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Foreword

Eric Goubault1

LIST/DTSI/SLA, CEA Saclay
91191 Gif-sur-Yvette, France

The main mathematical disciplines that have been used in theoretical com-
puter science are discrete mathematics (especially, graph theory and ordered
structures), logics (mostly proof theory for all kinds of logics, classical, intu-
itionistic, modal etc.) and category theory (cartesian closed categories, topoi
etc.). General Topology has also been used for instance in denotational seman-
tics, with relations to ordered structures in particular.

Recently, ideas and notions from mainstream “geometric” topology and al-
gebraic topology have entered the scene in Concurrency Theory and Distributed
Systems Theory (some of them based on older ideas). They have been applied
in particular to problems dealing with coordination of multi-processor and dis-
tributed systems. Among those are techniques borrowed from algebraic and
geometric topology: Simplicial techniques have led to new theoretical bounds
for coordination problems. Higher dimensional automata have been modelled
as cubical sets with a partial order reflecting the time flows, and their homotopy
properties allow to reason about a system’s global behaviour.

This workshop aims at bringing together researchers from both the math-
ematical (geometry, topology, algebraic topology etc.) and computer scientific
side (concurrency theorists, semanticians, researchers in distributed systems
etc.) with an active interest in these or related developments.

It follows the first workshop on the subject “Geometric and Topological
Methods in Concurrency Theory” which has been held in Aalborg, Denmark,
in June 1999. Then came GETCO’00 in Pennstate, USA, GETCO’01 in Aal-
borg, Denmark, all associated with CONCUR. GETCO’02 was associated with
DISC’02 in Toulouse, and GETCO’03 was held jointly with CMCIM’03, asso-
ciated with CONCUR in Marseille. The GETCO’04 workshop was associated
with DISC, in Amsterdam, and this year GETCO’05 is associated with CON-
CUR in San Francisco.

The Workshop has been financially supported by BRICS (Aarhus, Den-
mark), which we thank very warmly. I also wish to thank the referees, the
authors, and the programme committee members for their very precise and
timely job. Many thanks are also due to Michael Mislove who kindly supported
the workshop by letting us submit the papers through the Electronic Notes in
Theoretical Computer Science.

Last but not least, I wish to thank the organizers of CONCUR 2005, Martin
Abadi and Luca de Alfaro, for their cooperation regarding this workshop.

1Email: Eric.Goubault@cea.fr
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GETCO 2005 Preliminary Version

Higher-Dimensional Automata and Other
Models of Concurrency

Rob van Glabbeek 1

National ICT Australia
and School of Computer Science and Engineering

The University of New South Wales
Locked Bag 6016, Sydney, NSW 1466, Australia

I will compare the expressiveness of several models of concurrency that
could be thought of as formalisations of higher dimensional automata: cubical
sets [1], presheaves over a category of bipointed sets, automata with a predi-
cate on hypercube-shaped subgraphs, labelled step transition systems [2], and
higher dimensional transition systems [3]. A series of counterexamples will
illustrate the limitations of each of these models. Additionally I recall a few
results [1] relating higher dimensional automata to ordinary automata, Petri
nets, and various kinds of event structures.

References

[1] Glabbeek, R. J. van, On the expressiveness of higher dimensional automata, to
appear in: Theoretical Computer Science (2005). Available at http://Boole.
stanford.edu/pub/express.pdf.

[2] Glabbeek, R. J. van, The Individual and Collective Token Interpretations of Petri
Nets, to appear in: Proceedings 16th International Conference on Concurrency
Theory, CONCUR 2005, San Francisco, USA, August 2005 (M. Abadi & L. de
Alfaro, eds.), LNCS 3653, Springer, pp. 323-337. Available at http://Boole.
stanford.edu/pub/individual.ps.gz.

[3] Cattani, G. J. and Sassone, V., Higher dimensional transition systems, in:
Proceedings LICS ’96, Eleventh Annual IEEE Symposium on Logic in Computer
Science, New Brunswick, USA, pp. 55–62. Available at ftp://ftp.cl.cam.ac.
uk/users/glc25/hdts.dvi.gz.
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GETCO 2005 Preliminary Version

Using Cancellation instead of Labeling to
Express van Glabbeek’s EXPRESS’04 Example

(Invited Talk)

Vaughan Pratt 1

Tiqit Computers, Inc
2215 Old Page Mill Rd

Palo Alto, CA 94304, USA

At EXPRESS’04, R. van Glabbeek gave an 11-state labeled automaton (in
his sense) witnessing that Petri nets cannot simulate automata. Viewing this
automaton as a configuration structure with 3-state events (hence an HDA),
we dispense with the labels by using a fourth event state of cancellation as
per [1].

References

[1] Pratt, V., Transition and Cancellation in Concurrency and Branching Time,
Mathematical Structures in Computer Science 13:4, pp. 485–529 (2003).

1 Email: pratt@cs.stanford.edu
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GETCO 2005 Preliminary Version

Comparing topological models for concurrency

Emmanuel Haucourt 1

LSL / PPS
CEA Saclay / Paris 7

Paris, France

Abstract

Several categories of models for concurrency involving topology have been put for-
ward in each of which a notion of fundamental category is defined. One of them,
the category of pospaces, is canonically included in almost all the others. Given a
pospace −→X and i(−→X ), the image of −→X by the inclusion i of PoTop in some of the
other category in which the fundamental category is defined, it is then natural to
ask how the fundamental categories of −→X and i(−→X ) are related. The answer to this
question is one of the purposes along of this article.

We introduce a general framework for categories in which a reasonable notion of
fundamental categories can be defined.

Key words: directed paths, directed homotopy, fundamental
category, models for concurrency, topologically concrete category

1 Introduction

The original motivation for studying topological models of concurrency is the
notion of progress graph introduced in 1968 by Dijkstra in his article [3]. The
idea is that a PV programm, which consists on a finite set of processes each
of which performing lock and release on semaphores can be represented by a
geometrical shape equiped with an order relation. Let us examine the following
PV programs:

PcVc|PcVc PaPbVbVa|PbPaVaVb and PcPaPbVbVaVc|PcPbPaVaVbVc

Each of these programs have 2 processes. The letters a, b, c denote semaphores
of arity 1 i.e. that each of them can be simultaneously used by, at most, 1
process. If the next instruction to be performed by the process Π is Pa then
it tries to “take” the semaphore a, then either a is “free” (so Π can take it) or
it is not (because it has already been taken by another process). In the first

1 Email: haucourt@cea.fr
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs
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Haucourt

case the process Π can perform Pa and goes to the next instruction, in the
other one Π has to wait till the process which holds a releases it. The process
that holds a can release it performing the instruction Va. Then the collection
of states can be represented as follows

Π1

Π2

x
y

Vc

Pc

Pc Vc

z

Π1

Π2

x
y

Pa

Pb

PaPb Va Vb

Va

Vb

z

The left hand picture is associated to the first and third program while the
right hand one is associated to the second. For example, consider the point x
on the first figure, it represents a state in which both processes have taken a
which is impossible. Such points form region of the forbidden states. On the
second picture, y is a state in which Π1 has already performed PbPaVa while
the Π2 has not even execute its first instruction. We would like to distinguish
these shapes. A careful examination of the third program shows that it has
the same behaviour as the first one, but this fact becomes immediate when we
observe their geometric models provided we have a theorem such as “equiva-
lent geometric models implies same behaviour”. We have moved the analysis
of PV programs to the analysis oh their geometric models. From an Euclidean
point of view, the models of our example are different, but the classification
up to isometry is way too strong. On the other hand, the classification up to
homotopy equivalence as in classical algebraic topology is too loose since it
does not distinguish these geometric shapes. Then we equip our models with
the partial order induced by the one of R2 and observe that the second one
has a local maximum while the first one does not. This remark motivates the
introduction of the notions of pospaces ([16]) and directed algebraic topology
([12],[8],[6]).
Now, we briefly recall some definitions, a general reference for the topological
approach to concurrency is [12]. The category of Hausdorff spaces is denoted
Haus. A pospace is a pair (X,≤X) where X is a topological space and ≤X a
partial order relation on |X| (the underlying set of X) whose graph is closed
in X ×X See [16]. Together with the increasing continuous maps, they form
a category denoted PoTop. Weakening the notion of pospace asking ≤X just
be reflexive we obtain the related spaces which also form a category, de-
noted RTop, together with continuous maps such that ∀x, x′ ∈ X if x and
x′ are related then so are f(x) and f(x′). For technical convenience, we also
require that the underlying topological space of an object of RTop be Haus-

2
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Haucourt

dorff. Originally, I have introduced them as a technical tool to prove that
PoTop is cocomplete.
A directed space, see [10] and [9], is a pair (X, dX) where X is a Hausdorff
topological space and dX is a family of paths on X containing all the constant
paths, stable under concatenation and satisfying ∀θ : [0, 1] −→ [0, 1] continu-
ous and increasing, ∀γ ∈ dX γ ◦ θ ∈ dX. 2 Together with continuous maps f
satisfying ∀γ ∈ dX f ◦ γ ∈ dY , they form a category denoted dTop.
A local pospace is a topological space X together with an open covering
Vi and a family of partial order ≤i on Vi such that ∀i (Vi,≤i) is a pospace.
The morphisms from (X,Vi,≤i) to (Y,Wj,≤′j) are the continuous maps from
X to Y such that ∀x ∈ X ∀j such that f(x) ∈ Wj, ∃U ⊆ Vi (for some i) a
neighborhood of x such that f induces a dimap from (U,≤i |U) to (Wj,≤′j).
Then we have a category denoted LPoTop. See [4].
Roughly speaking, the machinery we will introduce can be applied to any cat-
egory whose objects are made of a (Hausdorff) topological space X equiped
with some structure compatible with respect to the topology of X. In fact,
the category of Flows introduced by Philippe Gaucher (see [7]) is the only one
category of models for concurrency which is not topologically concrete (see
definition 3.1) that I know of.

2 Category with paths

In classical algebraic topology, the unit segment [0, 1] plays a crucial role. This
is also the case in PoTop, LPoTop, dTop or RTop provided that it is equiped
with the suitable structure, that is to say a structure that makes it directed.
The notion of category with paths is based on this fact. Of course, in classical
algabraic topology, the idea of using [0, 1] as an elementary brick is not new
and appears, for example, in the notion of path object, see [1] or [14].
Let C be a category with a terminal object, such an object is unique up to
isomorphism, let us choose one of them and denote it ∗. A point of an object
X of C is a morphism p ∈ C[∗, X]. In particular, given a point p of X and an
object A of C, there is a unique morphism f ∈ C[A,X] such that f = p ◦ ζA
where ζA is the unique element of C[A, ∗]. The morphism f we have described
is called the constant morphism of value p from A to X. Thus, a morphism
is said constant when it factorizes through the terminal object. The intention
behind this definition becomes clear when it is particularized to Set. We also
require and choose an object I of C, that will be called the generic path and
two morphisms s, t ∈ C[∗, I] so that for any φ ∈ C[I, I] isomorphism, we have

(
(φ◦s = s and φ◦ t = t) or (φ◦s = t and φ◦ t = s)

)
i.e. {φ◦s, φ◦ t} = {s, t}

2 in the original definition it is not required that the underling topological space be Haus-
dorff.

3
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and so that ∀n ∈ N, the following diagram

I I I I I I
∗ s

>>||| ∗t

``BBB
s
>>||| ∗t

``BBB
s
>>||| ··· ∗t

``BBB
s
>>||| ∗t

``BBB
s
>>||| ∗t

``BBB

︸ ︷︷ ︸
n copies of I

has a colimit in C. This colimit, unique up to isomorphism in C, is denoted
n · I together with

n · I

I
i
(n)
1

88

I
i
(n)
2

==

I
i
(n)
3

HH

I
i
(n)
n−2

VV

I
i
(n)
n−1

aa

I
i
(n)
n

ff

∗ s
>>||| ∗t

``BBB
s
>>||| ∗t

``BBB
s
>>||| ··· ∗t

``BBB
s
>>||| ∗t

``BBB
s
>>||| ∗t

``BBB

︸ ︷︷ ︸
n copies of I

Note that, in the preceeding diagram, the arrows from ∗ have been omit-
ted, indeed, they have to make the diagram commutative so they are im-
plicitly determined. The stability of {s, t} under any automorphism of I is
the categorical way to say that s and t are the extremities of I. Besides, an
automorphism that exchanges s and t can be thought of as a “time rever-
sal”. Notice that for any isomorphism φ ∈ C[A, I], A together with φ−1 ◦ s
and φ−1 ◦ t can be taken as a generic object. Indeed, let ψ ∈ C[A,A]
be an isomorphism, since φ ◦ ψ ◦ φ−1 is an automorphism of I, we have
{φ◦ψ◦φ−1◦s, φ◦ψ◦φ−1◦t} = {s, t} i.e. {ψ◦φ−1◦s, ψ◦φ−1◦t} = {φ−1◦s, φ−1◦t}.
Moreover, given isomorphisms φ1, φ2 ∈ C[A, I], φ−1

1 ◦ φ2 is an automorphism
of A, hence {(φ−1

1 ◦ φ2) ◦ φ−1
2 ◦ s, (φ−1

1 ◦ φ2) ◦ φ−1
2 ◦ t} = {φ−1

2 ◦ s, φ−1
2 ◦ t},

so {φ−1
1 ◦ s, φ−1

1 ◦ t} = {φ−1
2 ◦ s, φ−1

2 ◦ t}. Hence, up to a “time reversal”,
s and t are entirely determined by the choice of I.
In fact, we cannot take any object of C as a generic path. For example, in Top,
the Euclidean circle S1 cannot be taken as a generic path object. Indeed, for
any points x and y of S1, there is an automorphism of S1, for example a rota-
tion, that respectively sends x and y onto x′ and y′ so that {x, y}∩{x′, y′} = ∅.
On the other hand, any automorphism of [0,1] induces a 1-1 mapping from
{0, 1} to {0, 1}. The reason is that {0, 1} is the boundary of [0, 1].
We say that I provides a notion of direction to C when φ◦s = s and φ◦ t = t
for any automorphism φ of I, otherwise, we say I provides a notion of con-
nection to C.
The second hypothesis enables us to define a concatenation which is strict
instead of up to isomorphism. To this end, we choose for each n ∈ N a cocone

(n · I, i(n)
1 , ..., i

(n)
n ) that represents the colimit of the diagram

I I I I I I
∗ s

>>||| ∗t

``BBB
s
>>||| ∗t

``BBB
s
>>||| ··· ∗t

``BBB
s
>>||| ∗t

``BBB
s
>>||| ∗t

``BBB

︸ ︷︷ ︸
n copies of I

4
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In the rest of the paper, we will refer to the preceeding diagram as Vn. More-
over, for n := 0 we can suppose that 0 · I := ∗ and for n := 1 that 1 · I := I
and i11 := idI. By induction over n ∈ N choose the cocones (n · I, i(n)

1 , ..., i
(n)
n )

so that if n · I ∼= p · I in C then n · I = p · I.

Lemma 2.1 (Monoid of paths) Setting for all n, p ∈ N (n · I) + (p · I) :=
(n + p) · I, we turn {n · I|n ∈ N} into a commutative monoid whose unit is
0 · I i.e. ∗. Further, we have a morphism of monoids from (N,+, 0) onto
({n · I/n ∈ N},+, ∗). Furthermore, if there are n, p ∈ N such that n · I 6= p · I
then {n · I/n ∈ N} is finite. Otherwise it is isomorphic to N.

Proof. Left to the reader. 2

We can always take I := ∗ as a generic path, making the monoid of paths
trivial. For any n ∈ N, we define s(n) := i

(n)
1 ◦s and t(n) := i

(n)
n ◦ t. Then, using

the universal property of colimits, for any pair of integers (n, p) we uniquely

define g
(n+p)
n ∈ C[n · I, (n+ p) · I] and d

(n+p)
p ∈ C[p · I, (n+ p) · I] so that




g

(n+p)
n ◦ i(n)

k = i
(n+p)
k for every k ∈ {1, ..., n}

d
(n+p)
p ◦ i(p)

k = i
(n+p)
n+k for every k ∈ {1, ..., p}

In particular, g
(n)
0 = i

(n)
1 ◦ s = s(n), d

(n)
0 = i

(n)
n ◦ t = t(n) and g

(n)
n = d

(n)
n = idn·I.

Furthermore:

Proposition 2.2 For all n, p ∈ N
(n+ p) · I

n · I
g
(n+p)
n

33ggggggggg
p · I

d
(n+p)
p

kkWWWWWWWWW

∗t(n)

llXXXXXXXXXXXXX s(p)

22fffffffffffff

is a

push-out in C. Moreover, if α ∈ C[n · I, X] and β ∈ C[p · I, X] satisfy α ◦ t(n) =
β ◦ s(p) then the unique morphism h ∈ C[(n+ p) · I] such that

X

(n+ p) · I
h

OO

n · I
g
(n+p)
n

55kkkkkkkkkk

α
..

p · I
d
(n+p)
p

iiSSSSSSSSSS

βpp

∗t(n)

jjTTTTTTTTTTTTTT s(p)

55jjjjjjjjjjjjjj

is also the unique h such that




α ◦ i(n)

k = h ◦ i(n+p)
k for every k ∈ {1, ..., n}

β ◦ i(n)
k = h ◦ i(n+p)

n+k for every k ∈ {1, ..., p}

5
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Proof. The proof is entirely contained in the following commutative diagram

(n+ p) · I

n · I

g
(n+p)
n

<<z
z

z
z

p · I

d
(n+p)
p

aaD
D

D
D

· · · I

==

I

EE

I

i
(n)
n

OO

I

i
(p)
1

OO

I

YY

I

aa

· · ·
∗t

\\::: s

BB¦¦¦ ∗t

\\::: s

<<zzzzz ∗t

aaDDDD s

BB¦¦¦ ∗t

\\::: s

BB¦¦¦

∗
t

aaCCCCCCCCCCC
s

=={{{{{{{{{{

t(n)

VV---------------------

s(p)

HH́
´´´´´´´´´´´´´´´´´´´´

More precisely, (α ◦ i(n)
1 , ..., α ◦ i(n)

n , β ◦ i(p)
1 , ..., β ◦ i(p)

p ) is a cocone whose basis
is

I I I I I I
∗ s

>>||| ∗t

``BBB
s
>>||| ∗t

``BBB
s
>>||| ··· ∗t

``BBB
s
>>||| ∗t

``BBB
s
>>||| ∗t

``BBB

so we have a unique h ∈ C[(n+ p) · I, X] such that




α ◦ i(n)

k = h ◦ i(n+p)
k = h ◦ g(n+p)

n ◦ i(n)
k for every k ∈ {1, ..., n}

β ◦ i(n)
k = h ◦ i(n+p)

n+k = h ◦ d(n+p)
p ◦ i(p)

k for every k ∈ {1, ..., p}

Applying the uniqueness part of the universal property of colmimits (n ·
I, i(n)

1 , ..., i
(n)
n ) and (p ·I, i(p)

1 , ..., i
(p)
p ) we have α = h◦g(n+p)

n and β = h◦d(n+p)
p . If

h′ ∈ C[(n+ p) · I, X] satisfy α = h ◦ g(n+p)
n and β = h ◦ d(n+p)

p , then necessarily,
applying the uniqueness part of the uniqueness of the universal property of
the colimit ((n+ p) · I, i(n+p)

1 , ..., i
(n+p)
n+p ) we have h = h′. 2

Definition 2.3 A Category with paths is given by:

(i) a category C with a terminal object and ∗ a distinguished representative
of it..

(ii) a diagram ∗ s //
t

// I such that for any isomorphism φ ∈ C[I, I] we have

{φ ◦ s, φ ◦ t} = {s, t}.
(iii) For all n ∈ N, Vn has a colimit in C and we have a distinguished colimiting

cocone (n · I, i(n)
1 , ..., i

(n)
n ) the colimit of the diagram Vn so that 0 · I = ∗,

1 · I = I, i(1)
1 = idI and that ∀n, p ∈ N if n · I ∼= p · I in C then n · I = p · I.

When the context is clear, we will just refer to the structure of category
with paths of C as C, letting implicit the rest of the data. However, the
distinguished terminal and cocones are part of the structure. Given an object

X of C, we can define a path on X as an element (γ, n) of
⋃

n∈N
C[n·I, X]×{n}

6
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Haucourt

and the source and the target of (γ, n) ∈ C[n · I, X] × {n} respectively as
γ ◦s(n) and γ ◦ t(n). Refering to the definition of constant morphism, any point
is a constant path, this remark enable us to treat paths defined on 0 · I as
any other. In fact, the constant paths i.e. those that are defined on 0 · I = ∗
will be the identities of the category of paths of X that we will defined later.
Given (γ, p) ∈ C[p · I, X] × {p} and (δ, n) ∈ C[n · I, X] × {n} two paths on
X so that src(γ) = tgt(δ) we define the concatenation of (δ, n) followed by
(γ, p), denoted (γ · δ, n + p), by means of the universal property of the push-
out depicted on the figure below. An immediate corollary of Proposition 2.2
is that the concatenation we have just defined is “strictly” associative, i.e. not
only up to isomorphism.

X

(p+ n) · I

γ·δ

OO

p · I
44iii

γ

<<

n · I
jjU U U

δ

bb

∗s(p)

kkVVVVVVVVVV t(n)

33hhhhhhhhhh

push out

Remark 2.4 Let (γ, n) ∈ C[n ·I, X]×{n}, we have γ = (γ ◦ i(n)
n ) · ... · (γ ◦ i(n)

1 ).
The second component {n} cannot be omitted, indeed, by definition of a
category with paths, if I+ I ∼= I then ∀n ∈ N we have n · I = 1 · I = I. But, as
in the notion of Moore paths, we wish to have, with each path, an information
about how many “elementary” paths it is made of. In some categories, as
RTop, if n 6= p, we have n · I 6∼= p · I, so the source of γ as a morphism of C i.e.
n · I contains this information. In most of the others cases, as in Top, we have
I+I ∼= I, so this information has to be kept as a “extra data”. Once again, the
advantage is that we have a strict concatenation. For the sake of simplicity,
we will consider that γ ∈ C[n · I, X] really means (γ, n) ∈ C[n · I, X]× {n}.

Now we can describe the category of paths on X denoted Γ(X). The ob-
jects of Γ(X) are the points of X i.e. Ob(Γ(X)) = C[∗, X]. Then, given

two points x and y of X, Γ(X)[x, y] :=
{
γ ∈ ⋃

n∈N
C[n · I, X]

/
src(γ) =

x et tgt(γ) = y
}

. The concatenation is defined as above and we check that

we have a category whose identities are the points x : ∗ → X which can be
seen as a path on X since ∗ = 0 · I. The preceeding construction is functorial

Proposition 2.5 There is a functor Γ : C −→ Cat which associates to any
object X of C its category of paths Γ(X). In particular, if f ∈ C[X,Y ] then
we have a functor Γ(f) : Γ(X) −→ Γ(Y ) given by:

(i) For all point x of X,
(
Γ(f)

)
(x) := f ◦ x.

7
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(ii) For all γ ∈ C[n · I, X] is a path from x1 to x2, i.e. γ ∈
(
Γ(X)

)
[x1, x2],(

Γ(f)
)
(γ) := f ◦ γ.

Proof. By proposition 2.2 we have

f ◦ (γ · δ) = (f ◦ γ) · (f ◦ δ)

which proves that Γ(f) is actually a functor from Γ(X) to Γ(Y ).
2

Remark 2.6 If the category with paths
(
C, ∗ s //

t
// I

)
has an automorphism

φ of I such that φ ◦ s = t and φ ◦ t = s (i.e. a time reversal) then for all
points x1, x2 of an object X of C, γ ∈ Γ(X)[x1, x2] 7−→ γ ◦ φ ∈ Γ(X)[x2, x1] is
a bijection. It suffices to note that γ ◦φ◦s(n) = γ ◦ t(n) and γ ◦φ◦ t(n) = γ ◦s(n)

and that the inverse mapping is γ ∈ Γ(X)[x2, x1] 7−→ γ ◦ φ−1 ∈ Γ(X)[x1, x2].

Given a category A, a congruence on A is family of equivalence relations
∼a1,a2 on A[a1, a2] where (a1, a2) ∈ Ob(A)×Ob(A) such that

a1

α

¼¼

α′

EE
²O
²O
²O
²O
²O

a2

β

¼¼

β′

EE
²O
²O
²O
²O
²O

a3 =⇒ a1

β◦α
¼¼

β′◦α′

EE
²O
²O
²O
²O
²O

a3

Now, we wish to have axioms that have to be satisfied by any reason-
able notion of homotopy. To any object X of C, one associates a congru-

ence over Γ(X) denoted ∼X , so we have a mapping
(
X ∈ Ob(C) 7−→∼X

a congruence over Γ(X)
)
. Finally, we ask the Homotopy Congruence

Property or HCP be satisfied, which means that

∀X, Y ∈ Ob(C) ∀f ∈ C[X,Y ] ∀x1, x2 ∈ Ob(Γ(X)) ∀γ, δ ∈ Γ(X)[x1, x2]

γ ∼X δ =⇒ f ◦ γ ∼Y f ◦ δ.
and

∀X ∈ Ob(C) ∀x ∈ Ob(Γ(X)) ∀γ, δ ∈ Γ(X)[x, x],

if γ and δ are constant with the same value x then γ ∼X δ

Let us make clear the meaning of the second axiom, by definition of a constant
morphism, γ is constant with value p implies that p ∈ C[∗, X] and then p can
be seen as a path since 0 · I ∼= ∗. This is the reason why we would like to
identify any point p with any constant path with value p. Note that, in this
case, x1 = x2 = x.
Then given an object X of C, we define −→π1(

−→
X ) := Γ(X)/∼X

thus defining

8
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the fundamental category of X. By HCP, the mapping X ∈ Ob(C) 7−→
−→π1(
−→
X ) ∈ Ob(Cat) induces a functor form C to Cat. Indeed, the HCP makes

the following definition sound: Any object X of C is sent to the quotient
−→π1(X) := Γ(X)/∼X

. Any morphism f ∈ C[X,Y ] is sent to the functor
−→π1(f) ∈ Cat

[
Γ(X)/∼X

,Γ(X)/∼X

]
which sends any point (∗ → X) to the

point f ◦ (∗ → X) and any ∼X-equivalence class [n · I α //X ]∼X
to the ∼Y -

equivalence class
[
f ◦ (n · I α //X)

]
∼Y

.

While the definition of Γ can been made under very weak hypothesis, the
HCP is an extremly strong requirement since it provides a “simultaneous
choice” of a congruence for each object of C. In all the “concrete” cases (we
will give a formal meaning to “concrete” later) these congruences come from

a canonical idea of directed homotopy. A mapping
(
X ∈ Ob(C) 7−→∼X

a congruence on Γ(X)
)

which satisfies the HCP is called a notion of homo-

topy over C.

Remark 2.7 Suppose that I 6= ∗. Let α be a constant path with value x, γ
be a path whose source is x and δ be a path whose end is x then we have

x ∼X α

γ ∼X γ



 =⇒ γ = γ · x ∼X γ · α and

x ∼X α

δ ∼X δ
=⇒ δ = x · δ ∼X α · δ

In other words, the paths α ∈ C[0 · I, X] can be ignored. As a consequence, we
can give another definition of the fundamental category of X taking X as the
set of objects and −→π 1(X)[x, y] the set of ∼X-equivalence classes [γ]∼X

where
γ ∈ C[n · I, X] with n 6= 0. This will be useful when we deal with concrete
categories.

Proposition 2.8 (Constant paths) Given an object X of C, a point x of
X i.e. x ∈ C[∗, X] and n ∈ N, we set cnx for the unique morphism of C[n · I, X]
constant with value x. If f ∈ C[X,Y ] then f ◦ cnx = cnf◦x, if n, p ∈ N and x a

point of X then cnx · cpx = cn+p
x and c

(0)
x = idx in Γ(X). The relation on paths

of X defined by α ∼X β iff there exists a finite sequence xn, ..., x0 of points of
X, where n ∈ N and 1 ≤ n, a finite sequence γn, ..., γ1 of paths on X so that
for all k ∈ {1, ..., n} the source and the target of γk are respectively xk−1 and
xk and 



α = tn · γn · ...t1 · γ1 · t0
β = t′n · γn · ...t′1 · γ1 · t′0

where tk and t′k are constant with value xk for k ∈ {0, ..., n}, satisfies the HCP.

The notion of homotopy provided by Proposition 2.8 amounts to “remove
the pauses”. Note that if all the constant paths t0, . . . , tn are defined on 0·I = ∗

9
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then α = tn · γn · ... · t1 · γ1 · t0 = γn · ... · γ1

Proposition 2.9 (Reparametrization) Given an object X of C, the rela-
tion over paths of X defined by α ∼X β iff there exists a finite sequence
xn, ..., x0 of points of X, where n ∈ N and 1 ≤ n, a finite sequence γn, ..., γ1

of paths on X so that for all k ∈ {1, ..., n} the begin and the end of γk are
respectively xk−1 and xk and




α = tn · γn · ... · t1 · γ1 · t0
β = t′n · γ′n · ... · t′1 · γ′1 · t′0

where for all k ∈ {0, ..., n}
(i) tk and t′k are constant with value xk

(ii) γ′k = γk ◦ φk where φk is an automorphism.

satisfies the HCP.

Proposition 2.10 (Lattice of notions of homotopy) The collection of no-

tions of homotopy over the category with paths C whose generic path is ∗ s //
t

// I
is a complete lattice ordered by inclusion. Its least element is the notion of
homotopy described in Proposition 2.8 and its greatest one identifies two paths
exactly when they have the same source and the same target.

The two extreme notions of homotopy given by proposition 2.10 are not
very interesting and they do not really reflect what we have in mind when we
think of homotopy. Up to some additional hypothesis about C, we are able to
give many non trivial examples.

3 Topologically concrete catgeories

Almost all the interesting models of concurrency involving topology have ob-
jects which are built over topological spaces. We take advantage of the fact
to define notions of homotopy that look like the usual one. Inspired by the
usual definition of concrete category (see [15] or [17]) we have

Definition 3.1 A topologically concrete category is a category C equiped
with a faithful functor U whose codomain is a reflective sub-category of Top
and which has a left adjoint denoted F . If T is the codomain of U , we say
that C is topologically concrete over T.

We recall that, in particular, Haus is a reflective sub-category of Top and
thus, PoTop, RTop, LPoTop are examples of topologically concrete categories
over Haus. dTop is topologically concrete over Top or Haus depending on the
definition of objects of dTop we have chosen. Our aim is to equip a topologi-
cally concrete category with a suitable structure of category with paths.

10
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Definition 3.2 [Compatibility] Let C be a topologiquement concrete category
with U a F . We also suppose that C is equiped with a structure of category
with paths I′, s′, t′ whose distinguished cocones are (n · I′, i′(n)

1 , ..., i
′(n)
n ) for

n ∈ N. Finally, suppose that U preserves the structures of a category with
paths i.e. T is also equiped with a structure of a category with paths I, s, t
whose distinguished cocones are (n · I, i(n)

1 , ..., i
(n)
n ) for n ∈ N and that

(i) ∀n ∈ N U(n · I′) = n · I so in particular U(I′) = I and U(∗′) = ∗.
(ii) U(s′) = s and U(t′) = t.

(iii) ∀n ∈ N ∀k ∈ {1, ..., n} U(i
′(n)
k ) = i

(n)
k .

We summarize this data by saying that C is a topologically concrete cat-
egory with paths or TCCP for short.

Lemma 3.3 ∀n ∈ N ∀k ∈ {1, ..., n} U(s′(n)) = s(n) and U(t′(n)) = t(n).

Proof. It suffices to remark that, by definition, s′(n) = i
′(n)
1 ◦s′ and t′(n) = i

′(n)
n ◦

t′. The result follows since U(s′) = s, U(t′) = t, U(i
′(n)
1 ) = i

(n)
1 and U(i

′(n)
n ) =

i
(n)
n . 2

Remark that since U has a left adjoint, U preserve (up to isomorphism)
the terminal object of C which is the limit of the empty functor. However, the
hypothesis U(∗′) = ∗ is stronger since it forces this preservation to be strict.

Definition 3.4 Let C be a TCCP (over T), an object D of C is called domain
for dihomotopy (in C) if U(D) = [0, 1]× [0, 1] (Cartesian product in T) and
if ∀(x, y) ≤ (x′, y′) ∈ [0, 1]× [0, 1] ∃n ∈ N ∃γ ∈ C[n · I, D] such that

(
U(γ)

)
(0) = (x, y) and

(
U(γ)

)
(1) = (x′, y′).

The we chose a collection D of domains for dihomotopy whose elements are,
by definition, the acceptable domains for dihomotopy.

Definition 3.5 Let C be a TCCP (over T). Let X be an object of C. Let
γ ∈ C[n · I′, X] and δ ∈ C[p · I′, X] with n, p ∈ N i.e. two paths on the
object X of C. We call concrete dihomotopy in C from γ to δ a morphism
H ∈ C[D,X], where D is an acceptable domain for dihomotopy in C, such
that U(H) be a classical homotopy from U(γ) to U(δ) (with fixed end points).

In fact, definition 3.5 amounts to restrict the collection of homotopies to
those which are in the image of U . This limitation is very strong. Also remark
that, in general, paths whose domain is 0 ·I cannot be “concretely” homotopic
to paths whose domain is n · I for some n 6= N. This is a pathology removed
by the remark 2.7.

Lemma 3.6 Let C be a TCCP over T. If there is a concrete dihomotopy from
γ to δ then γ and δ have the same source and the same target.
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Proof. Let α ∈ C[n · I′, X] and β ∈ C[p · I′, X] be, then we have U(α) ∈
T[n · I, U(X)] and U(β) ∈ T[p · I, U(X)]. By hypothesis, we have a classical
homotopy from U(α) to U(β), hence (U(α))(0) = (U(β))(0) i.e. (U(α))◦t(n) =
(U(β))◦s(p) or U(α◦t′(n)) = U(α◦s′(p)) by lemma 3.3. Then, since U is faithful,
we have α ◦ t′(n) = α ◦ s′(p), in other words α and β have the same source. 2

Lemma 3.7 Let C be a TCCP, then U preserves the constant morphisms and
U is the functor associated to C with the notation of Definition 3.1.

Proof. Let f ∈ C[X, Y ] be constant (i.e. which factorizes in C through the
terminal object). So we can write f as f = f ′ ◦ ζX where ζX is the unique
morphism from X to ∗. As U(∗) = ∗′, we have U(f) = U(f ′) ◦ U(ζX) hence
U(f) is constant. 2

Next result requires the notion of zigzag which is defined as follows: Given
a graph (V,A, s, t) where V and A are the sets of vertices and arrows of the
graph and ∀a ∈ A s(a) and t(a) are the source and target of a . A zigzag
between to vertices v1 and v2 is a finite sequence a1, . . . , an−1 of arrows such
that v1 ∈ {s(a1), t(a1)}, v2 ∈ {s(an−1), t(an−1)} and ∀k ∈ {1, . . . , n − 1}
{s(ak), t(ak)} ∩ {s(ak+1), t(ak+1)} 6= ∅ . Given two consecutive arrows of a
zigzag wk, wk+1 we have one of the four following cases

// oo //oo // // ¼¼YY

Clearly, the relation {(v1, v2) ∈ V × V | there is a zigzag between v1 and v2 }
is an equivalence relation on V . In what follows, the vertices of the graph are
paths and the arrows are the concrete dihomotopies.

Proposition 3.8 Let C be a TCCP. We write dihomotopy for concrete diho-
motopy in C. We suppose that for every object X of C we have the following
properties

(i) (Left identities) For all γ ∈ C[n · I′, X] where n 6= 0 and α ∈ C[p · I′, X]
such that α is constant with value γ◦t(n) there is a zigzag of dihomotopies
between α · γ and γ.

(ii) (Right identities) For all γ ∈ C[n · I′, X] where n 6= 0 and α ∈ C[p · I′, X]
such that α is constant with value γ◦s(n) there is a zigzag of dihomotopies
between γ · α and γ.

(iii) (Congruence) If there is a dihomotopy from α to α′, another one from β
to β′ such that the source of β is the target of α then there is a zigzag of
dihomotopies between β · α and β′ · α′.

(iv) (Compatibility) If γ ∈ C[n · I′, X] and δ ∈ C[p · I′, X] for n, p 6= 0 and
U(γ) = U(δ) then such that there is a zigzag of dihomotopies between γ
and δ.
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Then the transitive closure of

{
(γ, δ)

/
there is a dihomotopy from γ to δ or from δ to γ

}

i.e. the relation

{
(γ, δ)

/
there is a zigzag of dihomotopies between γ and δ

}

defines a notion of dihomotopy over C i.e. the family ( ∼X )X∈Ob(C) satisfies
the HCP.

Proof. Every∼X is obviously an equivalence relation. The axiom (iii) implies
that it is a congruence. The first part of the HCP is satisfied since every
f ∈ C[X,Y ] and every zigzag of dihomotopies w1, . . . , wn induce a zigzag of
dihomotopies f ◦w1, . . . , f ◦wn. The axioms (i) and (ii) give the second one.2

Remark 3.9 The axiom (iv) is not required by the proof of Proposition 3.8,
it is just a “reasonable” requirement.

It remains to check that the machinery we have developed (proposition
3.8) applies to Top, PoTop, dTop, LPoTop etc.

4 Applications

We give several examples of a category with paths, some of them are concrete
but not all. First, we notice that for any category with a terminal object ∗,
we have a structure of category with paths setting I := ∗. Of course, in this
case, we also have s = t and for any object X of C, ΓX is just the discrete
category whose objects are the points of X. This structure will be refered to
as the trivial one.

4.1 Set

Up to isomorphism, the only non trivial generic path of Set is {0, 1}. Indeed, if
P is a set containing at least 3 elements, for all {s, t} ⊆ P we have a bijection
φ from P to P such that φ({s, t}) 6= {s, t}. It follows that any generic path
on Set has at most two elements. Let us suppose that I := {0, 1}. Clearly,
n · I = {0, . . . , n}. Let X be a set and a, b ∈ X, the paths from a to b are
the sequences x ∈ X{0,...,n} such that x0 = a and xn = b. Concatenation of
x ∈ X{0,...,n} followed by y ∈ X{0,...,p} is z ∈ X{0,...,n+p−1} where zk = xk if
0 ≤ k ≤ n and zk = yk−n−1 if n < n+ p− 2. For example (3, 4, 5) · (1, 2, 3) =
(1, 2, 3, 4, 5), 3 is not repeated. The next assertion shows the strength of the
HCP: the only notions of homotopies are the extreme ones. It means that if
∼X is a notion of homotopy then we have either
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(i) for every set X and ∀x ∈ X{0,...,n} ∀y ∈ X{0,...,p} x ∼X y iff ∀i ∈ {0, . . . , n}
∀j ∈ {0, . . . , p} xi = yj

or

(ii) for every set X and ∀x ∈ X{0,...,n} ∀y ∈ X{0,...,p} x ∼X y

4.2 Cat

We choose the generic path I := (0 → 1) which can be seen as the poset
{0 < 1}. A point of an object X of Cat is just an object of X. A path on X
is just a morphism of X. The only automorphism of I is the identity hence
there is no time reversal. Further, Γ(X) is the free category generated by the
underlying graph of X. In other words, if U is the forgetful functor from Cat to
Grph and F its left adjoint then Γ(X) := F ◦U(X). For any small category X,
and any paths (i.e. composable sequence of X) αn, . . . , α0 and βp, . . . , β0 with
the same source and target, put αn, . . . , α0 ∼X βp, . . . , β0 iff their composites
agree in X. This provides a notion of homotopy and the fundamental category
of X (i.e. Γ(X)/∼X

) is X. Up to ismorphism, n · I is the poset {0 < ... < n}.
Note that if the generic path is {0 ↔ 1} i.e. the equivalence relation on {0, 1}
that identifies 0 and 1 then we have a time reversal.

4.3 2-Cat

Let us be loose about what a small 2-category is and just say that it is a small
category with 2-arrows between arrows (the usual ones) with the same source

and target. The idea is pictured by x

f

%%

g

99η

®¶
y Given a small 2-category

X, we set Γ2(X) := Γ(UX) where Γ is the functor defined in the example of
Cat and UX the underlying small category of X (there is an obvious forgetful
functor from 2-Cat to Cat). The the congruence ∼X over Γ(X) is generated by
the relation that identifies two morphisms αn, . . . , α0 and βp, . . . , β0 of Γ(X)
when there is a 2-morphism from the composite of α to the one of β. Note
that if for all morphisms α, β of X, there is a 2-arrow from α to β iff there is
a 2-arrow from β to α, then the relation ∼X is an equivalence relation and we
do not need to say “generated by”.

4.4 Top and Haus

We choose the generic path I := [0, 1], s and t send ∗ := {0} to 0 respectively
1. The map t ∈ [0, 1] 7−→ (1− t) ∈ [0, 1] is time reversal.
In order to obtain a category with paths, we set 0 ·I = {0}, 1 ·I = [0, 1] and for

n ∈ N n ≥ 2, n · I := [0, 1]. We also set for n ∈ N\{0} and k ∈ {1, ..., n} i(n)
k :

x ∈ I = [0, 1] 7−→ (k−1)+x
n

∈ n · I = [0, 1]. Then we have:
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Lemma 4.1 For all n ∈ N (n · I = I, i(n)
1 , ..., i

(n)
n ) is colimit representation of

the diagram

I I I I I I
∗ s

>>||| ∗t

``BBB
s
>>||| ∗t

``BBB
s
>>||| ··· ∗t

``BBB
s
>>||| ∗t

``BBB
s
>>||| ∗t

``BBB

︸ ︷︷ ︸
n copies de I

Moreover, given γ1 : n · I = [0, 1] −→ X, γ2 : m · I = [0, 1] −→ X and
γ3 : p · I = [0, 1] −→ X so that γ1(1) = γ2(0) and γ2(1) = γ3(0), we have
γ3 · (γ2 · γ1) = (γ3 · γ2) · γ1 where · is the barycentric concatenation. The
equality is strict, of course, the definition of · depends on n,m and p.

Proof. We check that
∀x ∈

[
0, n

n+m+p

]
γ3 · (γ2 · γ1)(x) = (γ3 · γ2) · γ1(x) = γ1

(
n+m+p

n
x
)

∀x ∈
[

n
n+m+p

, n+m
n+m+p

]
γ3 · (γ2 · γ1)(x) = (γ3 · γ2) · γ1(x) = γ2

(
n+m+p

m
x− n

m

)

∀x ∈
[

n+m
n+m+p

, 1
]
γ3 · (γ2 · γ1)(x) = (γ3 · γ2) · γ1(x) = γ3

(
n+m+p

p
x− n+m

p

)

2

Lemma 4.1 provides a structure of category with paths over Top. It is
defined for couples (n, γ) where n ∈ N and γ a continuous map from [0, 1]
to X, in other words, with respect to ·, (n, γ) and (p, γ) are different when
n 6= p.
Let X be an object of Top, Γ(X) is the category of Moore paths of X. In

particular, we have an isomorphic category setting n · I := [0, n] and i
(n)
k :

x ∈ [0, 1] 7−→ x + k − 1 ∈ [0, n]. The relation ∼X over Γ(X) is the classical
homotopy relation, we check that it provides a notion of homotopy and that
the fundamental category of X is just its (classical) fundamental groupoid
([13]). The structure of category of paths that we have defined over Top also
provides such a structure over Haus.

4.5 PoTop

The generic path is I :=
−−→
[0, 1] the closed unit segment with classical topology

and order, s, t are defined as in the example of Top. Any automorphism φ of
I satisfies φ(0) = 0 and φ(1) = 1, there is no time reversal. We set 0 · I = {0},
1 · I =

−−→
[0, 1] and for n ∈ N n ≥ 2, n · I :=

−−→
[0, 1]. We also set for n ∈ N\{0} and

k ∈ {1, ..., n} i(n)
k : x ∈ I =

−−→
[0, 1] 7−→ (k−1)+x

n
∈ n · I =

−−→
[0, 1]. Moreover, Lemma

4.1 can be adapted to PoTop without changes, providing it with structure of
a category with paths.
Moreover, the forgetful functor U : PoTop −→ Haus is faithful and has a left
adjoint since Haus is a reflective sub-category of Top, PoTop is topologically
concrete over Haus.
Let

−→
X be an object of PoTop. The only acceptable domain for dihomotopy is−−→

[0, 1]×−−→[0, 1] (see Definition 3.4), we apply proposition 3.8 to have the notion
of (concrete) dihomotopy (see definition 3.5). Then, the relation ∼X we put
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over Γ(X) is the usual notion of dihomotopy. It follows that −→π1(
−→
X ) is the

usual fundamental category of
−→
X (see [12], [8], [6] or [5]).

4.6 RTop

A similar construction proves that RTop is a TCCP over Haus. We have
an obvious inclusion functor i from PoTop to RTop which satifies −→π1(

−→
X ) =

−→π 1(X,≤X) where the fundamental categories on both sides of the equality
are respectively determined in PoTop and RTop (see [11]).

4.7 dTop

As suggested by Marco Grandis in [10], we take as generic path

I := ([0, 1], {continuous increasing mappings from [0, 1] to [0, 1]})

and s, t as in the preceeding examples. We note that there is no time reversal.
This category is concrete over Haus (assuming that the underlying topological
space of a directed space has to be Hausdorff), the concrete dihomotopy from
α ∈ dX to β ∈ dX is a morphism of dTop[I × I, (X, dX)] whose underlying
map is a classical homotopy from α to β. Proposition 3.8 can be applied: the
relation ∼X over Γ(X) that it provides as well as the fundamental category
it leads to correspond to the directed homotopy respectively the fundamental
category of a directed space defined by M.Grandis in [10].

Any pospace
−→
X can be seen as a directed space (X, dX) where

dX := PoTop[
−−→
[0, 1],

−→
X ] ;

this remark induces a kind of “inclusion functor” denoted i from PoTop to
dTop, with the preceeding notation, we have −→π1(

−→
X ) = −→π 1(X, dX) where the

fundamental categories on both sides of the equality are respectively deter-
mined in PoTop and dTop (see [11]). Moreover the functor i has a left adjoint,
the proof of this fact use, as a technical intermediate, the category RTop. More
precisely, the inclusion functor from PoTop to RTop has a left adjoint, thus
PoTop is a reflective sub-category of RTop and we deduce the cocompleteness
of PoTop from the one of RTop, indeed, it is a general fact that any reflective
sub-category of a cocomplete category is cocomplete itself (see [2]). Besides,
we also have an “inclusion” functor from RTop to dTop applying the same
construction as for the “inclusion” of PoTop in RTop. This inclusion also has
a left adjoint. We conclude by composing the adjunctions. All the details can
be found in [11].
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T-HOMOTOPY AND REFINEMENT OF OBSERVATION (I) :
INTRODUCTION

PHILIPPE GAUCHER

Abstract. This paper is the extended introduction of a series of papers about modelling
T-homotopy by refinement of observation. The notion of T-homotopy equivalence is dis-
cussed. A new one is proposed and its behaviour with respect to other construction in
dihomotopy theory is explained.

1. About deformations of HDA

The main feature of the two algebraic topological models of higher dimensional automata
(or HDA) introduced in [GG03] and in [Gau03] is to provide a framework for modelling
continuous deformations of HDA corresponding to subdivision or refinement of observation.
Globular complexes and flows are specially designed to modelling the weak S-homotopy
equivalences (the spatial deformations) and the T-homotopy equivalences (the temporal
deformations). The first descriptions of spatial deformation and of temporal deformation
dates back from the informal and conjectural paper [Gau00].

Let us now explain a little bit what the spatial and temporal deformations consist of
before presenting the results. The computer-scientific and geometric explanations of [GG03]
must of course be preferred for a deeper understanding.

In dihomotopy theory, processes running concurrently cannot be distinguished by any
observation. For instance in Figure 1, each axis of coordinates represents one process and
the two processes are running concurrently. The corresponding geometric shape is a full
2-cube. This example corresponds to the flow

−→
C 2 defined as follows:

• Let us introduce the flow ∂
−→
C 2 defined by (∂

−→
C 2)0 = {0, 1, 2, 3}, P0,1∂

−→
C 2 = {U},

P1,2∂
−→
C 2 = {V }, P0,3∂

−→
C 2 = {W}, P3,2∂

−→
C 2 = {X}. The flow ∂

−→
C 2 corresponds

to an empty square, where the execution paths U ∗ V and W ∗X are not running
concurrently.

• Then consider the pushout diagram

Glob(S0)

��

q // ∂
−→
C 2

��
Glob(D1) // −→C 2

1991 Mathematics Subject Classification. 55P99, 68Q85.
Key words and phrases. concurrency, homotopy, directed homotopy, model category, refinement of ob-

servation, poset, cofibration.
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2 P. GAUCHER

Figure 1. Two concurrent processes

Figure 2. The most simple example of T-homotopy equivalence

with q(S0) = {U ∗ V,W ∗ X} (the globe functor Glob(−) is defined below). The
presence of Glob(D1) creates a S-homotopy between the execution paths U ∗V and
W ∗X, modelling this way the concurrency.

It does not matter for P0,2
−→
C 2 to be homeomorphic to D1 or only homotopy equivalent to

D1, or even only weakly homotopy equivalent to D1. The only thing that matters is that
the topological space P0,2

−→
C 2 be weakly contractible. Indeed, a hole like in the flow ∂

−→
C 2

(the space P0,2∂
−→
C 2 is the discrete space {U ∗ V,W ∗X} ) means that the execution paths

U ∗V and W ∗X are not running concurrently, and therefore that they are distinguishable
by observation. This kind of identification is well taken into account by the notion of weak
S-homotopy equivalence. This notion is introduced in [GG03] in the framework of globular
complexes, in [Gau03] in the framework of flows and it is proved that these two notions are
equivalent in [Gau05a].

In dihomotopy theory, it is also required to obtain descriptions of HDA which are in-
variant by refinement of observation. The simplest example of refinement of observation is
represented in Figure 2, in which the directed segment U is divided in two directed seg-
ments U ′ and U ′′. This kind of identification is well taken into account by the notion of
T-homotopy equivalence. This notion is introduced in [GG03] in the framework of globular
complexes, and in [Gau05a] in the framework of flows. The latter paper also proves that
the two notions are equivalent. In the case of Figure 2, the T-homotopy equivalence is the
unique morphism of flows sending U to U ′ ∗ U ′′.
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T-HOMOTOPY AND REFINEMENT OF OBSERVATION (I) 3

Each weak S-homotopy equivalence as well as each T-homotopy equivalence preserves
as above the initial states and the final states of a flow. More generally, any good notion
of dihomotopy equivalence must preserve the branching and merging homology theories in-
troduced in [Gau05c]. This paradigm dates from the beginning of dihomotopy theory: a
dihomotopy equivalence must not change the topological configuration of branching and
merging areas of execution paths [Gou03]. It is also clear that any good notion of dihomo-
topy equivalence must preserve the underlying homotopy type, that is the topological space,
defined only up to weak homotopy equivalence, obtained after removing the time flow. In
the case of Figure 1 and Figure 2, this underlying homotopy type is the one of the point.

2. Prerequisites and notations

The initial object (resp. the terminal object) of a category C, if it exists, is denoted by
∅ (resp. 1).

Let C be a cocomplete category. If I is a set of morphisms of C, then the class of
morphisms of C that satisfy the RLP (right lifting property) with respect to any morphism
of I is denoted by inj(I) and the class of morphisms of C that are transfinite compositions
of pushouts of elements of I is denoted by cell(I). Denote by cof(I) the class of morphisms
of C that satisfy the LLP (left lifting property) with respect to any morphism of inj(I). It
is a purely categorical fact that cell(I) ⊂ cof(I). Moreover, any morphism of cof(I) is a
retract of a morphism of cell(I). An element of cell(I) is called a relative I-cell complex.
If X is an object of C, and if the canonical morphism ∅ −→ X is a relative I-cell complex,
one says that X is a I-cell complex.

Let C be a cocomplete category with a distinguished set of morphisms I. Then let
cell(C, I) be the full subcategory of C consisting of the objects X of C such that the canonical
morphism ∅ −→ X is an object of cell(I). In other terms, cell(C, I) = (∅↓C) ∩ cell(I).

Possible references for model categories are [Hov99], [Hir03] and [DS95]. The original
reference is [Qui67] but Quillen’s axiomatization is not used in this paper. The axiomati-
zation from Hovey’s book is preferred. If M is a cofibrantly generated model category with
set of generating cofibrations I, let cell(M) := cell(M, I). A cofibrantly generated model
structure M comes with a cofibrant replacement functor Q : M−→ cell(M).

A partially ordered set (P,6) (or poset) is a set equipped with a reflexive antisymmetric
and transitive binary relation 6. A poset is locally finite if for any (x, y) ∈ P × P , the set
[x, y] = {z ∈ P, x 6 z 6 y} is finite. A poset (P,6) is bounded if there exist 0̂ ∈ P and
1̂ ∈ P such that P ⊂ [0̂, 1̂] and such that 0̂ 6= 1̂. Let 0̂ = minP (the bottom element) and
1̂ = maxP (the top element).

The category Top of compactly generated topological spaces (i.e. of weak Hausdorff
k-spaces) is complete, cocomplete and cartesian closed (more details for this kind of topo-
logical spaces in [Bro88, May99], the appendix of [Lew78] and also the preliminaries of
[Gau03]). For the sequel, any topological space will be supposed to be compactly gener-
ated. A compact space is always Hausdorff.

The time flow of a higher dimensional automaton is encoded in an object called a flow
[Gau03]. A flow X consists of a set X0 called the 0-skeleton and whose elements corre-
spond to the states (or constant execution paths) of the higher dimensional automaton. For
each pair of states (α, β) ∈ X0 × X0, there is a topological space Pα,βX whose elements
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4 P. GAUCHER

correspond to the (nonconstant) execution paths of the higher dimensional automaton be-
ginning at α and ending at β. If x ∈ Pα,βX , let α = s(x) and β = t(x). For each triple
(α, β, γ) ∈ X0 × X0 × X0, there exists a continuous map ∗ : Pα,βX × Pβ,γX −→ Pα,γX
called the composition law which is supposed to be associative in an obvious sense. The
topological space PX =

⊔
(α,β)∈X0×X0 Pα,βX is called the path space of X. The category of

flows is denoted by Flow. A point α of X0 such that there are no non-constant execution
paths ending to α (resp. starting from α) is called an initial state (resp. a final state). A
morphism of flows f from X to Y consists of a set map f0 : X0 −→ Y 0 and a continu-
ous map Pf : PX −→ PY preserving the structure. A flow is therefore “almost” a small
category enriched in Top.

The category Flow is equipped with the unique model structure such that [Gau03]:
• The weak equivalences are the weak S-homotopy equivalences, i.e. the morphisms

of flows f : X −→ Y such that f0 : X0 −→ Y 0 is a bijection and such that
Pf : PX −→ PY is a weak homotopy equivalence.

• The fibrations are the morphisms of flows f : X −→ Y such that Pf : PX −→ PY
is a Serre fibration.

This model structure is cofibrantly generated. The set of generating cofibrations is the set
Igl
+ = Igl ∪ {R,C} with

Igl = {Glob(Sn−1) ⊂ Glob(Dn), n > 0}
where Dn is the n-dimensional disk, where Sn−1 is the (n−1)-dimensional sphere, where R
and C are the set maps R : {0, 1} −→ {0} and C : ∅ −→ {0} and where for any topological
space Z, the flow Glob(Z) is the flow defined by Glob(Z)0 = {0̂, 1̂}, PGlob(Z) = Z, s = 0̂
and t = 1̂, and a trivial composition law. The set of generating trivial cofibrations is

Jgl = {Glob(Dn × {0}) ⊂ Glob(Dn × [0, 1]), n > 0}.

3. Why adding new T-homotopy equivalences ?

It turns out that the T-homotopy equivalences, as defined in [Gau05a], are the deforma-
tions which locally act like in Figure 2 1. So it becomes impossible with this old definition
to identify the directed segment of Figure 2 with the full 3-cube of Figure 3 by a zig-zag
sequence of weak S-homotopy and of T-homotopy equivalences preserving the initial state
and the final state of the 3-cube since any point of the 3-cube is related to three distinct
edges (cf. Theorem 3.4). This contradicts the fact that concurrent execution paths cannot
be distinguished by observation. More precisely, one has:

Proposition 3.1. Let X and Y be two flows. There exists a unique structure of flows
X ⊗ Y on the set X × Y such that

(1) (X ⊗ Y )0 = X0 × Y 0

(2) P(X ⊗ Y ) = (PX × PY ) ∪ (X0 × PY ) ∪ (PX × Y 0)
(3) s(x, y) = (s(x), s(y)), t(x, y) = (t(x), t(y)), (x, y) ∗ (z, t) = (x ∗ z, y ∗ t).

Definition 3.2. The directed segment
−→
I is the flow Glob(Z) with Z = {u}.

1This fact was of course not known when [GG03] was being written down. The definition of T-homotopy
equivalence presented in that paper was based on the notion of homeomorphism and it sounded so natural...
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T-HOMOTOPY AND REFINEMENT OF OBSERVATION (I) 5

Figure 3. The full 3-cube

Definition 3.3. Let n > 1. The full n-cube
−→
C n is by definition the flow Q(

−→
I ⊗n), where

Q is the cofibrant replacement functor.

Notice that for n > 2, the flow
−→
I ⊗n is not cofibrant. Indeed, the composition law

contains relations. For instance, with n = 2, one has (0̂, u) ∗ (u, 1̂) = (u, 0̂) ∗ (1̂, u)

Theorem 3.4. Let n > 3. There does not exist any zig-zag sequence

−→
C n = X0

f0 // X1 X2
f1oo f2 // . . . X2n =

−→
I

f2n−1oo

where each Xi is an object of cell(Flow) and where each morphism fi is either a S-homotopy
equivalence 2 or a T-homotopy equivalence.

We must suppose in the statement of Theorem 3.4 that each flow Xi belongs to cell(Flow)
because T-homotopy is only defined between this kind of flow.

4. Full directed ball

We need to generalize the notion of subdivision of the directed segment
−→
I .

Definition 4.1. A flow X is loopless if for every α ∈ X0, the space Pα,αX is empty.

A flow X is loopless if and only if the transitive closure of the set {(α, β) ∈ X0 ×
X0 such that Pα,βX 6= ∅} induces a partial ordering on X0.

Definition 4.2. A full directed ball is a flow
−→
D such that:

• the 0-skeleton
−→
D0 is finite

•
−→
D has exactly one initial state 0̂ and one final state 1̂ with 0̂ 6= 1̂

• each state α of
−→
D0 is between 0̂ and 1̂, that is there exists an execution path from

0̂ to α, and another execution path from α to 1̂

2Recall that a morphism between two objects of cell(Flow) is a weak S-homotopy equivalence if and
only if it is a S-homotopy equivalence.
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A
6 // B

6

��>
>>

>>
>>

>

0̂
6

��>
>>

>>
>>

>

6
@@��������

1̂

C

6

77ooooooooooooooo

Figure 4. Example of finite bounded poset

•
−→
D is loopless

• for any (α, β) ∈
−→
D0 ×

−→
D0, the topological space Pα,β

−→
D is empty or weakly con-

tractible.

Let
−→
D be a full directed ball. Then the set

−→
D0 can be viewed as a finite bounded poset.

Conversely, if P is a finite bounded poset, let us consider the flow F (P ) associated to P :
it is of course defined as the unique flow (up to isomorphism) F (P ) such that F (P )0 = P
and Pα,βF (P ) = {u} if α < β and Pα,βF (P ) = ∅ otherwise. Then F (P ) is a full directed
ball and for any full directed ball

−→
D , the two flows

−→
D and F (

−→
D0) are weakly S-homotopy

equivalent.
Let

−→
E be another full directed ball. Let f :

−→
D −→

−→
E be a morphism of flows preserving

the initial and final states. Then f induces a morphism of posets from
−→
D0 to

−→
E 0 such that

f(min
−→
D0) = min

−→
E 0 and f(max

−→
D0) = max

−→
E 0. Hence the following definition:

Definition 4.3. Let T be the class of morphisms of posets f : P1 −→ P2 such that:
(1) The posets P1 and P2 are finite and bounded.
(2) The morphism of posets f : P1 −→ P2 is one-to-one; in particular, if x and y are

two elements of P1 with x < y, then f(x) < f(y).
(3) One has f(minP1) = min P2 and f(max P1) = maxP2.

Then a generalized T-homotopy equivalence is a morphism of cof({Q(F (f)), f ∈ T }) where
Q is the cofibrant replacement functor of Flow.

In a HDA, a n-transition, that is the concurrent execution of n processes, is represented by
the full n-cube

−→
C n. The corresponding poset is the product poset {0̂ < 1̂}n. In particular,

the poset corresponding to the full directed ball of Figure 3 is {0̂ < 1̂}3 = {0̂ < 1̂} × {0̂ <

1̂} × {0̂ < 1̂}.
The poset corresponding to Figure 1 is the poset {0̂ < 1̂}2 = {0̂ < 1̂} × {0̂ < 1̂}. If for

instance U is subdivided in two processes as in Figure 2, the poset of the full directed ball
of Figure 1 becomes equal to {0̂ < 2 < 1̂} × {0̂ < 1̂}.

One has the isomorphism of flows
−→
I ⊗n ∼= F ({0̂ < 1̂}n) for every n > 1. The flow

−→
C n (n > 1) is identified to

−→
I by the zig-zag sequence of S-homotopy and generalized

T-homotopy equivalences

−→
I Q(

−→
I )

'oo Q(F (gn)) //Q(
−→
I ⊗n),
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T-HOMOTOPY AND REFINEMENT OF OBSERVATION (I) 7

where gn : {0̂ < 1̂} −→ {0̂ < 1̂}n ∈ T .

5. Is this new definition well-behaved ?

First of all, we must verify that each old T-homotopy equivalence as defined in [Gau05a]
will be a particular case of this new definition. And indeed, one has:

Theorem 5.1. Let X and Y be two objects of cell(Flow). Let f : X −→ Y be a T-
homotopy equivalence as defined in [Gau05a]. Then f can be written as a composite X −→
Z −→ Y where g : X −→ Z is a generalized T-homotopy equivalence and where h : Z −→ Y
is a weak S-homotopy equivalence.

The two other tests consist of verifying that the branching and merging homology theories
[Gau05c], as well as the underlying homotopy type functor [Gau05a] are preserved with this
new definition of T-homotopy equivalence. And indeed, one has:

Theorem 5.2. Let f : X −→ Y be a generalized T-homotopy equivalence. Then for
any n > 0, the morphisms of abelian groups H−

n (f) : H−
n (X) −→ H−

n (Y ) and H+
n (f) :

H+
n (X) −→ H+

n (Y ) are isomorphisms of groups where H−
n (resp.H+

n ) is the n-th branching
(resp. merging) homology group. And the continuous map |f | : |X| −→ |Y | is a weak
homotopy equivalence where |X| denotes the underlying homotopy type of the flow X.

6. Conclusion

This new definition of T-homotopy equivalence seems to be well-behaved. It will hope-
fully have a longer lifetime than other ones that the author proposed in the past. It is
already known after [Gau05b] that it is impossible to construct a model structure on Flow
such that the weak equivalences are exactly the weak S-homotopy equivalences and the
generalized T-homotopy equivalences. So new models of dihomotopy will be probably nec-
essary to understand the T-homotopy equivalences.
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A Domain-Theoretic Approach to the Causal
Structure of Spacetime

(Invited Talk)

Prakash Panangaden 1

School of Computer Science
McGill University

3480 rue University, Suite 318
Montreal, Quebec H3A 2A7, Canada

The causal structure of spacetime is a part of a fundamental mathemati-
cal model of the spacetimes that appear in general relativity. The causality
relation defines a partial order which has been studied by Geroch, Hawking,
Kronheimer, Penrose any many others. Recently Sorkin has initiated an ap-
proach to quantum gravity that is based on the causality relation as the most
basic structure. This raises the question as to whether the causality relation
determines other aspects of spacetime, for example, the topology. The tech-
niques of domain theory are perfectly adapted to this study and – I hope –
that the GETCO community will find this to be a fertile source of problems.

We prove that a globally hyperbolic spacetime with its causality relation is
a bicontinuous poset whose interval topology is the manifold topology. From
this one can show that from only a countable dense set of events and the
causality relation, it is possible to reconstruct a globally hyperbolic space-
time in a purely order theoretic manner. The ultimate reason for this is that
globally hyperbolic spacetimes belong to a category that is equivalent to a
special category of domains called interval domains. We obtain a mathemat-
ical setting in which one can study causality independently of geometry and
differentiable structure, and which also suggests that spacetime emerges from
something discrete.

The talk will begin with expository material about spacetime structure and
will be easily accessible to anyone who can follow the other talks at GETCO.

This is joint work with Keye Martin who really did almost everything.

1 Email: prakash@cs.mcgill.ca
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A Convenient Category
of Locally Ordered Spaces

Sanjeevi Krishnan 1

Department of Mathematics
University of Chicago

5734 S. University Avenue
Chicago, Illinois 60637, USA

An adaptation of homotopy theory for the “locally ordered” state spaces
of concurrent machines promises a more tractable approach to static program
analysis, as demonstrated by Fajstrup, Goubault, Raussen, and others. Cer-
tain “convenient” categories of spaces allow homotopy theorists to define gen-
eral constructions on spaces of interest with a minimum of fuss. In this talk,
we will define a notion of “locally ordered spaces” broad enough to describe
the state spaces of machines found in nature, coherent enough to exhibit some
interplay of order and topology, yet robust enough to form a complete, cocom-
plete, and Cartesian closed category. We compare our notion with others in
the literature and discuss potential applications to the “directed” homotopy
theory of state spaces.

1 Email: sanjeevi@math.uchicago.edu
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Bisimulations of Higher-Dimensional Automata
Lift Directed Paths

Ulrich Fahrenberg

Dept. of Mathematical Sciences, Aalborg University
9220 Aalborg East, Denmark. Email: uli@math.aau.dk

Abstract

We introduce notions of simulation and bisimulation up to homotopy, for higher-
dimensional automata. We conjecture that our notion of bisimulation is closely
related to the notion of history-preserving bisimilarity as introduced for higher-
dimensional automata by van Glabbeek. We show that a mapping is a bisimulation
if and only if its geometric realisation lifts directed paths up to directed homo-
topy, thus making the property of bisimilarity susceptible to some machinery from
algebraic topology.

1 Introduction

Higher-dimensional automata are a formalism for concurrent systems, intro-
duced by Vaughan Pratt [18] in 1991. They have the specific feature that they
can express all higher-order dependencies between the processes in a concur-
rent system, a capacity which other popular formalisms are lacking. Rob van
Glabbeek [12] has recently shown that, measured in terms of expressivity and
up to a certain notion of history-preserving bisimilarity, higher-dimensional
automata are the most general of the main formalisms for concurrent sys-
tems.

In our paper [3], we developed a framework for simulations and bisimula-
tions of higher-dimensional automata, building on earlier work of Goubault in
[13,14]. We showed that our therein defined notion of bisimulation has an ex-
pression as maps of directed topological spaces which lift directed paths. Here
we follow up on a concluding remark of [3] and introduce another, weaker kind
of (bi)simulation, and we show that these bisimulations are maps of directed
topological spaces which lift directed paths up to directed homotopy.

The findings reported in this extended abstract are part of the author’s
Ph.D. research programme. Due to space and time limitations, some details
had to be omitted here; these can be found in [4].

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs
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2 (Pre)Cubical Sets

A precubical set is a graded set A = {An}n∈N together with mappings δν
i :

An → An−1, i = 1, . . . , n, ν = 0, 1, satisfying the precubical identity

δν
i δ

µ
j = δµ

j−1δ
ν
i (i < j) (1)

These are called face maps, and we write a/b (a is a direct face of b) if a = δν
i b

for some i, ν. If ν = 0, then a is a direct lower face of b, denoted a /− b, and
if ν = 1, then a is a direct upper face of b, a /+ b. The reflexive, transitive
closures of the relations /, /−, and /+ are denoted /∗, /∗−, respectively /∗+.

A cubical set is a precubical set A together with mappings εi : An → An+1,
i = 1, . . . , n + 1, such that

εiεj = εj+1εi (i ≤ j) δν
i εj =


εj−1δ

ν
i (i < j)

εjδ
ν
i−1 (i > j)

id (i = j)

(2)

These are called degeneracies, and equations (1) and (2) together form the
cubical identities.

Morphisms of (pre)cubical sets are required to commute with the structure
maps, i.e. if A, B are two (pre)cubical sets, then a morphism f : A→ B is a
sequence of mappings f = {fn : An → Bn} that fulfill the first, respectively
both, of the equations

δν
i fn = fn−1δ

ν
i εifn = fn+1εi

This defines two categories, pCub and Cub, both of which are presheaf
categories over certain small categories of elementary cubes, cf. [16,2], hence
they are complete and cocomplete. The forgetful functor

Cub −→ pCub

has a left adjoint, providing us with a “free” functor in the opposite direction
which we shall denote F .

We shall henceforth assume any precubical set A = {An} to satisfy the
following:

• An ∩ Am = ∅ for n 6= m. Hence any cube a in A has a unique dimension
dim a for which a ∈ Adim a.

• A is non-selflinked : Whenever a /∗ b in A, then a = δν1
j1
· · · δν`

j`
b for a unique

sequence (ν1, . . . , ν`) and a unique increasing sequence (j1, . . . , j`).

• A is geometric: Whenever a, b ∈ A have a common face, then there is a
unique c ∈ A such that c /∗ a, c /∗ b, and for all d ∈ A such that d /∗ a and
d /∗ b, also d /∗ c.

2
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i∗ a

d

e

b

c

f

A

Fig. 1. Three equivalent computations: (i∗, a, b, c, f), (i∗, a, A, f), (i∗, a, d, e, f).
Note that for sake of readability, we have omited some 1-cubes in the sequences.

A non-selflinked does not contain any small loops ; any loop consists of
at least two different cubes. In the geometric realisation (cf. Section 6) of a
geometric precubical set, the intersection of two cubes, if nonempty, is a face
in both cubes. Indeed, a non-selflinked precubical set A is geometric if and
only if the property holds that for any a, b ∈ A such that [a] ∩ [b] 6= ∅, there
exists c ∈ A such that [a] ∩ [b] = [c]. This is analogous to a condition one
frequently sees required of simplicial complexes, cf. [1, Def. IV.21.1].

3 Higher-Dimensional Automata

Higher-dimensional automata are precubical sets with a specified initial state
(a 0-dimensional cube). For labeling them, we follow [14]:

Let Σ be a finite set of labels, and let ≤ be a total order on Σ. Define
a precubical set !Σ as follows: !Σ0 = {∗}, !Σn is the set of (not necessarily
strictly) increasing sequences of length n of elements of Σ, and

δα
i(n)(x1, . . . , xn) = (x1, . . . , x̂i, . . . , xn)

Then !Σ is a precubical set. Note that different orders on Σ yield isomorphic
precubical sets.

A labeled higher-dimensional automaton is a precubical diagram

∗ i−→ A
λ−→ !Σ

where A is a geometric precubical set, ∗ is the precubical set with only one
0-cube, and !Σ is constructed from a finite labeling set Σ as above. The map
i determines the initial state, and λ is the labeling map.

Computations in higher-dimensional automata are sequences of adjacent
cubes, cf. [11]. We change the notion of [11] slightly and call them rooted cube
paths, see below. Also in [11], homotopy of computations is introduced, the
idea being that homotopic computations are computationally equivalent. We
give a precise definition below; see figure 1 for an example of three equivalent
computations.

3
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4 Cube Paths

A cube path in a cubical set A is a sequence (a1, . . . , an) of cubes in A such
that ai 6= ai+1, and ai /∗− ai+1 or ai+1 /∗+ ai for all i = 1, . . . , n − 1. This is
a generalisation of the computation paths defined in [3,12], in that in a cube
path, adjacent cubes are not necessarily direct faces of each other. A cube
path as in [12], i.e. where adjacent cubes are direct faces, will be called full.

A cube b in A is reachable from another cube a if there exists a cube path
starting in a and ending in b. A rooted cube path in a higher-dimensional

automaton ∗ i→ A → !Σ is a cube path (a1, . . . , an) in A such that a1 = i∗,
and a cube b in A is reachable if it is reachable from i∗.

A cube path (b1, . . . , bm) is a filler of another cube path (a1, . . . , an), de-
noted (a1, . . . , an) � (b1, . . . , bm), if

• the sequence (a1, . . . , an) is a subsequence of (b1, . . . , bm),

• a1 = b1 and an = bm, and

• for each bj there are ai and ak such that ai /∗ bj /∗ ak.

Two full cube paths (a1, . . . , an), (b1, . . . , bm) are adjacent if n = m and
there is at most one i ∈ {1, . . . , n} for which ai 6= bi. Homotopy of full cube
paths in A, denoted by the symbol ∼, is the transitive closure of the adjacency
relation. See also [12].

Two general cube paths (a1, . . . , an), (b1, . . . , bm) are homotopic if they
can be filled in to full cube paths which are homotopic. Note that it does not
matter in what way we fill in the cube paths; any two fillers of a cube path are
homotopic. We shall denote homotopy classes of cube paths by [a1, . . . , an].

The universal covering of a pointed precubical set i : ∗ → A consists of
a pointed precubical set ĩ : ∗ → Ã and a morphism πA : Ã → A defined as
follows:

Ãn =
{
[a1, . . . , ak]

∣∣ (a1, . . . , ak) cube path in A, a1 = i∗, ak ∈ An}
δ̃1
i [a1, . . . , ak] = [a1, . . . , ak, δ

1
i ak]

δ̃0
i [a1, . . . , ak] = {(b1, . . . , b`) | b` = δ0

i ak

and (b1, . . . , b`, ak) ∼ (a1, . . . , ak)}
ĩ∗ = [i∗]
πA[a1, . . . , ak] = ak

The morphism πA : Ã → A is called the covering map. It requires a proof
that Ã is indeed a precubical set, see [4].

5 Simulations and Bisimulations

In [3], we defined notions of simulation and bisimulation for higher-dimensional
automata. Here we generalise these notions, also taking into account homo-

4
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topy of computations. We call them h-simulation and h-bisimulation, where
the “h” stands for “homotopy.”

An h-simulation of labeled higher-dimensional automata 〈∗ � A
λ→ !Σ〉,

〈∗�B
µ→ !Ξ〉 consists of cubical morphisms f : 〈∗�A〉 → 〈∗�B〉, σ : !Σ→ !Ξ

such that that for any rooted cube path (a1, . . . , an) in A with dim an = 0,
there exists a rooted cube path (b1, . . . , bn) ∼

(
f(a1), . . . , f(an)

)
in B such

that µ(bi) = σ(λ(ai)) for all i = 1, . . . , n.

We need cubical morphisms above to be able to map “real” transitions
to idle transitions, cf. [19]. So to be precise, f and σ are cubical morphisms
between the cubical diagrams freely generated by the precubical diagrams
〈∗�A� !Σ〉, 〈∗�B� !Ξ〉. For bisimulations however, we do not want to map
real to idle transitions, so in that case, we are back to precubical morphisms:

An h-bisimulation of labeled higher-dimensional automata 〈∗� A
λ→ !Σ〉,

〈∗�B
µ→ !Ξ〉 is an h-simulation (f, id), where f is a precubical morphism, and

such that for any rooted cube path (a1, . . . , an) in A and for any cube path
(b1, . . . , bm) in B with b1 = f(an) and dim bm = 0, there exists a cube path
(an, . . . , a`) in A such that

(
f(a1), . . . , f(a`)

)
∼

(
f(a1), . . . , f(an), b2, . . . , bm

)
.

Following [17], we say that two higher-dimensional automata 〈∗ � A �
!Σ〉, 〈∗ � B � !Σ〉 are h-bisimilar if there exists a third higher-dimensional
automaton 〈∗�C � !Σ〉 and a span of h-bisimulation maps

〈∗�A� !Σ〉 ←− 〈∗�C � !Σ〉 −→ 〈∗�B� !Σ〉

Proposition 5.1 A precubical h-simulation (f, id) : 〈∗�A
λ→ !Σ〉 → 〈∗�B

µ→
!Σ〉 is an h-bisimulation if and only if f̃ : Ã→ B̃ has the property that for any
ã ∈ Ã, and for any b̃ ∈ B̃0 which is reachable from f̃(ã), there exists c̃ ∈ Ã0

reachable from ã such that b̃ = f̃(c̃).

The unfolding, cf. [11], of a higher-dimensional automaton 〈∗ i→A
λ→ !Σ〉

is the automaton 〈∗ ĩ→ Ã
λ̃→ !Σ̃〉, where Ã, !Σ̃ are the universal coverings of

i : ∗ → A respectively λ ◦ i : ∗ → !Σ, and λ̃[a1, . . . , an] = [λa1, . . . , λan].
This construction is analogous to the unfolding of a transition system to a
synchronisation tree, cf. [19]; indeed, the universal covering of a precubical
set is what should be the proper generalisation of a tree to higher dimensions,
see [4].

Corollary 5.2 Any higher-dimensional automaton 〈∗�A
λ→ !Σ〉 is h-bisimilar

to a relabeling of its unfolding via the h-bisimulation map

(πA, id) : 〈∗ � Ã
π!Σ◦λ̃−→ !Σ〉 −→ 〈∗�A

λ→ !Σ〉

Conjecture 5.3 The notion of h-bisimilarity defined above is equivalent to
the notion of history-preserving bisimilarity from [12].

5
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6 Geometric Realisation

The geometric realisation of a geometric precubical set A is the directed
space [15] (indeed, a local po-space [10])

|A| =
⊔
n∈N

An × ~In
/
≡

where ~I denotes the standard directed unit interval, and the equivalence rela-
tion ≡ is induced by identifying

(δν
i a; t1, . . . , tn−1) ≡ (a; t1, . . . , ti−1, ν, ti, . . . , tn−1)

for all a ∈ An, n ∈ N, i = 1, . . . , n, ν = 0, 1, ti ∈ I. Geometric realisation
is turned into a functor by mapping f : A → B ∈ pCub to the directed map
|f | : |A| → |B| defined by

|f |(a; t1, . . . , tn) = (f(a); t1, . . . , tn)

The image of a cube a ∈ An is the closed set

[a] = {(a, t1, . . . , tn) | 0 ≤ tj ≤ 1 for all j} ⊆ |A|

the interior image of a is the set

]a[ = {(a, t1, . . . , tn) | 0 < tj < 1 for all j} ⊆ |A|

and the carrier carr x of a point x ∈ |A| is the unique cube a ∈ A such that
x ∈ ]a[.

It can be shown, cf. [8], that the geometric realisation of the unfolding of
a pointed precubical set i : ∗ → A is the universal directed covering space of
|A| with respect to [i∗], cf. [5].

A d-path, or directed path, p : ~I → |A| is a continuous function for which
there exists a partition 0 = s1 < · · · < sn = 1 and cubes a1, . . . , an−1 in A
such that im p |[si,si+1] ⊆ ai and p(s) ≤ai

p(t) whenever si ≤ s ≤ t ≤ si+1,

where ≤ai
is the standard partial order on the unit cube [ai] ≈ ~Idim ai .

Lemma 6.1 (cf. [7]) Given a d-path p : ~I → |A| in the geometric realisation
of a precubical set A, there exists a partition of the unit interval 0 = s1 ≤
· · · ≤ sn+1 = 1 and a unique cube path (a1, . . . , an) in A such that carr p(si) ∈
{ai−1, ai}, and carr p(s) = ai for si < s < si+1.

The carrier sequence carrs p of a d-path p : ~I → |A| is the unique cube
path given by the lemma.

Two d-paths p, q : ~I → |A| are d-homotopic, denoted p ∼ q, if there exists
a continuous mapping H : I2 → |A| such that H(s, ·) is a d-path in |A| for all
s ∈ I, H(s, 0) = H(0, 0) and H(s, 1) = H(0, 1) for all s ∈ I, and H(0, ·) = p,

6
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H(1, ·) = q. Technically, what we have defined here is dihomotopy, not d-
homotopy, but by a result in [7], these agree in the geometric realisations of
precubical sets.

Lemma 6.2 (cf. [7]) Given d-paths p, q : ~I → |A| such that carr p(0) =
carr q(0) ∈ A0 and carr p(1) = carr q(1) ∈ A0, then p ∼ q if and only if
carrs p ∼ carrs q.

Theorem 6.3 A precubical h-simulation (f, id) : 〈∗ i→A � !Σ〉 → 〈∗ j→B �
!Σ〉 is an h-bisimulation map if and only if one of the following equivalent
properties holds:

• For any d-path r : ~I → |A| with r(0) = [i∗] and any d-path q : ~I → |B| with

q(0) = |f |(r(1)) and carr q(1) ∈ B0, there exists a d-path p : ~I → |A| such
that p(0) = r(1) and |f | ◦ (r ∗ p) ∼ (|f | ◦ r) ∗ q.

• For any d-path r : ~I → |Ã| with r(0) = [̃i∗] and any d-path q : ~I → |B̃| with

q(0) = |f̃ |(r(1)) and carr q(1) ∈ B̃0, there exists a d-path p : ~I → |Ã| such
that p(0) = r(1) and |f̃ |(p(1)) = q(1).

Note that equivalence of the two above properties also follows from |Ã|
being the universal directed covering space of A. Also, if we let q′ = (f ◦ r) ∗ q
and p′ = r ∗ p be the concatenations, we can encode the first property in the
diagram

0 //
� _

��

| ∗ |
|i|
��

~I
r //

� _

��

|A|

|f |
��−−→

[0, 2] q′
//

p′

>>

|B|
∼

where the lower triangle commutes up to d-homotopy. That is, |f | lifts d-paths
up to d-homotopy.

7 Conclusion and Future Work

We have in this article introduced a notion of h-bisimulation for higher-
dimensional automata which appears to be closely related to van Glabbeek’s [12]
history-preserving bisimilarity. We have shown that h-bisimulation has an in-
terpretation as a dipath-lifting property of morphisms, making the problem of
deciding bisimilarity susceptible to some machinery from algebraic topology.

In topological language, a dipath-lifting morphism is a weak kind of ho-
motopy fibration, hinting that fibrations (well-studied in algebraic topology)
could have applications, as well. This also suggests that a general theory of
directed fibrations should be developed.

7
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