the type inference algorithm below (section 5.6), if there exists a
value v such that v � σ1 and v � σ2, then σ1 � σ2.

The algorithm is quadratic in the size of the automata associated to
the type T and the pattern P .

5.6 Type Inference

The input of the type inference algorithm is a type

T = (Π1, φ1, π
0

1,B1)

and an erased pattern

P = (Π2, φ2, π
0

2,B2).

The pattern P is assumed to be allowed with respect to the type T .
The algorithm is based on an instance of the type propagation
algorithm (section 5.2) applied to the type T and the pattern P . For
this instance, we take σ1 ↔ σ2 iff σ1 � σ2. Intuitively, if we have
a type L[T1],T2 and a pattern L’[P1],P2, the type information T1
should be propagated in the pattern P1, but only if there is indeed a
value of the whole type matched by the whole pattern. In particular,
there should be a value shared by the type T2 and the pattern P2.
We rely on the following result.

THEOREM 7. If a value v is included in the semantics of a loca-
tion π2 of the pattern, then there exists a sequence σ1 such that
σ1 � [π2]. The converse holds in any typing environment such
that for all type variables X there exists at least a value v such that
v � X.

The type inferred for a subpattern π2 should thus corresponds to
the union of the sequences σ1 such that σ1 � [π2]. One can show
that for any such sequence σ1, as it belongs to the set of states of
an automaton associated to a type, one can build a type T1 with
the same semantics. Then, the type inferred for the subpattern π2

can be build by taking the union of these types, as defined in
section 5.1.

The algorithm is complete only when all type variables have a
non-empty semantics. It may be possible to get a stronger result
by extending our type system with conditional types [1]. But we
believe this would unnecessarily complicate the type system.

An interesting feature of this algorithm is that it works directly
on the syntax of patterns and types. In particular, the inferred
type is build from the input type using only simple operations
(concatenation and union).

As in the case of the “disallowed pattern” check (section 5.4),
a naı̈ve implementation which would compute the whole relation

σ1 � σ2 can be improved by stopping the propagation of type
information whenever one reach a pattern sequence σ2 with no
location whose type needs to be inferred below it.

5.7 Preservation of the Semantics

The input of the type inference algorithm is a type

T = (Π1, φ1, π
0

1,B1)

and a pattern

P = (Π2, φ2, π
0

2,B2).

The algorithm is as follows. For each location π in the pattern P
corresponding to a type variable X (that is, φ1(π) = X), a type
T ′ is computed using the type inference algorithm on the era-
sure of pattern P . We then compare this type with the part of the
pattern P corresponding to location π, that is, the pattern P ′ =
(Π2, φ2, π,B2). The semantics is preserved if for all such loca-
tions π we have T ′ <: P ′. The soundness of the algorithm relies
on the following theorem.

THEOREM 8. The semantics of the pattern is preserved by erasure
if and only if for any pattern location π2 such that φ(π2) = X (for
any type variable X) and any type location σ1 such that σ1 � π2

(by type inference on the erasure of pattern P ), we have σ1 <: [π2].

6. Related Works
As mentioned in the introduction, we presented in a previous pa-
per [21] a calculus dealing with polymorphism for regular tree
types. Values are binary trees rather than sequences of elements.
It is straightforward to translate sequences into binary trees by rep-
resenting an element contents as a node whose first child is its con-
tents and second child is its right sibling. A similar translation can
be defined to some extent for patterns. But there is a number of
restrictions. In particular, wildcards and binders should only occur
in tail position. The present paper deals directly with sequences,
which makes it possible to avoid these restrictions. Additionally,
we specify patterns in a more precise way: we believe very few ex-
tensions to patterns, besides support for XML attributes, would be
necessary for a realistic implementation.

Hosoya, Frisch and Castagna have also proposed an extension
of XDuce with polymorphism [12], now implemented in the latest
release. In their work, type variables range over sets of basic XDuce
values rather than over sets of arbitrary values. This results in
design decisions which are drastically different from ours. For
instance, they consider that pattern matching on values whose type
is a type variable is possible (as the structure of all such values can
be explored by pattern matching), while we consider that this would
break abstraction. They can deal with bounded quantification. On
the other hand, it is not clear how to extend their work to deal with
foreign types and higher-order functions.

Sulzmann and Lu propose to use a structured representation of
XDuce values [19] and interpret subtyping as a runtime coercion.
As types reflect the structure of values, they do not have the issue
of concatenating foreign values: the values of type A,B are pairs,
rather than concatenations of values of type A and type B. However,
they may need to use algorithms similar to ours in order to ensure
that pattern matching interact well with polymorphism.

Several type inference algorithms have been proposed for reg-
ular expression types. The first one [13], by Hosoya and Pierce, is
precise (assuming a first-match policy) but can infer a type only for
binders in tail position in the pattern. Hosoya later proposed a sim-
pler design [11], corresponding to a non-deterministic semantics
for patterns, where this restriction was removed. Both algorithms
use a translation of types and patterns into tree automata. Several
algorithms for precise type inference for different match policies
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have also been presented by Vansummeren [20]. They work di-
rectly on the syntax of patterns but require complex operations on
types such as intersection and difference.

CDuce [4] has some extensive support for importing functions
from OCaml. Contrary to what we propose in section 3, their
extension relies on a runtime translation of ML values into CDuce
values according to their types.
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Abstract

Node selection in trees is a fundamental operation to
XML databases, programming languages, and informa-
tion extraction. We propose a new class of querying lan-
guages to define n-ary node selection queries as compo-
sitions of monadic queries. The choice of the underlying
monadic querying language is parametric. We show that
compositions of monadic MSO-definable queries cap-
ture n-ary MSO-definable queries, and distinguish an
MSO-complete n-ary query language that enjoys an ef-
ficient query answering algorithm.

1 Introduction

Node selection in trees [12] is a fundamental operation
to XML databases, programming languages, and infor-
mation extraction. Node selecting captures the match-
ing aspect of tree transformations. Iterated node selec-
tion can be used to navigate through input trees while
producing output data structures.

From the database perspective, node selecting is usu-
ally viewed as a querying problem [13, 15, 10]. The
W3C standard querying language XPath provides de-
scriptions of monadic queries, i.e. queries that define
sets of nodes in trees. XPath queries are used by the
W3C standard languages XQuery and XSLT for defin-
ing XML document transformations.

Modern programming languages support node selection
in trees via pattern matching, for instance all functional
programming languages of the ML family (Caml, SML,
Haskell). Tree pattern with n capture variables define
n-ary queries, i.e. queries that select sets of n-tuples of
nodes. The XML programming languages XDuce [11]
and CDuce [4, 2] support more expressive recursive tree
pattern.

Information extraction tasks for the Web can frequently
be reduced to defining n-ary queries in HTML or XML
trees. Gottlob et. al. [9] proposed monadic Datalog
as querying language for this purpose, and show that
it captures monadic MSO-definable queries [8]. Their
Lixto system [6, 1] provides a visual interface by which
to specify monadic queries in monadic Datalog, and to
compose them into n-ary queries. Composed monadic
queries are defined in Elog, a binary Datalog language.

We propose a new class of querying languages to de-
fine n-ary node selection queries as compositions of
monadic queries. The choice of the underlying monadic
querying language is parametric. We show that com-
positions of monadic MSO-definable queries capture n-
ary MSO-definable queries, and distinguish an MSO-
complete n-ary query language that enjoys efficient
query answering algorithms. Moreover, our language
allow to compose different monadic query languages,
for instance a monadic query defined by a Datalog pro-
gram with another monadic query defined by an XPath
node formula.

Compositions of monadic MSO-definable queries are
relevant to information extraction. They might be use-
ful to approach an open question in the context of the
Lixto system [6], of how to enhance such system by
machine learning techniques. Given a composition for-
mula, and examples for n-tuples that are to be selected,
one can use existing learning algorithms for monadic
MSO-definable queries [3], in order to infer n-ary MSO
definable queries.

The paper is organized as follows. We recall the defini-
tions of n-ary MSO definable queries in tree in Section 2,
introduce languages of compositions of monadic queries
in Section 3, and discuss some instances in Section 4.
We study their expressiveness in Section 5 and their al-
gorithmic complexity in Section 6, including algorithms
for the model-checking and the query answering prob-
lems, and prove the satisfiability problem to be NP-hard.
Finally in Section 7 we propose a fragment of it, study
its expressiveness and give an efficient algorithm for the
query answering problem.

2 Node Selection Queries in Trees

We recall the definition of n-ary MSO-definable queries
in trees. We develop our theory for binary trees. This
will be sufficient to deal with unranked trees, since
unranked trees can be viewed as binary trees via a
firstchild−nextsibling encoding [12].

We consider binary trees as acyclic digraphs with la-
beled nodes and ordered children. We start with a fi-
nite set Σ of node labels. A binary Σ-tree t ∈ TΣ is a
finite rooted acyclic directed graph, whose nodes are la-
beled in Σ. Every node is connected to the root by a
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unique path. All nodes of binary trees either have 0 or 2
children. Nodes without children are called leaves. All
other nodes have a distinguished first and second child.

We write root(t) for the root of tree t and nodes(t)
for the set of nodes of tree t and edges(t) ⊆ nodes(t)2

for the set of edges of t. For all labels a ∈ Σ, we write
laba(t) ⊆ nodes(t) for the subset of nodes of t labeled
by a. Given two nodes v1,v2 ∈ nodes(t) we call v2 a
child of v1 and write v1�v2 iff there exists an edge from
v1 to v2, i.e., if (v1,v2) ∈ edges(t).

The descendant relation �∗ on nodes is the reflexive
transitive closure of the child relation �.

The subtree of tree t rooted by node v ∈ nodes(t) is the
tree denoted by t|v that satisfies:

nodes(t|v) = {v′ ∈ nodes(t) | v�∗ v′}
edges(t|v) = edges(t)∩nodes(t|v)2

root(t|v) = v
laba(t|v) = laba(t)∩nodes(t|v) ∀a ∈ Σ

Definition 1. Let n ∈ N. An n-ary query in binary
trees over Σ is a function q that maps trees t ∈ TΣ to
set of n-tuples of nodes, such that ∀t ∈ TΣ : q(t) ⊆
nodes(t)n. Moreover, we require q to be closed under
tree-isomorphism, i.e. h(q(t)) = q(h(t)) for a tree iso-
morphism h.

Simple examples for monadic queries in binary trees
over Σ are the functions laba that map trees t to the sets
of nodes of t that are labeled by a for a ∈ Σ. The binary
query descendant relates nodes v to their descendants,
i.e. descendant(t) = {(v,v′) ∈ nodes(t)2 | v�∗ v′}.

Definition 2. A query language L over alphabet Σ is a
pair L = (N,�.�) where N is a set of names and �.� an
interpretation function mapping names c ∈ N to queries
�c� in Σ-trees.

The monadic second-order logic (MSO) in trees is a
query language that is widely accepted as the yardstick
for comparing the expressiveness of XML-query lan-
guages [9, 15]. This is because of the close correspon-
dence between MSO, tree automata, and regular tree
languages [17]. Every MSO formula with n free node
variables defines an n-ary query.

In MSO, binary trees t ∈ TΣ are seen as logical struc-
tures with domain nodes(t). The signature T of
this structure contains symbols for the binary relations
child1 and child2 and the unary relations laba for all
a ∈ Σ.

Let x,y,z range over a countable set of first-order vari-
ables and X over a countable set of monadic second-
order variables. Formulas φ of MSO have the following
abstract syntax, where a ∈ Σ:

φ ::= p(x) | child1(x,y) | child2(x,y)
| laba(x) | ¬φ | φ1 ∧φ2 | ∀xφ | ∀Xφ

A variable assignment α into a tree t maps first-order
variables nodes(t) and second-order variables to sub-
sets of nodes(t). We define the validity of formulas
φ in trees t under variable assignments α in the usual

Tarskian manner, and write t,α |= φ in this case. The
first-order logic FO is obtained from MSO by omitting
the set quantification. Actually the notations FO and
MSO stands for FO[T] and MSO[T] respectively, i.e.
formulae over the vocabulary T.

We view MSO as a query language. The names of n-
ary queries are MSO formulas φ(x1, . . . ,xn) with n free
first-order variables x1, ...,xn. These define the follow-
ing queries:

�φ(x1, ...,xn)�(t) = {(α(x1), ...,α(xn)) | t,α |= φ}
Definition 3. An n-ary query is MSO definable if it is
equal to some query �φ(x1, . . . ,xn)�.

Unfortunately [5] shows that the satisfiability problem
is not fixed-parameter tractable, i.e. there exists no
polynomial p and elementary function f such that we
can decide in time O( f (|φ|) p(|t|)) whether an monadic
MSO-formula φ is satisfiable in the tree t. However,
there exists query languages that can express all MSO-
definable queries, which have polynomial-time com-
bined complexity: e.g. monadic queries defined by suc-
cessful runs of tree automata have exactly the power of
MSO in defining monadic queries but deciding the non-
emptyness of a monadic query is in polynomial-time
w.r.t. combined complexity [14].

Let us define some algorithmic tasks for query lan-
guages (N,�.�) that are common to database theory:

• model-checking: given a query name c, a tree
t and an n-tuple (v1, . . . ,vk) ∈ nodes(t)k, does
(v1, . . . ,vk) ∈ �c�(t) hold ?

• query answering: given a query name c and a tree
t, return �c�(t). An expected complexity might be
polynomial in the number of solutions.

• satisfiability (over a fixed tree): given a query
name c and a tree t, does �c�(t) �= /0 hold ?

Unranked trees are like binary trees, except that all
nodes may have arbitrarily many ordered children. The
next-sibling of a node is the successor of the same parent
in the sibling ordering.

Unranked trees can be encoded as binary trees by only
using edges for the first-child and next-sibling relations.
Fig. 1 gives a DTD, an unranked tree matching this
DTD and its first-child next-sibling encoding t. A sim-
ple binary query on that tree is to select all pairs of name
and title of the same book. It can be expressed with re-
spect to the binary encoding by the following MSO for-
mula with two free variables y,z:

∃x (labauthor(x)∧child1(x,y)∧child2(x,z))

3 Composing Monadic Queries

Query languages for monadic queries in trees have been
widely studied by the database community in the last
few years. See [12] for a comprehensive overview.
Languages for n-ary queries are less frequent but have
started to arise with the XML programming languages
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DTD unranked tree fc-ns encoding

<!ELEMENT bib (book)*>
<!ELEMENT book (author,title)>
<!ELEMENT author (name)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT name (#PCDATA)>

bib

book

author

name

title

book

author

name

title

bib

book

author

name title

book

author

name title

⊥

⊥

Figure 1. A DTD, an unranked tree matching the DTD and its firstchild−nextsibling encoding t.

XDuce and CDuce [11, 2, 4] as well as with information
extraction tools such as Lixto [8, 6].

In this paper, we propose a new class of languages
for defining n-ary queries by composition of monadic
queries. We leave the choice of the underlying monadic
querying language parametric, so the reader may choose
his prefered monadic querying language, and extend it
to an n-ary query language by query composition. The
composition operator is motivated by Lixto’s way of
defining n-ary queries [6].

The principle of composition is quite simple: a com-
position of two monadic queries first selects a node an-
swering the first sub-query and then launches the second
sub-query at that node. All nodes seen meanwhile can
be memoized and returned in an output tuple.

We start from a language L of monadic queries c and
an infinite set x,y,z ∈ Var of variables. We then define
compositions of monadic queries on basis of the com-
position operator that we write as the dot ’.’ . Informally
a composition query c1(x1).c2(x2) on a tree t will first
bind x1 nondeterministically to some node v1 ∈ �c1�(t),
and then launch query c2 in the subtree t|v1 rooted at v1
in order to bind x2 to some node v2 ∈ �c2�(t|v1).

For expressivity reasons – that is to capture MSO as
soon as the monadic query language capture MSO – we
add conjunction, disjunction and projection to our com-
position language 1.

Given a monadic query language L = (N,�.�), compo-
sition formulae φ ∈ C (L) are defined by the following
abstract syntax:

φ ::= composition formula
�

| c(x).φ composition, c ∈ N, x ∈ Var
| φ∧φ conjunction
| φ∨φ disjunction
| ∃x φ projection

Given a composition formula φ, we denotes by FV(φ)

1We proved that conjunctions, disjunctions and pro-
jections are required to express all MSO-queries by
composition of monadic MSO-definable queries

the set of free variables of φ. We will often write c(x)
instead of c(x).�. The set of subformulas of φ is de-
noted by Sub(φ). The composition size |φ| of a formula
φ is inductively as follows:

|�| = 0, |φ∧φ′| = |φ|+ |φ′|+1
|c(x).φ| = 1+ |φ|, |φ∨φ′| = |φ|+ |φ′|+1
|∃x φ| = 1+ |φ|

Note that this definition implies that query names are of
size one.

For all trees t, all valuations ν : Var → nodes(t) rang-
ing over the nodes of t, and all composition formula
φ ∈ C (L) we define the satisfaction relation t,ν |= φ as
follows:

(i)
range(ν) ⊆ nodes(t)

(ii)
t,ν |= �

t,ν[x/u] |= c(x).φ iff

{
u ∈ �c�(t) (1)
t|u,ν |= φ (2)

t,ν |= φ1 ∧φ2 iff t,ν |= φ1 and t,ν |= φ2
t,ν |= φ1 ∨φ2 iff t,ν |= φ1 or t,ν |= φ2
t,ν |= ∃x φ iff there exists u ∈ nodes(t),

s.t. t,ν[x/u] |= φ

Let us consider the satisfiability of c(x).φ. Condition
(1) implies that �c� selects the node u in t, condition (2)
implies that the interpretation of φ is relativized to the
subtree of t rooted at u.

Valuations define possible values for free variables in
composition formulae. A formula can define an n-ary
query by sorting its free variables. Formally, a formula
φ ∈ C (L) with free variables {x1, . . . ,xn} = FV(φ) de-
fines the n-ary query �φ(x1, . . . ,xn)� such that for all
trees t:

�φ(x1, . . . ,xn)�(t) = {(ν(x1), . . . ,ν(xn)) | t,ν |= φ}

4 Examples of Composition Lan-
guages

We now discuss some instances of query languages
C (L) by instantiating the parameter L to some concrete
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monadic query language.

As first instance, we let L be the monadic query lan-
guage containing all monadic MSO formulas. For illus-
tration, we consider XML documents defining collec-
tions of books, which satisfy the DTD in Fig. 1. Our
target is to select all pairs of author names and titles of
the same book by composition.

We define the binary query on firstchild-
nextsibling encodings. Names and titles of a
book are contained in siblings of author-labeled nodes.
To select the pairs, we first select all author nodes by
the monadic query �c1� defined by the monadic MSO
formula c1 = labauthor(x). We then compose it with
two independant monadic queries �c2� and �c3�, for
selecting name by c2 = ∃y root(y)∧ child1(y,x) and
title by c3 = ∃y root(y)∧ child2(y,x). The modeling
composition formula is:

φ = ∃zc1(z).(c2(x)∧ c3(y))

Note that according to the DTD and the semantic of
composition, the first query can select nodes labeled
by author, and then, in each subtrees induced by the
previous selected nodes, one can select the node la-
beled by name, and the node labeled by title, by
two independant monadic queries c′2 = labname(x) and
c′3 = labtitle(x) respectively. The modeling composi-
tion formula is then:

φ = ∃zc1(z).(c′2(x)∧ c′3(y))

A second instance is obtained by composing monadic
Datalog queries [8] which are well known to capture all
monadic MSO. Indeed, our idea of compositions is very
much inspired by the way in which n-ary queries are de-
fined from monadic Datalog queries by the Lixto system
for visual Web information extraction [1, 6].

We illustrate the correspondence at the example of se-
lecting pairs of author names and titles of the same
books. Such a query is expressed in Lixto by a Monadic
Datalog program P and an additional information about
the predicate hierarchy, which we model by a tree. We
express this query in the firstchild−nextsibling
encodings. The monadic Datalog program P and the
predicate hierarchy are given on Figure 4.

We can express the same query by composing the
following three monadic Datalog queries by

φ(y,z) = ∃x P1(x).( P2(y) ∧ P3(z) )
.

P1 : Pauthor(x) :- labauthor(x)
with the goal Pauthor

P2 : Pname(x) :- root(y),child1(y,x)
with the goal Pname

P3 : Ptitle(x) :- root(y),child2(y,x)
with the goal Ptitle.

Implementation We have implemented a rather naive

algorithm for answering compositions of monadic
queries, defined either in MSO, XPath, or by tree au-
tomata. Further monadic query languages are be eas-
ily added by new modules called query machines. Each
monadic query can be expressed by different formalism
within the same composition formula.

Our concrete syntax for expressing composition queries
is given in Fig. 3. A typical input consists of an XML
document and a composition query. The output is an
XML document representing the set of all answers. The
implementation is done in OCaml.

5 MSO Completeness

We call an n-ary query language MSO-complete if it
can express all MSO-definable n-ary queries. For in-
stance, monadic Datalog is known to be a MSO com-
plete monadic query language. In this paragraph, we
study the expressiveness of composition languages over
MSO-complete monadic query languages.

We show that the composition operator can be ex-
pressed in first-order logic, so that n-ary-compositions
of monadic MSO definable queries are MSO-definable
too.

Let L = (N,�.�) be a monadic query language. For every
name c ∈ N we introduce a binary predicate symbol Bc
that we interpret as a binary relation on Bt

c ⊆ nodes(t)2

Bt
c = {(v,v′) | v′ ∈ �c�(t|v)}

We now consider the first-order logic over the signature
(Bc)c∈N∪T.

Proposition 1. Every composition formula φ(x)∈ C (L)
is equivalent to some first-order formula γ(x) over the
signature (Bc)c∈N∪T∪{�∗}.

Proof. We define a function 〈.〉x encoding composi-
tion formulas into first-order formulas over the signature
(Bc)c∈N∪T∪{�∗} inductively:

〈�〉x = �
〈c(y).φ〉x = Bc(x,y)∧〈φ〉y
〈φ1 ∧φ2〉x = 〈φ1〉x ∧〈φ2〉x
〈φ1 ∨φ2〉x = 〈φ1〉x ∨〈φ2〉x
〈∃y φ〉x = ∃y x�∗ y∧〈φ〉x

Let γ(x1, . . . ,xn) ≡ ∃FV(φ)\{x1, . . . ,xn) (∃y root(y)∧
〈φ〉y), where y �∈ FV(φ). Finally note that root(x) is
FO[T]-definable.

If the monadic query language captures MSO then the
binary predicates Bc are MSO-definable. The first im-
portant technical contribution of this paper is that the
converse holds too.

Theorem 1. The class of n-ary queries defined by com-
position of MSO-definable monadic queries is exactly
the class of n-ary MSO definable queries.

To prove the first direction it suffices to show that each
predicate Bc is MSO-definable whenever �c� is. The
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Pauthor(x) :- labauthor(x)
Pname(x) :- Pauthor(y), child1(y,x)
Ptitle(x) :- Pauthor(y), child2(y,x)

(a) program P

Pauthor

Pname Ptitle
(b) hierarchy

Figure 2. A set of Monadic Datalog rules and its predicates hierarchy

query ::= SELECT vars FROM formula
formula ::= atom | formula AND formula | formula OR formula
atom ::= machine(var)
vars ::= var | var,vars
var ::= identifier
machine ::= XPATH[xpath specif] | AUTOMATON[automaton specif] | MSO[mso specif]

Figure 3. Concrete sytnax for composition queries

binary MSO formula γBc(x,y) defining Bc is exactly the
formula γc(y) defining �c� where each quantification is
relativized to x.

The rest of this section prove the other direction, i.e.
the composition of monadic MSO-definable queries is
complete for n-ary MSO-definable queries. The proof
is based on the equivalence between MSO-definable
queries and node selection automata as defined in [16],
which is a consequence of the seminal theorem of
Thatcher and Wright [17].

We recall that a node selection automaton (NSA) is a
pair (A,S) where A = (Σ,Q,F,∆) is a tree automata and
S is a set of selection tuples q. We write (A,q) instead
of (A,{q}). A run of a tree automata A over a tree t is
a tree r isomorphic to t via an isomorphism Φ, where
each node is labeled in Q, and such that the following
holds:

• if v ∈ nodes(t) is a leaf labeled by a ∈ Σ, then
a → labr(Φ(v)) is in ∆,

• if v ∈ nodes(t) is an inner node labeled by
f ∈ Σ, and v1,v2 ∈ nodes(t) are its first child
and its second child respectively, then the rule
f (labr(Φ(v1)),labr(Φ(v2))) → labr(Φ(v)) is in
∆.

A run r of A over t is successful iff its root is labeled
by an accepting state from F . A NSA (A,S) selects a
tuple of nodes (v1, . . . ,vn) of a tree t iff there exists
a successful run r over t (isomorphic to t via Φ), and
a selection tuple (q1, . . . ,qn) ∈ S, such that for each
i ∈ {1, . . . ,n}, the node Φ(vi) is labeled by qi in r.
When it is clear from the context we will omit the
isomorphism Φ. Finally, the class of MSO-definable
n-ary queries is exactly the class of n-ary queries
defined by node selection automata over binary trees
[17, 16].

In order to prove Theorem 1 we introduce some nota-
tions. Given a set R, an n-tuple r = (r1, . . . ,rn) ∈ Rn,
and a set J ⊆ {1, . . . ,n}, we denote by ΠJ(r) the pro-

jection of r w.r.t. J, defined by ΠJ(r) = (ri)i∈J . In par-
ticular, Π/0(r) = (). Given a tree t, an n-tuple of nodes
v = (v1, . . . ,vn) ∈ nodes(t)n, a NSA (A,q) with a se-
lection tuple q = (q1, . . . ,qn) ∈ Qn, and a state q ∈ Q, a
q-run of (A,q) over t selecting v is a run of A over t such
that the root is labeled by q, and vi is labeled by qi for
each i ∈ {1, . . . ,n}. In particular, when n = 0, a q-run of
(A,()) over t selecting the empty sequence is a run of A
over t labeling the root by q.

Lemma 1. Let n≥ 2 be a natural. Let t ∈ TΣ be a binary
tree. Let v = (v1, . . . ,vn) be a tuple of length n of nodes
from t, such that there exists at least two different nodes.
Let va be the least common ancestor of v. Let v1

a be the
first child of va, and v2

a its second child. Define I,J,K as
follows:

I = {i | va = vi}
J = { j | v1

a�∗ v j}
K = {k | v2

a�∗ vk}

Let (A,q) be a NSA, and q a state, then there exists a
q-run r of A over t selecting v iff

∃q′,q′′ ∈ Q s.t.
- there exists a q-run of (A,ΠI(q)) over t
selecting ΠI(v) and labeling v1

a,v
2
a

by q′,q′′ respectively
- there exists a q′-run of (A,ΠJ(q)) over t|v1

a

selecting ΠJ(v)
- there exists a q′′-run of (A,ΠK(q)) over t|v2

a

selecting ΠK(v)

Proof. The proof is not difficult and left to the reader.

Lemma 2. Let n be a natural. Given a node selec-
tion automaton (A,q) where q is an n-tuple of states,
given a state q ∈ Q, there exists a composition formula
φA,q,q(x1, . . . ,xn) over MSO-definable monadic queries
such that for all Σ-tree t, for all v ∈ nodes(t)n, the fol-
lowing are equivalent:

(i) there exists a q-run of A over t selecting v
(ii) v ∈ �φA,q,q(x1, . . . ,xn)�(t)
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Proof. We construct the formula inductively on n. The
construction mimics the decomposition given by lemma
1.
If n = 0 we take φA,q,q = ∃x c0(x) where �c0�(t) is equal
to nodes(t) if and only if there exists a q-run of A over t.
By Thatcher and Wright’s theorem, this monadic query
is MSO-definable.
If n = 1, then q = (p) for some p ∈ Q, and we take
φA,(p),q(x) = c1(x) where �c1� is defined by the NSA
(A,(p)). Again by Thatcher and Wright’s theorem, this
query is MSO-definable.
If n > 1, we consider two cases depending on whether
the variables x1, . . . ,xn will be instantiated by the same
node or not. So φA,q,q(x1, . . . ,xn) will be written as a
disjunction φeq

A,q,q ∨φneq
A,q,q:

• case 1 (variables will be instantiated by the same
node). Let γ(A,q)(x) be an MSO formula such
that for a tree t and an n-tuple v of nodes
of t, it holds that v ∈ �γ(A,q)�(t) iff there ex-
ists a q-run of (A,q) over t selecting v. It
is easy to show that this formula exists, by
Thatcher and Wright’s theorem. Then we take
φeq

A,q,q(x1, . . . ,xn) = ∃x c1(x).(
V

i cr(xi)), where
�c1� is the query defined by the monadic MSO for-
mula ∃y1, . . . ,yn−1

V
i(yn = yi)∧ γ(A,q)(y1, . . . ,yn)

and �cr�(t) selects the root of t, for any tree t.

• case 2 (variables will be instantiated by at least
two different nodes). Let x denotes (x1, . . . ,xn)
and let Pn be the sets of partitions (with possibly
empty parts) of {1, . . . ,n} such that for each
partition, there exists at most one empty part. We
define φneq

A,q,q(x) by:

W
{I,J,K}∈Pn

W
q′,q′′∈Q

∃x∃y∃z cq
q′,q′′(x).

(
V

i∈I cr(xi)
∧c1(y).φA,ΠJ(q),q′(ΠJ(x))
∧c2(z).φA,ΠK(q),q′′(ΠK(x)))

where �c1�(t) selects the first child of the root of
t, and �c2�(t) its second child. For any tree t, the
query �cq

q′,q′′�(t) selects a node v ∈ nodes(t) iff
there exists a q-run of (A,ΠI(q)) over t selecting
(v,v, . . . ,v) (of length |I|), such that its first child
is labeled by q′, and its second child by q′′. This
query is MSO-definable, again by Thatcher and
Wright’s theorem. Remark that subformulae
φA,ΠJ(q),q′(ΠJ(x)) and φA,ΠK(q),q′(ΠK(x)) are
recursively well defined, since |K|, |J| < n.

The rest of the proof is a direct application of
Lemma 1.

To conclude the proof of Theorem 1, we state the fol-
lowing corollary:

Corollary 1. For each MSO formula γ(x), there ex-
ists an equivalent composition formula φ(x) over MSO-
definable monadic queries.

Proof. By [17, 16], there exists a NSA (A,S) equivalent
to γ, and we define φ by: φ =

W
q∈S

W
q∈F φA,q,q, where

φA,q,q has been defined in the previous lemma.

6 Algorithmic Complexity

In this paragraph L = (N,�.�) is a monadic query
language, and we suppose that there exists an algorithm
for the model-checking problem in time-complexity
mc(c, t), where c ∈ N and t ∈ TΣ, and an algorithm
for the query answering problem in time-complexity
qa(c, t).

Fig. 4 represents a simple algorithm for the model-
checking problem of a formula φ, a tree t and a
valuation ν. It is written in a pseudo ML-like code. It
runs in time O(|φ|M|t|maxφ′∈Sub(φ)(|FV (φ′)|) + |φ|2) where
M = maxc(x)∈Sub(φ)mc(c, t).

This gives a naive algorithm for the query answering
problem: generate all the valuations of free variables of
a formula φ in a tree t, and apply the model-checking
algorithm on them. This leads to an exponential
grow up, but it is not clear how to avoid it since the
satisfiability problem of monadic query composition is
NP-hard.

Proposition 2. Let Σ = {0,1,◦} be an alphabet and
L = ({c0,c1},�.�) a monadic query language over Σ
where �cb� selects all the nodes labeled by b ∈ {0,1}
in Σ-trees. Let t the binary whose roots is labeled by ◦,
its first child by 0, and its second child by 1. Given a
composition formula φ over L, the satisfiability problem
of φ over t is NP-hard.

Proof. To prove that it is NP-hard we give a polyno-
mial reduction of CNF satisfiability into our problem.
The idea is to associate with a given CNF formula
Ψ =

V
1≤i≤pCi a composition formula φ =

V
1≤i≤p φi

over L. Each φi is a composition formula associated
to the i-th clause Ci. It is defined by associating to
each litteral x j the atomic formula c1(x j) and to ¬x j the
formula c0(x j), and to a disjunction of litterals a dis-
junction of atomic formulae. For example, if we con-
sider Ψ = (x1 ∨¬x2)∧ (x2 ∨¬x3), then φ = (c1(x1)∨
c0(x2))∧ (c1(x2)∨ c0(x3)).

Composition and conjunctive queries Conjunctive
queries over finite relational structures have been
widely studied by the database community since it
is the most common database query in practice. The
particular case of conjunctive queries over unranked
trees have been studied in [7] over particular binary
XPath axis A = { Child, Child+, Child∗, NextSibling,
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let check(φ, t,ν) = match φ with
| � → true
| ψ(x).φ′ → ν(x) ∈ �ψ�(t) ∧ check(φ′, t|ν(x),ν) ∧∀y ∈ FV(φ′) ν(x)�∗ ν(y)
| φ′ ∨φ′′ → check(φ′, t,ν) ∨check(φ′′, t,ν)
| φ′ ∧φ′′ → check(φ′, t,ν) ∧check(φ′′, t,ν)
| ∃x φ′ →

W
u∈nodes(t) check(φ′, t,ν[x/u])

Figure 4. Model-checking algorithm for a formula φ ∈ C (L), a tree t and a valuation ν

NextSibling+, NextSibling∗, Following }. Surprisingly
the complexity of these queries quickly fall into
NP-hardness. Since each conjunctive queries over these
axis in an unranked tree is expressible by a composition
query over a particular monadic query language in
binary trees, all the complexity lower bounds from [7]
apply to our formalism. For example, the satisfiability
problem of a composition query over the monadic query
languge ({c1∗ ,c2},�.�) is NP-hard w.r.t. combined
complexity, where �c1∗�(t) = {v | Child∗1(root(t),v)}
and �c2�(t) = {v | Child2(root(t),v)}.

In the next section we propose a composition fragment
for which the satisfiability problem is in PTIME when-
ever this holds for the underlying monadic query lan-
guage, and give an efficient algorithm for query answer-
ing. In addition we prove that this fragment can express
all MSO-definable n-ary queries whenever the underly-
ing monadic query language captures MSO.

7 An MSO-Complete and Tractable
Fragment

In this section, we introduce a “tractable” syntactic frag-
ment of composition formulae E (L), that leads to an
n-ary MSO-complete query language (as soon as the
monadic query language L is), while enjoying efficient
query answering algorithms.

Let L be a language of MSO-definable monadic queries.
In this fragment, variable sharing between conjunctions
and composition are not permitted, more precisely, if
φ ∧ φ′ and c(x).φ′′ are E (L)-formula, then FV(φ) ∩
FV(φ′) = /0, and x �∈ FV(φ′′). CDuce patterns for in-
stance are built under this restriction for conjunctions
[4].

If the satisfiability problem for the underlying query lan-
guage is PTIME, then it holds for the composition frag-
ment too. The algorithm is based on dynamic program-
ming – a satisfiability table defined inductively is com-
puted with memoization –. Then the query answering
algorithm processes the formula inductively under the
assumption that it is satisfied in the current tree.

7.1 MSO-completeness

We start by a theorem on expressiveness of the fragment
E (L), over MSO-definable monadic queries.

Theorem 2. Let L be a language of MSO-definable

monadic queries. The class of n-ary queries defined
by E (L)-formulae is exactly the class of n-ary MSO-
definable queries.

Proof. The proof is the same than those of Theorem 1.
It suffices to remark that the constrution of an equivalent
composition formula given in Theorem 1 respects the
required restrictions on variable sharing.

7.2 Answering algorithm

In this section we give an algorithm for answering a
composition query q on a tree t, so that the complexity
may depend on the size of the output. Since the answer-
ing complexity depends on the maximal number of free
variables of the subformulae of the formula defining the
query, we first show that each composition formula φ
is equivalent to a composition formula where there is a
most 1 free variable different from the free variables of
φ in its subformulae (wlog we assume that the quantified
variables of φ are different from the free variables of φ).
Moreover, in order to avoid the problem of non-valued
variables – for example in the formula c(x)∨ c(y) –, we
complete each formula so that each part of disjunctions
has the same free variable sets. For instance the for-
mula c(x)∨c(y) is rewriting into the equivalent formula
(c(x)∧ true(y))∨(true(x)∧c(y)). The size of the output
formula can be at most quadratic in the size of the input
formula.

Let L = (N,�.�) be a monadic query language. Let
t ∈ TΣ be a tree and let φ ∈ E (L) a composition formula.
We suppose to have an algorithm to answer monadic
queries. The query answering algorithm processes in
four steps:

1. rewrite φ into an equivalent formula φ′ in which
there is at most one free variable different from the
free variables of φ′, in its subformulae, and such
that for each γ∨ γ′ ∈ Sub(φ′), FV(γ) = FV(γ′);

2. compute two data structures Qa : N×nodes(t) →
nodes(t) and Qc : N × nodes(t) × nodes(t) →
{0,1} such that given a query name c ∈ N appear-
ing in φ′, and two nodes v,v′ ∈ nodes(t), Qa(c,v)
returns the set {v′ : v′ ∈ �c�(t|v)} in linear time
in the size of the output, and Qc(c,v,v′) checks in
constant time whether v′ ∈ �c�(t|v);

3. compute a data structure Sat : Sub(φ′) ×
nodes(t) → {0,1} such that Sat(φ′′,v) checks in
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constant time whether a formula φ′′ ∈ Sub(φ′) is
satisfied in t|v;

4. answer the query by processing the formula φ′ re-
cursively with satisfiability tests, doubles elimina-
tion, and memoization.

Step 1 Let φ be a composition formula. Wlog assume
that quantified variables of φ are different from its free
variables. We define the width w(φ) of φ as the maxi-
mal number, over the subformulae of φ, of free variables
different from the free variables of φ. More formally
w(φ) = maxφ′∈Sub(φ)|FV(φ′)\FV(φ)|. As we said we
transform φ into an equivalent formula φ′ with w(φ′)≤ 1.
The transformation is simple by pushing down the quan-
tifiers. We sum up it in the following lemma:

Lemma 3. Each query q defined by a composition for-
mula φ ∈ E (L) is equal to some query defined by a com-
position formula φ′ ∈ E (L) such that w(φ′) ≤ 1.

Proof. We define the translation of φ into φ′ by the fol-
lowing rewriting rules:

∃x (γ∨ γ′) → (∃x γ)∨ (∃x γ′)
∃x (γ∧ γ′) → (∃x γ) ∧ (∃x γ′)
∃x c(y).φ → c(y).(∃x φ) with y �= x
∃x γ → γ if x �∈ FV(γ)

We can show this rewriting system to terminate, and to
be confluent. The normal form is a formula where each
occurence of a quantified variable in an atomic formula
c(x) is preceded by an existential quantification ∃x c(x).
Hence, normal forms are of width at most 1. Now we
show that the normal form φ′ of a formula φ is equiva-
lent to φ. The only difficulties come from ∃x (γ∧ γ′) →
(∃x γ) ∧ (∃x γ′) and (∃x c(y).φ) → (c(y).(∃y φ). The
first case holds since FV(γ)∩ FV(γ′) = /0, and the fol-
lowing proves the second case:
t,ν[y/v′ ] |= (∃x c(y).φ)
iff there exists v ∈ nodes(t) s.t. t,ν[y/v′ ][x/v] |= c(y).φ
iff there exists v ∈ nodes(t|v′), v′ ∈ �c�(t) and
t|v′ ,ν[x/v] |= φ
iff t,ν[y/v′ ] |= c(y).(∃x φ).
We conclude by induction on the reduction length.

Remark that the size of the resulting formula is linear
– multiply by two – in the size of the input formula,
since each occurence of free variable is preceded by its
quantification. Then we transform φ′ so that each part
of a disjunction shares the same free variable sets, and
such that each quantified variable is different from each
free variable of φ′.

Step 2 It is quite obvious, by using hash tables.

Step 3 We compute – using memoization – a table
Sat[., .] defined inductively by:

Sat[�,u] = 1 (1)
Sat[c(x).φ,u] =

W
u′∈Qa(c,u) Sat[φ,u′] (2)

Sat[φ∧φ′,u] = Sat[φ,u]∧Sat[φ′,u] (3)
Sat[φ∨φ′,u] = Sat[φ,u]∨Sat[φ′,u] (4)
Sat[∃x φ,u] = Sat[φ,u] (5)

Step 4 The last phase is given on Fig. 5. Moreover, we
use memoization to avoid exponential grow-up. Valu-
ations are represented by sequences of pairs (variable,
node). We assume union and projection operations to
eliminate doubles, so that their time complexities are
linear in the input sets. This can be done by storing
tuples in hash tables.

7.3 Answering Complexity

In this section we study the complexity of the previous
algorithm. Let L = (N,�.�) be a monadic query lan-
guage. Inputs of the algorithm are a tree t and a com-
position formula φ ∈ E (L). Moreover, we suppose to
have of an algorithm to answer �c� on a tree t, for each
c ∈ N, in time complexity qa(n, t). We write M(φ, t) for
maxv∈nodes(t),c(x)∈Sub(φ)qa(c, t|v). We sum-up the com-
plexity by the following proposition:

Proposition 3. Answering a query q defined by a com-
position formula φ ∈ E (L) is in time O(M(φ, t)|t||φ|+
|φ|2|t|2|φ(t)|), where |φ(t)| is the output size.

Proof. The first step produces a formula φ′ such
that |φ′| = O(|φ|2). The second step is in time
O(M(φ, t)|t||φ|), and the computation of the satisfiabil-
ity table is in time O(|φ′||t|2) = O(|φ|2|t|2).
It remains to show the time complexity of algorithm de-
picted in figure 5 to be O(|φ′||t|2nK), where K is the
number of solutions and n the arity of the query – we
consider that |φ(t)| = Kn –. We are going to show that
each recursive call returns at most |t|K valuations, and
performs at most O(|t|+ nK|t|) operations. Each call
to ans begins by a satisfiability test, so that the follow-
ing property holds: if ans(γ, t,v) is a recursive call oc-
curing during the processing of φ′, then the projection
of each valuation returned by ans(γ, t,v) on the vari-
ables from FV(φ′) can be extended to a valuation ν such
that t,ν,root(v) |= φ′. Hence, the number of valua-
tions returned by ans(γ, t,v) is at most |t||FV(γ)\FV(φ′)|K.
Moreover, since w(φ′) = 1, we get |FV(γ)\FV(φ′)| ≤ 1.
It is clear that for conjunctions, disjunctions, and pro-
jections, each recursive call performs at most O(|t|nK)
operations. If γ is of the form c(x).γ′, then FV(γ′) =
FV(γ′)∩FV(φ′), since w(γ) = 1. Hence, any recursive
call to ans(γ′, t,v′) for v′ ∈ �c�(t) returns at most K val-
uations. Moreover, there are at most |t| nodes satisfying
�c�(t), so that the recursive call ans(γ, t,v) performs at
most |t|+nK|t| operations.
Finally, since we use memoization, there are at most
|t||φ′| recursive call to ans, so that the whole complexity
of ans on input, φ′, t and root(t) is O(|φ′||t|2nK)).

8 Conclusion

8.1 Summary.

We proposed and investigated an n-ary query language
C (L) in which queries are specified as composition of
monadic queries. The choice of the underlying monadic
query language L is parametric, so that we can express a
wide variety of n-ary query specification languages, for
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1 let ans(φ, t,u) = if Sat[φ,u] then
2 match φ with
3 | � → {ε}
4 | c(x).φ′ →

S
u′∈Qa(c,u){(x,u′) ·ν | ν ∈ ans(φ′, t,u′)}

5 | φ′ ∧φ′′ → ans(φ′, t,u)×ans(φ′′, t,u)
6 | φ′ ∨φ′′ → ans(φ′, t,u)∪ans(φ′′, t,u)
7 | ∃xφ → {ν : dom(ν) = dom(ν′)\x,ν = ν′|dom(ν)\x,ν′ ∈ ans(φ, t,u)}
8 else /0
9 in
10 ans(φ, t,root(t))

Figure 5. Answering algorithm with implicit memoization

instance composition of XPath formula, Monadic Dat-
alog programs or node selection automata. We proved
our language to capture MSO as soon as the underlying
monadic query language capture MSO too. We proved
the satisfiability problem to be NP-hard and proposed
an efficient fragment E (L) of the composition language
which remains MSO-complete as soon as L captures
MSO. We gave an algorithm for the query answering
problem in time O(M(φ, t)|t||φ|+ |φ|2|t|2|φ(t)|), where
|φ(t)| is the output size and M(φ, t) is the maximal com-
plexity of the query answering problem over subtrees of
t, of the monadic queries appearing in φ.

8.2 Future Work.

A more practical aspect is the extension of the exist-
ing implementation of query composition to the algo-
rithms in Section 7 and the comparison of their query
answering efficiencies with other querying languages,
such as implementations of XQuery, and programming
languages such as CDuce .

We would like to investigate the correspondence – men-
tioned in Section 4 between the underlying query for-
malism of Lixto and our query composition language
over Monadic Datalog programs. In particular, we think
that there exists a systematic translation between the two
formalisms.

Finally, in some cases it seems to be more efficient to
have the possibility to navigate everywhere in the tree,
without restriction on subtrees. The binary query exam-
ple given in Section 3, on the tree of figure 1 seems to
be more natural when one first selects a node labeled by
name, and then its sibling. In this way it is interesting
to investigate the more general problem of binary query
composition.

We would like to thank Manuel Loth who worked on the
implementation of monadic query composition.

9 References

[1] Robert Baumgartner, Sergio Flesca, and Georg
Gottlob. Visual web information extraction with
lixto. In 28th International Conference on Very
Large Data Bases, pages 119–128, 2001.
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1 Introduction

We discuss the type checking for XML programming with higher-
order functions. Our type checking does not require type an-
notations on programs. This is beneficial for programmers. In
XDuce [HP03] and CDuce [FCB02], programmers always need to
figure out, for all functions in the program, what type annotations
are necessary. This task sometimes becomes very tedious, in par-
ticular, when structures of target XML documents are complex.

To achieve the type checking without type annotation, we use
the tree transducer type-checking technique. In particular, we
employ the high-level tree transducer, first introduced by Engel-
friet [EV88]. We can enjoy much benefits of functional program-
ming with this transducer, because we can use higher order func-
tions. Given input trees, the high-level tree transducer emits func-
tional values.

Our method has two steps. The first step is a conversion from func-
tional programs to high-level tree transducers. The second step is
the inverse type inference, which receives an output XML type and
a high-level tree transducer and creates an input XML type.

• The conversion in the first step is made possible by imposing
restrictions on functional programs. These restrictions ensure
that (1) a program is not allowed to examine what it creates,
(2) a program does not receive more than one input tree, (3)
the number of internal states a program can reach is finite.
These restrictions are obviously necessary, and are even suffi-
cient for the conversion to tree transducers. We impose these
restrictions by using simple types called sorts.

• The key idea for the second step is the abstract interpretation
of values emitted by transducers. For this interpretation, we
start from the finite algebras called binoids. Any XML type
can be captured by some binoid and homomorphism from
XML values to this binoid. Such homomorphism can be ex-
tended to functional values. As far as type-checking is con-
cerned, we always consider functional values under abstract
interpretation by this homomorphism. Our inverse type in-
ference is done by combining Maneth’s algorithm and such
abstract interpretation.

Let us outline the rest of the paper. Section 2 discusses the problem
we deal with in a ML-style functional language. Section 3 gives a
formal discussion and k-level tree transducers. Section 4 gives the
type checking algorithm. Section 5 summarizes the related work.
Section 6 discusses the future work.

2 The Language and Problem

An ML-like Language for XML Programming We first intro-
duce an ML-like yet simply-typed functional language with higher
order functions. This language supports XML programming. In
particular, this language manipulates two XML values, input XML
values and output XML values. Input XML values are only pro-
cessed. We however cannot create input XML values in the lan-
guage, so that such values are always supplied from the outer
world. On the other hand, output XML values, or we can say, non-
observable XML values, are only constructed. We do not have any
method to inspect their structures.

Let us explain the language step by step. As an example, we use the
following program representing the identity tree transformation.

letrec id(i→o) x :=
∗x[if x |= 1 then id x·1 else ()],
(if x |= 2 then id x·2 else ())

in
id

First, we have sorts. In the program, we see a superscript i→ o
appearing on id. This superscript indicates a sort, i.e., simple type,
of the function variable id. Let B = {i,o,B,L}. This B is the set
of base sorts. Sort i corresponds to input XML values. Input XML
values indicate some nodes in the input XML document. Sort o cor-
responds to output XML values. Output XML values are sequences
of XML trees. Sorts B and L are sorts for boolean values and la-
bels, respectively. We use b to range over base sorts. We extend
base sorts B to sorts S(B) for functional values as

S(B) � s ::= b | s→ s

where b ∈ B. We use s to range over sorts. Here→ associates to the
right as usual. Note that in sorts, their constructors i,o,B,L and→,
are just syntactical objects.

In the rest of the paper, we often make sorts of function variables
explicit for readability. In practice, sorts of variables as well as
those of expressions can be, though not uniquely, inferred by known
unification-based algorithms such as the one in a textbook [Mit96].
Note that sorts are not types in this paper – we will introduce types
themselves later.

Next, this language allows the set of specific constant primitives.
They operate on input and output XML values of sorts i and o.

XML instances given as inputs, are seen as binary trees which are
navigated by using the set of primitives. For input XML values of
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sort i , we define operators ·0, ·1, and ·2 as follows.

a

·0

·1 ·2

b c

This figure illustrates an XML instance a[b[]] ,c[] seen as a binary
tree. Assume that a node x(i) is the root of the above XML instance.
From x, we reach a node labelled by b using x·1, and a node la-
belled by c using x·2, and from these nodes we can move back to
the root node by x·1·0 or x·2·0. Predicates x |= 0, x |= 1 and x |= 2
represent tests whether it is allowed to move to that direction. If
there are no nodes in that direction the test fails. We can also obtain
the label of the node by ∗x. For instance, we have ∗x = a on the root
node x.

For construction of output XML values, we have a constant ()(o)

which represents a null sequence, and two operators; [ ](L→o→o)

and ( , )(o→o→o). The operator [ ](L→o→o) creates a node �[t] from
the label � and an output XML value t. The operator ( , )(o→o→o)

concatenates two output XML values.

Furthermore, the language has the if-construct and equality test on
the finite set of labels. We also have letrec for defining mutually
recursive functions.

Finally, we emphasize what this language does not have. Although
we can convert an XML value x of sort i into the same value of
sort o using id(i→o) x, the conversion in the reverse direction is not
expressed in the language. Namely, the language does not have a
primitive constant of sort o→ i representing this reverse conversion.
Neither we can define a program performing such a conversion. In
general, our language can neither create input XML values, e.g.,
x(i) := a[], nor inspect the information of some output XML values,
e.g., ∗t for an output XML value t.

Using Higher-order Functions In XML programming, the use
of higher order functions have a number of advantages. Here we
look through several use cases of higher order functions through ex-
amples. Note that we later translate functional programs into trans-
ducers, and we here only discuss functions to which such translation
can be applied.

A typical higher order function is the map function, which applies
a function given as an argument to a set of elements at once. In
XML programming, it is particularly useful to have map functions
which apply argument functions to nodes selected by a certain crite-
ria, e.g., children, following siblings, etc. The following functions
chilren and siblings take argument functions of sort i→ o, and re-
turn the concatenation of the results of applications.

children(i→(i→o)→o) x f := if x |= 1 then siblings x·1 f else ()
siblings(i→(i→o)→o) x f := f x ,if x |= 2 then siblings x·2 f else ()

Example 1. For example, when applied to the root node x of an
input tree a[b[] ,c[] ,d[]], children x f returns f (x·1) , f (x·1·2) , f
(x·1·2·2).

Note that functions such as chilren and siblings are usually supplied
as library functions, rather than being a part of the user program.
With such library functions, programmers do not have to deal with
primitive navigation operators such as x·m (x·0, x·1 and x·2).

The function dept in Figure 2 implements the transformation in Fig-
ure 1. The function recursively applies itself to a set of nodes se-
lected by children, root, etc. Readers familiar with XSLT should
be aware that the program is written in a style similar to XSLT pro-
grams.

Not only map functions, but we can also provide library functions
for testing the document structure. For example, a function which
tests the existence of a child node of x(i) with a certain label l(L)

i.e., corresponding to the XPath predicate [x/l], can be written in a
manner similar to the function children.

More generally, we can even implement a deterministic (binary)
tree automaton which tests the substructure of x through the fol-
lowing trick. This function autom takes a transition function trans
and initial state ini as arguments.

autom(i→L→(L→L→L→L)→L) x ini trans :=
trans
(∗x)
(if x |= 1 then autom x·1 ini trans else ini)
(if x |= 2 then autom x·2 ini trans else ini)

The transition function trans l q1 q2 takes a label l, two successor
states q1 and q2, and returns the result of the transition. Here, we
assume that we encode the finite set of states of the automaton as
a subset of the finite label set of sort L. We do not show the de-
tail but this technique can be also extended to implement pattern
match constructs in the style of XDuce based on regular expression
patterns [HP03].

Another interesting application of higher order functions is to use
them for representing XML values containing holes. Such holes
are also called gap in the language JWIG [CMS02]. For instance,
a value p(o→o) represents a (first-order) gapped value whose gaps
can be filled at once by a value v(o) by the application (p v)(o).
E.g., p(o→o) v := dept[v] is a gapped value dept[�] where � is
the position of a gap. This gap can be filled by emp[] as p emp[] =
dept[emp[]].

We can implement a set of gap operators using higher order func-
tions.

(i) gap(o→o) v := v
(ii) nogap(o→o→o) v w := v
(iii) concgap((o→o)→(o→o)→o→o) p q v := p v ,q v
(iv) nodegap(L→(o→o)→o→o) l p v := l[p v]
(v) pluggap((o→o)→(o→o)→o→o) p q v := p (q v)

The gap operators implement the following operations.

Example 2. Some examples on the use of the gap operators. (i)
gap = �. (ii) nogap dept[] is a gapped value dept[] with no
gaps. (iii) concgap dept[�] � = dept[�] ,�. (iv) nodegap comp
dept[�] = comp[dept[�]]. (v) pluggap dept[�] dept[�] = dept[
dept[�]].

The function dept in Figure 2 traverses the input tree many times
due to the call to the root function. Interestingly, a similar function
can be written by the function using gapped values, shown in Fig-
ure 3.1 This function computes an answer by the single traversal.

The earlier examples of higher order functions are just useful in

1In this program we use sort B→ s to implement pairs. It is not
difficult to extend the language with pairs and projections. We do
not do this here for simplicity.
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writing concise programs. Their use is however not essential. The
last example using gapped values, essentially uses higher order
functions. As Engelfriet observed [EV88], by raising the order of
sorts for output values, i.e., o, o→ o, (o→ o)→ o→ o and so on,
we can arbitrarily increase the expressive power of the language.

Type-Checking Problem Types for XML values, i.e., instances
of sorts i or o, are described by tree regular expressions, such as
τ = (a[b[]∗]∪ c[])∗. For example, id transforms any XML value
into itself, hence a value of type (a[b[]∗]∪c[])∗ into the value of the
same type. This observation is denoted by id : (a[b[]∗]∪ c[])∗ →
(a[b[]∗]∪ c[])∗. For a function with sort i→ o, the type checking
problem f (i→o)

I : υI→ τI can be stated as follows.

Problem 1. (Type checking) Given a program f (i→o)
I , an input type

υI and output type τI, the type checking problem f (i→o)
I : υI→ τI is

to test whether or not the transformation of any XML value of type
υI produces an XML value of type τI.

In understanding Problem 1, we need to clarify the case when the
transformation does not terminate. For example, the program given
in Figure 2 does not terminate if there are occurrences of dept-
nodes inside emp-nodes in the input tree.

comp[
dept[],
emp[akihiko[]],
emp[dept[]]

]

⇒

comp[
dept[
emp[akihiko[]],
emp[
dept[
emp[akihiko[]],
· · ·

We can use the input type υI to guarantee that dept-nodes never
occurs inside emp-nodes, so that the function terminates for any
input of type υI. There is a choice whether or not we include the
non-termination in type errors. In this paper, we chose to include it.

Restrictions on the Functional Language We can solve the type
checking problem for the language introduced so far, when the pro-
gram of interest can be translated into a high-level tree transducer.
Unfortunately, not all programs can be translated into such tree
transducers. We here explain sufficient restrictions on programs
which make this translation possible.

• Any functions or variable f (s) declared in let or letrec as
f (s)x := e, either has their sort s = b or s = s1→ ·· · → sn−1→
b, such that none of s2, ..., sn−1,b are i. Namely, only the first
argument can be of sort i. Note that we do not restrict sorts
in the form i → s to appear other argument positions, e.g.,
children(i→(i→o)→o).

• Any function of sort i→ s must be declared in the top-level
letrec of the program. In other words, they must not be
defined in a letrec within another letrec.

These two restrictions correspond to the fact that the tree transducer
only have a single input parameter (= first restriction) and a finite
set of states (= first and second restrictions). Obviously, we cannot
have a function definition of sort i→ i→ s, because it means that
this function has multiple input parameters (we underline the erro-
neous part). In the translation, functions of sort i→ s are seen as the
finite set of states. This is guaranteed only if there are finitely many
possibilities for such functions. Assume that there is a function f

with sort (i→ s)→ i→ s and g with sort i→ s. In our language,
we can create f g, f ( f g) = f 2g, f ( f ( f g)) = f 3g, and so on. In par-
ticular, we can enumerate such functional values up to f ng, where,
for example, n is the size of the input to the program. This makes
the translation into tree transducers impossible, since the number
of states should not be related to the size of any input. The use of
nested let and letrec for functions of sort i→ s also causes the
same problem.

Let us give another explanation from a different point of view. As
we discussed in the introduction, the decidability results for the tree
transducer type checking come from the fact that the inverse image
f−1
I (τI) of a transformation with respect to a regular language τI,

is always regular. Since the subsumption for regular languages is
decidable, the type checking amounts to check whether υI is con-
tained by f−1

I (τI).

Here, consider the following program which has a sort i→ i→ o.

letrec cmp(i→i→o) x y :=
if not(x |= 2) && not(y |= 2) then ok[] else cmp x·2 y·2
in cmp

This program checks whether two sequences starting from nodes x
and y have the same length (not and && here can be defined using
if). Clearly the inverse image of such a program for τI = ok[] does
not have a regular property. For example, we cannot test by means
of tree automata, if a tree l[t1] , t2 has the width of t1 is equal to the
width of t2. This is the source of difficulty with programs having
sorts such as i→ i→ o.

3 Values, Tree Automata and High-level tree
transducers

We introduce XML values, and then tree automata which are the
model of XML types. The high-level tree transducer is the model
of XML transformations as given, using a functional language, in
examples in the last section. We discuss its syntax and semantics in
the latter half of this section.

Here are some notations used throughout. We consistently use bold
font, e.g., a, to emphasize meta-variables denoting words or tuples.
We use ε ∈ A∗ for an empty word, and an associative operator (· ) for
word concatenation. We let B = {true, false} be the set of boolean
values. This B appears in the text, so that there should be no confu-
sion with the symbol B appearing in sorts.

XML Values An XML value is a sequence of unranked ordered
trees over the finite set L of labels. The set of XML values is defined
as follows.

V � t ::= () | �[t] | t , t
where � ∈ L. We omit () if it is directly enclosed in �[ ]. We assume
that , is associative and () is an identity. As explained earlier,
an XML value can also be seen as a binary tree, since each t is
represented either as �[t1] , t2 or (). For each t, its domain dom(t) ⊆
{1,2}∗ is the set of locations, when seen as a binary tree, of that tree.
We define the set of tree nodes U by

U =
⋃
t∈V

(
{t}×dom(t)

)
.

That is, U is the set of all nodes in all trees. The label of a node
u ∈ U is denoted by ∗u ∈ L. We can move inside XML trees by the
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comp[
dept[],
emp[akihiko[]],
emp[yoshinori[]]

]

⇒

comp[
dept[
emp[akihiko[]],
emp[yoshinori[]]

]
]

Figure 1. The dept-transformation. Namely, we collect all nodes labelled emp, as well as subtrees of such emp-nodes, and put them into all
dept-nodes in the document.

letrec
(∗ libraries ∗)

children(i→(i→o)→o) x f := if x |= 1 then siblings x·1 f else ()
siblings(i→(i→o)→o) x f := f x ,if x |= 2 then siblings x·2 f else ()
root(i→(i→o)→o) x f := if x |= 0 then root x·0 f else f x

(∗ user program ∗)
dept(i→o) x :=
if ∗x = dept then dept[root x emp]
else if ∗x = emp then ()
else ∗x[children x dept]

emp(i→o) x :=
if ∗x = emp then ∗x[children x dept]
else children x emp

in
dept

Figure 2. Function dept x first looks at the label of the node x. If it is dept, the function creates a copy of this dept-node, in which it puts
the result of call to the function emp at the root. If the label is emp the function dept skips this node, and otherwise it creates the copy of the
given node. The function emp collects and copies all emp nodes inside the tree. This function emp has some problem, because it again calls
dept to copy its substructure. See the Type-Checking Problem paragraph.

letrec
...
(∗ user program ∗)

deptgap(i→B→o→o) x :=
let n(B→o→o) b := nogap () in
let p(B→o→o)

1 := if x |= 1 then deptgap x·1 else n in

let p(B→o→o)
2 := if x |= 2 then deptgap x·2 else n in

let l(L) := ∗x in
let p(B→o→o)

0 b :=
if b then
if l = dept then

concgap (nodegap dept gap) (p2 true)
else if l = emp then

p2 true
else

concgap (nodegap l (p1 true)) (p2 true)
else
if l = emp then

pluggap (concgap (nogap (p1 true ())) gap) (p2 false)
else

pluggap (p1 false) (p2 false)
in p0

dept(i→o) x :=
let p := deptgap x in
p true (p false ())

in
dept

Figure 3. A similar function as the one in Figure 2, using first order gapped values. The function deptgap returns p(B→o→o) which represents
two gap values, namely p true and p false. For example, for the left hand side document of Figure 1, deptgap returns a pair of gapped values
p true = comp [dept[�]] and p false = emp[akihiko[]] ,emp[yoshinori[]] ,�. They are finally plugged by p true (p false ()) and create the
resulting document on the right hand side of Figure 1.

74



operator (·m) (m = 0,1,2). For k ∈ dom(t)

(t, k)·m = (t, k·m) if m = 1,2 and k·m ∈ dom(t)
(t, k·k)·m = (t, k) if m = 0 and k = 1,2
u·m = ⊥ otherwise

The value ⊥ here represents a non-existing node such that ⊥ � U.
Finally, the set of root nodes Λ(U) ⊆ U is a set {(t, ε) | t ∈ V}.

XML Types and Tree Automata We introduce XML types.
Each XML type represents a certain set of XML values. We use
metavariables τ,υ for ranging over XML types throughout the pa-
per. As a candidate of models of XML types, we have tree regular
expressions as defined by Hosoya et al. For � ∈ L, and α ranging
over a set of type variables, tree regular expressions use the syntax
such as

TXML � τ,υ ::= () | �[τ] | τ ,τ | τ∪τ | τ∗ | letrec α := τ; ... in τ | α
Example 3. This is an example of XML type. By constraining input
XML values, this type guarantees the termination of the program
dept in Figure 2.

letrec ds := dept[es]∗; es := emp[]∗ in comp[ds]

It says that the root node is always comp and in which we have a
sequence of dept nodes. Inside depts, we have emp nodes, and so
on.

In this paper, we do not directly discuss the semantics �τ�⊆V of the
above syntax. Instead, we introduce tree automata which is well-
known as a canonical model of XML types τ. Here we actually
introduce three forms of them. The first one is the most standard.

Definition 1. A (total) non-deterministic tree automaton M =
(Q,L,∆,F,•) is a tuple where ∆ ⊆ L × Q × Q × Q is a set of
transitions, F ⊆ Q is a set of final states and • ∈ Q is an ini-
tial state. A mapping µ ∈ U → Q is called a run of M if
(∗u,µ(u),µ(u·1),µ(u·2)) ∈ ∆ for any u ∈ U, where we define µ(⊥) =
•. An XML value with root node u ∈ Λ(U) is accepted if there is a
run µ such that µ(u) ∈ F.

We can assume for each XML type τ that we have a tree
automaton M(τ) which defines the semantics �τ� = {t ∈ V |
t accepted byM(τ)}. This is a standard assumption in the study
of typed XML programming. See Hosoya et al. [HVP00], for this
detail.

The second model of XML types has a form of algebra whose do-
main is finite. This algebra is called binoid [PQ68] in the literature,
and is similar to syntactic monoid [Per90] for word languages. We
employ this representation as a canonical model of output XML
types in the type inference algorithm in Section 4. As we can see
from the definition, this algebra classifies a set V of XML values
into a certain set of finite equivalence classes. The equivalence
classes are still diverse enough to check whether or not, an arbitrary
XML construction creates the result inside �τI�. In other words, bi-
noids provide the means of abstract interpretation of XML values.

Definition 2. A binoid for τI is an algebra V(τI) = (V,•,F,
( [ ]), ( , )) such that (1) V is a finite set, • ∈ V and F ⊆ V, and
(2) (V, (),�τI�, ( [ ]), ( , )) is homomorphic to V(τI). That is, we
have a mapping ( ◦) ∈ V →V satisfying (i) ()◦ = •, (ii) v ∈ �τI� iff
v◦ ∈ F, (iii) (�[t])◦ = �[t◦], and (iv) (t , t′)◦ = t◦ , t′◦.

An algorithm, given a non-deterministic tree automaton represent-
ing τI, that constructs one binoid satisfying the above definition is

known. For binoidsV(τI) with homomorphism ◦, in what follows,
we often use ()◦ and �τI�◦ instead of • and F above, respectively.

Example 4. Consider the XML type comp[ds] in Example 3. Here,
we give one binoid corresponding to this XML type. We here take
a certain set of tree regular expressions as the domain of the binoid
V(comp[ds]). In the following, assume that τE represents a type
for values that do not belong to other elements in the domain of
V(comp[ds]).

V = {(),dept[es]+,emp[]+,comp[ds], τE}
()◦ = ()
�comp[ds]�◦ = {comp[ds]}

[ ] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dept,emp[]+ �→ dept[es]+

dept, () �→ dept[es]+

comp,emp[]+ �→ τE
...

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(),dept[es]+ �→ dept[es]+

dept[es]+,dept[es]+ �→ dept[es]+

...

⎫⎪⎪⎪⎬⎪⎪⎪⎭
We can confirm that thisV(comp[ds]) satisfies Definition 2 by using
( ◦) ∈ V →V(comp[ds]) such that t ∈ �t◦�. For example, take t =
dept[] , dept[]. We have (t , t)◦ = dept[es]+ = dept[es]+ , dept[
es]+ = t◦ , t◦.

We lastly give yet another form of tree automaton, which can be
efficiently converted into a non-deterministic tree automaton. This
automaton provides a trick which will be used at the last step of the
type inference algorithm as the model of inferred input XML types.
A short explanation of the automaton is that (1) it is a variant of
deterministic 2-way tree automaton; (2) it allows cyclic runs; and
(3) the transition function can look at a set of locations in the tree
bounded by the finite set Mov.

We first explain the transition function δ of the look-around tree
automaton. This δ takes as an argument, a set of information (the
state-label pair) for each node u·mi at the relative position mi in
Mov = {m1,m2, ...mn}, and returns the state for the node u.

u

label : *u·mi

state : µ(u·mi)

Mov = {m1, m2 , ... , mn}

mi

δ

state : µ(u)

For each node u, this set of information is given as a look-around
function, say h ∈Mov→ (L×Q)⊥ (= (L×Q)� {⊥}). This h takes
an argument m representing a relative position, and returns the pair
of the label of, and the state assigned to, the node u·m. If there is
no node at m i.e., u·m= ⊥, this h returns ⊥.

Definition 3. A look-around tree automaton is M = (Q,L,Mov,
δ,F) such that Mov ⊂ {0,1,2}∗ is a finite set of moves, δ ∈ (Mov→
(L×Q)⊥)→ Q is a transition function. A mapping µ ∈ U → Q is
called a run of M, if µ(u) = δ(h) for all u ∈ U, where the look-
around function h ∈Mov→ (L×Q)⊥ for this u, is defined from µ
as

h(m) = (∗u·m,µ(u·m)) if u·m ∈ U
h(m) = ⊥ otherwise
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Term(C,X) � e ::=
| c (c ∈C, constants)
| x (x ∈ X, variables)
| ee (application)
| if e then e else e (conditional)
| letrec f x := e; · · · in e (recursive def.)

Con(L) � c ::=
| true(B), false(B) (boolean constants)
| �(L) (� ∈ L, label constants)
| ( = )(L→L→B) (label equality)
| ()(o) (empty tree)
| ( [ ])(L→o→o) (node constructor)
| ( , )(o→o→o) (tree concatenation)

Figure 4. Definition of Term(C,X) and Con(L).

The automaton accepts u iff µ(u) ∈ F for some µ.

Example 5. A deterministic tree automaton uses a transition func-
tion δ ∈ L × Q × Q → Q instead of the transition relation ∆ ∈
L×Q×Q×Q of non-deterministic tree automaton. A deterministic
tree automaton (Q,L, δ,•,F) is an instance of look-around automa-
ton. For this, define the transition function δ′ of the look-around
automaton (Q, {ε,1,2},L, δ′,F), as

δ′(h) = δ(lab(h(ε)),st(h(1)),st(h(2)))

where lab(�,q) = �, st(�,q) = q and st(⊥) = •. Note here that we
always have h(ε) � ⊥ because h is computed for each u ∈ U,

Look-around tree automata can be efficiently converted into non-
deterministic tree automata. This is formalized by the following
proposition.

Proposition 1. Look-around tree automata accept exactly regular
tree languages. In particular, they can be efficiently converted into
non-deterministic tree automata.

Proof. GivenM = (Q,L,Mov, δ,F). Without loss of generality, we
assume that Mov is prefix-closed, i.e., m·m ∈Mov⇒ m∈Mov. We
create a non-deterministic tree automatonM′ = ((Mov→ (L×Q)�
⊥)� {•}(= Q′),L,∆,F′,•) which accepts the same language asM.
We define ∆ so that (�,h0,h1,h2) ∈ ∆ iff (i) h0(ε) = (�,δ(h0)), (ii)
h0(k) = ⊥ iff hk = •, (iii) hk(0) � ⊥ if hk � •, and (iv)

h0(m·k) = hk(m) (m·k ∈Mov)
hk(m·0) = h0(m) (m·0 ∈Mov)

where k = 1,2 and •(m) = ⊥ for all conditions (i-iv). We define
F′ = {h | st(h(ε)) ∈ F} where st(�,q) = q (always h(ε) � ⊥). Note
here that if µ′ ∈ U →Q′ is a run ofM′ then µ ∈ U →Q defined by
µ(u) = snd(µ′(u)(ε)) is a run ofM. If µ ∈U→Q is a run ofM then
define µ′ by µ′(u)(ε) = (∗u,µ(u)) and µ′(u)(m) = µ′(u·m)(ε).

High-level Tree Transducer We introduce the high-level tree
transducer as a model of XML transformation. Type checking for
XML transformations in high-level tree transducers is decidable.

Tree transducers are tree automata with outputs. Recall that tree
automata assign states to nodes. Another way to look at this is
that tree automata associates state-node pairs with boolean values.
That is, a state-node pair (q,u) is associated with the truth value

exactly when q is assigned to u. On the other hand, tree transducers
associate each such pair with an output value. For example, the
identity function id given earlier, can be seen as a very simple tree
transducer. This tree transducer has one state, say id, and for each
node u in the input tree, id is associated with an output tree identical
to the subtree of u.

High-level tree transducers provide an extension of tree transducers.
The distinction is that each evaluation step of the transducer creates
a functional value rather than a tree value. In this sense, high-level
tree transducers are closer to functional programs.

A rule of high-level tree transducer is of the form f : y� e where
f is a state, y is a sequence of parameter variables, and e is called
a term. Here is an example of the rule, which corresponds to a
function given in Section 2.

autom :(i→L→(L→L→L→L)→L) ini trans �
trans
(∗)〈ε〉
(if (|= 1)〈ε〉 then autom〈1〉 ini trans else ini)
(if (|= 2)〈ε〉 then autom〈2〉 ini trans else ini)

In this example, autom is a state, ini and trans are parameter vari-
ables, and trans( ... ini) is a term. As we can see from above, a
term is almost an expression of the functional language. Terms also
should be well-sorted, cf., the definition of sorts S(B) in Section 2.
The only difference is that sorts for terms do not have any occur-
rences of i. Parameter variables y are also the same as those in let
and letrec. They just abbreviate λ-abstractions, i.e., f : y� e is
equivalent to f : �λy : e or f : �let g y := e in g.

The meaning of autom〈1〉, (∗)〈ε〉, (|= 2)〈ε〉, etc. in terms are sup-
plied by looking into neighbor nodes. For example, the meaning of
autom〈m〉 is supplied by evaluating the state autom at relative posi-
tion m. Similarly, the meaning of (∗)〈m〉 is the label of the node at
relative position m. And, the meaning of (|= 2)〈m〉 is whether or not
|= 2 holds at relative position m. Recall that the meaning of the tree
transducer is given at each node u ∈ U. Therefore, when this node
u is supplied, such relative positions 1 and ε are interpreted by u·1
and u·ε = u, respectively.

We call an arbitrary set X whose each element is associated with a
sort, as sorted set,

• Figure 4 defines the sorted set Term(C,X) of terms over sorted
sets C and X of constants and variables, respectively. We re-
quire that each term to be well-sorted in the usual sense for
simple types.

• Figure 4 also defines a sorted set of basic constants Con(L)
over a set of labels L.

Let N be a set of states, C be a set of constants which may include
Con(L), and Mov ⊆ {0,1,2}∗ be a set of moves. We call (|= m) and
(∗) predicates, whose set is denoted by P. We define (N�P)〈Mov〉
to be a set of pairs in the form n〈m〉 such that n ∈ N � P and m ∈
Mov. Each term e appearing in the rule f : y� e, is an element of
Term(C, y� (N �P)〈Mov〉).
Let us define the high-level tree transducer. Note that our high-level
tree transducers are not exactly equivalent to transducers by Engel-
friet [EV88]. An essential difference is that our tree transducer is a
tree-walking transducer with upward moves inside the input tree us-
ing ( ·0)-operator. Also our transducer allows the recursive inspec-
tion of the input tree. For example, the function autom in Section 2
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cannot be captured by the Engelfriet’s definition of the deterministic
high-level tree transducer which is a top-down tree transducer. This
is comparable to the transducer with regular look-ahead [Eng77],
which in our case, is regular look-around.

In the following, for each sorted set X, we denote by X(s), a subpart
of X whose elements are associated with sort s.

Definition 4. A (look-around deterministic) high-level tree-trans-
ducerH over a finite set of labels L is a tupleH = (B,N,C,P,Var,
Mov, f

I
,R) where

• B is a set of base sorts. We have o,L,B ∈ B, but not i ∈ B. In
the following, all elements of sorted sets have sorts in S(B).

• N is a sorted set of states.

• C is a sorted set of constants. We have Con(L) ⊆C.

• P ⊆ {(|= m) | m ∈ {0,1,2}} � {(∗)} is a set of predicates. Predi-
cates (|= m) and (∗) are associated with sort B and L respec-
tively.

• Var is a sorted set of variables.

• Mov ⊆ {0,1,2}∗ is a finite set of moves.

• f
I
∈ N is an initial state.

• R is a finite set of rules in the form f : y� e.
– For each f ∈ N, we have exactly one rule in R.
– If f ∈ N(s1→ ·· · → sn) and y = y1, ...,yn−1, we have (i) y j ∈
Var(s j) for j ∈ 1..n−1, (ii) e ∈Term(C, y�(N�P)〈Mov〉)(sn).

We do not fix the set of base sorts B, so that we can add a new sort.
However we always require that such sorts are associated with finite
domains. See Figure 6.

Functional programs introduced and satisfying the restriction in
Section 2, can be translated into high-level tree transducers. Recall
that those programs are already in the similar shape to the trans-
ducer, i.e., functions of sort i→ s only occur at top-level letrec.
Therefore, the translation is straightforward. We here just give
ideas. See [Toz05] for the detailed steps.

Essentially, what we need is to remove the occurrence of expres-
sions of sort i, i→ i, and i→ s. Functional variables of sorts i→ s
defined in the top-level letrec correspond to the finite set of states
N. Their definitions are easily translated into rules of the tree trans-
ducer. However, variables of sort i→ s may also occur as parameter
variables, e.g., an argument of children(i→(i→o)→o). In this case, we
interpret such variables as variables of a new base sort N. We then
prepare a finite set of constants of sort N, which has one-to-one
correspondence to the state set N. We also prepare the equality
operator ( = )(N→N→B) over N.

As a result, we translate programs into transducers with base sorts
B = {o,L,B,N} and constants C = Con(L)�N � {( = )(N→N→B)}.
A program given in Figure 2 is translated into the high-level tree
transducer (B,N,C,P,Var,Mov, fI,R) in Figure 5.

Semantics of High-Level Tree Transducers In the original def-
inition by Engelfriet, the semantics of high-level tree transducers

B = {o,L,B,N}
N =

⎧⎪⎪⎨⎪⎪⎩
children(N→o),siblings(N→o),

root(N→o),dept(o),emp(o)

⎫⎪⎪⎬⎪⎪⎭�P,

P = {(|= 0), (|= 1), (|= 2), (∗)},
C = Con(L)�N �{( = )(N→N→B)}
Var = { f (N)},
Mov = {ε,0,1,2},
fI = dept

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

children :(N→o) f �
if (|= 1)〈ε〉 then siblings〈1〉 f else ()

siblings :(N→o) f �
(if f = dept then dept〈ε〉 else emp〈ε〉),
if (|= 2)〈ε〉 then siblings〈2〉 f else ()

root :(N→o) f �
if (|= 0)〈ε〉 then root〈0〉 f else
if f = dept then dept〈ε〉 else emp〈ε〉

dept :(o) �
if ∗〈ε〉 = emp then ()
else if ∗〈ε〉 = dept then dept[root〈ε〉 emp]
else ∗〈ε〉[children〈ε〉 dept]

emp :(o) �
if ∗〈ε〉 = emp then ∗〈ε〉[children〈ε〉 dept]
else children〈ε〉 emp

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Figure 5. A high-level tree transducer corresponding to the func-
tion dept in Figure 2

is given by means of the rewrite system, which corresponds to the
operational semantics. In this paper, we give a denotational seman-
tics. This gives a clear meaning to functional values emitted by the
high-level tree transducer.

In the denotational semantics, a transducer H has a meaning on
each node u in U, which is an assignment ρ ∈ (N � P)(· )→D�·�
such that each element in subset N(s) of states, as well as P(s) of
predicates, is associated with an element in D�s�. Here D�s� is
the cpo-based semantic domain given in Figure 6. In other words,
D�s� is the set of functional values of sort s. See the end of this
paragraph. The above meaning to each node is given by the follow-
ing function semH : U → (N �P)(· )→D�·�.

Definition 5. Given H = (B,N,C,P,Var,Mov, f
I
,R). The mean-

ing function semH : U → (N �P)(· )→D�·� is defined as the least
solution satisfying the following equations. For any f ∈ N such that
( f : y� e) ∈ R, and (∗), (|= m) ∈ P,

semH (u)(∗) = ∗u
semH (u)(|= m) = (u·m) ∈ U
semH (u)( f ) =D�λy : e�[n〈m〉 �→ semH (u·m)(n)]n∈N�P,m∈Mov

where D�e�ρ is a semantics of term e under ρ given in Figure 7,
in which λy : e abbreviates letrec g y := e in g. In particular,
for the root node u ∈ Λ(U), semH (u)( fI) defines the output of the
transducer.

The definition of D�e�ρ is the standard cpo semantics of simply-
typed call-by-value languages [Mit96].

Let us briefly recall this semantics. A cpo (X,�) is a poset whose
any directed subset has the lub. Starting from flat cpos D�b� for
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D�o� = V⊥
D�b� = b⊥ where b � o
D�s′ → s� = (D�s′�→⊥ D�s�)⊥

Figure 6. Semantic domains

D� � ∈ Term(C,X)(· )→ (X(· )→D�·�)→D�·�
D�x�ρ = ρ(x)
D�c�ρ = c
D�ee′�ρ = D�e�ρ(D�e′�ρ)

D�if e then e′ else e′′�ρ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D�e′�ρ ifD�e�ρ = true
D�e′′�ρ ifD�e�ρ = false
⊥ otherwise

D�letrec θ in e�ρ = D�e�lfp(ζθ,ρ)
where
ζθ,ρ′ (∈ (X(· )→D�·�)→ (X(· )→D�·�)) = λρ :
ρ′[ f �→ λv ∈D�s1, ..., sn−1� :D�e�ρ[x �→ v]]( f (s1→···→sn ) x:=e(sn ))∈θ

Figure 7. Semantics of terms in Term(C,X)

A�o� = V(τI)⊥
A�b� = D�b� where b � o
A�s′ → s� = (A�s′�→⊥ A�s�)⊥

Figure 8. Abstract semantic domain

base sorts, we can obtain cpos for function spaces D�s′ → s�. Par-
tial orders for functions are defined as f � g iff ∀x : f (x) � g(x). In
the case of call-by-value, we use a strict function space A⊥ →⊥ B⊥
(� A→ B⊥) such that f ∈ A⊥ →⊥ B⊥ satisfies f (⊥)=⊥, i.e., the ap-
plication of a function to an error value results in an error value, i.e.,
non-termination. In the cpo-based semantics, the meaning of recur-
sive functions is the least fixpoint of some equations. The above
semH is indeed such a least fixpoint.

4 Type Checking

So far, we have introduced three tools, namely

• Binoids with homomorphism ◦,
• Look-around tree automata, and

• Tree-transducer and its semantics.

Here we connect these tools and derive our type inference algo-
rithm. In particular, the key idea is the extension of the homomor-
phism ◦ for binoids to functional spacesD�s′ → s�.

As we discussed, a common technique to the tree transducer type
checking is based on the inverse type inference. In the case of
tree transducers or macro tree transducers (mtts), the inverse image
f−1
I (τI) is regular. The expressiveness of high-level tree transducers

is the same as k-composition of mtts [EV88], where k is the height
of sorts. Therefore the inverse image f−1

I (τI) should be a regular
language also for high-level tree transducers. However, as far as we
know, there is no direct construction algorithm of the inverse image
of high-level tree transducers. We give one such construction here.

Maneth [Man04] gave a simple algorithm for inferring regular in-
verse images for deterministic mtts. His idea was to run the au-

tomaton, representing τI, on the term e of the rule f : y� e. In his
case, this term defines a tree value, while in our case, it defines a
functional value. To interpret e in our case, we extend the homo-
morphism ◦ between the set of XML values V and the binoidV(τI).

Extending Homomorphism ◦ to Functional Space Given a
type τI, we can obtain a finite binoidV(τI) with the homomorphism
◦ from V to V(τI). This homomorphism is seen as an abstraction
function from infinite values to finite elements.

Here let us extend this definition of ◦ to domains D�s� where s is
other than o. We define the domain of images of ◦ as in Figure 8,
so that for v ∈ D�s� we have v◦ ∈ A�s�. Then, the idea is to define
◦ ∈ D�·�→A�·� so that it further satisfies

v◦(v′◦) = (v(v′))◦

for v ∈ D�s′ → s� and v′ ∈ D�s′�.
Example 6. We assume the binoid V(comp[ds]) in Example 4.
Let us consider gapped values of sort o → o. For example, p =
comp[dept[�]] (∈ D�o → o�). What we need here is to define
p◦ ∈ (V(comp[ds])⊥ →⊥ V(comp[ds])⊥)⊥ (=A�o→ o�) as a func-
tion.

p◦(a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
comp[ds] if a = emp[]+ or a = ()
τE otherwise, a � ⊥
⊥ a = ⊥

This function indeed satisfies p◦(v′◦) = (p(v′))◦ for v′ ∈ V. For ex-
ample, assume v′ = dept[]. We have p◦(v′◦) = p◦(dept[es]+) = τE,
and (p(v′))◦ = (comp[dept[dept[]]])◦ = τE.

Note that the homomorphic images A�s� of D�s� are finite sets.
The function ◦ gives a way to interpret each values as abstract val-
ues. Such abstract values are suitable for analysis, because they are
finitely enumerable.

Definition 6. The abstraction function ◦ ∈ D�·�→A�·� is a par-
tial function defined as follows. We use the induction of the size of
s in extending ◦ toD�s�→A�s�.
• v◦ = v (∈ A�b� ), if v ∈ D�b� for b ∈ B\ {o}.
• A value v ∈ D�s′ → s� is in the domain of ◦ written v ∈

Dom(◦), if for any v′ and v′′ (∈ Dom(◦)∩D�s′�) such that
v′◦ = v′′◦, this v satisfies (v(v′))◦ = (v(v′′))◦.

• For v ∈Dom(◦), we define v◦ (∈A�s′ → s�) to be the function
defined as v◦(v′◦) = (v(v′))◦.

The above definition, however, seems incomplete, since it just says
that we ignore values v � Dom(◦). That is, values do not satisfy the
desired property. What is more interesting is the following result.

Lemma 1. [Toz05] For any ◦, all outputs v (∈D�s�) of transducers
are in Dom(◦).

From this lemma, we can show that any output of transducers of sort
o→ B is a constant function. We take a singleton setV = {•} as the
homomorphic image of V . Then for any t, t′, we have t◦ = t′◦ = •,
so that f (t) = ( f (t))◦ = ( f (t′))◦ = f (t′). We belive that this is the
meaning of non-observability of output values of sort o.

Negative Inverse Type Inference The remaining steps of the
type inference algorithm are as follows.
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• Interpreting the meaning function semH by ◦, and obtain
sem◦H .

• Defining the look-around tree automatonM capturing sem◦H .
ThisM gives the result of type inference.

Accurately speaking, what the above M represents, is a negative
inverse image f−1

I (V \τI). This is fortunate. After we inferred such
an image, what we need is the emptiness check, known to be effi-
cient.

�υI�∩� f−1
I (V \τI)� = ∅

If this holds, the type checking succeeds. If M was f−1
I (τI), the

above emptiness check turns to the containment test, which is not
always efficient. We later explain why our construction creates an
automaton for such a negative image.

First, we interpret the semantic function semH by means of ◦ just
introduced. Indeed, this can be done. This gives a function sem◦H
(∈ U → (N � P)(· )→A�·�) which satisfies, for all u ∈ U and n ∈
N �P

(semH (u)(n))◦ = sem◦H (u)(n)

cf., Lemma 2(a). The definition of sem◦H in Figure 9 is exactly the
copy of Definition 5 while it uses operators onV(τI).

What remains is to define the look-around automaton that captures
this sem◦H . The resulting automaton is given in Figure 10. This
automaton has its state set Q = (N�P)(· )→A�·�. This set Q clas-
sifies the nodes of the input XML tree according to the (abstract)
output value of the transducer at its each state. A run of M gives
one such classification of nodes in the input XML tree. Now, recall
that the same information was given by sem◦H , which defines the ab-
stract semantics of the transducer for each state-node pair. Indeed,
this automaton captures sem◦H in the sense that sem◦H is always a
run ofM. Confirm that the run of automaton µ ∈U→Q and sem◦H
(∈U→ (N�P)(· )→A�·�) has the same signature. Also notice the
similarity between the transition function δ ofM and the definition
of sem◦H . This δ is defined so that it simulates sem◦H .

As readers may expect, thisM exactly defines the negative inverse
image we want.

Lemma 2. [Toz05] (a) For all u ∈ U and n ∈ N � P, we have
(semH (u)(n))◦ = sem◦H (u)(n). (b) sem◦H is the least run ofM. (c)
The automatonM in Definition 8 accepts u iff semH (u)( fI) � �τI�.

The detailed proof is omitted here. Here we just note why we need
to infer the negative inverse image. This is related to our treatment
of non-termination as error, cf., Section 2.

In Definition 8, we define the final states F of M negatively, i.e.,
acceptance means type error. Note that if the program is correct,
i.e., semH (u)( fI) ∈ �τI�, then sem◦H should also give the correct re-
sult in �τI�◦. From the above lemma (b), if sem◦H gives the correct
result, i.e., is a non-accepting run ofM, then “any run” is also non
accepting. This shows the only-if direction of Lemma (c) (the other
direction is easy).

Now, assume that we include ⊥ (non-termination) to the correct
result. In this case, we cannot say more than “some run is correct”
from the fact that sem◦H gives the correct result. In fact, in this case,
we must have defined the set of final states ofM positively.

Definition 7. The abstract meaning function sem◦H : U → (N �
P)(· )→A�·� is the least solution of the following equations. For
any f ∈ N such that ( f : y� e) ∈ R, and (∗), (|= m) ∈ P,

sem◦H (u)(∗) = ∗u
sem◦H (u)(|= m) = (u·m) ∈ U
sem◦H (u)( f ) =A�λy : e�[n〈m〉 �→ sem◦H (u·m)(n)]n∈N�P,m∈Mov

whereA�e�ρ is an abstract semantics of term e under ρ given simi-
larly to Figure 7, except that it uses operators on abstract semantic
domains.

Figure 9. The abstract meaning function sem◦H

Definition 8. Given a transducer H , and a binoid V(τI), we de-
fine a look-around automatonM = (Q,L,Mov, δ,F) as follows.
• Mov,L are the same asH ,
• Q = (N �P)(· )→A�·�,
• δ ∈ (Mov→ (L×Q)⊥)→Q is defined as
δ(h)(|= m) = (h(m) � ⊥)
δ(h)(∗) = lab(h(ε))
δ(h)( f ) =A�λy : e�[n〈m〉 �→ st(h(m))(n)]n∈N�P,m∈Mov

for all f : y� e ∈ R
where lab(�,q) = �, st(�,q) = q and lab(⊥) = st(⊥) = ⊥.

• F = {ρ ∈ Q | ρ( fI) � �τI�◦}.
Figure 10. The definition of the inferred automatonM

Running Example We apply the algorithm explained so far to
a small example. We use the following type checking problem id :
υI→ τI. Let L = {a,b}.
• The function id is translated into the following transducerH =

(B,N,C,P,Var,Mov, f
I
,R) with one rule

id(N→o) : �
((∗)〈ε〉[if (|= 1)〈ε〉 then id〈1〉 else ()),
if (|= 2)〈ε〉 then id〈2〉 else ()

We have N = {id}, P = {(∗), (|= 1), (|= 2)}, Mov = {ε,1,2} and
f
I
= id.

• υI = b[a[]], and

• τI = letrec α := a[α]∗ in α.

We haveV(τI) = {(),a[α]+, τE}.
For this problem, we compute the look-around automaton in Defi-
nition 8 whose transition function δ is shown below. The state set Q
ofM is a set of mappings (N�P)(· )→A�·�, so that the transition
function δ ∈ ({ε,1,2}→ (L×Q)⊥)→Q, given h ∈ {ε,1,2}→ (L×Q)⊥
again returns functions.

δ(h)(|= 1) = (h(1) � ⊥)
δ(h)(|= 2) = (h(2) � ⊥)
δ(h)(∗) = lab(h(ε))
δ(h)(id) ={
a[α]+ st(h(ε))(∗) = a and st(h(k))(id) ∈ {⊥, (),a[α]+} (k = 1,2)
τE otherwise

We can convert this automaton M to a non-deterministic tree au-
tomaton using the construction in Proposition 1. We here instead
just test the input type υI usingM.
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In this case, since υI just defines a single tree with two nodes, the
type checking problem amounts to check whether or notM accepts
the tree b[a[]] with two nodes, u0 = (b[a[]], ε) and u1 = (b[a[]],1).
In this example, we only have one run µ shown below.

µ(u0)(|= 1) = true
µ(u0)(|= 2) = false
µ(u0)(∗) = b
µ(u0)(id) = τE

µ(u1)(|= 1) = false
µ(u1)(|= 2) = false
µ(u1)(∗) = a
µ(u1)(id) = a[α]+

Now we can see that µ(u0)(id) � �τI�◦. So this run is an accepting
run of M. Thus the type checking id : υI → τI in this case is not
successful.

5 Related Work

Milo et al. [MSV00] first propose a solution, based on inverse
type inference, to the type checking for XML programming mod-
eled by tree transducers. Milo et al. solve this problem for k-
pebble transducers. The k-pebble transducers are in theory k+ 1-
fold composition of mtts [Man04], and it is comparable to high-
level tree transducers, which is also represented by k-composition
of mtts where k is the height of sorts [EV88]. Similar ap-
proaches have been studied for different kinds of tree transducers
[Toz01][AMN+01][MN02][MBPS05].

XDuce is a pioneering work [HVP00, HP03] on typed functional
XML programming, which employs type checking with type-
annotation. XDuce is a first order language. Its approach has
also been employed in a number of typed XML processing lan-
guages, including an industrial language such as XQuery. Frisch
et al. [FCB02] extended tree regular expression types in XDuce to
higher order functional types. Their language is called CDuce.

XDuce and CDuce require type annotations. In general, they cannot
solve the type checking problem such as id : a[b[]]→ a[b[]] as it is,
by the following reasons.

• When using XDuce, we can annotate id only by trivial types,
e.g., Any→ Any. For example, when we type-check id against
a[b[]]→ a[b[]], we have to check id also against b[]→ b[].
This is not possible in XDuce which associates a single arrow
type with each recursive function.

• CDuce has intersection types. By giving a type annotation
a[b[]]→ a[b[]]∩b[]→ b[], the function id passes the type
check. It is even possible to prove that id : a[b[]]→ a[b[]]
holds. This is based on their subtyping algorithm.

a[b[]]→ a[b[]]∩b[]→ b[]<:a[b[]]→ a[b[]]
However this process is still not automatic. Users need to
figure out what type annotation is necessary in beforehand.

6 Future Work

As a concluding remark, we note several future directions of this
work.

• Practical use with XML programming

We implemented a prototype type-checker, and tried several
experiments. Our implementation works well for simple pro-
grams using small sorts, such as i → o. Unfortunately, for
programs with larger sorts, the initial result was not promis-
ing. This reflects the time complexity of the algorithm, which
is k-exponential to the height of sorts. However, in practical

programming, it is not so usual to use functions whose order
is more than second. So it is too early to conclude that the ap-
proach is infeasible. Our implementation naively implements
the enumeration of states of automataM in Section 4. We are
currently seeking a different algorithm for the practical use,
i.e., in XML programming languages.

• Connection to the type theory

Type-checking is the central issue of functional programming.
There are many approaches to type-check programs based on
type systems. However, as far as we know, there are no such
type systems which capture the tree transducer type checking
as shown here. In particular, the restrictions as we gave in
Section 2, do not seem to be natural assumptions in the study
of type systems. We are seeking their meaning.
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Streams are an emerging technology for data dissemination in cases
where the data throughput or size make it unfeasible to rely on the
conventional approach based on storing the data before processing
it. Querying XML streams without storing and without decreasing
considerably the data throughput is especially challenging because
XML streams can convey tree structured data with unbounded size
and depth. We demonstrate a novel compile-time optimization of
SPEX [1], an XML stream query processor with polynomial com-
bined complexity. This optimization is achieved by stream filters
that exploit the structural relationships between XML fragments en-
countered along the stream at various processing states in order to
skip large stream fragments irrelevant to the query answer. The effi-
ciency of optimized SPEX is positively confirmed by experiments.

Querying XML Streams with SPEX. SPEX compiles XPath
queries into networks of deterministic transducers, after rewriting
them to forward equivalents. A network for a given forward query
consists of two connected parts. The upper part has the shape of the
query, i.e., it is a sequence if the query is a simple path, a tree if
the query has predicates, and a directed acyclic graph, if the query
has set operators. Each step in the query induces a corresponding
transducer, and each predicate induces a begin-scope transducer in
the network. The upper part is extended with a stream-delivering
in transducer at its beginning, and with an answer transducer af-
ter the transducer corresponding to the last step outside the query
predicates. The lower part is an answer-collecting funnel, i.e., a
subnetwork of auxiliary transducers serving to collect the potential
answers. This funnel mirrors in in out transducers, and begin-scope
in end-scope transducers while preserving their nesting.

Processing an XML stream corresponds to a depth-first, left-to-
right, preorder traversal of its (implicit) tree. Exploiting the affinity
between preorder traversal and stack management, the transducers
use their stacks for remembering the depth of the nodes in the tree.
Thisway, binary relations expressed as axes, e.g., child and descen-
dant, can be computed in a single pass. The transducer network pro-
cesses the stream annotated by its first transducer in, and generates
progressively the output stream conveying the answers to the orig-
inal query. The other transducers in the network process stepwise
the received annotated stream and send it with changed annotations
to their successor transducers. E.g., a transducer child moves the
annotation of each node to all children of that node. The answers
computed by a transducer network are among the nodes annotated
by the answer transducer. These nodes are potential answers, as
they may depend on a downstream satisfaction of predicates. The
information on predicate satisfaction is conveyed by annotations to
the stream. Until the predicate satisfaction is decided, the potential
answers are buffered by the out transducer.

Structural Filters. We exemplify structural filters on a (DBLP-
like) stream containing information about articles possibly followed
only at the very end of the stream by information about books. Con-
sider the SPEX network for a query asking for authors of books
with given prices and publishers. In case the transducer instructed
to find books-nodes, say the books-transducer, encounters such a
node, then it sends it further to its successors, with an additional
non-empty annotation signaling amatch. In case it encounters other
nodes, e.g., article-nodes, then it still sends it further, but with an
empty annotation, signaling a non-match. Either way, all nodes
from the stream reach all transducers from the network, although
this is not necessary. We can reduce the stream traffic between
transducers in (at least) two ways.

1. Because all transducers following the books-transducer in the
network look always for nodes in the stream following the books-
nodes, the query evaluation is not altered, if the books-transducer
sends further only the nodes starting with the first books-node and
ending together with the stream, and the other transducers do the
same for the nodes they are instructed to find relative to nodes found
by their previous transducers.

2. Assume the transducers receiving (directly or indirectly) nodes
from the books-transducer look for nodes to be found only in-
side the fragments corresponding to books-nodes (like their descen-
dants, or siblings of their descendants). Then, the books-transducer
can safely send further only such stream fragments corresponding
to books-nodes.

Both aforementioned approaches to stream traffic minimization can
be easily supported by SPEX extended with special-purpose push-
down transducers, called structural filters. For example, in the sec-
ond case above, a vertical filter, placed immediately after the books-
transducer, sends further only stream fragments corresponding to
books-nodes. Also, in the first case above, this filter can be a di-
agonal filter and send further only stream fragments starting with
an opening tag books. Diagonal filters are not always superseded
by vertical filters, as for the above examples. It is enough to con-
sider a slightly modified example, where the query asks for Web
links following books, thus a following-transducer gets the stream
processed by the books-transducer. Furthermore, if the query con-
strains the Web links to appear at the same depth with books in the
tree conveyed by the stream, then the filter, here a horizontal one,
would send further only the stream fragments corresponding to the
following siblings of the books-nodes.
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An XQuery-based imperative XML
programming language with a

database optimizer
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XML data programming will become an
increasing important problem of the
years to come. The currently proposed
solutions fall in one of the two major
categories: extensions of existing major
programming languages with native
XML type and native processing
capabilities (e.g. Xlinq) or extensions of
existing XML processing languages like
XQuery (e.g. XL). The language we
propose (temporarily called XScript) is
another variant of an XML scripting
language based on XQuery.

Two major avenues were investigated in
the past to extend XQuery to a full
programming language. The first
approach added the notion of statements
to XQuery, and duplicating the iterators
(FLWOR expressions) and conditionals
both as expression constructors as well
as statement constructors. The second
approach is a pure compositional
approach: the side-effect operators
become normal expressions, and are
composed with the rest of the language.

We investigate here a third stylistic
approach. We added the notion of
statements to XQuery and kept the
expressions side-effect free. Statements
include update operations, variable
assignments and error handling. They
also include the iteration and
conditionals. However, the iteration and
conditions are eliminated the expression
part of the language. The main goal in
the design of this particular approach is
simplicity and ease of use for a large
number of developers who might not be
familiar or comfortable with a

declarative XQuery s ty le of
programming. The demo will show that
despite of the fact that the expression
part of the language is less rich then
XQuery the language has the same
oppor tun i t i e s fo r in te l l igen t
optimizations, provided that one admit to
pay the price of a more complex
optimizer.

The demo will show the compiler of
such a language, and its virtual machine,
and will exemplify the optimization
opportunities on a couple of application
programs. The virtual machine is
common to all three languages: XSLT
2.0, XQuery and XScript and uses
extensively Oracle’s XML infrastructure
(e.g. parsers, type system, runtime). The
compiler uses extensive data flow
analysis to recover from the imperative
style of programming the opportunities
for rewriting and optimization traditional
in declarative languages. Due to this
type of optimization Xscript programs
can effectively scale to manipulate large
volumes of data, similar to the way
databases scale to process large amounts
of data.

We will show four different execution
scenarios for XScript programs:

(a) standalone execution in the
middle-tier

(b) standalone execution in the
database server

(c) execution in the middle tier
with query shipping to the
database server

(d) execution in the database
server exploiting the exiting
relational optimizer and
runtime

The goal of this work is to create a
bridge between the imperative style of
programming, natural to programmers,
and the performance advantages of a
declarative compiler and optimizer,
hence obtaining the best of both worlds.
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Xcerpt [2] and visXcerpt [1], cf. http://xcerpt.org/, are Web
query languages related to each other in an unusual way: Xcerpt
is a textual query language, visXcerpt is a visual query language
obtained by rendering Xcerpt query programs. Furthermore, Xcerpt
and visXcerpt, short (vis)Xcerpt, have been conceived for querying
both standard Web data such as XML and HTML and Semantic
Web data such as RDF and Topic Maps.

This paper describes a demonstration focusing on three aspects of
(vis)Xcerpt. First its core features, especially the pattern-oriented
queries and answer-constructors, its rules or views, and its spe-
cific language constructs for incomplete specifications. Incomplete
specifications are essential for retrieving semi-structured data. Sec-
ond, the integrated querying of standard Web and Semantic Web
data to ease the accessing of the two kinds of data in a same query
program. Third, the complementary and integrated nature of the
two languages.

Setting of the Demonstration. In the demonstration, proto-
types of both, the textual query language Xcerpt and its visual ren-
dering visXcerpt are demonstrated in parallel on the same exam-
ples. Both prototypes rely on the same run time system for eval-
uating queries, but differ in rendering: visXcerpt provides a two-
dimensional rendering of textual Xcerpt programs implemented us-
ing mostly HTML and CSS. Additionally, the visual prototype pro-
vides an interactive environment for editing visXcerpt queries, as
well as for data, query, and answer browsing.

Excerpts from DBLP1, and from a computer science taxonomy
form the base for the scenario considered in the demonstration.
DBLP is a collection of bibliographic entries for articles, books,
etc. in the field of Computer Science. DBLP data are represen-
tatives for standard Web data using a mixture of rather regular
XML content combined with free form, HTML-like information.
A small Computer Science taxonomy has been built for the pur-
pose of this demonstration. Very much in the spirit of SKOS [3],
this is a lightweight ontology based on RDF and RDFS. Combin-
ing such an ontology as metadata with the XML data of DBLP is
a foundation for applications such as community based classifica-
tion and analysis of bibliographic information using interrelations
between researchers and research fields. Realizing such applica-
tions is eased by using the integrated Web and semantic Web query
language (vis)Xcerpt that also allows reasoning using rules.

Technical Content of the Demonstration. The use of query and
construction patterns in (vis)Xcerpt is presented, both for binding
variables in query terms and for reassembling the variables in so-
called construct terms. The variable binding paradigm is that of
Datalog, i.e. the programmer specifies patterns (or terms) includ-
ing variables. Special interactive behavior of variables in visXcerpt
highlights the relation between variables in query and construct
terms. Arguably, pattern based querying and constructing together

1http://www.informatik.uni-trier.de/˜ley/db/

This research has been funded by the European Commission and by the Swiss Fed-
eral Office for Education and Science within the 6th Framework Programme project
REWERSE number 506779 (cf. http://www.rewerse.net/).

with the variable binding paradigm make complex queries easier to
specify and read. This is demonstrated by online query authoring
and refactoring.

To cope with the semistructured nature of Web data, (vis)Xcerpt
query patterns use a notion of incomplete term specifications with
optional or unordered content specification. This feature distin-
guishes (vis)Xcerpt from query languages like Datalog and query
interfaces like “Query By Example” [4]. Simple, yet powerful tex-
tual and visual constructs of incompleteness are presented in the
demonstration.

An important characteristic of (vis)Xcerpt is its rule-based nature:
(vis)Xcerpt provides rules very similar to SQL views. Arguably,
rules or views are convenient for a logical structuring of complex
queries. Thus, in specifying a complex query, it might ease the pro-
gramming and improve the program readability to specify (abstract)
rules as intermediate steps—very much like procedures in conven-
tional programming. Another aspect of rules is the ability, to solve
simple reasoning tasks. Both aspects of rules are needed for the
demonstration scenario.

Referential transparency and answer closedness are essential prop-
erties of Xcerpt and visXcerpt, surfacing in various parts of the
demonstration. They are two precisely defined traits of the rather
vague notion of “declarativity”. Referential transparency means
that within a definition scope, all occurrences of an expression have
the same value, i.e., denote the same data. Answer-closedness
means that replacing a sub-query in a compound query by a pos-
sible single answer always yields a syntactically valid query. Ref-
erentially transparent and answer-closed programs are easy to un-
derstand (and therefore easy to develop and to maintain), as the
unavoidable shift in syntax from the data sought for to the query
specifying this data is minimized.

A novelty of the visual language visXcerpt is how it has been de-
rived from the textual language: as a rendering without changing
the language constructs and the runtime system for query evalu-
ation. This rendering is mainly achieved via CSS styling of the
constructs of the textual language Xcerpt. The authors believe that
this approach to twin textual and visual languages is promising, as
it makes those languages easy to learn—and easy to develop. The
first advantages is highlighted in the demonstration by presenting
both languages side-by-side.
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1 Introduction

XML has emerged as the de facto standard for data
interchange. One reason for its popularity is that it
defines a standard mechanism for structuring data as
ordered, labeled trees. The utility of XML as an ap-
plication integration mechanism is enhanced when in-
teracting applications agree on the structure and vo-
cabulary of labels of the XML data interchanged. This
requirement has led to the development of the XML
Schemastandard — an XML Schema specifies a set of
XML documents whose vocabulary and structure sat-
isfy constraints in the XML Schema.

Despite the increased importance of XML, the avail-
able facilities for processing XML in current program-
ming languages are primitive. Programmers often use
runtime APIs such as DOM [6], which builds an in-
memory tree from an XML document, or SAX [5],
where an XML document parser raises events that are
handled by an application. None of the benefits as-
sociated with high-level programming languages, such
as static type checking of operations on XML data are
available. The responsibility of ensuring that opera-
tions on XML data respect the XML Schema associ-
ated with it falls entirely on the programmer.

The alternative approach to using standard inter-
faces to process XML data is to embed support for
XML within the programming language. Support for
query languages such as XPath in the programming
language provides a natural, succinct and flexible con-
struct for accessing XML data. Extending current pro-
gramming languages with awareness of XML, XML
Schema, and XPath through a careful integration of
the XML Schema type system and XPath expression
syntax can simplify programming and enables useful
services such as static type checking and compiler op-
timizations.

The subject of this demonstration is XJ, a research
language that integrates XML as a first-class construct
into Java. The design goals of XJ distinguish it from
other projects that integrate XML into programming
languages. The goal of introducing XML as a type into
an object-oriented imperative language is not new —
Cω [1], Xtatic [3], Xact [4] have studied the integra-
tion of XML into C� and Java. What sets XJ apart

from these and other languages is its consistency with
XML standards such as XML Schema and XPath, and
its support for in-place updates of XML data, thereby
keeping with the imperative nature of general-purpose
languages like Java.

2 Demonstration Overview

This demonstration will introduce XJ and its language
features using an Eclipse-integrated development en-
vironment [2], and demonstrate how the XJ compiler
converts XJ code into Java code that uses DOM[6] to
perform accesses to XML data. We will also discuss
optimizations, such as common sub-expression elim-
inations, which are applicable broadly to any XML
processing language, including XQuery.
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XML Support In Visual Basic 9
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XML Programming Using DOM

Programming against XML using the DOM API today is a bitch. The
accidental complexity of working with the DOM is so high that many
programmers are giving up on using XML altogether, cursing the
hype that XML makes dealing with data simple, which no one who
has actually written DOM code could claim. The W3C DOM was
not designed with ease of programming in mind, but rather evolved
as a design by committee from the existing DHTML object model
originally created by Netscape.

The DOM implementation as surfaced in the .NET frameworks as
the System.Xml.XmlDocument API is extremely imperative, irreg-
ular, and complex. Nodes are not first class citizens and have to
be created and exist in the context of a given document. The ac-
cess patterns for attributes and elements are gratuitously different,
and the handling of namespaces is confusing at best. Finally even
pretty-printing an XML document takes several lines of arcane and
complex code since the .ToString() method is not properly over-
ridden.

XML Programming Using XLinq

To adress the complexity of working with XML, we designed XLinq,
a new modern lightweight XML API that is designed from the ground
up with simplicity and ease of programming in mind. Moreover
Xlinq integrates smoothly with the language integrated queries of
the LINQ framework. The XLinq object model contains a handful of
types. The abstract class XNode is the base for element nodes; the
abstract class XContainer is the base for element nodes that have
children. The XElement class represents proper XML elements,
and the XAttribute class represents attributes and is stand-alone;
it does not derive from XNode. The XName class represents fully
expanded XML names.

In XLinq nodes are truly first class citizens that can be passed
around freely independent of an enclosing document context.
Nested elements are constructed in an expression-oriented fashion,
but XLinq also supports imperative updates in case programmers
need them. Elements and attributes are accessed uniformly using
familiar XPath axis-style methods, while namespace handling is sim-
plified using the notion of universal names throughout the API. Last
but not least, .ToString() actually works, so it is trivial to pretty
print XML documents using a single method call.

∗Erik.Meijer@microsoft.com
†Brian.Beckman@microsoft.com

XML Programming Using VB

On top of the base XLinq API, Visual Basic adds XML literals with full
namespace support, and late bound axis member for attribute, child,
and descendant access. Programming against XML now actually is
easy, as it was originally intended.

With XML literals, we can directly embed XML fragments in a Vi-
sual Basic program. Inside XML literals we can leave holes for at-
tributes, attribute names, or attribute values, for element names by
using (expression), or for child elements using the ASP.Net style
syntax <%= expression %>, or <% statement %> for blocks. The
Visual Basic compiler takes XML literals and translates them into
constructor calls of to the underlying XLinq API. As a result, XML
produced by Visual Basic can be freely passed to any other compo-
nent that accepts XLinq values, and similarly, Visual Basic code can
accept XLinq XML produced by external components.

Visual Basic’s XML literals also simplify handling of namespaces.
We support normal namespace declarations, default namespace
declarations, and no namespace declarations, as well as qualified
names for elements and attributes. The compiler generates the cor-
rect XLinq calls to ensure that prefixes are preserved when the XML
is serialized.

Whereas XML literals make constructing XML easy in Visual Ba-
sic, the concept of axis members makes accessing XML easy. The
essence of the idea is to delay the binding of identifiers to actual
XML attributes and elements until run time. When the compiler
cannot find a binding for a variable, it emits code to call a helper
function at run time. This tactic will be familiar to many under the
rubric “late binding”, and, indeed, it is a form of ordinary Visual Ba-
sic late binding. But it has the advantage that the names of element
tags and attributes can be used directly in Visual Basic code with-
out quoting. As such, it relieves the programmer of the significant
cognitive burden of switching between object space and XML-data
space. The programmer can treat the spaces the same: as hierar-
chies accessed through “.”.

More Information

More information on LINQ, XLinq and Visual Basic 9 can be found on
http://msdn.microsoft.com/netframework/future/linq/
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Introduction
XACT is a framework for programming XML transformations in
Java. Among the key features of this approach are

• a notion of immutable XML templates for manipulating XML
fragments, using XPath for navigation; and

• static guarantees of validity of the generated XML data based
on data-flow analysis of XACT programs using a lattice struc-
ture of summary graphs.

An early version of the language design and the program analy-
sis is described in [3]. In [1], we present an efficient runtime rep-
resentation. The paper [2] shows how the analysis technique can
be extended to support XML Schema as type formalism and per-
mit optional type annotations for improving modularity of the type
checking.

Demonstration
We demonstrate the capabilities of XACT by stepping through an
example, showing how the program analyzer works “under the
hood”. This involves

1. desugaring special syntactic constructs to Java code;

2. construction of summary graphs from XML templates and
schemas;

3. data-flow analysis (based on Soot), including transfer func-
tions for XML operations; and

4. validation of summary graphs.

Specifically, we focus on the novel features: the support for
XML Schema and optional type annotations.
Schemas are converted, without loss of precision (ignoring keys

and references), to a convenient subset of RELAX NG, and then
further to summary graphs, which are then used in the data-flow
analysis. When this analysis reaches a fixed point (which represents
a conservative approximation of the XML values that may appear
at runtime), the resulting summary graphs are validated relative to
the schema annotations.
By allowing type annotations, XACT permits a modular valid-

ity analysis where components can be analyzed individually. At
the same time, type annotations are optional – they can be omit-
ted for intermediate results that do not conform to named schema
constructs, thereby supporting a flexible style of programming.

Implementation
Our implementation of the XACT analyzer and runtime system is
available at

http://www.brics.dk/Xact/
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XTATIC integrates with a mainstream object-oriented language, C�,
the key features of statically typed XML processing previously de-
veloped in XDUCE, a domain-specific XML processing language.
These features include XML trees as built-in values, a type system
based on regular types (closely related to schema languages such as
DTD and their successors) for static typechecking of computations
involving XML, and a powerful form of pattern matching called
regular patterns.

By being an extension of C�, XTATIC receives, for free, abstraction,
modularization, and control flow mechanisms of an established pro-
gramming language, as well as access to its extensive libraries. The
extension made by XTATIC to the core of C� is minimal: it consists
of enriching the universe of C� values and types by constructs for
trees and sequences that generalize those of XDUCE, and adding
the pattern matching primitive for their processing. The key obser-
vation for the integration is that the semantics of trees in XDUCE
easily generalizes to permit using, in place of XML tags, other kinds
of values and types as tree labels—for example, objects and classes
of C�. Then the integration of trees with the object-oriented data
model of C� is accomplished by grafting the subtyping relation of
the so generalized XDUCE regular types into the C� class hierar-
chy under a special class Xtatic.Seq, therefore making all regular
types be subtypes of seq. This allows trees and sequences to be
passed to generic library facilities such as collection classes, stored
in fields of objects, etc. Finally, this general extension encodes
XML by trees that use objects from a special class Xtatic.Tag
as tree labels. This approach is similar to the way arrays—which,
like trees, are a form of structural types—are integrated in C� as
subtypes of the special class System.Array.

Subtyping in XTATIC subsumes both the declarative object-oriented
subclass relation and the richer extensionally defined subtyping re-
lation of regular types: It turns out that the traditional definition
of subclassing can be reformulated—without changing the relation
itself—to mimic the XDUCE’s definition of subtyping as inclusion
between sets of values inhabiting the types. Likewise, XTATIC’s
pattern matching incorporates a natural form of type-based pattern
matching on objects. This provides a safe alternative to casts as a
mechanism for determination of an object’s run-time type.

XTATIC does not support any form of destructive update of the se-
quence and tree structure of existing values. Instead, the language
promotes a declarative style of processing, in which values and
subtrees are extracted from existing trees and used to construct en-
tirely new trees. This approach agrees with the treatment of trees in
XSLT and XQUERY, and has a precedent in C� provided by strings,

∗ Currently at Microsoft.
† Currently at INRIA Rhône-Alpes.

which are also decomposable, but immutable, values.

Due to the lightweight extension approach to the design of XTATIC,
the feel of XML programming in the resulting language fits be-
tween programming with XML APIs and programming in high-
level XML-specific languages. On one hand, XTATIC offers—as
the high-level languages do—native and concise XML processing
primitives and types instead of untyped low-level API manipula-
tions. On the other hand, these primitives are used within the
control flow and abstractions framework of an object-oriented lan-
guage, which is more familiar to the majority of programmers than
the more esoteric frameworks of XSLT and XQUERY. Psycho-
logical and educational considerations aside, this poses XTATIC as
an attractive alternative to API-based programming in applications
where efficiency is of immediate concern. Currently, such projects
tend to avoid using XSLT, XQUERY, or even XPATH, due to un-
certainty over presence of optimization for high-level control flows
in a given implementation of these languages, as well as lack of
control over decisions of the optimizer. This control (indeed, full
responsibility for implementing the high-level control flow) is in
the hands of an XTATIC programmer to the same degree as for an
API programmer.

These benefits are shared by XTATIC with other current propos-
als for integrating XML processing into object-oriented languages,
e.g., XOBE, XJ, XACT, and Cω. XTATIC differs from these in other
respects: more flexible integration of trees into the object-oriented
data model and use of regular patterns, rather than paths, as the
main XML inspection mechanism. Used in conjunction with reg-
ular types, patterns support the full spectrum of processing styles,
from dynamic investigation of documents of unknown or partially
known types to fully checked processing of documents for which
complete type information is known—all without changing the un-
derlying data representation.

XTATIC is implemented as a translator into pure C� code, which
can be compiled into .NET CLR and executed in conjunction with
a small library that implements tree sequences and elementary op-
erations on them.
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Context. Over the last few years, the programming language re-
search community has identified issues raised by the support of
XML documents in applications and has proposed new linguistic
features to deal with them. The work by Hosoya, Pierce and Vouil-
lon on the XDuce project has had a big influence. Amongst its main
contributions are the design of regular expression types (to express
structural constraints on documents) and regular expression pat-
terns (to express complex information extraction from documents)
which together contribute to a sound and expressive language for
developping XML-oriented applications such as transformations.

XDuce encouraged the vision of XML manipulation as a value-
based process in the spirit of functional languages. As a matter a
fact, XDuce has striking similarities with the family of ML lan-
guages. Since XDuce and ML languages are good for different but
related kind of problems and because of their apparent similarity, it
is natural to try to combine them.

However, despite the similarity, XDuce is missing important fea-
tures from ML languages such as first-class functions, polymor-
phism, automatic type reconstruction, and support for programming
in the large. There are two natural responses to address this lack of
features: either extend XDuce underlying theory to deal with them,
or integrate XDuce features in an existing full-blown ML language.
Examples of the former include existing extensions of XDuce with
first-class functions or with parametric polymorphism. However,
it is not clear how these extensions could be combined, and a lot
of work is still necessary to integrate other missing features. Also,
it seems pointless to design and implement a full-blown language
only to add support for XML. The idea of integrating XDuce fea-
tures into an existing full-blown general-purpose language has been
explored for instance in the Xtatic project, which adds XDuce types
and patterns into the C# programming language. The part of Xtatic
programs that deals with XML inherits the functional flavor from
XDuce. This might indicate that a functional language could be a
very good target for integrating XDuce.

OCamlDuce. OCamlDuce is an experimental merger between the
Objective Caml (OCaml) and CDuce languages. The language was
designed so as to make it easier to develop possibly large applica-
tions which need to deal with XML document without necessarily
being focused primarily on XML (unlike, say, pure XML-to-XML
transformation). Typical use cases would be to add support for cus-
tom XML configuration files, for XHTML report generators, or for
web-service interfaces, . . . to an existing OCaml application.

OCaml is a powerful general-purpose multi-paradigm/functional-
oriented programming language from the ML family with a robust,
efficient and popular implementation. CDuce is a small program-

ming language adapted to the development of safe and efficient
XML-oriented applications. CDuce supports XML literals, Uni-
code, XML Namespaces, XML types, XML pattern matching to-
gether with a precise type inference and an efficient automata-based
and type-driven compilation strategy, XML iterators. Part of the
theory behind CDuce relies on the one developped in the XDuce
project.

From the programmer point of view, OCamlDuce comes as drop-
in replacements for the OCaml tools: bytecode and native compil-
ers, toplevel. All OCaml features are available, and it is possible to
reuse standard and third-party OCaml libraries without even recom-
piling them. OCamlDuce also integrates all of the features from
CDuce except overloaded functions. It is thus mostly straightfor-
ward to translate CDuce programs to OCamlDuce.

Integrating OCaml and CDuce. OCamlDuce has been imple-
mented by merging together the OCaml and CDuce source trees
and adding a relatively small piece of glue code. The only tech-
nically challenging part of the OCaml / CDuce integration was the
combination of two radically different type systems: OCaml relies
on Hindley-Milner-like type inference, and CDuce relies on for-
ward propagation and on tree-automata techniques. The theoretical
foundation of the type system is described in a paper to be presented
in PLAN-X 2006. The key idea to obtain a clean and simple type
system was to keep the XML values and types self-contained: they
can appear within regular OCaml values and types, but the converse
is not possible. However, bridges between the worlds of XML and
ML values are provided in OCamlDuce. They rely on an automatic
structural translation of ML types into XML types, which allows to
move values between the two worlds.

Because of the way CDuce types and values are dealt with in
OCamlDuce, it is not possible e.g. to have first-class functions
or arbitrary OCaml values within XML values. We don’t see
it as a problem because CDuce values are intended to represent
XML fragments in OCamlDuce, not arbitrary data containers which
OCaml supports already pretty well. More problematic is the lack
of interaction between OCaml parametric polymorphism and XML
types (OCaml type variables cannot appear within CDuce types).
We leave this challenging point for future work.

The demonstration. The demonstration will illustrate how the fea-
tures added to OCaml can be used to write idiomatic, expressive
and safe code that manipulates complex XML structures. The ex-
amples will be taken from a medium-sized application developped
in OCamlDuce, which parses an XML-Schema definition into an
OCaml graph-like data structure, extracts some informations from
it, and produces an XHTML report.
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An Introduction to PADS. Ideally, any data we ever encounter
will be presented to us in standardized formats, such as XML.
Why? Because for formats like XML, there are a whole host
of software libraries, query engines, visualization tools and even
programming languages specially designed to help users process
their data. However, we do not live in an ideal world, and in
reality, vast amounts of data is produced and communicated in
ad hoc formats, those formats for which no data processing tools
are readily available. Figure 1 presents a small selection of ad hoc
data sources. As one can see, ad hoc data exists in a very wide
variety of fields and the users range from network administrators to
computational biologists and genomics researchers to physicists,
financial analysts and everyday programmers.

Programmers often deal with this data by whipping up one-time
Perl scripts or C programs to parse and analyze their data. Unfor-
tunately, this strategy is slow and tedious, and often produces code
that is difficult to understand, lacks adequate error checking, and
is brittle to format change over time. To expedite and improve this
process, we developed the PADS data description language and
system [2, 3]. Using the PADS language, one may write a declar-
ative description of the structure of almost any ad hoc data source.
The descriptions take the form of types, drawn from a dependent
type theory. For instance, PADS base types describe simple objects
including strings, integers, floating-point numbers, dates, times,
and ip addresses. Records and arrays specify sequences of elements
in a data source, and unions, switched unions and enums specify al-
ternatives. Any of these structured types may be parameterized and
users may write arbitrary semantic constraints over their data as
well.

Once a programmer has written a description in the PADS lan-
guage, the PADS compiler can generate a collection of format-
specific libraries in C, including a parser, printer, and verifier. In ad-
dition, the compiler can compose these libraries with generic tem-
plates to create value-added tools such as an ad hoc-to-XML for-
mat conversion tool, a histogram generator, and a statistical analy-
sis and error summary tool. Finally, PADS has been composed with
the GALAX query engine [6, 4, 5] for XQuery to create PADX [1],
a new system that allows users to query and transform any ad hoc
data source as if it was XML, without incurring the performance
penalty that usually results when one converts ad hoc data into a
much more verbose XML representation.

While the PADS language provides an extremely versatile
means of creating tools for processing ad hoc data, it is nevertheless
a new language and learning a new language is time-consuming for
anyone, especially for computational biologists or other scientists
for whom programming is not their primary area of expertise. To
ease the way for novice PADS users, we developed LAUNCH-
PADS, a new tool that provides access to the PADS system with-
out requiring foreknowledge of the PADS language itself. Hence,
LAUNCHPADS graphic interface will also help more experienced
PADS users to shorten their development cycle and provides a con-

Name : Use Representation
Web server logs (CLF): Fixed-column ASCII records
Measure web workloads
CoMon data: ASCII records
Monitor PlanetLab Machines
Call detail: Fraud detection Fixed-width binary records
AT&T billing data: Various Cobol data formats
Monitor billing process
Netflow: Data-dependent number of
Monitor network performance fixed-width binary records
Newick: Immune Fixed-width ASCII records
system response simulation in tree-shaped hierarchy
Gene Ontology: Variable-width ASCII records
Gene-gene correlations in DAG-shaped hierarchy
CPT codes: Floating point numbers
Medical diagnoses

Figure 1. Selected ad hoc data sources.

venient way for experts to quickly create any of the data processing
tools they need.

LaunchPads. LAUNCHPADS combines mechanisms for graph-
ically defining structure and semantic properties of ad hoc data,
for translation of this definition into PADS code, and for compi-
lation/execution of the generic tools that operate over ad hoc data.
More specifically, LAUNCHPADS breaks definition of an ad hoc
data format and generation of data processing tools into the follow-
ing steps. Figure 2 presents a screenshot of LAUNCHPADS being
used to construct a data description for a web-server log format.

1. Selection of sample data from which to build the descrip-
tion. Creation of a definition within LAUNCHPADS begins
when a user loads sample data into the graphical interface.
In Figure 2, web log data (beginning with the IP address
207.136.97.49 ...) appears in the top right hand cor-
ner of the picture. A user then selects a row of data to work on
in the LAUNCHPADS gridview immediately below.

2. Iterative refinement in the gridview. Once in the gridview,
users may specify descriptions for regions of text using a high-
lighting scheme. The color assigned to a region represents the
description class (base or composite) and region boundaries.
Structure within a definition is represented through a series
of refinement steps: composite regions are broken down and
level after level, thereby allowing for nested elements (Figure 2
shows four nesting levels). The refinement process bottoms out
when one reaches an atomic description such as a character
string, IP address or date. Once all regions have been given a
base type in the gridview, LAUNCHPADS will generate a tree-
view of the definition for further processing.
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Figure 2. LaunchPads Interface.

3. Customization in the treeview. The treeview is a graphical
representation of the abstract syntax of a PADS description. In
this view, programmers can manipulate definitions with a high
degree of precision: definition elements may be created, de-
stroyed, and renamed; type associations for existing elements
may be changed (within limitations); element ordering may be
altered; user defined types may be added to the definition and
applied to elements; content-aware error constraints may be im-
posed. Indeed, from within the tree view it is possible to access
the “expert” functions of PADS directly if one so chooses, or
to completely avoid them in lieu of a simpler definition and/or
faster development time.

4. PADS code generation, tool compilation and use. When the
user is satisfied with their PADS definition in the treeview,
they may generate PADS code. Any such generated code is
guaranteed to be syntactically correct so the user need not worry
about fussing with concrete PADS syntax if they do not want to.
Figure 2 shows the generated code in the window at the bottom
of the interface. By using the pulldown menus at the top and a
set of “wizards,” the user may now issue commands to compile
the generated code and create data processing tools including
the XML converter and statistical analyzer. As development
of LAUNCHPADS continues, we will add further tools and
corresponding wizards to the interface.

.

Conclusions In summary, in this demonstration, we will explain
the many challenges that ad hoc data pose and how the PADS lan-

guage is structured to meet these challenges. In addition, we will
explain how LAUNCHPADS provides further support for process-
ing ad hoc data by demonstrating both features for helping users
construct data descriptions and features for creating and invoking
tools that operate over data. We believe that both expert program-
mers and novices alike can benefit from this simple system for ma-
nipulating ad hoc data.
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We demonstrate the current programming capabilities of
XHaskell – an extension of Haskell with XDuce style
regular expression types and regular expression pattern
matching. For example, the following classic XDuce
program to extract telephone entries out of an address
book

regtype P = P[N,T?,E*] -- Person
regtype N = N[String] -- Name
regtype T = T[String] -- Tel
regtype E = E[String] -- Email
regtype En = En[N,T] -- Phonebook Entry
addrbook :: P* -> En*
addrbook (P[n as N, t as T, E*], xs as P*)

= (En[n,t], (addrbook xs))
addrbook (P[N,E*], xs as P*) = addrbook xs
addrbook () = ()

can be rewritten in XHaskell as follows.

module Addrbook where
data P = P N (T?) ((E)*) -- Person
data N = N [Char] -- Name
data T = T [Char] -- Tel
data E = E [Char] -- Email
data En = En N T -- Entry
addrbook :: ((P)*) -> ((En)*)
addrbook (x :: ((P)*)) =

(map for_each_p) x -- (1)
for_each_p :: P -> (En?)
for_each_p (P (n :: N) (t :: (T?))

(es :: ((E)*)))
= for_each_p2 (n,(t,es))

for_each_p2 :: (N,((T?),((E)*))) -> (En?)
for_each_p2 ((n :: N),((t :: T),

(es :: ((E)*))))
= En n t

for_each_p2 ((n :: N),(es :: ((E)*)))
= ()

The interesting point to note is that in XHaskell
we can call Haskell Prelude functions such as
map::(a->b)->[a]->[b] (see location (1)). Thus, we
only need to define the transformation from Person to
Entry. Our current implementation does not support

regular hedges. Therefore, we need the auxiliary func-
tion for each p2.
XHaskell is compiled to Haskell. Hence, we can easily
take advantage of existing XML tools written in Haskell.
E.g., we can use the DtdtoHaskell command provided
by the HaXML tool to generate the AddrbookDTD mod-
ule which describes the DTD structure of the address
book example in terms of some Haskell data types. Cur-
rently, the XML document representation provided by
HaXML is slightly different from XHaskell. Hence,
the programmer must provide an extra interface mod-
ule HaXMLInterface for marshalling values between
the two representations. Though, this intermediate step
could be easily automated.
Here is the code integrating XHaskell with HaXML.

module App where
import Addrbook ( addrbook )
import AddrbookDTD
import HaXMLInterface

( haxml2xhaskell, xhaskell2haxml )
main =

fix2Args >>= \(infile,outfile)->
do value <- fReadXml infile

let result = xhaskell2haxml
(addrbook (haxml2xhaskell value))

fWriteXml result outfile

The main function parses an XML document specified
by argument infile, and applies function addrbook
to the parsed value. Note that addrbook has type
[P]->[En] in the translation to Haskell. Finally it prints
the result into the output file specified by argument
outfile.
The implementation and further background material
can found here:
http://www.comp.nus.edu.sg/˜luzm/xhaskell/
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