
BRICS
Basic Research in Computer Science

Short Contributions from the Workshop on

Algebraic Process Calculi:
The First Twenty Five Years and Beyond

PA ’05

Bertinoro, Forl ı̀, Italy, August 1–5, 2005

Luca Aceto
Andrew D. Gordon
(editors)

BRICS Notes Series NS-05-3

ISSN 0909-3206 June 2005

B
R

IC
S

N
S

-05-3
A

ceto
&

G
ordon

(eds.):
P

A
’05

S
hortC

ontributions



Copyright c© 2005, Luca Aceto & Andrew D. Gordon
(editors).
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/05/3/



Short Contributions from the Workshop on

Algebraic Process Calculi:
The First Twenty Five Years and Beyond

Bertinoro (Forl̀ı), Italy, August 1–5, 2005

Luca Aceto
Andrew D. Gordon



ii



Foreword

The idea for this volume of theBRICS Notes Series arose during our email discussions of
issues related to the scientific content of the workshopAlgebraic Process Calculi: The First
Twenty Five Years and Beyondthat will take place in the beautiful setting of the University
Residential Centre of Bertinoro with the kind sponsorship of BICI, BRICS and Microsoft
Research.

Our main aim in organizing this event is to celebrate the first twenty five years of research
in the field of algebraic process calculi by reflecting on the achievements within this field,
and sowing the seeds for its healthy future development by highlighting the most important
open problems and future directions in the field, and stimulating international cooperation.
The event in part was driven by the idea of a “CONCUR re-union” endorsed by Jos Baeten,
Jan Bergstra, Tony Hoare, Robin Milner, and Jan Willem Klop. We felt that providing a slim
volume to read and discuss during our summer days in Bertinoro would be a useful way of
stimulating the participants at the workshop to think about their contribution at the meeting,
and to offer the rest of the community who cannot be in Bertinoro a collection of interesting
pieces on process calculi to read and ponder on.

The committee decided from the very start that this volume shouldnot consist of a collec-
tion of long technical articles. After all, there are already plenty of standard outlets for those
contributions. Rather, we decided to solicit from the participants at the workshop, and other
selected members of our community, short essays on the theme of algebraic process calculi.
Some ideas for papers that we proposed to potential contributors were: a reminiscence about
the early days; a prospectus for future research; a statement of challenges or open problems;
a history of a thread of research; a critical assessment of an idea or a project; a review of a
seminal paper and its impact; or even a self-contained technical observation.

The response from the colleagues we contacted was overwhelmingly positive, and beyond
our most optimistic expectations. We trust that you will enjoy reading their varied and inter-
esting contributions. As we did not seek scientific articles in the usual sense, the contributions
are unrefereed. Our efforts in organizing this workshop, and in producing the present vol-
ume, will be amply rewarded if young researchers will be enticed to work in process theory
by reading this volume, by the solution of some of the open problems that are raised in it,
or by the further development of work along the future directions highlighted in some of the
contributions.

Apart from our sponsors, we thank Elena Della Godenza (University Residential Centre
of Bertinoro) for her tireless organizational and secretarial assistance at all times, and Uffe H.
Engberg (BRICS) for his work in the production of this volume.

Luca Aceto and Andrew D. Gordon edited this volume on behalf of the committee.

iii

http://www.cs.auc.dk/~luca/BICI/PA-05/
http://www.cs.auc.dk/~luca/BICI/PA-05/
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.cs.unibo.it/bici/
http://www.brics.dk
http://research.microsoft.com/
http://research.microsoft.com/
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.centrocongressibertinoro.it/en/home/index.cfm
http://www.brics.dk


Organising Committee

• Luca Aceto, BRICS, Aalborg University, and Reykjavı́k University

• Mario Bravetti, University of Bologna

• Jim Davies, Oxford University

• Wan Fokkink, Free University Amsterdam

• Andrew D. Gordon, Microsoft Research

• Joost-Pieter Katoen, RWTH Aachen University

• Faron Moller, University of Wales Swansea

• Steve Schneider, University of Surrey

iv

http://www.cs.aau.dk/~luca/
http://www.cs.unibo.it/~bravetti/
http://web.comlab.ox.ac.uk/oucl/people/jim.davies.html
http://www.cwi.nl/~wan
http://research.microsoft.com/~adg/
http://wwwhome.cs.utwente.nl/~katoen/
http://www-compsci.swan.ac.uk/~csfm/
http://www.cs.rhul.ac.uk/research/formal/steve.html


Contents

Samson Abramsky,What are the fundamental structures of concurrency?
We still don’t know!. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Luca Aceto and Wan Fokkink.The Quest for Equational Axiomatizations of Parallel Compo-
sition: Status and Open Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Roberto Amadio, Ǵerard Boudol, Fŕed́eric Boussinot and Ilaria Castellani.Reactive concur-
rent programming revisited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

J.C.M. Baeten and J.A. Bergstra.Six Themes for Future Concurrency Research. . . . . . . . . . . . 21

J.C.M. Baeten and M. Bravetti.A generic process algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Christel Baier, Holger Hermanns, Joost-Pieter Katoen, Verena Wolf.Bisimulation and Simu-
lation Relations for Markov Chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Martin Berger.An Interview with Robin Milner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Jan Bergstra.ACP style process algebras: is the design rationale still valid?. . . . . . . . . . . . . . 46

Marco Bernardo.Markovian Testing Equivalence vs. Markovian Bisimulation Equivalence. 52

Tommaso Bolognesi.Process algebra under the light of Wolfram’s NKS. . . . . . . . . . . . . . . . . . . 56

Mario Bravetti.Stochastic and Real Time in Process Algebra: A Conceptual Overview. . . . . 60

Mario Bravetti, Holger Hermanns, Joost-Pieter Katoen.
YMCA: Why Markov Chain Algebra?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Mario Bravetti and Gianluigi Zavattaro.Service Oriented Computing: a new challenge for
Process Algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Stephen Brookes.Retracing CSP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Maria Grazia Buscemi and Ugo Montanari.A Compositional Coalgebraic Model of a Frag-
ment of Fusion Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Nadia Busi and Gianluigi Zavattaro.A Process Algebraic View of Coordination. . . . . . . . . . . . 85

Samuele Carpineti and Cosimo Laneve.A rude contract language: XML schemas with chan-
nels and capabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

P.J.L. Cuijpers and M.A. Reniers.Topological Aspects of Hybrid Processes (a treatment using
non-standard analysis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Rocco De Nicola.From Process Calculi to KLAIM and back. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

ZoltánÉsik. Cascade products and temporal logics on finite trees. . . . . . . . . . . . . . . . . . . . . . . . 104

Rachele Fuzzati and Uwe Nestmann.Much Ado About Nothing?. . . . . . . . . . . . . . . . . . . . . . . . . 108

Rob van Glabbeek.On Specifying Timeouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Andrew D. Gordon.V for Virtual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

v



Clemens Grabmayer, Jan Willem Klop, and Bas Luttik.Reflections on a Geometry of Pro-
cesses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Jan Friso Groote, Aad Mathijssen, Muck van Weerdenburg, and Yaroslav Usenko.
From µCRL to mCRL2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Jan Friso Groote, Michel A. Reniers, and Yaroslav S. Usenko.Discretization of Timed Au-
tomata in TimedµCRL a la Regions and Zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Radu Grosu and Scott A. Smolka.Monte Carlo Methods for Process Algebra. . . . . . . . . . . . . . 137

Tony Hoare.Why Ever CSP?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Kohei Honda.Process Algebras in the Age of Ubiquitous Computing. . . . . . . . . . . . . . . . . . . . . 147

Kim G. Larsen.One 2 Many 2 One – Evolution of Timed Systems Modeling and Analysis. . . 150

Insup Lee, Anna Philippou, and Oleg Sogolsky.A Family of Resource-Bound Real-Time
Process Algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Gerald L̈uttgen and Michael Mendler.When 1 Clock Is Not Enough. . . . . . . . . . . . . . . . . . . . . . 155

Bas Luttik.What is algebraic in process theory?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Sergio Maffeis.Process calculi and peer-to-peer Web data integration. . . . . . . . . . . . . . . . . . . . 164

Kees Middelburg.Conditionals in Algebraic Process Calculi. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Dale Miller. A Proof Theoretic Approach to Operational Semantics. . . . . . . . . . . . . . . . . . . . . . . 172

George Milne.Modelling Dynamically Changing Hardware Structure. . . . . . . . . . . . . . . . . . . . 176

Robin Milner.Pervasive process calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

M.W. Mislove. On Combining Probability and Nondeterminism. . . . . . . . . . . . . . . . . . . . . . . . . . 184

MohammadReza Mousavi.Towards SOS Meta-Theory for Language-Based Security. . . . . . . 188

Jöel Ouaknine and Steve Schneider.Timed CSP: A Retrospective. . . . . . . . . . . . . . . . . . . . . . . . . 192

Catuscia Palamidessi.Probabilistic and Nondeterministic Aspects of Anonymity. . . . . . . . . . . 196

Iain Phillips and Irek Ulidowski.Operational Semantics of Reversibility in Process Algebra. 200

Alban Ponse and Mark B. van der Zwaag.ACP and Belnap’s Logic. . . . . . . . . . . . . . . . . . . . . . . 204

K.V.S. Prasad.A Prospectus for a Calculus of Mobile Broadcasting Systems. . . . . . . . . . . . . . . 209

Corrado Priami.Process Calculi and Life Science. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Bill Roscoe.Confluence thanks to extensional determinism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Davide Sangiorgi.Bisimulation and co-induction: some problems. . . . . . . . . . . . . . . . . . . . . . . . 221

Peter Sewell.Process Calculi: The End?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Chris Tofts.Process Algebra as Modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Kazunori Ueda.Constraint-Based Concurrency and Beyond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Nobuko Yoshida.Type-Based Security for Mobile Computing: Integrity, Secrecy and Live-
ness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

vi



What are the fundamental structures of concurrency?
We still don’t know!

Samson Abramsky
Oxford University Computing Laboratory

June 7, 2005

Abstract
I propound a few heresies, and indulge in some dubious speculations.

1 Process Calculi as Generic Theories

What counts as a successful theory in Computer Science? Consider obvious exemplars such
as

• Process Calculi

• Type Systems

• Model-checking

It is not the case that there is a single agreed model, notation, formalism, tool or language in
any of the above areas. In fact there are a profusion of all of these, although some have been
particularly influential. (Insert your favourite examples here . . . )

The ‘Next 700 · · ·’ syndrome Is this profusion a ‘scandal’ of our subject? I used to think
so — and I wasn’t alone (e.g. Robin Milner’s quest to find the ‘λ -calculus of concurrency’).
Now I am not so sure.

It’s the Paradigms! The paradigms and tool-kits, both technical and conceptual, provided
by these theories have been deeply absorbed by the research communities and have increas-
ingly influenced applications.
Examples:

• labelled transition systems and bisimulation

• naming and scope restriction and extrusion

• the automata-theoretic paradigm for model-checking

• the type systems paradigm, with compositional typing rules for terms-in-context, and
key structural properties such as Subject Reduction.

1



By their fruits shall ye know them. These tool-kits arethe real fruits of these theories.
They may be compared to the traditional tool-kits of physics and engineering: Differential
Equations, Laplace and Fourier Transforms, Numerical Linear Algebra, etc.

They can be applied to a wide range of situations, going well beyond those originally
envisaged, e.g. Security, Computational Biology, Quantum Computing, etc. So, is everything
in the garden rosy?

Dreams of Final Theories But can we do better than this? After all, in physics thereare
great theories which transcend mere tool-kits. We largely lack such theories, in Computer
Science as a whole, and in concurrency and process calculus in particular. Is this unavoidable,
as part of the nature of our subject, or will such theories emerge?

Some may find such questions uninteresting, or even meaningless; they can safely stop
reading here.

2 Process Calculi vs. Concurrency Theory

1980 marked the start of a new era in concurrency theory, but not its beginning. A meaningful
theory of concurrency, incorporating some profound insights, had been originated by Petri
in the 1960’s, and Net theory, as well as other approaches to concurrency, continues to be
actively developed.

There is no doubt that the advent of of algebraic process calculi marked a decisive advance
in concurrency theory, in particular in the use of compositional algebraic methods for the
description of complex systems. It is often the case, though, that when an advance is made,
something valuable is also lost, or at least, temporarily forgotten.

Let us start with the problem ofcanonicity— the ‘next 700 process algebras’ syndrome.
In a sense, the very success of the paradigmatic tool-kit, as described in the previous section, is
also the source of the problem. It is too easy to cook up yet another variant process calculus or
algebra; there are too few constraints. Thisplasticity of definitionshas become so familiar in
our field that we may not be aware of it as an issue. The mathematician André Weil apparently
compared finding the right definitions in algebraic number theory — which was like carving
adamantine rock — to making definitions in the theory of uniform spaces (which he founded),
which was like sculpting with snow. In concurrency theory, we are very much at the snow-
sculpture end of the spectrum. We lack the kind of external reality, whether it comes from
fundamental mathematical objects like the integers, or manifolds, or differential equations, or
from physical reality as determined by experiment, which is hard and obdurate, and resistant
to our definitions. Is this a necessary feature of our existence, or have we just not yet found
the real bedrock?

An important quality of Petri’s conception of concurrency is that itdoesseek to determine
fundamental concepts: causality, concurrency, process, etc. in a syntax-independent fashion.
Another important point, which may originally have seemed merely eccentric, but now looks
rather ahead of its time, is the extent to which Petri’s thinking was explicitly influenced by
physics (see e.g. [6]. As one example, note that K-density comes from one of Carnap’s
axiomatizations of relativity). To a large extent, and by design, Net Theory can be seen as a

2



kind of discrete physics: linesare time-like causal flows,cutsare space-like regions,process
unfoldings of amarked net are like the solution trajectories of a differential equation.

This acquires new significance today, when the consequences of the idea that ‘Information
is physical’ are being explored in the rapidly developing field of quantum informatics. More-
over, the need to recognize the spatial structure of distributed systems has become apparent,
and is made explicit in formalisms such as the Ambient calculus, and Milner’s bigraphs.

Some morals

• The genius, the success, and the limitation of process calculi is theirlinguistic charac-
ter. This provides an ingenious way of studing processes, information flow, etc. without
quite knowing, independently of the particular linguistic setting, what any of these no-
tions are. One could try to say that they are implicitly defined by the calculus. But then
the fact that there are so many calculi, potential and actual, does not leave us on very
firm ground.

We lack syntax-independent,intrinsic definitions of the fundamental notions of concur-
rency theory. Net theory and some related approaches (e.g. event structures) still offer
the best extant accounts of these issues. But we are still far from home.

Thus for example consider the issue ofexpressiveness. There are some fragmentary re-
sults, but there is no single compelling notion of ‘expressive completeness’ for a process
calculus, or of a ‘Church’s thesis for concurrency’.

• We must now also acknowledge that we do not have sole ownership of the notions of
information, process, etc. Physics and biology are also interested — and they are at our
gates! This presents us with a challenge, and perhaps also an opportunity for some new
thinking on these issues.

3 New directions: biology, physics or geometry?

A major recent development in process calculi has been their application to biological mod-
elling. This represents perhaps the first substantial example of a trend which, in my view, will
form a major part of the future development of our subject: the spreading outwards of ideas
developed in Computer Science, of the tool-kits we discussed in Section 1, to other scientific
disciplines. Provided there is a real engagement between the CS bio-concurrency community
and the biologists, this development has great promise.

However, while biological modelling will surely make new demands on process calculi,
and hence lead to new developments (the next 700 biological process calculi?), I don’t be-
lieve it is likely to lead to foundational advances for the issues we are discussing. Biology’s
foundational and conceptual structures are, if anything, much more plastic than those of Com-
puter Science — for which, of course, it compensates by the exuberant richness and the sheer
concrete reality of the existence proofs which it studies.

There is, perhaps, more prospect for guidance in finding fundamental notions of process,
information flow, etc. from the rapidly developing interface between Computer Science and
Physics, which has grown up around quantum informatics. We have already discussed how

3



Petri’s development of Net theory was influenced by ideas from physics, and indeed provides
some of the ingredients of a discrete physics. (One feature conspicuouslylacking there is an
account of the non-local information flows arising from entangled states, which play a key role
in quantum informatics. Locality is so plausible to us — and yet, at a fundamental physical
level, apparently so wrong!). Meanwhile, there are now some matching developments on the
physics side, and a greatly increased interest in discrete models. As one example, the causal
sets approach to discrete spacetime of Sorkin et al. [7] is very close in spirit to event structures.

My own recent work with Bob Coecke on a categorical axiomatics for Quantum Mechan-
ics [2, 3], adequate for modelling and reasoning about quantum information and computation,
is strikingly close in the formal structures used to my earlier work on Interaction Categories
[4] — which represented an attempt to find a more intrinsic, syntax-free formulation of con-
currency theory; and on Geometry of Interaction [1], which can be seen as capturing a notion
of interactive behaviour, in a mathematically rather robust form, which can be used to model
the dynamics of logical proof theory and functional computation.

This work admits a striking (and very useful) diagrammatic presentation, which suggests
a link to geometry — and indeed there are solid connections with some of the central ideas
relating geometry and physics which have been so prominent in the mathematics of the past
20 years.1 We note also that, in a rather different style, the geometry of concurrency has been
developed by Eric Goubault [5] and others. So, geometry may yet have an important role to
play in concurrency theory.

Whither process calculus?

If anything like these speculations comes to pass, I think process calculus will be raised to a
new level. It will, perhaps, become trulythecalculus of a fundamental science of information
dynamics.

References

[1] S. Abramsky (1996). Retracing some paths in process algebra. InProceedings of the Seventh
International Conference in Concurrency Theory(CONCUR 96), LNCS 1119, 1–17.

[2] S. Abramsky and B. Coecke (2004). A categorical semantics of quantum protocols. InProceed-
ings of the 19th Annual IEEE Symposium on Logic in Computer Science(LiCS‘04), 415–425.
arXiv:quant-ph/0402130

[3] Abramsky, S. and Coecke, B. (2005)Abstract physical traces. Theory and Applications of Cate-
gories14, 111–124.

[4] S. Abramsky, S. J. Gay and R. Nagarajan. Interaction categories and foundations of typed con-
current programming.Deductive Program Design: Proceedings of the 1994 Marktoberdorf In-
ternational Summer School, pp. 35–113. NATO ASI Series F, Springer-Verlag, 1995.

1For the afficionado: the diagrammatics of our categories connect with categorical approaches to the Jones
polynomial and other topological invariants, which in turn are strongly connected to quantum groups and topo-
logical quantum field theories.

4



[5] E. Goubault (2001). Some Geometric Perspectives in Concurrency The-
ory. To appear in Homology, Homotopy and Applications. Available at
http://www.di.ens.fr/Egoubault/GOUBAULTpapers.html.

[6] C.-A. Petri (1982). State-Transition Structures in Physics and in Computation.Intenational Jour-
nal of Theoretical Physics, 21(12), 979–993.

[7] R. Sorkin. First Steps in Causal Sets. Available athttp://physics.syr.edu/∼sorkin/some.papers/.

5



The Quest for Equational Axiomatizations of Parallel
Composition: Status and Open Problems

Luca Aceto∗† Wan Fokkink‡

Abstract
This essay recounts the story of the quest for equational axiomatizations of paral-

lel composition operators in process description languages, and of similar results in the
classic field of formal language theory. Some of the outstanding open problems are also
mentioned.

1 The Story So Far

Since they are designed to allow for the description and analysis of systems of interacting pro-
cesses, all process description languages contain some form of parallel composition operator
(also known as merge) allowing one to put two process terms in parallel with one another.
These operators usually interleave the behaviours of their arguments, and allow for some
form of synchronization between them. For example, Milner’s CCS offers the binary operator
|, whose intended semantics is described by the following classic rules in Plotkin-style [20]:

x
µ→ x′

x | y
µ→ x′ | y

y
µ→ y′

x | y
µ→ x | y′

x
α→ x′, y

ᾱ→ y′

x | y
τ→ x′ | y′

(1)

Although the above rules describe the behaviour of the parallel composition operator in very
intuitive fashion, the equational characterization of this operator is not straightforward. In
their seminal paper [14], Hennessy and Milner offered, amongst a wealth of other classic
results, a complete equational axiomatization of bisimulation equivalence [19] over the recur-
sion free fragment of CCS. The axiomatization proposed by Hennessy and Milner dealt with
parallel composition using the so-calledexpansion law—a law that, intuitively, allows one to
obtain a term describing the initial transitions of the parallel composition of two terms whose
initial transitions are known. This law can be expressed as the following equation schema(

∑
i∈I

µixi

)
|
(

∑
j∈J

γ jy j

)
= ∑

i∈I
µi(xi | y)+ ∑

j∈J
γ j(x | y j)+ ∑

i∈I , j∈J,µi=γ j

τ(xi | y j)

∗BRICS (BasicResearchin ComputerScience), Centre of the Danish National Research Foundation, De-
partment of Computer Science, Aalborg University, Fr. Bajersvej 7B, 9220 Aalborg Ø, Denmark. Email:
luca@cs.aau.dk.

†School of Computer Science, Reykjavı́k University, Ofanleiti 2, 103 Reykjavı́k, Iceland. Email: luca@ru.is.
‡Vrije Universiteit Amsterdam, Department of Computer Science, Section Theoretical Computer Science,

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. Email: wanf@cs.vu.nl.

1

6

http://www.cs.auc.dk/~luca/
http://www.cs.vu.nl/~wanf
mailto:luca@cs.aau.dk
mailto:luca@ru.is
mailto:wanf@cs.vu.nl


(whereI andJ are two finite index sets, and theµi andγ j are actions), and is nothing but an
equational formulation of the aforementioned rules describing the operational semantics of
parallel composition.

Despite its natural and simple formulation, the expansion law, however, is an equation
schema with a countably infinite number of instances. This raised the question of whether
the parallel composition operator could be axiomatized in bisimulation semantics by means
of a finite collection of equations. This question was answered positively by Bergstra and
Klop, who gave in [3] a finite equational axiomatization of the merge operator in terms of
the auxiliary left merge and communication merge operators. Moller showed in [17, 18] that
strong bisimulation equivalence is not finitely based over CCS and PA without the left merge
operator. (The process algebra PA [3] contains a parallel composition operator based on pure
interleaving without communication—viz. an operator described by the first two rules in (1)—
and the left merge operator.) Thus auxiliary operators are indeed necessary to obtain a finite
axiomatization of parallel composition.

In the arguably less well known paper [13], Hennessy proposed an axiomatization of ob-
servation congruence [14] over a CCS-like recursion free process language. That axiomatiza-
tion used an auxiliary operator, denoted|/ by Hennessy, that is essentially a combination of
the left and communication merge operators as its behaviour is described by the first and the
last rule in (1). The proposed axiomatization of observation congruence offered inop. cit. is
infinite, as it used a variant of the expansion theorem from [14]. This led Bergstra and Klop
to write in [3, page 118] that:

“It seems thatγ does not have a finite equational axiomatization.”

(In op. cit. Bergstra and Klop usedγ to denote Hennessy’s merge.) That conjecture of Bergstra
and Klop’s has been confirmed by Ingolfsdottir, Luttik and us in [2] by showing that, in the
presence of two distinct complementary actions, it is impossible to provide a finite axioma-
tization of the recursion free fragment of CCS modulo bisimulation using Hennessy’s merge
operator|/. We believe that this result further reinforces the status of the left merge and the
communication merge operators as auxiliary operators in the finite equational characterization
of parallel composition in bisimulation semantics.

2 The Future

A possible, albeit very biased, way of trying to predict the future developments along the line
of research surveyed above is to state some of the problems we are currently trying to solve.

Open Problem 1 We believe that a natural question to ask at this point is whether there is
a singlebinary operator that preserves bisimulation equivalence, and whose addition to the
recursion free fragment of CCS allows for the finite equational axiomatization of parallel
composition—see [1, Problem 8]. We conjecture that no such operator exists, and that the use
of two auxiliary operators is therefore necessary to achieve a finite axiomatization of parallel
composition in bisimulation semantics. This result would offer the definitive justification we
seek for the canonical standing of the operators proposed by Bergstra and Klop. Work on
the confirmation of some form of this conjecture is under way, and we hope to report on it

2

7



elsewhere in the near future. At this moment, it is not even clear to us how the general form
of this conjecture could be established. How does one show that no single binary operation
can be used to give a finite axiomatization of parallel composition in bisimulation semantics?
Most likely there are powerful results from universal algebra and equational logic that are
unknown to us and could be brought to bear on this line of work, but several literature reviews
and enquiries to universal algebra mailing lists have not unearthed any answer yet.

The positive results mentioned in the previous section all deal with axiom systems that are
complete when restricted to terms that contain no occurrences of variables. Much less is
known regarding equational axiomatizations of behavioural equivalence over process lan-
guages with parallel composition operators that areω-complete. Earlyω-complete axiom-
atizations are offered in [12, 16]. More recently, Fokkink and Luttik have shown in [10] that
the process algebra PA [3] affords anω-complete axiomatization that is finite if so is the
underlying set of actions.

Open Problem 2 Findω-complete axiomatizations for bisimilarity over process algebras in-
volving parallel composition with synchronization, e.g., for ACP.

The negative results mentioned in Sect. 1 have all been established in the setting of strong
bisimulation semantics. Perhaps surprisingly, much less is known in the setting of congru-
ences that abstract from internal steps in process behaviours. For example, is observation
congruence finitely axiomatizable over the recursion free fragment of CCS? The answer is, of
course, negative, but we are still missing a proof of this fact! This leads us to state:

Open Problem 3 Prove that observation congruence has no finite equational axiomatization
over the recursion, relabelling and restriction free version of CCS. Indeed, as conjectured by
van Glabbeek in a recent posting on the Concurrency Mailing list, this may hold in a much
stronger form. Namely, one might attempt to prove that this negative result holds true for all
extensions of that language with any finite collection of GSOS operations. (Note that, in the
setting of observation congruence, the operational semantics of the left and communication
merge operators uses look-ahead. Therefore these two operators arenot GSOS operations.)

Many open problems still remain, specifically in the search forω-complete axiomatizations
for rich process description languages, but the margins of this paper are too small to list them
all.

3 The Heritage of Formal Language Theory

Parallel composition appears as the shuffle operator in the time-honoured theory of formal
languages. Not surprisingly, the equational theory of shuffle has received considerable atten-
tion in the literature. Here we limit ourselves to mentioning some results that have a special
relationship with process theory.

In [22], Tschantz offered a finite equational axiomatization of the theory of languages over
concatenation and shuffle, solving an open problem raised by Pratt. In proving this result he
essentially rediscovered the concept of pomset [21]—a model of concurrency based on par-
tial orders whose algebraic aspects have been investigated by Gischer in [11]—, and proved

3

8



that the equational theory of series-parallel pomsets coincides with that of languages over
concatenation and shuffle. The argument adopted by Tschantz was based on the observation
that series-parallel pomsets may be coded by a suitable homomorphism into languages, where
the series and parallel composition operators on pomsets are modelled by the concatenation
and shuffle operators on languages. Tschantz’s technique of coding pomsets with languages
homomorphically was further extended in the papers [5, 7] to deal with several other opera-
tors, infinite pomsets and infinitary languages, and sets of pomsets. The axiomatizations by
Gischer and Tschantz have later been extended in [9] to a two-sorted language withω powers
of the concatenation and parallel composition operators. The axiomatization of the algebra
of pomsets resulting from the addition of these iteration operators is, however, necessarily
infinite because, as shown inop. cit. no finite collection of equations can capture all the sound
equalities involving them.

The results of Moller’s on the non-finite axiomatizability of bisimulation equivalence over
the recursion free fragment of CCS and PA without the left merge operator given in [17, 18]
are paralleled in the world of formal language theory by those offered in [4, 6, 8]. In the
first of those references, Bloom andÉsik proved that the valid inequations in the algebra
of languages equipped with concatenation and shuffle have no finite basis.Ésik and Bertol
showed in [8] that the equational theory of union, concatenation and shuffle over languages has
no finite first-order axiomatization relative to the collection of all valid inequations that hold
for concatenation and shuffle. Hence the combination of some form of parallel composition,
sequencing and choice is hard to characterize equationally both in the theory of languages
and in that of processes. Moreover, Bloom andÉsik have shown in [6] that the variety of
all languages over a finite alphabet ordered by inclusion with the operators of concatenation
and shuffle, and a constant denoting the singleton language containing only the empty word
is not finitely axiomatizable by first-order sentences that are valid in the equational theory of
languages over concatenation, union and shuffle.

Establishing results of comparable elegance and strength in the setting of concurrency
theory will be a challenge that we hope some members of our research community will meet.

References

[1] L. A CETO, Some of my favourite results in classic process algebra, BRICS Report NS-03-2,
BRICS, Department of Computer Science, Aalborg University, September 2003.

[2] L. A CETO, W. FOKKINK , A. INGOLFSDOTTIR, AND B. LUTTIK , CCS with Hennessy’s merge
has no finite equational axiomatization, Theoretical Comput. Sci., 330 (2005), pp. 377–405.

[3] J. BERGSTRA AND J. W. KLOP, Process algebra for synchronous communication, Information
and Control, 60 (1984), pp. 109–137.

[4] S. L. BLOOM AND Z. ÉSIK, Nonfinite axiomatizability of shuffle inequalities, in Proceedings
of TAPSOFT’95: Theory and Practice of Software Development, 6th International Joint Confer-
ence CAAP/FASE, Aarhus, Denmark, May 22–26, 1995, P. D. Mosses, M. Nielsen, and M. I.
Schwartzbach, eds., vol. 915 of Lecture Notes in Computer Science, Springer-Verlag, 1995,
pp. 318–333.

[5] , Free shuffle algebras in language varieties, Theoret. Comput. Sci., 163 (1996), pp. 55–98.

4

9

http://www.brics.dk/NS/03/2/


[6] , Axiomatizing shuffle and concatenation in languages, Inform. and Comput., 139 (1997),
pp. 62–91.

[7] , Varieties generated by languages with poset operations, Math. Structures Comput. Sci., 7
(1997), pp. 701–713.

[8] Z. ÉSIK AND M. BERTOL, Nonfinite axiomatizability of the equational theory of shuffle, Acta
Inform., 35 (1998), pp. 505–539.

[9] Z. ÉSIK AND S. OKAWA , Series and parallel operations on pomsets, in Proceedings of Founda-
tions of Software Technology and Theoretical Computer Science (Chennai, 1999), vol. 1738 of
Lecture Notes in Comput. Sci., Springer-Verlag, Berlin, 1999, pp. 316–328.

[10] W. FOKKINK AND B. LUTTIK , An omega-complete equational specification of interleaving, in
Proceedings 27th Colloquium on Automata, Languages and Programming—ICALP’00, Geneva,
U. Montanari, J. Rolinn, and E. Welzl, eds., vol. 1853 of Lecture Notes in Computer Science,
Springer-Verlag, July 2000, pp. 729–743.

[11] J. L. GISCHER, The equational theory of pomsets, Theoretical Comput. Sci., 61 (1988), pp. 199–
224.

[12] J. F. GROOTE, A new strategy for provingω–completeness with applications in process algebra,
in Proceedings CONCUR 90, Amsterdam, J. Baeten and J. Klop, eds., vol. 458 of Lecture Notes
in Computer Science, Springer-Verlag, 1990, pp. 314–331.

[13] M. HENNESSY, Axiomatising finite concurrent processes, SIAM J. Comput., 17 (1988), pp. 997–
1017.

[14] M. HENNESSY ANDR. MILNER, Algebraic laws for nondeterminism and concurrency, J. Assoc.
Comput. Mach., 32 (1985), pp. 137–161.

[15] R. MILNER, Communication and Concurrency, Prentice-Hall International, Englewood Cliffs,
1989.

[16] F. MOLLER, Axioms for Concurrency, PhD thesis, Department of Computer Science, University
of Edinburgh, July 1989. Report CST-59-89. Also published as ECS-LFCS-89-84.

[17] , The importance of the left merge operator in process algebras, in Proceedings 17th ICALP,
Warwick, M. Paterson, ed., vol. 443 of Lecture Notes in Computer Science, Springer-Verlag, July
1990, pp. 752–764.

[18] , The nonexistence of finite axiomatisations for CCS congruences, in Proceedings 5th Annual
Symposium on Logic in Computer Science, Philadelphia, USA, IEEE Computer Society Press,
1990, pp. 142–153.

[19] D. Park, Concurrency and automata on infinite sequences, in: P. Deussen (Ed.), 5th GI Con-
ference, Karlsruhe, Germany, Vol. 104 of Lecture Notes in Computer Science, Springer-Verlag,
1981, pp. 167–183.

[20] G. PLOTKIN , A structural approach to operational semantics, Report DAIMI FN-19, Computer
Science Department, Aarhus University, 1981.

5

10



[21] V. PRATT, Modeling concurrency with partial orders, International Journal of Parallel Program-
ming, 15 (1986), pp. 33–71.

[22] S. T. TSCHANTZ, Languages under concatenation and shuffling, Mathematical Structures in
Computer Science, 4 (1994), pp. 505–511.

6

11



Reactive concurrent programming revisited

Roberto M. Amadio∗ Gérard Boudol† Fréd́eric Boussinot‡ Ilaria Castellani§

Abstract

In this note we revisit the so-calledreactiveprogramming style, which evolves from the synchronous
programming model of the ESTEREL language by weakening the assumption that the absence of an event
can be detected instantaneously. We review some research directions that have been explored since the
emergence of the reactive model ten years ago. We shall also outline some questions that remain to be
investigated.

1 Introduction

In synchronous models the computation of a set of participants is regulated by a notion ofinstant. The
Synchronous Languageintroduced in [12] belongs to this category. Aprogram in this language generally
contains sub-programs running in parallel and interacting via sharedsignals. By default, at the beginning
of each instant a signal is absent and once it is emitted it remains in that state till the end of the instant.
The model can be regarded as a relaxation of the ESTEREL model [6] where thereaction to the absenceof
a signal is delayed to the following instant, thus avoiding the difficult problems due tocausality cyclesin
ESTERELprograms.

The model has gradually evolved into a programming language for concurrent applications and has been
implemented in the context of various programming languages such as C, JAVA , SCHEME, and CAML (see
Section 3 below). The design accomodates a dynamic computing environment with threads entering or
leaving the synchronisation space. In this context, it seems natural to suppose that the scheduling of the
threads is only determined at run time (as opposed to certain synchronous languages such as ESTEREL or
LUSTRE).

The model is based on acooperativenotion of concurrency. This means that by default a running thread
cannot be preempted unless it explicitly decides to return the control to the scheduler. This contrasts with
the model ofpreemptivethreads, where by default a running thread can be preempted at any point unless it
explicitly requires that a series of actions is atomic. We refer to, e.g., [23] for an extended comparison of the
cooperative and preemptive models. It appears that many typical “concurrent” applications such as event-
driven controllers, data flow architectures, graphical user interfaces, simulations, web services, multiplayer
games, are more effectively programmed in a cooperative (and possibly synchronous) model than in the
preemptive one.

The purpose of this note is to revisit the basic model and to review some research directions that have
been explored since the emergence of the model ten years ago. We shall also outline some questions that
remain to be investigated.

∗Universit́e de Provence
†INRIA, Sophia-Antipolis
‡Ecole des Mines de Paris
§INRIA, Sophia-Antipolis

1

12



2 The basic model

In this section, we introduce our basic model which is largely inspired by the original proposal [12], and, as
regards parallel composition, by the FairThreads model [10].

We assume a countable set ofsignal names s,s′, . . . and we letInt be a finite set of signal names repre-
senting an observableinterface. A signal environment Eis a partial function from signal names to boolean
valuestrue and falsewhose domain of definitiondom(E) is finite and containsInt. Such an environment
records the signals that have been emitted during the current instant, as well as the ones that exist but are still
absent. The semantics should preserve the invariant that all signals defined in a program (see below) belong
to the domain of definition of the related environment. In particular, all signal names which are not in the
domain of definition of the environment are guaranteed to be fresh, i.e., not used elsewhere in the program.

We define athreadas an expression written according to the following grammar:

T ::= () || (emit s) || (local s T) || (thread T) || (when s T) || (watch s T) || A(s) || (T;T)

whereA(s),B(s), . . . denote thread identifiers with parameterss. As usual, each thread identifier is defined by
exactly one equationA(s) = T. A thread is executed in the context of a signal environment which isshared
with other concurrent threads.

The intended semantics is as follows:() is the terminated thread;(emit s) emitss, i.e. sets it totrue and
terminates,(local s T) creates a fresh signal which is local to the threadT and executesT (this construct is a
binder for the names in T); (thread T) spawns a threadT which will be executed in parallel and terminates;
(when s T) allows the execution ofT whenever the signals is present and suspends its execution otherwise;
(watch s T) allows the execution ofT but kills whatever is left ofT at the end of the first instant where
the signals is present,T;T is the usual sequentialisation. This operational intuition is formalised in Figure
1 where the predicate(T,E) ⇓P (T ′,E′) means that the threadT in the environmentE executes anatomic
sequence of instructions (possibly none) resulting in the threadT ′, the environmentE′, and the spawning of
themulti-setof threadsP. It can be seen from the description of the operational semantics in Figure 1 that
whenever(T,E) ⇓P (T ′,E′) then the execution ofT is eitherterminated, that isT ′ = (), or suspended, that is
T ′ is an expressionSof the shape given by the following grammar:

S::= (when s T) || (when s′ S) || (watch s′ S)

with E′(s) = false. In other words, in our cooperative framework, thewhen instruction is the only one that
may cause the interruption of the execution of a thread.

The implementation of both thewhen and thewatch instructions requires astack. For instance, in
(when s1 (when s2 T)) the computation ofT may progress only if both the signalss1 ands2 are present.
In (watch s1 (watch s2 T1);T2);T3, we start executingT1. Assuming that at the end of the instant, the execu-
tion of T1 is not completed, the computation in the following instant resumes withT3 if s1 was present at the
end of the instant, withT2 if s1 was absent ands2 was present at the end of the instant, and with the residual
of T1, otherwise. Note that whenever we spawn a new thread we start its execution with an empty stack of
signals, as in the FairThreads model [10].

A program Pis a finite non-empty multi-set of threads. We denote withsig(T) (resp.sig(P)) the set of
signals free inT (resp. in threads inP). To execute a programP in an environmentE during one instant, we
proceed as follows: first schedule (non-deterministically) the atomic executions of the threads that compose
it as long as some progress is possible and second transform all active(watch s T) instructions where the
signals is present into the terminated thread(). To say that a threadT in an environmentE is stuck we write
(T,E)‡. This is defined as

(T,E)‡ if (T,E) ⇓ /0 (T,E) (1)

2

13



(T1) ((),E) ⇓ /0 ((),E)
(T2) (emit s,E) ⇓ /0 ((),E[s := true])

(T3)
s′ /∈ dom(E)

([s′/s]T,E∪{s′ 7→ false}) ⇓P (T ′,E′)
(local s T,E) ⇓P (T ′,E′)

(T4) (thread T,E) ⇓{|T|},((),E)

(T5)
([s/x]T,E) ⇓P (T ′,E′) A(x) = T

(A(s),E) ⇓P (T ′,E′)
(T6)

E(s) = false
(when s T,E) ⇓ /0 (when s T,E)

(T7)
E(s) = true

(T,E) ⇓P ((),E′)
(when s T,E) ⇓P ((),E′)

(T8)
E(s) = true T′ 6= ()

(T,E) ⇓P (T ′,E′)
(when s T,E) ⇓P (when s T′,E′)

(T9)
(T,E) ⇓P ((),E′)

(watch s T,E) ⇓P ((),E′)
(T10)

(T,E) ⇓P (T ′,E′) T ′ 6= ()
(watch s T,E) ⇓P (watch s T′,E′)

(T11)
(T1,E) ⇓P1 ((),E1)
(T2,E1) ⇓P2 (T ′,E′)

(T1;T2,E) ⇓P1∪P2 (T ′,E′)
(T12)

(T1,E) ⇓P (T ′,E′) T ′ 6= ()
(T1;T2,E) ⇓P (T ′;T2,E′)

Figure 1: Atomic execution of a thread

Notice that if(T,E)‡ thenT is either terminated or suspended in the context ofE. To perform theabort
operation associated with thewatch construct at the end of the instant, we rely on the functionb cE defined
as follows:

bPcE = {|bTcE | T ∈ P|} b()cE = () bT;T ′cE = bTcE;T ′

bwhen s TcE =
{

(when s bTcE) if E(s) = true
(when s T) otherwise

bwatch s TcE =
{

() if E(s) = true
(watch s bTcE) otherwise

We then formalise as follows the execution during an instant of a programP in the environmentE, where we
rely on a multi-set notation.

(P1)
∀T ∈ P (T,E)‡

(P,E) ⇓ (bPcE,E)
(P2)

∃T ∈ P ¬(T,E)‡ (T,E) ⇓P′
(T ′,E′)

(P\{|T|}∪{|T ′|}∪P′,E′) ⇓ (P′′,E′′)
(P,E) ⇓ (P′′,E′′)

Finally, the input-output behaviour of a program is described by labelled transitionsP
I/O→ P′ whereI ,O⊆ Int

are the signals in the interface which are present at the beginning and at the end of the instant, respectively.
As in Mealy machines, the transition means that from program (state)P with “input” signalsI we move to

3

14



program (state)P′ with “output” signalsO. This is formalised by the rule:

(I/O)
(P,EI ,P) ⇓ (P′,E′) O = {s∈ Int | E′(s) = true}

P
I/O→ P′

where: EI ,P(s) =


true if s∈ I
false if s∈ Int∪sig(P)
undefined otherwise

Note that we insist on having all free signals of the program in the domain of definition of the environment.
To conclude this section we give some examples of derived constructions, which are frequently used in

the programming practice. In what follows(local s1 · · ·(local sn T) · · ·) abbreviates as(local s1, . . . ,sn T),
and a similar convention is used forwhen andwatch.

(await s) = (when s ())
(loop T) = A(s) where{s} = sig(T), A(s) = T;A(s)
(now T) = (local s (emit s);(watch s T)) s /∈ sig(T)

pause = (local s (now (await s)))
(exit s) = (emit s);pause

(trap s T) = (local s (watch s T))
(present s T T′) = local t, t ′,u t, t ′,u /∈ sig(T)∪sig(T ′)

(thread (now (await s);(emit t)));
(thread (await t);T;(emit u));
(thread (watch spause;(emit t ′)));
(thread (await t ′);T ′;(emit u));
(await u)

The instruction(await s) suspends the computation till the signals is present. The instruction(loop T)
can be thought of asT;T;T; · · · . Note that in(loop T);T ′, T ′ is dead code, i.e., it can never be executed.
The instruction(now T) runsT for the current instant,i.e., if the execution ofT is not completed within the
current instant then it is terminated. The instructionpause suspends the execution of the thread for the current
instant and resumes it in the following one. We may rely on this instruction to guarantee the termination of
the computation of each thread within an instant. The constructstrap/exit provide an elementary exception
mechanism. The instruction(present s T T′) branches on the presence of a signal. Note that the branchT ′

corresponding to theabsenceof the signal is executed in the next instant.

Remark 1 (comparison with [12]) The model we have introduced is largely inspired by the original pro-
posal [12]. The main novelties or variations are: replacing parallel composition, theawait and theloop
instructions with, respectively, thethread and when constructs, and recursive definitions, and relying on
a “big step” operational semantics. We also remark that in the definition of the conditional branching
(present s T T′) the expressions T and T′ are under athread instruction. This implies that their execution
doesnot depend on when or watch signals that may be on top of them. If this must be the case, then we may
prefix T and T′ with suitablewhen andwatch instructions.

4

15



3 Implementations and applications

Several implementations related to the model described in the previous section have been proposed over the
years. Here, we briefly review some of them (in a more or less chronological order), highlighting their main
features.

Reactive-C [9] was proposed as a preprocessor of C for assembly-like reactive programming, and it has
been used to implement SL. There also exists a reactive library very close to Reactive-C written in Standard
ML [24]. Two sets of Java classes have been designed for reactive programming in Java: SugarCubes [13]
and Junior [17]. In these implementations, reactive threads are not mapped on Java threads and thus the
problems raised by the latter (for example, the limitation on their number or their memory footprints) are
avoided. Icobjs [14] is a framework for graphical reactive programming, built on top of SugarCubes. Icobjs
have been used for video games, simulations in physics and simulations of the Ambient calculus. Both
Java and ML have been extended with reactive primitives, respectively in Rejo [1] and ReactiveML [21].
FairThreads [10, 26] and Loft [20] define a thread-based framework in which reactive cooperative threads
and preemptive threads can be used jointly. Finally, ULM [8, 16] proposes to use reactive programming,
enriched with migration primitives, for global computing over the Web. This takes advantage of the fact that
reactive programming, as opposed to the synchronous model of ESTEREL for instance, is well-suited for
applications involving dynamic concurrency.

Starting from the work initiated by Laurent Hazard on Junior, a lot of effort has been devoted to designing
efficient implementations of reactive frameworks. Efficiency mainly comes from the absence of busy-waiting
of suspended threads waiting for an event, and from scheduling techniques allowing direct access to the next
thread to execute. As examples of efficiency-critical applications recently implemented using the reactive
style, we may mention the simulation of a complex network routing protocol for mobile ad-hoc networks
described in ReactiveML [21], the implementation of a Web server in Scheme [26], and the implementation
of cellular automata in [11], which we shall now describe in some details.

Cellular automata (CA) are used in various simulation contexts, for example, physical simulations, fire
propagation, or artificial life. These simulations basically consider large numbers of small-sized identical
components, called cells, with local interactions and a global synchronized evolution. Conceptually, the
evolution of a CA is decomposed into couples of steps: during the first step, cells get information about the
states of their neighbours and during the second step they change their own state according to the information
obtained from the previous step. Usually, CA are coded as sequential programs, basically made of a single
main loop which considers all cells in turn. Using the reactive style to program cellular automata, where
each cell is a reactive thread, has the following advantages:

• Instants naturally represent steps: at each instant, each cell changes its state according to the neigh-
bours states at the previous instant, signals its new state, and then waits for the information about the
state of its neighbours.

• The behaviour of cells coded as look-up tables in usual CA implementations is rather opaque. This
is generally not felt as a big issue because cells behaviours are often very simple. However, in some
contexts, for example artificial life, one may ask for more complex cell behaviours. In these cases, the
modularity obtained with reactive programming is an advantage.

• One can obtain efficient implementations of CA spaces in which each cell is implemented as a thread.
To improve efficiency, cells can be created only when needed. Note that quiescent cells (with no active
neighbour) are just waiting for an activation signal; their presence thus does not introduce any overhead
at execution.

5

16



Reactive programming focusses on behaviours rather than on data. Entities found in video games can thus
be naturally coded using reactive primitives. Similarly, we have also used the reactive model for interactive
simulation of physical systems. Indeed, the reactive style provides us with a very simple and modular way
to describe the evolution of complex physical systems. The main features of this approach are simplicity of
model construction and high modularity of components. This approach allows us to express both continuous
and discrete aspects of a model. For example, consider a planet/meteor system. A planet is implemented
with a behaviour which, at each instant, emits a gravity signal with its coordinates. A meteor, at each instant,
waits for the gravity signal and moves accordingly. One thus gets systems made of interacting components in
which new components can be dynamically added. Applets illustrating this approach, coded in SugarCubes,
are available on the Web [25].

4 Some issues

In this section we briefly discuss some issues related to reactive programming.

4.1 Values

Practical programming languages that have been developed on top of the basic reactive model includedata
typesbeyond pure signals. For instance, we may have the inductive type of booleansbool = t | f, and
the inductive type of natural numbers in unary notationnat = z | s of nat. At the very least, the reactive
kernel embedded in a general purpose language should include ways of using the values manipulated in this
language. There are two main approaches to adding values to the model: (1) to introduce references as in the
ML language, and (2) to assume that signals carry values and that the last emission “covers” in a sense the
previous ones (if any). In the latter case, an important design choice to make is to decide what is “the” value
associated with a signal at a given instant, and what is the corresponding construct for consulting this value.
The simplest model is to regard the value of a signal as ephemeral. That is, the value is updated, as for a
reference, by the next emission of the given signal. However, this is not quite compatible with the idea that
a signal is broadcast, and that all the running threads have a consistent view of it – either present or absent
– at each instant. Therefore, some other mechanisms have been designed. In ESTEREL for instance, one
assumes for each type of signal value a function for combining the various values emitted on that signal, and
the actual value carried by the signal at some instant is the combination of all the values emitted during this
instant (in ESTEREL, with the strong synchrony hypothesis, the combination function should be associative
and commutative, since the result should be independent of any scheduling). A similar approach has been
followed in SugarCubes [13] and ReactiveML [21]. Notice that in the reactive model, where one cannot
statically predict that a signal will or will not be emitted, one has to collect the value of a signal only at the
beginning of the next instant. One may also trigger a processing mechanism each time a value is emitted on
a signal. Another possibility that is considered in some implementations is to specify, in a receive statement,
the rank of the value (in the emission order) in which one is interested.

4.2 Reactivity

A first property that we would like to ensure regarding reactive programs is that they should indeed be
reactive, in the following sense:

Definition 2 A program P isreactiveif for every choice I of the input signals there are O,P′ such that

P
I/O→ P′.

6

17



The reactivity property is not for free. For instance, the threadA = (await s);A may potentially loop within
an instant. Whenever a thread loops within an instant the computation of the whole program is blocked as
the instant never terminates. One approach to ensure reactivity is to produce a static analysis that guarantees
that all loops that may occur within an instant traverse apause instruction.

While reactivity is a necessary property, it does not guarantee that in practice the program will re-
act for arbitrarily many instants and that this will happen within reasonable time and/or space. A first
problem has to do with the implementation of thewhen and watch instructions. Consider, the thread
A = (local s (watch s pause;A)). Every time the execution crosses thewatch instruction it causes the in-
sertion of a new signals which may potentially abort the execution (although this is not the case with this
particular program). Thus the execution of this program may potentially cause a stack overflow. This kind
of pathological programs can be removed by a static analysis that checks that there is no loop in the program
(possibly going through several instants) that may cause an increase of the stack.

A second problem is due to the fact that the number of (active) threads and signals may grow without
limit. Indeed, it can be shown that our basic language is Turing complete. In practice, we need to control the
number of threads, and in this respect an interesting feature of the language is thewatch instruction which
allows to terminate explicitly the execution of a thread (at the end of an instant).

Finally, a third problem, as regards reactivity, is caused by the introduction of data values. The size of
the values we are interested in, like lists or trees, is usually not a priori bounded. What does it mean to
ensure reactivity in this case? We have in [3, 4] considered three increasingly ambitious goals in this respect.
A first one is to ensure that every instant terminates. A second one is to guarantee that the computation
of an instant terminates within feasible bounds which depend on the size of the parameters of the program
at the beginning of the instant. A third one is to guarantee that the parameters of the program stay within
certain bounds, and thus the resources needed for the execution of the system are controlled for arbitrarily
many instants. In particular, we have been adapting and extending techniques developed in the framework of
(first-order) functional languages. The general idea is that polynomial time or space bounds can be obtained
by combining traditional termination techniques for term rewriting systems with an analysis of the size of
computed values based on the notion of quasi-interpretation ([2, 7]). Thus, in a nutshell, ensuring “feasible
reactivity” requires a suitable termination proof and bounds on data size.

4.3 Determinism

We say that two programsP,P′ are equal up to renaming if there is a bijection fromsig(P) to sig(P′) that is
the identity on the observable signal names in the interfaceInt and that when applied toP producesP′. As
usual, an inspection of the semantics shows that the observable behaviour of a program does not depend on
the specific choice of its internal signal names.

Definition 3 A program P isdeterministicif for every choice I of the input signals if P
I/O1→ P1 and P

I/O2→ P2

then O1 = O2 and P1 = P2 up to the same renaming.

It is immediate to verify that the evaluation of a threadT in an environmentE is deterministic. Therefore
the only potential source of non-determinism comes from the scheduling of the threads. The basic remark is
that the emission of a signal can never block the execution of a statement within an instant. The more we add
signals the more the computation of a thread can progress within an instant. Of course, this property relies
on the fact that we cannot detect the absence of a signal before the end of the instant.

Proposition 4 All programs are deterministic.

7

18



Clearly, this property is likely to be lost when adding values to the model. Assuming that we have valued
signals, consider for instance the programP = {|(emit s t),(emit s f)|} where two threads emit the boolean
valuest and f, respectively, on the signals. The value which is observed on the signal at the end of the
instant depends on the scheduling of the threads (unless the values are combined using an associative and
commutative function, as in ESTEREL). So it seems that we have to accept the idea that when introducing
data types the result of the program depends on the scheduler. In practice, one may assume that the scheduler
is deterministicin the program and the input. This is a significant difference with preemptive concurrency. In
preemptive concurrency, the scheduling policy may depend on factors such as the current workload which are
independentfrom the program and the input. Assuming a deterministic scheduler has a positive effect on the
process of testing, tracing, and debugging concurrent programs. Besides determinism, it might be reasonable
to put additional constraints on the scheduler. One such constraint is the following: if a thread suspends its
execution during an instant then all the threads that are ready to run at the moment of the suspension will be
given a chance to progress before the computation of the suspended thread is resumed (if ever). With such a
scheduler in mind, it makes sense to define:

yield = (local s (thread (emit s));(await s))

4.4 Program equivalence

We have described the operational semantics of reactive and deterministic programs as a reaction to a given
input, producing a unique output and continuation. Looking for a more abstract, extensional semantics, one
possibility is to consider that it is determined by the settr(P) of infinite traces associated with the possible
runs of the programP. Namely:

tr(P) = {(I1/O1)(I2/O2) · · · | P
I1/O1→ P1

I2/O2→ P2 · · ·}

Another possibility could be to define a notion of bisimulation. Namely, consider the largest (symmetric)

relationR on programs that satisfies the following condition: for every(P,P′) ∈ R and inputI , if P
I/O→ P1

thenP′ I/O→ P′
1 and(P1,P′

1) ∈ R. It is important to notice that for our deterministic language these two notions
coincide.

Proposition 5 Two reactive and deterministic programs are trace equivalent iff they are bisimilar.

Of course, this reduces considerably the debate on what the right notion of program equivalence is. The
notion of weak bisimulation – another familiar concept in the semantics of concurrency – is also missing.
However, we must point out that, although the problem of defining program equivalence has an obvious
solution, little work has been done so far on the problem of defining and characterising a suitable notion of
thread equivalencewhich is preserved by program contexts. Moreover, as we have seen, adding values to the
language turns it into a non-deterministic model, for which no notion of equivalence has been investigated
so far.

References
[1] Raul Acosta-Bermejo. Reactive Operating System, Reactive Java Objects.Proc. NOTERE’2000, ENST, Paris, November

2000.

[2] R. Amadio. Synthesis of max-plus quasi-interpretations. InFundamenta Informaticae, 65(1-2):29–60, 2005.

8

19



[3] R. Amadio, S. Dal-Zilio. Resource control for synchronous cooperative threads. InProc. CONCUR, Springer LNCS 3170,
2004.

[4] R. Amadio, F. Dabrowski. Feasible reactivity for synchronous cooperative threads. In preparation.

[5] F. Benbadis and L. Mandel.Simulation of mobile ad hoc networks in reactive ML. Pre-print Universit́e Paris 6, available
from the authors, 2004.

[6] G. Berry and G. Gonthier, The Esterel synchronous programming language.Science of computer programming, 19(2):87–
152, 1992.

[7] G. Bonfante, J.-Y. Marion, and J.-Y. Moyen. On termination methods with space bound certifications. InProc. Perspectives
of System Informatics, Springer LNCS 2244, 2001.

[8] G. Boudol, ULM, a core programming model for global computing. InProc. of ESOP, Springer LNCS 2986, 2004.

[9] F. Boussinot. Reactive C: An extension of C to program reactive systems.Software Practice and Experience, 21(4):401–428,
1991.

[10] Fréd́eric Boussinot. Fairthreads: mixing cooperative and preemptive threads in C.Inria research report, RR-5039, December
2003, to appear inConcurrency and Computation: Practice & Experience.

[11] F. Boussinot, Reactive programming of cellular automata.Rapport de Recherche INRIA 5183, 2004.

[12] F. Boussinot and R. De Simone, The SL Synchronous Language.IEEE Trans. on Software Engineering, 22(4):256–266,
1996.

[13] F. Boussinot and J-F. Susini. The SugarCubes tool box - a reactive Java framework.Software Practice and Experience,
28(14):1531–1550, 1998.

[14] Ch. Brunette. A visual reactive framework for dynamic behavior creation.2nd Workshop on Domain Specific Visual Lan-
guages, OOPSLA, Seattle, 2002.

[15] P. Caspi and M. Pouzet. Synchronous Kahn networks. InProc. ACM Conf. on Functional Programming, 1996.

[16] S. Epardaud. Mobile reactive programming in ULM.SCHEME Workshop, 2004.

[17] L. Hazard, J-F. Susini, and F. Boussinot. The Junior reactive kernel.Inria Research Report, (3732), 1999.

[18] J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and computation. Prentice-Hall, 1989.

[19] G. Kahn. The semantics of a simple language for parallel programming. InProc. IFIP Congress, North-Holland, 1974.

[20] Loft, http://www-sop.inria.fr/mimosa/rp/LOFT.

[21] Louis Mandel and Marc Pouzet. ReactiveML, a reactive extension to ML. InACM International conference on Principles
and Practice of Declarative Programming (PPDP’05), Lisbon, Portugal, July 2005.

[22] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[23] J. Ousterhout. Why threads are a bad idea (for most purposes). Invited talk at the USENIX Technical Conference, 1996.

[24] Riccardo Pucella. Reactive programming in Standard ML.Proceedings of the IEEE International Conference on Computer
Languages (ICCL’98), pages 48–57, 1998.

[25] Reactive Programming, INRIA, Mimosa Project.http://www-sop.inria.fr/mimosa/rp.

[26] Manuel Serrano, Fréd́eric Boussinot, and Bernard Serpette. Scheme fair threads. InPPDP ’04: Proceedings of the 6th ACM
SIGPLAN international conference on Principles and practice of declarative programming, pages 203–214, New York, NY,
USA, 2004. ACM Press.

9

20



Six Themes for Future Concurrency Research

J.C.M. Baeten
Divison of Computer Science, Technische Universiteit Eindhoven, josb@win.tue.nl

and
J.A. Bergstra

Informatics Institute, University of Amsterdam, janb@science.uva.nl, and
Department of Philosophy, Utrecht University

May 23, 2005

Abstract

We list a few themes that might have attention in the coming few years in the area of
concurrency research. We talk about widening the scope beyond computer science, about
web services and grid computing, about hybrid systems, mobility and security, agents and
games, and natural computing.

Introduction

Listing themes, subjects or areas of focus has become a trend in Dutch science and research
management for computing sciences. Often these listings provide renamings of what people
did before and after a conversion of terminology we all keep doing what we did. (E.g. some
formal methods will be relabeled to ‘the computer of the future’.) An underlying goal of
these listings, however, is to give new focus to Dutch computer science research. We will
also produce a listing of themes in this document, but with the sole purpose of guessing
what people might do in the following years. In no way these themes should be considered a
priority for their own sake just because we have listed them here. Interestingly, this detached
approach makes writing the paper less ‘scientific’ becauses forecasting human behaviour is
just not a part of computing science whereas managing their (research) behaviour might be.
In any case, we intend not to rename themes in a futile way.

Dynamics and Interaction

Concurrency is about behaviour of interacting systems or entities. It has ways to describe
dynamics and interaction, and can reason about these descriptions. Up to now, it is considered
as an area of research in computer science, and it is applied to systems that are implemented
in software, or in a combination of software and hardware. A development that we consider
important, is the one where we see applications completely outside the realm of computer
science. Most prominent is this in the area of life sciences, where concurrency theories are
used in order to describe dynamics and interaction inside a living cell. But we see also

1

21



applications in mechanical engineering and mechatronics, where concurrency theories are
used to describe dynamics and interaction of manufacturing machines, production lines and
automated factories. We consider this an illustration of the maturity of concurrency theories.

Grid Computing and Web Services

Grid computing and webservices are a big trend by any account. Both developments heavily
depend on the design of novel protocols. The universal presence of security based protocols
makes these protocols remarkably complex. As it stands, concurrency theory may be too
simplistic to cover this new ground but if we have real faith in the strength of these techniques
they will emerge in the analysis of the mentioned protocols as powerful tools. It is likely that
projects aiming at this will be carried out throughout the world.

Hybrid Systems

Concurrency theory traditionally describes dynamics and interaction of discrete-event sys-
tems. Especially in applications in the area of embedded systems, there is a need to also model
continuously evolving physical entities, usually described by means of differential equations.
For modeling and analysis of such hybrid phenomena, discrete-event formalisms are extended
in different ways with some form of differential (algebraic) equations. The most influential
hybrid system model is that of a hybrid automaton. By now, these hybrid automata exist in
many different flavours, with accompanying verification tools. Also hybrid process algebras
exist. The challenge is to make the connection with the dynamics and control field, where
there are representations such as piecewise affine systems, mixed logic dynamical systems or
linear complementarity systems. In dynamics and control, the focus is on controller synthesis
and analysis of properties such as stability and observability.

Mobility and Security

Research on mobility, and calculi to express mobility of systems, will continue. An important
application area is in security, with the analysis of security protocols. Concerning security
we expect that security aspects will be integrated with all other forms of communication and
protocols. In this sense, security will cease to be an independent subject just as performance
is a concern that always has to be taken into account. The integration of security features
in known functionalities and their formal descriptions will lead to much future work. A
significant part of this work will be carried out in the context of one of the (more or less
algebraic) process theories.

Agents and Games

The theory of intelligent agents has developed rather separated from concurrency theory.
We think we will see the use of concepts developed in concurrency theory in the further
development of agent theory. Also, connections with game theory are important. Applications
in gaming may lead to agent programming notations based on or significantly influenced by
concurrency theory. Gaming agents will eventually be involved in extremely complicated

2

22



communication protocols where these will represent entities that may seem real but at the
same time need not obey the laws of physics. Travelling back in time is acceptable for a
game, though a timed concurrency theory admitting such developments may be an elusive
goal. Clearly, many other theories will find their way into the design of agents in games,
but for the protocol side of it concurrency theories may hold a promise yet to be discovered
when the increasing complexity of highly distributed games generates serious difficulties of
that nature.

Natural Computing

Concepts from different areas of natural computing, in particular quantum computing and
relativistic computing in time and space, will be connected to concurrency theory. Quantum
computing turns out to be relevant in describing concurrency on a single chip, and relativistic
aspects become important when describing communication with large delays as occur in space
travel.

Caveat

Some people liked a small survey of future directions we wrote in 1996, see [1]. Here, we again
speculate on a few possible directions. Others may very well have very different opinions
concerning future directions, and indeed, more likely than not our selection of six themes will
fail to highlight a development that will prove important in the coming years.

References

[1] J.C.M. Baeten and J.A. Bergstra. Six issues concerning future directions in concurrency
research. ACM Computing Surveys, 28(4es), 1996.

3

23



A generic process algebra

J.C.M. Baeten
Divison of Computer Science, Technische Universiteit Eindhoven, josb@win.tue.nl

and
M. Bravetti

Department of Computer Science, Università di Bologna, bravetti@cs.unibo.it

Abstract

The three classical process algebra CCS, CSP and ACP present several differences
in their respective technical machinery. This is due, not only to the difference in their
operators, but also to the terminology and ”way of thinking” of the community which
has been (and still is) working with them. In this paper we will first discuss such differ-
ences and try to clarify the different usage of terminology and concepts. Then, as a result
of this discussion, we define a generic process algebra where each basic mechanism of
the three process algebras is expressed by an operator and which can be used as an un-
derlying common language. We show an example of the advantages of adopting such
a language instead of one of the three more specialized algebras: producing a complete
axiomatization of finite-state behaviours.

1 Introduction

The huge amount of research work on process algebra carried out in the last 25 years started
from the introduction of the theory of the process algebras CCS [13], CSP [12] and ACP [7].
In spite of conceptual similarities those process algebras where developed starting from quite
different viewpoints and give rise to different approaches: CCS is heavily based on having an
observational bisimulation-based theory for communication over processes starting from an
operational viewpoint; CSP is born as a theoretical version of a practical language for con-
currency and is still based on operational semantics which, however, is interpreted w.r.t. a
simpler theory based more on traces than on bisimulation; finally ACP starts from a com-
pletely different viewpoint where concurrent systems are seen, according to a purely mathe-
matical algebraic view, as the solutions of systems of equations (axioms) over the signature
of the algebra considered, and operational semantics and bisimulation (in this case a different
notion of branching bisimulation is considered) are seen as just one of the possible models
over which the algebra can be defined and the axioms can be applied. Such differences reflect
the different ”way of thinking” of the different communities which started working (and of-
ten keep working) with them. This paper aims at pointing out such differences, which often
reflect in the usage of different terminology within the different communities, and at creating

24



a means for a unified view of process algebras. The impact of such differences can be easily
underestimated at a first glance. However when it comes to dealing with related machinery
concerning recursion and treatment of process variables in the three different contexts the
need for clarification and comparison comes out. Our study concretizes in the development
of a common theory of process algebra. In particular we make use of a process algebra called
TCP+REC, which is defined in such a way that each basic mechanism involved in the opera-
tors of the three process algebras is directly expressed by a different operator. The idea is that
TCP+REC:(i) is an underlying common language which can be used to express processes
of any of the three process algebras;(ii) can be used as a means for formal comparison of
the three respective approaches; and(iii ) can be used to produce new results in the context
of process algebra theory due to its generality (e.g. to produce an axiomatization which is
complete over finite-state processes).

The remainder of the paper is organized as follows. In Sect. 2 we focus on presentation
of differences concerning recursion and treatment of process variables in CCS, CSP and ACP.
In Sect. 3 we present TCP+REC. In Sect. 4 we present the result of axiomatization over
finite-state processes which is based on TCP+REC.

2 Process variables and recursion

The different viewpoint assumed in the ACP process algebra with respect to, e.g., the CCS
process algebra gives rise to a different technical treatment of process variables in axiomati-
zations.

In CCS axioms are considered as equations between terms which can be expressed by
using meta-variablesP (as, e.g., inP+P = P) standing for any term. The meaning is that the
model generated by the term in the left of “=” is equivalent to the term to the right of “=”
according to the considered notion of equivalence (e.g. observational congruence for CCS).
Terms to the left and to the right of= may include free variablesX (they may be so called
open terms). The meaning in this case is the following: for any substitution of free variables
the term on the left is equivalent to the term on the right. Often a different meta-variableE is
used to range over open terms, whileP just ranges over closed terms: i.e. terms where free
variablesX do not occur (or if they occur they are bound by, e.g. a recursion operator like
recX.E). Note that in this context the word “process” (recalling the meta-variableP) is used
as synonymous for “closed term”.

In ACP axioms are instead considered as equations overprocess variables“x” (represent-
ing anyprocessin the model that is assumed for the algebra) combined by means of operators
in the signature of the algebra (as, e.g., inx+x = x). Note that here, differently from the case
of CCS, the word process is used to denote any element in the model which is considered
(e.g. transition systems modulo branching bisimulation). Such process variables act similarly
to meta-variablesP of CCS only if the so-calledterm modelis assumed: the model in which
each element is generated/represented by terms made up of operators of the signature of the
considered process algebra. In ACP free variablesX of CCS are not considered (term models
never include free variables): this is mainly due to the fact that in ACP a binding operator (like
“ recX.P” in CCS) is not considered. Note however that this does not prevent the possibility
of “reasoning” with open terms: this is done in ACP axiomatizations by replacing axioms in

25



the body of other axioms. Related to this difference between ACP and CCS, is the usage of
the word “calculus” to denote a process algebra. Differently from CCS, in the ACP context
the word calculus is only used if binding operators are introduced, in order to emphasize that
we leave the purely algebraic domain in the presence of such operators. Finally we would like
to observe that the notion of “complete axiomatization” in the context of CCS corresponds to
what in ACP is said to be “ground complete”: i.e. the axiomatization is complete with respect
to identities between closed terms (so, for the term model).

Once these basic differences are explained, in the following we will focus on the different
ways of expressing recursion in the three process algebras. LetV be a set of variables ranging
over processes, ranged over byX,Y. According to a terminology which is usual in the ACP
setting, arecursive specification E= E(V) is a set of equationsE = {X = tX |X ∈V} where
eachtX is a term over the signature in question and variables fromV. A solutionof a recursive
specificationE(V) is a set of elements{yX |X ∈V} of some model of the theory such that the
equations ofE(V) correspond to equivalent elements, if for allX ∈ V, yX is substituted for
X. Mostly, we are interested in one particular variableX ∈V, called theinitial variable. The
guardednesscriterion for such recursive specifications ensures unique solutions in preferred
models of the theory, and unguarded specifications will have several solutions. For example
the unguarded specification{X = X} will have every element as a solution and, e.g. if tran-
sition systems modulo observational congruence are considered, the unguarded specification
{X = τ.X} will have multiple solutions, as any transition system with aτ-step as only initial
step will satisfy this equation.

As far as guarded recursive specifications are concerned, while in CCS the unique solu-
tion can be represented by using the recursion operator “recX.P”, in ACP, where there is no
explicit recursion operator, this is not possible. As a consequence while in CCS the property
of uniqueness of the solution is expressed by the two standard axioms

(Un f old) recX.t = t{recX.t/X}
(Fold) t ′ = t{t ′/X} ⇒ t ′ = recX.t if X is guarded int

which actually make it possible to derive the solution, in ACP this property is expressed
by using so-called “principles”. TheRecursive Definition Principle, which corresponds to
the Unfold axiom, states that each recursive specification has a solution (no matter if it is
guarded). TheRecursive Specification Principle, which corresponds to the Fold axiom, states
that each guarded recursive specification has at most one solution.

As far as unguarded recursive specifications are concerned, the process algebras ACP,
CCS and CSP handle them in different ways. In ACP, variables occurring in unguarded re-
cursive specifications are treated as (constrained) variables, and not as processes. In CCS,
where recursive specifications are made via so-called “constants”, ranged over byA,B, .., or
equivalently by therecX.t operator, wheret is a term containing variableX, from the set of
solutions the solution will be chosen that has the least transitions in the generated transition
system. Thus, the solution chosen for the equation{X = X} has no transitions (it is the dead-
locked processδ in the ACP terminology), and the solution chosen for{X = τ.X} has only
a τ-transition to itself, a process that is bisimilar toτ.δ in observational congruence. In CCS
such a behaviour is expressed by the three axioms for unguarded recursion

(FUng) recX.(X + t) = recX.t
(WUng1) recX.(τ.X + t) = recX.τ.t

26



(WUng2) recX.(τ.(X + t)+s) = recX.(τ.X + t +s)
that make it possible to turn each unguarded recursive specification into a guarded one (ac-
tually WUng1 and WUng2 can be expressed by a single axiom as we show in [5]). It is
worth noting that, if unguardedness is caused just byτ actions (weak unguardedness), as in
{X = τ.X}, and not by variable being directly executable in right-hand side of equations (full
unguardedness), as in{X = X}, in ACP it is possile to obtain the same effect as withrecX.t
in CCS by means of the hiding operator: e.g. the CCS semantics of{X = τ.X} can be ob-
tained in ACP by writingτ{a}(X) whereX = a.X (in ACP “τI (t)” is the hiding operator). This
technique makes it possible to “reason” about weakly guarded recursion also in ACP, but in
an undirect way, via the hiding operator. More precisely, in ACP it is possible to express an
analogy of axioms WUng1 and WUng2 by adding a much more complex set of conditional
equations called CFAR (Cluster Fair Abstraction Rule) introduced in [14]. CFAR is a gen-
eralisation of the KFAR (Koomen’s Fair Abstraction Rule) introduced in [6]. Note however
that CFAR and KFAR, differently from the axioms above, also work for branching bisimu-
lation instead of Milner’s observational congruence. Finally, in CSP the way of dealing with
unguarded recursive specification is such that a solution will be chosen like in CCS, but a
different one: the least deterministic one. Thus, both CCS and CSP use a least fixed point
construction, but with respect to a different ordering relation. In CSP, the solution chosen
for the equation{X = X} is thechaosprocess⊥, a process that satisfiesx+⊥ = ⊥ for all
processesx (for an extension of ACP with such a process see [3]).

3 The generic process algebra TCP+REC

The algebra TCP+REC is an extension of the algebra TCP [1, 2] which in turn extends ACP
by including successful terminationε and prefixing̀a la CCS. The algebra TCP is parameter-
ized on a set of actionsA (which does not include the special internal actionτ) and is endowed
with sequencing “t ′ · t ′′”, hiding “τI (t)”, restriction “∂H(t)”, relabeling “ρ f (t)”, and parallel
composition “t ′ ‖ t ′′” à la ACP (where a communication functionγ is assumed to compute
the type of communicating actions). Moreover it includes the left-merge “t ′‖ t ′′” and syn-
chronization merge “t ′ | t ′′” operators which are used for axiomatizing parallel composition.
TCP+REC considers in addition to TCP a recursion operator〈X|E〉 (whereE = E(V) is a
recursive specification andX a variable inV which acts as the initial variable) which, simi-
larly as in CCS, computes minimal fixpoint solutions of (non guarded) systems of equations
and which extends the similar operator introduced in [9] with the possibility of nesting recur-
sion operators inside recursion operators.〈X|E〉 encompasses both the CCSrecX.t operator
(which is obtained by takingE = {X = t}) and the standard way to express recursion in ACP
(where usually only guarded recursion is considered via systems of equationsE).

This process algebra isgeneric, in the sense that most features of commonly used process
algebras can be embedded in it. In the following, we made use of [11] and [4].

We consider a subtheory corresponding to CCS, see [13]. This is done by omitting the
signature elementsε, ·,‖ , | . Next, we specialize the parameter setA by separating it into
three parts: a set of namesA , a set of co-names¯A and a set of communicationsA ∗ such
that for eacha∈A there is exactly one ¯a∈ ¯A and exactly onea∗ ∈A ∗. The communication
functionγ is specialized to having as the only defined communicationsγ(a, ā) = γ(ā,a) = a∗,

27



and then the CCS parallel composition operator|CCScan be defined by the formula

x |CCSy = τA ∗(x ‖ y).

We consider a subtheory corresponding to ACPτ , see [8]. This is done by defining, for
eacha∈ A, a new constanta by a = a.ε, and then omitting the signature elementsε, .,ρ f .

We consider a subtheory corresponding to CSP, see [12]. Thenon-deterministic choice
operatoru can be defined by

xuy = τ.x+ τ.y,

but theexternal choiceoperator� cannot be defined directly, as possible non-determinism is
removed at the start of the process. It can be axiomatized as shown by Brookes in [10]. The
parameter setA is specialized into two parts: a set of namesA and a set of communications
A ∗ such that for eacha∈ A there is exactly onea∗ ∈ A ∗. The communication functionγ
is specialized to having as the only defined communicationsγ(a,a) = a∗, and further, we use
the renaming functionf that hasf (a∗) = a. Then, the CSP parallel composition operator‖S,
parametrized by a set of namesS⊆ A , can be defined by the formula

x ‖S y = ρ f (∂S(x ‖ y)).

4 Example: Axiomatizing Finite-State Processes

As we show in [5], by using a restricted version of TCP+REC it is possible to solve the
open problem of developing a ground-complete axiomatization for a process algebra with
static operators (like, e.g., CCS parallel and restriction) over finite-state processes modulo
observational congruence, thus extending Milner’s result which holds for CCS without static
operators. Note that if we consider the signature of full CCS, we have that Milner’s axioms
are no longer sufficient to get rid of unguarded recursion. In other words, even if two CCS
terms are both finite-state it may be that they are not equated by an axiomatization including
the standard CCS axioms (the axioms for CCS without therecX.t recursion operator) plus the
axioms for unguarded and guarded recursion. An example is the following:

( (recX.a.X) | (recX.a.X) )\a
where “|” and “\” denote CCS parallel composition and restriction, respectively. The model
of such a term has just one state with aτ self-loop, but cannot be equated by Milner’s axiom-
atization to the equivalent termrecX.τ.X or toτ.0 because unguardedness cannot be removed
in order to apply the folding axiom and get rid of static operators.

In particular we consider TCP+RECf where in〈X|E〉 operators, withE = E(V), we dis-
allow variables inV (which are bound by the operator) to occur insideE in the scope of static
operators like hiding, restriction, relabeling and parallel composition operators or in the left-
hand side of a sequencing operator. The axiomatization is obtained by considering the crucial
axiom

τI (〈X|X = t〉) = 〈X|X = τI (t)〉
which allows the hiding operator (the only static operator which may generate unguarded
recursion) to be exchanged with the recursion operator.

28



References

[1] J.C.M. Baeten. Embedding untimed into timed process algebra: The case for explicit
termination.Mathematical Structures in Computer Science, 13(4):589–618, 2003.

[2] J.C.M. Baeten, T. Basten, and M.A. Reniers.Algebra of Communicating Processes.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2005.

[3] J.C.M. Baeten and J.A. Bergstra. Process algebra with propositional signals.Theoretical
Computer Science, 177(2):381–406, 1997.

[4] J.C.M. Baeten, J.A. Bergstra, C.A.R. Hoare, R. Milner, J. Parrow, and R. de Simone. The
variety of process algebra. Deliverable ESPRIT Basic Research Action 3006, CONCUR,
1991.

[5] J.C.M. Baeten and M. Bravetti. A ground-complete axiomatization of finite state pro-
cesses in process algebra. InProceedings CONCUR’95, Lecture Notes in Computer
Science. Springer Verlag. To appear.

[6] J. A. Bergstra and J. W. Klop. Verification of an alternating bit protocol by means
of process algebra. In Wolfgang Bibel and Klaus P. Jantke, editors,Proc. Mathematical
Methods of Specification and Synthesis of Software Systems, volume 215 ofLNCS, pages
9–23. Springer, 1986.

[7] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.Informa-
tion and Control, 60(1/3):109–137, 1984.

[8] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37(1):77–121, 1985.

[9] J.A. Bergstra and J.W. Klop. A complete inference system for regular processes with
silent moves. In F.R. Drake and J.K. Truss, editors,Proc. Logic Colloquium’86, pages
21–81. North-Holland, 1988.

[10] S.D. Brookes. On the relationship of CCS and CSP. In J. Diaz, editor,Proceedings
ICALP’83, number 154 in LNCS, pages 83–96. Springer Verlag, 1983.

[11] R.J. van Glabbeek. Notes on the methodology of CCS and CSP.Theoretical Computer
Science, 177(6):329–349, 1997.

[12] C.A.R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.

[13] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[14] F.W. Vaandrager. Verification of two communication protocols by means of process
algebra. Technical Report report CS-R8608, CWI Amsterdam, 1986.

29



Bisimulation and Simulation Relations
for Markov Chains

Christel Baier1, Holger Hermanns2, Joost-Pieter Katoen3 and Verena Wolf4
1 Universiẗat Bonn, D-53117 Bonn, Germany

2 Universiẗat des Saarlandes, D-66123 Saarbrücken, Germany
3 RWTH Aachen, D-52074 Aachen, Germany

4 University of Mannheim, D-68131 Mannheim, Germany

Abstract

Formal notions of bisimulation and simulation relation play a central role for any
kind of process algebra. This short paper sketches the main concepts for bisimulation
and simulation relations for probabilistic systems, modelled by discrete- or continuous-
time Markov chains.

To compare the stepwise behaviour of states in labeled transition systems, simulation and
bisimulation relations have been widely considered. They play a crucial role for the composi-
tional design and reasoning within a process algebra framework, and for abstraction purposes.
Bisimulation relations are equivalences requiring two bisimilar states to exhibit identical step-
wise behaviour. Simulation relations are uni-directed requiring that whenevers′ simulatess
then states′ can mimic all stepwise behaviour ofs; but possibly not vice versa. Typically,
(bi)simulation relations enjoy many nice properties such as congruence properties for par-
allel composition and other operators of process algebras, preservation properties for linear
and branching-time logics; they have sound and complete axiomatizations, efficient decision
algorithms and allow for coinductive reasoning.

In this short paper, we consider probabilistic systems modelled by action-labelled Markov
chains and summarize the main concepts of (bi)simulation relations for them. Markov chains
are an important class of stochastic processes that are widely used in practice to determine
system performance and dependability characteristics, see e.g. [28, 20]. A variety of process
algebras with an operational Markov chain semantics has been defined, see e.g. [27, 17, 9, 23,
22, 30] for an overview. Based on the seminal works of Jonsson and Larsen [26] and Larsen
and Skou [29], various notions of simulation and bisimulation relations have been studied
for both discrete and continuous-time Markov chains. This paper surveys the results on com-
parative semantics of branching-time relations for time-abstract fully probabilistic systems
(discrete-time Markov chains) and continuous-time Markov chains. We skip many details,
which can be found in the above mentioned literature, and focus on the ideas of stochastic
notions of bisimulation and simulation relations.

30



In the sequel, letAct be a fixed, finite set of actions. We assume thatτ ∈ Act is a special
action symbol for non-observable activities, i.e., computations that are internal to some pro-
cess. All actions inAct\{τ} are called visible. The symbol ˆa equalsa if a is a visible action,
while τ̂ = ε is the empty word inAct∗.

Markov chains. An action-labelled discrete-time Markov chain (DTMC for short) is a la-
belled transition system where each state is associated with a probability distribution that
specifies the probabilities for the actions and successor states. That is, in any states there is
a probabilistic choice between the enabled transitionss a−→ s′. Formally, a DTMC is a tuple
D = (S,P) whereS is a countable set of states,P : S×Act×S→ [0,1] is a probability matrix
satisfying∑s′∈S,a∈ActP(s,a,s′) = 1 for all s∈ S.

We consider DTMCs as time-abstract models. The name DTMC has historical reasons.
A (discrete-)timed interpretation is appropriate in settings where all state changes occur at
equidistant time points. In contrast, CTMCs are considered as time-aware, as they have an
explicit reference to time, in the form of transition rates which determine the stochastic evolu-
tion of the system in time. Formally, a CTMC is a tupleC = (S,R) with Sas before, andrate
matrix R a function that assigns to any triple(s,a,s′) a non-negative real number such that
∑s′∈S,a∈Act R(s,a,s′) converges. IfR(s,a,s′) = 0 then there is noa-labelled transition from
s to s′, otherwise thea-transition froms to s′ has rateλ = R(s,a,s′) which roughly means
that 1/λ is the average delay of the transitions a−→ s′. The mean time spend ins without per-
forming any action is 1/E(s) whereE(s) = ∑s′∈S,a∈Act R(s,a,s′) is the so-called exit rate of
states. For simplicity, we assume here that all states have at least one outgoing transition, i.e.,
E(s) > 0 for all statess. The time-abstract probablity for moving froms to s′ via actiona is
P(s,a,s′) = R(s,a,s′)/E(s). Then,(S,P) is a DTMC, called the embedded DTMC ofC .

Strong bisimulation [29, 27, 17, 11, 23]. While in the non-probablistic setting, bisimulation
equivalence of two states requires that any transition of one state has at least one matching
transition of the other state, probablistic bisimulation takes the ”quantity” (probablities or
rates) of transitions into account. For DTMCs, bisimulation equivalence denotes the coarsest
equivalence∼d on the state space such that for alls1 ∼d s2, all actionsa and all bisimulation
equivalence classesC we haveP(s1,a,C) = P(s2,a,C) whereP(s,a,C) = ∑s′∈C P(s,a,s′)
denotes the probability fors to move via ana-transition to a state inC. Similarly, for CTMCs,
bisimulation equivalence denotes the coarsest equivalence∼c on the state space such that for
all s1 ∼ s2, all actionsa and all bisimulation equivalence classesC we haveR(s1,a,C) =
R(s2,a,C) whereR(s,a,C) = ∑s′∈C R(s,a,s′) denotes the total rate to move fromsvia action
a to aC-state.

∼c refines∼d in the sense that∼c for a CTMC C is finer than∼d for its embedded
DTMC which again is finer than standard bisimulation equivalence in the labelled transition
system obtained by ignoring the probabilities. Moreover,∼d and∼c have analoguous prop-
erties as standard bisimulation equivalence in labelled transition systems. They fulfill sev-
eral congruence properties for composition operators of probabilistic process calculi [17, 23],
have complete axiomatizations [27], logical characterizations by means of CTL-like branch-
ing time logics [2, 4, 15], coalgebraic characterizations [16, 8] and polynomial-time decision
algorithms [24, 3, 12].

31



Weak bisimulation [5, 7]. While in strong(bi)simulations, all visible or non-visible steps
are consideredweak(bi)simulations abstract away from internal, non-observable steps. In the
non-probabilistic setting several notions of weak bisimulation exists that differ in the under-
lying ”weak transition relation” which combines the effect of consecutiveτ-transitions. Cor-
responding notions for Markov chains can be provided by considering the cumulative prob-
abilistic effect ofτ-transitions. For instance, the analogue to Milner’s observational equiv-
alence can be defined for DTMCs as the coarsest equivalence≈d such that for alls1 ≈d s2,
actionsa∈ Act and equivalence classesC∈ S/≈d we have

Pr(s1,τ
∗âτ

∗,C) = Pr(s2,τ
∗âτ

∗,C)

where Pr(s,τ∗âτ∗,C) denotes the the probability to move froms to aC-state via action se-
quences inτ∗âτ∗. In contrast to the non-probabilistic setting, this notion of observational
equivalence for DTMCs coincides with branching bisimulation equivalenceá la van Glabbeek
and Weijland [18]. Roughly speaking, branching bisimulation is defined as observational
bisimulation equivalence except that the intermediate states in theτ∗âτ∗-paths have to be
equivalent to the starting state in theτ∗-prefix and to the target state in theτ∗-suffix. For
DTMCs, branching bisimulation and observation bisimulation equivalence agree and they
can be characterized by (1) a local probability condition and (2) a global reachability condi-
tion. The local probability condition requires that for any equivalence classB ∈ S/ ≈d the
conditional probabilities

P(s,a,C)
1−P(s,τ,B)

to move froms via actiona to some equivalence classC, provided that either a visible action
is executed or a non-visible action leading to some other equivalence class (i.e.,(a,C) 6=
(τ,B)), agree for all statess∈ B whereP(s,τ,B) < 1. The reachability condition is needed
to distinguish divergent states from non-divergent ones. Formally, it requires that if there is
some states∈ B that can perform a visible action or can reach another equivalence classB′

then the same holds for all states inB.
This latter characterization of observational equivalence can easily be adapted to CTMCs

where we may deal with (1) the local probability condition in the embedded DTMC and
(2) a rate condition that refines the reachability condition by the requirementR(s1,a,C) =
R(s2,a,C) for all s1 ≈c s2 and(a,C) ∈ Act× (S/ ≈c) wherea 6= τ or si /∈C, i = 1,2. This
notion of weak bisimulation equivalence on CTMCs has a simple characterization:≈c is the
coarsest equivalence on the state space such thatR(s1,a,C) = R(s2,a,C) for all s1 ≈c s2,
a∈ Act and all equivalence classesC with a 6= τ or s1,s2 /∈C.

Although≈d and≈c are rather strong equivalenes, they are the coarsest relations that
preserve all branching-time properties of a temporal CTL-like logic [14, 7]. A coarser notion
of weak bisimulation for DTMCs has been suggested in [1] which relies on a nondeterministic
transition relation for theτ-transitions and probabilistic choices for the visible actions. The
local characterizations of weak bisimulation equivalence for DTMCs or CTMCs allow for
decision algorithms that use similar ideas as the strong bisimulation algorithms [24] and run
in polynomial-time.

Simulation relations [26, 13, 7]. The formal definition of simulation relations is more com-
plicated for probabilistic systems than for labeled transition systems. The reason is that prob-

32



ability distributions rather than single states have to be compared. We skip the details and just
mention that the formal strong simulation relies on (1) a local condition for the probabilities
and (2) an additional rate condition for CTMCs. The local probablity condition (1) can be
formalized by means of so-called weight functions [25, 26] that combine fragments of states,
or alternatively by a quantitative criteria for the upward-closed sets:

if s1 is simulated bys2 thenP(s1,a,C ↑)≤ P(s2,a,C ↑) for all actionsa andC⊆ S.

Here,C ↑ denotes the upward-closure ofC, i.e. the set of all statesu that simulate a statet ∈C.
The formal definition of weak simulation is more complex as it relies on the identification of
appropriate fragments of observable transitions for which the local probability condition and
rate condition as for strong simulation are required. As for weak bisimulation, an additional
reachability condition is needed to treat divergence in an appropriate way. Whereas (strong
or weak) simulation equivalence in labeled transition systems is coarser than (strong or weak)
bisimulation equivalence they agree for Markov chains.

Although these definition are rather complex, polynomial-time decision algorithms for
finite-state Markov chains exists that rely on network-flow algorithms [3] or linear programs [6].

Conclusion. This note provided a brief introduction to simulation and bisimulation relations
on Markov chain models. A comparative discussion of their features and properties including
preservation results for fragments of the branching-time logics PCTL[19] and CSL [4] is
provided in [7].

References
[1] S. Andova and J. Baeten. Abstraction in probabilistic process algebra.Tools and Algorithms for the

Construction and Analysis of Systems, LNCS 2031, pp. 204–219, 2001.

[2] A. Aziz, V. Singhal, F. Balarin, R. Brayton and A. Sangiovanni-Vincentelli. It usually works: the temporal
logic of stochastic systems.Computer-Aided Verification, LNCS 939, pp. 155–165, 1995.

[3] C. Baier, B. Engelen, and M. Majster-Cederbaum. Deciding bisimilarity and similarity for probabilistic
processes.J. of Comp. and System Sc., 60(1):187–231, 2000.

[4] C. Baier, B.R. Haverkort, H. Hermanns and J.-P. Katoen. Model-checking algorithms for continuous-time
Markov chains.IEEE Trans. on Software Eng., 29(6):524–541, 2003.

[5] C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic processes.Computer-Aided Verifica-
tion, LNCS 1254, pp. 119-130, 1997.

[6] C. Baier, H. Hermanns and J.-P. Katoen. Probabilistic weak simulation is decidable in polynomial time.
Inf. Proc. Lett., 89(3):123–130, 2004.

[7] C. Baier, J.-P. Katoen, H. Hermanns and V. Wolf. Comparative branching-time semantics for Markov
chains. to appear inInformation and Computation.

[8] C. Baier and M.Z. Kwiatkowska. Domain Equations for Probabilistic Processes,Math. Structures in
Computer Science, 10(6): 665-717, 2000.

[9] M. Bernardo and R. Gorrieri. Extended Markovian process algebra.Concurrency Theory, LNCS 1119, pp.
315-330, 1996.

[10] M. Bernardo and R. Cleaveland. A theory of testing for Markovian processes.Concurrency Theory, LNCS
1877, pp. 305–319, 2000.

[11] P. Buchholz. Exact and ordinary lumpability in finite Markov chains.J. of Appl. Prob., 31: 59–75, 1994.

[12] S. Derisavi, H. Hermanns and W.H. Sanders. Optimal state-space lumping in Markov chains.Inf. Proc.
Lett., 87(6): 309–315, 2003.

33



[13] J. Desharnais.Labelled Markov Processes.PhD Thesis, McGill University, 1999.

[14] J. Desharnais, V. Gupta, R. Jagadeesan, P. Panangaden. Weak bisimulation is sound and complete for
PCTL∗. Concurrency Theory, LNCS 2421, pp. 355-370, 2002.

[15] J. Desharnais, P. Panangaden. Continuous stochastic logic characterizes bisimulation of continuous-time
Markov processes.J. of Logic and Alg. Progr., 56: 99–115, 2003.

[16] E.P. De Vink, J.J.M.M. Rutten. Bisimulation for Probabilistic Transition Systems: a Coalgebraic Approach,
ICALP, LNCS 1256, pp 460-470, 1997.

[17] R.J. van Glabbeek, S.A. Smolka, B. Steffen. Reactive, generative, and stratified models of probabilistic
processes.Inf. & Comput., 121: 59–80, 1995.

[18] R.J. van Glabbeek, W.P. Weijland. Branching time and abstraction in bisimulation semantics.J. ACM,
43(3): 555-600, 1996.

[19] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.Formal Aspects of Computing
6: 512–535, 1994.

[20] B. Haverkort.Performance of Computer Communication Systems. A Model-Based Approach.John Wiley
& Sons. 1998.

[21] H. Hermanns.Interactive Markov Chains.LNCS 2428, 2002.

[22] H. Hermanns, U. Herzog and J.-P. Katoen. Process algebra for performance evaluation.Theoretical Com-
puter Science, 274(1-2), 2002.

[23] J. Hillston.A Compositional Approach to Performance Modelling. Cambr. Univ. Press, 1996.

[24] T. Hyunh, L. Tian. On some equivalence relations for probabilistic processes.Fund. Inf., 17: 211–234,
1992.

[25] C. Jones.Probabilistic Non-Determinism.Ph.D.Thesis, University of Edinburgh. 1990.

[26] B. Jonsson and K.G. Larsen. Specification and refinement of probabilistic processes.IEEE Symp. on Logic
in Comp. Sc., pp. 266-277, 1991.

[27] C.-C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomatizations for probabilistic
processes.Concurrency Theory, LNCS 458, pp. 367–383, 1990.

[28] V.G. Kulkarni. Modeling and Analysis of Stochastic Systems. Chapman & Hall, 1995.

[29] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing.Inf. and Comput., 94(1): 1–28, 1991.

[30] N. Lopez, M. Nunez. An overview of probabilistic process algebras and their equivalences. Tutorial
ProceedingsValidation of Stochastic Systems. A Guide to Current Research.Lecture Notes in Computer
Science 2925, pp 89–123, 2004.

34



An Interview with Robin Milner

Abstract

Below are excerpts of an interview with Robin Milner, held in Cambridge on the 3.
September 2003. The interview was conducted by Martin Berger. The full interview can
be found athttp://www.dcs.qmul.ac.uk/˜martinb/interviews/milner

Martin Berger: Turing-Machines, Lambda-Calculus, Shannon’s theorem ... They all are
extremely informal about what it means to get information from one entity to another.

Robin Milner: You are probably right, but knowing about simulation languages must have
been one of the reasons that I though automata ought to interact with one another. Of course I
didn’t know about Petri’s work, which again began in ’63. I didn’t know that at all. But what
struck me later was that the great thing about Petri was that he had actually worried about
automata theory and what interaction between automata might mean. Here is one transition
diagram and here is another transition diagram, but this transition in the left diagram must co-
incide with that transition in the right diagram. And that sharing-of-a-transition is how Petri
represented communication.

The intriguing thing about Petri’s work is that he was talking about how two automata could
interact, and he then put the whole into one Petri-net and he didn’t do it in a modular way.
But the fact that he used this to represent office systems and real-world information systems
showed that he had set his sights really quite high.

When did you stop being involved with the ML effort?

I went on being involved. We produced the formal semantics in 1990. I was very much in-
volved up to that. We then revised it in ’97. That was a lot of work, but certainly not full-time,
modifying the semantics.

By that time my main effort was definitely in concurrency, trying to understand concurrency
intellectually. I’m beginning to regard it as more of a modelling exercise than a language
exercise. We are modelling what happens in the world, like Petri modelling office processes,
if you like. We are not looking for the smallest set of primitives that can make sense of com-
putation. In fact, we are in a state of tension: we are looking for a small set of primitives, but
they have to fit well with what goes on, not only microscopically, but also macroscopically,
with what goes on in the world.

35



That was to me the challenge: picking communicational primitives which could be understood
in systems at a reasonably high level as well as in the way these systems are implemented at
a very low level. To some extent I think we have succeeded. In CCS and CSP the com-
municational primitives are robust with change of level of abstraction to some extent. But
still, the emphasis ought to be on modelling what happens in real systems, whether they are
human-made systems like operating systems, or whether they exist already. There’s a subtle
change from the Turing-like question of what are the fundamental, smallest sets of primitives
that you can find to understand computation. I think some of that applies in concurrency, like
naming: what is the smallest set of primitives for naming? So some of that applies. But as we
move towards mobility, understanding systems that move about globally, you need to commit
yourself to a richer set of semantic primitives. I think we are in a terrific tension between (a)
finding a small set of primitives and (b) modelling the real world accurately.

Can you describe the development from CCS to Pi in its historic timeline? What was
your first concurrency formalism and how did you change it? What didn’t work? How
was it perceived?

I think it’s an interesting story. I was working with what I called Behaviour Algebra in 1978.
The set of primitives included parallel composition, prefixing and those things. I wanted to
make this small set of primitives do everything or do as much as possible, and to understand
them semantically, preferably in Domain Theory; but that didn’t work. The idea of labelled
transition systems became very important because it was a replacement for what didn’t work,
which was encoding things into Domain Theory. Because encoding things into Domain The-
ory, the equivalences became either too rich or too poor, I mean too big or too small. They
didn’t hit what I regarded as correct notion of behavioural equivalence. There seemed to be
something inescapably missing in Domain Theory in respect to this. So labelled transition
systems – following on from Gordon Plotkin’s work on operational semantics and bringing
the idea of labels in – became central.

But automata already had labels!

Yes, that’s true, they did, and Keller had labelled transition systems. The idea of a label be-
ing, as it were, a vehicle of interaction became totally important. So it’s hard to know where
it came from: Keller with his labelled transition systems, or automata theory? Making it a
shared action was already present in Petri to some extent. But doing it algebraically and com-
positionally, that was an important thing. When I gave lectures in Aarhus in ’79, that was
essentially how the book on CCS evolved. What you are asking about is how it developed.
What people perhaps don’t know is that I was talking to Mogens Nielsen there and we were
really trying to make the Pi-calculus work at that time. I remember vividly discussions in
his office in Aarhus, and we couldn’t make it work. So CCS became the Pi-calculus without
communication of channels.

You were aware that CCS had shortcomings? You didn’t think you had hit on the right
formalism and later changed your mind.

36



Absolutely not. But it seemed to me – and later all the more – that it was good not to go the
whole way, because there was a certain nice, manageable modesty about concurrency in CCS
– same thing with CSP, really. You have two levels: you have data and then you have that data
being moved around, but you don’t have the one feeding on the other. You like to move the
values around, but not to move the means of movement. It was very important, I think, to see
concurrent calculi without movement. Because then you could see how much could be done
without movement. And the answer is: a tremendous amount could be done. The CSP peo-
ple have shown that. A tremendous number of systems can be handled. And then you could
begin see just where the barrier lay, what things you couldn’t model. Anyway, whatever justi-
fication you could have for inventing something without mobility, Mogens Nielsen and I tried
to get it to work for the label passing, but we didn’t succeed. So then CCS became what it was.

Was there a theorem that you proved that made you think ”OK, CCS is definitely inter-
esting enough”? I admire that you said ”CCS is not quite right but it is still already very
interesting and we can use it to understand a lot of things”. I would have been unhappy
with it and thrown it away. Any particular key event, that made you think ”wow, this
CCS is jolly interesting, let’s run with it”?

Two key events: one is being able to prove that behavioural equivalences were actually con-
gruences. That wasn’t easy. I had been working on that previously. Getting the idea that they
were congruences made you feel that you are getting at some new kind of essence, because
then you could think of the congruence classes as the ”real things” that you were talking about.
These were the denotees of your semantics. That it was a congruence was important because
the primitives seemed to be themselves, rather just an elegant set. If they had resisted this
congruence proof that would have been awful. That would have been the end of it.

The other thing was – and I think probably this happened not immediately, probably round-
about 1982 – when we discovered this logic ...

Hennessy-Milner Logic?

Yes. You could represent bisimilarity, which of course came about from talking to David Park,
and previously was called ”observational equivalence”. Of course it was the same relation,
almost the same relation, but of course the bisimilarity technology was terribly important. So,
whichever one of them it was, it turned out to be captured by the Hennessy-Milner Logic.
The fact that you could write specifications or you could have a very very simple logic which
captures that relation exactly ...

It is an infinitary logic, so in some sense it is not simple.

Yes, it’s an infinitary logic, it has summation, infinite sums, but if you cut down, you get quite
nice a finitary logic, if you do certain things to CCS. It is not entirely tidy, I agree, but it was
close enough. I remember saying to some of the Petri-Net people ”look, because we now have

37



a logic that matches the behavioural equivalence, isn’t that interesting”? I found they didn’t
respond very well to that. In any case, to me it was one of the events, which said — bar getting
a few things right and wondering about this infinitary notion — that we were on the right track.

Could it be the case that the world of computation is not compositional?

Yes, but you have to push these things very hard. Somebody will say to you: ”of course it’s
not compositional, look at the operating system” and then you can say, OK, wait a minute, we
have to make the operating system one of the participants, one of the agents in this population
of agents that are interacting. We won’t achieve compositionality until we’ve done that, until
we make explicit that agency, until we recognise all the agents that are there. We must ask
ourselves, how are they interacting? Is there a sense in which a single program interacts with
the operating system? All of those things need to be tackled. It’s almost as though we have
to prove that we can be compositional. Nobody will pay attention until we have. Eventually
people want, or I want them to want, to be able to talk about a process in the same way that
they talk about a function. That’s why I’m not interested in short-term gains!

About equivalences: you were originally thinking in terms of weak traces? And through
David Park you were lead to bisimulation?

Oh no, definitely not. The original book on CCS, in 1980, has something called observation
equivalence and it has something called strong equivalence. Strong equivalence, although it
was not defined in terms of maximal fixpoints, coinductively, turns out to coincide with bisim-
ilarity. That’s because of the fact of image-finite transitions. So strong equivalence coincides
exactly, as it turns out, with strong bisimilarity. But we missed the coinductive proof tech-
nique.

Weak observation equivalence turned out not to coincide quite, because it was defined as
the limit of an omega-chain, each member slightly finer than the previous. It turns out that
we were wrong to think the maximal fixpoint would be reached as the limit of a decreasing
omega-chain. It has to go to a higher ordinal. Apart from that difference, and that difference
shows up only in quite a sophisticated way, we already had weak bisimilarity, but not of course
the bisimulation proof technique, which is so important.

It was because David Park was visiting Edinburgh, I think in 1981. It was his sabbatical and
he was living in my house, reading my book and he came down at breakfast time when I was
washing the dishes and said ”there is something wrong with this”. And then I said ”oh god,
what’s wrong”? ”Well, this isn’t a maximal fixpoint”! And I said ”should it be?” or some-
thing and then we went for a walk and the answer was: yes, of course! Not only do we have a
coinductive proof technique with wonderful gains, but we also have coincidence very nearly
with what’s already there.

So when we went for the walk; the main topic was: what should we call this thing? David
wanted to call it ”mimicry” and I said ”that’s difficult to say, let’s call it bisimulation”. He

38



said ”that’s got five syllables” and I said, ”it doesn’t matter, people will be happy with it”. I
named it, but he brought the idea. In fact it was so close to what I had done. But the proof
technique, and the maths behind it – it seems to me – are very much better than what I had
in that first book, where I was proving inductively that things were ultimately equivalent by
proving that they were n-equivalent for all n; that was an inductive not a coinductive proof.

Who is David Park?

He did work originally on program schemata with David Luckham and Michael Paterson.
They were famous for their work on program schemata. This was before Scott, so they were
looking at the semantics of imperative programs, and looking at the decidability of the equiva-
lence of these things, under all interpretations of the function symbols, and finding some very
beautiful results. He got his PhD at MIT, but he was English. Anyway, he was a great friend
of mine. We knew each other when I was in Swansea. Before we came together again on
this concurrency stuff, he had worked with mu-calculus and maximal fixpoints. So he came
prepared with the maximal fixpoint view.

People knew and cared about maximal fixpoints before bisimulations?

Oh yes, very definitely. Maximal and minimal fixpoints. David was a great expert in the ex-
traordinary richness that you get when you have a maximal and a minimal fixpoint operator
in something like the mu-calculus. So he brought all that knowledge to bear. To him it stuck
out very strongly what I was doing wrong in CCS. Essentially he came along with this thing
and it fitted in. When I wrote the book in 1990, I tried to tell the story about how this fitted in
and how important it was.

Of course he died quite early, around 1990. It was important for me that he would get just
recognition for this. CCS was already designed, but this particular bisimilarity technique
seemed to be very important, at least for those of us who believe in equivalence and congru-
ence. The reason that that’s so important is that by doing that we are getting at some kind of
denotation of processes.

Even now I am talking with Tony Hoare, who is much more interested in the idea of what
it means for a program to meet its specification. We are now trying to reconcile the CCS
approach that regards denotations as congruence classes, and the CSP which talks about set-
theoretic denotations such as failures and traces and so on, and has very nice ordering rela-
tions, so that if the specification is larger than the implementation it means that the implemen-
tation is correct. The ordering notion between processes is of course the other main important
thing in process calculi. I think we want both; we want the notion of denotations, and perhaps
they are congruence classes, and we want the orderings or preorderings representing improve-
ment of, or refinement from, a specification.

You talked to Mogens Nielsen in Aarhus and you published your CCS book. What came
next? You were still pushing towards mobility I guess? How did the transition to Pi

39



come about? It seems to me that the key steps were collapsing everything into names
and finding the labelled transitions that make this work. Is that correct?

Yes.

Nielsen and Engberg, in ’86, wrote a paper called ”A calculus of communicating systems
with label passing”. The point is that they got over one of the difficulties that Mogens and I
had found. So they contributed a substantial step towards the Pi-calculus in that paper. They
never published it then. Now it was published in that book of essays. We (Joachim Parrow,
David Walker and I) cited their original report in our first paper on the Pi-Calculus. And we
put some kind of summary of what we thought they had contributed and what we had added
to it to make the Pi-Calculus. The interesting thing is, as I remember talking to Mogens back
in 1980, one of the things that didn’t fit was the CCS renaming operation, which is subtly
different from substitution of new names for existing names.

Because renaming can be infinitary?

No. It’s the fact that applying a renaming operator at the outside of a process is different from
doing a syntactic substitution of names throughout that process. As I remember, Mogens and
I didn’t succeed in making the label passing work, and one of the reasons was because of that
renaming operator. Now if you look at Engberg and Nielsen’s ECCS, Extended CCS they call
it, that operator is no longer present; they explicitly omit it..

There may have been other reasons; I don’t remember why label-passing didn’t work out in
my talks with Mogens. In any case we didn’t make this big step towards the Pi-Calculus that
he and Uffe made later. Then, knowing that, Joachim Parrow, David Walker and I worked
very hard to try and get only one kind of name. Mogens and Uffe had various kinds of name.
We did quite a lot to simplify it down. We experimented with the idea of only bound names
in messages. We tried all sorts of different things to make sure that we weren’t missing a
trick. It took us about three years from about ’86, ’87, to ’88, ’89 to get it straight. It was
a matter of not only cutting things out, but making sure that you couldn’t cut any more out,
since we wanted it to be as close to definitive as we could. That was an interesting process and
I have kept a heap of memos that we all wrote. It always takes experimenting with different
possibilities and there do seem to be quite a number of possibilities.

Did you have, as one of the possibilities, what we now call the asynchronous Pi-Calculus,
where you don’t have output prefixing and sums?

I think we wanted the sum because it gives you normal forms, and it gave us the algebra for
CCS. We were reluctant to do without that. It seemed to me that keeping the sum, although
perhaps not utterly necessary, gave you simpler applications, simpler illustrations. And it was
in the tradition of CCS anyway. It didn’t seem to be safe to leave it out. I’m glad that people
have done all sorts of things since, indicating exactly when we need it and what it does to
axioms.

40



I find the story of the sum quite fascinating because although these calculi appear to
just have one computational operation, data exchange (names for Pi), if you have unre-
stricted sums, there’s a second kind of silent communication that communicates which
summand is chosen. That is also what ultimately leads to unrestricted sum being com-
putationally more expressive. I always wondered if it had occurred to you at the time
that this additional communication was happening.

The way I thought about it in CCS (never mind the Pi-Calculus, because the problem arises
just as much in CCS, particularly the fact that weak bisimulation is not a congruence until
you take care where summation is allowed) is this: It appears to me that summation is like the
superposition of states and that observation causes the resolution of a sum into one or another
of its states. For that reason it is a much more esoteric combinator than parallel composition.

Of course input is a form of sum, just slightly more well-behaved.

Yes, slightly more well-behaved. Yes, I think that’s right. I agree that there’s some overlap
here between summation, parallel composition and input and so on. I don’t know whether
that’s fully resolved yet. There are problems still around, but people are able to discuss them
now in the context of the full Pi-Calculus. I think it’s good to go on doing that. And I must
admit that I gain more insight now that I look at graphical models, because the way summa-
tion works in bigraphs is quite unexpected. It can mimic the CCS form of sum really quite
closely. The Pi-Calculus is a step towards more spatially conscious models with regions and
something more, almost geometric, where we might get more insight into what summation
does. I think the Pi-Calculus benefits from some kind of graphical story being told. Maybe
we shouldn’t go too far into that just now.

Who managed to find the labelled transitions that pass scope and when? It seems to me
that that must have been a breakthrough.

I suppose so. The point is that it was always going to do that, if it worked. Even when Mogens
and I discussed it in the first instance, that possibility was around. I don’t think that was a late
discovery. I think that was an inevitable consequence of passing labels and doing it in the
freest possible way.

But in CCS labels don’t have any internal structure. That is very different in the Pi-
Calculus. I don’t know if the Pi-Calculus was the first calculus to have a rich structure
in the labels ....

Do not confuse transition-labels, which have structure, with names which don’t have struc-
ture. I think the Pi-Calculus was the first calculus whose labels have an almost embarrassing
structure. The fact that you had to have restriction as part of the labels, that was very worry-
ing. In fact that’s what led me later to look at these labels as contexts, because it seems to me
that there’s got to be a story about when you need more structure in the labels. It’s almost as

41



though we were very lucky in CCS that we didn’t need any extra structure. We had a little bit
of structure: we had the tau operation. That was all. The advent of the Pi-Calculus indicated
that more work had to be done on transition systems in general to see exactly when labels
should have structure. I guess we still haven’t got the answer.

Another thing that strikes me is that most formalisms have reductions rather than la-
belled transitions. Now, with chemical semantics, the presentation of the Pi-Calculus is
much much simpler than with labelled semantics. Yet the labelled transitions came first.
Why?

Oh, that’s easy: you can’t do behavioural analysis with the chemical semantics. By the way,
chemical semantics is terrific: it doesn’t supply labels, but it supplies structural congruence –
in the original form in fact. But I think the strength of the labels is that you get the chance of
congruential behaviour, because the labels encapsulate what it is that an agent contributes to
a reaction; not just whether it can react, but what reactions it could conceivably take part in,
if only somebody else would do something.

It is a minimal representation of that!

A minimal representation of all the interactions it could conceivably take part in and what it
could contribute to them. That’s the intuition of why they supply congruences. That to me is
very simple. You need this notion of what an agent contributes.

Labelled semantics does two things: it gives the semantics of the raw processes, the com-
putational steps and it helps you reason about the congruences. Reduction semantics
just does the first thing and then you have some horrid rules about congruences and you
need some nice tools to reason about this.

I agree.

The concept of names and naming is very important in your work. When did it occur to
you that this is a fundamental notion in computing? That you have these points where
you can interact, that you can hide. Did you have a specific moment of revelation or is it
the result of years of research?

I don’t want to be wise after the event, but I think it was when we found out that you could
encode data as processes with name passing.

That was when the Pi-Calculus already existed?

I’m not sure, you see. I think we probably felt that we were going to be able to do this. That
made us confident that you can get all the data, not by means of other kinds of objects, but as
processes. And the way you access the data is via interaction and the interaction is via names.
I don’t know at which point it would have happened, possibly in our memos we wrote (and

42



kept) over a period of about two or three years, we may have something that suggests that
it’s going to be OK just to cut down to names because we going to be able to get data from
processes. I think it was quite an early thing, because I don’t think we we would wanted to put
the Pi-Calculus forward without knowing that there was going to be a story about data. So,
although we did the story about data later, probably not first paper, we said something about
it in our first paper.

Did it ever worry you that your names were pure, had no internal structure, whereas all
the names in computing applications heavily rely on internal structure?

No that didn’t worry me because all practical computing has to build towers of structure in
order to get something useful. What is interesting is the role of matching and mismatching. I
just wrote a little paper called ”What’s in a name?” in honour of Roger Needham, who died
earlier this year; around 1990 he wrote a paper on pure names, from the point of view of
operating systems. Do you know that paper? (”Naming”, in Distributed Systems (ed. Sape
Mullender), Addison-Wesley 1993).

Yes.

That was written more or less at the time of the Pi-Calculus. So I thought I would write a
paper to see what you could do with pure names. And I conjectured that the Pi-Calculus is
doing something like all of the things you can do with pure names. You can create them, you
can use them to call, you can use them in what I call a co-call, so communicating is two things
going on: you can call on a name and you can co-call on a name. Co-call is the negative, call
is a positive, if you like. And you can test names. And synchronised action is the coming
together of a calling and a co-calling. You can tell a story which says: this is perhaps all
you can do with pure names. Is there anything else – that’s a challenge – you can do with
pure names? The Pi-Calculus could be regarded as just supplying a minimal environment to
allow you to do all the things with pure names, that you could imagine doing with them. This
paper is about six pages long and I’m telling a story which other people would recognise; it’s
nothing particularly new.

I think that pure names are now seen to occupy a terribly important place in the foundations
of computing. And that’s not just because of the Pi-Calculus, the operating systems people
know about it as well. In that paper I include an example of Roger Needham’s about using
composite names in, say, directories. It shows that composite names, at least in simple cases,
can be represented by a mixture of use of pure names together with matching and mismatch-
ing. So I think that the control structure of the Pi-Calculus together with pure names actually
gives you what you need for composite names, but it would be hard to prove that.

One of the main uses for composite names is efficiency, because when you pass a com-
posite name, you communicate not only the point of interaction but also, in some sense,
how to get there. This brings me to the great schism in the theory of computing between
semantics and complexity. There’s currently virtually no connection between the two.

43



Did you ever try to combine the two? Do you think that in the future, when the two will
have been reconciled, all the nice mathematical structure that you and your colleagues
have developed will survive in a recognisable form?

I’m beginning to think that it’s perfectly OK for complexity theory and modelling, or seman-
tics, to be two aspects of computation theory that are not necessarily mutually explicable. In
other words, they’re independent. I don’t think that we will make a breakthrough which con-
sists of uniting them, by changing some of the primitives from one side or the other. Shannon
had a quantitative theory of information, and that does not seem to tell us about structure at
all, about structure of communications. It simply tells us how few or how short messages can
be and that’s very exciting, but I don’t see any reason why we should expect these things to
come any closer to each other.

All your published calculi feature point-to-point communication. Have you thought
about other forms like broadcasting or the more wave-like communications that we seem
to be seeing in physics?

I always though broadcast would be a derived operation.

I’m not sure. There are separation results that seem to suggest otherwise.

Maybe. KVS Prasad has done a nice theory of CBS (Calculus of Broadcasting Systems).

If I remember their work correctly, Ene and Muntean have shown that broadcasting and
point-to-point are separated by some reasonably natural conditions.

That’s interesting. It always seemed to me that point-to-point was a more modular notion, a
more controllable thing. Broadcast seems to require some medium within which your mes-
sage is floating even though it isn’t accessed. It always seemed to me important that there
should be be no place where a message is floating, unless that place is itself modelled as an
agent. So it seemed to me that point-to-point captured that particular attitude more directly.
But, point-to-point being just two taking part, I did work with synchronous CCS which had
prime names; each agent could be synchronising several prime names, essentially requiring
several things to occur in a single interaction. That seemed to me to be rather nice. But some-
how synchronous CCS doesn’t seem nearly as useful as CCS.

The other thing is that CSP talks about engaging in an action as many agents as possible. Any
number of agents can engage in the same action. CSP has had lots and lots of applications,
but I’m not quite sure how much they have taken advantage of this possibility of many agents
engaging part in the same action. I’m really rather puzzled by all that and I seem to have taken
the path of two participants. Others may take other paths.

Some recent developments take Pi-Calculi into maybe expected, maybe unexpected di-
rections: I mean modelling biological interaction on the DNA level in terms of Pi-Calculi.

44



Did that surprise you or did you always think that your models are more general, that
they don’t just talk about conventional computation?

It took me by surprise when I first heard Ehud Shapiro at the Weizmann Institute. He came
and gave us a talk about it. Two things struck me. First of all he really needs something more
spatial. So I suggested to him that he used Ambients. Which he is now doing. In fact, Cardelli
is now working with Shapiro. Cardelli has invented the term ”Biograph” which represents the
application of Ambients to biological phenomena. What my Bigraphs are trying to do is to
combine Ambients and Pi-Calculus. There is a coming together of these things. Certainly I
was initially surprised and then I realised that it was perhaps the geometrical thing, the spa-
tial thing, together with some mobility that really is what the biological people need. I don’t
know what combination of these things is best for them. But certainly I think there’s a lot to
be gained by looking for it.

You think it will not just be the biologists who will get a better tool to work with but that
we will also gain novel insights from their modelling efforts?

We must look at what the biologists need and say: they are using some of what we do per-
haps, but is there something that they want which we are not giving them? Cardelli thinks
so. He talked to me that other day about a new class of calculi where action takes place on
the membrane boundaries themselves, rather than within or outside the cell. So it may well
be that we get very strong insights from them. What we should be doing is trying to join it
all up all the time; they may get insights for our possible or actual applications, and we get
them from theirs as well. We must try to keep the whole thing under control to make sure
that we do something which is as relevant as possible to both without being prolix, in other
words, without creating something which has a lot of bells and whistles. We are trying to
find fundaments. We should always be open to different applications, in case they can help us
focus on a better fundamental notion.

45



ACP style process algebras: is the design

rationale still valid?

Jan A. Bergstra

May 17, 2005

Abstract

A review is given of the design rationale for ACP style process algebras.
An outline of future directions of development within the given paradigm
is given.

1 Equational specifications for process algebras

This is not a historic paper in any sense and on purpose no attempt is made to
trace facts, developments or remarks back to the literature. These connections
and references are in fact easy to find for anyone who makes an attempt to do
so.

The design of ACP (1984) as an equational presentation of process algebras
emerged from several sources and technically stands in the tradition of the
algebraic specification of abstract data types as it has been studied from the
late sixties onwards by various research groups.

Right from the start of the development of ACP the following options and
objectives for theoretical development have played a central role:

• The theory would be like formal language theory (Kleene algebra) in na-
ture, but more general by removing one of its laws: the right distributivity
of alternative composition over sequential composition. Sequential compo-
sition and alternative composition have been taken from formal language
theory as basic combinators for behavior. This selection has a defining
influence on the outcome of all further design stages. At the same time it
is a parameter for process algebra design and different decisions made at
this stage lead to other concurrency theories outside the ACP line.

• Axiom systems are designed in such a way that the concept of a model
always can be found in preexisting logical theory. In fact it always suffices
to consider axiom systems as theories in some classically known logic,
and in most cases that is some fragment of first order logic with Tarski
semantics as its concept of model.

1

46



• Designing chains (or rather trees) of enrichments of equational theories
that core an incremental number of features such as BPA, PA, ACP, ACP
with state operator, or the same specifications each extended with a silent
step or an empty step (epsilon) or both of them. Feature interactions
would be avoided by considering collections of features that mathemat-
ically coexist without difficulties. For instance combining the priority
operator with weak bisimulation turned out to be difficult which gave rise
to orthogonal bisimulation around 1998. These chains of equational the-
ories have been inspired by the mathematical theories of quantities and
numbers: groups, rings, fields, skew fields and so on. For each process
algebra three design objectives would stand out first:

– At first a process algebra that captures (strong) bisimulation seman-
tics would be designed.

– All but sequential composition and alternative composition can be
eliminated on finite terms. The whole subject finds its roots in the
objective to find elimination results for parallel composition using
weakest axioms for that objective.

– Variable binding mechanisms are avoided if possible and sometimes
at significant costs because these depart from the universal algebra
background which constitutes the cornerstone of equational specifi-
cations of abstract data types.

• Each particular set of features (operators) is given an initial algebra spec-
ification by means of equations or when needed conditional equations.
Preferably these equations are organized in such a way as to be useful as
a term rewriting system as well. Whenever possible a deliberate effort is
made to design and use finite sets of equations, and if needed auxiliary
functions (as they are known in the theory of abstract data type speci-
fication) are designed. Demonstrating that such auxiliary operators are
indeed a necessity has proven possible in a number of cases. It clearly is
far harder to derive such information than to design the operator for its
purpose. The search for finitary specifications has led to operators such
as left merge (and sometimes right merge) and communication merge, the
unless operators used to specify the priority operators and a rich collection
of auxiliary operators for timed versions of ACP.

• Making explicit use of different homomorphic images of initial algebras
one obtains a range of semantic models for the features that are specified
by a particular specification. Additional equations may be introduced to
characterize such homomorphic images.

• Concrete and abstract features are distinguished, where abstract features
in some form abstract from activity while concrete process algebras per-
mit the counting of each step. For concrete process algebras models can
be found using projective limit constructions applied to approximation
algebras that are found as homomorphic images of the initial algebra for

2

47



finite process by cutting off each process after a fixed number of steps.
This projective limit construction provides the simplest semantic model
for most of the ACP style process algebra specifications. The projective
limits can be understood using initial algebra semantics and the projective
limit construction alone requires no excursion to either (structured) oper-
ational semantics or any bisimulation definitions. It can then be proved
that bisimulation models based on SOS are in fact equivalent. I consider
the projective limit model construction as the primary source of intuition
on process equivalence in the case of concrete process algebras because
of its extremely robust nature. It may work also if appropriate bisimula-
tions definitions may be hard to develop due to a complex combination of
features.

It has always been difficult to characterize exactly what it is that ACP
style process algebra captures. This turns out to be a subjective matter to
some extent. My own view is that ACP style process algebras intend to tell
the (or rather a) story of processes in the classical format of universal algebra
and equational logic. In addition the interpretation of alternative composition
is of substantial importance because the very meaning of an alternative may
vary from context to context. Ranging from the purely internal choice of an
autonomous agent to the purely external choice felt by a key board sensing its
user, many forms of more or less constrained choice are in between and ACP style
process algebras should constitute a medium where this range of mechanisms
of alternative composition can to some degree coexist within single models of
axiom systems. As an example the treatment of fair abstraction can be given
where the fact that a choice may be often repeated to some extent becomes part
of its meaning.

2 Further developments

ACP style process algebra has been developed in a number of directions for
which I will give a brief survey.

2.1 Time and space

The family of timed extensions may be mentioned leading up to hybrid forms of
process algebra. In these timed algebras some form of variable binding is used,
in particular initial abstraction and integration. It has been demonstrated that
large sums (alternative compositions) can be dealt with using cylindric algebras
but those developments cost a price in terms of readability.

There is ample room for further development in this area. An open question
is to redesign real space ACP (timed ACP in 3-dimensional space) in such a way
that the equations and verifications are consistent with special relativity. After
all if a communication protocol is observed to work correctly then it should be
considered correct from another inertial system just as well. Lorentz invariance

3

48



should be postulated for both specifications and verifications of protocols. Hav-
ing said this the next observation, however, is that ACP seems to be inconsistent
with special relativity and in need for a major revision if that objective is to be
met.

2.2 Mathematical results about process algebras

Non-trivial results have been obtained on the factorisation of processes in par-
allel components and a range of results has been obtained concerning the decid-
ability of bisimulation equivalence and other equivalences for process notations
with either recursion or with combinators that generate infinite behavior (e.g.
the proper binary Kleene star, that is repetition in the way Kleene originally
defined it).

2.3 Schematology and SOS

A significant development has been the schematology of congruence theorems
for different SOS formats. Most simple semantic facts about ACP style process
algebras can currently be derived from very general properties relating to the
form of operator definitions. There is ample room for further work in this area
because as it stands it is still easier to develop new operators and their axioms
using explicit graph models and special purpose bisimulation definitions than
via the general meta theory of SOS. However, this SOS based meta theory very
much defines a stable endpoint of theory development and presentation, and
for that reason is a development which will follow each design extension of the
ACP family. Retrospective conditions with retrospective bisimulation constitute
a current example of this state of affairs. Another example is found in ACP with
signals.

2.4 True concurrency and data types

Non-interleaving process algebras have been designed and a significant amount
of information has been developed concerning the interaction of ACP style pro-
cess algebras with abstract data types. I discuss these together because it has
been established that modeling true concurrency theories in ACP variants in-
volves the introduction of the natural numbers in the form of history pointers.
Other approaches to true concurrency require the introduction of localities which
are also forms of data.

At face value one might expect that ACP coexists happily with abstract data
types that have been specified using initial algebra semantics. But at a closer
inspection that fails to be the case because ACP style axioms always need full
information about equality and inequality for the class of atomic actions which
serves as the most important parameter. Moreover in spite of a significant
experience with combining processes and data in the specification formats PSF
and µCRL, there remains to be an asymmetry: the process algebra part is quite
specific about the operator sets for processes which will be used whereas the data

4

49



part is entirely liberal about the operators to be used on data. As a consequence
the same facts have to be derived time and again from marginal variations of
essentially the same data types and a convincing strategy for accumulating facts,
definitions and operators has failed to emerge. The true nature of this difficulty
as well as its best solution are still hardly understood. To phrase it differently:
it may be taken for granted that a family of process algebra designs leads to a
reliable theory of processes, but a theory of abstract data type specification fails
to deliver a theory of data. Abstract data type theory exists at the abstraction
level of the schematology of SOS congruence theory mentioned above. But
finding a more concrete version of abstract data type theory has proven very
hard.

A deeper reason may be that it has become common to hide in data types
complications of a kind that one would prefer not to surface in a process algebra
at all. For instance finite stacks with overflow and error and even error recovery
mechanisms have no counterpart in any of the ACP style process algebras. It
has been said that the very concept of a stack as an abstract data type is flawed
for this very reason because stacks are not the models of some well-understood
equational theory.

3 How to proceed?

In all directions the development of ACP style process algebra can be pushed
further to its limits if one wants to do so. Many open problems and open ends
remain. The application of these techniques to protocol and system verification,
either via formal equational proofs or via model checking still leaves much room
for progress. That progress is likely to lead to useful applications as well.

It has become clear that the difference between ACP style process algebras
and other calculi such as π-calculus and the calculus of mobile ambients is larger
than one might expect. Mobile ambients seem to be so different that it cannot
be understood as a feature to be designed on top of ACP or any plausible
extension of it. For mobility on the other hand that is an unsolved question.
Mobile features like the ones present in the π-calculus may have counterparts
in ACP style, if not that is a rather deep fact which ought to be provided with
a formalization and a proof.

3.1 Program Algebra, Thread Algebra and Maurer Com-
puters

My personal agenda is to continue with the design of algebras for programs,
systems and computers very close to the lines set out for ACP but with an
emphasis on different aspects. Program Algebra and its related Thread Algebra
are recent outcomes of that line of work. The connection with process algebras
emerges when specifications become more complex and semantic problems be-
come harder to analyze. Indeed program algebra and thread algebra are simple
because of drastic restrictions made. But when composing threads, programs

5

50



and machines become more complicated and the simplifications of program al-
gebra and of thread algebra become a hindrance rather than an asset, which
can be removed by a transition to process algebra.

Thread algebra should find its applications both in grid computing where
the main form of concurrency is presented by way of multi-threading and in the
theory of concurrent microprocessors where different forms of multi-threading,
in particular micro-threading hold the promise of contributing to the prolonged
survival of Moore’s law for processors.

When working on microprocessor design some theory of computers (pro-
cessors, machines) is definitely needed. I have come to the conclusion that
Maurer’s theory of computers and computer instructions (dating from 1967 and
neglected since then) provides exactly the format I need. This theory has been
deliberately designed to deviate from Turing machines, and does this so dras-
tically that an infinite parallel composition of Maurer computers is needed to
simulate a single Turing machine. A detailed semantic investigation of multiple
pipelined processor designs is both needed for further processor speedup and for
the compiler development that is needed to make use of pipeline organization
improvements. Fortunately Maurer computers provide a perfect match with
program algebra and thread algebra backed up with the useful option to cast
larger system descriptions in suitable process algebras.

3.2 Grid and Web

Now we all share data via the web the next phase is to share processing via the
grid. The increasing emphasis on grid computing will lead to a large number
of new and complex communication and security protocols. Having made this
observation it is likely that the main application area for process algebra is
likely to stay within the area of protocol specification and verification where
its development is supported by the most powerful tools available for proof
generation, storage and validation and for model checking on increasingly large
finite (and even infinite) models. The grid is so utterly incomprehensible at
this stage that this application area alone provides sufficient motivation for
continued research on ACP style process algebras in my view.

3.3 Validity of the design rationale in 2005

I still have complete confidence in the relevance of the ingredients that together
lead to ACP and similar theories. But at the same time other theories have
proven very effective in quite related areas. What constitutes a breakdown of
the design rationale of ACP and how would it be observed? It is the visible
presence of motivating applications on the long run that decides this matter.
In that regard the slow but steady build up of extensions of ACP is just as
convincing to me as a route with potential rewards as it was back in 1982 when
Jan Willem Klop and I started our work in this area.

6

51



Markovian Testing Equivalence vs.
Markovian Bisimulation Equivalence

Marco Bernardo
Universit̀a di Urbino “Carlo Bo”

Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy

Abstract

The notion of equivalence that is typically used to relate Markovian process terms and
to reduce their underlying state spaces is Markovian bisimulation. The reason is that
Markovian bisimulation is consistent with ordinary lumping, an exact aggregation for
Markov chains. This ensures that any two Markovian bisimulation equivalent process
terms possess the same performance characteristics. Here we compare Markovian bisim-
ulation with an alternative equivalence, called Markovian testing, which has been pro-
posed afterwards and has recently turned out to induce at the Markov chain level an exact
aggregation that is coarser than ordinary lumping.

1 Equating Markovian Process Terms

In order to account for performance aspects, process calculi have been extended so that
stochastic processes can be associated with their terms. In this field, the focus has primar-
ily been on equipping process terms with performance models in the form of continuous-time
Markov chains (CTMCs). Several Markovian process calculi have been proposed in the lit-
erature (see, e.g., [9, 8, 2] and the references therein). Although they differ for the action
representation – durational actions vs. instantaneous actions separated from time passing – as
well as for the synchronization discipline, such Markovian process calculi share a common
feature: Markovian bisimulation equivalence.

Markovian bisimulation is a semantic theory building on [11, 10] that has proven to be
useful to relate Markovian process terms and to reduce their underlying state spaces. The
basic idea is that two Markovian bisimulation equivalent process terms are able to mimic
each other’s behavior both from the functional and the performance viewpoint. The reason
of the success of Markovian bisimulation is that it enjoys several nice properties, both on the
algebraic side and on the performance side. First, it is a congruence with respect to all the typ-
ical process algebraic operators, thus allowing for compositional reasoning and compositional
state space reduction. Second, it has a sound and complete axiomatization, which elucidates
the fundamental equational rules (see Table 1) on which Markovian bisimulation relies. Third,
it is consistent with ordinary lumping [4]. This is a notion of aggregation for Markov chains

52



that is exact, i.e. the probability of being in a macrostate of an ordinarily lumped Markov chain
is the sum of the probabilities of being in one of the constituent microstates of the original
Markov chain. Thus, whenever two process terms are Markovian bisimulation equivalent, it
is guaranteed that they possess the same performance characteristics (as long as they refer to
measures that do not distinguish between lumpable states).

(A1) P1 +P2 = P2 +P1

(A2) (P1 +P2)+P3 = P1 +(P2 +P3)
(A3) P+0 = P
(A4) <a,λ1>.P+<a,λ2>.P = <a,λ1 +λ2>.P

Table 1: Basic axioms for Markovian bisimulation equivalence

In [3] an alternative equivalence for Markovian process calculi has been proposed: Marko-
vian testing. According to this equivalence, which builds on [7, 5], two process terms are
viewed as being the same if, for every test and amount of time, they have the same probability
to pass the test within the considered amount of time on average. Unlike Markovian bisim-
ulation, in which the ability to mimic the functional and performance behavior is taken into
consideration, Markovian testing relies on a generic notion of efficiency, which is based on the
probability of performing a test-driven computation and on the time that is taken on average
to perform such a computation. As a consequence, Markovian testing equivalence turns out
to be coarser than Markovian bisimulation equivalence.

In order to understand whether Markovian testing constitutes a valid alternative to Marko-
vian bisimulation, it is necessary to investigate the properties of the former and compare them
with the properties of the latter.

2 Open Problem Statement

The most important open problem related to Markovian testing is the following: is it a useful
equivalence from the performance viewpoint? In other words, given two process terms that
are Markovian testing equivalent, we do not know whether they possess the same performance
characteristics or not.

3 Open Problem Solution

The above mentioned open problem has been recently solved in [1] by showing that Marko-
vian testing induces at the Markov chain level an exact aggregation that is coarser than or-
dinary lumping. This result ensures that any two process terms that are Markovian testing
equivalent possess the same performance characteristics (as long as they refer to measures
that do not distinguish between states that can be aggregated). A further consequence is that
Markovian testing turns out to aggregate more than Markovian bisimulation while preserving
the exactness of the aggregation.

53



(A1) P1 +P2 = P2 +P1

(A2) (P1 +P2)+P3 = P1 +(P2 +P3)
(A3) P+0 = P
(A4) <a,λ1>.P+<a,λ2>.P = <a,λ1 +λ2>.P
(A5) ∑

i∈I
<a,λi>. ∑

j∈J
<b j ,µ j>.Pi, j = <a,∑k∈I λk>. ∑

i∈I
∑
j∈J

<b j ,
λi

∑k∈I λk
·µ j>.Pi, j

Table 2: Basic axioms for Markovian testing equivalence

The strategy adopted in [1] to prove such a result is to demonstrate first that Markovian
testing has a sound and complete axiomatization, which in turn requires to prove first that
Markovian testing is a congruence. These two side results are provided for a basic Markovian
process calculus with durational actions, which generates all the CTMCs with as few operators
as possible: the null term, the observable action prefix operator, the alternative composition
operator, and the process invocation mechanism. This ensures the general validity of the main
result without complicating the proof of the two side results. Once the axiomatization of
Markovian testing shown in Table 2 has been obtained, it is observed that it differs from the
axiomatization (on the same calculus) of Markovian bisimulation just for the additional axiom
schema(A5). As a consequence, in the proof of the main result it is necessary to concentrate
only on the aggregations resulting from the application of this new axiom schema.

4 Investigation of Further Properties

Since Markovian testing induces at the Markov chain level an exact aggregation that is coarser
than ordinary lumping, such an equivalence turns out to be useful from the performance view-
point. The reason is that, whenever two process terms are Markovian testing equivalent, they
possess the same performance characteristics (as long as they refer to measures that do not
distinguish between states that can be aggregated). Viewed from a different angle, this result
is a proof of the existence of an exact aggregation for Markov chains, which is different (ac-
tually coarser) than ordinary lumping and can be entirely characterized in a stochastic process
algebraic setting like ordinary lumping.

After establishing the fundamental property of exact aggregation, it becomes meaning-
ful to investigate further properties of Markovian testing in order to understand whether it
constitutes a valid alternative to Markovian bisimulation.

First, we would like to study whether the congruence property and the axiomatization of
Markovian testing can be generalized along two directions. On the one hand, we plan to
consider the case in which invisible actions are admitted within the process terms. We expect
that this will require admitting invisible actions within the tests as well. On the other hand,
we plan to include static process algebraic operators like parallel composition in the calculus.

Second, we would like to devise an algorithm to check two process terms for Markovian
testing equivalence. We believe that a good starting point may be the algorithm for classical
testing equivalence proposed in [6]. This requires a more denotational characterization of

54



Markovian testing, which may be inspired by the probabilistic variant of the acceptance tree
model proposed in [12].

Third, we would like to assess whether Markovian testing can be used for quantitative
purposes as well. So far, it supports a qualitative analysis only, in the sense that – based on
its generic notion of efficiency related to the probability and to the average time with which
the tests are passed – it only allows one to establish whether two process terms possess the
same performance characteristics or not. What we envision is the possibility of identifying
classes of tests that are related to specific performability measures, which may thus be used to
evaluate process terms with respect to certain indices.

References

[1] M. Bernardo,“Markovian Testing Lumps More Than Markovian Bisimulation”, in
preparation, 2005.

[2] M. Bernardo and M. Bravetti,“Performance Measure Sensitive Congruences for
Markovian Process Algebras”, in Theoretical Computer Science 290:117-160, 2003.

[3] M. Bernardo and W.R.Cleaveland,“A Theory of Testing for Markovian Pro-
cesses”, in Proc. of the11th Int. Conf. on Concurrency Theory (CONCUR 2000),
LNCS 1877:305-319, State College (PA), 2000.

[4] P. Buchholz,“Exact and Ordinary Lumpability in Finite Markov Chains”, in Journal
of Applied Probability 31:59-75, 1994.

[5] W.R. Cleaveland, Z. Dayar, S.A. Smolka, and S. Yuen,“Testing Preorders for Proba-
bilistic Processes”, in Information and Computation 154:93-148, 1999.

[6] W.R. Cleaveland and M.C.B. Hennessy,“Testing Equivalence as a Bisimulation
Equivalence”, in Formal Aspects of Computing 5:1-20, 1993.

[7] R. De Nicola and M.C.B. Hennessy,“Testing Equivalences for Processes”, in Theo-
retical Computer Science 34:83-133, 1983.

[8] H. Hermanns,“Interactive Markov Chains”, LNCS 2428, 2002.

[9] J. Hillston,“A Compositional Approach to Performance Modelling”, Cambridge Uni-
versity Press, 1996.

[10] K.G. Larsen and A. Skou,“Bisimulation through Probabilistic Testing”, in Informa-
tion and Computation 94:1-28, 1991.

[11] R. Milner, “Communication and Concurrency”, Prentice Hall, 1989.

[12] M. Nuñez, D. de Frutos, and L. Llana,“Acceptance Trees for Probabilistic Pro-
cesses”, in Proc. of the6th Int. Conf. on Concurrency Theory (CONCUR 1995),
LNCS 962:249-263, Philadelphia (PA), 1995.

55



Process algebra under the light of Wolfram’s NKS

Tommaso Bolognesi
CNR/ISTI

June 10, 2005

Abstract
The strong intellectual investment behind the definition of process algebras and the

high abstraction level they can attain in formal specification still contrasts with their de-
gree of penetration into software engineering practice, but also with the relatively limited
number of other fields of fundamental science where these models have played some role.
An emerging area in which process algebras might lend themselves to attractive investi-
gations is Wolfram’s ’New Kind of Science’ (NKS). In this short note we start discussing
possible motivations and preliminary steps for placing process algebra under this new
light, and for exploring its versatility by NKS-style experiments.

1 Programs without requirements: behavior classes
When writing a piece of object-oriented code or specifying the behaviour of a complex re-
active system by some process algebraic language, an engineer is expected to program or
describe a behavior that matches some predefined functionality, as expressed, for example, by
some Client’s requirements. In [1] this perspective is somehow reversed: one stops worrying
about implemented functionalities and focuses instead on the internal ’shapes’ of the compu-
tations themselves. How does a given formalism perform, when liberated from the limited
repertoire of requirements arising in human engineering activities? The crucial assumption at
the basis of this investigation is the idea that the complexity we observe in nature is intrinsi-
cally computational, discrete, and possibly deterministic, like the evolutions of, say, a cellular
automaton.

In [1] several formal models are examined under this light. For each of them, exhaustive or
statistical investigations are carried out , with the objective to visualize and classify the variety
of behavioral patterns that emerge. The most extensively explored model is that of cellular
automata. A one dimensional, two-color, nearest-neighbor cellular automaton, or elementary
cellular automaton (ECA) is an infinite array of black and white cells that evolve in discrete
steps, in parallel (’synchronicity’), according to a simple rule. The rule assigns a new color
to a cell, regardless of its position in the array (’uniformity’), depending only on the current
colors of the cell itself and of its left and right neighbors (’locality’). ECA are numbered from
0 to 255, based on simple bit reasoning.

When started from random rows of black and white cells, different ECA produce different
visual patterns, that Wolfram groups into four classes ([1], p. 231):

56



”In class 1, the behavior is very simple, and almost all initial conditions lead to
exactly the same uniform final state. In class 2, there are many different possible
final states, but all of them consist just of a certain set of simple structures that
either remain the same forever or repeat every few steps. In class 3, the behaviour
is more complicated, and seems in many respects random [...] class 4 involves
a mixture of order and randomness: localized structures are produced which on
their own are fairly simple, but these structures move around and interact with
each other in very complicated ways.”

The most interesting ECA is number 110, for two simple reasons. First, its evolutions are
spectacular (see http://www.wolframscience.com/nksonline/page-229): particle-like localized
structures move at different speeds on a spontaneously established periodic background, and
interact in complex ways, while preserving their individual shapes, or giving birth to new
particles, or annihilating one another. Second, the automaton is a universal computing device
(which yields, as a side effect, the smallest universal Turing machine ever found).

2 Around the threshold of universality
Various reactions are possible when considering the computational versatility of ECA 110.
For example, a theoretical computer scientist might be satisfied with the universality result in
itself, an engineer would perhaps try to program the new universal computer for extracting
useful functionality, while a natural scientist involved with, say, particle physics, might start
wondering whether those emerging graphical features have anything to do with the complexity
we observe in nature. NKS-style investigations explore the lands around the threshold of
universality with a scientific attitude not too far from that an entomologist.

A typical NKS-style experiment involves the identification of a model of computation
(e.g. register machines), of some parameters for measuring the complexity of model instances
(e.g., all machines with five instructions), and of some convenient observable variables (e.g.,
diagrams showing just local maxima/minima of machine registers). Sub-models of increas-
ing complexity are then explored, in search for the progressive emergence of the distinctive
features of the four behavioral classes. For example, in register machines (see [1], Chapter
3) only by considering 8 instructions, corresponding to 11,019,960,576 possible instances to
explore, do some traces of seemingly random behavior start to appear (in 126 cases).

3 Some preliminary questions and steps
Do process algebras qualify for meaningful experiments in NKS style? Where are they posi-
tioned, in the NKS ’world of simple programs’? Which variables best support the observation
of increasingly complex behaviors?

The first impression is that, even in their simplest forms, process algebras might already
be too complex. While considerable efforts have been spent for minimizing the set of inde-
pendent operators for nondeterminism and concurrency, in the NKS setting these very notions
may already be looked at with some suspicion: they might turn out to be inessential for ex-
plaining the complexity we observe in Nature. And although the ’multiway systems’ and

57



’symbolic systems’ studied in [1] might bear some similarities with process algebra, the SOS
inference rules of the latter appear as more complex than the rewrite rules of those models.

Still, we have attempted some preliminary, non-conventional observations of process alge-
braic behaviors (written in Basic LOTOS), in search of traces of rapid quiescence, or periodic,
nested/fractal behavior, or deterministic randomness. Which variable did we observe? For de-
tecting the emergence of the distinguishing features of Wolfram’s classes it is possible to
abstract away many details of the state. Quite drastically, we have regarded at process alge-
braic terms as pure number generators: a behavior is simply the count of occurrences of a
given action, say a, at successive depth levels in the SOS-derived labeled trees.

For a start, we have fixed the number of actions (a and b) and of process symbols (P and
Q), and considered only the operators of inaction, process instance, action prefix, choice, full
parallel. A specification is a pair of process definitions for P and Q , with term ’P’ taken as
the initial state; a rough complexity measure is then the sum of their syntactic depths.

The only behaviors observed with specifications of cumulative syntactic depth up to 3 are
sequences {0,0,...}, {1,1,...} and {1,0,0,...}. With depth 4, the only novelty is the appearance
of periodic sequences {1,0,1,0,...} and {0,1,0,1,...}, and of the geometric progressions in base
2. The exhaustive exploration of all 22,192,128 specifications with cumulative depth 5 offers
a wider variety of cases. For example, when depths 2 and 3 are associated with the two
processes we have a total of 32,256 specifications, that yield 76 different sequences. These
include geometric progressions in bases 2, 3 and 4, and sequences based on the recurrences:

an = an−1 +an−2 (1)
an = 2an−1 +an−2 (2)
an = a2

n−1 (3)

an = a2
n−1 +an−1 (4)

an = a2
n−1 +an−2 (5)

with variants obtained by changing initial values, by taking suffixes, and by applying scale fac-
tors. Note that (1) is the omnipresent Fibonacci sequence. Recurrence (2) appears both with
initial values {1,3} and {1,2}, yielding sequences {1,3,7,17,41,99...} and {1,2,5,12,29,70,...}.
Interestingly, these correspond, respectively, to the numerators and denominators of the con-
tinued fraction convergents to

√
2.

By observing that, in this simple setting, the arithmetic operators of addition and multipli-
cation effectively act behind the scenes, corresponding, respectively to the operators of choice
and parallel composition, one can start devising a schema for directly deriving recurrences
from process algebraic specifications. But how far can one go in this direction, once deeper
terms and further behavioral operators are considered? And would this schema always pro-
vide us with a computational shortcut for finding the nth element of the sequence? This brings
us back to a central theme in NKS, that of computational irreducibility.

The central column in the evolution of ECA 30 is a well known example of pseudo-random
number generator. The value of the nth bit in this sequence can only be obtained by computing
all the ECA states that precede it: no computational shortcut has ever been found. Can we
extract a numeric sequence with similar properties out of process algebraic terms? If so, how
complex should these be? The simplest example of random-like behavior presented in [1] is a

58



numeric sequence:

an =
{

an−1 ∗3/2 if an is even;
(an−1 +1)∗3/2 if an is odd.

With a0 = 1, the sequence is {1,3,6,9,15,24,36,54...}. Similar to the central column of rule
30, the parities {1,1,0,1,1,0,0,0, ...} of this sequence exhibit random-like features, that are
indeed those detected also in the 8-instruction register machines mentioned earlier.

Our searches for this specific numeric sequence, based on action counting as described
above, have not been successful. However, one can wonder whether the choice of a different
observable for process algebraic term evolutions could have led to different results. And by
taking the direct approach of trying to construct an explicit model, thus departing a bit from
the NKS style, we have obtained the following specification.

System := hide{a,b}in(P[Φ] |{a,b,d}| X)
P := c; d; Stop

PPP := P |{d}| P |{d}| P
X := hide{c,d}in ((a; RW ) |{c,d,b}| (b; X [Φ]))

RW := a; (a; (RW |{d}| PPP) [] b; PPP) [] b; PPP
Φ = {a → c,b → d,c → a,d → b,τ → τ}

We are still using a pure process algebra, but we need a more flexible parallel operator, with
selective synchrony, the hiding operator, and process instantiation with action relabelling.
As a new observable, we choose the length of runs of equally labeled transitions. From left
to right, the transition system of our specification appears as a sequences of combinatorial
explosions of growing size (Figure 1), whose actions are labeled, in turns, a and c, with b and
d acting as separators, and whose diameters are {1,3,6,9,15,24,36,54...}, that is, Wolfram’s
random-like sequence.

Figure 1: A sequence of combinatorial explosions of lengths {1,3,6,9, ...}

Is it possible to clearly separate, in the process algebraic setting, class 3 and class 4 be-
havior? One of the open questions in NKS is whether computational universality can indeed
be achieved within class 3, e.g. by computations of ECA 30. In this respect, searching for
the emergence of pseudo-random fluctuations in various formal systems, including process
algebra, appears as an attractive goal.

References
[1] Stephan Wolfram. A New Kind of Science. Wolfram Media, Inc., 2002.

59



Stochastic and Real Time in Process Algebra:
A Conceptual Overview

M. Bravetti
Department of Computer Science, Università di Bologna, bravetti@cs.unibo.it

Abstract

It is widely recognized that dealing with time related aspects in process algebra is of-
ten crucial for the specification and analysis of complex real systems. Research work in
this field has led to a rather huge literature, where several kinds of time have been taken
into account: time may be either based on a discrete or continuous domain, time elapsing
may be either probabilistically (so-called stochastic-time) or deterministically (so-called
real-time) bounded. In this paper we perform a conceptual dissertation about the treat-
ment of the various kinds of time in transition systems where notions of composition are
defined (as e.g. by defining a process algebra). We discuss general problems which are
independent from the kind of time considered (concerning, e.g., the usual assumption of
maximal progress of actions over time). Moreover, we show the conceptual relationship
between the notion of time considered and the kind of semantics (in the sense of classical
process algebra literature) which must be adopted for representing such a notion of time
in the composition operators.

1 Introduction

In the last years, the necessity of extending the expressiveness of classical process algebras, so
to make them more suitable for the specification and analysis of real case studies, has led to the
definition of several timed calculi (see [7, 2, 3, 1]. Such calculi differ, first of all for the “kind”
of time they express. They may represent so-called real-time (see [9, 7] and the references
therein), where exact time bounds are specified and analysis typically consists of verifica-
tion of exact time properties (e.g. via model checking). Alternatively, they may represent
stochastic-time (see [3, 2, 1] and the references therein), where time is specified probabilisti-
cally via duration distributions and analysis is typically conducted via performance evaluation
techniques. Stochastic-time approaches are further distinguished by the kind of probability
distributions they can express: in most cases the limitation to exponential distribution is as-
sumed, and we deal with so-called Markovian stochastic-time (see [2, 1]), in other, more
complex cases, it is possible to deal with any kind of distribution (see [3] and the references
therein). In the latter scenario, it is easy to see that the process algebra becomes so expressive
that is capable to express real-time constraints as well. The “kind” of time considered may
also differ in the domain of time values: discrete time or continuous time domains may be
adopted for both the real-time and stochastic-time approaches. Secondly, timed extensions

60



(e.g. referring to the same “kind” of time) may differ just for the technical solution adopted
for introducing time passage (independently of the particular kind of time considered) in pro-
cess algebra. For example a quite common technical design choice is to impose the so-called
maximal progress assumption[9]: the possibility of executing internal transitions prevents the
execution of timed transitions, thus expressing that the system cannot wait if it has something
internal to do. Another example is the use ofclocksto provide a symbolic finite representa-
tion of the system behavior even when the time domain is continuous. In general the choice of
good technical solutions is critical to obtain a clean equational theory for the resulting algebra.

In this paper we perform a conceptual dissertation about the treatment of the various kinds
of time in transition systems where notions of composition are defined (as e.g. by defining a
process algebra). While doing this, we present a unifying process algebraic theory for most
of the time extensions cited above. In particular, we present an approach which is based on
standard weak bisimulation, which yields congruence for all the operators, and which makes
it possible to obtain complete axiomatizations over finite-state processes. The idea is that, by
providing a smooth modification of the standard machinery for observational congruence in
classical process algebra, we obtain, for each kind of timed extension, the same kind of prop-
erties (e.g., congruence) and results (e.g., axiomatizations) as for classical process algebra.

2 Developing Timed Calculi

2.1 The Basic Calculus

We start from abasic calculus: the algebra of finite-state agents (made up of choice, prefix
and recursion only) used by Milner in for axiomatizing observational congruence in presence
of recursion, extended withδ prefixing, whereδ actions have lowerpriority than internalτ
actions. Such a calculus can be interpreted in this way [8]:δ actions represent “generic” time
delays, classical actions of CCS are executed in zero time, and the priority ofτ actions over
δ actions derives from the maximal progress assumption. The presence of a priority mech-
anism makes the standard Milner’s complete proof system for observational congruence no
longer sound. In particular this happens for the axiomrecX:(τ:X+P) = recX:τ:P (aδ action
performable byP is pre-empted in the left-hand term but not in the right-hand term) which
makes it possible to equateτ divergent expressions to non-divergent ones so to remove un-
guarded recursion. In [4] we showed that it was possible to solve the long time open problem
of axiomatizing priority using standard observational congruence by introducing an auxiliary
operatorpri(P), by suitably modifying the axiom above and by introducing some new axioms.
Our technique provides a complete axiomatization for Milner’s observational congruence over
finite-state terms of a process algebra with this simple kind of priority and recursion.

2.2 Full Calculi

In the following we will make use of the CSP parallel composition operator “PkSQ”, where
standard actions with type inSare required to synchronize, while the other standard actions
are executed independently fromP andQ. Such an operator will be used in combination with
a hiding operator “P=L”, which turns all the standard actions ofP whose type is inL into τ

61



and does not affect the other standard actions. The choice of using CSP parallel, instead of,
e.g., CCS parallel, allows us to discuss in a separated way the problems related to introducing
maximal progress in:(i) parallel execution/synchronization of processes and(ii) dynamic
generation ofτ actions. This is done just for clarity reasons: we claim our discussions and
results to be independent of the particular kind of (untimed) parallel operator considered.

Due to the maximal progress assumption, the generation ofτ actions must cause all al-
ternativeδ actions to be pre-empted. In terms of the hiding operator, we have the following
semantics forδ moves1:

P
δ�! P0 69a2 L:P a�!

P=L
δ�! P0=L

Note that, by using terms of our prioritized basic calculus asnormal formsfor extended pro-
cesses, it is easy to axiomatize a full calculus with such a dynamic generation of prioritized
τ actions: since priority is already captured inside the “+” operator, the set of axioms for the
hiding operator is just the standard one that yields normal forms.

As far as the parallel operator is concerned, if we consider a purelyprioritized approach,
the basic calculus does not allow for an easy extension with parallel. In classical prioritized
calculi the parallel operator is usually managed in two ways: either by implementinglocal
pre-emption orglobal pre-emption (see [6]). For instance inτ:Pk /0δ :Q the actionδ of the
righthand process is not pre-empted by the actionτ of the lefthand process, as instead happens
if we assume global pre-emption. Even if assuming local pre-emption preserves congruence
w.r.t. Milner’s observational congruence, it causes the introduction of location information in
the semantics and makes it really problematic to produce an axiomatization. If global pre-
emption is, instead, assumed, then standard Milner’s notion of observational congruence is
not a congruence for the parallel operator (see [6]). More precisely, inPkSQ, the following
rule is considered forδ moves ofP 2:

P
δ�! P0 Q

τ

6�!
PkSQ

δ�! P0 kSQ
which says thatP may perform aδ action only if Q cannot execute anyτ action. Obser-
vational congruence is not a congruence because, e.g.,τ:0 is observationally congruent to
recX:τ:X, butτ:0k /0δ :P, whose semantics is that ofτ:δ :P, is not observationally congruent to
recX:τ:Xk /0δ :P, whose semantics, due to global pre-emption, is that ofrecX:τ:X. In general
note that the problem with congruence is related to the behavior of parallel forprocesses Q
which may initially execute neither “τ” prefixes, nor “δ ” prefixes, among which is 0(for any
such Q, the use ofτ:Q' recX:(τ:X+Q) with the context “k /0δ :P” provides a counterex-
ample to congruence). In this case a possibility is to resort to a finer notion of observational
congruence (which is divergent sensitive in certain cases) similar to that presented in [8].

On the contrary, whenpriority derives from time (maximal progress), i.e. whenδ actions
represent time delays and classical actions of CCS are executed in zero time, it is possible
to develop a natural extension of the basic calculus which is compatible with standard weak

1If CCS would have been considered, than this pre-emption mechanism via a negative premise should have
been captured in the rule for parallel (see [7]).

2A symmetric rule is considered forδ moves ofQ.

62



bisimulation. In this context, adopting the operational rule above implementing global pre-
emption (as done in [8]) does not seem to be the most natural choice. Conceptually, the
problem with congruence derives from the fact that the parallel operator deals with the termi-
nated process 0(and in general with processes which may initially execute neitherτ actions
norδ actions) as if it let time pass. For example 0k /0δ may executeδ and become 0k /00. This
is obviously in contrast with the fact that 0is weakly bisimilar torecX:τ:X, which is clearly a
process that does not let time pass (in the context of time it represents a Zeno process which
executes infiniteτ actions in the same time point): it originates a so-calledtime deadlock.

As a consequence, a very clean solution is to consider, as processes which can let time
pass, only processes which can actually executeδ actions. In this way 0is interpreted not as
a terminated process which may let time pass, but as a time deadlock. Hence, the definition
of the parallel operator changes: it must be defined, similarly as in [7], in such a way that
the absenceof δ actions within the actions executable by a process (which means that the
process cannot let time pass) pre-empts the other process from executing a timed actionδ .
More precisely, inPkSQ, a rule like the following is considered forδ moves ofP 3:

P
δ�! P0 Q

δ�!Q0

PkSQ
δ�! P0 kSR

(where the definition ofR depends, as we will see, on the particular “kind” of time delays
adopted) which says thatP may perform aδ action only ifQ may execute aδ action as well.

Pre-emption caused by theabsenceof δ actions differs from pre-emption caused by the
presenceof τ actions (see the global pre-emption rule) exactly for the class of processes that
were misinterpreted, i.e. processes which cannot execute neitherτ actions norδ actions. The
new interpretation of such processes (as in [7]) is that, consistently with weak bisimilarity,
either they immediately execute a visible action or they cause a time deadlock. For instance
“0” is now correctly treated as representing a time deadlock from the parallel operator as well.

Therefore a solution to the problem of developing a natural extension of the basic calculus
which is compatible with standard weak bisimulation is obtained by adopting the particular
form of priority used in [7] which is neither local nor really global, but isspecialized for time.

3 Kinds of Time Expressible via Atomic Transitions

The discrete real-time approach (see [7] and the references therein) and the Markovian
Stochastic-Time approach (see [2, 1] and the references therein) are simple time models where
delay prefixes are executed “atomically” in just one transition. In the discrete real-time ap-
proach elapsing of time (prefixδ ) is typically represented by a special prefix “

p
”, called

“tick”. Ticks take a fixed (unspecified) amount of time to be executed which is the same for
all processes and are assumed to synchronize over all system processes (R� Q0 in the rule
above), e.g. the semantics of

p:0k /0
p:0 is that of

p:0. In the Markovian Stochastic-Time
approach elapsing of time (prefixδ ) is represented by special prefixes “λ ” 2 RI + denoting
time delays with aprobabilistic duration.In particular the duration of a delay “λ ” is assumed
to have probability distribution given by a (continuous) exponential distribution with parame-
ter “λ ” (intuitively the speedof the delay). The limitation to exponential distributions (w.r.t.

3A symmetric rule is considered forδ moves ofQ.

63



considering any kind of distribution) has the great advantage that parallel of delays can be
correctly represented as their interleaving (R� Q in the rule above) due to the memoryless
property of such a distribution, e.g. the semantics ofλ :0k /0λ 0:0 is that ofλ :λ 0:0+λ 0:λ :0.

4 Kinds of Time Expressible via Non-atomic Transitions

In order to represent more complex time models it is necessary to consider transition systems
where delays arenot executed atomicallyin a single transition, butstart in a given state, evolve
through several states, andterminatein another state. This is needed (see [3]), e.g., for ex-
pressing continuous real-time (see [9] and the references therein) and general stochastic-time
(see [3] and the references therein). As far as continuous real-time is concerned, elapsing
of time (prefixδ ) can be represented by delay prefixes “D”, whereD � RI + is aset of non-
negative real numbers: the possible durations for the delay.D can, e.g., be an interval or a set
of intervals obtained via a set of constraints on the amount of time delay. In this context, since
we are in a continuous time domain, it is important for system analysis to obtain semantic
models based onclocks(like timed automata) wheretime elapsing is not explicitly expressed
via numerical time values, but it is instead represented symbolically via start and termination
of clocks. The same holds true for general stochastic-time. In this context elapsing of time
(prefix δ ) is represented by delay prefixes “f ”, where f 2 PDist(RI +[0) is ageneral prob-
ability distributionover non-negative real numbers: it expresses the probabilistic duration of
the delay. Since we consider general probability distributions on a continuous time domain,
models based onclocksare necessary to obtain finite behavioral representations: they are like
the standard Generalized Semi-Markov Processes where clocks are called “elements”.

When dealing with non-atomic timing, it is necessary to represent the execution of time
delays “δ ” as the combination of the two events ofdelay startanddelay terminationin such
a way that the termination of a given delay isuniquely relatedto its start. As we observed
in [3], this corresponds to giving so-called ST semantics to time delay prefixes. Note that, as
for standard action prefixes to which ST semantics is classically applied, even delay prefixes
may be of different “observable” types (different setsD in the context of continuous real-time
or different time probability distributionf in the context of general stochastic-time).

Technically, ST semantics can be expressed in several different ways in transition systems:
no matter which technical solution is adopted ST bisimilarity (i.e. the pairs of processes which
are bisimilar when ST semantics is considered) is always the same. In particular in [5] we have
introduced three techniques for expressing ST semantics: a technique based on static names,
a technique based on dynamic names and a “stack” technique. The first two techniques are
based on the idea of expressing the relationship between start and terminations by assigning
(statically or dynamically) unique names to prefixes of the same type, the third technique is,
instead, based on pointers. Name techniques are particularly adequate in the context of time in
that the name produced by giving ST semantics to time delays are like clock names in atimed
automata. More precisely, we get a transition system labeled with: standard action transitions,
“δ+n ” delay start transitions (where “n” is the name generated for the delay by the semantics)
and “δ�

n ” delay termination transitions. Supposed that we are in a continuous real-time con-
text, andδ is someD � RI + [ 0, D is the type of the delay which is started/terminated by
D+n /D�

n and theentire “Dn” is the unique clock name for the delay (similarly for the general

64



stochastic-time context). From a theoretical viewpoint, choosing the dynamic name technique
of [5] to express the semantics of non-atomic time delays is particularly elegant. This because,
as opposed to a technique based on static names, the dynamic name technique generates a
canonical name“n” for every starting delay according to the order of execution of delays:
the smallest natural number not currently in use by delays of the same type. This makes it
possible to establish (weak) ST bisimulation simply by applying standard (weak) bisimulation
over the “specialized” transition systems obtained. Thanks to this fact and to the composition-
ality of the technique (so-calledlevel-wise renamingis exploited which recomputes canonical
names at each structural level) a complete axiomatization for finite-state processes is obtained
via a smooth extension of the standard machinery for axiomatizing observational congruence
(see [5]). In particular every finite-state process is turned into a normal form: a process of the
basic calculus which uses “δ+n ” and “δ�

n ” prefixes instead of just “δ ” prefixes.

References

[1] M. Bravetti, “Revisiting Interactive Markov Chains”, in Proc. of the3rd Int. Workshop on
Models for Time-Critical Systems (MTCS 2002), ENTCS 68(5), Brno (Czech Republic),
August 2002

[2] M. Bravetti, M. Bernardo,“Compositional Asymmetric Cooperations for Process Alge-
bras with Probabilities, Priorities, and Time”, in Proc. of the1st Int. Workshop on Models
for Time-Critical Systems (MTCS 2000), ENTCS 39(3), State College (PA), 2000

[3] M. Bravetti, R. Gorrieri, “The Theory of Interactive Generalized Semi-Markov Pro-
cesses”, in Theoretical Computer Science, 282:5-32, 2002

[4] M. Bravetti, R. Gorrieri,“A Complete Axiomatization for Observational Congruence of
rioritized Finite-State Behaviors”, in Proc. of the27th Int. Colloquium on Automata,
Languages and Programming (ICALP 2000), U. Montanari, J.D.P. Rolim and E. Welzl
ed., LNCS 1853:744-755, Geneva (Switzerland), 2000

[5] M. Bravetti, R. Gorrieri,“Deciding and Axiomatizing Weak ST Bisimulation for a Process
Algebra with Recursion and Action Refinement”, in ACM Transactions on Computational
Logic 3(4):465-520, 2002

[6] R. Cleaveland, G. Luttgen, V. Natarajan,“Priority in Process Algebras”, in Handbook of
Process Algebra, Chapter 12, pp. 711-765, Elsevier, 2001

[7] M. Hennessy, T. Regan,“A Process Algebra for Timed Systems”, in Information and
Computation, 117(2):221-239, 1995

[8] H. Hermanns, M. Lohrey,“Priority and Maximal Progress Are Completely Axiomatisable
(Extended Abstract)”, in Proc. of the9th Int. Conf. on Concurrency Theory (CONCUR
’98), LNCS 1466:237-252, Nice (France), 1998

[9] X. Nicollin, J. Sifakis,“An Overview and Synthesis on Timed Process Algebras”, in Real-
Time: Theory in Practice, LNCS 600, 1991

65



YMCA

—Why Markov Chain Algebra?—

Mario Bravetti1, Holger Hermanns2,4, and Joost-Pieter Katoen3,4

1 University of Bologna, Italy
2 Saarland University, Germany

3 RWTH Aachen, Germany
4 University of Twente, The Netherlands

Abstract. Markov chains are widely used to determine system perfor-
mance and reliability characteristics. The vast majority of applications con-
siders continuous-time Markov chains (CTMCs). This note motivates how
concurrency theory can be extended (as opposed to twisted) to CTMCs. We
provide the core motivation for the algebraic setup of Interactive Markov
Chains. Therefore, this note should have better been baptized YIMC.

Continuous-time Markov chains (CTMCs) are a widely used performance evaluation
model. They can be considered as labeled transition systems, where the transition
labels—rates of negative exponential distributions—indicate the speed of the system
evolving from one state to another. Numerical algorithms allow the computation of
important characteristics of a given CTMC with relative ease and comfortable run
times, and in a quantifiably precise manner. Using probabilistic model checking tech-
niques also logical properties can be checked. Several software tools are available to
support the specification, numerical analysis, and model checking of CTMCs. This
note is not concerned with the analysis, but with the integration of CTMCs in the
process algebraic framework for the modeling and analysis of reactive systems.

Interactive Markov chain algebra (IMC) is an extension of classical process algebra
in which random delays can be described. Any such delay is specified by a negative
exponential distribution. The basic concept is to add a delay prefix to process algebra.
This simple extension—a clear separation between delays and actions—yields a spec-
ification formalism for describing CTMCs in a precise and modular way, resembling
the hierarchical nature of typical modern systems. The theory of IMC has been driven
by a set of design rationales, which we briefly discuss in the sequel.

IMC is a simple extension of process algebra.

It extends traditional process algebra by a single operator, (λ) . P , where λ is an
arbitrary positive real value, and . the prefix operator, and P a process algebra term.
Intuitively, (λ) . P delays for a time which is exponentially distributed with rate λ
prior to exhibiting the behavior of P . Stated differently, the probability to behave like

66



P within t time units is 1−e−λ·t, or simpler: it takes on average 1
λ

time units to evolve
into P .

IMC extends process algebra in a conservative way, i.e.,
the meaning of established composition operators does not change.

IMC is a conservative extension because the operational semantics, equivalence re-
lations, and equational theory remain unaltered for the basic process algebra fragment.
Whether one takes CCS, π-calculus, CSP, ACP, µ-CRL or . . . as a basis does not make
a difference. We took LOTOS, where the basic fragment looks like this:

P ::= a . P | P + P | X | recX.P | P ||S P

where a is an action, S a set of actions, and + and ||S are the standard choice and
parallel composition. Note that the last rationale can also be formulated as “standard
process algebra is included in IMC”.

IMC encompasses the algebra of CTMCs,
where bisimulation coincides with lumpability.

The algebra of CTMCs is a fragment of IMC orthogonal to the (standard) process
algebra fragment, and is characterized by the following equational laws:

(B1) P + Q = Q + P (B2) (P + Q) + R = P + (Q + R) (B3) P + 0 = P

(B4) (λ + µ) . P = (λ) . P + (µ) . P

The axioms (B1) through (B3) are well known and standard for process algebra. Axiom
(B4) is a distinguishing law and can be regarded as a replacement in the Markovian
setting of the traditional idempotency axiom for choice (P + P = P ). It reflects that
the resolution of choice is modeled by the minimum of (statistically independent) ex-
ponential distributions. Together with standard laws for handling recursion on classical
process calculi, these axioms can be shown to form a sound and complete axiomatiza-
tion of the CTMC fragment given by:

P ::= (λ) . P | P + P | X | recX.P | P ||∅ P

IMC naturally supports phase-type distributions.

Phase-type distributions can be considered as matrix generalizations of exponential
distributions, and include frequently used distributions such as Erlang, Cox, hyper-
and hypo-exponential distributions. Intuitively, a phase-type distribution can be con-
sidered as a CTMC with a single absorbing state (a state that is never left once
reached). The time until absorption of this absorbing CTMC determines the phase-
type distribution [9]. In terms of IMC, phase-type distributions can be encoded by

2

67



explicitly specifying the structure of the CTMC using summation, recursion, and ter-
mination (0), as in the IMC-term Q̃ given by (λ) . recX.(µ) . (µ) . X + (λ) .0. The
possibility of specifying phase-type distributions is of significant interest, since phase-
type distributions can approximate arbitrary distributions arbitrarily close [9] (i.e., it
is a dense subset of the set of continuous distributions). In other words, IMC can be
used to express arbitrary distributions, by choosing the appropriate absorbing Markov
chain, and (mechanically) encoding it in IMC.

IMC supports constraint-oriented specification of random time constraints.

(The term constraint-oriented was coined in [11].) This property enables to enrich
existing untimed specifications with random timing constraints by just composition.
The description of time constraints can thus takes place in a modular way, that is,
as separated processes that are constraining the behavior by running in parallel with
an untimed (or otherwise time-constrained) process. This is facilitated by an elapse
operator [6] which is used to impose phase-type distributed time constraints on specific
actions. The semantics of this operator is defined by means of a translation into the
basic operators of IMC—it is, in fact, just “syntactic sugar”. Due to the compositional
properties of IMC, important properties (e.g., congruence results) carry directly over
to this operator. Delays are imposed as time constraints between two actions, and a
delay may be “interrupted” if some action of some kind occurs in the meanwhile. That
is, the elapse operator is an operator with four parameters, syntactically denoted by
[on S delay D by Q unless B]:

– a phase-type distribution Q that determines the duration of the time constraint,
– a set of actions S (start) that determines when the delay (governed by Q) starts,
– a set of actions D (delay) which have to be delayed, and
– a set of actions B (break) which may interrupt the delay.

Thus, for instance, [on {a} delay {b} by Q̃ unless ∅] imposes the delay of Q̃ (mod-
eling a phase-type distribution) between a and b. Semantically, the intuition behind
this operator is that it enriches the chain Q with some synchronization potential that
is used to initialize and reset the time constraint in an appropriate way. The time
constraint is imposed on a process P by means of parallel composition, such as in

P ||S∪D∪B [on S delay D by Q unless B].

IMC adds nondeterminism and interaction to CTMCs.

Interactive Markov chains can be used to specify CTMCs, but due to the presence
of nondeterminism (inherited from standard process algebra), the model underlying
IMC is richer. In fact, it is the class of continuous-time Markov decision chains [10],
a strict superset of CTMCs. Nondeterminism is one of the vital ingredients of process
algebra and hence of IMC.

3

68



IMC has a well-understood equational theory.

See [4, Chaper 5] for sound and complete equational characterizations of strong
and weak bisimilarity for the full calculus—including recursion and open terms.

Conclusion

In a nutshell, a well thought-out choice of basic algebraic operators makes IMC a cal-
culus with a unique set of distinguishing properties. The theory of IMC is developed
in [4, 5]; see also [1]. It is worth noticing that calculi like PEPA [7] or EMPAgr [2]
do not possess all of the aforementioned properties. In particular, they are not con-
servative extensions of process algebra as delays and actions are twisted rather than
separated. The separation of delays and actions allows to treat action synchronization
as in standard process algebra and is also one of the key principles to obtain process
algebraic frameworks for more general distributions [3, 8].

References

1. M. Bravetti. Revisiting Interactive Markov Chains. Electr. Notes Theor. Comput.
Sci., 68(5), 2002.

2. M. Bravetti and M. Bernardo. Compositional asymmetric cooperations for process
algebras with probabilities, priorities, and time. Electr. Notes Theor. Comput. Sci.
39(3), 2000.

3. M. Bravetti, R. Gorrieri. The theory of interactive generalized semi-Markov pro-
cesses. Theor. Comput. Sci. 282(1): 5-32, 2002.

4. H. Hermanns. Interactive Markov Chains and the Quest for Quantified Quality.
LNCS 2428, 2002.

5. H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance eval-
uation. Theor. Comput. Sci., 274 (1-2):43 - 86, 2001.

6. H. Hermanns and J.-P. Katoen. Automated compositional Markov chain generation
for a plain-old telephony system. Science of Comput. Prog., 36(1):97–127, 2000.

7. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

8. P.R. D’Argenio, J.-P. Katoen and E. Brinksma. An algebraic approach to the
specification of stochastic systems (extended abstract). In Programming Concepts
and Methods. Chapman & Hall, pp. 126–147, 1998.

9. M.F. Neuts. Matrix-geometric Solutions in Stochastic Models–An Algorithmic Ap-
proach. The Johns Hopkins University Press, 1981.

10. M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, 1994.

11. C.A. Vissers, G. Scollo, M. van Sinderen and E. Brinksma. On the use of specifica-
tion styles in the design of distributed systems. Theor. Comput. Sci., 89(1):179–206,
1991.

4

69



Service Oriented Computing:
a new challenge for Process Algebras

M. Bravetti and G. Zavattaro
Department of Computer Science, Università di Bologna

{bravetti,zavattar}@cs.unibo.it

Abstract

Service Oriented Computing is emerging as a reference model for a new class of
distributed computing technologies such as Web Services and the Grid. We discuss three
main aspects of Service Oriented Computing (loosely coupling, communication latency,
and open endedness), and we relate them with traditional process algebra operators. We
also indicate some new issues, raising from the combination of these three aspects, that
require the investigation of suitable new process algebra operators.

1 Introduction

Service Oriented Computing is an emerging paradigm for distributed computing based on
services as the basic computational entities. Services are autonomous, platform-independent,
heterogeneous elements that interact via basic patterns of service invocation. The main nov-
elty of service oriented computing, with respect to traditional distributed computing models, is
that services are steteless and all information they need is usually passed within the exchanged
messages. This technique is called contextualization because the messages contain additional
context information, such as cookies or session identifiers, used to describe the state of the
overall computation. Due to the statlessness assumption, the service oriented paradigm is par-
ticularly suited to program systems based on a minimal shared knowledge and understanding
among the interacting parts. These systems are usually referred to as loosely coupled systems.

The most prominent service oriented technologies are Web Services and the Grid. These
technologies are based on standardized mechanisms used to describe the interface of the ser-
vices, to advertise and locate new services, and to invocate the available services via one of
the basic interaction pattern. Complex service interactions, which cannot be trivially encoded
in the basic patterns, require a so-called service orchestration. Service orchestration is usu-
ally achieved adding new components (called the orchestrators) that do not actually perform
computation, but simply manage the flow of invocation of the services involved in the col-
laboration. A plethora of languages (comprising e.g. XLANG, BizTalk, WSFL, WS-BPEL)
has been recently defined to specify and program orchestrators. All these languages combine
workflow constructs and communication primitives. The workflow constructs are used to de-
cribe the flow of execution of the orchestration activities, while the communication primitives

70



correspond to the basic service interaction patterns. Most of these languages have explicitly
taken inspiration from process algebras such as CSP or theπ-calculus. Nevertheless, due to
peculiarities of service oriented computing, some constructs and primitives differ from the
traditional operators of process algebras. Three of these peculiarities are:

Loosely coupling. Orchestrators have a minimal control on the orchestrated services, for in-
stance, a service can autonomously exit the orchestration without any previous notice.

Communication latency. The transport layer responsible for the exchange of messages, among
the orchestrator and the services, does not give guarantees about the reliability and tim-
ing of remote message delivery.

Open-endedness.An orchestrator can dynamically, i.e. at run time, retrieve new services to
be involved in the orchestration; for instance, this could be useful to replace services
that autonomously leave the orchestration.

The remainder of the paper is organized as follows: in Sections 2, 3, and 4 we focus
separately on the three above aspects, while in Section 5 we conclude discussing interesting
issues raised by their combination.

2 Loosely coupling

In order to cope with loosely coupling, orchestration languages usually provide linguistic
constructs to program the so-called loosely coupled transactions. Traditional database trans-
actions guarantees the ACID properties: Atomicity, Consistency, Isolation, and Durability.
When the activities involved in a transaction are loosely coupled the ACID properties adapt
badly. In particular, Isolation usually requires to lock resources. In Web Services applica-
tions, for instance, resources may belong to different companies and there is no chance for
an orchestrator to lock resources of other companies. Additionally, transactions may last long
periods of time, and it is not feasible to block resources so long.

The loosely coupled transactions weaken the notion of rollback: a service might decide
that rollback will not cancel all the activities carried out. The cancellation of an airplane
booking, for instance, may lead to the payment of a fee. Services that do not support an
“absolute” mechanism of rollback, make failures extremely complicated, to be dealt with ad-
hoc rollbacks. These ad-hoc rollback processes are called compensations.

The notion of compensation is the key aspect of several recent processs algebras defined
on purpose to formalize the semantics of compensation execution, and to reason about prop-
erties of compensation policies. The first proposal in this direction is StAC, a calculus with
an explicit compensation operator whose operational semantics has been formalized in [9].
StAC has recently inspired also a new CSP dialect, called cCSP [10], whose semantics is de-
fined denotationally in terms of traces. An alternative proposal is represented by the SAGAS
calculi [8] that defines a concurrent big-step semantics for sequential, parallel, and nested
compensatable transactions. Recently, in [7] cCSP and the SAGAS calculi have been thor-
oughly compared discussing how to encode (fragments of) the former in (some of) the latter

71



calculi, and vice versa. Compensations have been formalized and investigated also in the con-
text of π-calculus in [5], where a calculus inspired by the compensation policy of BizTalk is
presented.

3 Communication Latency

Orchestration languages support a time aware programming style. For instance, in the visual
orchestration language BizTalk, timed activities can be programmed which are interrupted in
case they do not complete within a predefined period of time. Similarly, in BPEL4WS, it is
possible to program signals that are raised at specific time instant, and to install handlers that
are triggered by these signals.

Timed process algebras are an extremely powerful tool for modeling and analysing timed
systems. There exists numerous models of time inspired by different intuitions and abstrac-
tions, see e.g. [1] for a comprehensive overview. In [2] a model of time particularly suited for
loosely coupled distributed computing has been defined and investigated in the context ofπ-
calculus. The proposed model can be briefly summarized as follows: processes are distributed
across node networks and each node has its own clock; these clocks are not synchronized; and
each action occurring within a node takes one time unit. The unique time aware operator
which is considered is the classical timed out input operation: if an input does not occur
within a specified delay, an alternative process is activated.

4 Open-endedness

Open-endedness is an inherent characteristics in orchestration of services retrieved from the
internet: new services may appear and disappear at run-time, available services (or their ef-
ficiency) may depend on their current location or on the current location of the orchestrator
(if we deal with mobile entities), requests towards services offering the same service (where
“same” is established in terms of some semantical definition of its behavior) may be dis-
tributed so to have a balanced workload. Assuming that we know available services and we
bind them when the orchestrator is created (i.e. at “compile-time”) is not realistic in this
context.

Expressing open-endedness in process algebra requires evolved mechanism for channel
retrieval to access services. In particular the retrieval should be based on requirements on
the desired service, e.g. on some abstraction of its behavior. This can be done in several
ways: by using matching rules on tuples of data (formed e.g. by one element representing
the channel and others describing the service and its behavior) as in Linda [12] or by using
direct subtyping on channels themselves [11]. Note that in this context process algebra may
be involved even in the description of the desired behavior of services itself. For example [13]
uses abstract process algebraic descriptions as types of systems (services in our case) which
are expressed in a more complex process algebra.

72



5 Conclusion

In this section we discuss some interesting issues raised by the combination of the three above
aspects. In particular, we first discuss the combination of loosely coupled transactions and
time, then we consider interesting aspects related to the combination of transactions and open-
endedness, and finally we discuss how timing issues and open-endedness can be combined.

Timed transactions are linguistic constructs supported by most of the orchestration lan-
guages. A timed transaction is an activity which is interrupted if not completed within a
specified time-out, and substituted by an ad hoc failure handler. This construct contrasts with
the the typical time-out operator discussed in Section 3. Indeed, a timed out process in [2]
does not execute actions during the elapsing of the time-out. On the other hand, in timed trans-
actions, activities are executed during the elapsing of the time-out and possibly rolled back
or compensated if the overall activity is not completed in due time. Timed transactions have
already received a preliminary process algebraic formalization in [14], but several issues (such
as suitable observational semantics for processes distributed across networks, or a time model
supporting different time costs for different kinds of operations) still require investigation.

As far as transactions and open endedness are concerned, it is interesting to observe that
in service oriented computing there is a great interest in negotiation and contract protocols.
These are used to select the partners involved in a transaction according to some minimal
service requirements. Process algebras have been already used to model specific negotiation
protocols used in the context of distributed commitment. The two phase commitment protocol
guaranteeing atomicity is analysed in [3], while the BTP protocol guaranteeing a relaxed
notion of partial atomicity –called cohesion– was investigated in [4]. These are only specific
cases of negotiation protocols; a formal investigation of other protocols such as those based
on quality of services, or supporting the dynamic redefinition of the involved partners during
the execution of the transaction, is still lacking.

As far as timing issues and open-endedness are concerned, probabilistic mechanisms in
process algebra combined with mechanism for open-endedness (e.g. based on matching of
tuples representing service instances as in Linda) can be exploited to express dynamic retrieval
of services which distribute workload of requests. In particular the deliver of requests can
be probabilistically distributed among the different instances of services which possess the
required behavior by means of a probabilistic distribution which is based on their individual
performance (see [6]). A dynamic reconfiguration of such probabilistic distribution based on
an evaluation of current performance of services is, however, still lacking.

References

[1] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. EATCS Monograph,
Springer Verlag 2002.

[2] M. Berger. Basic theory of reduction congruence for two timed asynchronousπ-calculi.
In CONCUR’04, Proc. of the 15th International Conference on Concurrency Theory, vol-
ume 3170 ofLNCS, pages 115–130. Springer-Verlag, 2004.

73



[3] M. Berger and K. Honda. The Two-Phase Commit Protocol in an Extendedπ-Calculus. In
EXPRESS’00, Proc. of the 7th International Workshop on Expressiveness in Concurrency,
volume 39 ofENTCS, 2000.

[4] L. Bocchi. Compositional Nested Long Running Transactions. InFASE’04, Proc. of the
Fundamental Approaches to Software Engineering, volume 2984 ofLNCS, pages 194–
208. 2004.

[5] L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long running transactions.
In FMOODS’03, Proc. of the 6th IFIP International Conference on Formal Methods
for Open Object-based Distributed Systems, volume 2884 ofLNCS, pages 124–138.
Springer-Verlag, 2003.

[6] M. Bravetti, R. Lucchi, G. Zavattaro, R. Gorrieri“Web Services for E-commerce: guar-
anteeing security access and quality of service”, in Proc. of the19th ACM Symposium on
Applied Computing (SAC’04), special track on E-Commerce Technologies, H. Haddad,
A. Omicini, R.L. Wainwright and L.M. Liebrock eds., ACM Press, pp. 800-806, Nicosia
(Cyprus), March 2004

[7] R. Bruni, M. Butler, C. Ferreira, T. Hoare, H. Melgratti, and U. Montanari. Reconciling
two approaches to compensable flow composition. InCONCUR’05, Proc. of the 16th
International Conference on Concurrency Theory, volume to appear ofLNCS, 2005.

[8] R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensations in
flow composition languages. InPOPL’05, Proc. of the 32nd Annual ACM SIGPLAN -
SIGACT Symposium on Principles of Programming Languages, 2005

[9] M. Butler and C. Ferreira. An operational semantics for StAC, a language for modelling
long-running business transactions. InCOORDINATION’04, Proc. of the 6th Interna-
tional Conference on Coordination Models and Languages, volume 2949 ofLNCS, pages
87–104. Springer-Verlag, 2004.

[10] M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transactions. In
Proceedings of 25 Years of CSP, London, 2004.

[11] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the pi-calculus. In
LICS’05, Proc. of Logic in Computer Science, june 2005.

[12] D. Gelernter. Generative Communication in Linda.ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

[13] A. Igarashi, N. Kobayashi. A Generic Type System for the Pi-Calculus. In Theoretical
Computer Science, 311(1-3):121-163, 2004.

[14] C. Laneve, and G. Zavattaro. Foundations of Web Transactions. InFOSSACS’05, Proc.
of the 8th Foundations of Software Science and Computational Structures, volume 3441
of LNCS, pages 282–298. Springer-Verlag, 2005.

74



Retracing CSP

Stephen Brookes
Carnegie Mellon University

Abstract

The original CSP was a language for parallel imperative programs communicating by
synchronized message-passing. Most of the early foundational work concerned a more
abstract process algebra, now known as Theoretical CSP (or TCSP). The early semantic
models involved communication traces, refusals, failures, and divergence traces. These
models support compositional reasoning about safety properties, but since they do not
assume fair parallel scheduling they are less well suited for proving liveness properties.
More recent developments using a suitably formulated form of action traces provide a
unifying semantic framework, applicable both to CSP-style synchronized communication
and to asynchronously communicating processes, as well as to shared memory parallel
programs, in each case assuming a simple form of fair execution.

1 Background
The original CSP programming language [13], introduced by Tony Hoare in 1978, combined
input and output with guarded commands [8] and parallel composition. For various practical
reasons, the language imposed static syntactic constraints on program structure: no nested
parallelism, direct process-to-process communication, and no shared variables. Some possible
alternative design choices were considered, such as the use of output guards, and whether to
assume synchronized or asynchronous message-passing. The original language allowed only
input guards, and adopted synchronized communication.

The early foundational efforts dealt with a process calculus (Theoretical CSP, or TCSP),
derived from CSP by abstracting away from state [11]. A TCSP process performs events
belonging to an abstract alphabet, and parallel composition involves a form of interleaving in
which concurrent processes must synchronize on the events belonging to the intersection of
their alphabets. Hoare’s first proposal for a denotational semantics of TCSP [12], involving
prefix-closed sets of communication traces, was suitable only for simple safety properties, and
ignored the possibility of deadlock. In the failures model [11], communication traces were
augmented with refusal sets designed specifically to model deadlock: a process deadlocks
when it refuses every event in its alphabet. The failures-divergences model [6] improved
further by including information about divergence, characterized as the potential for “infinite
internal chatter”. The failures-divergences model treats divergence as a catastrophe, arguing
that a potentially divergent process is useless; some later variants of this model take a more
relaxed view of divergence. Subsequently Bill Roscoe also developed a failures-divergences

75



semantics incorporating state [21], for the programming language occam, an (imperative)
ancestor of the original CSP. Roscoe’s book [22] contains a detailed and extensive account of
the family of models belonging to the CSP school.

TCSP has enjoyed a great deal of success as a process algebra for specifying and proving
correctness of communicating processes, and the failures-divergences model is the basis for
the model-checker FDR [9]. Milner’s CCS [16, 17] has enjoyed similar success, based on
a more discriminating notion of program equivalence (bisimulation), with semantic models
such as synchronization trees and labelled transition systems, and model-checking tools such
as the Concurrency Workbench [7]. Both process algebras provide a succinct and expressive
notation for specifying parallel systems together with algebraic laws of program equivalence.
Indeed, CSP laws based on failures-divergences can be used to justify the use of a normal
form property for processes in implementing FDR, and the Concurrency Workbench builds
on top of CCS laws expressing properties of bisimulation equivalence.

2 Reassessment
Now that more than 25 years have passed since the beginnings of CSP, it is worth looking
back, with the benefits of hindsight and experience, reassessing some of the early design
choices in the light of later developments and pointing out limitations that may have seemed
unimportant at the time but warrant further investigation.

The early models of TCSP, and most of their successors, were concerned only with finite
traces, and therefore did not (need to) assume any form of fair parallel execution. As a result,
these models are not well suited for reasoning about liveness properties, such as the eventual
inevitability of some desirable event: typically it is impossible to prove a liveness property
without assuming that process execution and the use of shared resources is governed by a
reasonably fair scheduler. At the time, fairness was regarded as semantically problematic
and difficult to incorporate into the denotational setting. David Park’s classic paper [19] and
later developments such as [5] showed how this could be done for shared memory parallel
programs, but the notion of concurrency underlying CSP seemed radically different from the
shared memory paradigm, and it was not easy to see how to combine CSP with fairness
without requiring complicated book-keeping to keep track of scheduling information.

The early models of CSP also ignored the potential for race conditions, such as concurrent
attempts to receive input from the same channel, or concurrent writes to the same variable.
A program whose execution is susceptible to races may exhibit unpredictable behavior, and
its safety and liveness properties may depend on implementation details beyond the control
of the programmer. The syntactic constraints of the original CSP language obviously suffice
to rule out racy programs, by banning shared variables and imposing limits on channel usage.
However, these syntactic constraints seem unnecessarily draconian: it seems natural to allow
nested parallel composition, and to allow processes to use a combination of shared state and
channel-based communication. Furthermore, a similar approach cannot be adopted if we
extend CSP with pointers and mutable state, since syntax-based analysis would then longer
suffice to detect sharing. The TCSP models discussed above treat input and output as atomic
actions, tantamount to assuming that the underlying implementation of a channel ensures that
at most one process is allowed to input, and at most one process is allowed to output, at all

76



stages. Again such assumptions obviate the need to deal semantically with racy behavior, but
may not be realistic in practice.

All of the models mentioned so far were tailored specifically for modelling synchronized
communication, and are not well suited for shared memory or asynchronous communication.
Historically, these parallel paradigms have been endowed with separate families of semantic
models, with origins in early work such as [10, 15, 16, 11] and later more comprehensive
accounts such as [14, 17, 22]. These families have disappointingly few structural similarities,
a disparity that has tended to prevent semantically-based techniques for program analysis
developed for one paradigm from being easily used in another. To an extent such differences
are to be expected: in particular the CSP semantic models differ fundamentally from those
developed for CCS, because traces, failures and refusals reflect a “linear time” view of process
behavior whereas bisimulation fits the “branching time” view better. Yet there is much less
reason to expect or require such disparity between models sharing the same linear-time view of
behavior. None of these models is clearly “best”, and such comparisons are fruitless: typically
each applies to a limited class of programs, and deals with a different notion of program
behavior. It seems natural to seek a single semantic framework capable of interpreting all of
these paradigms as variations on a common theme.

3 Recent developments
Over the past few years we have developed a uniform family of semantic models, based on
a form of action trace, suitable both for reasoning about shared memory parallel programs
and about networks of communicating processes [4, 2, 1]. Furthermore, the framework is
adaptable both for synchronized communication and for asynchronous communication. The
framework can therefore be used to model a concurrent language that combines features from
each of these paradigms, including shared memory, as well as traditional synchronization
primitives such as semaphores and monitors. Indeed, the framework can also handle mutable
state such as pointers [3].

We have shown how to incorporate an intuitively natural notion of fairness, so that our
models are suitable for reasoning about safety and liveness properties. Unlike the earlier
models, we no longer work with “partial” traces that represent prefixes of computations, and
we do not augment trace sets with separate information such as refusal sets or divergences;
instead we include “complete” traces, and employ a trace structure general enough to represent
deadlock and divergence directly. We handle deadlock and divergence by means of idling
steps, parameterized by a set of “directions” that indicate the reason for idling [4, 2]. We do not
equate divergence with disaster, since it seems quite straightforward to represent divergence
as just another kind of trace: a divergent or deadlocked process performs an infinite sequence
of idling steps. The use of complete traces, containing information about idling, is a key to
handling fairness in a compositional manner.

Action trace models such as these can be shown to be grainless [2], i.e. independent
of assumptions about the granularity of hardware operations and details such as word size;
the key idea behind this achievement is a semantic characterization of race conditions and
a definition of parallel composition that treats a potential race as a runtime error, following
a suggestion of John Reynolds [20]. Our semantics can therefore be used to characterize

77



those programs which are race-free from a given state, so that the model can be used to prove
correctness properties together with a guarantee that execution is free from runtime errors and
that program behavior is independent of granularity.

Action trace semantics makes appropriate distinctions between processes on the basis of
their deadlock potential and their safety or liveness properties, and can therefore be seen
as a generalization of the early CSP models [2], although we take a more liberal view of
divergence. Our model is applicable to a rather more general language than the original [13],
without the need to impose syntactic limitations1.

We can identify laws of program equivalence specific to each concurrency paradigm, and
laws whose validity relies crucially on fairness. Although we lack the space here to supply the
semantic details, we will give a few characteristic examples and some key laws. The reader
should refer to the cited papers for the semantic definitions behind these laws. We write [[P]]
for the trace set of process P, and we use juxtaposition of trace sets to denote concatenation.
This trace semantics can be defined in the denotational style, by structural induction.

As a simple shared memory example, we have the following “expansion” theorem, where
x and y are assumed to be distinct identifiers:

[[(x:=v1;P)‖(y:=v2;Q)]] = [[x:=v1]] [[P‖(y:=v2;Q)]] ∪ [[y:=v2]] [[(x:=v1;P)‖Q]].

In addition we have [[(x:=v1;P)‖(x:=v2;Q)]] = [[abort]], since concurrent assignments to the
same variable cause a race.

For synchronized communication we have

[[local a,b in (a!0;b!0)‖(a?x;b?y)]] = [[x:=0;y:=0]] = {x:=0y:=0}
[[local a,b in (a!0;b!0)‖(b?y;a?x)]] = [[while true do skip]] = {δ ω},

the second being an example of deadlock. We also have laws such as the following:

[[local h in (h?x;P)‖(Q1;Q2)]] = [[Q1; local h in (h?x;P)‖Q2]]
[[local h in (h!v;P)‖(Q1;Q2)]] = [[Q1; local h in (h!v;P)‖Q2]]

when h is not free in Q1, and

[[local h in (P1;h?x;P2)‖(Q1;h!v;Q2)]] = [[(P1‖Q1);x:=v; local h in (P2‖Q2)]]

when h is not free in P1 or Q1.
These laws, expressing “inevitability” properties of code fragments in certain parallel con-

texts, rely on fairness for their validity.
For asynchronous communication we assume as usual that output to a channel is always

enabled, but a process attempting input must wait if the channel is currently empty. We model
a channel as a queue-valued variable. In contrast with the synchronous case we have

[[local a,b in (a!0;b!0)‖(a?x;b?y)]] = [[x:=0;y:=0]] = {x:=0y:=0}
[[local a,b in (a!0;b!0)‖(b?y;a?x)]] = [[y:=0;x:=0]] = {y:=0x:=0},

and because of race conditions involving concurrent input or output to the same channel we
have [[(h!v1;P)‖(h!v2;Q)]] = [[(h?x;P)‖(h?y;Q)]] = [[abort]].

1Of course, for programs in the original CSP our semantics can be simplified by omitting race detection.

78



Using the obvious list notation for queues, we have laws such as:

[[local h = ε in (h?x;P)‖(Q1;Q2)]] = [[Q1; local h = ε in (h?x;P)‖Q2]]

when h is not free in Q1, as for the synchronous case; also

[[local h = L in (h!v;P)‖Q]] = [[local h = enq(v,L) in P‖Q]]

when h! is not free in Q, and

[[local h = L in (h?x;P)‖Q]] = [[local h = L′ in (x:=v;P)‖Q]]

when deq(L) = (v,L′) and h? is not free in Q. We also have

[[local h = ε,k = ε in (P1;h?x;k! ;P2)‖(Q1;h!v;k? ;Q2)]]
= [[(P1‖Q1); local h = ε,k = ε in x:=v;(P2‖Q2)]]

when h,k do not occur free in P1 or Q1.
Again these laws embody fairness assumptions in a natural manner, allowing us to reason

about a parallel system by assuming “without loss of generality” that some particular activity
goes first.

Such laws can be extremely useful in calculational reasoning. These laws can be seen
as ancestors of Milner-style expansion theorems [16, 17] and the CSP laws presented in the
early papers [11], but expressed in terms of a parallel programming language that stands as
a true descendant of original CSP: an imperative concurrent language rich enough to encom-
pass shared state, synchronous and asynchronous message-passing, nested uses of parallel
composition, and a more flexible scoping mechanism for local data.

References
[1] S. Brookes. A grainless semantics for parallel programs with shared mutable data.

Proc. Mathematical Foundations of Programming Semantics, Birmingham, England.
May 2005. (Preliminary version.) Final version to appear, Elsevier ENTCS (2005).

[2] S. Brookes. Retracing the semantics of CSP. Invited paper, Proc. 25 Years of CSP Con-
ference, London, July 2004. In: 25 Years of CSP, Springer LNCS Festschrift series, vol.
3525. Ali Abdallah, Cliff Jones, and Jeff Sanders, eds., 2005.

[3] S. Brookes. A semantics for concurrent separation logic. Invited paper, Proc. CONCUR
2004, London. Springer LNCS vol. 3170. August 2004.

[4] S. Brookes. Traces, pomsets, fairness and full abstraction for communicating processes.
Proc. CONCUR 2002, Brno. Springer LNCS vol. 2421, pp. 466-482. August 2002.

[5] S. Brookes. Full abstraction for a shared-variable parallel language. Proc. 8th IEEE
Symposium on Logic in Computer Science, IEEE Computer Society Press (1993), 98–
109. Journal version in: Inf. Comp., vol 127(2):145-163, Academic Press, June 1996.

79



[6] S. Brookes and A.W. Roscoe. An improved failures model for CSP. Proc. Seminar on
concurrency, Springer-Verlag, LNCS 197, 1984.

[7] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A Semantics
Based Tool for the Verification of Concurrent Systems. ACM TOPLAS, vol. 15, no. 1,
January 1993, pp. 36–72.

[8] E. W. Dijkstra. Cooperating sequential processes. In: Programming Languages, F.
Genuys (editor), pp. 43-112. Academic Press, 1968.

[9] ”Formal Systems (Europe) Ltd.” Failures-Divergence Refinement, User Manual. 1997.

[10] M. Hennessy, and G. Plotkin. Full Abstraction for a Simple Parallel Language, Proc.
Mathematical Foundations of Computer Science Conference, Springer LNCS vol. 74,
1979.

[11] C.A.R. Hoare, S. Brookes and A.W. Roscoe. A Theory of Communicating Sequential
Processes, J. ACM, July 1984.

[12] C. A. R. Hoare. A model for communicating sequential processes. In On the Construc-
tion of Programs, R. M. McKeag and A. M. MacNaughten, eds, pp. 229-254. Cam-
bridge University Press, 1980.

[13] C.A.R. Hoare. Communicating Sequential Processes, Comm. ACM, 21(8):666–677,
1978.

[14] C.A.R. Hoare. Communicating sequential processes. Prentice Hall, 1985.

[15] G. Kahn and D.B. MacQueen. Coroutines and Networks of Parallel Processes, Proc.
Information Processing ’77, North Holland, 1977.

[16] R. Milner. A Calculus for Communicating Systems. Springer LNCS, vol. 92 (1980).

[17] R. Milner. Communication and concurrency. Prentice Hall, 1989.

[18] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs, ACM
TOPLAS, 4(3): 455-495, July 1982.

[19] D. Park. On the semantics of fair parallelism. In: Abstract Software Specifications,
Springer-Verlag LNCS vol. 86, 504–526, 1979.

[20] J. C. Reynolds. Towards a grainless semantics for shared-variable concurrency. Invited
Lecture, Proc. 31st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Venice. ACM Press, January 2004.

[21] A. W. Roscoe. Denotational semantics for occam. In: Seminar on concurrency, Springer
LNCS 197 (1985), pp. 306-329.

[22] A. W. Roscoe. The Theory and Practice of Concurrency, Prentice Hall, 1998.

80



A Compositional Coalgebraic Model
of a Fragment of Fusion Calculus

Maria Grazia Buscemi Ugo Montanari
Dipartimento di Informatica, University of Pisa, Italy.

Abstract

We propose a compositional coalgebraic semantics of the Fusion calculus of Parrow
and Victor in the version with explicit fusions by Gardner and Wischik. We follow the
approach developed by Turi and Plotkin for transition systems with a syntactic structure
to bialgebraic models. In our model, the unique morphism to the final bialgebra induces
a bisimilarity relation which coincides with hyperequivalence and which is a congruence
with respect to the operations. In this version, we focus on a fragment of the calculus
without recursion and replication.

1 Introduction
Fusion calculus [6] has been introduced as a variant of the pi-calculus [4]. It makes input and
output operations fully symmetric and enables a more general name matching mechanism
during synchronisation. A fusion is a name equivalence that allows to use interchangeably in
a term all names of an equivalence class. Computationally, a fusion is generated as a result
of a synchronisation between two complementary actions, and it is propagated to processes
running in parallel with the active one. Fusions are ideal for representing, e.g., forwarders for
objects that migrate among locations or forms of pattern matching between pairs of messages.

In the Fusion calculus, a fusion, as soon as it is generated, is immediately applied to the
whole system and has the effect of a (possibly non-injective) name substitution. On the other
hand, the version of the calculus with explicit fusions [3] aims at propagating fusions to the
environment in an asynchronous way. Explicit fusions are processes that exist concurrently
with the rest of the system and enable to freely use two names one for the other.

A coalgebraic framework [7] presents several advantages: morphisms between coalgebras
(cohomomorphisms) enjoy the property of “reflecting behaviours” and thus they allow, for
example, to characterise bisimulation equivalences as kernels of morphisms and bisimilarity
as the kernel of the morphism to the final coalgebra. Also adequate temporal logics and proof
methods by coinduction fit nicely into the picture.

However, in the ordinary coalgebraic framework, the states of transition systems are seen
simply as set elements, i.e. the algebraic structure needed for composing programs and states
is disregarded. Bialgebraic models take a step forward in this direction: they aim at captur-
ing interactive systems which are compositional. Roughly, bialgebras [8] are structures that

81



can be regarded as coalgebras on a category of algebras rather than on the categorySet, or,
symmetrically, as algebras on a category of coalgebras. Turi and Plotkin in [8] have proved
that a transition systemlts with a syntactic structure can be lifted to a bialgebra, provided
that the SOS rules oflts are in GSOS rule format. As a consequence, bisimilarity onlts is a
congruence, namely compositionality of abstract semantics is automatically guaranteed.

In this paper we apply the general approach developed in [8] to provide a compositional
coalgebraic model of the fusion calculus of Parrow and Victor without recursion and restric-
tion. We argue that our result does not only concern the fusion calculus but it could fit within
theoretical foundations of languages based on pattern matching.

We focus on a fragment of the fusion calculus since, for the purpose of this paper, we are
only interested in addressing the key issues of name fusions. The introduction of restriction
requires handling creation of names, that is an orthogonal aspect to name fusions and has been
considered in [1] for the pi-calculus. In any case, restriction and recursion can be modelled
within our theory. We refer to [2] for the coalgebraic model of the full fusion calculus.

We first introduce an algebra whose operations are the constructs of the calculus plus
constants modelling explicit fusions. We then define a transition system equipped with that
syntactic structure and conclude that the associated bisimilarity is a congruence. Remarkably
enough, explicit fusions enable us to model global effects of name fusions in the fusion cal-
culus, even if our algebra does not contain substitution operations. Indeed, observable effects
of substitutions are simulated by SOS rules which saturate process behaviours, while still
keeping the nice property of asynchronous propagation typical of explicit fusions. We claim
that the translation of fusion agents in our algebra is fully abstract with respect to Parrow and
Victor hyperequivalence. For lack of space, we omit proofs; they can be found in [2].

2 A Labelled Transition System for Fusion Calculus

Let N = {x0,x1,x2, . . .} be the infinite, countable, totally ordered set ofnamesand letx,y,z. . .
denote names. Afusion is a total equivalence relation onN with only finitely many non-
singular equivalence classes. Fusions are ranged over byϕ,ψ, . . . andτ denote the identity
fusion. We letϕ +ψ denote the finest fusion which is coarser thanϕ andψ, that is(ϕ ∪ψ)?,
ϕ ` ψ = ψ ′ denote thatϕ +ψ = ϕ +ψ ′, ϕ[x] denote the equivalence class ofx in ϕ, ϕ vψ

denote thatϕ is finer thatψ, i.e., for allx ∈N, ϕ[x]⊆ψ[x], and{x= y} denote{(x,y),(y,x)}?.
The fusion calculus is a variant of the pi-calculus. The crucial difference between the

pi-calculus and the fusion calculus shows up in synchronisations: in the fusion calculus, the
effect of a synchronisation is not necessarily local. For example, the interaction between two
agentsuv.P andux.Q results in a fusion ofv andx. This fusion also affect any further process

R running in parallel. For example:R|uv.P|ux.Q
{x=v}7−→ R|P|Q. In this paper we consider a

monadic version of the calculus without restriction and replication. For a full treatment of the
calculus we refer to [6].

Definition 2.1 We define the initial algebra A= TΣ, with Σ ::= 0
∣∣ π.

∣∣ |
∣∣ x = y, and

π ::=
∣∣ x̄y

∣∣ xy
∣∣ ϕ.

Explicit fusions in the signature are intended to model substitutive effects of fusion calculus,
even if the algebra does not contain substitution operations. Indeed, an explicit fusionx = y

82



allows to represent the global effect of a name fusion resulting from a synchronisation with-
out need of replacingx to y or viceversa in the processes in parallel: namesx andy can be
used interchangeably in the contextx = y| . In practice, rather than applying to an agent the
substitutive effect of a fusion, the agent is run in parallel with the fusion itself. Fusion agents
can be translated into terms of algebraA as expected.

We letL be the set of labelsL = Λ×Φ, whereΛ = {xy, xy, ϕ, − | x,y,n(ϕ) ∈N} and−
denotes a ‘null’ action, andΦ is the set of all fusions overN. We letα,β , . . . range overΛ. The
left-hand components of the labelsL correspond to the actions of the fusion calculus, while
the right-hand components are used to observe the fusions of the names at that computational
step and any small smaller fusion.

An entailment relatioǹ is defined as follows:ϕ ` α = β , if α,β 6= ψ andσ(α) = σ(β ),
for a substitutive effectσ of ϕ; ϕ ` ψ = ψ ′ if ϕ +ψ = ϕ +ψ ′.

Definition 2.2 (transition specification∆) The transition specification∆ is the tuple〈Σ,L,R〉,
where the signatureΣ is as in Definition 2.1, labels L are as above defined and R is the set of

SOS rules in Table 1. Transitions take the form p
(α,ϕ)−−→ q, where(α,ϕ) ranges over L.

The crucial rules in Table 1 are those rules suited to deal with explicit fusions. By rule
(EXP) explicit fusions are propagated and by rules(PAR1) and(PAR f ) they are combined with each
other and with other agents in parallel. Rules(PRE) and (FUS) are intended to ensure that the
associated bisimilarity be preserved by closure with respect to fusions running in parallel. All
side conditions ensure a saturation of process behaviours with respect to the explicit fusions.
This form of saturation is formalised in the following proposition.

We define a notion of equivalence relationEq(p), induced by the explicit fusions in a term
p as follows:Eq(0) = τ; Eq(π.p) = τ; Eq(p|q) = Eq(p)+Eq(q); Eq(x= y) = {x= y};. The
notation given for fusions also applies toEq(p): this holds in particular forEq(p) ` α = β .

Proposition 2.3

1. If p
(α,ϕ)−−→ q then p

(β ,Eq(p)+ϕ)−−−−−−→ q, for all β such thatEq(p)+ϕ ` α = β .

2. If p
(α,ϕ)−−→ q then p

(α,ψ)−−→ q, for all ψ such thatψ v ϕ.

Example 2.4 Terms p1
4
= x = y|y = k|p and p2

4
= x = y|x = k| p have the same transitions.

For instance, if p1
(α,y=k)−−−→ then, by rules (EXP) and (PAR f ), p2

(α,ϕ)−−→, for any
ϕ v x = y + x = k and, in particular, forϕ = y = k.

As another example, consider p= x̄y.p1 |zk.p2. By rules(PRE) and(COM), p
(y=k,ϕ)−−−→ p1 | p2 |ψ ′ |y=

k, for all ϕ andψ such that x= zv ψ andϕ v ψ +y = k; in other words, a synchronisation
in p can take place in any context where x and z can be used interchangeably and, moreover,
any ‘smaller’ fusionϕ can be observed.

Theorem 2.5 Let lts be the transition system lts= 〈A,−→〉, where−→ is defined by the SOS
rules in Table 1, and let∼ be the bisimilarity on lts. Bisimilarity∼ is a congruence.

Theorem 2.6 Let P and Q be two fusion agents. Then, P∼he Q iff [[P]] ∼ [[Q]], where∼he

denotes hyperequivalence [6] and[[·]] is the translation of fusion agents into terms of A.

83



(PRE) xy.p
(x′y′,ϕ ′)−−−→ p|ϕ ϕ ′ v ϕ; ϕ ` xy= x′y′ (FUS) ϕ.p

(ϕ ′,ψ ′)−−−→ p|ψ +ϕ ψ ′ v ψ; ψ ` ϕ = ϕ ′

(PAR)
p

(α,ϕ)−−→ q

p|r (α,ϕ)−−→ q|r
(PAR1)

p1
(α,ϕ1)−−→ q1 p2

(−,ϕ2)−−→ q2

p1|p2
(β ,ϕ ′)−−→ q1|q2

ϕ ′ v ϕ1 +ϕ2; ϕ1 +ϕ2 ` α = β

(PAR f )
p1

(−,ϕ1)−−→ q1 p2
(−,ϕ2)−−→ q2

p1|p2
(−,ϕ ′)−−→ q1|q2

ϕ ′ v ϕ1 +ϕ2 (COM)
p1

(xy,ϕ)−−→ q1 p2
(x̄z,ϕ)−−→ q2

p1|p2
(y=z,ϕ)−−−→ q1|q2|y = z

(EXP) x = y
(−,x=y)−−−→ x = y x 6= y

Rule (PRE) is analogous with output actions.

Table 1: Structural Operational Semantics

3 Conclusions

For the purpose of this paper we have considered a fragment of the fusion calculus. In [2]
we propose a bialgebraic model of the full calculus, which makes a more complex scenario.
The restriction operation, for instance, introduces issues of name creation. For this reason,
in loc.cit., the authors define a permutation algebra [5, 1] enriched with the operations of the
calculus and explicit fusions and equipped with an axiomatisation. In this more general case,
bisimilarity is proved to be congruence, by exploiting a lifting result [1] that generalises the
approach by Turi and Plotkin to calculi with structural axioms.

References

[1] M. Buscemi and U. Montanari. A First Order Coalgebraic Model of Pi-Calculus Early Observa-
tional Equivalence. InProc. of CONCUR ’02, LNCS 2421. Springer, 2002.

[2] M. Buscemi and U. Montanari. A Compositional Coalgebraic Model of Monadic Fusion Calcu-
lus. TR-05-17, Dipartimento di Informatica, University of Pisa, 2005.

[3] P. Gardner and L. Wischik. Explicit Fusions. InProc. of MFCS ’00, LNCS 1893. Springer-Verlag,
2002. Full version to appear inTheoretical Computer Science.

[4] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and II).Information
and Computation, 100(1):1–77, 1992.

[5] U. Montanari and M. Pistore. Structured Coalgebras and Minimal HD-Automata for the pi-
Calculus. TR 0006-02, IRST-ITC. To appear inTheoretical Computer Science.

[6] J. Parrow and B. Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile Pro-
cesses. InProc. of LICS’98. IEEE Computer Society Press, 1998.

[7] J.J.M.M. Rutten. Universal coalgebra: a theory of systems.Theoretical Computer Science
249(1):3–80, 2000.

[8] D. Turi and G. Plotkin. Towards a mathematical operational semantics. InProc. of LICS’97,
IEEE. Computer Society Press, 1997.

84



A Process Algebraic View of Coordination

N. Busi and G. Zavattaro
Department of Computer Science, Università di Bologna

{busi,zavattar}@cs.unibo.it

Abstract

Coordination languages have been introduced since the early 80’s as programming
notations to manage the interaction among concurrent collaborating software entities.
Process algebras have been successfully exploited for the formal definition of the seman-
tics of these languages and as a framework for the comparison of different coordination
models.

1 Coordination Languages: an Overview

Coordination languages are a class of programming notations which offer a solution to the
problem of specifying and managing the interactions among computing agents. In fact, they
generally offer language mechanisms for composing, configuring, and controlling software
systems made of independent, even distributed, active components.

Gelernter and Carriero introduced a programming-specific meaning of the termCoordi-
nationpresenting the following equation [7]:

Programming = Computation + Coordination

They formulated this equation arguing that there should be a clear separation between the
specification of the components of the computation and the specification of their interactions
or dependencies. On the one hand, this separation facilitates the reuse of components; on the
other hand, the same patterns of interaction usually occur in many different problems – so it
might be possible to reuse the coordination specification as well.

A number of interesting models have been proposed and used to design, study, and com-
pare coordination languages. Examples include tuple spaces as in Linda [11], various forms
of multiset rewriting or chemical reactions as in Gamma [2], models based on the raising
and catching of events as in SIENA [14] or JEDI [9], and models with explicit support for
coordinators as in Manifold [1].

Coordination models have been classified in two main classes [12]:

1. Shared dataspace: components communicate by producing, consuming, and testing for
the presence of data in a shared, common repository.

85



2. Publish/Subscribe: communication takes place through the raising of events performed
via a publishoperation. Events are multicast to those components which have previ-
ously registered their interest via asubscribeoperation.

Linda [11] is the most prominent representative of the family of coordination languages
based on the shared dataspace model: a sender communicates with a receiver through a shared
data space (calledtuple space), where emitted messages are collected; the receiver can read the
message or even remove it from the TS; a message generated by a process has an independent
existence in the tuple space until it is explicitly withdrawn by a receiver; in fact, after its
insertion in the tuple space, a message becomes equally accessible to all processes, but it is
bound to none.

Besides the non-blocking output operationout(a) (that sends the messagea to the tuple
space), the blocking read operationrd(a) (that succeeds only ifa is in the tuple space) and
the blocking input operationin(a) (that removes messagea from the TS), Linda offers two
further conditional input and read predicates, calledinp(a) andrdp(a) [15]. These predicates
check the current status of the tuple space; if the required messagea is absent, the valuef alse
is returned; on the contrary, if the message is found, their behavior is the same as thein/rd
operation and the valuetrue is returned.

SIENA [14] and JEDI [9] are two of the most known publish/subscribe coordination lan-
guages. Conceptually, they provide a coordination service to clients. Clients use the service
to advertise the information about events that they generate and topublishnotifications con-
taining that information. They also use the service tosubscribefor notifications of interest.
The service then notifies clients by delivering any notification of interest.

The two models provide coordination facilities by exploitingdataandevents, respectively.
These two abstractions can be compared with respect to the following aspects:creation, life-
time, andvisibility.

The creation is non-blocking both for events and data: an agent can raise an event in each
possible context and an agent can introduce a new datum in a shared repository whatever is
its actual state.

A first basic difference can be observed on the lifetime: after its raising, an event plays
a role in the overall system only during the multicast protocol; on the other hand, a datum
remains available in the dataspace until it is explicitly withdrawn. This property is usually re-
ferred to asgenerative communication[11]: a datum, after its production, has an independent
life inside the dataspace.

Concerning the visibility, it is worth to point out at least two differences between events
and data. A datum can be read from any agent, even from agents not present in the system
at the time the datum was produced; this property is usually referred to astime-uncoupling.
On the other hand, an event can be observed only by those agents which registered their
interest before the raising of the event. A second observation concerns the ability to perform
a destructive consumption of information: data can be removed from the dataspace, thus
disallowing other agents to read it; on the other hand, an agent cannot hide an event to the
other agents in the system.

The coordination language Linda was originally conceived in the 80’s to program parallel
computers or local area network distributed applications. In the late 90’s, with the advent of
wide area network distributed applications, we have assisted to a renewed interest in such a

86



coordination language. For example, JavaSpaces [16] and TSpaces [18] are two recent coordi-
nation middlewares for distributed Java programming proposed by Sun and IBM, respectively.
These proposals incorporate the main features of both the two historical groups of coordina-
tion models. Besides the typical Linda-like coordination primitives, both JavaSpaces and
TSpaces provide event registration and notification. This mechanism allows a process to reg-
ister interest in the future arrivals of a particular kind of data, and then receive communication
of the occurrence of these events.

2 Process Algebras for Coordination

Coordination languages are usually informally defined in reference manuals or user’s docu-
mentations: see e.g. Linda [15] and JavaSpaces [16]. Process Algebras have been successfully
exploited as a formal basis to provide these languages with a semantics. These formalizations
provided also a framework for a comparative analysis of the coordination primitives: the main
outcomes are, on the one hand, the characterization of expressiveness gaps among different
interpretations/implementations of the same coordination primitive and, on the other hand, the
proof of (im)possibility to reduce one coordination model into another one.

As far as Linda is concerned, the first examples of process algebraic semantics are [8]
and [10]. Both these proposals define a CCS-like language whose basic atomic actions are
inspired by thein, rd andout Linda coordination primitives. The non-blocking predicatesinp
andrdp have been dealt with in [3].

In [4], an interesting expressiveness gap between two semantics for the process algebra in-
troduced in [3] has been pointed out. These two semantics follow two different intuitions ex-
pressed in the Linda reference manual [15]. The former, calledordered, defines the output as
an operation that returns when the message has reached the shared data space; the latter, called
unordered, returns just after sending the message to the tuple space. The process algebra un-
der the ordered semantics is Turing powerful as it permits to program any Random Access
Machine. On the contrary, the process algebra under the unordered semantics is not Turing
powerful. This result is achieved by resorting to a net semantics in terms of contextual nets
(P/T nets with inhibitor and read arcs), and showing that there exists a deadlock-preserving
simulation of such nets by finite P/T nets, a formalism where termination is decidable.

The analysis of the expressiveness of coordination primitives started in [4] has been ex-
tended in [5] to investigate the interplay of the event notification mechanism with the classical
Linda-like coordination paradigm. In particular, we focussed on thenoti f yprimitive of JavaS-
paces, used by a process to register interest in the incoming arrivals of a particular kind of data,
and then receive communication of the occurrence of these events. We prove the existence of
a hierarchy of expressiveness among the possible combinations of coordination primitives: (i)
event notification cannot be encoded with only input and output operations, but (ii) it becomes
encodable if also test for absence is considered; moreover, (iii) test for absence is strictly more
expressive than event notification as it cannot be encoded with only input, output and event
notification.

Another interesting novelty of JavaSpaces is the notion of temporary data, that is data with
an associated expiration time. This notion permits to address the problem of the accumulation
of outdated and unwanted information in the shared repository. Typical garbage collection

87



algorithms, indeed, cannot be adopted in this context because there is no notion of unacces-
sible data. In [6], we have investigated the impact of different mechanisms for expired data
collection on the expressiveness of dataspace coordination systems with temporary data.

3 Conclusion

The novel networking technologies, such as peer-to-peer overlay networks and mobile ad
hoc networks, call for the definition of new coordination languages based on new interaction
metaphors. For instance, peer-to-peer networks introduced the concept of flooding, i.e. the
multi-hop propagation of information among neighbours, while the native interaction mecha-
nism in mobile ad hoc networks is wireless broadcast.

Regarding mobile networks, an interesting proposal is represented by the Lime [13] shared
dataspace coordination model, improved and formalized in a process algebraic style in [17].
The main idea underlying Lime is that each agent has its own dataspace. A group of physically
connected agents is called a confederation. The agents in a confederation share the same
logical dataspace, which is transparently constructed by merging the local dataspaces of the
agents themselves.

Lime can be considered as a starting point towards the definition of a new generation of
coordination languages. We believe that the experience achieved in the formalization and
comparison of the traditional coordination primitives can be exploited to drive the develop-
ment of new reference models for such languages.

References

[1] F. Arbab, I. Herman, and P. Spilling. An Overview of Manifold and its Implementation.
Concurrency - Practice and Experience, 5(1):23–70, 1993.

[2] J-P. Banatre and D. Le Metayer. Programming by Multiset Transformation.Communica-
tions of the ACM, 36(1):98–111, 1993.

[3] N. Busi, R. Gorrieri, and G. Zavattaro. A Process Algebraic View of Linda Coordination
Primitives.Theoretical Computer Science, 192(2):167–199, 1998.

[4] N. Busi, R. Gorrieri, and G. Zavattaro. On the Expressiveness of Linda Coordination
Primitives. Information and Computation, 156(1/2):90-121, 2000.

[5] N. Busi and G. Zavattaro. On the Expressiveness of Event Notification in Data-driven
Coordination Languages. In Proc. of2000 European Symposium on Programming
(ESOP’00), volume 1782 ofLNCS, pages 41–55, 2000.

[6] N. Busi and G. Zavattaro. Expired Data Collection in Shared Dataspaces.Theoretical
Computer Science, 298: 529-556, 2003.

[7] N. Carriero and D. Gelernter. Coordination Languages and Their Significance.Commu-
nications of the ACM, 35(2):97–107, 1992.

88



[8] P. Ciancarini, K. Jensen, and D. Yankelewich. On the Operational Semantics of a Coor-
dination Language. Volume 924 ofLNCS, pages 77–106, 1995.

[9] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to de-
velop complex distributed systems. In Proc. of20th International Conference on Software
Engineering(ICSE’98), pages 261–271, 1998.

[10] R. De Nicola and R. Pugliese. A Process Algebra based on Linda. In Proc. ofFirst In-
ternational Conference on Coordination Models and Languages(COORDINATION’96),
volume 1061 ofLNCS, pages 160–178, 1996.

[11] D. Gelernter. Generative Communication in Linda.ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

[12] G.A. Papadopoulos and F. Arbab. Coordination Models and Languages.Advances in
Computers, 46:329–400, 1998.

[13] G.P. Picco, A. Murphy, and G.C. Roman. Lime: Linda Meets Mobility. In Proc.21th
IEEE Int. Conf. on Software Engineering(ICSE’99), pages 368–377, 1999.

[14] D.S. Rosenblum and A.L. Wolf. A Design Framework for Internet-Scale Event Ob-
servation and Notification. In Proc. of6th European Software Engineering Conference
(ESEC’97), volume 1301 ofLNCS, pages 344-360, 1997.

[15] Scientific Computing Associates.Linda: User’s guide and reference manual, 1995.

[16] Sun Microsystem, Inc.JavaSpaces Specifications, 1998.

[17] M. T. Valente, B. Carbunar and J. Vitek. Lime Revisited. Reverse Engineering an Agent
Communication Model. In Proc.5th International Conference on Mobile Agents(MA’01),
volume 2240 ofLNCS, pages 54–69, 2001.

[18] P. Wyckoff, S.W. McLaughry, T.J. Lehman, and D.A. Ford. T Spaces.IBM Systems
Journal, 37(3), 1998.

89



A rude contract language for web services
– extended abstract –

Samuele Carpineti Cosimo Laneve
Department of Computer Science, University of Bologna, Italy

June 14, 2005

Abstract

Several schema languages have been recently proposed for describing XML docu-
ments. The key notion of such languages is the subschema relation which is used for
type checking. We present a schema language for modelling XML documents containig
channel schemas with (input and output) capabilities and we describe two subschema al-
gorithms. The first one uses a simulation relation; the second one examines the structure
of the schemas. We demonstrate the equivalence of the algorithms and we discuss their
computational complexity.

1 Introduction

Several languages have been recently proposed for describing the tree-structure, usually called
schema, of XML documents. The most popular proposals are DTD, XML-Schema, RELAX
NG, and regular expression types [1]. These proposals mainly differ for their expressiveness
(the set of trees described by the language) and for the notion of subschema, which defines a
relationship (usually a partial order) between schemas. Among the proposals, regular expres-
sion types are a simple and powerful language with a decidable subschema relation based on
inclusion of sets of trees. It is well-known that such subschema relation is computationally
expensive – it is exponential with respect to the sizes of the schemas.

Regular expressions do not adequately describe XML documents that are exchanged by
web-services. In fact, web-services require the possibility to express and communicate doc-
uments containing references to remote services [2] – calledendpoints, in the web-services
terminology – and to verify that the receiver uses the service according to its contract (sending
proper data and performing the permitted operations). Technically, such difficulties may be
solved by promoting services to first class entities and delegating a schema language extended
with web-services descriptions to provide a minimal level of security.

However, the computational cost of the subschema relation turns out to be an issue in
a loosely-coupled scenario such as that of web-services. In such a scenario, data coming
from untrusted parties need to be validated before processing. While validation requires a
linear computational complexity with respect to the size of the datum for regular expression

90



types, this is not the case when data carry endpoints. In these cases validation reduces to
the subschema relation, thus becoming exponential. More precisely, when a datum carries an
endpoint, the receiver has to verify that the schema of the endpoint – the WSDL document –
conforms with some expected schema.

To overcome this problem we reduce the expressivity of regular expression types, by drop-
ping nondetermined schemas such asa[S],S′ + a[T],T ′, and extend the language with chan-
nel schemas with input/output capabilities [3]. The resulting language is simple, expressive
enough to describe XML documents carrying endpoints, and is equipped with a validation
algorithm (and a subschema relation) with a polynomial cost. This language is a first candi-
date for describing web-services contracts. The analysis of other, more expressive candidates,
such as those detailing the number of input/output operations, or their exact order, is part of
our future research.

This extended abstract is structured as follows. In Section 2 we present the language. In
Section 3 we define the two subschema relations. The proof of equivalence is drafted. We
refer to the longer version for thorough motivations and technical details.

2 Schema language

Schemas describe collections of values that are structurally similar. The syntactic category of
schemas is defined by the following grammar:

L ::= labels
| a (label)
| L+L (union)
| L\L (difference)
| ~ (any label)

κ ::= capability
| i input capability
| o output capability
| io i/o capability

S ::= schema
| ⊥ empty schema
| () void schema
| 〈S〉κ channel schema
| L[S],S sequence schema
| S+S union schema
| U schema name

LabelsL represent sets of elementsa, b, . . . . The labela represents the singleton{a}; L+L′

andL\L′ represent the union and the difference of the corresponding sets ofL andL′ (every
difference denoting an empty set of labels is illegal);~ represents the whole set of labels. We
write a∈ L for a being a label of the set represented byL.

Channel capabilitiesκ define what kind of input and/or output operations can be per-
formed over a certain channel schema. A channel schema with capabilityi describes end-
points to be used for inputting documents; a channel schema with capabilityo describes end-
points to be used for outputting documents; a channel schema with capabilityio describes
endpoints to be used for inputs and outputs.

SchemasSdescribe sets of documents, including endpoints, that are structurally similar.
The schema⊥ describes no document;() describes the empty document;L[S],T describes
sequences starting with a label inL, containing a document of schemaS, and followed by
documents of schemaT; 〈S〉κ describes endpoints having capabilityκ and carrying values

91



of schemaS; S+ T describes documents of schemaS or of schemaT; U is a schema name
describing the documents denoted by its definitionE(U). E is a global environment of mutually
recursive definitionsU= S. The functionE is constrained by the following finiteness property.
Let names(S) be the least set containing the schema names inSand such that ifU ∈ names(S)
thennames(E(U))⊆ names(S). The mapE retains the following property:

• for everyU ∈ dom(E), the setnames(U) is finite.

This property implies that schemas definetree regular languages[4].
Few sample schemas are in order:U= a[()],U+() defines arbitrarily long sequences with

labela; U= a[U]+() defines arbitrarily nested documents;Empty= Empty defines the empty
set of documents (⊥ is actually syntatic sugar forEmpty).

It is worth to notice two constraints of our schema grammar. The first is that schema names
may only occur in tail position. Henceforth the grammar prevents the definition of non regular
tree languages likea[()]n,b[()]n (subtyping is not decidable in context free tree grammars). A
similar constraint concerns channel schemas, too. The first constraint is a standard expedient
for enforcing tree-regularity; the latter, together with the following notion of determinedness,
guarantees a polynomial subschema relation.

Let µ range over internal schema representations(), 〈〉κ(S), L(S;T). Let S↓ µ, readS has
a handleµ, be the least relation such that:

() ↓ ()
〈S〉κ ↓ 〈〉κS
L[S],T ↓ L(S;T) if S↓ µ andT ↓ µ ′

S+T ↓ µ if S↓ µ or T ↓ µ

U ↓ µ if E(U) ↓ µ

We notice that schemas may retain no handle. This is the case of⊥, a[⊥], anda[()], ⊥.

Definition 1 (Determined schemas)The set ofdetermined schemasis the least one such
that:

1. ⊥ and() are determined;

2. 〈S〉κ is determined, provided S is determined;

3. L[S],T is determined, provided S and T are determined;

4. S+ T is determined, provided S and T are determined and if S↓ L(S′;S′′) and T ↓
L′(T ′;T ′′) then L∩L′ = /0;

5. U is determined, providedE(U) is determined.

Determinedness prevents the definition of schemas like~[()]+a[()], but allows schemas
like 〈a[ ]〉i+ 〈b[ ]〉i. In this sense, determinedness corresponds to the deterministic constraint
for tags in XML Schema.

The next definition equates terms that are never distinguished in the following.

92



Definition 2 (Structural Congruence) The structural congruence≡ is the least congruece
over schemas S that satisfies the laws:

(COM)

S+T ≡ T +S
(ID)

S+ ⊥≡ S

3 Two equivalent definitions of the subschema relation

In this section we analyze two subschema relations. The first one uses a simulation relation
that is based on the notion of handle. The second one compares schemas by examining their
syntatic structure.

Definition 3 (Subschema simulation)Thesubschema simulationis the largest relation. on
determined schemas such that S. T implies:

1. if S↓ () then T↓ ();

2. if S↓ 〈〉i(S′) then T↓ 〈〉i(T ′) and S′ . T ′;

3. if S↓ 〈〉o(S′) then T↓ 〈〉o(T ′) and T′ . S′;

4. if S↓ 〈〉io(S′) then

(a) T ↓ 〈〉io(T ′) and S′ . T ′ and T′ . S;

(b) or T ↓ 〈〉i(T ′) and S′ . T ′;

(c) or T ↓ 〈〉o(T ′) and T′ . S′;

5. if S↓ L(S′;S′′) then there is I such that, for every i∈ I, T ↓ Li(T ′
i ;T ′′

i ), L∩ Li 6= /0,
L ⊆

⋃
i∈I Li , S′ . T ′

i and S′′ . T ′′
i .

In the following definition of structural subschema we use a set of assumptionsA. This set
contains pairs of schemas(U,S) (the first element is always a constant schema name) and is
used for storing pairs of schemas whose subschema relation have been verified. This expedient
ensures the termination of the algorithm.

Definition 4 (Subschema)Let <: be the least preorder on capabilities containingio <:i and
io <:o.

Thestructural subschemarelation <:A is the smallest relation over determined schemas S
that is closed under≡ and the following set of rules:

(VOID)

()<:A()⇒ A

(BOTTOM)

⊥ <:AS ⇒ A

(LABBOTTOM)

S<:A ⊥⇒ A′

L[S],S′<:AT ⇒ A′

(SEQBOTTOM)

S′<:A ⊥⇒ A′

L[S],S′<:AT ⇒ A′

(CONSTL)

(U,T) ∈ A

U<:AT ⇒ A

(CONSTL’)

A′ = A∪{(U,S)} E(U)<:A′ S⇒ A′′

U<:AS⇒ A′′

(CONSTR)

S<:AE(U)⇒ A′

S<:AU⇒ A′

93



(ORL)

S<:AT ⇒ A′ S′<:A′ T ⇒ A′′

S+S′<:AT ⇒ A′′

(ORR)

S<:AT ⇒ A′

S<:AT +T ′ ⇒ A′

(LAB)

L ⊆ L′

S<:AT ⇒ A′ S′<:A′ T
′ ⇒ A′′

L[S],S′<:AL′[T],T ′ ⇒ A′′

(ORLAB)

/0 ( L′ ( L
L′[S],S′<:AT ⇒ A′ (L\L′)[S],S′<:A′ T ′ ⇒ A′′

L[S],S′<:AT +T ′ ⇒ A′′

(CHAN I)

κ <:i S<:AS′ ⇒ A′

〈S〉κ <:A 〈S′〉i ⇒ A′

(CHANO)

κ <:o S′<:AS⇒ A′

〈S〉κ <:A 〈S′〉o ⇒ A′

(CHAN IO)

κ <:io S<:AS′ ⇒ A′ S′<:A′ S⇒ A′′

〈S〉κ <:A 〈S′〉io ⇒ A′′

The rules (LAB) and (ORLAB) define the subschema relation for sequences. The former
applies if the arguments are already sequences. This rule, together with (ORR) permits to
single out the sequence branch, if any, of the right argument. However, rules (LAB) and
(ORR) does not suffice for proving that~[()],()<:/0 a[()],()+(~\a)[()],(). In this case the
label set~ needs to be partitioned: rule (ORLAB) performs the required partitions. We remark
that rule (ORR) checks the branches of the union one by one. This is actually enough because
schema are determined and channels do not have continuations.

Theorem 1 (Compatibility) LetU . R for every(U,R) ∈ A. S<:AT ⇒ A′ if and only if S. T.

Proof. (Sketch)(⇒) To prove thatS<:AT ⇒ A′ implies S. T we use a weaker requirement
thanU . R: UφR whereφ is a subschema simulation up-to structural congruence and union
on the right. Then we take the relationR+ containingφ and every pair of schemas in the
derivation treeρ of S<:AT ⇒ A′ and we prove by induction on the high ofρ that R+ is a
subschema simulation up-to structural congruence and union on the right.(⇐) Let S. T. To
verify thatS<:AT ⇒ A′ we construct a proof tree and we show its finiteness. The argument is
by induction on‖S‖+‖T‖+w(S,T,A) where:‖S‖, ‖T‖ are the sizes of the the syntax trees
of the schemasS,T andw(S,T,A) is the cardinality of the set of all the possible assumptions
(which is finite) minus the current set of assumptionsA.

References

[1] H. Hosoya, J. Vouillon, and B. C. Pierce, “Regular expression types for XML,”ACM SIGPLAN
Notices, vol. 35, no. 9, pp. 11–22, 2000.

[2] W. S. A. W. Group, “Web services addressing (ws-addressing).” Available on:http://www.w3.
org/Submission/2004/SUBM-ws-addressing-20040810/, 2004. August, 10th 2004.

[3] B. C. Pierce and D. Sangiorgi, “Typing and subtyping for mobile processes,” inLogic in Computer
Science, 1993. Full version inMathematical Structures in Computer Science, Vol. 6, No. 5, 1996.

[4] H. Comon et al., “Tree automata techniques and applications.” Atwww.grappa.univ-lille3.
fr/tata, October, 2002.

94



Topological Aspects of Hybrid Processes
(a treatment using non-standard analysis)

P.J.L. Cuijpers M.A. Reniers
Technische Universiteit Eindhoven (TU/e)
P.J.L.Cuijpers@tue.nl M.A.Reniers@tue.nl

1 Introduction

Hybrid systems are systems in which both physical and computational behavior play an im-
portant role. In the study of such systems, using techniquesfrom computer science, we often
encounter problems of a topological nature. In this paper, we briefly discuss three of these
problems, namely: thecontinuityof physical behavior, the occurrence ofZeno-phenomena
and other limit-behavior due to the combination of computations and physical behavior, and
the influence ofimprecise measurements.

Before we are able to discuss the problems mentioned above, weneed a way to state
them formally. For this purpose, we usetopological transition systems, i.e. labeled transition
systems〈X,Σ,→〉 in which the state spaceX and signal spaceΣ are both equipped with a
topology (see e.g. [8]). Most of the work on hybrid systems that deals with Zeno-behavior,
for example, implicitly assumes such a topology. But the consequences of that topology for
equivalences, and the like, are hardly ever made precise (see [5, 15, 7] for some exceptions).

To analyse these topological transition systems, we will use the methods ofnon-standard
analysis, also known as the mathematics of infinitesimals. From a non-standard point of
view, the presence of a topology means that the spacesX and Σ are lifted to spacesX ⊆
∗X andΣ ⊆ ∗Σ, on which a notion of approximate equivalence (denoted≈) is defined. The
mapping∗ is also defined for all relevant mathematical structures onX. For example, given
the functionx ∈ R → R, we use∗x ∈ ∗(R → R) to denote the lifted version. The elements
of X are calledstandard elements, while the elements in∗X \X arenon-standard elements.
The non-standard elements in, for example, the set of real numbersR, are infinitesimals (i.e.
numbers approximately equal to 0), near-standard elements(i.e. numbers that differ only by an
infinitesimal from a standard element), and infinitely largenumbers (i.e. numbers that are not
approximately equal to any standard number). For earlier excursions by computer scientists
into the non-standard domain, see for example [1, 11, 12].

In the coming sections, we are going to show some examples of models in which we use
approximate equivalence to model continuous behavior and Zeno-phenomena. Furthermore,
we propose variants of the familiar notion of bisimulation equivalence that reflect ways to
preserve continuity, Zeno-phenomena and robustness against measurement errors.

95



2 Continuity

The first topological problem regarding the modeling of hybrid systems, that we will discuss,
is that physical behavior iscontinuousin nature. Labeled transition systems often turn out to
be an inadequate model for such behavior. Recently, they havebeen extended with behavioral
systems, i.e. with sets of functions from time (the real line) to states and observations, to
overcome this (see e.g. [10, 14, 6, 3]). Using non-standard analysis on topological transition
systems, we find an alternative model for hybrid systems.

Intuitively, continuity of behavior means that a systems progress takes place in infinitesi-
mally small steps. Using a non-standard topological transition system, this intuition is easily
formalized by stating that:

Definition 1 (Continuity) A transition relation→⊆ ∗X×∗Σ×∗X is continuous iff〈x〉
σ
→ 〈x′〉

implies x≈ x′.

In physics, continuous behavior is often described using differential equations. The non-
standard definition of differentiability (see e.g. [9]) tells us that the time derivative ˙x of a
functionx∈ R → R has the property that ˙x(t) ≈

∗x(t ′)−∗x(∗t)
t ′−∗t for all standardt ∈ R and∗t ≈ t ′ ∈

∗
R. Inspired by this definition, we can build a transition system that mimics the behavior of

such a differential equation. This is reflected in the following conjecture.

Conjecture 1 Let→⊆ ∗X× ∗Σ× ∗X be defined by X= Σ = R
2 and

〈x, t〉
x′,t ′
→ 〈x′, t ′〉 ⇔ f (x) ≈

x′−x
t ′− t

∧ t ′ ≈ t ∧ t ′ > t.

Then→ is a continuous transition relation with the property that for each solution xof the
differential equatioṅx(t) = f (x(t)) there exists a pair(xi , ti) ∈ ∗(RN ×R

N) of internal1 se-

quences such that for all i∈ ∗
N we have〈xi, ti〉

xi+1,ti+1
→ 〈xi+1, ti+1〉 and ∗x(∗t) ≈ xi whenever

ti ≤ ∗t < ti+1. Conversely, each such pair of non-standard sequences represents a solution.

From this conjecture, it becomes clear, that in order to preserve continuous behavior, it
is necessary to compare not only the finite sequences but alsothe infinite ones. This can be
obtained by the additional requirement that a bisimulationrelation must be internal.

3 Zeno-phenomena

Zeno-phenomena are behaviors of a system, consisting of an infinite number of discrete events
that occur in a finite amount of time. Typically, they occur asan artefact of discretisation. A
legendary example, once told by the Alean philosopher Zeno himself, is that of Achilles and
the tortoise:”Achilles and a tortoise are involved in a race. And, becausean ordinary race
would be unfair, the tortoise gets a head start. Now, when Achilles reaches the point where

1Internalsequences are sequences in∗(RN) rather than in∗R
∗
N. The advantage of using internal sequences is

that we may use induction to obtain conclusions for all elements of∗N, including the non-standard (i.e. infinite)
elements.

96



the tortoise started, the tortoise will have moved on a little, and whenever Achilles is there
where the tortoise moved to, the tortoise will have moved on again. So, it becomes clear that
Achilles never catches up with the tortoise.”

Let us assume that Achilles moves twice as fast as the tortoise, then we can model the
race between Achilles and the tortoise as the following transition system, whereA models the
position of Achilles, andT models the position of the tortoise.

〈A,T〉
racing
→ 〈A′

,T ′〉 ⇔ A′ = T ∧ T ′ = T +
A′−A

2
∧ T > A

〈A,T〉
Achilles catches up

→ 〈A,T〉 ⇔ A = T

If we start at(0,1), where the tortoise has a one-meter head start, we can indeeduse induction
to show that the ”Achilles catches up” transition never occurs. However, looking a little closer
at the race, we see that the distance between Achilles and thetortoise decreases by a factor
2 with each transition and that the turtle will never get pastthe distance of two meters. So,
intuitively, Achilles should catch up with the tortoise after he has run 2 meters, but our model
does not show this.

If we want our model to show Achilles eventual victory, we have a number of options.
Our first option, of course, is to model the race in a completely different manner, in which
the discretisation does not take place. If we had not chosen to observe the particular moments
at which Achilles has caught up with the turtles previous position, nothing would have gone
wrong, probably. But, such a posteriori reasoning does not always work, since the Zeno-
phenomena may not always be as obvious as in our example.

Our second option, is to alter the model slightly, by granting Achilles the win whenever the
distance between him and the tortoise are approximately equal. So we add the non-standard
transitions

〈A,T〉
Achilles catches up

→ 〈A,T〉 ⇔ A≈ T.

In this non-standard model, Achilles will still need an infinite amount of racing transitions to
reach his goal, but the internal sequences over∗

N of the non-standard transition system (like
the ones we used in the previous section) will all contain an ”Achilles catches up” step.

The third option, is to leave the model intact, but to alter the equivalence. If we take bisim-
ulation equivalence as an example, we could add the following requirement to the witnessing
relations on a non-standard topological transition system:

Definition 2 (Limit preserving) A relation R⊆ ∗X× ∗X is limit preservingif for all x,y∈ ∗X
and x′ ∈ X

xRy∧ x≈ ∗x′ ⇒ ∃y′∈X
∗x′R∗y′ ∧ y≈ ∗y′.

This requirement models that if limit points are related, then the standard points that are close
to these limit points are also related. In a sense, this resembles the notion of topological
bisimulation of [5].

4 Imprecise measurements

The third topological problem in the study of hybrid systems, is that measurements in physics
are never precise. This means that models need to cope with small changes in variables. One

97



consequence of this, is that two models can only be considered equivalent if small changes in
one model can be mimicked by small changes in the other model.Another consequence, is
that we can hardly ever speak of actual equivalence of models. Often, the best we can do is to
obtain (arbitrarily precise) approximations (see for example [15, 4]).

If we want to deal with the fact that an imprecise measurementmay occur, then this means
that the notion of equivalence must be robust against small changes in the state. We therefore
propose to extend the notion of bisimulation on non-standard topological transition systems
with the following requirement.

Definition 3 (Robust against imprecision) A relation R⊆ ∗X× ∗X is robust against impreci-
sion if for all x,y∈ X and x′ ∈ ∗X

∗xR∗y ∧ ∗x≈ x′ ⇒ ∃y′∈∗X x′Ry′ ∧ ∗y≈ y′.

This is a kind of dual to the notion of limit preservation suggested in the previous section. As
a matter of fact, we expect that the combination of robustness against imprecision and limit
preservation is closely related to the notion of continuityof a relation as defined in [2].

If we want to deal with the fact that an imprecise measurementforces us to compare transi-
tion systems only approximately, we could consider using the following notion of approximate
(bi-)simulation, which replaces the familiar simulation requirement.

Definition 4 (Approximate simulation) A relation R⊆ ∗X×∗X is anapproximate simulation
if for all x,y∈ ∗X and x′ ∈ ∗X andσ ∈ ∗Σ

∗xR∗y ∧ 〈x〉
σ
→ 〈x′〉 ⇒ ∃y′∈∗X,σ ′∈∗Σ x′Ry′ ∧ 〈y〉

σ ′

→ 〈y′〉 ∧ σ ≈ σ ′
.

Note, that if we take the so-called discrete topology onΣ thenσ ≈ σ ′ impliesσ = σ ′, and we
obtain the usual definition of simulation. As a matter of fact, a similar observation holds for
the preservation of limits and robustness against imprecision.

5 Conclusion

In order to use process algebras effectively for the specification and analysis of hybrid sys-
tems, the topological structure of both the state space and the observation space (signal space)
cannot be neglected. In this note, we have proposed to add topological structure to transition
systems, and to analyse these topological transition systems by means of non-standard anal-
ysis methods. Of course, many combinations of the equivalence relations suggested in this
note can be constructed, and certainly there are also other definitions thinkable. The work de-
scribed is only intended to sketch a direction of research that is largely unexplored, and, in our
opinion, possibly of great value to the development of timedand hybrid process theory. We
need to study the new equivalences in the usual way, by showing their relation with existing
equivalences, by showing congruence for process algebraicoperators, by finding axioms to
reason about them, and so on, and so on. Our hopes are that the non-standard approach we
sketched in this note, will provide us with a flexible way of modeling, that allows us to vary
the level of abstraction between completely discrete and complete continuous behavior, just
as it was outlined in, for example [13].

98



References

[1] J. C. M. Baeten and J. A. Bergstra. Real time process algebra with infinitesimals. In A. Ponse,
C. Verhoef, and S. F. M. van Vlijmen, editors,Algebra of Communicating Processes: Proc. of the
1st Workshop on the Algebra of Communicating Processes (ACP-94), pages 148–187. Springer,
Berlin, Heidelberg, 1995.

[2] C. Berge. Topological Spaces: Including a treatment of multi-valued functions, vectors spaces
and convexity. Oliver and Boyd Ltd., London, 1963.

[3] J.A. Bergstra and C.A. Middelburg. Process algebra for hybrid systems.Theoretical Computer
Science, 335(2-3):215–280, 2005.

[4] W. Brauer. Zu den grundlagen einer theorie topologischer sequentieller systeme und automaten.
Technical Report 31, Gesellschaft für Mathematik und Datenverarbeitung, Bonn, 1970.

[5] P.J.L. Cuijpers and M.A. Reniers. Topological (bi-)simulation.Electronic Lecture Notes in Com-
puter Science, 100:49–64, 2004.

[6] P.J.L. Cuijpers and M.A. Reniers. Hybrid process algebra.Journal of Logic and Algebraic
Programming, 62(2):191–245, Februari 2005.

[7] J. Davoren and A. Nerode. Logics for hybrid systems. In P. Antsaklis and J.H. van Schuppen,
editors,Proceedings of the IEEE Special Issue on Hybrid Systems: Theory and Applications,
volume 88, pages 985–1010, July 2000.

[8] J. Dugundji.Topology. Allyn and Bacon, Inc., Boston, 1966.

[9] A.E. Hurd and P.A. Loeb.An Introduction to Nonstandard Real Analysis. 1985.

[10] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O automata.Information and Computation,
185(1):105–157, 2003.

[11] C.A. Middelburg. Process algebra with nonstandard timing.Fundamenta Informaticae, 53(1):55–
77, 2002.

[12] H. Rust.Operational semantics for timed systems : a non-standard approach to uniform modeling
of timed and hybrid systems. Berlin, 2005.

[13] P. Struss. There are no hybrid systems: A multiple-modeling approachto hybrid modeling. In
Hybrid Systems and AI: Modeling Analysis and Control of Discrete Plus Continuous Systems,
AAAI Technical Report SS-99-05, pages 180–185. AAAI Press, March 1999.

[14] D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schiffelers. Syntax and con-
sistent equation semantics of hybrid chi.Journal of Logic and Algebraic Programming, -(-):–,
to appear 2005. Special Issue on Process Theory for Hybrid Systems, editors J.C.M. Baeten and
S.P. Luttik.

[15] M. Ying. Topology in Process Calculus: Approximate Correctness and Infinite Evolution of
Concurrent Programs. Springer-Verlag, 2001.

99



From Process Calculi to KLAIM and back

Rocco De Nicola
Dipartimento di Sistemi e Informatica, Università di Firenze

June 10, 2005

Abstract

We briefly describe the motivations and the background behind the design of KLAIM,
a process description language that has proved to be suitable for describing a wide range
of distributed applications with agents and code mobility. We argue that a drawback of
KLAIM is that it is neither a programming language, nor a process calculus. We then
outline the two research directions we have pursued more recently. On the one hand
we have evolved KLAIM to a full-fledged language for distributed mobile programming.
On the other hand we have distilled the language to a number of simple calculi that we
have used to define new semantic theories and equivalences and to test the impact of new
operators for network aware programming.

Introduction
In the last decade, programming computational infrastructures available globally for offering
uniform services has become one of the main issues in Computer Science. The challenges
come from the necessity of dealing at once with issues like communication, co-operation,
mobility, resource usage, security, privacy, failures, etc., in a setting where demands and guar-
antees can be very different for the many different components. This has stimulated research
on concepts, abstractions, models and calculi that could provide the basis for the design of
systems “sound by construction”, predictable and analyzable.

One of the abstractions that appears to be very important is mobility. This feature deeply
increases flexibility and, thus, expressiveness of programming languages for network-aware
programming. Evidence of the success of this programming style is provided by the recent
design of commercial/prototype programming languages with primitives for moving code and
processes, Java, T-Space, Oz, Pict, Oblique, Odyssey . . . that have seen the involvement of
several important industrial and academic research institutions.

The first foundational calculus dealing with mobility has been the π-calculus, a simple and
expressive calculus aiming at capturing the essence of name passing with the minimum num-
ber of basic constructs. If considered from a network-aware perspective, one could say that
π-calculus misses an explicit notion of locality and/or domain where computations take place.

100



To overcome this deficiency of π-calculus, several foundational formalisms, presented as pro-
cess calculi or strongly based on them, have been developed. We want to mention, among the
others, Ambient calculus, Dπ-calculus, DJoin, Nomadic Pict, . . . . A major problem that has
been faced in their development has been the search for the appropriate abstractions that can be
considered an acceptable compromise between expressiveness, elegance, and implementabil-
ity. A paradigmatic example is the Ambient calculus: it is very elegant and expressive, but a
reasonable distributed implementation is still problematic.

A Kernel Language for Agents Interaction and Mobility
KLAIM (A Kernel Language for Agents Interaction and Mobility) is a formalism specifically
designed to describe distributed systems made up of several mobile interacting components
that is positioned along the same lines of the above mentioned calculi. The distinguishing
features of the approach is the explicit use of localities for accessing data or computational
resources. The choice of its primitives was heavily influenced by CCS and π-calculus and by
Linda. Indeed, KLAIM stemmed from our work on process algebras with localities [4] and
our work on the formalization of the semantics of Linda as a process algebra [10].

Linda is a coordination language that relies on an asynchronous and associative commu-
nication mechanism based on a shared global environment called tuple space, a multiset of
tuples. Tuples are ordered sequence of information items (called fields). There can be actual
fields (i.e., expressions, processes, localities, constants, identifiers) and formal fields (i.e., vari-
ables). Tuples are anonymous and content-addressable. The basic interaction mechanism is
pattern–matching that is used to select tuples from tuple spaces. Linda has four primitives for
manipulating tuple spaces: two blocking operations that are used for accessing and removing
tuples and two non-blocking ones that are used for adding tuples.

KLAIM can be seen as an asynchronous higher–order process calculus whose basic ac-
tions are the original Linda primitives enriched with explicit information about the location of
the nodes where processes and tuples are allocated. Communications take place through dis-
tributed repositories and remote operations. The primitives allow programmers to distribute
and retrieve data and processes to and from the different localities (nodes) of a net. Localities
are first-class citizens that can be dynamically created and communicated. Tuples can contain
both values and code that can be subsequently accessed and evaluated. An allocation environ-
ment, associating logical and physical localities, is used to avoid the programmers to consider
the precise physical allocation of the distributed tuple spaces.

The main drawback of KLAIM is that it is neither an actual programming language nor a
process calculus. We have thus, more recently, worked along two directions. On the one hand,
we have evolved KLAIM to a full-fledged language (X-KLAIM) to be used for distributed
mobile programming. On the other hand, we have distilled the language into a number of
simpler calculi that we have used to define new semantic theories and equivalences and to
assess the expressive power of tuple based communications and evaluate the theoretical impact
of new linguistic primitives.

101



A programming language based on KLAIM

X-KLAIM (eXtended Klaim) [1] is an experimental programming language that has bee
specifically designed to program distributed systems with several components interacting
through multiple tuple spaces and mobile code (possibly object-oriented). X-KLAIM has
been implemented on the top of a run-time system that was developed in Java for the sake
of portability [2]. The linguistic constructs of KLAIM have proved to be appropriate for pro-
gramming a wide range of distributed applications with agents and code mobility that, once
compiled in Java, can run over different platforms.

KLAIM-Based Calculi
From KLAIM we have distilled µKLAIM, CKLAIM and LCKLAIM) and we have studied the
encoding of each of them into a simpler one [7]. µKLAIM is obtained from KLAIM by elim-
inating from the distinction between logical and physical localities (i.e., no allocation envi-
ronment) and the possibility of higher order communication (i.e., no process code in tuples).
CKLAIM, is obtained from µKLAIM by only considering monadic communications and by
removing the read action, the non destructive variant of the in basic actions. LCKLAIM is
obtained from CKLAIM by removing also the possibility of performing remote inputs and out-
puts; communications is only local and process migration is needed to use remote resources.

This work on core calculi has also stimulated and simplified the search for other variants
of KLAIM that better model more sophisticated settings for network aware programming. In
[6] and in [8] we have considered TOPOLOGICAL-KLAIM a variant of CKLAIM that permits
explicit creation of inter-node connections and their destruction and thus considering two typ-
ical features of global computers, namely dynamic inter-node connections and failures. In [9]
we have developed more flexible (but still easily implementable) forms of pattern matching.

For the simpler calculi we have been able to apply the theory developed in [3] and to in-
troduce two abstract semantics, barbed congruence and may testing. They are obtained as the
closure under operational reductions and/or language contexts of the extensional equivalences
induced by what can be considered a basic observation for global computers:

a specific site is up and running (i.e., it provides a data of any kind).

For the two equivalences obtained as context closures, we have also provided alterna-
tive characterizations that permit a better appreciation of their discriminating power and the
development of proof techniques that avoid universal quantification over contexts. Indeed,
we have established their correspondence with a bisimulation-based and a trace-based equiv-
alence over the labelled transition system used to describe the semantics for the different
variants of KLAIM.

Information, software and papers related to KLAIM and the KLAIM Project can be retrieved
at: http://music.dsi.unifi.it/klaim.html.

102



Acknowledgements
I would like to thank Luca Aceto and Andy Gordon for encouragement to write these notes
and all organizers of the workshop on Algebraic Process Calculi: The First Twenty Five Years
and Beyond for the invitation. But I have to say that I am most indebted to all researchers that
through their work have contributed to the development of KLAIM and to its success.

References
[1] L. Bettini, R. De Nicola. Interactive Mobile Agents in X-KLAIM. In SFM-05:Moby, 5th

International School on Formal Methods for the Design of Computer, Communication
and Software Systems: Mobile Computing, volume 3465 of LNCS, pages 29–68, Spinger,
2005 .

[2] L. Bettini, R. De Nicola, and R. Pugliese. KLAVA: a Java Package for Distributed and
Mobile Applications. Software – Practice and Experience, 32:1365–1394, 2002.

[3] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Basic observables for pro-
cesses. Inf. Comput., 149(1):77–98, 1999.

[4] Flavio Corradini and Rocco De Nicola. Locality based semantics for process algebras.
Acta Inf., 34(4):291–324, 1997.

[5] R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: a Kernel Language for Agents
Interaction and Mobility. IEEE Trans. on Software Engineering, 24(5):315–330, 1998.

[6] R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for global
computing. Tech. Rep. 07/2004, Dip. di Informatica, Università di Roma “La Sapienza”.
Short version to appear in the Proc. of ICALP’05.

[7] R. De Nicola, D. Gorla, and R. Pugliese. On the expressive power of KLAIM-based
calculi. To appera in TCS. Short version in Proc. of EXPRESS’04, ENTCS 128(2):117–
130. Elsevier, 2004.

[8] R. De Nicola, D. Gorla, and R. Pugliese. Global computing in a dynamic network of
tuple spaces. In Proc. of COORDINATION’05, volume 3454 of LNCS, pages 157–172.
Springer, 2005.

[9] R. De Nicola, D. Gorla, and R. Pugliese. Pattern matching over a dynamic network of
tuple spaces. In Proc. of FMOODS’05, volume 3535 of LNCS, pages 1–14. Springer.

[10] Rocco De Nicola and Rosario Pugliese. Linda-based applicative and imperative process
algebras. Theor. Comput. Sci., 238(1-2):389–437, 2000.

103



���������	��
 ��
������������������ ��
�� ����
�������� �"!#�$�%�"� &'��!(�)

��
�
*
��

+),.-/�02143
57698;:=<�>@?BAC>2D�8(E(:F6HGJILK9MN69O�KH62P�QJO�MNRS6HGFTUMV:XWY>@?BI;ZH69[26=\]P#^2_a`LbcI;Z969[a6=\dP�efE(O�[SghGUW

gaO�\
iJ69TU69g@GFKkj�lJGF>2E(8m>2Omnmg@:Fj�6HD�g@:FMNK=gaoqprMNO�[aE�MNTs:FMNK9T9P#it>hRLMNGkgcMruJMNGF[aMNovMrQfO(MvR26HGFTUMV:4WwP;xyghGUGkga[2>aO#gLPdI;8�gaMNO
z�{}|�~#�q0a~#�q�C|��}�a���}�C~(���q�7���C1X�S|$�q���S�y���r�w���q�C��1��S0�02|(��1X�y�2�y�C�"�2{}|��y�a|(�214~��r�q�214�q���S0

{}���q|��t|�|���|L�B�S�2|(��|(�X�'�}0a|(�F�}�Y14���2{}|�~w{}�q�S�q~;�S|(�214���r�S1X�y���r�m�S{}|�|;���}�a|�020a1X�q|��t��� |(���q�
0a|(�q|��S�r�)�4�q�y14~(0��y�����}1��S|¡�Y�y�a�}0�¢J~(�h,£|q,v�},�¢�¤¦¥y¢S§C¢(¥y¥y¢(¥]¨d©ª,t«=�¬�S{}1X0����q�t|����Y|	�}�2���B14�C|	�q�
�r�4�y|(�}�S�q1X~.~w{��q�2�q~(�2|��21X�#�r�214�y�'�q�m�2{}|"|;���}�2|(020a1X�y|­�t��� |(���q�m����1X�}|�~(�s�q0a0¡�r�m�S|(���t�y�S�r�
�X�y�y1X~�0m�y�����}1��S|*�2�2|�|(0¡®F�S|(�2�"0w¯m�}0a14�}�.�S{C|°~��q02~��q�}|°�}�2�B�}�}~;��¤v±r©7�q�c�2�2|(|¡�r�C�S�y���r�S�C,
² �C�}�J�q02|��2{��r��³´140������}1��S|°02�}�}0a|(���r���S{}|¡���r�S�C�S�q�X0�~(�y���w�q1X�}14�}��µC,£¶�|¡~��y�C0214�C|��

®U���}1��S|�¯°�S�q�}3r|��·�q�X�}{��q�t|(�20.¸¹0a�}~w{��S{��r���S{}|�0a|(��¸�º��r���X|(�a�S|��a0	�q���2�q�}3�»�140��C�y��¼
|(�����=�½1�¾¿»ÁÀÁ³	,�¶�|¬�q0a02�}�"|¬�2{��r��|#�q~w{Â�2�q�}3r|��Ã�q�X�}{��q�t|(�"~(�y��|(0"��1��S{��'�C��|��
�X|;��14~(�y�y�2�q�}{}1X~$�q�2�}|(��,�Ä)14�}1��S|¡®k�q�2�y�}�C�£¯ ¸�¼9�2�2|�|(0�¢B�y�Y�2|��a��0(¢��r�2|��C|(���}|(���q0 �C02���q�ª,B¶�|
�C|��}�q�2|��S{}|�02|;���r��¸�¼9�2�2|�|(0��Å��Æ7Ç�,
È£ÉdÊ�Ë9Ì#Í ,�Ä��y�	�Î�2�q�}3r|��Â�r�4�}{��r�J|;�"¸�¢��2{}|­02|;�"�q���F�q�2�	�}�4�q0	���y|(��¸Ï140	�S{C|­�4|#�r0a�

0a|(��~��y���S�q14�}1X�}�	�S{C|¡0@�����J�y�}Ð}Ñ�¢}�F�y�$�q�X�7Ò'À'¸�¢�~(�4�y0a|�����1X�S{��2|(02�t|�~;���2�"�2{}|��J�B�y�4|��q�
�q�J|(�S�r�214�y�}0mÓÔ®F�}140UÕa�}�}~;�S14�q�£¯Y�q�C��ÖÔ®F�}|����d�S14�q�£¯;¢��q0 �Y|��X�7�q0 �2{}|*�F�y�X�4����14�}�°~��q�}0a�2�2�}~;�#,
² �}�}�t�y02|��S{��d�$×�ØÂÆ7Ù�¢£�q�}���F�y��|#�r~w{ÛÚ	ÀÎÜ�¢tÝcÞ�1X0��	�F�y�2�	�C�s�	���y|(�*¸­,�z�{}|��

×$®ªÚ�ßà ÝcÞw¯hÞ@á#Ù ®h¥]¯

1X0��	�F�y�2�	�C�s�	���y|(�*¸­,
È7â;ã"ÌqÊ�ËkäHåwæ�çè² �}�}�t�y0a|	�S{��r��Ý�140����F�q�2�	�}�4�����y|(�¡¸%�q�}��é*ÀêÆ7Ç�,f¶�|	0S�#�Û�2{��r�*é

02�r�S1X0a��|(0�ÝY¢�14���}�q�S�r�S1X�y��é�ëìÔÝY¢�1X�

í Ý'ìîÐ�ÑB¢}�F�y��0a�y��|�Ò'ÀÎ¸­¢£�q�}�­�S{C|°�a���r���q�cé 140��4�q�J|(�4|(�­Ò�¢��y�
í Ý'ìïÝñðqÓ¬Ýñð ðJ�q�}��é�ëìïÝòðJ�q�mé�ëìóÝñð ð4¢��y�
í Ý'ìïÖ�ÝñðJ�q�}��1X��1X0��}�q���2{}|�~#�q0a|°�2{��r��é�ëìóÝòðs¢}�y�
í Ýîìô×�®kÚ.ßà ÝcÞ2¯@Þ@á#Ù ¢J�q�}�Û�2{}|�~w{}�q�S�q~;�S|(�2140@�S1X~¡�S�a|�|�õ é�À'Æ7Ù·�}|(�2|��2�"14�C|��Û����é$�q�}�
�2{}|"�k�r��1X�X��®HÝcÞS¯@Þhá�Ù¿�J|(�4�y�C�y0*�S�¬×�,òö�|��a|q¢tõ é*{}�q0°�2{}| 0S�q�"| �}�}�}|(�2����1X�}���}14�a|�~(�2|��
�y�2�q�}{��r0�éL¢)�r�}�î�¬�y|(�a�2|;��÷Î1X0��s�r�J|(�4|���Ú'ÀïÜ�º�1X� õ é°1X¾·÷Î140¡�s�q�t|��X|�������02�y�"|
Ò'ÀÎ¸�º 14���2{}|��S�2|(|�éL¢}���q�2|����q|���¢£Ú	1X0m�S{}|*�}�20a�$�X|(�2�2|���1X���X|;��14~(�y�y�2�q�}{}1X~*�y�2�C|����y�
Ü�º°02�}~w{"�S{��d���2{}|$02�}�C�2�2|(|��q�Jé��2�B�q�2|����r��÷	0S�r�2140@��|�0 ÝcÞ�,�«9�f�}��0a�}~w{��X|(�a�S|���|L�C1X0a�20�¢
�2{}|��¬Ú	140m�2{}|��s�q0@���4|(�a�S|(��14�­�S{}|��X|;��14~(�y�y�S�r�}{}14~��y�2�}|(���y�ÛÜ	º�,

Ä��y���r�Å���F�y�2�	�C�s� Ýê�q�c�]�q|���¸�¢}�Y|��4|;�$×�ø"�}|��C�q�S|��S{}|��4�q�}�y���r�y|*�}|;���}|��¬����ÝYù

×�ø�ìûú�é ÀÛÆ7Çêùyé�ëìïÝ�üÅý

104



¶�|�0S�#�­�S{}�r���F�y�2���}�s�q0�Ýî�r�}��� ®F���y|���¸"¯��q�2|�|��B�C1X�r�q�4|(����|L�C�q~(�2�X����{}|(��×�ø	ìû×��7,
���
	���
������ò|;�¡³ ì�údµ��L¨BüÅ¢702�#�y¢ò���q�2|����q|���¢è�X|(�¡Ü���ì�ú�����������üÅ¢ñÜ��	ì ú������ ����ü

��1��S{.�X|;��14~(�y�y�S�r�}{}14~ �y�2�}|(��02�}~w{ �S{}�r�!�#"%$&�#"9¢('cìïµ��L¨�,)�è|(��×�~(�y�}0a140a���r�J�2{}�y02|$Ü¡¼H�S�2|(|�0
�2{��r��~(�y���w�q1X�¬�d���X|#�q0@���y�}|*�q|��a�2|;�¬�s�r�J|(�4|��*���$�y�+���#,-,�1X�q|��­�F�y�a�	�}�s�r0�Ý·�r�}�¬Ý ð �]�q|��
¸­¢Å~��y�C0214�C|����S{}|$�F�y�2�	�C�s�.�îìï×$®/�#"Ußà Ý0� �#"Fßà Ý ð ¯1"324� 5 �#,Åz�{}|������2�2|�|$émÀÛÆfÇ�0S�r�2140@��|�0
�î1�¾¬0a�y�"|�0a�}�C�S�a|�|��q�7é�0S�d�S140@��|�0mÝY,Åz�{Å�}0�¢B�S{}|����B���q���y�t|��2�r�S�q��®h¥]¯��q020a��~(1s�r�2|�����1��S{
×Ô~��y�a�2|�0a�J�q�}�}0��S�­�S{}|¬®F�}�y��¼90a�S�a14~;�L¯*/�Äû�"�B���q�41��=���q�&6 z7�ó¤98r©ª, ² 1X��1X�s�q�a�X�y¢���{}|(��×�ð
1X0$�2{}|�0a|(���q���S{C�y02|	Ü�¼H�S�a|�|�0�~��y���S�q14�}1X�}���r���X|#�q0@���q�}|:���*�q�;�����y�Û�S{C|�02|(~��y�C���4|;�y|��ª¢
�2{}|��<�·ìï× ð ®=�#"Fßà Ý>� �#"sßà Ý ð ¯?"324� 5 �$~��y�a�2|(02�t�y�}�}0��S�.�S{C|��F�q�2�	�}�4�./�@�Ý��q�!6 z7��,BA*�}|
~��q���}|��a1X�y|°�q�X�f�S{C|°�C02���q�C6 z7�����B���q�X1X�S1X|�0Y�Å���S{}1X0����r�2�2|��a�7,
¶�|���1X�4�r~��y�}0a14�}|(�c0a�}�}0a|(�S0ñ�q���F�y�2�	�C�s�q0è�r0202�B~�14�r�S|(�°��1��S{°~��4�q020a|�0ñ�q���2�2|(|Y�4�q�}�y���r�y|�0(,

¶¿{C|��ED 1X0 ��~��s�r020 �q�$�S�2|(|­�s�q�C�y���q�y|(0�¢)�Y|��4|(�.Ä)z7��®�D�¯��}|(�}�q�2|��2{}|�~��y�X�4|(~(�S1X�y�ê�q�
�F�q�2�	�}�4�q0��q�X�}�q�t��{}�y0a|�0a�}�C�F�y�a�	�}�s�r0��r�J�2{}|��F�y�2� ®h¥]¯��q�t���y|��q�2|�02�C~w{��S{}�r��×��t|��4�q�}�y0
�2�FD*,)¶�|��C|��}�q�2|��Å�HG&IKJ*®/D�¯°�2{}|�~��s�r020.�q���q�4���S�a|�|��s�q�C�y���q�y|(0.�}|(�}���q�}�X|­�Å���2{}|
�F�q�2�	�}�4�q0m1X�¬Äcz7�Y®/D�¯;,
¶�|Û��14�X���C02|Û�2�2|�|Î�r�C�S�y���r�S�'�S��~w{��q�S�r~(�S|(�21X��|Û�2{}|�|;���}�a|�020a1X�q|'�t��� |(���q���X�y�y14~(0

G&I:J*®/D�¯;¢ ��{C|��LD 1X0¬��~(�s�q0a0��r���a|��y�}�4�q���S�a|�|Î�s�r�}�y���q�q|�0�, ² �}�}�t�y02|Î�S{}�r�¬¸ 140��
�2�q�}3r|��­�q�X�}{��q�t|(��, ² 1X�}~�|�� |��q�a|$~(�y�}0a14�}|(�214�C�¡�y�C�X�.�y�a�y�}�}� �S�a|�|(0�¢Å� |$�}|(�}�}|*�¡¸	¼H�S�a|�|
�r�C�S�y���r�2�y�	�S�°�J|$�����}1��S|$¸�¼h�q�X�y|��}�2�*��{}14~w{"{��q0��}�°�}�2�q�J|(��0a�}���q�X�y|��C�S�q0(¢�1H,v|q,�¢q��{}14~w{
1X0��y|(�}|��2�r�S|(�������2{}|�|��X|��"|����S0�~��y�a�2|�0a�J�q�}�}14�C�Û�S�Û�2{}|��X|(�2�2|��a0	14�ê¸.��,c/��q~w{½¸	¼H�S�a|�|
�r�C�S�y���r�2�y��|M�Å�}1X�}�t|�����1X�2{���0a�J|(~�1���|��Î02�C�}02|;�¡�r�Y1��S0*�C�}�}|��a�X�B14�C�­~#�q�a�214|(�*�}|;���}|�0°�
�a|��y�C�s�q���4�q�}�y���r�y|�×�ØÂÆfÇY¢�~;�h,ò¤ON]©H,
¶¿{}|(�QPÂ140���¸	¼H�S�2|(|��q�C�2�y���r�S�y�°��1X�2{.~#�q�a�214|(�SR¡¢(Tê1X0���Ü¡¼9�2�2|(|��q�C�S�q���r�2�y�¡��1��S{

~��q�2�a14|(�VU�¢��q�}�XW�140��*�k�q�"14�����q�t�F�}�}~(�214�y�C0>Wèº.ù#R º7Y ¸�º�à Ü�º�¢�»�ÀÎ³	¢q�S{C|$~��q02~��q�}|
�C�2�B�}�}~(�+R YVZ U 1X0 �S{C|*��1X�}14���q�}0a�}���q�X�y|��C�S�	�q�è�2{}|�¸�¼h�q�X�y|��}�2�°��1��S{­~#�r�2�21X|��>R Y U
�r�}�¬�q�J|(�S�r�214�y�}0

Ò�®2®�[4\]�]^M\2¯_�#ý#ý�ýM�]®�[�º`�]^Sº�¯2¯òìó®kÒ�®a[�\b�#ý#ý�ýM�][yºy¯_�wÚ�®a^M\b�#ý�ý#ýM�]^Sºy¯2¯b�

��{C|��2|°Ú�ìcWm®a[�\b��ý#ý#ýM�d[�ºe�SÒò¯L¢��F�y�m�q�4��®a[�\b�]^M\2¯_��ý#ý#ýM��®a[yº��d^wºy¯ ÀfR Y U�¢}Ò'ÀÎ¸�º�¢}»ÎÀ�³	,
g |(�4���ê�Y|���1X�4�y02�#���S{��r�C�Å�}�q�214|(�Å�20)�r�2|�|;���}�a|�020a14�}�X| 1X�¡Äcz7�Y®/D�¯71X�B�F�y�ñ�q���h�Å�}�q�S1X|����

édi \ ×Âì ú(j�À�ÆfÇÃù}é(®kj]¯�Àî×mü �q�����s�r�}�y���q�q|�×ïØ ÆfÇ½1X�fD*¢£��{}|��a|	é�140��q����¸	¼H�S�a|�|
��1��S{Î�mla{C�y�4|�n}¢7�q�C���F�y���q�����F�y�a�	�}�4�q0�ÝcÞ°ÀîÄ)z7�Y®�D�¯L¢7Ú­À½Ü�¢J�S{C|��2| 1X0��­Ä)z7��®�D�¯9¼
�F�q�2�	�}�4��|��B�C1X�r�q�4|(���*�S�'®Ué i \ ×�¯�®ªÚ"ßà ÝcÞw¯hÞ@á#Ù ,po¬�q�2|����q|���¢7�Y|	��14�X�c02�#�Û�S{}�r�*�S{C|	�}|;�B�
�"�B���q�41��S1X|�07�r�2|�|;���}�a|�020a14�}�X|Y1X�°Ä)z7��®�D�¯f1����F�y�ò|��q~w{.¸ó�q�C�¡|��q~w{K'£02�C~w{¡�S{}�r��¥:qr'VqÃ»
�F�q�è02�y�"|�»ÎÀ�³	¢]�q�}���F�y�è|#�r~w{°�F�y�a�	�}�4��Ý�1X��Ä)z7��®�D�¯L¢#�S{}|(�2|�|;��1X�20ñ�$Äcz7�Y®k×�¯=¼9�F�q�2�	�}�4�
@s"FÝÎ02�}~w{��2{��r���F�y� �r�Å� �2�2|�|�émÀ¬Æ7Ç�¢Åé�ëìt@�"UÝ'1X¾��2{}|��a���r�Y�r�7é�140��s�r�J|(�4|��"�����¡�4|;�2�2|��
�r�Y�2�q�}3vuw'��q�}���2{}|Q'k¼H�S{Î02�}���S�2|(| �q��é�02�r�S1X0a��|(0�Ý�,f¶�|.~��q�Î|#�q0a14���Û0a{}��� �S{}�r�*�S{C140
~(�y�}�}1��S1X�y�¬1X0�|��B�C1X�r�q�4|(�����2���S{C|�~��q�}�}1X�214�y���S{��d�xG&I:J*®�D�¯�~(�y���w�q1X�}0*�q�X�è�}|(�}�}1X�2|¡�S�a|�|
�4�q�}�y�}�q�y|�0�¤zyC¢]{]©H,eg �q�2{�~(�y�}�}1��S14�q�}0Y{C�y�4� �F�y�����q0a�Y���r�S�C�S�q�}�2|��"�J�y�2�q���4�q�y14~(0��q���S�a|�|(0�,

105



A*�}�����q14�­~(�y���S�21X�}�C�214�y�­1X0m�S{}|��F�y�X�4����14�}���y|��}|(�S�q�è�a|�0a�}�X��ù
I��C����� �e� È����	��
�æ�â�Ë
�CÌqË D ä4æ°Ì�å���Ìdæwæ�
����wâ�������Ì��*Ë��Sâwâ���ÌqÊ����CÌ��Bâwæ�æ���å��­Ë��CÌqË�����
 �

ËkäHâ;Ê�ËUæ�ÌqÊ"!�Ë
��â¡ÊfâaÍyË�ã#
�!�Ì��¦äUËªäHâwæ¡Ì��Sâ.âaÍ$�"�Sâwæwæ;ä�%��4â�äUÊ Ä)z7��®/D�¯ ç'&(��â;ÊÎÌ�Ë��Sâwâ���ÌqÊ����}Ì��Bâ
%;â��)
dÊ��dæÛË*
 G&IKJ�®�D�¯ ä + äUËFæÎã.äUÊ�äUã"Ì��$Ë��wâwâÎÌ���Ë*
dã"ÌqË*
dÊ,%;â��)
dÊ��dæ�Ë*
�Ë���â-�4â2Ìdæ;Ë�å���Ìdæwæ

��	Ë.�Sâwâ�Ì��BË�
dã"ÌqËHÌÎå�
dÊ�ËHÌqäUÊ�äUÊ���Ë���â ã.äUÊ�äUã"Ì��)Ë��Sâwâ�Ì��BË�
dã"ÌqËHÌ/
��	Ë���â0��ÌqÊ����}Ì��Bâwæ	äUÊ D'1
å��)
�æ�â2!03�äUË
�4�Sâwæ*��âwå;Ë�Ë�
"Ë���â.å2Ìdæ�å2Ì	!Bâ	å�
dã���
�æ;äUËkä�
dÊ�ÌqÊ"!5����
dËªäHâ;Ê�ËUæ�ç

6 �¬1X���"|��}14�r�S|�~��y�a�y�4�4�q�a���q�c�S{}|°�q�t���y|��S{}|(�y�2|(��140m�2{}|��k�q~(���S{}�r��1X��D¿140�� ~��s�r020
�r�7�2|(�y�}�4�q���S�2|(|��4�q�}�y���r�y|�0(¢y�S{}|(�*G&IKJ�®�D�¯�~(�y�}021X0a�20 �q�f�2|��q�}�s�q���4�q�}�y���r�y|�0(,`A*�7~��y�}�a02|
�2{}140­�k�q~;�¬�q�40a�·�F�y�X�4����0��F�2�q� �S{}|'�y���B14�y�C0��q�}02|(�a�r�r�S1X�y�¿�S{��r����{}|(� × ~(�y�}021X0a�20¬�q�
�a|��y�C�s�q�Y�s�q�}�q���q�y|(0�¢Å�S{}|(�¬Äcz7�Y®/D�¯�~��q���J|�|��	�t|��}�C|���14���2{}|*�"�y���q�C14~�0a|�~(�y�}���y�2�C|��
�X�y�y1X~��q��¤¦¥�§r©��q�Î�}�}1X�2|��S�a|�|�0(, 6 0����F�}�@�S{}|(��~��y�a�y�4�4�q�a���q���2{}|.���r14���a|�02�C�X�#¢t� | 0a{}���
�2{��r���2{}|��s�r�a�S1X~�|��r�c�2{}�y02|�~(�s�q0a02|(087 �q�ò�S�a|�|��q�C�2�y���r�w�	~(�y���w�q1X�}14�}�¡�S{}|��}|;���}1��S|*�S�a|�|
�r�C�S�y���r�S�Î¤9yC¢d{d©ª¢7~��X�y02|(�'��1��S{Î�2|(02�t|�~(���2���2{}| ~#�q0a~#�q�C|"�C�2�B�}�}~(�¡�q�C�'{C�y���q���y�a�}{}1X~
1X���r�y|�0(¢�140�140a�y���q�2�}{}1X~��S���S{}|��s�r�a�S14~(|��q�ò�q�X��~��4�q020a|�0 �r�7�2|(�y�}�4�q���S�2|(|��4�q�}�y���r�y|�0��q�7�2{}|
�F�q�2�:9ÂìcG&IKJ�®�D�¯L¢�~(�4�y0a|�����1X�2{��a|�02�t|�~;���S���Å�}�r�S14|(���S0��q�C��~��y���S�q14�}1X�}�¡�2{}|*�}|;���}1��S|
�2�2|(|	�s�q�C�y���q�y|(0�, 6 ��1X02�y�"�y�a�}{}140a� 140��y1X�q|��������S{}|	/�1X�4|(�B�t|��a��~(�y�2�a|�02�t�y�}�C|��}~(|Û®F~q,N�h,
¤<;q©s¯;ù),�1��y|(�=7�¢]���q�>7 �S���2{}|m~(�s�q0a0��q�}�2�2|�| �s�q�}�q���q�y|(0?9ê��{}�y0a|m�"14�}1X���q�y�q�C�S�q���r�2�y�
�t|��X�y�}�y0��2�@7�¢y�y��|M�Å�}1��r�q�4|(�Å�2�X�q¢y��{}14~w{�~#�q���J|$�q~(~�|����S|����Å�"���S�a|�|��q�C�2�y���d�S�y� 14�A7�,

6 �4�y�}���2{}|��m�#���q�B�}�a����1X�}���S{}|��q�t���y|��S{C|��y�a|���¢�� |�|(0a�w�r�}�41X02{�02|;�y|��2�q�Å�}02|;�F�}���}�a�y��¼
|(�a�214|�0��q�£�2{}|��S�2|(|��s�q�}�q���q�y|�~(�s�q0a02|�00G&I:J*®�D�¯��q�}�.�S{}|��y�t|��2�r�S�q�VG&IKJ�,ÅÄ£�q��|;�C�q�"�}�4|r¢
G&I:J*®/D�¯¡140	�q�X� �#��0 ~(�4�y0a|��î�}�}�}|(�	�S{}|��t���q�4|#�r�ê�y�t|��S�d�S14�q�}0�®F�2�21���14�q�U¯��q�}� la1X���y|��a02|
�X1X�2|��S�r�ñ�2�2|�|.{C�y���q���y�a�}{}1X02�"0 n�®k�q�4�"�y0@���S�a1X�B1s�r�U¯;¢t�q�C�'1X0*~��X�y02|(���}�}�}|(�h�B�C�q�S1X|����S0�1�¾
�r�Å���Å�}�q�S1X|����.�q�$|��q~w{��S�2|(|­�s�q�C�y���q�y|�14�vDÁ�t|��X�y�}�y0¡�S�FG&IKJ�®�D�¯¡1X¾ �Å�}�q�S1X|����S0 �r�2|
|L���}�2|(02021X�}�4|¡14�¬Ä)z7��®�D�¯L,�z�{Å�}0�¢£��{}|��¬�S{}|(02|��4�r�2�2|���~��q�}�}1X�214�y�C0${C�y�4���q�}�Û×Â~��y�C02140@�S0
�r�£�2|��q�}�s�q�ñ�s�r�}�y���q�q|�0�¢]�S{C|�� G&IKJ�®�D�¯ñ140)� la�X1X�S|(�S�q�y�2�2|(|m�s�q�C�y���q�y|��r�q�21X|(�=�`n}¢]��{}14~w{ �r�2|
~(�4�y0a|������a|��s�d�S|����S�	�S{C|��S�a|�|��s�r�}�y���q�q|$�r�q�a14|(�214|(0 �q� ¤¦¥�µr©ª,�¶�|��q�40a�	�}�a�]�q|*�S{��d�7G&IKJ·140
�¡~��4�q02�}�a|*�y�t|��S�d�S�y�Y�y�Î®k�a|��y�C�s�q�S¯��2�2|�|��s�q�}�q���q�y|$~��4�q020a|�0��q�}��|�0a�S�q�}�X1402{��q��/�14�4|(�Å�J|(�2�
B��r�214|;�=��z�{}|(�y�2|(� �F�y���41��S|(�S�q�t�q�r�214|;�S1X|�0�,
² �C�}�J�q02|C7 D G&IKJ�®�D�¯	�}�C�}|�� �S{}|¬�q�t���y|¬/�1X�4|(�B�t|��a�Î~��y�a�2|�0a�J�q�}�}|��C~�|q,Yz�{}|��

�¬�2|��q�}�s�q�°�S�a|�|��4�q�}�y���r�y|�×ô�J|(�4�y�C�y0¡�2�FG&IKJ*®/D�¯°1�¾·1X�S0���1X�}14���q�)�2�2|�|��q�C�S�q���r�2�y�
�t|��X�y�}�y0��S�E7�,fz�{Å�}0�¢7��{C|��-7Ï1X0*�}|�~(14���r�}�4|r¢f�S{}|(�2|.�a|�02�C�X�S0��r��|(¾J|�~(�21X�q|"~w{}�q�S�q~;�S|(�@¼
1X�#�r�214�y�Î�q� �S{}|"|;���}�a|�020a1X�q|­�J���Y|����r� �S{C|��X�y�y14~ G&I:J*®/D�¯;,è¶�|��q�C�}�X���2{}140¡�q�}�}�a���q~w{
�2���}|(�21��y|�|;¾f|(~(�21X�y|�~w{��q�S�r~(�S|(�21X�#�r�214�y�}0$�q���"~�|(�a�w�r14�¬�F�2�q�y�"|������q�06 z7��¢J�t�q�2{Û�y�Û�2{}|
�}�}1X�2|��S�2|(|�0 ~��q�}021X�}|��a|��·{}|��a|¬�r�}�½�q�î�2{}|­�}0a���q���}�}�q�2�}|(�2|��·�S�a|�|­�"���}|(�40	�r�.6 z7��¢
~(�y�"�}�4|(��|(�Å�214�}�	�2{}|��2|(02�}���S0��y�C�S�q14�}|(��14��¤ ¨]©H,

6 �F�}�X�°�q|��a0214�q� �r�.�S{}1X0����q�t|���~��q�ô�J|��}�����}�4���r�}|�� �F�2�q� {��a�S�7ùGFHFd������,v14�C�h,v��¼
0a��|(�y|��7,v{Å��F��(|�F

IKJMLNJMO�JQPSRTJQU
b2<WVñ<�X}g@Z9MVGkgaDZY}g\[�>;P�]�<yn K_^è69O(Z9MN6�gaO#\*5c<yx}j(6HGFMN69OrP�n >L\(E�ovghG):F69D�8�>@GkgaoBov>a[2MNK2PÅMNOa`Hbdc�e*f�gih\jkjkjmlonpn�n

q e\r_s*t.c
t.ruf.tivHl q	w�x"y c�t.r�z{e x l�z{|2} ~@P��)�p���	AC>aD�8�E;:F6HGJI;>wK9MN6H:XWwPrb_�2�\�;P����2���N�k�wb2<

106



� < n�<$XC>��UgaO(K9ZHW��YgaO#\ �ª<��*gaoNE��LMN6�Y£MNK9Z2P#ACj#ghGkgaKH:F6HGFMNTUMNO�[ �	��gaO�\m��
":UGF6H67oN>2[2MNK9T9P
�uc�e*f�g q����?q������������ P
p��7A�IW�Lbh_a`LPdI;8;GFMNO�[26ªG=P � `2`\�;Pqb_�;b.��b_�k�L<

�;<��(<#AC>2j(69OrP��(<  �£<u]BMNOmg@O#\ 5c<�]y6ªGUGFMvOdP"!fO�:Fj�676�#(8;GF69TUTUMNRS6è8�>*Y}6HGt>@?y:F69D�8�>aGkg@o]ov>a[2MNK2P%$�g q e'&(�*)Nz t.cZ|\r"+
w ~-,
z t�& w f/.{t.r�f�t�,FPu�2^
0sb_�2�2�21ªP � _wb.� � �\�;<

�(< I]<��ÅMNoN69ON[�6HGF[(P435)Nz{e'& |\z{| x v�|�r�6')$|76�t�, x |\r*+(8'|kf:9�. r�t�,FP2RS>ao¦<2V°gaO�\ZXtP2VtK=g2\;69D�MNKd]�GF69TUT9P;b*�S_��ègaO�\�b_�S_@^;<
�L<��C<#l<;69K9TU69[�g@O#\mn�<�IL:F69MNON[wWwP y c
t
t=35)�z{e-& |\z{|aP�V(�ag2\�;6HD�M g@M�^èMvg2\�;>;Pqb_�2>\�;<
^;<�Qc<;eJ69E(:F6HG=P(576/?�O�MV:F6f:UGF696èovg@O�[2E�ga[a69T9PA@B)�} } t.zC.Gr�e)sTzD9$tin�3 ydq	w Pu�2��0sb_�2>2>21ªPyb*�2_*��b_� � <
_L< n�<E�JMNR2gh:)g@O#\SVò<H]y>L\;69oNTF�LM Py576/?#O(MV:F6):UGF696�ovgaO�[aE#g@[269T�0¦K9>2Ow:7G \*1ªP%@B)�} } t.zC. r�eos zD9�t n�3 ydq	w PH�2>
0sb_�2>\��1ªP
b7>a^���b*�2`L<

>;< lc<}itMNK9K9M¦PtA}g@TUK=g2\;69Tm>a?è:UGF6H6/ XgaE(:F>aD�g@:kg�g@O#\�K9>aD�8�E;:kg@:FMN>2O(TYMNO.E�O(MNRS6HGFTFgaofgaoN[26�[(GkgaT9<=8 |\zD9�g w ~-,
z t�&H,
y 9�t�e\c�~aP�_�0sb_�S_\�21ªP � `Lb.� � b7>L<

�;<�^�<#I;Kkj�O�6HM \;6HG=PBI�t.c�. Jpf
|\zC. e\r�eos � t�|kf�zC.DK\t w ~-,
z t�&H,FP]IL8(GFMNO�[a6HG=P � `2`��(<
b9`;< n�<#IL:F69MNON[wWwP(lf69O�6HGkg@oqRag@GFMN6H:FMN69T£>a?�:UGF6H6èo g@O�[aE#ga[a69T9P y 9$t
e�c
t.z g q e-&=�*)Nz g w f/.{gvP � `k��0sb_�2�'>�1ªP�b.�k�k�L<
bab2<�ec<�Iw:UGkgaE�[(MNO�[(P*L�. r
. z tM35)Nz{e'& |\z{| x L�e\c:& |2}uv�eN6'. f x |\r"+ q . cof/)�.Gz q e'&(��} tFO'. z ~@PuXCMVGN�Lj#g@E�TU6HG=Prb*�\�\�(<
b � <�ec<=IL:UGkg@E�[�MNO([(P=5)<=x}j�6HGFMN69OñgaO�\=��<hx}j(>2D�gaT9P9iJ69[aE�ovg@GqovgaO�[aE#g@[269TÅ\;6/?#O(6=\ Y£MV:Fjò[269O(6HGkgaoNMNZ96=\QPwE#gaOw:FMR?#6ªGFT9P

l�r*s�e\c�& |\zC. e\r |�r"+ q e'&=�*)Nz{|\zC. e\r�Pybab7>�0sb*�2�2�21ªP � >2�*�N�2`Lb2<
b_�;<��(<"��<dx}j�g@:FKkj�6HG7gaO�\S�;< XJ<"��GFMN[2jw:=Prlf69O(6HGkgaoNMNZ96=\T?#O(MV:F6)g@E(:F>2D�gh:kg�:Fj(69>aGUWmY£MN:Fj$g@O�g@8�8�oNMNK=gh:FMv>aO$:F>Yg
\(6HK9MNTUMv>aO�8(GF>\[�oN69D�>@?ÅTU69K9>2O�\� �>aGk\;6HGtoN>2[2MNK2<�8'|\zD9�g w ~-,
z t�&H, y 9�t�e\c�~@P � 0sb_�2^'>�1ªP �a_*��>Lb2<

b��(<W]y<
��>2oN8�6HG=P�xq69D�8�>@Gkgaodov>a[2MNKòK=gaOm[�67D�>aGF676�#(8;GF69TUTUMNRS62P�l�r*s_e�c�& |\zC. e\r'|\r*+ q e\r$z c�e2} P��a^�0sb*�2>\��1ªPd_ � ���2�;<

107



Much Ado About Nothing?

Rachele Fuzzati Uwe Nestmann

School of Computer and Communication Sciences, EPFL, Switzerland

Abstract

In our quest on formalizing distributed algorithms, notably one to solve Distributed
Consensus, we have at first found it natural to describe the algorithm using an algebraic
process calculus. However, both for the purpose of the mere description as well as for
proving its correctness (i.e., its satisfaction of the required properties), process calculus
technology has not (yet?) quite come out as the ideal tool to use. In this short paper,
we try to point out why. In doing so, we try to hint at what we feel missing in currently
existing algebraic process calculi and suggest what could or should be added in order to
make them helpful tools for distributed algorithms proofs.

1 Distributed Algorithms

The term “Distributed System” usually describes a group of processes, each one of them exe-
cuting some computation and exchanging messages with the others. The system can be syn-
chronous or asynchronous, and it can experience or not the failure of (some of) its processes.
Processes in a system may be confronted with some distributed coordination problems, e.g.,
provide some joint communication service, and may try to cooperate with each other in order
to solve them. Due to uncertainty on process availability, solutions to coordination problems
in asynchronous, failure prone systems are the hardest to find, and the more interesting to
study. The desired results of process cooperation are usually expressed as sets of properties
that need to be fulfilled in every system run. The term “Distributed Algorithm” (DA) denotes
algorithmic solutions that, applied to distributed coordination problems, fulfill the respective
desired specifications. Clearly, every such algorithm needs a convincing proof to verify that
the declared specifications are actually satisfied.

Usually, in the DA field, the description of the activities performed by each one of the pro-
cesses is either given by some pseudo programming language code, or modeled using mathe-
matical structures that represent automaton-like interacting machines. The computation steps
are, in the latter case, directly derivable from the machinemodel while, in the former case,
they are described through the informal pseudo-code. Specifications are usually expressed in
natural language, and only very few examples exist where formal logical languages are used.
Likewise, many proofs are simply given at an informal and sometimes hand-waving level.

108



2 Using Process Calculi !

In both the domains of DA and Process Calculi (PC), researchers study the behavior of in-
teracting processes and their properties. In PC, algorithms are described as syntactic terms
in tiny languages, which are more precise than the DA pseudo-code. The fact that PC are
equipped with formal operational semantics promises that proofs on top of them can be con-
sidered to be more formal than the pseudo-code based counterparts. Finally, the algebraic
foundation of syntactic PC descriptions usually enables compositional reasoning techniques,
useful to decompose huge complex systems into manageable pieces. All in all, we think that
there are enough promising reasons to approach the DA community, their models, and their
algorithms with the power of PC techniques. So, let us try.

To model one of the systems mentioned in the first section we may simply use a reasonably
standard PC based on asynchronous message-passing. To mimic the fact that the processes
are fully connected with each other (they can directly exchange messages among themselves),
we may employ an application-dependent set of communication channels. Modeling the fact
that processes can fail is already more complex. In fact, PC usually do not contemplate the
possibility of process crashes or communication failures,which stems from the fact that, in
the beginning, PC were created to model concurrency, ignoring any aspect of explicit distri-
bution. Nevertheless, in the 90’s a number of proposals appeared where PC were equipped
with explicit location information, often called sites. Sowe may build on these proposals and
model DA processes as sites that we can somehow make crash when needed.

3 Using Process Calculi ?

So, is there anything missing? Actually, quite a number of things. To explain them, we will
use an example on which we have worked earlier [NFM03] with confidence, but in which
we have run into problems, especially when we have realized that our PC tools did not quite
match the target domain. The example concerns an algorithm (which we refer to as CT)
proposed in [CT96] to solve Distributed Consensus in asynchronous systems where processes
might fail by crashing. The system consists into a fixed number of processes, each of which
initially proposes a value. The target is to have the processes eventually agree on some value.
Distributed Consensus is specified by the properties ofAgreement, Validity andTermination.
The first two are safety properties (together telling that, in every run, processes’ decisions
shall never disagree and always be for one of the proposed values), the latter is a liveness
property (telling that, in every run, processes that do not crash eventually decide).

Description problems In short, the CT algorithm is defined by processes that locally run
two concurrent threads, a while-looping main thread, and a one-shot decision thread. Each
process runs through a series of rounds (in which it may play different roles), where it ex-
changes messages with its partners on other sites, until itsconcurrent decision thread (trig-
gered by some external event) sets a local exit condition to true. The CT algorithm is given in
pseudo code and describes the behavior of one single processin the system. When trying to
use PC off the shelf in order to describe such algorithm we identify two problems.

109



The first problem arises from the fact that the algorithm is quite rich in local state informa-
tion. While a number of state parameters (e.g., the current round number) are completely local
to the main thread, there is (i) one state variable that is shared with the decision thread, and
there are (ii) state variables that contain message buffers(left implicit in the pseudo code)
which are shared with other looping threads that receive messages from the communica-
tion medium. In PC, state variables are often modeled as parameters of process constants.
However, this is no longer possible when state variables areto be shared across independent
threads. The only way out is having one thread holding the state while others get access to it
by means of communication: reading and writing to the state become explicit actions. While
this is possible, it is not feasible, because it results in a flurry of communication steps that
clutter any subsequent formal reasoning.

The second problem results from the fact that—like most, if not all, of the more inter-
esting DA—the CT algorithm does not just build upon simple low-level message-passing,
but is rather inserted in alayered architecture of several components, each providing (and
requiring) specific communication services. More precisely, the CT algorithm requires the
existence and proper functioning of three underlying services:1. quasi-reliable point-to-point
communication (QP2P),2. failure detection (FD), and3. reliable broadcast (RBC). The prop-
erties guaranteed by these services areglobal and require symmetry (existence of local peer
components on all sites of the system). For example, the FD service is required to satisfy the
global property: “after a certain time t there is a process that is no longer suspected by any
other process.” For convenience, the services underlying the CT algorithmare represented
as so-called “abstractions”, which are globally defined andnot associated to single sites, and
which are simply invoked through primitive operations of the API supplied by the abstraction.

Up to now, PC off the shelf do not offer any support of layered architectures. Instead, usu-
ally, they offer a single hard-coded underlying service—typically (a)synchronous handshake
message-passing—that is powerful enough tosimulate (either locally or globally) any possi-
bly further needed service. However, if we do not want just a simulation, we mustextend the
PC with additional hard-coded communication mechanisms, thus complicating the theory.

In the case of the CT algorithm, we could use the built-in (hard-coded) asynchronous
message-passing to model QP2P reasonably closely. For FD and RBC, there was no existing
support whatsoever. We pragmatically decided to go for a mixed approach: we designed a
hard-coded representation of FD (see [NF03]), while we simulated the RBC service by means
of its message-passing implementation (see[CT96]) withinthe Consensus term. We consider
this solution disappointingly ad-hoc. Ideally, we should have been able to conveniently assem-
ble PC by selecting the required hard-coded communication services from some repository.

Verification problems Before we get into a bit more of detail, let us (a bit provocatively)
state the following observations. The Consensus properties are based on runs;we could not
detect any good use for process equivalences. The Consensus properties are global, the only
compositionality is across the interface to the underlyingservices, not in the term itself;we
could not detect any use of compositional reasoning among the symmetric term components.

The CT algorithm is round-based. The system is asynchronousand every process indepen-
dently increments its round counter while proceeding. Thismeans that in a run many rounds
may be concurrently “inhabited” at the same time.

110



The main correctness arguments for the CT algorithm heavilyexploit a reasoning (e.g.,
by induction) that refers to round numbers. However, the relation between runs and round
numbers in an asynchronous system is subtle. Let us, for instance, look at an induction on
round numbers. Typically, such an induction starts with thesmallest round in which some
property X holds. In a given run, to find this starting point one may take the initial state and
search from there for the first state in which X holds for some round. However, this procedure
is not correct: due to the asynchronous character of the system, it may be that at alater state
of the run, X holds for asmaller round! Accordingly, when the induction proceeds to a higher
round, it might go backwards in time along the given run. Therefore, the concept of time—and
of iteration along a run—is not fully compatible with the concept of asynchronous rounds.

The solution, rather implicit in [CT96], is to consider runsas a whole, ignoringwhen
events happen, just notingthat they happened. In other words, we should pick a sufficiently
advanced state of a given run (for example the last one in a finite run), and then find an
appropriately abstract way toreason about its past, its history. For this, we cannot simply
use the information that is contained in the syntax of the process term, because events of
the past leave no trace on it. But at the same time we do not wantto keep track of all the
single events of a run andsearch through all previous steps each time we simply look for
information about what possibly happened in a particular round in the past. Thus, we are
required to equip the operational semantics with some global book-keeping data structure that
will log all communication events. To be useful in proofs, this data structure should do its
book-keeping in some conveniently structured way. For now,we only know of quite ad-hoc
ways to do this, depending on the application . . .

4 Summary

PC is not good enough yet . . . for DA. We need (1) PC that are better at dealing with shared
state information within sites; (2) a toolbox for the typical globally provided communication
services used in DA; (3) safe composition of these services;(4) a methodology to extract
proof-relevant structure from communication histories. Since we do not have these items, we
currently do not use PC, but application-specific rewrite systems, which is a pity. Isn’t it?

References

[CT96] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems.Journal of the ACM, 43(2):225–267, 1996.

[NF03] U. Nestmann and R. Fuzzati. Unreliable Failure Detectors via Operational Seman-
tics. In V. A. Saraswat, ed,Proceedings of ASIAN 2003, volume 2896 ofLecture
Notes in Computer Science, pages 54–71. Springer-Verlag, Dec. 2003.

[NFM03] U. Nestmann, R. Fuzzati and M. Merro. Modeling Consensus in a Process Cal-
culus. In R. Amadio and D. Lugiez, eds,Proceedings of CONCUR 2003, volume
2761 ofLecture Notes in Computer Science, pages 399–414. Springer-Verlag, Aug.
2003.

111



On Specifying Timeouts∗

Rob van Glabbeek
National ICT Australia

and School of Computer Science and Engineering

The University of New South Wales

rvg@cs.stanford.edu

Abstract: This paper raises the question on how to specify timeouts in process

algebra, and finds that the basic formalisms fall short in this task.

Consider the following protocol for a mail server:

Set a timer for an unspecified but finite amount of time, and try to send a
message again and again until it either succeeds or the timer goes off. In the
latter case return an error message. Optionally, someone may deactivate the
timer before it goes off, in which case the system may run forever.

My question is how to model this simple protocol by means of process algebra. Even
though languages like CCS, CSP and ACP and their many variants have been around
for twenty five years, it is still particularly tricky to do so. As this problem didn’t specify
any real-time constraints it appears less natural to use a real-time process algebra. The
specification should keep it completely open how long each activity lasts. In particular,
there is no upper bound on the number of trials that are made before the timer goes off.
Still we know that within a finite amount of time either the message is send successfully,
or an error message is returned, unless the timer is deactivated.

When abstracting, in part, from the timer, the process can be specified as

set · µX.(fail · X + succeed + timeout · error)

and a specification of the entire protocol (freely mixing ACCSP) could be

set ·
(

µX.(fail · X + succeed + timeout · error)‖
timeout

τ · timeout + deactivate

)

.

However, this specification leaves open the option that the process keeps failing forever:
the standard operational semantics of ACCSP generates a transition system that features
a path with infinitely many fail-actions and no deactivate (see Figure 1).

One solution is to invoke Kooman’s Fair Abstraction Rule (KFAR) [1] to prove, by
abstraction from fail, that either succeed or timeout will happen eventually. However,

∗Based on joint work with Frits Vaandrager.

112



fail

succ.
set

τ

fail

succ.

τ

timeout error

deact.

fail

succ.

deact.

Figure 1: Process graph of the ACCSP specification

this hinges on a global fairness assumption that is not warranted in this example. Even
if the action deactivate occurs, KFAR allows us to derive, contrary to the specification,
that succeed will happen eventually.

What appears to be needed here is some kind of priority mechanism, saying that when
timeout can occur, it takes precedence over the alternative actions fail and succeed.
When performing abstraction by renaming into silent steps, priority mechanisms are
cumbersome in process algebra, because in weak and branching bisimulation semantics
the processes a(b+ c) and a.(τ.(b+ c)+ b) are equivalent, but if c has priority over b one
would expect that only the latter can do a b-step.

Even when the priority mechanism is in place, the process of Figure 1 still allows
an infinite sequence of fail-actions without deactivate, due to the interleaving of
the components in the parallel composition. Maybe an elegant solution can be found

• set p timeout error

fail

succ.

τ qdeact.

Figure 2: Petri net of the ACCSP specification

by modelling the specification as Petri net—see Figure 2. Under a normal progress
assumption, provided that no deactivate occurs, sooner or later there will be a token
in place q. Now timeout should have priority over the actions fail and succeed that
compete for the token in p, but this priority takes effect only when there is a token in
q. How to best formalise such reasoning is suggested as topic for future research.

[1] J.C.M. Baeten, J.A. Bergstra & J.W. Klop (1987): On the consistency of

Koomen’s fair abstraction rule. Theoretical Computer Science 51(1/2), pp. 129–176.

113



V for Virtual

Andrew D. Gordon
Microsoft Research

Paper for the workshop onAlgebraic Process Calculi: The First Twenty Five Years and Beyond,
August 1–5, 2005, University of Bologna Residential Centre, Bertinoro (Forlı̀), Italy

Abstract

Operating system virtualization has been available on commodity hardware for a few
years, and today attracts considerable commercial and research interest. Virtualization
allows one or more virtual machines (VMs) to run on a single physical machine, and
to interact via virtual devices, such as virtual hard discs or virtual network cards. To
model basic virtualization operations, we propose a process calculus, V, with primitives
to start and stop VMs, and to read and write data in a hierarchical store. Formalisms
such as V may be useful for programming and reasoning about various applications of
virtualization, such as VM-based trusted computing or VM-based computational grids.

Operating system virtualization allows a host operating system, running directly on a phys-
ical machine and controlling its devices, to run multiple guest operating systems within virtual
machines. The virtualization software, known as ahypervisoror a virtual machine monitor
(VMM), may run under the host operating system as an application (for example, Virtual
PC [5] under Windows), or it may be the host operating system itself (for example, Xen [1]).

Following research in the 1960s, IBM launched the first commercial VMM in 1972:
VM/370 manages an IBM System 370 mainframe and gives each user at a terminal the im-
pression they have a complete System 370. VMware launched the first commercial VMM for
desktop PCs in 1999. Since then several VMMs for the x86 PC architecture have appeared,
aimed both at desktops and server farms. Today, OS virtualization is increasingly mobile: a
suspended VM together with itsvirtual hard disc(VHD) file are typically several gigabytes,
but comfortably fit in say a disc-based personal music player, not to mention a laptop. VMMs
on devices such as phones and PDAs cannot be far off.

Virtualization has many applications. Parallelism between VMs enables better utilisation
of physical assets: applications in different guest operating systems share physical resources.
A legacy application on a legacy guest operating system can run on new hardware in a new
host operating system. Isolation between VMs enables security mechanisms [4] and enables
debugging to proceed in parallel with production (a significant attraction of VM/370). Cre-
ation of fresh VMs and VHDs enablesdisposable computing: creation of a virtual computer to
run beta code or code suspected of bearing spyware to be uninstalled reliably just by deleting
the VM and VHD. A VM-based honeypot makes a disposable VM for each incoming network
probe. Checkpointing and restarting of VM and VHD state enables several applications: load
balancing via live migration; analysis of saved state for forensic purposes such as debugging
or intrusion-detection; and pre-packaged training demos—last but not least.

1

114



1 A Calculus of Virtual Machines and Virtual Discs

This paper introduces V, a formalism for describing typical usages of VMs attached to VHDs.
V is based on named, copyable processors interacting via a global, hierarchical store. The
processors model both physical and virtual machines, while the global store models the file
store of the host operating system, including attached VHDs.

Syntax of Values, Stores, and Processes:

U,V ::= storable value
x,y,z variable (a phrase isclosedif it contains no variables)
a,b,c name
U/V path construction
S store
proc(P) process

S::= {a1=V1, . . . ,an=Vn} store:ai pairwise distinct; eachVi closed and distinct from{}
P,Q ::= process

newa;P name restriction (scope ofa is P)
P |Q composition
U [P] processor namedU enclosing computationP
write(U,V);P write valueV at pathU
let x = read(U) in P read valuex from pathU (scope ofx is P)
run(U) run codeU
let x = stop(U) in P stop processor namedU , save state asx (scope ofx is P)

C ::= P S configuration: closed processP at path{} relative to storeS

We use the empty store{} as a distinguishednull value. Let apathbe either null{}, or
p/a wherep is a path anda is a name. Hence, a path is a possibly-empty list of names. We
often omit the initial{}. We write p@p′ for the path obtained by concatenating pathsp and
p′. Processes perform non-blocking reads and writes of values at a path in the store. Null
cannot occur as an explicit value in a store, but reading from a non-existent path returns null,
and writing null to a path amounts to deletion of the previous contents of the path.

To isolate named processors, each process interacts with the global store relative to a path.
A configuration P Sis a snapshot of a whole computation, consisting of a top-level processP
running at path{} relative to global storeS. In a configurationP | a[Q] {a = Sa,b = Sb}, P
runs at{} and sees the whole store{a = Sa,b = Sb}, while Q runs at/a and so sees justSa.

Next, we describe the semantics of a processP running at a pathr relative to an im-
plicit global store. The restrictionnew a;P at r creates a fresh namea and behaves as
P at r. The compositionP | Q at r is the parallel composition of processesP and Q run-
ning atr. The processora[P] at pathr encloses the processP running atr/a. The process
write(p,V);Q running atr depositsV into the store atr@p, then behaves asQ at r. The
processlet x = read(p) in Q running atr retrieves the valueV at r@p from the store, then
behaves asQ{x←V} at r. The processrun(proc(P)) running atr behaves the same asP at r.
The processlet x = stop(a) in Q at r blocks until there is a processora[P] directly in parallel,
stops it, then behaves asQ{x←proc(a[P])} at r.

In examples, we use the shorthanddone
4= run ({}) for a stuck, terminal process.

2

115



2 Using V to Model Operations on Virtual PCs

For the purpose of a simple example, let aVPC be the virtualization of a processor coupled
with a single bootable disc. This is a common case in desktop uses of virtualization.

Our model mimics one particular VMM [5] and stores the state of a VPC in three files
managed by the host operating system. A file MyVPC.vhd holds the VHD, the image of the
whole file system available to the guest operating system. A file MyVPC.vsv contains the state
of the suspended VM. A file MyVPC.vmc is an XML database containing the configuration
of the VPC, including paths to MyVPC.vhd and MyVPC.vsv.

Hence, we model an inactive VPC with a guest file systemSand current stateP as a store
containing three such files. The name vm007 is a unique identifier for the VPC.

{ MyVPC.vhd = S, MyVPC.vsv =proc(vm007[P]),
MyVPC.vmc ={id=vm007, disc=/MyVPC.vhd, mem=/MyVPC.vsv} }
To activate a VPC, we copy the VHDS to a temporary file vm007, and run the processor

vm007[P], so that P sees S as its store. After the processor and store have run for a while, and
evolved to say vm007[P’] and S’, the configuration takes the general form:

vm007[P’]
{ vm007 = S’, MyVPC.vhd = S, MyVPC.vsv =proc(vm007[P]),

MyVPC.vmc ={id=vm007, disc=/MyVPC.vhd, mem=/MyVPC.vsv} }
We show some V processes to create, activate, and stop VPCs; for simplicity, we omit

synchronization code. Let abootable VHDbe a store with a file at /boot.exe containing a
process that initializes the guest operating system. Given a bootable VHD at path vhd, the
following creates an inactive VPC, by storing its state and configuration at paths vsv and vmc:

newVM vhd vsv vmc
4=

newvm; write (vsv,proc(vm[let x = read(/boot.exe)in run (x)]));
write (vmc,{id=vm, disc=vhd, mem=vsv}); done

The following activates an inactive VPC at path vmc:

startVM vmc
4=

let i = read(vmc/id) in
let vhd = read(vmc/disc)in let d = read(vhd) in write (/i,d);
let vsv = read(vmc/mem)in let m = read(vsv) in run (m)

We present two ways of stopping an active VM. The first simply deletes the running in-
stance, leaving the original VHD and image files intact, while the second updates the files
with the current VHD and machine state. Both write{} to delete the temporary VHD copy.

stopAndDeleteChanges vmc
4=

let i = read(vmc/id) in let m = stop(i) in write (/i,{}); done

stopAndSaveChanges vmc
4=

let i = read(vmc/id) in let m = stop(i) in let d = read(/i) in write (/i,{});
let vsv = read(vmc/mem)in write (vsv,m);
let vhd = read(vmc/disc)in write (vhd,d);done

3

116



3 Conclusion and Future Research

We propose V as a simple formalism for modelling OS virtualization. V is more expressive
than the examples of this paper may indicate; we can encode iteration, Booleans and condi-
tionals, VM checkpointing, and various synchronization and communication operations. Per-
haps V can itself be encoded within some existing process calculus; it certainly has features in
common with many, including the higher-orderπ-calculus [6], the ambient calculus [2], and
the seal calculus [3]. A formal theory of V, together with an implementation over a VMM,
would be a useful first assessment of the calculus; VHD copying would need to be lazy.

OS virtualization is an old technology, but its emergence on commodity hardware enables
new and complex applications. One example is trusted computing based on attestation of
software isolated within a VM, as in Terra [4] or Microsoft NGSCB, for instance. Formalisms
like V, extended perhaps with symbolic cryptography, would enable formal security analyses
of such applications.

Another example is the idea of avirtual cluster, an application built from component VMs
running applications like web servers and databases, and interconnected by virtual networks.
Virtual clusters consisting of tens, hundreds, or more VMs are envisaged as an efficient way to
utilise large data centres. The lifecycle of a virtual cluster is complex and long-lasting; to min-
imise costly operator intervention, programs controlling virtual clusters should automatically
handle events such as VM failure, checkpointing and restarting, automatic contraction and
expansion of the size of the virtual cluster, load balancing VMs between physical hardware,
and so on. Conventional testing of scripts controlling virtual clusters will likely prove inade-
quate in finding bugs—many critical error conditions seldom occur. So, we should investigate
programming techniques, perhaps prototyped in calculi such as V, for building virtual cluster
control software that is amenable to static analysis.

Acknowledgement Conversations with Paul Barham, Nick Benton, Giuseppe Castagna,
and Ant Rowstron were useful.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebar, I. Pratt, and
A. Warfield. Xen and the art of virtualization. InACM SOSP’03, 2003.

[2] L. Cardelli and A. D. Gordon. Mobile ambients.TCS, 240:177–213, 2000.

[3] G. Castagna, J. Vitek, and F. Zappa Nardelli. The seal calculus.I&C , 2005.

[4] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-based
platform for trusted computing. InACM SOSP’03, 2003.

[5] Microsoft Corporation. Microsoft Virtual PC 2004. Product web page, athttp://www.
microsoft.com/windows/virtualpc/default.mspx. Released December 2003.

[6] D. Sangiorgi. Expressing mobility in process algebras: first-order and higher-order paradigms.
PhD thesis, University of Edinburgh, 1993.

4

117

http://www.microsoft.com/windows/virtualpc/default.mspx
http://www.microsoft.com/windows/virtualpc/default.mspx


Reflections on a Geometry of Processes

Clemens Grabmayer∗ Jan Willem Klop† Bas Luttik‡

June 10, 2005

Abstract

In this note we discuss some issues concerning a geometric approach to process alge-
bra. We mainly raise questions and are not yet able to present significant answers.

1 Periodic Processes

Our point of departure is the axiom systemBPA in Table 1 together with guarded recursion.

x+y = y+x
x+(y+z) = (x+y)+z
x+x = x
(x+y) ·z = x ·z+y·z
(x ·y) ·z = x · (y·z)

Table 1:BPA (Basic Process Algebra)

We are in particular interested innon-linearrecursion, where products of recursion variables
are allowed, in contrast with linear recursion exemplified by〈X|X = aY+ b, Y = cX + dY〉
yielding only regular (finite-state) processes. Non-linear recursion also allows infinite-state
processes, such as the counter〈C|C = uDC, D = uDD+ d〉 (with actionsu, d for “up” and
“down”) or the process Stack that is definable by the infinite set of linear recursion equations
overBPA (cf. the left-hand side of Table 2), and more remarkably, by the finite set of non-
linear recursion equations (cf. the right-hand side of Table 2).

This simple framework is already rich in structure. In [1] this framework was linked with
context-free grammars (CFG’s), in particular with those in (restricted) Greibach normal form.

∗Vrije Universiteit Amsterdam. Postal address: Department of Computer Science, De Boelelaan 1081a, 1081
HV Amsterdam, The Netherlands. E-mail:clemens@cs.vu.nl .

†Vrije Universiteit Amsterdam, Radboud Universiteit, and CWI. Postal address: Department of Computer
Science, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands. E-mail:jwk@cs.vu.nl .

‡Eindhoven Technical University and CWI. Postal address: P.O. Box 513, 5600 MB Eindhoven, The Nether-
lands. E-mail:s.p.luttik@tue.nl .

118



Sλ = 0·S0 +1·S1

Sdσ = 0·S0dσ +1·S1dσ +d·Sσ

(for d = 0 ord = 1, and any stringσ )

S= T·S
T = 0·T0 +1·T1

T0 = 0+T·T0

T1 = 1+T·T1

Table 2: Stack, an infinite linear and a finite non-linearBPA-specification

There the fact was established that while the language equality problem for CFG’s is unsolv-
able, the process equality problem for CFG’s is solvable. A priori this is not implausible,
because a process has much more inner ‘structure’ than a language (the set of its finite ter-
minating traces). The decidability was demonstrated by Baeten, Bergstra, and Klop in [1] as
a corollary of a result concerning the periodical geometry or topology of the corresponding
process graph. In Figure 1 the periodicities of two examples are exhibited: of Stack on the
left-hand side, and of the process〈X|X = bY + dZ, Y = b+ bX + dYY, Z = d+ dX + dZZ〉
on the right-hand side (this graph repeats three finite graph fragmentsα, β andγ as is also
illustrated in Figure 2 below).

00 0

0

0

0

1

1

1111

10
0 0

0 00 0

10

1

1111

1

b

d b

b

db
d

b d

b

b d b

b

db

b

d b
d

bd

b

bdb

d b

d b d b

Figure 1: Tree-like periodic processes

The geometric proof in [1] is complicated. For the corollary of the decidability more
stream-lined approaches have subsequently been found by using tableaux methods and other
arguments (cf. Caucal in [7], Ḧuttel and Stirling in [11], and Groote in [10]). Also, the geo-
metric aspects have been studied, for example by Caucal in [8] and by Burkart, Caucal, and
Steffen in [5]. Actually, the related notion ofcontext-free graphwas introduced by Muller and
Schupp [12] already in 1985.

We feel that there is still much to be explained about the geometric aspects of process
graphs. We present a question concerning the fact that periodic graphs inBPA come in two
kinds: ‘linear’ graphs as on the left-hand side, and ‘branching’ graphs as on the right-hand
side in Figure 2.

Question 1 Is it decidable whether a system E of equations (in Greibach normal form) yields
a linear (type I) or a branching (type II) graph?

119



0

1

2

3

4

5

6 ��
��

��

��
�	


�

b

a

a

c

c
b

b

d

d

d

b

d

b

c

a

c

a

a

c

a

b g

Figure 2: ‘Linear’ periodic graphs (type I, left), ‘branching’ periodic graphs (type II, right)

Another graph of type II is the ‘butterfly’ process graph in Figure 3 of the recursiveBPA-
specification〈X|X = a+ bY + fXY , Y = cX + dZ, Z = gX + eXZ〉. The relevance of the

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

0

1

2

3

4

5

6

7

ae

b cf

a
d

g

Figure 3: A ‘butterfly’ process graph.

distinction between type I and type II graphs is made clear below, in order to show that certain
graphs arenot of type I or type II.

In the study ofBPA-definable graphs an important property is that of being “normed”.
A graph isnormedif from every node in it there is a path to a terminating node. (In term
rewriting terminology this is called the weak normalization property WN.) The norm of a
node is then the minimum number of steps to termination. Originally, the decidability of
context-free processes (BPA-definable processes) was established in [1] only for the normed
case. Subsequently this was generalized by Christensen, Hüttel, and Stirling in [9] to all
BPA-definable processes.

Note that the norm of a node in a process graph is preserved under bisimulation: if norms
are pictorially represented by drawing the process graph with horizontal ‘level’ lines, arrang-
ing points with the same norm on the same level (see the graph left in Figure 2 and the graph

120



in Figure 3), then bisimulations relate only points on horizontal lines. Collapsing a normed
graph to its canonical form is a compression in horizontal direction.

An important question is whetherBPA-definable processes are closed under minimization
(i.e. under compressing a graph such that it is minimal under bisimulation; the resulting graph
is also called the “canonical” graph). The question whether such a statement does in fact
hold was left open in [1]. Making a graph canonical can alter its geometry considerably.
For instance, consider the counter C mentioned above. The process graphg of C is a linear
sequence of nodes C,DC,DDC, . . . connected by u-steps to the right and d-steps to the left.
The merge C‖C in the process algebraPA has a grid-like graph similar to that of the process
Bag on the left side in Figure 6 below. But if we collapse this graphg for C‖C to its canonical
form by identifying the bisimilar nodes on diagonal lines, we obtain again the graphg for C.
So a grid may collapse to a linear graph.

Normedness plays a part when graphs are compressed to their canonical form. In [5]
Burkart, Caucal, and Steffen give the following example of aBPA-graph that after compres-
sion to canonical form no longer is aBPA-graph: For the process with recursive definition
〈Z|Z = aAZ+ cD, A = aAA+ cD+ b, D = dD〉 in BPA, the graph on the left in Figure 4 is
its associatedBPA-process graph, while the graph on the right is the respective minimization,

��
�� �� ��
�	 
�

Z AZ AAZ AAAZ

DAAZDAZDZD

a a a
bbb

c c c c

d d d d

��
�� �� ��
�	 
�

a a a

d

c c c
b b b

c

Figure 4: Counterexample against the preservation ofBPA-graphs under minimization.

which does not have the periodical structure of aBPA-graph. Note that neither of these graphs
is normed.

Question 2 How can those BPA-graphs be characterized whose canonical graphs are again
BPA-graphs?

We note that Question 2 has already received quite some attention in Caucal’s work. Con-
trasting with the counterexample for the unnormed case given above, in [7] he has shown the
following theorem.

Theorem 1 (Caucal, 1990)The class of normedBPA-graphs is closed under minimization.

The (obvious) link between CFG’s andBPA-definable processes was first mentioned in
[1]. An example is the graph on the right in Figure 1 and in Figure 2 above: it determines as
context-free language (CFL) the language of words having equal numbers of letter b and d.
An intriguing question is the following.

Question 3 How does the classical pumping lemma for CFL’s relate to the periodicity present
in BPA-definable processes?

121



a a a a

bbbb

b b b
c

b b
c

c
b

c

Figure 5: The languageL.

Another interesting observation, due to
H.P. Barendregt, is the following. It is well-
known that the languageL = {anbncn|n≥ 0}
is not a CFL. This language can be obtained
as the set of finite traces of the triangular, in-
finite, minimal graph in Figure 5. Intuitively
it is obvious that this graph is not tree-like pe-
riodic. This leads to the next question.

Question 4 Can the fact that the graph in Figure 5
is not aBPA-graph (when established rigorously)
be used to conclude that L is not a CFL, applying
the correspondence between CFL’s and definability
in BPA as well as the ensuing tree-like periodicity?

2 Non-definability of Bag in BPA

The expressiveness of the operations defined by the axioms ofBPA is limited; basically only
sequential processes can be defined. The axiom systemPA is an extension ofBPA with
axioms for the merge‖ (interleaving) and the auxiliary operator‖ (left merge). InPA we

00

0 0 0

000

1 1 1 1

1111

1 1 1 1

0

0 0 0

0

0 0 0

1 1 1 1
000

0 0 0

00

1111

1 1 1 1

000

0 0 0

000

0 0 0

1 1 1 1

1111

1 1 1 1

0 0 0

000

0 0 0

000

1 1 1 1

1111

1 1 1 1

t

Figure 6: The minimal process graphs of the process Bag (on the left-hand side), and of a
terminating variant Bagt of Bag (on the right-hand side).

have a succinct recursive definition for the process Bag (over data{0,1}) as follows:

B = 0(0‖B)+1(1‖B).

It has been proved by Bergstra and Klop in [3] that the process Bag cannot be defined by
means of a finite recursive specification overBPA. Considering the minimal process graph
for it in Figure 6, this does not come as a surprise: it is not tree-like, but “grid-like”. Below
we give an alternative proof of this fact.

122



Theorem 2 (Bergstra, Klop, 1984)Bag is notBPA-definable.

Proof (Sketch).Suppose that the process Bag isBPA-definable. Then there exists a recursive
specificationE in BPA such that Bag is bisimilar with a tree-like periodic graphg(E) as
defined by Baeten, Bergstra, and Klop in [1]. Theng(E) is a “BPA-graph” according to the
terminology used in [5].1

In [5] Burkart, Caucal, and Steffen have shown that, foreveryBPA-graphG, the canonical
graph ofG is a “pattern graph”, which means that it can be generated from a finite (hy-
per)graph by a reduction sequence of lengthω according to a deterministic (hypergraph)
grammar.2 Since Bag is itself a canonical graph and since therefore Bag is the canonical
graph of theBPA-graphg(E), it follows that Bag is a pattern graph.

A theorem due to Caucal in [8] states that all (rooted) pattern graphs of finite degree are
“context-free” according to the definition of Muller and Schupp in [12].3 It follows that Bag is
context-free. However, it is not difficult to verify that Bag is actuallynot a context-free graph
according to the definition in [12].

In this way we have arrived at a contradiction with our assumption that Bag is definable in
BPA. �

By using Caucal’s theorem, Theorem 1, it is also possible to establish quickly the non-
definability inBPA of many normed graphs. For example, for the terminating version Bagt of
Bag (where Bagt is normed) with the process graph on the right in Figure 6, it can be reasoned
as follows. This graph is canonical, so if it wereBPA-definable, then it would be a graph of
type I or type II. However, for a type I graph it holds that the number of nodes in a sphere
B(s,ρ), wheres is the center andρ is the radius, depends linearly onρ; for a type II graph this
dependance is of exponential form. But for the graph under consideration the number of nodes
in a ballB(s,ρ) only depends quadratically onρ. Hence this graph is notBPA-definable.

Where do we need the preservation ofBPA-definability under minimization? The process
graph of Bagt is clearly not one obtainable by aBPA-definition, as it is not of type I or type II.
But equality of processes is considered here modulo bisimulation—so it is not inconceivable
that there is a BPA-definitionE of Bagt such thatg(E) after compressionto canonical form
can(g(E)) were just the process graph graph(Bagt) for Bagt on the right in Figure 6. So
can(g(E)) = graph(Bagt) holds. But with the preservation property, Theorem 1, we have
can(g(E)) = g(E′) for someBPA-specificationE′, henceg(E′), and therefore graph(Bagt),
are of type I or type II, quod non.

1In earlier papers of Caucal (e.g. in [6] and [8]) BPA-graphs were known under the name “alphabetic graphs”.
2“Pattern graphs” according to this definition used by Caucal and Montfort in [6] are called “regular graphs”

in the later paper [5] by Burkart, Caucal, and Steffen. Because the use of the attribute “regular” for process
graphs could lead to wrong associations, we avoid this terminology from (hyper)graph rewriting here.

3Note that the class of “context-free” graphs in Muller and Schupp’s definition does not coincide with the
graphs associated with “context-free” processes (the class ofBPA-graphs), but that it forms a strictly richer class
of graphs corresponding to the class of transition graphs of push-down automata.

123



3 The strange geometry ofQueue

After the paradigm processes Stack and Bag, we now turn to the third paradigm process
Queue (the first-in-first-out version with unbounded capacity). Table 3 gives the infiniteBPA-
specification.

Q = Qλ = ∑d∈D r1(d) ·Qd
Qσd = s2(d) ·Qσ +∑e∈D r1(e) ·Qeσd
(for d ∈ D, andσ ∈ D∗)

Table 3: Queue, infiniteBPA-specification

As before, the endeavour is to specify Queue in a finite way. It was proved by Bergstra
and Tiuryn [4] that the systemBPA is not sufficient for that; in fact, they showed that Queue
cannot even be defined inACP with handshaking communication(see [2] for a complete
treatment of the axiom systemACP). But Queue has a finite recursive specification inACP
with renamingoperators (see Table 4, the specification is originally due to Hoare using the
‘chaining’-operation).

Q = ∑d∈D r1(d)(ρc3→s2 ◦∂H)(ρs2→s3(Q)‖s2(d) ·Z)
Z = ∑d∈D r3(d) ·Z

Table 4: Queue, finiteACP-specification with renaming

An ambitious question is the following.

Question 5 Is there a geometric (topological) property of processes definable by handshaking
communication?

Finally, we turn to geometric properties of the process Queue. Surprisingly, it is unex-
pectedly problematic to draw the process graph of Queue in a ‘neat’ way (cf. also Figure 7),
similar to Stack and Bag. We would like to uncover the ‘deep’ reason for this difficulty.

Question 6 Is it possible to fit g(Queue) in the binary tree space?

References

[1] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Decidability of bisimulation equivalence
for process generating context-free languages.Journal of the ACM, 40(3):653–682,
1993.

124



010 011

0100 0101 0110

100

1000 1001 1010

110 111

0

0

0

1

1

1
0

0

1
0

α

δ

β

γ

1

1100 1101 1110 11111011

101

0111

000 001

0000 0001 0010 0011

λ

0

00 01 10 11

0 1

Figure 7: Attempt at drawing Queue in ‘tree space’.

[2] J. C. M. Baeten and W. Peter Weijland.Process Algebra. Number 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[3] J. A. Bergstra and J. W. Klop. The algebra of recursively defined processes and the
algebra of regular processes. In J. Paredaens, editor,Proceedings of ICALP’84, volume
172 ofLNCS, pages 82–95. Springer, 1984.

[4] J. A. Bergstra and J. Tiuryn. Process algebra semantics for queues.Fundamenta Infor-
maticae, X:213–224, 1987.

[5] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process taxonomy.
In Proceedings of CONCUR’96, 1996.

[6] D. Caucal and R. Montfort. On the transition graphs of automata and grammars. In
Proceedings of WG 90, volume 484 ofLNCS, pages 61–86. Springer, 1990.

[7] D. Caucal. Graphes canoniques de graphes algébriques. Theoret. Inform. and Appl.,
24(4):339–352, 1990.

[8] D. Caucal. On the regular structure of prefix rewriting.Theoretical Computer Science,
1992.

[9] S. Christensen, H. Ḧuttel, and C. Stirling. Bisimulation equivalence is decidable for all
context-free processes.Information and Computation, 121:143–148, 1995.

[10] J. F. Groote. A short proof of the decidability of bisimulation for normed bpa-processes.
Information Processing Letters, 42:167–171, 1992.

[11] H. Hüttel and C. Stirling. Actions speak louder than words: Proving bisimilarity for
context-free processes. InProceedings of LICS’91, pages 376–386, 1991.

[12] D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-order
logic. Theoretical Computer Science, 1985.

125



From µCRL to mCRL2
Motivation and outline

Jan Friso Groote, Aad Mathijssen, Muck van Weerdenburg, Yaroslav Usenko
Department of Mathematics and Computer Science, Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{J.F.Groote, A.H.J.Mathijssen, M.J.van.Weerdenburg, Y.S.Usenko }@tue.nl

Abstract

We sketch the languagemCRL2, the successor ofµCRL, which is a process algebra with data,
devised in 1990 to model and study the behaviour of interacting programs and systems. The
language is improved in several respects guided by the experience obtained from numerous appli-
cations where realistic systems have been modelled and analysed. Just as withµCRL, the leading
principle is to provide a minimal set of primitives that allow effective specifications, that conform
to standard mathematics and that allow standard mathematical manipulations and proof method-
ologies. In the first place the equational abstract datatypes have been enhanced with higher-order
constructs and standard data types, ranging from booleans, numbers and lists to sets, bags and
higher-order function types. In the second place multi-actions have been introduced to allow a
seamless integration with Petri nets. In the last place communication is made local to enable
compositionality.

1 The history of µCRL

In an attempt to construct a language to which all existing specification languages could be translated,
a common representation language (CRL) was constructed in an EC funded project called SPECS.
This language became a monstrum for which is was impossible to device a coherent semantics, let
alone to be used as a basis for further theory or tool building.

Upon these findings, in 1990 a minimal language calledµCRL (micro Common Representation
Language) came into being as the simplest conceivable language to model realistic systems. The
language is a process algebra with data. The data is specified using first-order equational logic which
was the norm at the time. Earlier developed languages such as LOTOS [2] and PSF [8] also contained
equational datatypes. However,µCRL was much simpler than these languages.

In the first research phase proof methodologies were developed to give mathematical proofs of dis-
tributed algorithms and protocols. A number of proof techniques have been uncovered such ascones
and foci, τ -confluenceandcoordinate transformations(see [6] for an overview). Many systems have
been verified using these techniques, but particularly noteworthy is the most complex sliding window
protocol in [9] (see [3]). Verification of this protocol led to the detection of an unknown deadlock in
the protocol, it showed that the external behaviour of the original protocol was prohibitively complex
and catalysed the development of many proof methodologies.

In the second research phase a toolset forµCRL was developed [1]. The primary motivation for
this was that industrial specifications quickly became far too large to be handled manually. Large
specifications, like ordinary programs, turned out to contain flaws such as deadlocks and tools were

1

126



required to ensure the absence of anomalies. For plain verifications, the tool can handle systems with
more than109 states. By using confluence, abstract interpretation and symbolic reasoning much larger
systems, containing hundreds of components have been verified. For half a decade the tool plays an
essential role in teaching the design of dependable systems at various universities.

2 Why must µCRL be changed?

It turns out to be impossible to design a complete specification language that is immediately right.
In [4] time was added to the language. Furthermore, constructors were added to the specification of
functions in the datatypes ofµCRL to make the available induction principles explicit. And finally,
the possibility to specify an initial state of a process had to be added. As time passed it became more
and more obvious that the language would benefit from some more changes.

First of all changes were required in the abstract data types, although their expressive power
was more than sufficient. A relatively minor problem was that inµCRL all basic datatypes, such
as the naturals and the booleans had to be explicitly encoded. Much more serious was the negative
effect on interhuman communication of specifications. Different persons could give widely different
specifications of for instance the naturals. This meant that before getting to the gist of a specification,
first the specification of the naturals had to be understood. Furthermore, because all functions in
µCRL are prefix functions, standard notation, such as an infix + for addition on natural numbers could
not be used. This is not a problem for small specifications but seriously decreases the readability of
large ones.

In practice first-order abstract datatypes also discourage the use of higher-order objects, such as
functions, sets, relations and quantifiers. For instance sets are often modelled as finite lists. This tends
to make specifications more complex than necessary.

A strong argument against the use of bare abstract data types came from manually proving the
correctness of specifications. Given a specification, many elementary facts about the data are not self
evident and proving them draws away energy from the main task, namely finding the core correctness
argument for the protocol or distributed system under study. For an abstractly specified sort Nat, it
is not self evident that it indeed represents natural numbers in a true way. Hence, the truth of simple
identities had to be established using axioms and induction principles. For instance commutativity of
addition must be established separately for each specification of natural numbers. For tools, properties
like x > y ∧ y > z → x > z turned out a hurdle that was hard to overcome. By having standard data
types, dedicated integer linear programming techniques can be employed with which we can prove or
disprove the validity of inequality based formulas that are many orders of magnitude larger than the
one above. Actually, theµCRL toolset already made a number of silent assumptions about certain
data types (esp. the booleans) and certain functions (esp. it assumed that a functioneq represented
equality). This enabled the development of a very effective equality BDD prover [5] but actually
violates the philosophy of abstract data types.

Despite these disadvantages, equational abstract data types were more than sufficiently expressive
for any data type that needed to be specified. As the structure of data is very simple, we could device
optimal algorithms to handle data with little effort. Repeated comparative experiments show that the
µCRL tool set contains the most efficient state exploration tools in terms of the number of states that
it can store in main memory. Comparing to for instance SPIN [7], theµCRL toolset is approximately
a factor 4 slower in dealing with abstractly specified bits and bytes, which are built-in data types in
SPIN.

Another issue that we ran into withµCRL is the relationship between different process specifi-

2

127



��
��

P1

- n2 -��
��

P2

Figure 1: A simple coloured Petri net

cation formalisms. We see three main streams. There are assertional specification formalisms, Petri
nets and process algebras. We would all benefit if these formalisms would be integrated. In the past
we did not find any difficulties relating assertional methods andµCRL. However with Petri nets we
ran into a problem. Consider the coloured Petri net in figure 1. There are two placesP1 andP2 and a
transition labeled withn2 in the middle. The tokens in this coloured Petri net contain natural numbers
and the transition squares the number in each token that it processes. The standard semantics of this
system is that a token atomically leavesP1, its value is squared and it is put inP2.

The natural structure preserving translation of this Petri net into process algebra is the parallel
processP1 ‖ T ‖ P2. Using a standard synchronous communication a token can be read fromP1 into
T , and in a subsequent step be forwarded fromT to P2. But now we have translated what was a single
atomic step into two atomic steps. This is bad for at least the two following reasons. In the first place
this innocent looking doubling of states increases the number of states worsening the severity of the
state explosion problem, which is one of the core problems we try to avoid. In the second place nice
properties about Petri nets, such as state invariants do not easily carry over when introducing such
intermediate states.

In order to avoid the introduction of such an intermediate state and still allow for direct structural
translations, we felt forced to introduce multi-actions. In a multi-action zero or more actions can occur
simultaneously. The typical notation isa|b|c for a multi-action in which actionsa, b andc happen at
the same time. Now we can describe the transition in figure 1 by a process that reads a token with
valuen and in the same multi-action delivers the token with a valuen2. There is no straightforward
way to do this inµCRL.

Another problem occurs when describing complex systems with non-uniform communication. In
µCRL there is a global communication operator that is not compositional. To make the new language
compositional, we need to define it locally.

3 The mCRL2 language

The mCRL2 language is a movement back from the bare minimum concept ofµCRL towards a
slightly richer language. Therefore, we propose to call it amilli Common Representation Language,
or mCRL. Experience has taught that though we have designed the language with utmost care, we may
still have made mistakes in its design and fundamentally new extensions such as stochastic or hybrid
behaviour may be added in the future. Hence, we added a version number to the name paving the
way for mCRL3, mCRL4, etc. to come. By the way, the nameµCRL is not really suited for internet
because of the initial Greek letter.

3

128



3.1 Data language

The mCRL2 data language useshigher-orderabstract data types as a core theory. To this theory,
standard data types are added. We list these data types without further ado as they are commonly
known. All the common operators on these are made available in normal mathematical notation. In
order to get a quick idea, an expression using this datatype is provided.

• The sortB with constantstrue, falseand all standard operators. It is also possible to use the
quantifiers∀ and∃ ranging over any datatype. E.g.b ∧ false ⇒ ∀n:N.n < 3.

• Unbounded positive, natural and integer numbers. Typical examples of expressions using num-
bers are1− 464748473698768976 div exp(3, n), succ(m) ≤ n− 1 or x == x ∗ x− 1.

• Function types. For two given sortsA andB the sortA→B contains all functions from domain
A to B. Function application and lambda abstraction are part of the language. E.g. letf =
λx:N, b:B.if (b, x, 2 ∗ x). Thenf(3, false) is equal to6.

• Following functional languages, it is possible to declare structured types. These are especially
useful for enumerated data types and complex data structures such as for instance trees. A sort
MSof machine states can be declared by

sort MS = struct off | standby | starting | running | broken;

The sort of binary trees with numbers as their leaves looks like

sort T = struct leaf (N) | node(T, T );

It is possible to specify projection and recognition functions simultaneously, e.g.:

sort T = struct leaf (getnumber :N)?isLeaf | node(left :T, right :T )?isNode;

• Because lists are very commonly used datatypes, there is a built-in type of lists with standard
operations. The list of natural numbers isList(N). The following list expressions are all equiv-
alent: [3, 4, 5], 3 . [4, 5], [3, 4] / 5 and[]++ [3, 4]++ [5].

• Sets are very commonly used in mathematical specification, and as bags are a basic concept in
Petri nets, both have been included in the language. Sets are denoted in the normal mathematical
way. Typically,{1, 2, 4}, {1, 2} ∪ {1, 4} are sets. The set of primes is

{n:N | ∀m:N.(1 < m ∧m < n ⇒ n mod m > 0) }.

• Bags are sets where the multiplicity of elements is recalled. For enumerations this count is
appended to each element, e.g.{0:0, 1:1, 2:4}. For comprehensions the boolean condition is
replaced by a natural number, e.g.{m:N | m2} is the bag in which each numberm occursm2

times.

Currently, there are discussions about the inclusion of real numbers. As functions are available, it
is possible to represent real numbers. Moreover, this opens the way towards stochastic and hybrid
systems where functions from reals to reals play an important role. Another interesting concept is the
selector functionsε. The expressionεx:S.c(x) equals a unique valuex that satisfies conditionc(x).
It satisfies the axiom∃x:S.c(x) ⇒ c(εx:S.c(x)). These extensions may show up in mCRL3.

4

129



3.2 Multi-actions and local communication

In order to facilitate the connection with Petri nets, multi-actions are introduced. A multi-action is
a collection of ordinary actions that happen at the same time. A few examples of multi-actions are
a, a|b, b|a, a|b|c, a|b|a anda(t)|b(u)|a(v).

In mCRL2 parallel composition does not communicate. Instead, it introduces multi-actions, e.g.
the compositiona ‖ b of actionsa, b is equal toa · b + b · a + a|b. As a result the number of multi-
actions can increase exponentially in the size of the number of parallel compositions. Hence, we also
need operators to restrict this behaviour. First of all we have theblockingoperator∂H (which was
called encapsulation inµCRL) that blocks all multi-actions of which a part occurs in the action set
H, e.g.∂{a}(a + b · (a |c)) = b · δ. On the other hand, we have the visibility operator∇V called
allow that specifies precisely which multi-actions are allowed, namely the ones inV . For instance
∇{ a,b }(a ‖ b) = a · b + b · a,∇{ a|b }(a ‖ b) = a|b, and∇{ a,b|c }(a ‖ b ‖ c) = a · (b|c) + (b|c) · a.

Communication of actions is defined using the concept of multi-actions. Thelocal communica-
tion operatorΓC realises communication of multi-actions with equal data arguments. UnlikeµCRL,
communication does not block. For instance, ift = u andt 6= v, thenΓ{ a|b→c }(a(t)|b(u)) = c(t),
Γ{ a|b→c }(a(t)|b(v)) = a(t)|b(v) andΓ{ a|b|c→d }(a|b|c|d) = d|d, but also

∑
d:D Γ{ a|a→a }(a(d)|a(t)) =∑

d:D d = t → a(t), a(d)|a(t), i.e. if d = t thena(t) and ifd 6= t thena(d)|a(t) for a certaind.

4 Epilogue

The language mCRL2 is an attempt to makeµCRL more applicable in practise and to facilitate hier-
archical Petri nets. The language is extended with higher-order datatypes, standard datatypes, multi-
actions and local communication. Because the new language has essentially the same structure as its
predecessor, all currentµCRL specifications can be easily expressed in the new language and all proof
methodologies, theorems and tools carry over with only minor modifications.

References

[1] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I. van Langevelde, B. Lisser, and J.C. van de Pol.µCRL:
A Toolset for Analysing Algebraic Specifications. In proceedings CAV’01. LNCS 2102, pages
250–254, 2001.

[2] P.H.J. van Eijk, C.A. Vissers and M. Diaz, editors.The formal description technique LOTOS.
Elsevier Science Publishers B.V., 1989.

[3] W. Fokkink, J.F. Groote, J. Pang, B. Badban and J.C. van de Pol. Verifying a sliding window
protocol inµCRL. In C. Rattray, S. Maharaj and C. Shankland (eds), proceedings of the 10th In-
ternational Conference on Algebraic Methodology and Software Technology, Stirling, Scotland,
LNCS 3116, Springer-Verlag pp. 148-163, 2004.

[4] J.F. Groote. The syntax and semantics of timedµCRL. Technical report SEN-R9709, CWI,
Amsterdam, 1997.

[5] J.F. Groote and J.C. van de Pol. Equational Binary Decision Diagrams. In M. Parigot and A.
Voronkov,Logic for Programming and Reasoning, LPAR2000, Lecture Notes in Artificial Intel-
ligence, volume 1955, Springer Verlag, pages 161-178, 2000.

5

130



[6] J.F. Groote and M. Reniers. Algebraic process verification. In J.A. Bergstra, A. Ponse and
S.A. Smolka. Handbook of Process Algebra, pages 1151-1208, Elsevier, Amsterdam, 2001.

[7] G.J. Holzmann. The spin model checker: Primer and reference manual. Addison-Wesley, 2003.

[8] S. Mauw and G.J. Veltink. A process specification formalism.Fundamenta Informaticae,
XIII:85–139, 1990.

[9] A.S. Tanenbaum.Computer Networks. Prentice Hall, 1981.

6

131



Discretization of Timed Automata in TimedµCRL
à la Regions and Zones

Jan Friso Groote Michel A. Reniers Yaroslav S. Usenko

Laboratory for Quality Software, Department of Mathematics and Computer Science,

Technical University of Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

1 Introduction

We present the first step towards combining the best parts of the real-time verification methods
based on timed automata (the use of regions and zones), and of the process-algebraic approach
of languages like LOTOS andµCRL. µCRL targets the specification of system behavior in a
process-algebraic (ACP) style and deals with data elements in the form of abstract data types.

A timed automata specification is a parallel composition of timed automata. We use the
existing results to translate it to a parallel composition of timedµCRL processes. This transla-
tion uses a very simple sortTimeto represent the real-time clock values. As a result we obtain
a semantically equivalent specification in timedµCRL.

As the next step in our scheme, we aim at replacing all parameters of sortTimeoccurring in
the resulting process equation by parameters of discrete sorts. To achieve this goal we apply
process-algebraic transformations and abstraction techniques to the given process equation.
As a result we obtain a process equation that is closely related to the given one in the following
sense. If we abstract from the fractional parts of the time stamps in the actions, both of the
equations will be timed bisimilar.

2 Discretization Steps

2.1 Representing Timed Automata in TimedµCRL

Timed automata [1, 2] can be represented in timedµCRL by associating a recursion variable
with each location of the automaton as follows (see [6] for the initial idea). Consider a timed
automatonA =<L, l0,Σ,C, i,E>, whereL is a finite set of locations,l0 ∈ L is the initial
location,Σ is a finite set of edge labels,C is a finite set of clocks,i is a mapping that assigns to
each location an invariant, andE is a set of edges. An edge is a quintuple(l ,ae,φe,λe, le) with
l andle ∈ L the start and end location of the edge,ae ∈ Σ the label of the edge,φe the guard
associated with the edge andλe⊆C the set of clocks that are to be reset by the transition. All
φ(e) and i(l) are formulas with the following syntax:c≡ n | c1− c2 ≡ n | φ1∧ φ2, where
≡∈ {<,≤,=,≥,>} andn∈ Nat.

132



The following timedµCRL process equation forXl is a translation of a locationl ∈ L of a
timed automatonA:

Xl (ta:Time,v:ClVals) =

∑
e∈El

∑
tr :Time

ae ↪ (ta + tr) ·Xle(t
a + tr ,v′)

Csat invl (v)∧sat invl (v′′)∧sat conde(v′′)∧sat invle(v
′)Bδ ↪0

+ ∑
tr :Time

δ ↪ (ta + tr)Csat invl (v)∧sat invl (v′′)Bδ ↪0

where ta:Time represents the currentabsolutetime; v:ClVals⊆ C → Time represents the
current values of the clocks (inrelative time); El ⊆ E is the set of outgoing edges froml
with the elements of the forme= (l ,ae,φe,λe, le); v′′(c) = v(c)+ tr represents the values of
the clocks after timetr ; v′(c) = if (c ∈ λe,0,v′′(c)) represents the values of the clocks after
time tr and resetting the clocks fromλe. The conditionsat invl : ClVals→ Bool is defined
as sat invl (v) = i(l)[~c := v(~c)]; and the conditionsat conde : ClVals→ Bool is defined as
sat conde(v) = φe[~c := v(~c)]. In these two conditions the valuesv(c) are substituted for the
clock variablesc. This substitution is applied to both the location invariant formulai(l) and
the guard formulaφe.

The conditionssat invl (v) andsat invl (v′′) express that the invariant of locationl has to
hold in the start state of the transition and in the state just before the edge is taken. Condition
sat conde(v′′) expresses that the guard of the transition has to be satisfied at the moment the
edge is taken, and conditionsat invle(v

′) means that the invariant of the end location of the
edge has to be satisfied (after the clock resets are applied).

2.2 Splitting the Parameters into Integral and Fractional Parts

First we split the parametersta andv and the bound variabletr in two parts: integral and
fractional. We make it a bit different from what an obvious split would be as:tr is the offset
sinceta

i , not sinceta. The parameterv is split intovi and l rf that represent an (approximate)
integral value and the fractional part of the reset time of the clocks, respectively. To be more
precise, this step can be characterized as the following coordinate transformation:ta

i = fl(ta),
ta
f = fr(ta), vi = fl(v)+ if (fr(ta)≥ fr(v),0,1), andl rf = fr(ta−v), wherefl andfr are the floor

and the fraction functions.
In the other direction:ta = ta

i + ta
f andv = vi + ta

f − l rf . The correspondence between the
two tr is the following: tr = tr

i + tr
f − ta

f , andtr
i andtr

f are the integral and the fractional parts
of tr + fr(ta), respectively. The resulting process will look as:

X′l (t
a
i :Nat, ta

f :Time,vi :ClValsN, l rf :ClVals) =

∑
e∈El

∑
tr
i :Nat

∑
tr
f :Time

ae ↪ (ta
i + tr

i + tr
f ) ·X′le(t

a
i + tr

i , t
r
f ,v

′
i , l

r
f
′)

C tr
f < 1∧ (tr

f ≥ ta
f ∨ tr

i > 0)∧sat invl (v)∧sat invl (v′′)

∧sat conde(v′′)∧sat invle(v
′)Bδ ↪0

+ ∑
tr
i :Nat

∑
tr
f :Time

δ ↪ (ta
i + tr

i + tr
f )C tr

f < 1∧ (tr
f ≥ ta

f ∨ tr
i > 0)∧sat invl (v)∧sat invl (v′′)Bδ ↪0

133



wherevi :ClValsN⊆C→Nat andl rf :ClValsare as defined above;v′′i (c) = vi(c)+ tr
i represents

the value ofvi after timetr
i ; v′i(c) = if (c∈ λe,0,v′′i (c)) represents the value ofvi after timetr

i
taking into account the clock resets;l rf

′(c) = if (c∈ λe, tr
f , l

r
f (c)) represents the new fractional

values of the times the clocks were last reset;v′′(c) = (vi(c)+ tr
i )+ tr

f − l rf (c) is the value of
v′(c) using the new coordinates, andv′(c) = if (c∈ λe,0,v′′(c)) is calculated in the same way
as in the previous section.

Given the specific form of the clock constraints and the specific forms ofv, v′ andv′′, the
functions in the conditions can be expressed as the conjunctions of the following formulas
(some cases for the functionsat invl (v)):

• for the case ofc< nconstraint, substituting the value ofv(c) we getvi(c)+ta
f − l rf (c) < n

which is equivalent tovi(c) < n∨ (vi(c) = n∧ ta
f < l rf (c));

• for the case ofc ≤ n constraint we getvi(c) + ta
f − l rf (c) ≤ n which is equivalent to

vi(c) < n∨ (vi(c) = n∧ ta
f ≤ l rf (c));

• for the case ofc1− c2 < n constraint we get(vi(c1) + ta
f − l rf (c1))− (vi(c2) + ta

f −
l rf (c2)) < n which is equivalent to(vi(c1)−vi(c2))− l rf (c1)+ l rf (c2) < n, or equivalently
(vi(c1)−vi(c2)) < n∨ ((vi(c1)−vi(c2)) = n)∧ l rf (c1) > l rf (c2)).

For the functionssat invl (v′′) andsat conde(v′′) we will get similar constraints, withvi(c)+tr
i

in place ofvi(c) andtr
f in place ofta

f (due to the fact thatv′′(c) = (vi(c)+ tr
i )+ tr

f − l rf (c)). For
the functionsat invle(v

′) we apply a similar reasoning.
We claim thatXl (ta,v) andX′l (fl(ta), fr(ta),fl(v)+ if (fr(ta) ≥ fr(v),0,1), fr(ta−v)) have

the same solutions in every model of timedµCRL.

2.3 Splitting the Conditions into Integral and Fractional Parts

It is visible from the conditions that the actual values of the real-valued parameters (ta
f and

l rf ) and the bound variabletr
f are not important, but the relations between pairs of them may

be. Therefore we introduce an abstraction of these parameters and try to use this abstraction
instead of the real-valued parameters in the conditions. This corresponds to the use of regions
in timed automata ([1]).

Let the set of clocksC be{1, . . . ,n}, andC0 beC∪{0}. Each region will be characterized
by an orderingp0 <1 p1 <2 · · ·<n pn, where<k is either< or =, andpk is eitherl rf (pk), or it
is ta

f in casepk = 0, and allpk are unique. We assume to have such a data type calledOrd and

the functionsis cond : Ord×C0×C0 → Bool for every possible condition<,≤,=,≥,>.
It is also important to know the relation betweentr

f and the values ofl rf . We assume a
data typePos to indicate the position oftr

f in the orderingord. We use the functionfits :
Nat×Pos×Ord→ Bool to check that the position fits within the given ordering, and if the
first parameter is 0, then it checks whethertr

f ≥ ta
f . We can assume thatl rf andta

f conform to
ord in the initial state ofX′′l and prove that it will be an invariant. The conditionconform:
Ord×Pos×Time×ClVals×Time→Boolsays thatconform(ord,pos, ta

f , l
r
f , t

r
f ) implies thattr

f
is less than 1 and has indeed the positionposin the orderingord w.r.t. ta

f andl rf . The resulting

134



processX′′l will look as:

X′′l (t
a
i :Nat,vi :ClValsN,ord:Ord, ta

f :Time, l rf :ClVals) =

∑
e∈El

∑
tr
i :Nat

∑
pos:Pos

( ∑
tr
f :Time

ae ↪ (ta
i + tr

i +tr
f )·

X′′le(t
a
i + tr

i ,v
′
i ,upd ord(ord,pos,λe), tr

f , l
r
f
′)Cconform(ord,pos, ta

f , l
r
f , t

r
f )Bδ ↪0 )

Cfits(tr
i ,pos,ord)∧sat inv′l (vi , t

r
i ,ord)∧sat inv′′l (vi , t

r
i ,ord,pos)

∧sat cond′e(vi , t
r
i ,ord,pos)∧sat inv′′′le (vi , t

r
i ,ord,pos,λe)Bδ ↪0

+ ∑
tr
i :Nat

∑
tr
f :Time

∑
pos:Pos

( ∑
tr
f :Time

δ ↪ (ta
i + tr

i +tr
f )Cconform(ord,pos, ta

f , l
r
f , t

r
f )Bδ ↪0 )

Cfits(tr
i ,pos,ord)∧sat inv′l (vi , t

r
i ,ord)∧sat inv′′l (vi , t

r
i ,ord,pos)Bδ ↪0

whereupd ord(ord,pos,λe) gives the new ordering based on the old one, the position oftr
f

and the clock resets. The order of the clocks that are not reset do not change; the new position
of ta

f and the clocks that are reset will be the position oftr
f .

The sat formulas (some cases for the functionsat invl (v)) have the constraints that are
defined as follows:

• for the case ofc < n constraint: iford impliesta
f < l rf (c), thenvi(c)≤ n, elsevi(c) < n:

thusif (is le(ord,0,c),vi(c)≤ n,vi(c) < n);
• for the case ofc≤ n constraint:if (is leq(ord,0,c),vi(c)≤ n,vi(c) < n);
• for the case ofc1−c2 < n: if (is le(ord,c2,c1),vi(c1)−vi(c2)≤ n,vi(c1)−vi(c2) < n).

We claim without further proof thatX′l (t
a
i , ta

f ,vi , l rf ) and X′′l (t
a
i ,vi ,ord, ta

f , l
r
f ) are timed

bisimilar for all parametersord that conform with the actual values ofta
f andl rf .

2.4 Abstraction from Fractional Parts

Suppose we are not interested in the fractional parts of the action and the delta time stamps.
E.g. we replaceae ↪ (ta

i + tr
i + tr

f ) by ae ↪ (ta
i + tr

i ) in X′′l (we get rid of the boxed parts). The
resulting process variable we callYl .

Now we apply sum elimination toYl (cf. [5]) in order to get rid of the summation with
tr
f and the conditionconform. For this we use the fact that theTimedomain is dense and for

everytr
i , pos, ord such thatfits(tr

i ,pos,ord) and for every admissibleta
f and l rf there exists a

tr
f < 1 such thatconform(ord,pos, ta

f , l
r
f , t

r
f ). As a result we obtain the process equation forY′l .

Finally, we apply the parameter elimination to the last two parameters. As a result we get
the following process equation forY′′l :

Y′′l (ta
i :Nat,vi :ClValsN,ord:Ord) =

∑
e∈El

∑
tr
i :Nat

∑
pos:Pos

ae ↪ (ta
i + tr

i ) ·Y′′le(t
a
i + tr

i ,v
′
i ,upd ord(ord,pos,λe))

Cfits(tr
i ,pos,ord)∧sat inv′l (vi , t

r
i ,ord)∧sat inv′′l (vi , t

r
i ,ord,pos)

∧sat cond′e(vi , t
r
i ,ord,pos)∧sat inv′′′le (vi , t

r
i ,ord,pos,λe)Bδ ↪0

+ ∑
tr
i :Nat

∑
pos:Pos

δ ↪ (ta
i + tr

i )

Cfits(tr
i ,pos,ord)∧sat inv′l (vi , t

r
i ,ord)∧sat inv′′l (vi , t

r
i ,ord,pos)Bδ ↪0

135



The transformations we apply here are known to be standard forµCRL equations [4]. We
claim without further proof thatYl , Y′l andY′′l are timed bisimilar.

3 Conclusions and Future Work

In this paper we transformed a timedµCRL process equation representing a timed automaton
into a closely related timedµCRL process equation with discrete parameters and bound vari-
ables only. This could enable simulation and verification via enumeration of reachable states.
As a result, some of the existing untimed analysis tools in theµCRL Toolset [3] could become
applicable to the analysis of real-time systems.

As the future step in our scheme we would like to make the parameters and the bound
variables finite. To this end we apply arelativizationtechnique to get rid of the absolute time
parameterta

i . Due to the presence of the greatest constant in timed automata we can apply
the abstract interpretation technique to limit both the integer values of the clocksvi and the
integer relative time steptr

i .
As the next step we would like to factorize the remaining time-related parameters to be

able to deal with them like with zones. Both regions and zones, as well as the operations on
them could be specified as the abstract data typesRegionor Zonein µCRL, either as clock
constraints or as difference-bound matrices. We could even go further, analyze where exactly
we use the fact that we are dealing with timed automata and extend some of the results to a
more general setting.

References

[1] R. Alur. Timed automata. InProc. CAV’99, LNCS 1633, pages 8–22, 1999.

[2] J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. Technical Report 316,
UNU-IIST, P.O.Box 3058, Macau, September 2004.

[3] S. Blom, W. J. Fokkink, J. F. Groote, I. A. v. Langevelde, B. Lisser, and J. C. v. d. Pol.µCRL: A
toolset for analysing algebraic specifications. In G. Berry, H. Comon, and A. Finkel, editors,Proc
CAV’01, volume 2102 ofLNCS, pages 250–254. Springer, 2001.

[4] J. F. Groote and B. Lisser. Computer assisted manipulation of algebraic process specifications.
SIGPLAN Notices, 37(12):98–107, 2002.

[5] J. F. Groote and M. A. Reniers. Algebraic process verification. In J. A. Bergstra, A. Ponse, and
S. A. Smolka, editors,Handbook of Process Algebra, chapter 17, pages 1151–1208. Elsevier, 2001.

[6] T. A. C. Willemse. Semantics and Verification in Process Algebras with Data and Timing. PhD
thesis, Eindhoven University of Technology, 2003.

136



Monte Carlo Methods for Process Algebra

Radu Grosu and Scott A. Smolka
Dept. of Computer Science, Stony Brook Univ., Stony Brook, NY, 11794, USA

E-mail: {grosu,sas}@cs.sunysb.edu

Abstract. We review the recently developed technique of Monte Carlo
model checking and show how it can be applied to the implementation
problem for I/O Automata. We then consider some open problems in
applying Monte Carlo techniques to other process-algebraic problems,
such as simulation and bisimulation.

1 Introduction

Monte Carlo methods are often used in engineering and computer-science ap-
plications to compute an approximation of a solution whose exact computation
proves intractable. Example applications include belief updating in Bayesian net-
works,computing the volume of convex bodies,and approximating the number of
solutions of a DNF formula.

Recently, model-checking researchers have turned to Monte Carlo methods
in order to cope with the problem of state explosion; see, for example, [3, 6, 8, 1].
In this paper, we review the Monte Carlo model-checking algorithm of [1] and
show how it can be applied to the implementation problem for I/O Automata [4].
We then consider some open problems in applying Monte Carlo techniques to
other process-algebraic problems, such as simulation and bisimulation.

2 Monte Carlo Model Checking

Monte Carlo model checking, introduced in [1], is a novel technique that uses
random sampling of lassos in a discrete Büchi automaton (BA) to realize a
one-sided error, randomized algorithm for LTL model checking. Our approach
makes use of the following idea from the automata-theoretic technique of Vardi
and Wolper [7] for LTL model checking: given a specification S of a finite-state
system and an LTL formula ϕ, S |= ϕ (S models ϕ) if and only if the language of
the Büchi automaton B = BS ×B¬ϕ is empty. Here BS is the Büchi automaton
representing S’s state transition graph, and B¬ϕ is the Büchi automaton for the
negation of ϕ. Call a cycle reachable from an initial state of B a lasso, and say
that a lasso is accepting if the cycle portion of the lasso contains a final state of
B. The presence in B of an accepting lasso means that S is not a model of ϕ.
Moreover, such an accepting lasso can be viewed as a counter-example to S |= ϕ.

The LTL model-checking problem is thus naturally defined in terms of the
BA emptiness problem for B = BS × B¬ϕ, which reduces to finding accepting
lassos in B. Instead of searching the entire state space of B for accepting lassos,
we successively generate up to M lassos of B on the fly, by performing uniform
random walks in B. If the currently generated lasso is accepting, we have found
a counterexample for emptiness, and we stop. The number M of lassos we need
to generate depends on to two parameters: the error margin ε and the confidence
ratio δ.

137



To determine M for given ε and δ we aim to answer, with confidence 1−δ
and within error ε, to the following question: how many independent lassos do
we need to generate until one of them is accepting? The answer is based on a
geometric random variable X and statistical hypothesis testing. The geometric
random variable is parameterized by a Bernoulli random variable Z (defined
later in this section) that takes value 1 with probability pZ and value 0 with
probability qZ = 1−pZ. Intuitively, pZ is the probability that an arbitrary lasso
of B is accepting.

The cumulative distribution function of X for N independent trials of Z is:
F (N) = P[X ≤ N ] = 1 − (1 − pZ)N . Requiring that F (N) = 1 − δ yields:
N = ln(δ)/ ln(1− pZ). Because pZ is what we want to determine, we assume for
the moment that pZ ≥ ε. Replacing pZ with ε yields M = ln(δ)/ ln(1− ε) which
is greater than N and therefore P[X ≤ M ] ≥ P[X ≤ N ] = 1− δ. Summarizing:

pZ ≥ ε ⇒ P[X ≤ M ] ≥ 1− δ where M = ln(δ)/ ln(1− ε) (1)

Inequation 1 gives us the minimal number of attempts M needed to achieve suc-
cess with confidence ratio δ, under the assumption that pZ ≥ ε. The standard way
of discharging such an assumption is to use statistical hypothesis testing.Define
the null hypothesis H0 as the assumption that pZ ≥ ε. Rewriting inequation 1
with respect to H0 we obtain:

P[X ≤ M |H0] ≥ 1− δ (2)

We now perform M trials. If no counterexample is found, i.e., if X > M , we
reject H0. This may introduce a type-I error: H0 may be true even though we
did not find a counter-example. However, the probability of making this error
is bounded by δ; this is shown in inequation 3 which is obtained by taking the
complement of X ≤ M in inequation 2:

P[X > M |H0] < δ (3)

The Bernoulli random variable Z is associated with a uniform random walk
probability space (P(L),P). The sample space L is the set of all lassos of B; La

and Ln are the sets of all accepting and non-accepting lassos of B, respectively.
The probability P[σ] of a lasso σ = S0e0 . . . Sn−1en−1Sn is defined inductively

as follows:P[S0] = k−1 if |S0| = k andP[S0e0 . . . Sn−1en−1Sn] = P[S0e0 . . . Sn−1]·
π[Sn−1en−1Sn] where π[S e S′] = m−1 if (S, e, S′) ∈ E and |E(S)| = m.

Example 1 (Probability of lassos). Consider the Büchi automaton B of Figure 1.
It contains four lassos, 11, 1244, 1231 and 12344, having probabilities 1/2, 1/4,
1/8 and 1/8, respectively. Lasso 1231 is accepting.

2 3 41

Fig. 1. Example lasso probability space.

2

138



Definition 1 (Lasso Bernoulli variable). The random variable Z associated
with the probability space (P(L),P) of a Büchi automaton B is defined as follows:
pZ = P[Z = 1] =

∑

λa∈La
P[λa] and qZ = P[Z = 0] =

∑

λn∈Ln
P[λn].

Example 2 (Lassos Bernoulli variable). For the Büchi automaton B of Figure 1,
the lassos Bernoulli variable has associated probabilities pZ = 1/8 and qZ = 7/8.

Having defined Z, X and H0, we are now ready to presentMC2, our Monte Carlo
decision procedure for emptiness checking of BA. Its pseudo-code is given below,
where rInit(B)=random(S0), rNext(B,S)=random(E(S)) and acc(S,B)=(S ∈ F).

MC2 algorithm
input: B = (S ,S0, E, F); 0 < ε < 1; 0 < δ < 1.
output: Either (false, accepting lasso l) or (true, "P[X > M |H0] < δ")

(1) M := ln δ / ln(1 − ε);
(2) for (i := 1; i≤ M; i++) if (RL(B)==(1,l)) return (false,l);

(3) return (true,"P[X > M |H0] < δ");

The main routine consists of three statements, the first of which uses inequation 1
to determine the value for M , given parameters ε and δ. The second statement is
a for-loop that successively samples up to M lassos by calling the random lasso
(RL) routine. If an accepting lasso l is found, MC2 decides false and returns l as
a counter-example. If no accepting lasso is found within M trials, MC2 decides
true, and reports that with probability less than δ, pZ > ε.

The RL routine generates a random lasso by using the randomized init (rInit)
and randomized next (rNext) routines. To determine if the generated lasso is
accepting, it stores the index i of each encountered state s in HashTbl and
records the index of the most recently encountered accepting state in variable f.
Upon detecting a cycle, i.e., the state s := rNext(B,s) is in HashTbl, it checks if
HashTbl(s)≤ f; the cycle is an accepting cycle if and only if this is the case. The
function lasso() extracts a lasso from the states stored in HashTbl.

Given a succinct representation S of a Büchi automaton B, one can avoid the
explicit construction of B, by generating random states rInit(B) and rNext(B,s)

on demand and performing the test for acceptance acc(B,s) symbolically.
MC2 is very efficient. It runs in time O(MD) and uses O(D) space, whereM is

optimal and D is B’s recurrence diameter (longest loop-free path starting from
an initial state).

3 The Implementation Problem for I/O Automata

An I/O Automaton (IOA) is a finite-state automaton whose transitions are as-
sociated with named actions, which are classified as input, output, or internal.
Input and output actions are used for communication with the automaton’s en-
vironment, whereas internal actions are visible only to the automaton itself. The
input actions are assumed not to be under the automaton’s control (IOA are

3

139



input-enabled, whereas the automaton itself controls which output and internal
actions should be performed. See [4] for the formal definition.

The implementation problem for I/O Automata (IOA) is the following. Given
IOA A and B, representing the implementation and specification of the system
under investigation, does A implement B (A ≤ B)? Now, A ≤ B holds if L(A) ⊆
L(B); that is, the traces of A are a subset of the traces of B. This in turn is
equivalent to L(A × B) = ∅, where B is the complement of B. Intuitively, if
every observable behavior of A is an observable behavior of B then no observable
behavior of A is an observable behavior of B.

Specification IOA B can be viewed as a (input-enabled) Büchi automaton by
treating a subset of its states as accepting. IOA A can similarly be viewed as a
BA (all of whose states are accepting). Consequently, the IOA implementation
problem can be reduced to the language emptiness problem for BA, and the MC2

Monte Carlo algorithm can be directly applied. A recent paper [2] suggests how
this can all be extended to the case of Timed I/O Automata.

4 Open Problems

It would be interesting to extend our Monte Carlo approach to the model-
checking problem for branching-time temporal logics, such as CTL, the modal
mu-calculus, and Hennessy-Milner logic. This extension appears to be non-trivial
since the idea of sampling accepting lassos in the product graph will no longer
suffice. For the similar reasons, the problem of applying Monte Carlo methods
in deciding simulation [5] and bisimulation remains open.

References

1. R. Grosu and S. A. Smolka. Monte Carlo model checking. In Proceedings of TACAS
2005. Springer-Verlag, 2005.

2. R. Grosu, S. A. Smolka, W. Tan, A. Bouajjani, M. D. Bozga, and S. Tripakis. Monte
Carlo model checking of timed automata, 2005. Submitted for publication.

3. T Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate probabilistic
model checking. In Proc. Fifth International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2004), 2004.

4. N. Lynch and M. Tuttle. An introduction to input/output automata. CWI Quar-
terly, 2(3):219–246, 1989.

5. N. Lynch and F. Vaandrager. Forward and backward simulations I: untimed systems.
Inf. Comput., 121(2):214–233, 1995.

6. K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic
systems. In K. Etessami and S. Rajamani, editors, Proc, of the 17th International
Conference on Computer Aided Verification, volume 3576 of LNCS. Springer, 2005.

7. M. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proc. IEEE Symposium on Logic in Computer Science, pages 332–
344, 1986.

8. H.L.S. Younes. Probabilistic verification for black-box systems. In K. Etessami
and S. Rajamani, editors, Proc. of the 17th International Conference on Computer
Aided Verification, volume 3576 of LNCS, pages 253–265. Springer, 2005.

4

140



Why ever CSP? 

10 May 2005 

Tony Hoare,       Microsoft Research Ltd. 
 

The original theoretical model of Communicating Sequential Processes owed its inspiration 
to the achievements of Milner, Scott and Dijkstra.  It was developed at around the time of 
the publication of Milner’s Calculus of Communicating Systems.  Why ever did CSP 
diverge from CCS?   
 
The ESPRIT basic research action ‘CONCUR’ brought together the proponents of three of 
the original calculi of concurrency: ACP, CCS and CSP.  It was hoped that we would 
develop a unified calculus, and concur upon its adoption.  Why ever did we fail? 
  
I would like to share with you the way in which I thought about these questions twenty five 
years ago.  Better answers can perhaps be given today.  For example, my talk at Bertinoro 
will show how CSP and other calculi can be neatly embedded as retracts within the 
transition system of CCS.   

 
Process algebra is the branch of Computer Science which studies mathematical 
models of processes, regarded as agents that act and interact continuously with other 
similar agents and with their common environment. The agents may be real-world 
objects (even people), or they may be artefacts, embodied perhaps in computer 
hardware or software systems.  In the last quarter century, a great many different 
process calculi have been constructed and explored; many of them owe their 
inspiration to Milner’s original work on CCS, and others have obviously been based 
more on CSP.   In this contribution, I would like to explain informally and motivate 
the ways in which these two traditions have diverged from each other.  But first I must 
emphasise that the similarities across the whole range are far more significant than 
their differences.  I will therefore suggest in my conclusion that the time has come to 
unify the two modelling styles, to enable practicing engineers to exploit a combination 
of their complementary advantages.  If they were not different to start with, this would 
not have been possible. 
 
Primitive processes and operators.  A primary goal in the original design of CCS 
was to discover and codify a minimal set of basic primitive agents and operators, 
which are capable in combination of describing all the characteristic phenomena 
encountered in the study of the interactions of concurrent agents.  Minimisation of 
primitives is a fundamental goal in all branches of science; and in process algebra 
there is the additional advantage that it simplifies inductive proofs of the properties of 
all agents describable in the chosen calculus.  CCS has certainly achieved its goal, and 
a wide range of useful operators which have been studied subsequently are all 
definable in terms of CCS primitives. 
 
From the beginning, CSP was more interested in this broader range of useful 
operators, independent of which of them might be selected as primitive – a question 
usually of little concern to practicing mathematicians.  There are around a dozen 
structuring operators defined in standard versions of CSP; their definition was 
primarily influenced by the needs of designers and implementers building complex 
computer systems.  For example, CSP includes the familiar operator of sequential 

141



composition.  This is useful because it enables a system to be split into components 
implemented and understood separately.  When they are sequentially composed, their 
execution is guaranteed to be time-wise disjoint, in the sense that the activity of one 
occurs wholly before the activity of the other.  Thus all the resources of the world 
pass silently from the first operand to the second, without any overhead of 
implementation or verification.  The design of a concurrent computer system usually 
involves a subtle interplay of sequential and concurrent structures, and both of them 
can benefit from the attention of the theorist.  In contrast, theories based on CCS tend 
to neglect sequential composition, on the perfectly reasonable grounds that it can 
easily be constructed out of parallel composition and synchronisation. 
 
Another criterion in the selection of the CSP operators was to explore the important 
features of concurrent programming as far as possible in isolation from each other.  
For example, CSP separates two concepts of choice: one of them is choice made by 
the external environment of a process, and the other is a purer form of non-
deterministic choice, which cannot be influenced by the environment.  Similarly, the 
basic operator for CSP concurrent composition refrains from hiding of internal 
interactions between its operands. This permits any desired number of processes to 
participate simultaneously in a single atomic event.  Hiding is defined as a separate 
operator, so that its properties can be studied independently of concurrency.  As a 
result, the primary CSP concurrent composition operator has a very simple definition, 
and permits simple proofs of associativity, commutativity, etc.  Other useful forms of 
concurrency (interleaving, chaining, and lock-step synchronisation) are all definable 
in terms of the primary operator. Furthermore, by synchronising the final tick, it 
automatically achieves synchronised termination of sequential processes. Finally, the 
concurrent operator by itself does not introduce non-determinism.  This series of free 
lunches give one the feeling that the mathematics is really working in our favour.  
Especially since subsequent work in practical modelling and model-checking has 
revealed the extraordinary expressive power of multi-way synchronisation. 
 
A final criterion in decisions about the details of definition of an operator is that it 
leads to elegant and useful theorems.  Even the definition itself should be elegant, 
when expressed in the chosen definitional style.  In general, the operators of CCS 
have elegant operational definitions, whereas the CSP operators have fairly elegant 
denotational definitions.  But CSP was willing to complicate its definitions in order to 
improve the algebraic properties of the operators.  For example, CSP defines the 
parallel combinator to be strict, in the sense that livelock of either operand reduces the 
whole system to livelock.  Strictness requires an extra clause in the denotational 
definition. There are practical arguments in favour of this, because it enables any 
desired priorities to be assigned to the processes, without affecting the logical 
correctness of the concurrent system.  But the initial motivation was to simplify the 
algebra and the normal forms.  Strictness is also needed to make the process chaining 
operator  ( >> ) associative.  Finally, it is needed to establish a formal correspondence 
with an operational semantics, and to put on one side the tangled and complex issues 
of fairness.  At the time of the CONCUR project, I thought that the careful and 
consistent combination of denotational, algebraic, and operational definitions was a 
strong argument in favour of adopting CSP in a unifying role. 
 
 
Bi-simulation and refinement.  All process calculi provide a way of proving the 
conformity of a process to a specification that is expressed within the notations of the 

142



same calculus.  This is valuable when the specification is expressed more clearly or 
simply than its implementation, and so is more obviously correct.  It is the extra 
efficiency of the implementation that often introduces complexity and obscurity, and 
that is what makes it necessary to prove correctness. In CCS this is often done by 
proving that the process and its specification are related by a symmetric equivalence 
relation of bi-simulation.  Bi-simulation has an elegant co-inductive definition, which 
validates simple and elegant proofs.  Furthermore, bi-simulation proofs can be 
constructed automatically and efficiently by the basic algorithm of model checking.   
 
Definition of correctness by an equivalence relation means that a specification and its 
implementation must be essentially indistinguishable within the calculus itself.  CSP 
defines correctness more generally in terms of an ordering relation, known as 
refinement.  Refinement is defined directly in terms of observations of the behaviour 
of a process when executed together with its environment.  The observations of a 
correct implementation have to be included in those described by (and therefore 
permitted by) its specification.  Inclusion is an asymmetric relation.  The intention is 
that a specification may be quite abstract, and have many distinguishable correct 
implementations, all of which can be proved to refine it; choice of the details of 
implementation is still important, but can be deliberately postponed till later in the 
design trajectory, or even left as an arbitrary outcome of execution. 
 
The refinement relation of CSP is in principle less efficient to compute mechanically 
than the bisimulation of CCS.  But in practice, this problem has been overcome.  The 
designers of FDR, the CSP model-checker, exploit the CSP algebra to reduce the 
specification to a normal form before embarking on a proof of correctness of an 
implementation.  In principle this reduction introduces high complexity, but 
fortunately specifications are in general simpler than implementations, and the overall 
performance in practical application (at least by experts) is very adequate. 
 
CSP does not insist on any particular notation for its specifications.  Any 
mathematically sound description of the desired observations of a system may serve 
as its abstract specification, and such abstract specifications can be freely mixed with 
more concrete ones expressed within the calculus. If a process does not satisfy its 
specification, there is always the possibility of finding an observable witness of this 
fact when the process is executed.  A CCS specification can also be expressed in a 
more expressive logic designed by Hennessy and Milner.  It is more expressive than 
the calculus of executable processes, because it includes conjunction and negation, in 
addition to multiple modalities and fixed points.  Its semantics are defined 
axiomatically by its CCS models, rather than by relationship to concrete observations 
of behaviour.   
 
In a theory like CSP which is based on observations, the choice of which observations 
are relevant is crucial.  Obviously, it is reasonable to presume that the interactions 
between a process and its ultimate environment are observable. Notoriously, this is 
insufficient, and certain carefully selected properties of the internal state of a process 
must also be considered as observable.  In versions of CCS, they are called barbs.  
Their selection has been determined mainly by the need of concurrent system 
designers to avoid the notorious flaws of deadlock and live-lock, mentioned above.  If 
a flaw is not modelled in a theory, it is impossible to use the theory to prove its 
absence.   
 

143



In particular, when a process has apparently stopped interacting with its environment, 
it is important to distinguish the reason why: in some cases maybe this is not a flaw, 
because the process has already successfully completed all its tasks; in other cases, 
maybe the process cannot proceed because it is deadlocked in its communication with 
its environment; or worst of all, maybe the process is engaged in an infinite internal 
computation  -- sometimes called live-lock.  Freedom from deadlock and freedom 
from live-lock are usually classified as liveness properties, requiring more complex 
methods of proof than simple observational inclusion.  CSP makes them into safety 
properties by introducing special symbols (the refusal and the tick) to denote these 
phenomena.  As a result, CSP distinguishes three primitive processes (STOP, SKIP 
and CHAOS) that exhibit them in their purest form, whereas CCS makes do with just 
one (NIL).   
 
If a barb is defined as an event with a special built-in meaning, even the original 
version of CCS introduced one such special non-interaction, namely, the silent event 
tau.  It stands for an internal transition or calculation step of a process.  As a single 
primitive, this is an excellent choice, since it can be used to define many other 
concepts of interest, including internal non-determinism, stable states, refusals, and 
divergences.  CSP preferred to explore these other more specialised concepts in 
isolation from each other, and rejected tau, largely because it signifies a feature of 
execution that has no useful role in specifications.   
  
Variations.  Another primary initial goal of CCS was to provide a basis for the 
construction and exploration of a comprehensive range of related process calculi.  
Selection of a particular calculus may be made according to the needs of each 
particular application.  It is a basis in the sense that all the calculi of the range must be 
constrained to satisfy all the  basic properties and equivalences which are valid in 
CCS itself.  To maintain the widest possible range of application, there was a strong 
motivation to confine the set of laws provable as CCS bi-simulations to an obviously 
basic minimum.  CSP pursued exactly the opposite goal – to validate as many 
equations as possible. The extra equations are potentially useful in reasoning about 
correctness of computer system designs and implementations; extra equations are also 
useful in the optimisation of process designs for execution in computer hardware or 
software.  The main limit on the number of equations is the need to maintain 
distinctions between well-behaved computer systems and those which are liable to 
specific failures like deadlock and divergence, described above.   
 
CCS has been spectacularly successful in another of its original aims -- to provide a 
pattern and methodology for the development of an enormous range of other similar 
process calculi.  Each calculus starts with its own choice of syntax for its operators 
and primitive processes.  A recursive definition of the semantics is given by means of 
transition rules, or a structured operational semantics.  This provides a guide for a 
practical implementation, and support for the operational intuition of a programmer 
trying to debug a program. Finally, an equivalence relation, usually based on (and 
weaker than) bi-simulation, is defined over the syntactic forms in which a process can 
be expressed.  Two such syntactic forms are equated if they can be proved to be 
equivalent in all contexts expressible in the notation; proofs of equality can therefore 
exploit inductions over both the syntax of the calculus and the length of the execution 
sequence.  This makes the important concept of equality somewhat fragile:  the 
slightest change in the syntax or in the transition rules can require many proofs to be 
re-worked.  This has not turned out to be a serious disadvantage, because research on 

144



a new process calculus usually starts from scratch, without much re-use of specific 
definitions and theorems from an earlier calculus. 
 
The definitional principles pioneered by CCS are extraordinarily powerful, because it 
is guaranteed that the mathematical objects so defined always exist.  For CSP, every 
definition of a primitive process or operator is constrained to satisfy or preserve 
certain healthiness conditions on the observational model.  For example if a process 
has engaged in a long sequence of interactions, there must have been a time when it 
was observed to have engaged in some shorter subsequence of them.  This is 
represented by a healthiness condition of prefix closure of the trace sets.  The 
healthiness conditions serve much like conservation or symmetry principles in 
physics, in the sense that they provide a rapid feasibility check on statements and 
definitions and conjectures expressed in the calculus.  However the extra proof 
obligations that accompany every definition are extra work that is not required by an 
operational definition. 
 
Another constraint on the definition of a CSP operator is that it must be monotonic, in 
the sense that it preserves the refinement ordering of its operands.  This is necessary 
to ensure that the components of a complex system can be refined safely, with results 
that can be composed to meet the original specification.  Furthermore, it permits 
recursion to be defined simply and abstractly by the famous Tarski-Knaster 
construction.  Fortunately, monotonicity is easily achieved by not using negation in 
the definition of the operator.  The corresponding property in CCS is congruence, 
which depends usually on a proof by cases. 
 
The obligation that every definition should be accompanied by a proof  may be an 
explanation for the rather narrower range of theories based on CSP.  The relations 
between the members of the range are similar to those familiar in classical 
mathematics.  For example, the failure and trace models of standard CSP are derived 
by simply omitting divergences and/or refusals from the sets of observations.  All 
equations valid in the standard theory (and more) are still valid in the reduced theory, 
and do not have to be proved again.  Other more specialised calculi are obtained by 
specialisation of components of the standard calculus.  For example, an output on a 
communication channel is a particular kind of interaction, modelled as a pair 
consisting of the channel name together with the content of the message.  An input is 
then modelled as an external choice among all possible messages along a specific 
channel.  As a result, successful communication from outputter to inputter is achieved 
by the standard definition of parallel composition -- another free lunch.   
 
The methods of proof for CSP models are entirely familiar from classical discrete 
mathematics, involving standard concepts of sets, sequences and mappings.  The 
proof methods of CCS are highly innovative, involving techniques of syntax 
definition, operational semantics, recursion, induction, and co-induction; and these are 
still clearly within the province of computer science.  The choice between these proof 
styles is definitely a matter of personal taste.    A similar dichotomy is found among 
pure mathematicians, who often classify themselves, almost by inborn nature, either 
as analysts or as algebraists. Many people strongly prefer one style to the other, and 
find it quite difficult to change. 
 
Clearly mathematics itself gains enormously from such diversity of style, and I hope 
this note has argued that diversity has brought equal value to the study of the much 

145



narrower domain of process algebra.  It seems that CCS and CSP occupy extreme 
ends of almost every spectrum.  Of all subsequently explored process calculi, CCS 
defined a minimal set of primitives and operators, with a minimal set of equations 
relating them, whereas CSP has explored a wide range of concepts that have proved 
useful in concurrent system design.  Broadly speaking, of all the variations of process 
calculi that have since been explored, CCS and CSP still occupy the extreme 
positions. 
 
Unification of theories.  The existence of extremes is a great advantage to the 
mathematician in exploring the whole range of variation between them. In practical 
application also it offers advantages, which are naturally the greatest at the extremes.   
In this note I have argued that CCS and CSP have both succeeded admirably in their 
original aims to occupy the opposite extremes on almost any standard of comparison. 
Process algebra would be an impoverished field of study if the CONCUR project had 
succeeded in its original aims of assimilation of calculi.  But what can we do for the 
practicing engineer who wishes to combine the advantages to be found at each of the 
extremes?  Fortunately, that is something that mathematicians know well how to do, 
by mapping the objects of one theory onto those of another, while preserving the most 
important structural properties.  In the case of process algebra, I suggest that these 
mappings are Scott retractions (in some cases, with slight variation of definition).  
Retractions are simple cases of Galois connections or monads, which are themselves 
simple cases of categorical adjunctions. 
 
In my paper at this conference, I will show that the transition system of CSP is 
essentially a subset of the universal transition system of CCS.  Within this subset, 
mutual refinement means the same as bi-simulation, and refinement is the same as 
simulation.  Furthermore, there is a retraction which projects every process of CCS 
onto its closest approximation in the CSP subset.  The retraction is defined by 
transition rules of the kind that are standard in CCS.  All (or most of) the healthiness 
conditions of CSP processes are expressible by the statement that they are fixed points 
of the retraction.  As a result, it is possible to make definitions and conduct proofs in 
CCS using bi-simulation, and project the results directly into CSP by means of the 
retraction. 
 
Indeed, there is a whole chain of retractions, linking various versions of CCS to each 
other and to various versions of CSP.  There is a retraction that maps bi-simulation to 
weak bi-simulation, and there are retractions that introduce the barbs representing 
divergences, refusals, and traces.  By composing an appropriate subset of these 
retractions, one can move between these different calculi, according to whichever 
offers the most advantage for the task in hand.  And that is a conclusion which does 
not require us to make any judgement whether the subset is superior to the full set, or 
vice-versa.  Indeed, Bill Roscoe has given me an elegant definition of the operators of 
CCS within the transition system of CSP; so in a different but equally valid sense, 
CCS is a subset of CSP. 
 
These discoveries have been made in close collaboration with He Jifeng, in pursuit of 
a long-term goal for the unification of theories of programming. 
 
 
 

146



Process Algebras in the age of Ubiquitous Computing

Kohei Honda
Queen Mary, University of London, U.K.

Abstract

We discuss why process theories are such an enchanting field, motivated by
intriguing questions rather than sheer engineering needs. We also consider one
way to use the resulting understanding in the context of so-called ubiquitous
computing.

Why need behaviour of concurrent computing be understood? Is there any mystery
there? After all, our programming languages and computing machines are designed by
humans, however powerful they are. So they are the result of human engineering, just
as, say, cars are. Is there any mystery how your car runs? Our cars were made to
run by capable engineers’ hands, who may have relied on physical laws of the universe,
but those laws are a pre-requisite to the engineering of cars rather than part of it, so
there seems not much of “science of cars” possible. Then how can we have science of
programs, science of software?

As in many other fields of science, it may be safe to say that our field did not begin
out of sheer materialistic needs. It started with curiosity of researchers, for example
when pioneers of concurrency theory stumbled upon a question, say, how one can math-
ematically capture the behaviour of a simple concurrent program such as x := 1; y := 2x
in parallel with x := 3. It turned out that this is an astoundingly deep problem, long
lasting and invoking one question after another, leading to many calculi, many new
notions of relations, a new set theory, and new deduction methods. Taking an example
with which I am familiar, one of the significant findings out of these inquiries is that
the idea of concurrent processes which communicate with each other solely by send-
ing and receiving communication channel names and nothing else, gives rise to a very
expressive calculus that can precisely represent a wide range of behaviours of concur-
rent and sequential computation. Interestingly, this calculus turned out to be closely
associated with another significant recent discovery in a related field, a solution to the
so-called “full abstraction problem”, which is about faithfulness of mathematical models
of conventional sequential programming languages.

Science of natural numbers, Number Theory, also started in the same way, out of
curiosity: the subject initially started, and still proceeds, through curiosity of inquiring
minds, by stumbling upon some questions, perhaps posed by oneself, perhaps whispered
by others. The richness and depth of this mathematical structure, the natural numbers,
could only be appreciated after its study matured.

1

147



But computing science in general and process theory in particular are not only about
mathematical structures. It is first and foremost about computation. It is the desire
to fully understand how concurrent processes and, more generally, computing agents
behave (and how a rich collection of behaviours they have!) that drive those in this
discipline. And it is also directly about engineering. The reason why a general inquiry
into behaviour of software matters in engineering is because the primary tool for software
engineering, programming languages, can realise an infinite variety of (tangible and
sometimes intangible) software behaviour. The resulting “design space” of behaviours,
even restricted to what can be generated by a single programming language such as
Pascal, Java or ML, is extremely large, so much so that even just classifying all possible
realisable software behaviour in an orderly way can become an intellectual challenge,
along with other questions such as specifying their properties in a meaningful way using,
say, logical formulae. Simply put, in software engineering, the variety with which we can
combine components, as well as the variety of available components themselves, is too
large to handle without general principles. This singular nature of computing systems
in general and software in particular is the reason why we need to found our engineering
principles on a general mathematical basis.

Thus saying the behaviour of programs in Java, C, or ML are well-understood (after
all their definitions have been written down, either as informal standards or as rigorous
mathematical definitions), is the same thing as saying there is no mystery in natural
numbers, for the reason that we know how to count them. That you can count (and
all numbers look just so plain) is certainly true but that does not contradict there are
many inexhaustible questions on numbers remaining to be solved. In fact some basic
aspects of even sequential programs are so subtle that their clarification demanded long
years of study (the full abstraction problem mentioned before is one of such problems):
when it comes to concurrency and communication, which encompass a far wider variety
of behaviours, many aspects of this broad terrain are awaiting to be uncovered, on the
basis of accumulated study of theories of processes.

I started this note with the title “In the age of Ubiquitous Computing”. In ubiq-
uitous computing, we are surrounded by numerous and often invisible digital agents
which communicate with each other and which may proactively offer service and change
environment to us. As Stajano and Crowcroft examine in their recent essay [2], such
environment-service complex pauses fundamental problems about, for example, privacy
(how can you guarantee privacy when you are always being seen, felt and heard by
digital sensory organs of the environment?) and responsibility (if you let your car drive
for itself and if it has an accident by some malfunctioning, who takes responsibility?).
The infrastructure can become overwhelmingly powerful and can easily be abused, so
that it can even become a basic threat to our civilised life. In the same context Stajano
[1] writes:

It would be evil if pervasive surveillance were built into ubicomp on purpose,
but it would be tragically idiotic if this just happened by negligence — simply
because thinking of appropriate safeguards was too hard and therefore too
expensive.

Such safeguards can only be materialised by maturing our engineering and social under-

2

148



standing of the underlying issues, and by formulating clear and implementable engineer-
ing criteria, as well as making them understood by society at large. Good engineering
ideas are certainly important, but if we cannot describe behaviour of computing agents
clearly, there is no hope we can even agree on in what way the behaviour of, say, your
personal electronic assistant should be (which vendors should engineer and sell following
a standard), for example for you to be sure it does not violate your privacy. It is true
that corporate executives can have bugs even now in their office: but in the world where
your living room will be constantly donwloading components from the outside which
are connected to sensory machinery and may communicate with the outside, the degree
of privacy violation will be much greater. In fact it is not only about privacy but also
about general safety of software behaviour which is at stake, because privacy violation
is but a single manifestation of how crucially and intricately our daily lives will be re-
lying on computing, whose key features will predominantly include communication and
concurrency. Describing behaviours of sequential and concurrent software and control-
ling them, up to the precision all able engineers can agree on, is surely one place where
science is demanded.

Science cannot survive without intriguing questions. Theories of processes, including
process algebras and calculi, are alive by these questions, which get unexpectedly related
with other threads of research such as semantics of sequential programs, again leading
to new questions. The true life of a field of science only exists in such intellectual
dynamics. Science is definitely for understanding. At the same time, it is partly because
of unexpected use of such understanding for enrichment of human life (in many kinds)
that society can maintain these activities.

Promoting the shared understanding of the engineering principles for building soft-
ware for information appliances is far from a unique challenge to theories of processes
in the context of ubiquitous computing. In fact, even this subject itself, which is more
socially oriented than scientifically, poses us the same basic questions about behaviours
of communicating computing agents as the theory of processes have posed in its long
history, with a new twist in such elements as real-time and location. What are inter-
active behaviour? How do we specify their properties? When can we substitute one
sub-behaviour for another without affecting the whole behaviour? How can we compose
behaviours and what is the result of composition? Classical questions these are, but as
any truly classic question is, they acquire new life in the context of urgent social and
ethical needs of ubiquitous computing.

References

[1] Stajano, F. Security for Whom? The shifting Security Assumptions of Pervasive
Computing. 2004.

[2] Stajano, F. and Crowcroft, J. The Butt iof the Iceberg: Hidden Security Problems
of Ubiquitous Systems, 2004.

3

149



One 2 Many 2 One – Evolution of Timed Systems
Modeling and Analysis

Kim Guldstrand Larsen
Department of Computer Science, Aalborg University

June 9, 2005

Abstract

At the end of the eighties, process algebraic formalisms evolved in parallel with, and
to a large extent independently of, the development of timed automata. Typical process al-
gebraic problems such as axiomatization and decidability of equivalences and preorders,
and decidability of model-checking proved initially extremely hard problems in the timed
process algebraic setting. Successes were initially obtained by restricting the timed cal-
culi to regular terms—or, in timed automata terminology, to models expressible using
only a single clock. The lack of an (easy) expansion theorem prevented for a long time
extensions of these results to full calculi. However, for the author, two contributions in
the beginning of the nineties radically changed the personal picture by linking timed pro-
cess algebra to the (at that time) more developed theory of timed automata in terms of
decidability results.

Firstly, the work by Karlis Cerans in 1992 showed that timed bisimulation for net-
works of timed regular processes is decidable by a clever product-construction and use of
the so-called region-construction of Alur and Dill.

Secondly, the work by Wan Fokkink in 1993 identified a “regular” timed calculus
having the same expressive power as timed automata by allowing simple parameterized
recursion and time-binding variables accompanying action-prefixes.

These two results highly influenced the tool EPSILON (a pre-runner for UPPAAL) for
equivalence checking and model checking timed systems expressed in Wang Yi’s calculus
TCCS.

Currently, here several years later, the class of one-clocked systems is receiving new
research interest with surprising and positive results. In 2003 Ouaknine and Worrell
showed that language-inclusion becomes decidable for one-clocked systems. In 2004
Laroussinie, Markey and Schnoebelen showed that model-checking becomes decidable
in polynomial time for one-clocked systems—and currently Larsen, Laroussinie and
Markey are establishing decidability of model-checking problems for one-clocked priced
timed automata (in contrast to the general undecidability result recently given by Raskin).

150



A Family of Resource-Bound Real-Time Process
Algebras

Insup Lee, University of Pennsylvania
Anna Philippou, University of Cyprus

Oleg Sokolsky, University of Pennsylvania

Abstract

The Algebra of Communicating Shared Resources (ACSR) is a timed process
algebra which represents a real-time system as a collection of concurrent pro-
cesses. Each process may engage in two kinds of activities: communication with
other processes by means of instantaneous events and computation by means of
timed actions. Executing an action requires access to a set of resources and takes
a non-zero amount of time measured by an implicit global clock. Resources are
used to model contention in accessing physical devices such as processors, memory
modules, communication links, or any other reusable resource of limited capacity.
The notion of a resource, central in the specification of real-time and embedded
systems, additionally provides a convenient abstraction for a variety of aspects
of system behavior, such as failure of physical devices, power consumption, etc.
Resource-centric modeling is useful in qualitative (e.g., schedulability) and quan-
titative (e.g., resource utilization) analysis of embedded systems.

1 Introduction

Modeling timing aspects of system behavior has a long history in process-algebraic
formalisms. In this paper, we advocate the use of resources in the modeling of real-time
systems as a means of arriving at simpler and more faithful models.

Process algebras, such as CCS [7], CSP [4], and ACP [2], have been developed to
describe and analyze communicating, concurrently executing systems. They are based
on the premises that the two most essential notions in understanding complex dynamic
systems are concurrency and communication [7]. The Algebra of Communicating Shared
Resources (ACSR) introduced by Lee et. al. [6], is a timed process algebra which can
be regarded as an extension of CCS. The timing behavior of a real-time system depends
not only on delays due to process synchronization, but also on the availability of shared
resources. Most real-time process algebras adequately capture delays due to process
synchronization; however, they abstract out resource-specific details by assuming ide-
alistic operating environments. On the other hand, scheduling and resource allocation
algorithms used for real-time systems ignore the effect of process synchronization ex-
cept for simple precedence relations between processes. The ACSR algebra provides a

151



formal framework that combines the areas of process algebra and real-time scheduling,
and thus, can help us to reason about systems that are sensitive to deadlines, process
interaction and resource availability.

The computation model of ACSR is based on the view that a real-time system con-
sists of a set of communicating processes that use shared resources for execution and
synchronize with one another. The notion of real time in ACSR is quantitative and
discrete, and is accommodated using the concept of timed actions. Executing a timed
action requires access to a set of resources and takes one unit of time. Resources are
serially reusable, and access to them is governed by priorities. To ensure the uniform
progression of time, processes execute timed actions synchronously. Similar to CCS,
the execution of an event is instantaneous and never consumes any resource. The no-
tion of communication is modeled using events through the execution of complementary
events, which are then converted into an internal event. Processes execute events asyn-
chronously except when two processes synchronize through matching events. Priorities
are used to direct the choice when several events are possible at the same time. Thus,
the concurrency model of ACSR includes interleaving semantics for events as well as
lock-step parallelism for timed actions.

We have extended ACSR into a family of process algebras, GCSR [1], Dense-time
ACSR [3], ACSR-VP [5], PACSR [8] and P2ACSR [9]. GCSR allows the visual repre-
sentation of ACSR processes. ACSR-VP extends ACSR with value-passing capabilities,
extending the class of scheduling problems that can be handled. PACSR allows the
modeling of resource failure with probabilities, whereas P2ACSR adds the notion of
power consumption and bounds on resource consumption. Some of these extensions are
informally described below.

2 Resource-Bound Processes

2.1 The Computation Model

We distinguish two types of actions: those which consume time, and those which are in-
stantaneous. Timed actions may require access to system resources, e.g., CPUs, devices,
memory, batteries, etc. In contrast, instantaneous actions provide a synchronization
mechanism between concurrent processes.

Timed Actions. A system has a finite set of serially-reusable resources, R. An
action consumes one “tick” of time and employs a set of resources, each with an integer
priority. For example, action {(r, p)} denotes the use of some resource r ∈ R running
at priority level p. The action ∅, consuming no resources, represents idling for one time
unit.

Events. Instantaneous actions, or events, provide process synchronization in ACSR.
An event is denoted by a pair (a, p), where a is the label of the event, and p is its priority.
Labels represent input (a?) and output (a!) channels. As in CCS, the special identity
label, τ , arises when two events with matching input and output labels synchronize.

The executions of a process are defined by a timed labeled transition system (timed
LTS). A timed LTS, M , is defined as 〈P ,D,→, P0〉, where P is a set of ACSR processes,

152



ranged over by P, Q, D is a set of actions, and → is a labeled transition relation such
that P

α−−−→ Q if process P may perform an instantaneous event or timed action α and
then behave as Q. P0 ∈ P represents the initial state of the system.

2.2 Real-Time Processes

Steps of ACSR processes are constructed using two prefix operators corresponding to the
two types of actions. The process (a, n). P executes the instantaneous event (a, n) and
proceeds to P . The process A:P executes a resource-consuming action during the first
time unit and proceeds to P . The process P + Q represents a nondeterministic choice
between the two summands. The process P‖Q describes the concurrent composition
of P and Q: the component processes may proceed independently or interact with one
another while executing events, and they synchronize on timed actions. The temporal
scope construct restricts a process P by a time limit. If P completes its execution within
this limit an exception is thrown, in which case an exception handler is executed. If not,
control is passed to a timeout process. In any case, P can be interrupted by a step of an
interrupt process. Other static operators of ACSR allow us to hide the identity of certain
resources, reserve the use of a resource for a given process, and force synchronization
between processes by restricting certain events.

2.3 Resource Probabilities and Actions

PACSR (Probabilistic ACSR) extends the process algebra ACSR by associating each
resource with a probability. This probability captures the rate at which the resource
may fail. Thus, timed actions can now account for resource failure.

Timed Actions. In addition to the set of ACSR resourcesR, we consider setR that
contains, for each r ∈ R, r, representing the failed resource r. Actions are constructed
as in ACSR, but may now contain both normal and failed resources. The action {(r, p)},
cannot happen if r has failed. On the other hand, action {(r, q)} takes place only when
resource r has failed. This construct is useful for specifying recovery from failures.

Resource Probabilities. In PACSR we associate each resource with a probability
at which the resource may fail. We denote by p(r) ∈ [0, 1] the probability of resource r
being up, while p(r) = 1 − p(r) is the probability of r failing. Thus, the behavior of a
resource-consuming process has certain probabilistic aspects to it which are reflected in
the operational semantics of PACSR. For example, consider the process {(cpu, 1)} : NIL,
with p(cpu) = 2/3. Then, with probability 2/3, resource cpu is available and thus the
process may perform the step, while with probability 1/3 the resource fails and the
process deadlocks.

Probabilistic Processes. The syntax of PACSR processes is the same as that of
ACSR. The only extension concerns the appearance of failed resources in timed actions.
Thus, it is possible on one hand to assign failure probabilities to resources of existing
ACSR specifications and perform probabilistic analysis on them, and, on the other
hand, to ignore failure probabilities and apply non-probabilistic analysis of PACSR
specifications.

153



2.4 Power-aware Processes

Often, we need to model consumable resources, such as power, in addition to reusable
ones. An extension of PACSR, called P2ACSR, allows us to reason about power-aware
processes by specifying the amount of power consumed when a resource is accessed.

Resources and power consumption. In order to reason about power consump-
tion in distributed settings, the set of resources R is partitioned into a finite set of
disjoint classes Ri. Intuitively, each Ri corresponds to a distinct power source which
can provide a limited amount of power ci. Each resource r ∈ Ri consumes a certain
amount of power from Ri. As in PACSR, each resource has a fixed probability of failure.

Power-consuming timed actions. Timed actions are extended to include the
amount of power consumed by resources. Formally, an action is a finite set of triples of
the form (r, p, c), where r is a resource, p is the priority of the resource usage and c is
the rate of power consumption. The additional restriction on an action is that the total
power consumption for any of the resource classes does not exceed the limit of the class.

Analysis of power-aware systems. We defined a power-aware temporal logic
and a model checking algorithm for it [9], which allows us to check bounds on power
consumption. We can also compute minimum and maximum power consumption within
a given time frame.

References

[1] H. Ben-Abdallah. GCSR: A Graphical Language for the Specification, Refinement and
Analysis of Real-Time Systems. PhD thesis, Department of Computer and Information
Science, University of Pennsylvania, 1996.

[2] J. A. Bergstra and J. W. Klop. Algebra of Communicating Processes with Abstraction.
Theoretical Computer Science, 37:77–121, 1985.

[3] P. Brémond-Grégoire and I. Lee. Process Algebra of Communicating Shared Resources
with Dense Time and Priorities. Theoretical Computer Science, 189:179–219, 1997.

[4] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[5] H. H. Kwak, I. Lee, A. Philippou, J. Y. Choi, and O. Sokolsky. Symbolic schedulability
analysis of real-time systems. In Proceedings of of RTSS’98, pages 409–418. IEEE Computer
Society Press, 1998.

[6] I. Lee, P. Brémond-Grégoire, and R. Gerber. A Process Algebraic Approach to the Spec-
ification and Analysis of Resource-Bound Real-Time Systems. Proceedings of the IEEE,
pages 158–171, 1994.

[7] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[8] A. Philippou, R. Cleaveland, I. Lee, S. Smolka, and O. Sokolsky. Probabilistic resource
failure in real-time process algebra. In Proceedings of CONCUR’98, volume 1466 of LNCS,
pages 389–404. Springer Verlag, 1998.

[9] O. Sokolsky, A. Philippou, I. Lee, and K. Christou. Modeling and analysis of power-aware
systems. In Proceedings of TACAS ’03, volume 2619 of LNCS, pages 409–425, 2003.

154



When 1 Clock Is Not Enough

Gerald L̈uttgen, University of York, UK
Michael Mendler, University of Bamberg, Germany

Abstract

Sometimes single–clock timed process algebras are insufficient for modelling systems
in practice. For example, this is the case for systems–on–chip where a single clock cannot
be physically implemented with the required accuracy, or globally–asynchronous locally–
synchronous systems that are spatially distributed. This note revisits the few published
approaches to multi–clock timed process algebras, namely PMC, CSA and CaSE which
are all based on Nicollin and Sifakis’ ATP and extend Milner’s CCS. In contrast to timed
automata and continuous–time process algebra, these algebras treat time as a qualitative
rather than a quantitative concept: a clock is taken to be a synchronisation event with
limited scope, orchestrating the computations conducted within its scope into a well–
defined sequence of successive clock phases. However, PMC, CSA and CaSE differ in
the choice of operators and semantic features; these shall be discussed here with the help
of a novel, unified semantic framework.

1 Unified Semantic Framework

LetC andA be sets ofclocksandactions, respectively, withA containing the special internal
actionτ. Clocksσ ∈C synchronise in a broadcast fashion as in CSP, while actionsa,a,τ ∈A
follow the handshake scheme of CCS.

The amount of computation sandwiched between two ticks ofσ into a clock phase is
variable and depends on the willingness of a process to accept a clock tick at a given state.
We refer to this willingness to end a clock phase asstability and to the complement notion as
instability. There are two kinds of instability:unconditionalandconditionalinstability, which
are controlled both by a process and its environment. Regarding unconditional instability, any
sub–process contributing towards a particular clock phase may hold upσ for that phase, by
remainingunstableuntil its part of the computation is completed. Regarding conditional
instability, the clock phase may also be extended byurgentcommunications pending inside
the scope ofσ . Whether or not a communication is urgent forσ may depend on the local
states of the participating processes. This localised priority scheme, known aslocal maximal
progress, is one of the main features distinguishing synchronising clocks from the broadcast
actions of CSP. Another istime determinism, which is common to all timed process algebras.

Our unified semantic domainP of multi–clock processes is defined as follows. A multi–
clock process is a labelled transition systemp = (Ap,Cp,actp,clkp,Σp,Πp) ∈ P of initial
actionsAp⊆A andinitial clocksCp⊆C , thetransition relationsactp : Ap→ 2P for actions

155



andclkp : Cp → P for clocks, together with aninstability setΣp ⊆ C \Cp and anurgency

relation Πp : Ap → 2C . Transitions may be written more suggestively asp
γ→ p′ when p′ ∈

actp(γ) or p′ = clkp(γ), whereγ ∈ Ap∪Cp. The instability setΣp comprises all clocks for
which p is unstable and which are thus held up byp, i.e., Σp∩Cp = /0. SetCp includes
the clocks for whichp defines a deterministic initial transition. Hence, the set of clocks
on which p synchronises with its environment isΣp∪Cp. Clocks outside ofΣp∪Cp are
independent in thatp neither stops them, nor reacts to them by changing state. Theurgency
relation Πp associates with every actionα ∈ Ap, a setΠp(α) ⊆ C of clocks in whose scope
an occurrence ofα takes place, i.e.,σ ∈ Πp(α) means that initial actionα has higher priority
than clockσ , so thatσ is permitted to proceed only if the environment cannot communicate
on α. As a special case,σ is blocked outright ifσ ∈ Πp(τ) for the internal actionτ ∈
Ap (a complete communication). This is a special form of unconditional instability, whence
Πp(τ) ⊆ Σp, which is also known asmaximal progress.

A multi–clock process algebra defines algebraic operators for specifying semantic struc-
turesp= (Ap,Cp,actp,clkp,Σp,Πp). One natural starting point is the standard syntax of CCS
consisting of the nil process0, prefixingα.p, summationp+q, parallel compositionp|q, re-
striction p\a and recursionµx. p. The standard operator for specifying clock transitions is
thetimeoutbpcσ(q) introduced with ATP [5]. It behaves likep for all actions and clock tran-
sitions different fromσ . For σ it adds a clock transition toq (the “timeout step”), provided
that p cannot engage in an urgent initialτ. All σ–transitions that may exist inp are pruned.

2 Controlling Clock Phasing

In the following we review the design decisions taken by the multi–clock process algebras
PMC [1], CSA [2] and CaSE [7] and show how they fit into our unified semantic framework.
The design choices relate to whether clock phasing is controlled explicitly or implicitly.

2.1 Explicit Control of Clock Phasing

Explicit control means that clock phasing is made explicit by the placement of timeout op-
erators. In this scheme, such as employed in ATP [5] or PMC [1], clock phases are defined
entirely by instability of processstate, i.e., by way of the setsΣp. Clocks are stopped by
default and thus cannot tick unless specified explicitly. Time progress is controlled locally by
inserting clock ticks only in those (stable) states of a process where the process has finished
all computations that are due to happen within the current clock phase.

As a consequence, processes are unstable for all clocks unless defined otherwise via time-
outs. In particular, for action prefixesα.p and nil 0 one putsΣα.p=df Σ0=df C , whereas
Σbpcσ(q) =df Σp\{σ} for timeoutsbpcσ(q). Since prefixes stop all clocks, they are calledin-
sistent. For pure CCS processes we haveΣp = C andCp = /0, while in general timed processes
satisfyΣp = C \Cp, whereCp arep’s initial clock transitions specified by timeouts.

In a pure language of insistent prefixing, the urgency relations play no role and are fixed
asΠp(α)=df /0, for all α ∈ Ap. Since they never preempt any clock transition, actions are
referred to aspatient. In this combination of insistent prefixing with patient actions commu-
nication through actions and clocks are independent concepts.

156



2.2 Implicit Control of Clock Phasing

The other option is to control clock phasing implicitly, by way ofaction urgencyandmaximal
progress, such as in CSA [2] and CaSE [7]. Here, it is not a decision of an individual process
state if a clock is to be stopped but a feature of its interaction. A processp can adjust the
urgency relationΠp by specifying which actions are to fall within which clock regime. This
is done via clock scoping and clock hiding operators.

Clock scoping and hiding. Suppose a subsystemp that runs under the regime of a clockσ

is to be integrated into a larger systemq, forming p|q. If clock σ is to run independently of
the parallel contextq, it needs to be decoupled. There are several solutions for making sure
thatσ insidep is not blocked byq. The first technique employed in PMC and CSA is to use
an explicit staticignoreoperatorq↑σ that addsσ–loops at all states reachable byq. This has
the effect thatσ cannot be used insideq since allσ–transitions are overridden. If its use is
required, one may opt forhiding clock σ insideq, which turnsσ into a non–synchronising
action. This closes offq with respect to synchronisations onσ and preserve these to the
outside. Hidingq/σ in CaSE [7] uses the urgent non–synchronising actionτ for this, while
hidingq〈σ〉 in CSAch

att [4] introduces a new patient non–synchronising actionι .
Since clock scopesΠp are relations between initial actions and clocks, it is natural to start

with a default scope at the point where actions are introduced, i.e., with prefixes. This can
be managed in two ways. Firstly, we can assume that every action is maximally urgent and
hence in the scope of every clock, until it isdetachedexplicitly through other operators. This
is done in CSA [2] where ignorep↑σ turns all initial actions patient forσ , i.e., Πp↑σ (α) =
Πp(α) \ {σ} for all α ∈ Ap. Secondly, we can dually start with patient actions outside the
scope of any clock and then useattachoperators to bring them within the regime of a clock.
This technique was introduced with CSAch

att [4] where the attach operatorp@σ is defined so
thatΠp@σ (α)=df Πp(α)∪{σ}.

Maximal progress. The urgency relation is then used to implement the maximal progress
assumption. This is essentially done via an operational rule demanding that the parallel com-
positionp|q can engage in a clock transition only (i) if both processesp,q can and (ii) if there
is no handshake communication possible between some actiona and its complementa within
the scope ofσ , i.e.,σ /∈ Πp(a)∩Πp(a). For a single clock this is the classic form ofglobal
maximal progress employed in TPL [3], whereas for multiple clocks with clock scoping we
obtain the refined form oflocal maximal progress introduced with CSA [2].

Pure systems with urgent actions and maximal progress, such as TPL and CSA, typically
take arelaxedview on process stability. A processp is stable for each clock unless it is pre-
empted by aτ–transition in its scope, i.e.,Σp = /0 in caseτ /∈ Ap, andΣp = Πp(τ) otherwise.
In TPL and CSA the instability setΣp is modelled indirectly by clockself–loops.

In settings with maximal progress and employing a semantics based on observational
equivalence,τ–loops can be used to stop clocks in specific process states [4]. Alternatively,
this can be done using customisedtime–stopoperators whose semantics directly influence the
instability setΣp. Time stops, if judiciously inserted into a process, can be used for modelling
the violation of real–time constraints in system verification, as shown in [7].

157



3 Summary and Challenges

The above design choices leave a large design space for defining multi–clock process algebras.
Only a few points within this design space have so far been studied:

PMC = insistent prefixing + ignore + no maximal progress [1]
CSA = relaxed prefixing + ignore + local maximal progress [2]
CSAch

att = relaxed prefixing + attach + hiding + local maximal progress [4]
CaSE = relaxed prefixing + time stop + hiding + global maximal progress [7]

Technical achievements include (i) a complete axiomatisation of strong bisimulation for regu-
lar processes in PMC and CSA, (ii) a fully–abstract characterisation ofobservational congru-
encein PMC, CSA and CaSE, and (iii) a complete axiomatisation of observational congruence
for finiteprocesses in PMC. Work on similar results for CaSE will be included in [6].

Future work should complete these theories by providing axiomatic characterisations of
the observational congruences forregular processes. The challenge here is that the standard
completeness–proof technique (Milner) is not generally applicable. This is because in the
presence of time determinism, unguarded recursion can only be eliminated in the very special
case of global maximal progress. For example, the PMC processµx.bτ.bτ.xcσ(b.0)cσ(a.0)
cannot be expressed without unguarded recursion [1].

A second challenge lies in exploring the sketched design space more fully and in general
terms, rather than theories for particular points in this space. This should take into account
ongoing efforts in the area of synchronous programming, such as defining a semantics for
multi–clock Esterel.

Last, but not least, semantics other than those founded on bisimulation, such asfailure
semantics ortestingsemantics, should to be studied for multi–clock process algebras. To the
best of our knowledge, this has not yet been done. The challenge here is to lift the approaches
incorporated in Timed CSP and TPL from a single clock to multiple clocks, which is a task
that can profit from the unified semantic framework sketched in this note.

References
[1] H.R. Andersen and M. Mendler. An asynchronous process algebra with multiple clocks. In

ESOP ’94, vol. 788 ofLNCS, pp. 58–73.

[2] R. Cleaveland, G. L̈uttgen, and M. Mendler. An algebraic theory of multiple clocks. InCON-
CUR ’97, vol. 1243 ofLNCS, pp. 166–180.

[3] M. Hennessy and T. Regan. A process algebra for timed systems.Information and Computation,
117:221–239, 1995.

[4] M. Kick. Modelling synchrony and asynchrony with multiple clocks. Master’s thesis, University
of Passau, 1999.

[5] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory and application.Informa-
tion and Computation, 114:131–178, 1994.

[6] B. Norton. A Process Algebraic Theory for Synchronous Software Composition. PhD thesis,
University of Sheffield. To be submitted in June 2005.

[7] B. Norton, G. L̈uttgen, and M. Mendler. A compositional semantic theory for synchronous
component-based design. InCONCUR 2003, vol. 2761 ofLNCS, pp. 461–476.

158



What is algebraic in process theory?

Bas Luttik∗

Abstract

Process theory started in the 1970’s with an emphasis on giving an algebraic treatment
of its fundamental concepts. In the 1990’s, with the rapid introduction of advanced fea-
tures (data, time, mobility, probability, stochastics), the algebraic line was largely aban-
doned. I believe that a thorough abstract algebraic treatment adds a degree of mathemati-
cal maturity and elegance to the theory. In this note I discuss what is algebraic in process
theory, and what is not (yet).

1 Prologue

In mathematics, sometimes two kinds of algebra are distinguished: elementary and abstract.
Elementary algebra records the properties of the real number system, mostly in the form of
equations using symbols to denote constants (particular real numbers) and variables (ranging
over all real numbers). Elementary algebra is concrete in the sense that it is about one par-
ticular kind of object: the real number. Abstract algebra (also known as modern algebra)
is concerned with the study of the (properties of the) fundamental operations of arithmetic
in more generality, e.g., no longer talking about addition of real numbers only, but talking
about addition of anything that might be worth adding. The generality is usually achieved by
defining the fundamental operations axiomatically.

For an example of an axiomatic definition, consider a theory of two binary operations
defined by postulating that the first operation is commutative, associative and idempotent, and
that the second operation distributes from the right over the first and is also associative. A ring
theorist may tell you that this comes close to a definition of the theory of idempotent semirings,
except that a few axioms are surely missing. Most notably, the ring theorist remarks, an axiom
expressing that the second operation also distributes from the left over the first ought to be
included. A process theorist will recognize that this axiom has been left out on purpose, for
what we have here is a definition of the theory of alternative and sequential composition of
processes. This particular version of the theory was proposed by Bergstra and Klop in 1982
(see [4, 5]); they presented it as a set of formal equations.

∗Eindhoven University of Technology and CWI. Postal address: P.O. Box 513, NL-5600 MB Eindhoven, The
Netherlands. E-mail: s.p.luttik@tue.nl

159



2 Algebraic process theory

Algebraic process theory started in the 1970’s, with the introduction of CSP by Hoare [7, 11,
12] and of CCS by Milner [15, 16]. What is algebraic about CSP and CCS? It is the fact
that the emphasis is on studying the properties of a collection of fundamental operations on
processes. CSP and CCS for the bigger part agree on what are those fundamental operations,
both including sequencing, nondeterministic choice, and parallel composition. Moreover,
these constructs turned out to satisfy very similar properties. The main difference between
CSP and CCS lies in to what is viewed as the appropriate mathematical representation of
the notion of process: in CSP a process is mathematically represented as a set of failures1,
whereas in CCS it is an element of the set of labelled transition systems modulo observation
equivalence.

Defining a language of first-order operations on a domain of processes and proving prop-
erties of these operations is algebra in the elementary sense of the word. With their seminal
paper [10], Hennessy and Milner made an important step in the direction of a more abstract ap-
proach, providing a ground-complete2 equational axiomatisation of observation equivalence
in the context of recursion-free CCS. Their axioms could in principle be taken as an abstract
algebraic definition. A genuine abstract algebraic approach was first explicitly proposed by
Bergstra and Klop [4, 5]. One of their methodological concerns when introducing ACP was to
present “first a system of axioms for communicating processes [...] and next study its models”
(see [5, p. 112]).

Let me try to avoid a misunderstanding here as to why Bergstra and Klop’s theory is
algebraic in the sense of abstract algebra. It is not (or at least not merely) the fact that it
uses equational axioms to define the operations. The equations are just a means to realise
the real desideratum of abstract algebra, which is to abstract from the nature of the objects
under consideration. In the same way as the mathematical theory of rings is about arithmetic
without relying on a mathematical definition of number, Bergstra and Klop’s proposal deals
with process theory without relying on a mathematical definition of process.

Algebraic achievements In the second half of the 1980’s the algebraic approach in process
theory received quite some attention. We briefly mention three categories of algebraic results
(see Aceto’s paper [1] for a more elaborate overview with the appropriate references):
Expressiveness: Several results were obtained showing that certain combinations of funda-

mental process theoretic operations are more expressive than others. For instance, it
was shown that the behaviour of a stack can be specified by means of a finite recursive
specification using alternative composition and sequential composition, while this is not
possible if sequential composition is replaced by prefix multiplication [6].

Axiomatisability: A lot of effort was put into providing satisfactory equational axiom sys-
tems for certain combinations of process theoretic operations, and showing that satis-
factory equational axiom systems do not exist for other combinations. Here satisfactory

1A failure is a sequence of events in which a process may engage together with a set of events that it subse-
quently refuses to engage in.

2We call an axiomatisation ground-complete if any two behaviourally equivalent closed process expressions
are provably equal.

160



usually meant finite and ground-complete with respect to some notion of behavioural
congruence.

Unique decomposition: For several versions of parallel composition a unique decomposition
theorem was established to the effect that every process can be uniquely expressed as a
parallel composition of parallel prime processes up to a certain behavioural equivalence.
The first such result was obtained by Milner and Moller in [17].

Most of the abovementioned results are algebraic in the same way as elementary algebra
is algebraic: they record properties of a collection of operations defined on a predetermined
mathematical model of processes (usually, labelled transition systems modulo a behavioural
equivalence). The ω-completeness results presented by Moller [18] in his excellent PhD
thesis can be considered an exception; they are more abstract algebraic since they are about
the quality of the axiom systems themselves and do not rely on a particular predetermined
mathematical model of processes.

In a recent paper [14], the author together with Vincent van Oostrom showed that the story
of unique decomposition results can be retold in the abstract algebraic setting of commutative
monoids. The predominant technique, discovered by Milner, to prove unique decomposi-
tion results in process theory was generalised along abstract algebraic lines to the abstract
algebraic setting of commutative monoids, yielding a complete axiomatisation of the class of
commutative monoids with unique decomposition. The great advantage is that to prove unique
decomposition with respect to some version of parallel composition up to some behavioural
equivalence, it now suffices to establish that the induced monoid satisfies the axioms that make
the general proof go through.

Not yet algebraic In the 1990’s, attention shifted towards the introduction in process theory
of sophisticated features such as data, time, mobility, probability and stochastics [2], and
less effort was put into providing an algebraic treatment. (A notable exception is the work
on recursive operations, see the recent survey [3]). Most of the process theoretic treatments
of these features involved the use of variable binding operations. For instance, the formal
process specification language µCRL [8], which combines process theoretic operations from
ACP with abstract data types, involves choice quantifiers ∑d . The intuition is that if p(d) is
a formal µCRL expression with a free variable d ranging over the values of some datatype,
then ∑d p(d) denotes an alternative composition with a summand p(v) for every value v of the
datatype. The construction can be used to express value-passing.

The choice quantifiers of µCRL, and binding operations in general, are not algebraic. The
reason is that they rely for their definition on the syntactic nature of the objects on which
they act, for they are supposed to bind a variable in the objects. Recall the desideratum of
abstract algebra: the intrinsic nature of the objects should not matter. Thus, saying that µCRL

is algebraic amounts to saying that a process is an expression, which of course it isn’t. In [13]
it is shown that it is possible to provide an abstract algebraic treatment of choice quantification
much in the same way as existential quantification is treated in algebraic logic [9].

161



3 In conclusion

I believe that a thorough abstract algebraic treatment will add a degree of mathematical ma-
turity and elegance to the field of process theory. Therefore I think that we should further
develop the abstract algebraic side of process theory, by giving abstract algebraic treatments
of advanced process theoretic concepts (e.g., mobility, time, stochastics) and by considering
fundamental process theoretic results and constructions from an algebraic perspective.

References

[1] L. Aceto. Some of my favourite results in classic process algebra. BRICS Report NS-
03-2, BRICS, Department of Computer Science, Aalborg University, September 2003.

[2] J. C. M. Baeten. A brief history of process algebra. Theoret. Comput. Sci., 335:131–146,
2005.

[3] J. A. Bergstra, W. J. Fokkink, and A. Ponse. Process algebra with recursive operations.
In J. A. Bergstra, A. Ponse, and Scott A. Smolka, editors, Handbook of Process Algebra,
pages 333–389. Elsevier Science Inc., 2001.

[4] J. A. Bergstra and J. W. Klop. Fixed point semantics in process algebra. Technical report
IW 280, Mathematical Centre, 1982.

[5] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication. Infor-
mation and Control, 60(1–3):109–137, 1984.

[6] J.A. Bergstra and J. W. Klop. The algebra of recursively defined processes and the
algebra of regular processes. In J. Paredaens, editor, Proceedings of ICALP’84, LNCS
172, pages 82–95, 1984.

[7] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31:560–599, 1984.

[8] J. F. Groote and A. Ponse. The syntax and semantics of µCRL. In Alban Ponse, Chris
Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes, Work-
shops in Computing, pages 26–62, Utrecht, The Netherlands, 1994. Springer-Verlag.

[9] P. R. Halmos. The basic concepts of algebraic logic. American Mathematical Monthly,
53:363–387, 1956.

[10] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. J.
ACM, 32(1):137–161, January 1985.

[11] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,
August 1978.

[12] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer Science.
Prentice-Hall International, London, 1985.

162



[13] B. Luttik. Choice Quantification in Process Algebra. PhD thesis, University of Amster-
dam, 2002. Available from http://www.win.tue.nl/~luttik.

[14] B. Luttik and V. van Oostrom. Decomposition orders—another generalisation of the
fundamental theorem of arithmetic. Theoret. Comput. Sci., 335:147–186, 2005.

[15] R. Milner. A Calculus of Communicating Systems. LNCS 92. Springer-Verlag, Berlin,
1980.

[16] R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood
Cliffs, 1989.

[17] R. Milner and F. Moller. Unique decomposition of processes. Theoret. Comput. Sci.,
107:357–363, January 1993.

[18] F. Moller. Axioms for Concurrency. PhD thesis, University of Edinburgh, 1989.

163



Process calculi and peer-to-peer Web data integration

Sergio Maffeis
Department of Computing, Imperial College London

June 6, 2005

Abstract

Peer to peer systems exchanging dynamic documents through web services are a sim-
ple and effective platform for data integration on the internet. Dynamic documents can
contain both data and declarative references to external sources in the form of links, calls
to web services, or coordination scripts. The XML, SOAP and WSDL standards, and var-
ious industrial platforms for web services provide a wide technological basis for building
such systems. We argue that current research trends suggest that process algebras are a
promising tool for studying and understanding their formal properties.

1 Dynamic Web Data

The World Wide Web is a global network used in daily activities to find information, commu-
nicate ideas, conduct business and carry on distributed computations. Due to the very large
size of the Web, in order to fully exploit its potential there is a need for scalable mechanisms
for organizing and manipulating all the available information. Peer-to-peer architectures help
facing the issue of scalability, and technologies such as XML and Web services facilitate the
development of distributed applications. In brief, XML is a standardized data model and for-
mat targeted at inter-operability, and Web services are Web sites which are designed to be
used by applications rather than humans. XML is used both for the representation of data and
for invoking, describing and discovering Web services (SOAP, WSDL and UDDI).

Web-based systems for data integration constitute a challenging application for these tech-
nologies, not only due to the vast heterogeneity of Web data sources, but also because of the
possibly complex communication patterns which arise in translating the declarative high-level
operations of these systems (mostly data queries) into low-level execution plans, which may
involve the recursive invocation of queries at different sites.

Let us consider now the generic structure of these systems. A variable number of inter-
connected peers, all sharing a similar internal structure and each one identified by a unique
name, compose a network. Peers can communicate with each other using a common protocol,
and due to the level of abstraction connectivity is not restricted bay administrative domains
or firewalls. Networks areopenin the sense that new peers can always join in, and that ex-
ternal hosts can be allowed to interact, in a restricted way, with the network peers. Each peer

164



acts both as a provider and a consumer of information containing a data repository, an inter-
nal working space where agents carry on local computations and a network interface which
provides remote communication and services to other peers. Agents can communicate with
each other, query and update the local repository and, when the architecture is predisposed,
can migrate to other peers to continue execution. The repositories export a view of data in
a semi-structured format, containing enough meta-data to facilitate queries without having to
obey to a fixed schema. Data can contain scripted agents, queries, and declarative references
to services provided by other peers. We refer to data of this kind asdynamic Web data.

As a trivial example of the architectures described above, we can consider hosts connected
to the Internet running both a server and a browser. Hosts use the HTTP protocol to interact
with each other, either requesting or providing information. Hyperlinks and client-side scripts
embedded in HTML pages are examples of how data can be dynamic. Let us consider now
two concrete examples: Active XML [3, 5] and ObjectGlobe [7]. In the Active XML system,
data in the repository can contain service calls (requests to remote peers) with parameters
which are either explicit or expressed in terms of path expressions (queries on the local data).
Services can run arbitrary code, but typically consist of an OQL query-update expression on
the local repository. One interesting source of flexibility in Active XML is the choice of when
to invoke the service calls stored in a piece of data. They can be invoked either periodically
or when the data is fetched by the server or else when it is returned to the client. In the
ObjectGlobe system instead, the emphasis is on executing complex queries on distributed
data sources by discovering what peers provide operators or data relevant to the task at hand,
and then dispatching the corresponding sub-queries to the relevant sites. In this case dynamic
data can contain queries to other repositories, and services are geared towards coordination.

Despite the practical usefulness of these system, the specialist of process calculi is likely
to be struck by the potential of dynamic Web data which still lies unexpressed. For example,
there are often drastic restrictions on the amount of dynamic behaviour that data can exhibit,
and the range of data flows that can be specified is quite limited. Typical problems which
may have determined these restrictions are that it is hard to manage persistent state across
different service call invocations, and that the interaction between concurrent processes is hard
to regulate. Moreover, security and efficiency are of primary interest in this setting, hence
sometimes expressivity has been sacrificed in favour of simplicity. Since process algebras
have proven to be a convenient setting for studying similar problems, we expect a conspicuous
benefit from applying their techniques to architectures for dynamic Web data!

1.1 A Process Algebraic Approach

Process calculi provide a useful framework in which to reason about the properties of concur-
rent and distributed systems. They are praised both for great simplicity and expressiveness.
The π-calculus of Milner, Parrow and Walker [19] is a terse and powerful language which
describes the behaviour of concurrent systems, and is endowed with a rich body of theoretical
results. It constitutes the basis for many other calculi which target specific aspects of concur-
rent and distributed systems. Just to mention some of them, the spi-calculus [2] and the ap-
plied π-calculus[1] have been used to study security protocols, the distributedπ-calculus[15]
for controlling the access to resources, the Ambient Calculus[10] to study mobile computa-

165



tions across administrative domains and the Join-calculus[12] has been used as a basis for
distributed implementations.

Sahuguet, Pierce and Tannen [21], in some preliminary work eventually leading to the
design of theubQL query language [20], first applied ideas from theπ-calculus to distributed
query systems, which can be considered as precursors of this data integration platforms. In
joint work with Gardner [14], we have defined the Xdπ-calculus explicitly to reason about
dynamic Web data. Xdπ terms represents networks of peers where each peer consists of
an XML data repository and a working space where processes are allowed to run. Our
processes can be regarded as agents with a simple set of functionalities; they communicate
with each other, query and update the local repository, and migrate to other peers to continue
execution. Process definitions can be included in documents, and can be executed by other
processes. Adapting techniques from the asynchronousπ-calculus [16] and the higher-order
π-calculus [22, 17], we have studied behavioural equivalences for Xdπ.

Process calculi have been involved in other research relevant to dynamic Web data, more
focused either on Web service orchestration or on XML manipulation. For example, Bruni
et al. [9] formalize and translate into the Join-calculus an operational model of distributed
transactions inspired by Microsoft BizTalk; Laneve and Zavattaro [18] study an extension of
the asynchronousπ-calculus with loosely coupled transactions calledwebπ; and Ferrara [11]
gives a bidirectional translation between the BPEL4WS orchestration language for web ser-
vices and the LOTOS process algebra (in fact, theπ-calculus has influenced the design of
XLANG, a precursor of BPEL4WS). On the XML front, Bierman and Sewell [6] define a
strongly typed XML scripting language (called Iota) with concurrency primitives inspired by
the π-calculus, and show that it can be used to program Home Area Networks. Castagna
et al. [13] apply the semantic subtyping approach ofCDuce toCπ, a π-calculus extended
with pattern matching and tuple values. Using an encoding they can represent XML values
in Cπ, achieving a degree of expressivity similar to that ofCDuce pattern matching. Brown
et al. [8] define an extension of theπ-calculus with native XML datatypes calledπDuce, and
consider a higher order extension which enables dynamic content in documents. Finally, Ac-
ciai and Boreale [4] propose an extension of the asynchronousπ-calculus with code mobility
and ML-like pattern matching, and use a type system to ensure basic safety properties.

We hope that this discussion may serve as a source of inspiration for further research on
peer-to-peer Web data integration, a setting where many techniques, which studied in isolation
may have a prominently academic appeal, can be combined together to obtain a direct impact
on the design of real-world applications.

References
[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communication.ACM

SIGPLAN Notices, 36(3):104–115, March 2001.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation148(1999):1-70.

[3] Abiteboul, S. et al. Active XML primer. INRIA Futurs, GEMO Report N. 275, 2003.

166



[4] L. Acciai and M. Boreale. XPi: A typed process calculus for XML messaging. In
Proceedings of FMOODS’05, 2005.

[5] Benjelloun, O. Active XML: A data-centric perspective on Web services. PhD thesis,
Universtity of Paris XI, 2002.

[6] G. Bierman and P. Sewell. Iota: a concurrent XML scripting language with application
to Home Area Networks. University of Cambridge Technical Report 557, jan 2003.

[7] Braumandl, R. et al. ObjectGlobe: Ubiquitous query processing on the internet.VLDB
Journal: Special Issue on E-Services, 2002.

[8] A. Brown, C. Laneve, and G. Meredith. PiDuce: a process calculus with native XML
datatypes. Unpublished manuscript, 2004.

[9] R. Bruni, C. Laneve, and U. Montanari. Orchestrating transactions in join calculus. In
Proceedings of CONCUR ’02, LNCS 2002.

[10] Luca Cardelli and Andrew D. Gordon. Mobile ambients.Theoretical Computer Science,
240(1):177–213, 2000.

[11] Andrea Ferrara. Web services: a process algebra approach. InProceedings of ICSOC
’04, ACM Press 2004.

[12] C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. InProceedings
of POPL’96, ACM Press 1996.

[13] R. De Nicola G. Castagna and D. Varacca. Semantic subtyping for the pi-calculus.
Proceedings of LICS’05. To appear, June 2005.

[14] P. Gardner and S. Maffeis. Modelling dynamic Web data.Theoretical Computer Science.
To appear., June 2004.

[15] M. Hennessy and J. Riely. Resource access control in systems of mobile agents.Infor-
mation and Computation, 173:82–120, 2002.

[16] K. Honda and N. Yoshida. On reduction-based process semantics.Theoretical Computer
Science, 151(2):437–486, 1995.

[17] A. Jeffrey and J. Rathke. Contextual equivalence for higher-order pi-calculus revisited.
Computer Science Report 04/2002, University of Sussex, 2002.

[18] C. Laneve and G. Zavattaro. Foundations of web transactions. InProceedings of FoS-
SaCS’05, LNCS 3441, 2005.

[19] R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II.Information
and Computation, 100(1):1–40,41–77, 1992.

[20] Sahuguet, A. ubQL: A Distributed Query Language to Program Distributed Query Sys-
tems. PhD thesis, University of Pennsylvania, 2002.

[21] A. Sahuguet, B. Pierce, and V. Tannen. Distributed Query Optimization: Can Mobile
Agents Help? Unpublished draft.

[22] D. Sangiorgi. Expressing mobility in process algebras: First-order and higher-order
paradigms. PhD thesis, University of Edinburgh, 1992.

167



Conditionals in Algebraic Process Calculi

C.A. Middelburg
Department of Mathematics and Computer Science

Eindhoven University of Technology
Eindhoven, the Netherlands

keesm@win.tue.nl

Abstract

Conditionals of some form are incorporated in various algebraic process calculi. What
is considered to be conditions and how they are evaluated differs from one case to another.
This paper gives an overview of the history of conditionals in algebraic process calculi,
including the recent elaborate investigation into the potentialities of conditionals in the
setting of ACP. The history of conditionals in algebraic process calculi is remarkable.
It shows among other things that the potentialities of conditionals in algebraic process
calculi have been underestimated for a long time. The paper ends by mentioning some
open problems.

1 The Early Days

The history of the early days of conditionals in algebraic process calculi shows that they had
ups and downs.

CCS as presented in Milner’s seminal monograph [1] from 1980 possesses two-armed
conditionals. In Milner’s book [2] from 1989, CCS have undergone two changes that are rel-
evant here: summation is admitted to be infinite and the two-armed conditionals are replaced
by one-armed conditionals. Already in 1983, see [3], Milner indicates that infinite summation
allows for reducing full CCS, a calculus with value-passing, tobasicCCS, a calculus without
value-passing. From that time, theoretical developments that relate to CCS mostly concern
basic CCS, which does not possess conditionals at all.

CSP as presented in Hoare’s seminal paper [4] from 1978 possesses one-armed condition-
als. In Hoare’s book on CSP [5] from 1985, two-armed conditionals are mentioned and laws
for them are given, but their meaning is only described informally. In [6], a paper from 1984
in which Brookes, Hoare and Roscoe elaborate the semantic theory underlying CSP, condi-
tionals are not made mention of. From that time, theoretical developments that relate to CSP
mostly concern the core of CSP treated in [6], which does not include conditionals.

One-armed conditionals are present in LOTOS [7], a formal specification language for
open distributed systems which became an ISO standard in 1989. The design of LOTOS,

168



which is largely the work of Brinksma, is based on both CCS and CSP. What makes condi-
tionals in LOTOS useful in practice is that, like in full CCS, actions and processes can be
parametrized with data.

The development of ACP was started by Bergstra and Klop with a report from 1982.
ACP itself is presented for the first time in [8], a paper of Bergstra and Klop published in
1984. From then, ACP has never undergone changes. ACP does not possess conditionals, but
several extensions in which conditionals are incorporated have been proposed over the years.
The first extension of ACP with conditionals was proposed in [9], a paper published in 1991,
within the scope of the design of a formal specification language for communicating processes
based on ACP in which actions and processes can be parametrized with data. In that paper,
Baeten et al. extend ACP with the one-armed conditionals from CCS as presented in [2]. The
notationφ :→ p is used instead of the traditional notationif φ then p. µCRL [10], a formalism
designed by Groote and Ponse shortly after, includes a process algebra which is to ACP what
full CCS is to basic CCS and which possesses two-armed conditionals. The notationpCφ Bq,
originating from [5], is used instead of the traditional notationif φ then p elseq.

In all mentioned process algebraic formalisms with conditionals from the early days, the
conditionals concern the conditional inclusion of unconditional transitions.

2 Later On

In all mentioned process algebraic formalisms with conditionals of the time after the early
days, the conditionals give rise to the inclusion of conditional transitions in the behaviour
being described.

An extension of ACP with conditionals in which the set of conditions is the domain of
a free Boolean algebra over a given set of generators was first proposed in [11], a paper
by Baeten and Bergstra published in 1992. In all preceding algebraic process calculi with
conditionals, the set of conditions is simply the domain of the two-valued Boolean algebra
B. The possibility of condition evaluation is made available in [11] by a variant of the state
operator from [12]. In [13], a paper from 1994 in which Bergstra, Ponse and van Wamel
add a mechanism for backtracking to BPA (ACP without operators for parallelism), an early
application of conditionals with conditions as in [11] is given.

An extension of ACP with conditionals in which the set of conditions consists of the
equivalence classes with respect to logical equivalence of the set of all propositions with
propositional variables from a given set was first proposed in [14], a paper by Baeten and
Bergstra published in 1997. The possibility of a special kind of condition evaluation is made
available in [14] by an operator that is meant for associating sets of equivalence classes of
propositions with processes, called the signals emitted by the processes. In [15], a paper from
2005 in which Bergstra and Middelburg propose a process algebra for hybrid systems, a recent
application of conditionals with conditions as in [14] is given.

The conditions of [11] are essentially the same as the conditions of [14]: the free Boolean
algebra over a given set of generators is isomorphic to the Boolean algebra of equivalence
classes with respect to logical equivalence of the set of all propositions with elements of the
set of generators as propositional variables.

In [16], a paper from 1996 in which Baeten and Bergstra add among other things discrete

169



parametric timing to ACP, conditionals with parametric conditions are discussed. Conditions
and their evaluation are treated in a different way than in [11, 14]. The parametric conditions
are perceived as functions from the set of natural numbers to the domain of the two-valued
Boolean algebraB. The possibility of condition evaluation at initialization time is made avail-
able by an operator that is meant for initializing parametric processes at a given time.

It seems that all developments in the area of conditionals in algebraic process calculi of
the time after the early days are related to ACP. This is certainly the case for the recent
developments.

3 Recently

In [17], a report from 2005, Bergstra and Middelburg start an elaborate investigation into
the potentialities of conditional expressions in the setting of ACP, with the primary intention
to find basic ways to increase expressiveness. Several extensions of ACP with conditional
expressions are presented in [17], including ACPc, an extension of ACP with conditional
expressions in which the conditions are taken from a free Boolean algebra over a given set
of generators (like in [11]), ACPcs, an extension ACPc with a signal emission operator on
processes (like in [14]), and ACPcr, an extension of ACPc with a retrospection operator on
conditions. Retrospection allows for looking back on conditions under which preceding ac-
tions have been performed. ACPc and ACPcr are further extended with a variant of the state
operator (like in [11]) and two new operators devised for condition evaluation. Moreover, an
application of ACPcr is outlined in which it allows for using conditions which express that a
certain number of steps ago a certain action must have been performed.

An extended abstract of some parts of [17] can be found in [18]. In that paper, the retro-
spection operator is not covered; and only models for finitely branching processes are consid-
ered. In [19], another report of Bergstra and Middelburg from 2005, a constant for the process
that is only capable of terminating successfully, often referred to as the empty process, is
added to all extensions of ACP presented in [17].

In [20], a paper to be presented at the Bertinoro workshop on Algebraic Process Calculi
in 2005, Bergstra and Middelburg proceed with the investigation started in [17]. A variant of
ACPc is presented in which the conditions concern the enabledness of actions in the context
in which a process is placed. Such conditions are called coordination conditions because
they are primarily intended for coordination of processes that proceed in parallel. With such
conditions, it becomes easy to model preferential choices (also known as priority choices).

4 Open Problems

Some open problems that arise from the recent research on conditionals in algebraic process
calculi are: (i) how can retrospection be combined with signal emission, (ii) how can retro-
spection be added to coordination conditions, and (iii) how can retrospection be combined
with abstraction from internal actions?

170



References

[1] Milner, R.: A Calculus of Communicating Systems. Lect. Not. Comput. Sci., vol. 92. Springer-
Verlag, Berlin (1980)

[2] Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)

[3] Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci.25 (1983) 267–310

[4] Hoare, C.A.R.: Communicating sequential processes. Commun. ACM21 (1978) 666–677

[5] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)

[6] Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential processes.
J. ACM 31 (1984) 560–599

[7] ISO: LOTOS - a formal description technique based on the temporal ordering of observational
behaviour. International Standard ISO 8807 (1989)

[8] Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf. Contr.60
(1984) 109–137

[9] Baeten, J.C.M., Bergstra, J.A., Mauw, S., Veltink, G.J.: A process specification formalism based
on static COLD. In Bergstra, J.A., Feijs, L.M.G., eds.: Algebraic Methods II: Theory, Tools and
Applications. Lect. Not. Comput. Sci., vol. 490. Springer-Verlag (1991) 303–335

[10] Groote, J.F., Ponse, A.: The syntax and semantics ofµCRL. In Ponse, A., Verhoef, C., van
Vlijmen, S.F.M., eds.: Algebra of Communicating Processes 1994. Workshops in Computing
Series, Springer-Verlag (1995) 26–62

[11] Baeten, J.C.M., Bergstra, J.A.: Process algebra with signals and conditions. In Broy, M., ed.:
Programming and Mathematical Methods. NATO ASI Series F88. Springer-Verlag (1992) 273–
323

[12] Baeten, J.C.M., Bergstra, J.A.: Global renaming operators in concrete process algebra. Inf.
Contr.78 (1988) 205–245

[13] Bergstra, J.A., Ponse, A., van Wamel, J.J.: Process algebra with backtracking. In de Bakker,
J.W., de Roever, W.P., Rozenberg, G., eds.: A Decade of Concurrency. Lect. Not. Comput. Sci.,
vol. 803. Springer-Verlag (1994) 46–91

[14] Baeten, J.C.M., Bergstra, J.A.: Process algebra with propositional signals. Theor. Comput. Sci.
177(1997) 381–405

[15] Bergstra, J.A., Middelburg, C.A.: Process algebra for hybrid systems. Theor. Comput. Sci.335
(2005) 215–280

[16] Baeten, J.C.M., Bergstra, J.A.: Discrete time process algebra. Form. Asp. of Comput.8 (1996)
188–208

[17] Bergstra, J.A., Middelburg, C.A.: Splitting bisimulations and retrospective conditions. CS-Rep.
05-03, Dept. Math. & Comput. Sci., Eindhoven University of Technology (2005)

[18] Bergstra, J.A., Middelburg, C.A.: Strong splitting bisimulation equivalence. To appear in Fi-
adeiro, J.L., Harman, N., Roggenbach, M., Rutten, J., eds.: CALCO 2005, Lect. Not. Comput.
Sci. Springer-Verlag (2005)

[19] Bergstra, J.A., Middelburg, C.A.: Process algebra with conditionals in the presence of epsilon.
CS-Rep. 05-15, Dept. Math. & Comput. Sci., Eindhoven University of Technology (2005)

[20] Bergstra, J.A., Middelburg, C.A.: Preferential choice and coordination conditions. CS-Rep.
05-14, Dept. Math. & Comput. Sci., Eindhoven University of Technology (2005)

171



A Proof Theoretic Approach to Operational
Semantics

Dale Miller
INRIA-Futurs & LIX, École Polytechnique

June 6, 2005

Abstract

Proof theory can be applied to the problem of specifying and reasoning about the
operational semantics of process calculi. We overview some recent research in which
λ -tree syntax is used to encode expressions containing bindings and sequent calculus is
used to reason about operational semantics. There are various benefits of this proof theo-
retic approach for the π-calculus: the treatment of bindings can be captured with no side
conditions; bisimulation has a simple and natural specifications in which the difference
between bound input and bound output is given by changing a quantifier; various modal
logics for mobility can be specified declaratively; and simple logic programming-like
deduction involving subsets of second-order unification provides immediate implemen-
tations of symbolic bisimulation. These benefits should extend to other process calculi
as well. As partial evidence of this, a simple λ -tree syntax extension to the tyft/tyxt rule
format for name-binding and name-passing has been made that allows one to conclude
that (open) bisimilarity is a congruence.

A number of frameworks have been used to formalize the semantics of process calculi
and, more generally, programming languages. For example, algebra, category theory, and I/O
automata have been used to provide formal setting for not only specifying but also reasoning
about the operational semantics of calculi and languages. In this note, we overview recent
results in making use of proof theory to encode and reason about such operational semantics.
By the term “proof theory” we refer the study of proofs for logics, particularly in the style
initiated by Gentzen.

To illustrate an immediate and natural connection between operational semantics and
a proof theoretic approach to logic, notice that operational semantics (either “big-step” or
“small-step”) is often presented as inference rules. Occasionally, it is possible to encode such
inference rules directly as theories in a logic: typically, as Horn clauses in a first-order logic.
To achieve such an encoding, process calculus expressions, actions, labels, etc, are encoded
as first-order (algebraic) terms, one step transitions as atomic formulas, and inferences rules,
such as,

A1 · · · An
A0

as the formula ∀x̄[A1 ∧ . . .∧An ⊃ A0] (n ≥ 0).

172



Here, A0, . . . ,An are atomic formulas and the explicitly quantified variables in the list x̄ are
called variously meta-variables or schema variables in the context of the inference rule on the
left. When such an encoding works, one expects that an atomic formula A is provable from
the inference rules if and only if the corresponding Horn clauses (viewed as a theory or as a
logic program) proves A.

There are several possible benefits for encoding operational semantics into logic in this
fashion. For example, logic programming technology, such as unification and backtracking
search, can convert operational semantics into an executable specifications [1]. In addition,
some properties of semantic specifications, such as reachability and bisimularity, can be auto-
mated [9].

It is not always possible to encode inference rules in this simple fashion. For example, side
conditions are frequently added to inference rules and these conditions must also be encoded
into logic and used as additional premises. If a process calculi has a notion of binder, such
as in the π-calculus, the join-calculus, or Concurrent ML, then a number of side conditions
are usually employed to enforce that variable names respect scope. A large number of such
side conditions can, in fact, be eliminate by encoding inference rule into a logic that directly
encodes λ -abstraction and higher-type quantification over λ -terms. Church’s Simple Theory
of Types provides a good starting point for such a logic. The addition of λ -abstractions and
higher-type quantification is now a well studied and frequently implemented enhancement
to logic programming that provides an internalization of term-level binders as well as α-
conversion and object-level substitution [8].

The encoding of syntax involving binders as simply typed λ -terms in a logic with an
equality that includes α , β , and η conversion is called the λ -tree syntax approach [3] to
higher-order abstract syntax.

To illustrate this approach to encoding syntax, let type p denote the syntactic category
of processes and consider encoding process expressions of the π-calculus into that type. For
example, encoding the expression P + Q can be done by introducing a constructor plus of
type p → p → p and (using “logic-level” application) forming the term (plus P′ Q′), where
P′ and Q′ are the encodings of P and Q, respectively. Similarly, the expression x(y).P, where
x is a name and y is a binding with scope P, can be encoded using a constructor in of type
n → (n → p) → p as the expression (in x (λy.P′)), where the type n denotes the syntactic
type of names and the expression P′ denotes the encoding of P. Notice, that a “logic-level
abstraction” has been used to form the expression λy.P′ of type n→ p. Similarly, other process
combinators that do not involve bindings can be encoded with constructors with “algebraic
type” (first-order type) while those involving binders would use second-order types. In the
π-calculus, the only other combinator that requires a binder is the restriction operator: for
this, the constants ν of type (n → p) → p can be used to encode restriction (we abbreviate
ν(λx.P) as simply νx.P).

An important lesson learned from using computational systems involving λ -tree syntax is
that bindings within terms need to be matched with bindings in formula (via quantifiers) and
bindings in proofs (such as eigenvariables). In particular, binders have mobility from terms
to formulas to proofs: a bound variable never becomes a free variable (or vice versa) during
proof search [2].

To illustrate how bindings can be treated declaratively in operational semantics, consider

173



specifying the operational semantics of the π-calculus. First, we shall use the up arrow ↑
and down arrow ↓ to encode input and output actions, resp: in particular, the expression
(↑ Xy) denotes an input action on channel X of value y. Notice that the two expressions,
λy. ↑ Xy and ↑ X , denoting abstracted actions, are equal up to η-conversion and can be used
interchangeably. Second, we use the horizontal arrow −−→ to relate a processes with an
action and a continuation (a process), and the “harpoon” −−⇀ to relate a process with an
abstracted action and an abstracted continuation.

The following three rules are part of the specification of one-step transitions for the π-
calculus: the full specification using λ -tree syntax can be found in [3, 10, 11].

P
↓X

−−⇀ M Q
↑X

−−⇀ N

P |Q
τ

−−→ νy.(My |Ny)
(CLOSE) ∇n(Nn

A
−−→ Mn)

νn.Nn
A

−−→ νn.Mn
(RES) ∇y(Ny

↑Xy
−−→ My)

νy.Ny
λy.↑Xy
−−⇀ λy.My

(OPEN)

The (CLOSE) rule illustrates that a bounded input and bounded output action can yield a τ step
involving a new restriction in the continuation. The (RES) rule illustrates how λ -tree syntax
and appropriate quantification can remove the need for side conditions: since substitution in
logic does not allow for the capture of bound variables, all instances of the premise of this rule
has a horizontal arrow in which the action label does not contain the variable n free. Thus,
the usual side condition for this rule is treated declaratively. Both the (RES) and (OPEN) rules
illustrate the ∇-quantifier that was introduced in [4, 5] for encoding “generic judgments”. For
our purposes here, the expression ∇xγ .Bx can be thought of as provable if, given a newly
constructed object c of type γ , the formula Bc is provable. This rule should be seen as being
hypothetical: no assumption about whether or not the domain of the type γ is non-empty is
made.

With rules in this style, it is easy to provide definitions for simulation and bisimulation: for
example, the following equivalence can be used to define simulation between two π-calculus
expressions.

sim(P,Q)≡ ∀A∀P′

[

P
A

−−→ P′ ⊃ ∃Q′

(

Q
A

−−→ Q′∧ sim(P′
,Q′)

)]

∧

∀X∀N
[

P
↓X

−−⇀ N ⊃ ∃M
(

Q
↓X

−−⇀ M∧∀w.sim(Nw,Mw)

)]

∧

∀X∀N
[

P
↑X

−−⇀ N ⊃ ∃M
(

Q
↑X

−−⇀ M∧∇w.sim(Nw,Mw)

)]

Notice that bound inputs require the ∀ quantifier to quantify the comparisons of their con-
tinuation while bound outputs require the ∇ quantifier to quantify the comparisons of their
continuation. Formally speaking, in order for this equivalence to correctly encode the greatest
fixed point of the equivalence (bisimularity), one must deal with co-induction explicitly within
inference rules, following, for example, [7].

As described in [10], it is also possible to specify the modal operators of [6] in a simi-
lar, declarative style. Again, the need for side conditions on names, their scopes, and their
occurrences is taken care of declaratively by logic.

Implementing the logic containing the ∇-quantifier does not require significant new tech-
nical devices. For example, rather straightforward extensions of higher-order logic program-
ming techniques [8] have been used to build the deductive system described in [12], which

174



computes not only one-step transitions but also symbolic bisimulation for finite π-calculus
expressions (those not involving replication).

Given the high degree of declarativeness of specifications written using λ -trees syntax,
it has been possible to define a generalization [13] of the tyft/tyxt rule format that captures
name-binding and name-passing calculi and for which (open) bisimularity is a congruence.

References
[1] J. Despeyroux. Proof of translation in natural semantics. In Proceedings of Symposium

on Logic in Computer Science, Cambridge, Mass, June 1986, pages 193–205.

[2] D. Miller. Bindings, mobility of bindings, and the ∇-quantifier. In J. Marcinkowski and
A. Tarlecki, editors, CSL 2004, volume 3210 of LNCS, page 24, 2004.

[3] D. Miller and C. Palamidessi. Foundational aspects of syntax. In P. Degano, R. Gorrieri,
A. Marchetti-Spaccamela, and P. Wegner, editors, ACM Computing Surveys Symposium
on Theoretical Computer Science: A Perspective, volume 31. ACM, September 1999.

[4] D. Miller and A. Tiu. A proof theory for generic judgments. To appear in the ACM
Transactions on Computational Logic edited by Phokion Kolaitis.

[5] D. Miller and A. Tiu. A proof theory for generic judgments: An extended abstract. In
LICS 2003, pages 118–127. IEEE, June 2003.

[6] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical
Computer Science, 114(1):149–171, 1993.

[7] A. Momigliano and A. Tiu. Induction and co-induction in sequent calculus. In M. C.
Stefano Berardi and F. Damiani, editors, Post-proceedings of TYPES 2003, number 3085
in LNCS, pages 293 – 308, January 2003.

[8] G. Nadathur and D. Miller. An Overview of λProlog. In Fifth International Logic
Programming Conference, pages 810–827, Seattle, August 1988. MIT Press.

[9] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. Swift,
and D. S. Warren. Efficient model checking using tabled resolution. In CAV97, number
1254 in LNCS, pages 143–154, 1997.

[10] A. Tiu. Model checking for π-calculus using proof search. CONCUR 2005 (to appear).

[11] A. Tiu and D. Miller. A proof search specification of the π-calculus. In 3rd Workshop
on the Foundations of Global Ubiquitous Computing, Sept. 2004.

[12] A. Tiu, G. Nadathur, and D. Miller. Mixing finite success and finite failure in an auto-
mated prover. Submitted, May 2005.

[13] A. Ziegler, D. Miller, and C. Palamidessi. A congruence format for name-passing calculi.
Submitted, May 2005.

175



Modelling Dynamically Changing Hardware Structure

George J. Milne
School of Computer Science and Software Engineering

The University of Western Australia

May 23, 2005

Digital hardware is a natural application domain for process algebra given that circuits exhibit inherently

concurrent behaviour, possibly massive concurrency. The impetus for modelling and verifying digital

hardware resulted in the development of a process calculus with features influenced by concepts inherent

in digital logic. This exercise was heavily influenced by the work of Robin Milner, on [Mil89] and its

precursor [MM79], and resulted in the development of the circuit calculus known as Circal [Mil85].

In 1990 a number of us at the University of Strathclyde in Glasgow wished to use field programmable gate

arrays (FPGAs) as the enabling technology for a new computer architecture which could be programmed

as a custom machine for simulating spatially distributed, highly concurrent applications. The underlying

idea was fairly straightforward; we would map systems which exhibited large amounts of fine-grained

concurrency and local interconnections onto an FPGA-based architecture. The resulting configuration

provided us with a customised hardware simulator for physical systems, such as fluid flow, with a 1-1

correspondence between physical components and an area of digital logic which implements its model.

Such architectures are now known as reconfigurable computers e.g. [MCMB93, BCMS92]. It was felt that

Circal was a suitable language with which to prescribe a system to be realised as hardware, rather than

as a language to model previously designed circuitry. Process algebra allow us to describe systems of

interacting automata, with each automaton being described by a process. This is the basis of techniques

for compiling from process algebra to FPGA logic, described in [DM01, DM00]. The appropriateness of

using process algebra to programme reconfigurable computers is examined in [LMar].

Reconfigurable computing differs from the classical von Neumann computing paradigm in that a program

does not reside in memory but rather an application is realised directly in digital logic. As this logic is

repeatedly programmable then the underlying FPGA platform may be instantiated to create different

custom computer realisations for each distinct application. Furthermore, certain FPGA technologies are

dynamically reconfigurable in that part of the FPGA logic may be reconfigured while another part is

running. That is, our programmable hardware can be modified as it runs and, furthermore, it has the

potential to be self-modifying, a concept which has traditionally been considered anathema in the software

world, as described by Tony Hoare [Hoa73]. Dynamic reconfiguration thus allows the hardware structure

to change at run-time, in contrast to traditional computing systems with fixed structure. The need

to programme dynamically changing hardware structure has then lead to the introduction of dynamic

structure Circal (dsCircal).

Circal is static in that we may only model systems with a fixed structure; this is adequate for modelling

many types of systems, such as digital hardware [MCMB93] and even road networks [Mil93]. The notion

of a fixed, static sort has been extensively used to represent the structure of concurrent systems with a

fixed topology. The concept was introduced in [MM79], with this early work leading to the development

of both CCS and Circal. The notion of sort is significant in Circal since the Circal composition operator

is dependent on the sort of its operands.

A system of processes composed together adopts the structural synthesis convention that similarly named

ports will link together. Processes change state following the synchronised occurrence of actions over all

similarly named ports. Thus we have state changes caused by the occurrence of actions which guard the

1176



new states. We extend this concept to one where guarding actions can also control the change in process

structure. That is, not just into a new state retaining the same structure, but into a new process with

quite distinct structure. The structure can therefore change through time under the controlling influence

of other processes in the environment. This is the concept of dynamic sort. Dynamic structure Circal

then differs from Circal in that it allows the sort of a process to (possibly) evolve through time under the

control of suitable actions. The sort of a process is explicitly represented as a vector of labels which is

juxtapositioned with the corresponding process identifier, as with a simple process with static structure

defined by:

P < a, b >
def
= aP1 + bP2

Here we assume that renewal processes P1 and P2, which are defined elsewhere, have the same static sort,

namely < a, b >. But suppose we have a process named Q which “starts” with the same sort but which

after event b changes into a process with sort < c, d, e >, then we may have:

Q < a, b >
def
= aQ1 + bQ2 < c, d, e >

where Q2 < c, d, e >
def
= (c, d)∆∅ + eQ < a, b >

This captures a process Q2 which responds to a simultaneous action (c, d) by becoming extinct (the null

process ∆ with the empty sort) and to an e event by recursing back to Q.

A Simple Dynamic Structure

Given a system of three processes A, B and C defined by:

A < a, p >
def
= aA + pA

B < p, t1 >
def
= pB + t1P1 < q, t2 >

where B1 < q, t2 >
def
= pB1 + t2B < p, t1 >

C < c, q2 >
def
= cC1 + qC

A system constructed from these three processes may then be defined as

SY S < a, p, c, q, t1 >
def
= A < a, p > ∗ B < p, t1 > ∗ C < c, q >

Processes A and C have static structure, that is, their sort remains fixed through time. Only process

B has dynamic sort which can change (initially) as a result of an externally generated action on port

t1. Action t1, therefore acts as a trigger action causing process B to evolve into process B1, whose sort

is different. Process B1 can react to action t2, also generated externally, and toggle back to its original

incarnation as process B. The change of structure, caused by trigger actions on process B, causes the

structure of the system SY S to change. As B evolves into B1, as a consequence of action t1, the p

link disappears simultaneously with the appearance of a q link. Action t2 in B2 causes the reverse to

occur. This evolution between two distinct system structures, and its potential to evolve back to the

original configuration, is pictured in Figure 1. Notice that while our system has dynamic structure, this

is in terms of changing interconnect over a fixed number of processes, three in this case. For dynamic

reconfiguration in hardware we also require process creation, extinction and possibly mobility and so also

the creation and destruction of their interconnecting links. The creation and destruction of processes

may also take place under the control of actions occurring on specific control ports.

Programming Reconfigurable Hardware

In von Neumann computation the sequential behaviour of an executing processor generally manipulates

input data into output data by following a sequence of activities described by the programming language.

The program, its compiler and the design of the microprocessor which ultimately determines the behaviour

of the executing code. In a concurrent world, one where computation is effected by a direct mapping

2177



Figure 1: System structure evolution

into programmable digital logic, a similar situation also exists. In this case we may also use a language

to describe computation with the language directly supporting the concurrent interactions over dynamic

structures, as captured by the dsCircal syntax. Again code will execute but rather than imagine dsCircal

fragments being compiled and executed on sequential computers, we will focus on the realisation of the

encoded behaviour directly in digital logic.

Blocks of FPGA logic cells will be allocated and configured to perform the functional behaviour of a

fixed structure; that is, the behaviour captured by interconnected processes which do not change their

structure for a given period of time. Hence they retain a fixed sort for that period of time. During

that period quite distinct behaviour may be realised as the process evolves through a finite set of states.

However, any interaction between this process and its environment will occur though the fixed set of

ports denoted by its sort.

When our processes have dynamic sort then we can have a process P which changes into another Q with

a totally different structure, following the occurrence of a guarding action. We may realise the behaviour

encoded in such a dsCircal process as follows:

We may imagine that available FPGA logic is limited and that only the configuration block for process P

may be realised. An encoding of sub-process Q will reside in a suitably identified memory location. When

the enabling action occurs causing process P to evolve to the structurally (and behaviourally) distinct

process Q, the configuration realising Q will be constructed from the encoding residing in memory.

This new configuration will overlay the configuration block for P , hence our machine will be dynamically

reconfigured as behaviour passes from P to Q with process P itself causing the reconfiguration as it evolves

from P into Q. The data necessary to reconfigure a block of FPGA cells consists of a stream or sequence of

bits. This bit stream is loaded into RAM where each memory location controls a corresponding part of the

programmable gate array of the FPGA. This is used to select the logical functionality of the underlying,

primitive configurable unit, often a gate or simple ALU, while also selecting the interconnectivity between

such configurable logic building blocks. As with dsCircal, both the set of primitive agents, the configurable

logic blocks, and their connective structure is dynamic and can change through time.

The process encoding residing at a location is known as a process gene, or gene for short. Just as a strand

of DNA encodes or maps how proteins are constructed from sequences of amino acids, so our process gene

encodes how the hardware building blocks of our underlying FPGA technology are constructed such that

when they become active they realise the desired behaviour. The analogy with genetics is even stronger

since DNA also encodes temporal information in that only part of a DNA strand may be responsible for

the construction of a current protein and this protein may change under the control of the DNA encoding.

The particular choice and ordering of occurrence of the amino acids determines how they combine and

hence determines the structure of the constructed protein.

The compilation from process expression to realisation in FPGA hardware is pictured in Figure 2.

A process generator function takes a process encoding gene and produces the hardware which directly

realises the corresponding process behaviour.

3178



Figure 2: Compilation to FPGA Hardware

Genes are active data and when interpreted result in an object, such as a block of configurable FPGA

logic, which exhibits active behaviour. The ability to store genes at a location and to fetch a copy of

the gene on demand permits us to communicate process encodings. Thus the active digital hardware

implementations of two processes may communicate a third process from one to the other, by sending

its identifier name to the receiving process. This identifier name is then used by the receiver to “unlock

the corresponding location” and extract the contained gene. This gene may then be used by the receiver

and a process generator to produce the implementation of the communicated process as a configuration

logic block. This active data, namely the hardware realisation of the communicated process, will then be

capable of execution as required.

References

[BCMS92] P. Barrie, P Cockshott, G Milne, and P Shaw. Design and verification of a highly concurrent

machine. Microprocessors and Microsystems, 16(3):115–123, July 1992.

[DM00] O Diessel and G Milne. Behavioural language compilation with virtual hardware manage-

ment. In R W Hartenstein and H Grünbacher, editors, 10th International Workshop on
Field Programmable Logic and Applications (FPL 2000), number 1896 in Lecture Notes in

Computer Science, pages 707–717, Villach, Austria, 2000. Springer Verlag.

[DM01] O Diessel and G Milne. A hardware compiler realising concurrent processes in recon-

figurable logic. IEE Proceedings – Computers and Digital Techniques, 148(4/5):152–162,

July/September 2001.

[Hoa73] C A R Hoare. Hints on programming language design. Technical Report STAN-CS-73-403,

Stanford Artificial Intelligence Laboratory, Stanford University, 1973.

[LMar] G Lee and G Milne. Programming paradigms for reconfigurable computing. Microprocessors
and Microsystems, 2005 (to appear).

[MCMB93] G Milne, P Cockshott, G McCaskill, and P Barrie. Realising meassively concurent systems

on the SPACE machines. In IEEE Workshop on FPGA’s for Custom Computing Machines,
pages 26–32, Los Alamitos, CA, 1993. IEEE Computer Society Press.

[Mil85] G Milne. CIRCAL and the representation of communication, concurrency and time. ACM
Transactions on Programming Languages and Systems, 7(2):270–298, 1985.

[Mil89] R Milner. Communication and Concurrency. International Series in Computer Science.

Prentice-Hall International, New York, NY, 1989.

[Mil93] G Milne. The Formal Specification and Verification of Digital Systems. McGraw-Hill Com-

pany, Europe, 1993.

[MM79] G Milne and R Milner. Concurrent processes and their syntax. Journal of the ACM, 26(2),

1979.

4179



Pervasive process calculus

Robin Milner
University of Cambridge Computer Laboratory

May 2005

Abstract: Process calculi with various signatures and reaction rules may provide a
theoretical basis for pervasive computing.

Do process calculi need to ramify, if we want to model pervasive computing? I believe so; we can’t
expect a fixed small set of primitives to work for everything. This already shows up with locality
and mobility (e.g. in the mobile ambients of Luca Cardelli and Andy Gordon) and with continuous
dynamics (e.g. in the Φ-calculus of Bill Rounds). In general, it shows up when we try to decide
which kinds of action are primitive; this depends on our purpose. Researchers who apply process
calculi in biology are finding that the primitives needed depend upon the desired granularity of
action; for example, at one level the ingestion of a molecule by a cell is a single discrete action, but
at a lower level it is a continuous process. The same thing surely occurs in pervasive computing.
For example, in a sentient building, the entry of a mobile agent into a room is at one level a single
action, but at a lower level it is complex (involving keys, walking etc); and the computer in the
room may then sense-and-login the agent in a single macro-action, involving detailed software
activity at a lower level.

So we need a modelling framework which embraces calculi of action at different levels; the
realisation (or implementation) of a higher-level calculus by a lower-level one should be a kind of
morphism of calculi. This is the aim of the bigraphical framework. I hope that these morphisms
will harmonise with the concept of refinement, developed over many years by Tony Hoare and
colleagues at Oxford. Then an important consequence could be a bigraphical language that coordi-
nates descriptions on different levels – some for specification, some for programming. As well as
this ‘vertical’ coordination, it should coordinate descriptions ‘horizontally’, in the familiar sense
of coordination languages.

I am working on this with a team at the ITU Copenhagen led by Lars Birkedal and Thomas
Hildebrandt. We hope to derive a Bigraphical Programming Language (BPL) from the bigraph
model. Then engineers of pervasive systems may find themselves programming in a language
that is amenable to analysis (because it is theoretically understood), though they need not even be
aware of this fact. That was what ALGOL 60, logic programming and functional programming all
aspired to; there is no reason not to aspire to it in the anarchical world of pervasive computing.

The bigraph model arose from the increasing need in real-world informatic systems, e.g. per-
vasive computing, to treat localities in the style of mobile ambients, and equally to treat the con-
nectivities of a system in the style of the channels of CSP, CCS or π-calculus. Moreover (1)
connectivities and localities may be real or virtual, (2) they should be treated independently of one
another (where you are does not affect whom you may talk to), and (3) mobility is just reconfigu-
ration of both these structures. What distinguishes bigraphs is not so much the particular choice of
these two structures, but the orthogonal treatment of them.

The rest of this note shows how bigraphs may capture the phenomena of pervasive computing,
and also how they represent familiar process calculi rather directly.

1

180



A
A

A
A

R
R R

B

y zG

y

A
R

x

z

B

H

CC
C C

Figure 1: Sentient buildings: structure. The bigraph G is a subsystem of a larger system, and has
two parts that may be widely separated in the whole. H is a host system; a context whose holes
(the grey rectangles) may be occupied by the parts of G to form a larger system. The composite
system H ◦G is shown in Figure 2.

A
A

A

R
R

B

x

C
C

F = H ◦G

RA

B

A

R

C
C

A
A

A

R
R

B

x

C
C

F ′

R

B

A

R

C
A

C

A

x y

R

A

x y

R

yx

A

C

yx

A

C

Figure 2: Sentient buildings: dynamics. F = H ◦G represents the bigraph G of Figure 1 inserted
in the host H . Note how the ‘outer’ names of G have been linked to the ‘inner’ names of H .
The diagram shows how an agent A may enter a room R and then be sensed and logged in to the
computer C located there. At the right-hand side are two simple reaction rules; one represents
entry to a room, the other represents sensing and logging in.

2

181



First, consider a kind of sentient building B containing rooms R. Each room contains a com-
puter C that is also a sensor, and all these computers are linked as part on the building’s infrastruc-
ture. Agents A may occupy the building, inside or outside rooms; they carry devices — e.g phones
— allowing them to communicate with each other; with the help of these devices they can also
be sensed and logged in by any computer in a room. Figure 1 shows a bigraph G representing a
system of such entities; the left part of G has a building with rooms and agents, while the right part
has a single room, which may be somewhere else entirely, and a single agent. The nesting of nodes
represents locality, and the slender links represent connectivity. One of G’s links connects all the
agents, even the one in the right part of G remote from the building; it may represent an ongoing
conference call. Another link connects the building’s computers, as part of its infrastructure.

The number of G’s regions, together with its ‘outer names’ y and z, constitute its outer (in-
ter)face J = 〈2, {y, z}〉. These interfaces are objects in a symmetric monoidal category, whose
arrows are bigraphs. In general, an arrow is a context; it has not only an outer face, as G does, but
also a non-trivial inner face determining the bigraphs with which it may be composed (i.e. those
that can occupy the context). Thus H : J→K is such a context, where K = 〈1, {x}〉. The inner
face of G is the trivial one I = 〈0, ∅〉; such a bigraph is called ground. To form the composition
F = H ◦G, shown in the upper diagram of Figure 2, we insert the parts of G in the holes of H ,
and then join like-named links (one for y, one for z) and delete their names.

Dynamics is represented by a reaction relation over ground bigraphs, generated by a set of
reaction rules which may vary from one application to another. Indeed, each application of bi-
graphs, called a bigraphical reactive system (BRS), is represented by a signature that specifies (1)
a set of controls (like B, R, . . . ) each with a few attributes, and (2) a set of reaction rules using
these controls. Two very simple reaction rules for sentient buildings are shown at the right-hand
side of Figure 2; the first allows an agent to enter a room (preserving its linkage), while the second
allows the room’s computer to sense and login the agent. Note that a rule can be parametric; the
grey holes in the first rule mean that the room may well contain other nodes. Also note that the
second rule requires the agent and computer to be co-located; it cannot apply between an agent in
a corridor and a computer in a room.

From one viewpoint the actions represented by these rules are very elementary; at a higher level
we may consider complex actions such as ‘agent A locates agent B in room R and moves there’
to be primitive. From another viewpoint the two rules are themselves complex; for example, entry
to a room may involve a key and walking, while sense-and-login may invoke detailed software.
Thus other BRSs may treat more complex or less complex activity as primitive. For example, if
the building’s operating system is written in a language based upon the π-calculus, then we would
like to coordinate the building BRS with one that represents that calculus.

Joachim Parrow and others have exposed the topographical intuition underlying the π-calculus,
using various graphical models. It is also easy to represent the π-calculus in bigraphs. In particular,
parallel composition is represented by juxtaposition of nodes that may be linked (representing
name-sharing). An idea of the encoding is given by Figure 3, which shows two reaction rules. The
first represents the π-calculus rule

(xz.P + · · · ) | (x(y).Q+ · · · ) .P |Q ;

two of its parameters (the holes) represent P and Q, while the other two represent the summands
(‘· · · ’) that are discarded. (Bound names like y have a natural treatment in bigraphs; their scopes

3

182



x

alt alt

z z x

31

0

send get

2
0 2

! !
0 0

0

y
y

Figure 3: Two reaction rules for the π-calculus. The first represents communication; The controls
send, get and alt represent sending, receiving and summation. The labelling of holes shows which
parameters are discarded. In bigraphs replication is best presented as a dynamic rule, using the
control ‘!’; here the labelling shows that the parameter is duplicated.

are locations.) Most of the axioms for structural congruence become just identities in bigraphs,
which is an indication that bigraphs are faithful to the intuition of the calculus. However, repli-
cation — sometimes represented by the axiom !P ≡ P | !P of structural congruence — is best
represented in bigraphs as a dynamic rule, as shown in Figure 3. Ole Jensen and I have worked out
the correspondence between this encoding and the original calculus; the detailed story will appear
in his forthcoming PhD dissertation.

This note only gives a rough idea of how bigraphs work. It shows that the model represents
mobility of both placing and linking, that these places and links may be both physical and virtual,
and that various different systems (with different signatures and reactions) can be coordinated
in the bigraphical calculus. more detail can be found via my web page, http://www.cl.
cam.ac.uk/user/rm135, which gives links to papers on bigraphs. Those written so far have
concentrated upon recovering as much as possible of the theory of known calculi within bigraphs.
Theory has been recovered for the π-calculus, mobile ambients, CCS, Petri nets and the λ-calculus,
much of it by means of a uniform way of deriving labelled transition systems whose labels are small
contexts. This was worked out with Jamey Leifer, and exploits category theory in a novel way.

Two other approaches to this kind of work deserve mention. One is the long-existing theory
of graph-rewriting based upon the double-pushout construction originated by Hartmut Ehrig and
colleagues in the 1970s. That work is based upon categories with graphs as objects and embeddings
as arrows. In bigraphs we have preferred graphs as arrows and interfaces as objects, since it
closely follows the algebraic tradition of process calculi. But there are close links between the
two approaches. Equally there are close links with the approach of Vladi Sassone and Pawel
Sobocinski, based upon 2-categories. The approaches are complementary; work is in progress to
see which approach works best for different purposes.

On the practical side we shall experiment with using bigraphs in applications, especially in the
role of a programming language. If a language based upon such a topographical model is found
convenient for specifying and programming pervasive computing systems, then it can contribute
greatly to their scientific explanation. Given the complex nature of such systems, as well as the
intimacy with which they will pervade our lives, such rigorous understanding is of the greatest
importance.

4

183



On Combining Probability and Nondeterminism1

M. W. Mislove
Tulane University

June 6, 2005

Abstract

The problem of combining nondeterminism and probability within a denotational
model has been the subject of much research. Early work used schedulers to model
probabilistic choice, interleaving their execution with that of nondeterministic choice, a
theme that continues in some operational models today. Morerecent work has focused
on providing a principled account of the interactions of these operators, with the aim of
devising models that support both operators so that neitheris related with the other. In
this paper we recount the results along this line, and point out some places where further
research is warranted.

1 Introduction

Nondeterminism has been a staple of process algebra since its inception, but more recently
probabilistic choice has been included. While early work substituted probabilistic choice for
nondeterminism, the more recent trend has to include both nondeterminism and probabilistic
choice within the same algebra. One rationale for this is that nondeterminism represents a
user’s approach to electing which action to take, while probabilistic choice could capture the
vagaries of the environment as random events occur during the running of a process. The
problem in including both operators within the same algebrahas been to find models that
capture both types of choice, but in which neither has an influence on the other. For example,
a model would be unsatisfactory if probabilistic choice depended on the nondeterministic
choices that preceded it, or if a nondeterministic choice were determined by how probabilistic
choices were resolved. The easiest way to assure this doesn’t happen is to find a model
in which the laws characterizing each operator are obeyed, and where there is no relation
between a probabilistic choice of two processes and their nondeterministic choice. It has
proved very difficult to find such a model. In fact, there are results that indicate such a model
may not exist.

To begin, we recall that the laws for nondeterministic choice are those of a semilattice –
nondeterministic choice should be commutative, associative and idempotent. Over a finite,
unordered state space, an appropriate model is the power set, but if the underlying model is

1This work supported by the US National Science Foundation and the US Office of Naval Research.

184



a domain,2 then now-familiar results of Hennessy and Plotkin [4] show that there are three
models to choose from: thelower power domain, theupper power domain, and theconvex
power domain.3 Each of these forms the object level of a monad on various categories of do-
mains, and in each case, the algebras of the monad are domain semilattices of the appropriate
type.

The probabilistic power domainis the family ofvaluationsφ :(O(D),⊆)) → ([0,1],≤)
from the family of Scott-open sets ofD to the unit interval which are Scott continuous, take
the empty set to 0, and satisfy the inclusion—exclusion principle: φ(U ∪V)+ φ(U ∩V) =
φ(U) + φ(V). They generate a model that satisfies the laws for probabilistic choice first
elaborated by Jones [5]: If forµ ∈ [0,1] we let p⊕µ q denote the process with probability
µ of acting likep and probability 1−µ of acting likeq, then forµ,ν ∈ [0,1] and processes
p,q, r:

• p⊕µ p = p; • p⊕µ q = q⊕1−µ p; • p⊕1 q = p;

• (p⊕µ q)⊕ν r = p⊕µ·ν (q⊕ 1−µ
1−µ·ν

r), providedµ < 1, and = p⊕ν r otherwise.

The probabilistic power domain is a monad over domains, but beyond preserving continuity
and coherence,4 it is not known whether it is an endofunctor on any of the cartesian closed
categories of domains.

A naive way to create a model which would support both nondeterminism and proba-
bilistic choice would be simply to apply one monad after the other. For example, Morgan,
et al [11] take this approach with CSP by applying the probabilistic power domain to the
failures–divergences model. The result is a model where probabilistic choice obeys the ex-
pected laws (because its monad was applied last), but nondeterminism is no longer idempo-
tent. To see why, let⊓ denote nondeterministic choice and note that⊓, being lifted from the
failures-divergence model to its probabilistic power domain in a pointwise fashion, distributes
through⊕µ for all µ; using the laws of probabilistic choice above, it follows that

(P⊕1
2

Q)⊓ (P⊕1
2

Q) = (P⊕1
2
(P⊓Q))⊕1

2
((Q⊓P)⊕1

2
Q) = P⊕1

4
((P⊓Q)⊕2

3
Q),

so we see nondeterminism and probabilistic choice have become intermingled.
The explanation for the intermingling of choice operators just witnessed is that the com-

position of monads is not always another monad. Beck [2] explored this question, and proved
that monads compose if and only if there is a distributive law5 of one over the other. The un-
fortunate fact is that Plotkin and Varacca [13, 14] have shown that there is no distributive law
of any of the nondeterminism monads over the probabilistic power domain, or vice versa, so

2By a domainwe mean a directed complete partial order in which every element is the directed sup of those
elements that are way-below it; cf. [1] for details.

3These are the initial sup-semilattice domain, the initial inf-semilattice domain and the initial ordered semi-
lattice domain over the underlying domain.

4A domain iscoherentif its Lawson topology is compact. These domains arise oftenin applications; for
example, both retracts of bfinite domains and FS-domains arecoherent. However, coherent domains don’t form
a ccc.

5A distributive lawof a monadS over a monadT is a natural transformationd:S◦T
.

−→ T ◦S satisfying
additional laws. These generalize the usual notion of one algebraic operation distributing over another.

185



composing any of the monads for nondeterminism with the probabilistic power domain won’t
result in another monad.

One approach to resolving this was described independentlyby Tix [12] (later revised and
elaborated in [6]) and by the author [8]. It involves first applying the probabilistic power
domain and then one of the power domains for nondeterminism,while also redefining the
nondeterminism monad to take account of the geometrically convex structure of the domain
of probability measures. This results in analogs to the three power domains, each of which
is realized as a retract of the usual power domain onto the family of geometrically-convex6

subsets; for example, in the case of the upper power domain, the result is the power domain
of geometrically convex, Scott compact upper sets of the underlying domain. The resulting
domains model both nondeterministic choice and probabilistic choice so that the laws of each
are obeyed, but there is a relation between the resulting operators. For example, in the analog
of the upper power domain, which is an inf-semilattice, the inequationp⊓q⊑ p⊕µ q holds for
everyµ ∈ [0,1]. This relationship can’t be justified using a distributive law, but the models do
reveal that the standard power domain monads can be adjustedto account for geometrically
convex structure. For example, in the case of a domain with geometric convex structure,
the family of Scott-compact, geometrically convex upper sets is a retract of the upper power
domain.

An operational justification of one of the models devised by Tix ([12]) / Mislove ([8]) was
presented in [10], where using the theory of labeled Markov processes, it was shown that the
construction gives a denotational model for a probabilistic extension of a simple sublanguage
of CCS that is fully abstract with respect to a notion ofpartial probabilistic bisimulation:
processesP andQ satisfy[[P]] ⊑ [[Q]] in the model iff wheneverP satisfies a formula from a
particular domain logicL ,7 thenQ also satisfies the formula. Moreover, this probabilistic
extension is conservative over CCS, meaning that purely CCSprocesses are identified in the
model iff they are identified as CCS processes. It remains to expand this line of research to
include a more representative subalgebra of CCS with probabilistic choice appended.

Another resolution of the search for a model for nondeterminism and probabilistic choice
was devised by Varacca [13], who realized that altering the laws defining the monads would
allow such a distributive law. Varraca took his cue from a result of Gautem [3] that asserts that
an algebraic theory modeled on a set lifts pointwise to the power set iff each equation in the
theory mentions each variable at most once on each side of theequation. The problem in the
case of probabilistic choice is the lawp⊕µ p = p, and so he eliminated this law. The result
was a theory in which this equality can be realized in one of three ways – as an inequality in
either direction, or with no relation between the components. Varacca devised models called
indexed valuations—one for each of the three possible relations betweenp⊕µ p andp—that
define monads each of which enjoys a distributive law with respect to at least one of the non-
determinism monads. Varacca also provides an operational justification of his construction (at
least in the case that the state space is a set) by proving adequacy theorems for his construc-
tion as denotational models. The operational model makes much finer distinctions than usual,
however, since it records how each probabilistic choice is resolved.

Further work using Varacca’s ideas can be found in [7] where it is shown that one of the

6A setX is geometrically convexif x,y∈ X andµ ∈ [0,1] imply x⊕µ y∈ X.
7By a domain logic, we mean one that characterizes the order on the domain of interest.

186



constructions can be viewed as the family of discrete randomvariables over a domain, and
that this construction leaves the cccsRB andFS of (continuous) domains8 both invariant.
This provides the first model of probabilistic computation that has this property. The work in
[7] relies on some interesting results about the structure of bag domains over a domain [9].
For example, one construction shows how the partial order onan initial domain monoid can
be refined so that a given embedding–surjection pair becomesan embedding–projection pair.

References

[1] Abramsky, S. and A. Jung, “Doman Theory,” in: Handbook ofLogic in Computer Science, S.
Abramsky and D. M. Gabbay and T. S. E. Maibaum, editors, Clarendon Press, 1994, pp. 1—168.

[2] Beck, J.,Distributive laws,in: Seminar on Triples and Categorical Homology Theory,1969,
pp. 119–140.

[3] Gautem, N. J.,The validity of equations of complex algebras,Archiv für Mathematische Logik
und Grundlagenforschung3 (1957), pp. 117–124.

[4] Hennessy, M. and G. D. Plotkin,Full abstraction for a simple parallel programming language,
Lecture Notes in Computer Science74 (1979), pp. 108–120.

[5] Jones, C., “Probabilistic Nondeterminism,” PhD Dissertation, University of Edinburgh, Scotland,
1989.

[6] Keimel, K., G. Plotkin and R. Tix,Semantic domains for combining probability and non-
determinism,Electronic Notes in Theoretical Computer Science129 (2005), 104pp.

[7] Mislove, M., Discrete random variables over domains,ICALP 2005, LNCS, to appear.

[8] Mislove, M. Nondeterminism and probabilistic choice: Obeying the laws, Lecture Notes in Com-
puter Science1877 (2000), pp. 350–364.

[9] Mislove, M. Monoids over domains,submitted to MSCS, 2005.

[10] Mislove, M., J. Ouaknine and J. B. Worrell,Axioms for probability and nondeterminism,Pro-
ceedings ofEXPRESS 2003, Electronic Notes in Theoretical Computer Science91(3), Elsevier.

[11] Morgan, C., et al,Refinement-oriented probability for CSP,Technical Report PRG-TR-12-94,
Oxford University Computing Laboratory, 1994.

[12] Tix, R., “Continuous D-Cones: Convexity and Powerdomain Constructions,” PhD Thesis, Tech-
nische Universität Darmstadt, 1999.

[13] Varacca, D.,The powerdomain of indexed valuations,Proceedings 17th IEEE Symposium on
Logic in Computer Science (LICS 2002), IEEE Press, 2002.

[14] Varacca, D., “Probability, Nondeterminism and Concurrency: Two Denotational Models for
Probabilistic Computation,” PhD Dissertation, Aarhus University, Aarhus, Denmark, 2003.

8RB is the category of retracts of bifinite domains, andFS is the category of domains for which the identity
is the supremum of maps finitely separated from the identity;each is a ccc, the latter being maximal.

187



Towards SOS Meta-Theory for
Language-Based Security(Position Paper)

MohammadReza Mousavi
Department of Computer Science,

Eindhoven University of Technology

1 Introduction

SOS meta-theory [1] has been very successful in defining general criteria using which one
can guarantee useful properties about the language constructs. These meta-theorems can save
pages of standard proof thanks to their generic and language-independent formulation. Secu-
rity properties of language constructs look like promising candidates to be turned into SOS
meta-theorems and there has already been an attempt in this direction [8] in the context of
process calculi security [2]. In this paper, we give an exploratory account of this issue in the
context of language-based security [7]. A number of the ideas presented here can be taken
directly to the process calculi security.

In the rest of this paper, we give a superficial overview of information-flow security [7]
and in particular non-interference [3] as a central notion in this field. Then, we explore some
interesting links between non-interference and our recent work on notions of bisimulation with
data [4]. Some ideas regarding SOS meta-theorems for these notions will follow in Section 3.
Section 4 concludes the paper and points out future work.

2 Non-Interference and Bisimulation

An important aspect of security isconfidentiality. Confidentiality means that sensitive, or
higher-level, information is never revealed in the course of interactions tolower-levelusers. In
other words, confidentiality assures that higher-level information never leaks to lower-levels.
A simplistic scenario for information leakage is through explicit assignment of high-level data
items to low-level observable variables but it goes far beyond that. A low-level user may infer
information about high-level data items by very implicit observations, exploiting so-called
covert channels, e.g., by measuring execution time or power consumption.

Non-interference[3, 7] is an important means to assuring end-to-end confidentiality. It
simply means that one cannot deduce anything about the high-level data/behavior by observ-
ing the low-level part of the system. In addition to confidentiality, non-interference has re-
cently been exploited to support other aspects of security such as availability [9].

Suppose that we have a programming/specification language with two levels of confiden-
tiality for data types. We denote the operational state of the program with〈p,h, l〉 wherep

1

188



is the program text,h is the higher level data andl is the low level data, all based on given
domainsP, H andL. Suppose that the operational semantics of a program is defined in terms
of labelled transitions between the above-mentioned states with labelsχ ∈ X.

In the setting, a program is called non-interfering ifregardless of the higher-level data
state, it can always generate the samebehavioras well as the lower-level data part during its
execution. In order to formalize this informal explanation a number of choices has to be made.
First of all a notion of behavior has to be fixed and here we choose the bisimulation semantics.
Another important choice concerns the change in the higher-level data state. One may choose
an open system semantics in which the higher-level data state can change arbitrarily during
the execution or go for a closed system semantics in which higher-level data can only be
changed by the entities specified in the system. We investigate both possibilities in the rest
of this paper and propose two notions of non-interference, calledSL non-interferenceandISL
non-interference, for open and closed systems, respectively.

Then, the following definitions (inspired bylow-bisimilarity of [6] and bisimulation with
data of [4]) are two possible formalizations of non-interference.

Definition 1 (SLNI Bisimulation and SL Non-Interference) A symmetric relationR⊆ P2 is
called aStateLess Non-Interference (SLNI) bisimulation relationwhen∀(p,q)∈R, ∀hp,l ,l ′,χ,p′,h′p

〈p,hp, l〉 χ→〈p′,h′p, l ′〉 ⇒ ∀hq ∃q′,h′q 〈q,hq, l〉 χ→〈q′,h′q, l ′〉 ∧(p′,q′) ∈ R. Programsp andq are
SLNI-bisimilar, denoted byp↔slni q when there exists an SLNI-bisimulation relation con-
taining(p,q). A programp is SL non-Interferingwhenp↔slni p.

Note that unlike usual notions of bisimilarity, SLNI bisimilarity is not necessarily reflexive
and hence, not an equivalence. Intuitively, the above non-interference definition requires for
the non-interfering program to reproduce the same low-level data state regardless of the high-
level state. The interesting part of the definition is that at each transition, the programs are
compared using all possible high-level and all equal low-level data states. This resembles our
notion of stateless bisimulation in [4]. As we motivate there, stateless bisimulation is very
robust and compositional but it is usually very strong and difficult to establish. A similar
observation can be made with respect to SLNI bisimulation and SL non-interference. An
alternative for SL non-interference is the notion of ISL non-interference defined below.

Definition 2 (SBNI Bisimulation and ISL Non-Interference) A symmetric relationR⊆ (P×
H)2 is called aStateBased Non-Interference (SBNI) bisimulation relationwhen∀((p,hp),(q,hq))∈R,

∀l ,l ′,χ,p′,h′p 〈p,hp, l〉 χ→〈p′,h′p, l ′〉 ⇒ ∃q′,h′q 〈q,hq, l〉 χ→〈q′,h′q, l ′〉 ∧((p′,h′p),(q′,h′q)) ∈ R. Pro-
gramspandqareInitially StateLess Non-Interference (ISLNI)-bisimilar, denoted byp↔islni q
when there exists an SBNI-bisimulation relation containing((p,hp),(q,hq)) for all hp,hq∈H.
A programp is ISL non-Interferingwhenp↔islni p.

The above definition is motivated by the fact that low-level state can be observed and
changed by low-level users while the change in the high-level state is in the hand of the system
and if the system is closed, we need not cater for intermediate changes in the high-level states.
Note that ISL non-interference is weaker that SL non-interference. We illustrate the above
two definitions and their differences using the following simple examples.

189



Example 1 Consider a programming language with the terminating constantskip, the as-
signment, conditional (if then else) and the sequential composition (;) operators with the
expected operational semantics. Assignment (:=) and condition (==) may compare and as-
sign variables with/to values or other variables, respectively. Suppose thath is a high-level
variable andl is a low-level one.

The following programsl := h andif (h == 5) then l := 6 else l := 7 are neither SL
nor ISL non-interfering, for they lead to different behavior or low-level values depending on
the initial value of the high-level variableh.

Also, if (h == 5) then h := 6 else skip is neither SL nor ISL non-interfering since
depending on the initial value ofh, it immediately terminates or takes one more assignment
step. This kind of behavior is a good source for a timing covert channel.

However, programsh := 5 ; l := h andif (h == 5)then h := 6 else skip are both
ISL but not SL non-interfering. In case there is no concurrent change to the higher-level
variable, a low-level observer cannot infer anything about the higher-level variable by looking
at different executions of the above programs. But by putting these programs in parallel
with a higher-level component, we may observe different behavior and end-results depending
on the intermediate values of the higher-level variable. For example, regarding the program
h := 5 ; l := h, after execution of the first assignment the program evolves intol := h. It
clearly does not hold thatl := h is non-interfering since the value ofl is determined by, now
not necessarily fixed, value ofh.

3 On Rule Formats for Non-Interference

Structural Operational Semantics [5] is a commonly accepted method to define labelled tran-
sition semantics for languages. A semantic specification in the SOS style comprises a number
of deduction rules defining possible transitions of a piece of syntax based on transitions of
its constituting parts. Rule formats [1] define certain syntactic forms of deduction rules to be
“safe” for certain purposes.

A distinguished class of rule formats is concerned with congruence of notions of behav-
ioral equivalence. Translated into our terms, congruence of a behavioral equivalence usually
means compositionality of the corresponding notion of non-interference. That is why in [8], a
particular congruence format is used as a basis for a rule-format for proving non-interference.
Following this approach, thesfsl andsfisl formats of [4] provide a convenient starting point.
However, we intend to investigating the following possibilities for improving upon the format
of [8] in our settings:

1. we would like to investigate separating the concerns of non-interference and its com-
positionality. This, in our mind, will simplify the resulting (this time, two separate)
rule formats. Using one rule format one can check whether a non-interference property
holds for a particular construct and using the other format one can check the robustness
of the proven non-interference under different contexts. The rule format reported in
[8] is, to our subjective judgment, too complicated to be understood and checked by a
practitioner in this field and we hope that our proposal for separation of concerns will
simplify the outcomes.

190



2. Secondly, we propose to study compositionality and non-interference for restricted lan-
guage contexts and constructs, respectively. This is in contrast with the common prac-
tice of using SOS meta-theory for proving a property of a language as a whole. We
can hardly imagine that any general-purpose language will provide compositional non-
interference for all of its syntactically valid programs but rather, it is desirable to check
whether a particular language construct (or a composed context) is non-interfering. For
example, any language with a general assignment operator should not fit such a format
while certain patterns of assignment can be easily proven to be non-interfering.

4 Conclusions

In this paper, we presented some ideas for notions of language-based non-interference based
on notions of bisimulation with data. Subsequently, we suggested some starting points for
devising a standard SOS format guaranteeing non-interference for restricted contexts. It still
remains to research the initial ideas presented in this paper in order to propose a concrete
format for language-based non-interference.

References

[1] L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. InHandbook
of Process Algebra, Chapter 3, pages 197–292. Elsevier Science, 2001.

[2] R. Focardi and R. Gorrieri. Classification of security properties (part I: Information
flow). volume 2171 ofLNCS, pages 331–396. Springer, 2001.

[3] J. A. Goguen and J. Meseguer. Security policies and security models. InIEEE Sympo-
sium on Security and Privacy, pages 11–20. IEEE Computer Society, 1982.

[4] M. Mousavi, M. Reniers, and J. F. Groote. Congruence for SOS with data. InProceed-
ings of LICS’04, pages 302–313. IEEE Computer Society, 2004.

[5] G. D. Plotkin. A structural approach to operational semantics.Journal of Logic and
Algebraic Progamming, 60:17–139, 2004.

[6] A. Sabelfeld. Confidentiality for multithreaded programs via bisimulation. volume 2890
of LNCS, pages 260–274. Springer, 2003, 2003.

[7] A. Sabelfeld and A. C. Myers. Language-based information-flow security.IEEE Journal
on Selected Areas in Communications, 21(1):5–19, 2003.

[8] S. Tini. Rule formats for compositional non-interference properties.Journal of Logic
and Algebraic Progamming, 60:353–400, 2004.

[9] L. Zheng and A. C. Myers. End-to-end availability policies and noninterference. In
Proceedings of the CSFW’05. To appear, 2005.

191



Timed CSP: A Retrospective

Joël Ouaknine
Oxford University Computing Laboratory, UK

joel@comlab.ox.ac.uk

Steve Schneider
University of Surrey, UK

s.schneider@surrey.ac.uk

June 7, 2005

Abstract

We review the development of the process algebra Timed CSP, from its inception
nearly twenty years ago to very recent semantical and algorithmic developments.

Timed CSP was first proposed in 1986 by Reed and Roscoe [25] as a real-time extension
of the process algebra CSP. A front-runner amongst timed process algebras, it was quickly
followed by a number of other dense-time and discrete-time process algebras, such as those
appearing in [9, 19, 17, 18, 4, 32, 15, 6, 20, 10], to name a few. The field continued to develop
and expand into new directions (e.g., adding probability to time) and now constitutes a rich
body of knowledge.1

Rather than aim at exhaustiveness, this paper retraces some of the milestones in the devel-
opment of Timed CSP, and records some of its interesting features.

Reed and Roscoe’s original model was predicated on complete ultrametric spaces, and up
to quite recently no significantly different other denotational semantics was known. Initially
Timed CSP added a single primitive to the language CSP—WAIT t, for any time t—yet dif-
fered substantially at the denotational level from the cpo-based CSP. The resulting Timed
Failures model nevertheless enjoyed natural projections to (untimed) CSP, later exploited by
Schneider, Reed, and Roscoe in the form of timewise refinement [28, 27, 30]. The idea is sim-
ple, yet quite powerful: by syntactically transforming a Timed CSP process into a CSP one
(essentially dropping all WAIT t terms), much information is preserved, and under appropri-
ate conditions a number of properties can be formally established of the original Timed CSP
process by studying its untimed counterpart.

The semantics of Timed CSP is easily understood in relation to that of CSP: timed fail-
ures consist in traces and refusals (events that cannot be performed), but with every event

1The papers concerned with process algebra and time number in the thousands according to
http://scholar.google.com.

192



performed or refused accompanied by a real-valued timestamp. In common with CSP, the
refusal element of a timed failure embodies a branching-time aspect which is usually absent
from other linear-time trace-based frameworks: the notion of liveness in Timed CSP, for ex-
ample, consists in asserting that an event is never blocked, rather than postulate its eventual
occurrence (certainly a reassurance to, say, jet fighter pilots relying on the ‘eject’ button in
case of emergency!).

In their respective doctoral theses, Schneider [28] and Davies [11] developed complete
proof systems for Timed CSP. They also introduced a number of additional features, such as
infinite choice, infinite observations, timeouts and interrupts, signals, and the removal of the
requirement that every action and recursive call be preceded by a strictly positive amount of
time—see [7] for a detailed account of these changes.

Jackson [16] was the first to look into model checking for Timed CSP. To this end, he
defined a “finite-state” version of the language, together with a suitable temporal logic, and
applied regions-based algorithms [1] to solve the model checking problem.

In 2001, Ouaknine [21] undertook a systematic study of the relationship between (dense-
time) Timed CSP and a discrete-time version of it. This led him to extend Henzinger, Manna,
and Pnueli’s digitization techniques [14] to liveness properties, and provided a model checking
algorithm for very a wide class of specifications that could be verified on the CSP model
checker FDR. This work was later refined and extended in [22, 23].

While most of the semantical developments of Timed CSP have tended to focus on the
denotational side, Schneider equipped Timed CSP with a congruent operational semantics
in [29], later slightly extended by Ouaknine in [21]. Full abstraction results of various kinds
(with respect to may-testing, must-testing, and logical characterisations) can also be found
in [29, 22, 12].

Perhaps surprising is the lack of work on algebraic semantics. This may be related to the
fact that, unlike the case for (untimed) CSP (and indeed most process algebras), the parallel
operators in Timed CSP cannot be reduced to other primitives. This observation was first
recorded in [26], although in that instance it arose out of a rather circumstantial peculiarity of
the semantic model. An interesting example is the following, taken from [21]: the process

(a −→ STOP)9 (WAIT 1 # b −→ STOP)

consisting of two interleaved components, the first of which offers an a immediately, and the
second of which waits one time unit then offers a b, cannot be re-written in standard Timed
CSP without some form of parallel composition. (A structural induction shows that, for a
sequential process P, if P

a
−→ P′ and P

t
 P′′, then P′′ a

−→ P′.) In other words, one cannot
in general sequentially simulate the concurrent passage of time in Timed CSP, even if one
includes timeouts.2

Although Timed CSP as described above has proved to be very successful, and indeed has
been used in numerous case studies—see [31] for more details on the subject—some of its
semantic requirements sit uneasily with the traditional style of “specification-as-refinement”
usually advocated in CSP. For example, in untimed CSP, one specifies that a given process
should not perform the event error by stipulating that it should refine the specification process

2A nonstandard timeout operator was introduced in [12], which does allow the elimination of parallel opera-
tors in a discrete-time context, however at the expense of some standard Timed CSP axioms and laws.

193



RUNΣ−{error}, which itself is capable of any behaviour other than performing error. Unfortu-
nately, the ultrametric-based semantics for recursion in Timed CSP requires every recursion
to be time-guarded—there should be some positive amount time between two consecutive
unwindings of a recursion. In [23], a root-and-branch review of the denotational semantics
of Timed CSP was undertaken in order to allow such Zeno processes, and resulted in a sub-
stantially more expressive framework (predicated on cpo’s rather than ultrametrics), in which
processes could exhibit hitherto forbidden behaviours. As a result, many common specifi-
cations on Timed CSP processes (liveness, deadlock-freedom, timestop-freedom,. . . ) have
natural representations as refinements in this new model. Moreover, thanks to digitization
techniques, the extra generality comes at no extra cost and can in fact be model-checked using
an (untimed) CSP model checker such as FDR. It is perhaps worth noting that this new frame-
work achieves its heightened expressiveness partly thanks to a restricted form of unbounded
nondeterminism, which nonetheless does not destroy the formalism’s valuable algorithmic
properties.

These recent developments seem to indicate that Timed CSP remains an active research
area, and progress is likely to continue for some time to come.

References
[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In Proceedings of the Fifth

Annual Symposium on Logic in Computer Science (LICS 90), pages 414–425. IEEE Computer Society
Press, 1990.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994.

[3] R. Alur and R. P. Kurshan. Timing analysis in COSPAN. In Proceedings of Hybrid Systems III, volume
1066, pages 220–231. Springer LNCS, 1996.

[4] J. C. M. Baeten and J. A. Bergstra. Real time process algebra. Formal Aspects of Computing, 3:142–188,
1991.

[5] J. Bengtsson, K. G. Larsen, F. Larsen, P. Pettersson, and W. Yi. UPPAAL: A tool-suite for automatic
verification of real-time systems. In Proceedings of Hybrid Systems III, volume 1066, pages 232–243.
Springer LNCS, 1996.

[6] L. Chen. Timed Processes: Models, Axioms and Decidability. PhD thesis, University of Edinburgh, 1992.

[7] J. Davies and S. A. Schneider. A brief history of Timed CSP. Theoretical Computer Science, 138(2):243–
271, 1995.

[8] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Proceedings of Hybrid Systems III,
volume 1066, pages 208–219. Springer LNCS, 1996.

[9] R. Gerth and A. Boucher. A timed failures model for extended communicating processes. In Proceedings of
the Fourteenth International Colloquium on Automata, Languages and Programming (ICALP 87), volume
267, pages 95–114. Springer LNCS, 1987.

[10] R. Cleaveland, G. Lüttgen, and M. Mendler. An algebraic theory of multiple clocks. In Proceedings of the
Eighth International Conference on Concurrency Theory (CONCUR 97), volume 1243, pages 166–180.
Springer LNCS, 1997.

[11] J. Davies. Specification and Proof in Real-Time Systems. PhD thesis, Oxford University, 1991.

[12] G. Lowe and J. Ouaknine. On timed models and full abstraction. In Proceedings of the Twenty-first
Conference on the Mathematical Foundations of Programming Semantics (MFPS 05), ENTCS, 2005.

194



[13] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for hybrid systems. In Proceed-
ings of the Ninth International Conference on Computer-Aided Verification (CAV 97), volume 1254, pages
460–463. Springer LNCS, 1997.

[14] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In Proceedings of the Nineteenth
International Colloquium on Automata, Languages, and Programming (ICALP 92), volume 623, pages
545–558. Springer LNCS, 1992.

[15] M. Hennessy and T. Regan. A temporal process algebra. In Proceedings of the Third International Confer-
ence on Formal Description Techniques for Distributed Systems and Communications Protocols (FORTE
90), pages 33–48. North-Holland, 1991.

[16] D. M. Jackson. Logical Verification of Reactive Software Systems. PhD thesis, Oxford University, 1992.

[17] A. Jeffrey. Abstract timed observation and process algebra. In Proceedings of the Second International
Conference on Concurrency Theory (CONCUR 91), volume 527, pages 332–345. Springer LNCS, 1991.

[18] A. Jeffrey. Discrete timed CSP. Programming Methodology Group Memo 78, Department of Computer
Sciences, Chalmers University, 1991.

[19] F. Moller and C. Tofts. A temporal calculus of communicating systems. In Proceedings of the First
International Conference on Concurrency Theory (CONCUR 90), volume 458, pages 401–415. Springer
LNCS, 1990.

[20] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: Theory and application. Information and
Computation, 114:131–178, 1994.

[21] J. Ouaknine. Discrete Analysis of Continuous Behaviour in Real-Time Concurrent Systems. PhD thesis,
Oxford University, 2001. Technical report PRG-RR-01-06.

[22] J. Ouaknine. Digitisation and full abstraction for dense-time model checking. In Proceedings of the 8th
International Conference on Tools and Algorithms for Construction and Analysis of Systems (TACAS 02),
volume 2280. Springer LNCS, 2002.

[23] J. Ouaknine and J. Worrell. Timed CSP = closed timed epsilon-automata. Nordic Journal of Computing,
10, 2003.

[24] G. M. Reed. A Mathematical Theory for Real-Time Distributed Computing. PhD thesis, Oxford University,
1988.

[25] G. M. Reed and A. W. Roscoe. A timed model for communicating sequential processes. In Proceedings of
the Thirteenth International Colloquium on Automata, Languages, and Programming (ICALP 86), pages
314–323. Springer LNCS, 1986. Theoretical Computer Science, 58:249–261.

[26] G. M. Reed and A. W. Roscoe. The timed failures-stability model for CSP. Theoretical Computer Science,
211:85–127, 1999.

[27] G. M. Reed, A. W. Roscoe, and S. A. Schneider. CSP and timewise refinement. In Proceedings of the
Fourth BCS-FACS Refinement Workshop, Cambridge, 1991. Springer WIC.

[28] S. A. Schneider. Correctness and Communication in Real-Time Systems. PhD thesis, Oxford University,
1989.

[29] S. A. Schneider. An operational semantics for Timed CSP. Information and Computation, 116:193–213,
1995.

[30] S. A. Schneider. Timewise refinement for communicating processes. Science of Computer Programming,
28:43–90, 1997.

[31] S. A. Schneider. Concurrent and Real Time Systems: the CSP approach. John Wiley, 2000.

[32] Y. Wang. A Calculus of Real-Time Systems. PhD thesis, Chalmers University of Technology, 1991.

195



Probabilistic and nondeterministic aspects of
Anonymity∗

Catuscia Palamidessi
INRIA and LIX

École Polytechnique, Rue de Saclay, 91128 Palaiseau Cedex, FRANCE

June 7, 2005

Abstract

Anonymity means that the identity of the user performing a certain action is main-
tained secret. The protocols for ensuring anonymity often use random mechanisms which
can be described probabilistically. The user, on the other hand, may be selected either
nondeterministically or probabilistically. We investigate various notions of anonymity, at
different levels of strength, for both the cases of probabilistic and nondeterministic users.
Probabilistic process algebra have been of great help in the development of our setting.

Anonymity is the property of keeping secret the identity of the user performing a certain
action. The need for anonymity may raise in a wide range of situations, like postings on
electronic forums, voting, delation, donations, and many others.

The protocols for ensuring anonymity often use random mechanisms which can be de-
scribed probabilistically. This is the case, for example, of the Dining Cryptographers [3],
Crowds [7], and Onion Routing [11]. In contrast, we usually don’t know anything about the
users, so their behavior, and in particular, the choice of the user who performs the action with
respect to which we want to ensure anonymity, should better be regarded as nondeterministic.
(The same would hold for adversaries, although in this paper we do not consider them.) The
whole system constituted by the protocol and the users presents therefore both probabilistic
and nondeterministic aspects.

Various formal definitions and frameworks for analyzing anonymity have been developed
in literature. They can be classified into approaches based on process-calculi [9, 8], epistemic
logic [10, 5], and “function views” [6]. From the point of view of the concepts of probability
and nondeterminism, however, all these approaches are either purely nondeterministic (also
known as possibilistic) or purely probabilistic.

The purely nondeterministic approach in [9, 8] is based on the so-called “principle of con-
fusion”: a system is anonymous if the set of the possible outcomes is saturated with respect to
the intended anonymous users, i.e. if one such user can cause a certain observable trace in one

∗This work has been partially supported by the Project Rossignol of the ACI Sécurité Informatique (Ministère
de la recherche et nouvelles technologies).

196



possible computation, then there must be alternative computations in which each other anony-
mous user can give rise to the same observable trace (modulo the identity of the anonymous
users).

The purely probabilistic proposals can be classified under two different points of view:
those which focus on the probability of the users, and those which focus on the effect that the
observables have on the probability of the users. The distinction is subtle but fundamental. In
the fist case, anonymity holds when (an observer knows that) all users have the same probabil-
ity of having performed the action (cfr. strong probabilistic anonymity in [5]). In the second
case, it holds when the for any user i and any observable o the conditional probability that i
has performed the action, given the observable, is the same as the (a priory) probability that
the user has performed the action (cfr. the informal notion used in [3], and the conditional
probabilistic anonymity in [5]).

The probabilistic approach also brings naturally to differentiate the notion of anonymity
with respect to different levels of strength. Reiter and Robin [7] have proposed the following
hierarchy:

Beyond suspicion The actual user (i.e. the user that performed the action) is not more likely
(to have performed the action) than every other user.

Probable innocence The actual user has probability less than 1/2.

Possible innocence There is a non trivial probability that another used could have performed
the action.

These notions were only given informally in [7], and it is unclear to us whether the authors
had in mind the first or the second of the “points of view” described above. On one hand,
if we interpret the informal definitions literally, they correspond to the first point of view.
This is the interpretation given by Halpern and O’Neill in [5]: they characterize probable
innocence and possible innocence with the notion of (probabilistic) α-anonymity, and beyond
suspicion with their notion of strong probabilistic anonymity. On the other hand, the result
of probable innocence proved in [7] for Crowds does not seem to fit with this interpretation,
while it could fit with a suitable weakening of the anonymity notion illustrated above under the
second perspective (i.e. what Halpern and O’Neill call conditional probabilistic anonymity).

In our approach we assume that the users may be nondeterministic, i.e. that nothing may
be known about the relative frequency by which each user perform the anonymous action.
More precisely, the users can in principle be totally unpredictable and change intention every
time, so that their behavior cannot be thought of as probabilistic1. The internal mechanisms
of the systems, on the contrary, like coin tossing in the dining philosophers, or the random
selection of a nearby node in Crowds, are supposed to exhibit a certain regularity and obey
a probabilistic distribution. Correspondingly, we explore a notion of probabilistic anonymity

1In the areas of concurrency theory there has been a long-standing discussion on whether nondetermistism
can be thought of as a situation in which the probabilities are unknown and can change very time the experiment
is repeated. Nowadays the prevailing opinion, which we share, is that nondetermistism and probability are
fundamentally different concepts. Furthermore, in the formalisms used in concurrency (for instance process
algebras) the difference is clear, as these two concepts (nondeterminism and unknown changing probability)
obey different laws.

197



that focuses on the internal mechanism of the system, i.e. their non-leakage of probabilistic
information, and it is in a sense independent from the users in case they are nondeterministic.
The counterpart of our definition in the case the users are probabilistic (with possibly unknown
probabilities), can be shown to correspond to a generalized version of Halpern and O’Neill’s
conditional probabilistic anonymity, where “generalized” here means that the anonymity holds
for any probability distribution to the users.

The formalism that we use for the description and the analysis of the anonymity proto-
cols is a process algebra with both nondeterministic and probabilistic choice. This kind of
process algebra constitute a rich framework that allows describing a variety of phenomena,
from concurrent and distributed systems to security protocols which involve random primi-
tives. Despite the fact that this subject is relatively recent and its theoretical foundations are
still under development, it has been of great help in this project: once the protocols have been
expressed in the familiar formalism of process algebra, the author has got a much better un-
derstanding of the concept of (probabilistic) anonymity, and the the development of the formal
setting has been a quite natural process.

This abstract is based on the ongoing work reported in [1], [4] and [2].

References

[1] Mohit Bhargava and Catuscia Palamidessi. Probabilistic anonymity. Technical report,
INRIA Futurs and LIX, 2005. To appear in the proceedings of CONCUR 2005. Report
version available at
http://www.lix.polytechnique.fr/~catuscia/papers/Anonymity/report.ps.

[2] Kostantinos Chatzikokolakis and Catuscia Palamidessi. Probable innocence revisited.
Technical report, INRIA Futurs and LIX, 2005.
http://www.lix.polytechnique.fr/~catuscia/papers/Anonymity/reportPI.pdf.

[3] David Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1:65–75, 1988.

[4] Yuxin Deng, Catuscia Palamidessi, and Jun Pang. Weak probabilistic anonymity.
Technical report, INRIA Futurs and LIX, 2005. Submitted for publication.
http://www.lix.polytechnique.fr/~catuscia/papers/Anonymity/reportWA.pdf.

[5] Joseph Y. Halpern and Kevin R. O’Neill. Anonymity and information hiding in mul-
tiagent systems. In Proc. of the 16th IEEE Computer Security Foundations Workshop,
pages 75–88, 2003.

[6] Dominic Hughes and Vitaly Shmatikov. Information hiding, anonymity and privacy: a
modular approach. Journal of Computer Security, 12(1):3–36, 2004.

[7] Michael K. Reiter and Aviel D. Rubin. Crowds: anonymity for Web transactions. ACM
Transactions on Information and System Security, 1(1):66–92, 1998.

[8] Peter Y. Ryan and Steve Schneider. Modelling and Analysis of Security Protocols.
Addison-Wesley, 2001.

198



[9] Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In Proc. of the Euro-
pean Symposium on Research in Computer Security (ESORICS), volume 1146 of Lecture
Notes in Computer Science, pages 198–218. Springer-Verlag, 1996.

[10] Paul F. Syverson and Stuart G. Stubblebine. Group principals and the formalization of
anonymity. In World Congress on Formal Methods (1), pages 814–833, 1999.

[11] P.F. Syverson, D.M. Goldschlag, and M.G. Reed. Anonymous connections and onion
routing. In IEEE Symposium on Security and Privacy, pages 44–54, Oakland, California,
1997.

199



Operational Semantics of Reversibility in Process
Algebra

Iain Phillips and Irek Ulidowski
Imperial College London and Leicester University

Abstract

Reversible computation has a growing number of promising application areas such
as the modelling of biochemical systems, program debugging and testing, andeven pro-
gramming languages for quantum computing. We discuss reversibility in major process
algebras from the point of view of operational semantics. The main difficultyseems to be
with the definitions of forward and reverse computation for the dynamic operators. We
consider a solution where predicates in SOS rules play a vital role.

1 Introduction

Reversible computation has a growing number of promising application areas such as the
modelling of biochemical systems, program debugging and testing, and even programming
languages for quantum computing. We have been inspired to look at this area by the work of
Danos and Krivine on reversible CCS [2, 3, 4] and Abramsky on mapping functional programs
into reversible automata [1].

We wish to investigate reversibility for algebraic processcalculi in the style of CCS [6],
with Structural Operational Semantics (SOS) [7] rules. Given a forward labelled transition re-
lation (ltr)→ we are interested in obtaining a reverse ltrÃ which is the inverse of→. This can
always be done, but if we just reverse a standard process language we end up with too many
possibilities, since processes do not “remember” their past states. Danos and Krivine solve
this problem by storing “memories” of past behaviour which are carried along with processes.
We would like to see whether we can achieve a similar effect ina more algebraic fashion, by
altering the standard rules for operators and possibly introducing auxiliary operators.

The operators of a language like CCS can be divided into thestatic operators, where the
operator remains present after a transition, and thedynamic operators, where the operator is
destroyed by the transition. Dynamic operators are more “forgetful” than static operators. In
this note we shall concentrate on reversing dynamic operators, such as CCS prefixing and
choice.

We are interested in conditions under which we can make such dynamic operators un-

ambiguously reversible, i.e. ifP
a
→ Q

b
Ã R thena = b andQ = R, whereP,Q are processes

constructed with dynamic operators. We shall see that this goal is attainable for CCS prefixing
and choice, among other operators.

200



In the case of static operators such as parallel composition, unambiguous reversibility is
probably too strong a condition; we should aim for some confluence property instead.

We shall proceed rather informally, partly because of spaceconstraints, and partly because
this work is still at an early stage.

2 Processes and Predicates

Given a signatureΣ we letT (Σ) denote the set of closed terms overΣ. We shall assume that
we have a “standard” process language consisting of terms over the signatureΣS. We let f
range overΣS. We say thatT (ΣS) is the set ofstandard terms. WithT (ΣS) is associated an ltr
→S with labels drawn from a set of actionsAct.

We will need to introduce a further set of auxiliary operators ΣA. We letg range overΣA.
We letΣ = ΣS∪ΣA. For termsP in T (Σ) we define two predicates:std(P) holds iff P ∈ T (ΣS)
(P is a standard term), andnstd(P) holds if P /∈ T (ΣS), i.e.P contains an auxiliary operator.

Our aim is to give a procedure for defining a new ltr→, which can be reversed to give ltr
Ã. Standard terms will evolve into nonstandard terms under→. Moreover, standard terms
will have no reverse transitions.

3 Reversing Dynamic Operators

We now sketch a method for making dynamic operators reversible. We shall confine our
attention to a very simple class of dynamic operators, thosewith SOS rules of the form

(∗)
{Xi

ai→S X ′
i }i∈I

f (~X)
a
→S X ′

j

where f is ann-ary operator,I ⊆ {1, . . . ,n}, and we setX ′
j = X j if j /∈ I. We shall also suppose

that all operatorsf are of one of two types: type (I) where in all rules off we haveI 6= /0, or
else type (II) where in all rules off we haveI = /0.
Type (I) In all rules of f we haveI 6= /0. We makef into a static operator by redefining its
rules as follows:

(1)
{Xi

ai→ X ′
i }i∈I {std(Xk)}k≤n

f (~X)
a
→ f (~X ′)

(2)
X j

b
→ X ′

j {std(Xk)}k≤n,k 6= j,k/∈I {nstd(Xi)}i∈I

f (~X)
b
→ f (~X ′)

In (1) we letX ′
k = Xk for k /∈ I, and in (2) we letX ′

k = Xk for k 6= j. Rule (2) is actually a
schema for all actionsb ∈ Act. It is a sieve rule for itsjth argument.

Fairly clearly, the redefinition gives essentially the sameforward transitions. Note that the
two new rules cannot both apply at the same time because the{nstd(Xi)}i∈I condition in the
second rule conflicts with the{std(Xk)}k≤n condition in the first rule.

201



The corresponding reverse rules are:

(1R)
{Xi

ai
Ã X ′

i }i∈I {std(X ′
k)}k≤n

f (~X)
a
Ã f (~X ′)

(2R)
X j

b
Ã X ′

j {std(X ′
k)}k≤n,k 6= j,k/∈I {nstd(X ′

i )}i∈I

f (~X)
b
Ã f (~X ′)

Notice that (1R) involves lookahead for the predicates; so does (2R) unlessj /∈ I. Since we
have exactly reversed the forward rules, with the predicates holding for the corresponding
variables, we shall be able to establish thatÃ is the inverse of→.
Type (II) In all rules for operatorf we haveI = /0, so that the rules are of the form:

r
f (~X)

a
→S X j

If we redefine this rule as
{std(Xk)}k≤n

f (~X)
a
→ f (~X)

then we allow extra forward transitions—in fact we create aninfinite loop. So instead we
employ a new auxiliary operatorgr ∈ ΣA:

(1′)
{std(Xk)}k≤n

f (~X)
a
→ gr(~X)

(2′)
X j

b
→ X ′

j {std(Xk)}k≤n,k 6= j

gr(~X)
b
→ gr(~X ′)

(Again rule (2′) is actually a schema for all actionsb.) The reverse rules are:

(1′R)
{std(Xk)}k≤n

gr(~X)
a
Ã f (~X)

(2′R)
X j

b
Ã X ′

j {std(Xk)}k≤n,k 6= j

gr(~X)
b
Ã gr(~X ′)

Note that it is only through type (II) operators that nonstandard terms are introduced.
We now discuss what conditions will ensure that the new ltr→ is unambiguously re-

versible.
In the case of type (I) operators the following is sufficient:

(UR) For any two rulesr, r′ of type (*) for operatorf ,

r
{Xi

ai→S X ′
i }i∈I

f (~X)
a
→S X ′

j

r′
{Xi

a′i→S X ′
i }i∈I′

f (~X)
a′
→S X ′

j′

we have: (1) ifI ⊆ I′ or I′ ⊆ I then∃i ∈ I ∩ I′ such thatai 6= a′i, and (2) j = j′ or I 6⊆ I′∪{ j′}
or I′ 6⊆ I ∪{ j}.

In the case of type (II) operators, it is sufficient that the auxiliary operatorsgr are all
distinct.

If an operator is defined by rules of both type (I) and (II), as some binary delay operators
are, then it can be made reversible by applying the procedureto each of its rules.

202



4 Examples

We give some examples of operators which fit into the scheme ofthe previous section.
Type (I) CCS choice has the following rule schemas:

X
a
→S X ′

X +Y
a
→S X ′

Y
a
→S Y ′

X +Y
a
→S Y ′

We see that condition (UR) holds for+. We can apply our procedure to turn the standard rules
into reversible ones. After straightforward simplification we get the following forward and
reverse schemas:

X
a
→ X ′

std(Y )

X +Y
a
→ X ′ +Y

Y
a
→ Y ′

std(X)

X +Y
a
→ X +Y ′

X
a
Ã X ′

std(Y )

X +Y
a
Ã X ′ +Y

Y
a
Ã Y ′

std(X)

X +Y
a
Ã X +Y ′

Type (II) A key example is CCS prefixing. For the new forward and reverse rules we intro-
duce the auxiliary operatorsa (a ∈ Act):

std(X)

a.X
a
→ a.X

X
b
→ X ′

a.X
b
→ a.X ′

std(X)

a.X
a
Ã a.X

X
b
Ã X ′

a.X
b
Ã a.X ′

We can also handle the internal choice operator of CSP [5].

5 Conclusions

We have sketched a procedure by which certain dynamic process operators can be made re-
versible. We intend to extend this to integrate static operators into the picture.

References

[1] S. Abramsky. A structural approach to reversible computation. InProceedings of the International
Workshop on Logic and Complexity in Computer Science (LCCS 2001), 2001.

[2] V. Danos and J. Krivine. Formal molecular biology done in CCS-R. InProceedings of Bioconcur,
Marseille, September 2003, 2003.

[3] V. Danos and J. Krivine. Reversible communicating systems. InProceedings of the 15th Inter-
national Conference on Concurrency Theory (Concur 2004), volume 3170 ofLecture Notes in
Computer Science, pages 292–307. Springer-Verlag, 2004.

[4] V. Danos and J. Krivine. Transactions in RCCS. InProceedings of the 16th International Confer-
ence on Concurrency Theory (Concur 2005), Lecture Notes in Computer Science. Springer-Verlag,
2005.

[5] C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[6] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[7] G.D. Plotkin. A structural approach to operational semantics.Journal of Logic and Algebraic
Programming, 60-61:17–139, 2004.

203



ACP and Belnap’s Logic

Alban Ponse and Mark B. van der Zwaag
University of Amsterdam, Faculty of Science, Programming Research Group

Abstract

An overview is given of ACP with conditional composition (i.e.,if-then-else) over
Belnap’s four-valued logic. The interesting thing is that much of ACP can be analyzed
using this logic. For example, both the choice operation+ and δ (deadlock) can be
seen as instances of conditional composition, and the axiomx+ δ = x follows from this
perspective. Furthermore, parallel composition can be generalized to conditional parallel
composition, which has sequential composition as an instance, next to common parallel
composition, pure interleaving and synchronous ACP.

Introduction. In 1994, Jan Bergstra and co-workers experienced a revival in the specifica-
tion of datatypes with divergence, errors and recovery or exception handling. This was trig-
gered by languages such as VDM [8] and an upcoming interest in Java [6]. The first outcome
was a paper on a four-valued propositional logic by Bergstra, Bethke and Rodenburg [2]. Con-
sequently it was felt that a combination with ACP [3] via a conditional composition construct
(i.e., anif-then-elseoperator) was obvious, and a first paper involving Kleene’s three-valued
logic [9] was written [4], the idea being that in

if φ then P else Q

the conditionφ may take Kleene’s truth valueundefined. This led to [5] in which the logic
of [2] is combined with ACP, to papers in which other non-classical logics were used, and
ultimately to the four-valued logicC4 for ACP with conditional composition (in [11] baptized
“the logic of ACP”). In [11] we show that this logic (with one, sequential connective) is
equivalent to the natural extension of Kleene’s three-valued logic with a fourth truth value
(which has symmetric connectives). It was only two years ago that we found out that this
latter logic is Belnap’suseful four-valued logic[1], as we could have known from, e.g., [7].

Currently we are finalizing a paper based on [11] reporting on Belnap’s logic with con-
ditional composition as a functional basis. Here we focus on process algebraic conditional
composition over this logic. A tricky corner in ACP is the combination of choice and dead-
lock. One often reads that the processx+ y makes a choice betweenx andy. However, this
is not true fora+δ , wherea is an action andδ represents deadlock (indeed, a standard ACP-
axiom isx+ δ = x). Can choice in this case be seen as aprescriptiveoperation? In this paper
we show that it can: there is a straightforward correspondence with conditional composition
over Belnap’s logic, allowing one to explain the nature of choice in process algebra from a
logical perspective. We describe our results only informally; all proofs can be found in [11].

204



Table 1:C4 axioms
(C1) x/ (u/v.w).y = (x/u.y)/v. (x/w.y) (C6) x/ F.y = y
(C2) (x/w.y)/v. (x′ /w.y′) = (x/v.x′)/w. (y/v.y′) (C7) x/N .y = N

(C3) (x/w.y)/w.z= x/w. (y/w.z) (C8) x/ B .y = y/ B .x
(C4) T /x. F = x (C9) x/ B .N = x
(C5) x/ T .y = x (C10) B / B .x = B

Belnap’s Logic and Conditional Composition. Belnap’s LogicB4 [1] has truth valuesB,
T, F, andN, whereB (both) represents inconsistency or overdefinedness,T andF are the values
true and false, andN (none) represents undefinedness.1 Negation is defined as an involution
(satisfying¬¬x = x) by ¬B = B, ¬T = F, ¬F = T, and¬N = N, and conjunction (∧) and
disjunction (∨) are the greatest lower bound and the least upper bound in the distributive lattice
F< {B,N}< T called thetruth ordering[7]. This characterization of the logic as a distributive
lattice with involution leads directly to a finite and complete equational axiomatization [11].

Now we define an alternative logicC4 over these truth values that has only one, ternary
operation / . calledconditional composition. This operation is defined by

x/ T .y = x, x/ F.y = y, x/N .y = N,

andx/ B .y = xty, wheret is the least upper bound ofx andy in the lattice

N

T F

B






J
J





J
J

called theinformation (or knowledge) ordering[2, 7]. Conditional composition has an op-
erational, sequential reading: inx/y.z, first y is evaluated, and depending on the outcome,
possiblyx and/orz. In Table 1 we give a complete set of axioms forC4.

The logicsB4 andC4 have exactly the same expressiveness, that is, their operations can
be defined in each other: usingB,T,F we have

¬x = F/x. T, x∧y = (y/x. F)/ B . (x/y. F),

and, vice versa, usingN,

x/y.z= (x∧y)∨ (z∧¬y)∨ (x∧z∧N)∨ (y∧¬y∧N).

Hence the two logics can be considered “the same”, but with a different functional basis. We
show that the logics are truth-functionally complete for monotone functions with respect to
the information ordering. Letf be a (k+ 1)-ary monotone function and write ¯x,y for (k+ 1)-
tuples. By monotonicity off ,

f (x̄,y) = f (x̄,N)t ( f (x̄,T)/y. f (x̄,F))t ((N /y. f (x̄,B))/y.N).

By induction onk, the functionf is expressible (becausef (x̄,a) is, for all truth valuesa).
1Belnap motivatedB as the result of conflicting outcomes of database queries, andN as the absence of

answers.

205



Table 2: GBPA
δ

axioms
(G1) x+

φ /ψ .χ
y = (x+

φ
y)+ψ (x+χ y) (G5) (xy)z= x(yz)

(G2) (x+ψ y)+
φ

(x′+ψ y′) = (x+
φ

x′)+ψ (y+
φ

y′) (G6) x+T y = x
(G3) x+

φ
(y+

φ
z) = (x+

φ
y)+

φ
z (G7) x+F y = y

(G4) (x+
φ

y)z= xz+
φ

yz (G8) x+N y = δ

Conditional Composition in Process Algebra. We now look at GBPA
δ
, a generalization

of BPA
δ

(Basic Process Algebra with deadlock, which includes sequential composition·, al-
ternative composition+ and the constantδ for deadlock). In GBPA

δ
alternative composition

is parametrized withC4 termsφ , hence obtaining the operation+
φ

called conditional com-
position, andx+

φ
y is read asif φ then x else y. Alternative composition can be seen as the

instance+B, while deadlock corresponds to+N, as will be shown. The axiom system GBPA
δ

consists of the axioms in Table 2. Also, we adopt the proof rule

C4 ` φ = ψ ⇒ GBPA
δ
` x+

φ
y = x+ψ y. (†)

Next, we give an operational semantics forprocess-closedterms, that is, for process terms
that do not contain process variables. LetW be the set of valuations forC4 terms, letA be the
nonempty set of action symbols that comes as a parameter of the axiom system, and letA×W
be the set of transition labels. The transition rules are given in the upper part of Table 4, where
a transition with labela,w models the execution of actiona under valuationw.

We define (strong) bisimulation as usual. Process-closed terms are bisimilar (↔) if they
are related by a bisimulation. Open terms are bisimilar if they are bisimilar for every instan-
tiation of their process variables. Since bisimilar terms have matching action steps for every
valuation, we allow (user-defined) propositions in the logic, the evaluation of which may not
be constant throughout the execution of a process. The transition rules are in thepanthfor-
mat [12], from which it follows that bisimilarity is a congruence. Furthermore, the GBPA

δ

axioms are sound, and with (†) they are also complete.
Our claim that+ equals+B is substantiated by showing that all axioms of BPA

δ
are

derivable in GBPA
δ
. Commutativity of alternative composition is derived by

x+B y = (y+F x)+B (y+T x) = y+F/B.T x = y+B x

using axioms G6, G7, G1, C8, and C4. Associativity is an instance of G3. Idempotence:

x+B x = (x+T y)+B (x+T y) = x+T/B.T y = x

using G6, G1, andC4 ` x/ B . x = x. Right-distributivity of sequential composition over
alternative composition is an instance of G4. The axiomx+ δ = x can be derived by

x+B δ = (x+T y)+B (x+N y) = x+T/B.N y = x

using G6, G8, G1, and C9. Finally, the axiomδx = δ can be derived using G8 and G4.
We find that process algebraic and logical conditional composition are quite similar, as

becomes apparent when one compares their axioms. The process algebraic counterpart of the
information ordering (≤)is the summand inclusion ordering⊆ defined byx⊆ y⇔ x+ y = y.
So alternative composition can be said to be the counterpart of/ B . , while δ corresponds to
N. The following result implies thatC4 characterizes choice and deadlock:

206



Table 3: Axioms for generalized merge;a,b range overA
(GM1) x

φ
‖

ψ
y = (x

φ
‖ ψ y+ψ y

φ
‖ ¬ψ x)+

φ
(x

φ
|
ψ

y+ψ y
φ
|¬ψ

x)
(GM2) a

φ
‖ ψ x = ax

(GM3) ax
φ
‖ ψ y = a(x

φ
‖

ψ
y) (GM7) ax

φ
|
ψ

b = (a|b)x
(GM4) (x+

φ
y)ψ‖ χ z= xψ‖ χ z+

φ
yψ‖ χ z (GM8) ax

φ
|
ψ

by= (a|b)(x
φ
‖

ψ
y)

(GM5) a
φ
|
ψ

b = a|b (GM9) (x+
φ

y)
ψ
|
χ

z= x
ψ
|
χ

z+
φ

y
ψ
|
χ

z
(GM6) a

φ
|
ψ

bx= (a|b)x (GM10) z
φ
|
ψ

(x+χ y) = z
φ
|
ψ

x+χ z
φ
|
ψ

y

Proposition 1. For i = 1,2, let pi be an open process term in which no action symbols occur
and the only operation is conditional composition. Let ti be theC4 term which is obtained from
pi by interpreting+

φ
as /φ . andδ asN, and in which the process variables also represent

propositions. ThenGBPA
δ
/↔|= p1⊆ p2 iff C4 |= t1≤ t2, and henceGBPA

δ
/↔|= p1 = p2

iff C4 |= t1 = t2.

Generalized Parallel Composition. GACP (Generalized ACP) is parametrized with a non-
empty setA of action symbols, and a commutative and associative function| : A×A→A∪{δ}
which defines which actions communicate. It extends GBPA

δ
with a generalization

φ
‖

ψ
of

parallel composition, where the conditionφ covers the choice between interleaving and syn-
chronization, andψ determines the order of execution. Furthermore, it has an auxiliary gen-
eralized left merge

φ
‖ ψ and generalized communication merge

φ
|
ψ

, and the encapsulation
operation∂H , which renames actions fromH ⊆ A to δ . The axioms are those of GBPA

δ
with

four straightforward axioms for encapsulation (omitted here) and those in Table 3.
The operationT‖B restricts to interleaving (free merge), whileF‖� for � ∈ {B,T,F} defines

synchronous merge, andT‖T represents sequential composition. Some typical identities:

x
φ
‖

ψ
y = y

φ
‖¬ψ

x, x
φ
|
ψ

y = y
φ
|¬ψ

x, and δ
φ
|
ψ

x = δ .

The transition rules are presented in Table 4. Bisimilarity is a congruence, and all axioms
are sound in the model thus obtained. The parallel composition operations can be eliminated
from process-closed terms, so GACP with rule (†) is complete for these terms.

Conclusion. We have argued that conditional composition over Belnap’s logic characterizes
choice and deadlock in ACP from a logical perspective. We further remark that conditional
composition can be used to define sequential connectives such as McCarthy’s directed∧ [10],
left sequential conjunction∧b [2], and Fitting’s∧→ [7]. E.g.,x∧b y = y/x.F. Finally we remark
that the generalized merge can be used to model parallel scheduling, see [11] for an example.

References

[1] N.D. Belnap. A Useful Four-Valued Logic. In J.M. Dunn and G. Epstein, editors,Mod-
ern Uses of Multiple-Valued Logic, pages 8-37, D. Reidel, 1977.

207



Table 4: Transition rules.a,b,c∈ A; w∈W; x′/
√

andy′/
√

range overP∪{
√
}, whereP is

the set of process-closed terms; andx
φ
‖

ψ

√
≡
√

φ
‖

ψ
x≡ x,

√
φ
‖

ψ

√
≡ ∂H(

√
)≡
√

a
a,w−→
√ x

a,w−→
√

xy
a,w−→ y

x
a,w−→ x′

xy
a,w−→ x′y

x
a,w−→ x′/

√
,

w(φ) ∈ {B,T}
x+

φ
y

a,w−→ x′/
√

x
a,w−→ x′/

√
,

w(φ) ∈ {B,F}
y+

φ
x

a,w−→ x′/
√

x
a,w−→ x′/

√
, w(φ) ∈ {B,T}, w(ψ) ∈ {B,T}

x
φ
‖

ψ
y

a,w−→ (x′/
√

)
φ
‖

ψ
y

x
a,w−→ x′/

√
, w(φ) ∈ {B,T}, w(ψ) ∈ {B,F}

y
φ
‖

ψ
x

a,w−→ y
φ
‖

ψ
(x′/
√

)

x
a,w−→ x′/

√
, y

b,w−→ y′/
√
, a|b = c, w(φ) ∈ {B,F}, w(ψ) ∈ {B,T,F}

x
φ
‖

ψ
y

c,w−→ (x′/
√

)
φ
‖

ψ
(y′/
√

)

x
a,w−→ x′/

√
, y

b,w−→ y′/
√
, a|b = c

x
φ
|
ψ

y
c,w−→ (x′/

√
)

φ
‖

ψ
(y′/
√

)

x
a,w−→ x′/

√

x
φ
‖ ψ y

a,w−→ (x′/
√

)
φ
‖

ψ
y

x
a,w−→ x′/

√
, a 6∈ H

∂H(x)
a,w−→ ∂H(x′/

√
)

[2] J.A. Bergstra, I. Bethke, and P.H. Rodenburg. A propositional logic with 4 values:
true, false, divergent and meaningless.Journal of Applied and Non-Classical Logics,
5(2):199-218, 1995.

[3] J.A. Bergstra and J.-W. Klop. Process algebra for synchronous communication.Infor-
mation and Control, 60 (1/3):109-137, 1984.

[4] J.A. Bergstra and A. Ponse. Kleene’s three-valued logic and process algebra.Information
Processing Letters, 67(2):95-103, 1998.

[5] J.A. Bergstra and A. Ponse. Process algebra with four-valued logic.Journal of Applied
Non-Classical Logics, 10(1):27-53, 2000.

[6] G. Bracha, et al.The Java Language Specification(2nd edition). Addison Wesley, 2000.

[7] M.C. Fitting. Kleene’s three valued logics and their children.Fundamenta Informaticae,
20:113-131, 1994.

[8] C.B. Jones.Systematic Software Development using VDM(2nd edition). Prentice-Hall
International, Englewood Cliffs, 1990.

[9] S.C. Kleene. On a notation for ordinal numbers.J. of Symbolic Logic, 3:150-155, 1938.

[10] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and
D. Hirschberg (eds.),Computer Programming and Formal Systems, pages 33–70, North-
Holland, Amsterdam, 1963.

[11] A. Ponse and M.B. van der Zwaag. The logic of ACP. Report SEN-R0207, CWI, 2002.

[12] C. Verhoef. A congruence theorem for structured operational semantics with predicates
and negative premises.Nordic Journal of Computing, 2(2):274-302, 1995.

208



A Prospectus for Mobile Broadcasting Systems

K. V. S. Prasad
Chalmers University of Technology, Gothenburg, Sweden

June 9, 2005

Abstract

Computer messages are often broadcast over ethernets, and sent point-to-point be-
tween them: globally asynchronous, locally synchronous. This paradigm is captured
here by a primitive calculus, MBS (mobile broadcasting systems). MBS processes talk in
rooms by local broadcast, and walk between rooms at unspecified speeds. Names are like
object names in theπ-calculus, but its “get/putb on channela” becomes in MBS “go toa
and hear/sayb”. Speakers wait for departing processes, who are grouped by destination,
and walkers can enter only silent rooms. These rules, and a primitive to make a room
wait for a walker from a given room, seem adequate for programming.

Background and related work Broadcast is a common and natural communication prim-
itive; witness speech, radio and ethernet. It is also fun to program with [10, 13], for both
concurrent and parallel algorithms, and offers easy treatments of priority [10] and time [11].
The calculus CBS [10, 6] captures its main features, and is easily put on top of a programming
language [10]: data-dependent, executable concurrent CBS programs (not just models) have
been formally proved correct [4, 5, 1]. But CBS fails in at least one respect: it unrealistically
models even global broadcasts as being synchronous.

Practical methods to overcome the limited range of real broadcasts include multiple hops
as in ad-hoc networks (modelled by recent variants of CBS [7, 8]), and asynchronous point-to-
point hops between broadcasts, as in parts of the internet. This paper reports first experiments
with a notation for mobile broadcasting systems (MBS) inspired by the latter: “talking” con-
fined to roomsand “walking” between them. Talking is autonomous, ethernet-style single
channel broadcast (as in [10]). Every broadcast is heard instantly by everyone else in the
room, and by no one outside. Processes speak one at a time, arbitration resolving contention.
Walking is asynchronous process mobility at unspecified speed; to send just the messagea,
send the processa!0. These design choices constitute thebase modelof MBS.

Two fully fledged extensions of CBS need passing mention. HOBS [9] models asyn-
chronous buffers between broadcasts, but entails the complications of a higher order calculus.
Theπ-b calculus [3] is theπ-calculus with broadcast replacing handshake. It does not directly
model practical methods to extend broadcast range.

Programming in MBS To support programming, the base model must be complemented by
means to synchronise walking and talking. The requirements (SR) are suggested by examples.

209



To find the largest of a set of numbers, let each try to announce itself until it succeeds or it
hears a larger number:p(n)def= 〈x?if x≥ n then 0else p(n)+n!0〉. Then the parallel composition
of the p(n)’s will broadcast an increasing sequence of numbers, the last being the maximum.
But how todetect termination? SR1: walkers may only enter silent rooms(or rather,stable
ones; see SR3). Then a walker can leave the room and re-enter to announce termination.

Quicksort: Choose two new namesx andy, put the numbers in a room, and let each try to
announce itself. The pivot succeeds, all smaller numbers go to roomx, and the rest to roomy.
Continue recursively. It is bothersome to assemble processes after a walk, soSR2: all those
leaving at the same time for the same room must walk (and so arrive) together. It is easy to
avoid grouping if needed. To collect the sorted list, a reporter goes along with the smallest
and traverses the (virtual) tree of rooms. To keep stragglers, such as the reporter, from joining
a group still sorting themselves,SR3: exits have priority over speech.

Quicksort illustrates two advantages of MBS: therooms x and y can proceed indepen-
dently, and with well chosen rooms, most broadcasts are interesting to most of those in the
room (less wasted bandwidth). In programming, rooms are often logical rather than physical.

Subroutines. A key need is to execute subroutines in private rooms between broadcasts, so
MBS has a“holding exit” programming primitive (not an enforced SR): runninga⇑p in room
o sendsp alone toa, putting all reduction ino on hold till a process returns froma.

Syntax and Reduction Let N be a countable set ofnames. The setP of processes, and the
setRof roomsare sets inductively defined by the BNF syntax below. Leta, b, x, y∈N, while
c∈N∪{⊥}, h∈ {T,F}, p, q∈ P, ands, t ∈R. The distinction betweena, b, c (non-binding)
andx, y (binding) is suggestive, not formal. Rooms have unique names and are not nested.

p ::= 0
∣∣∣ x?p

∣∣∣ 〈x?p+a!q〉
∣∣∣ a∗ p

∣∣∣ a↑hp
∣∣∣ νx.p

∣∣∣ p|q

s ::= 0
∣∣∣ a.b:p

∣∣∣ νx.s
∣∣∣ s|t

∣∣∣ c?a[p]

The process 0 hears everything silently,x?p replacesx in p by any name it hears,〈x?p+
a!q〉 can saya and becomeq but is like x?p in hearing,a∗ p replicatesp (hearinga is the
trigger),a↑Tp is writtena⇑p (see above),a↑Fp (written a↑p) is p joining a group leaving for
a. Let l , m, n ∈ P∪R. Thenνx.m creates a fresh namex with scopem, andm|n is m in
parallel withn. Room⊥?a[p] (writtena[p]) is p in rooma, while b?a[p] is p in holding room
a awaiting a walker fromb, room 0 is the empty system, anda.b:p is p walking froma to b.

In the structural congruence tables below,x is fresh (i.e. renamed to avoid clashes).

α-equivalence m|0≡m m|n≡ n|m l|(m|n)≡ (l |m)|n
νx.0≡ 0 νx.νy.m≡ νy.νx.m νx.(m|n)≡ (νx.m)|n if x /∈ fn n

Above, familiar laws. Next, obvious variants, and below that, laws specific to MBS:

νx.y?p≡ y?νx.p νx.〈y?p+a!q〉 ≡ 〈y?νx.p+a!νx.q〉 νx.(a↑hp)≡ a↑hνx.p
(x↑p)|(x↑q)≡ x↑(p|q) c?a[νx.p]≡ νx.c?a[p]

Last, the partial function/b, wherep/b is whatp becomes upon hearing a nameb.

0/b≡ 0 (x?p)/b≡ p[b/x] 〈x?p+a!q〉/b≡ p[b/x]
(a∗ p)/a≡ p|a∗ p (a∗ p)/b≡ a∗ p if a 6= b (a↑hp)/b≡⊥

(νx.p)/b≡ νx.(p/b) (p|q)/b≡ (if p/b≡⊥ or q/b≡⊥ then⊥ elsep/b|q/b)

210



Soa↑p refuses to hear, and the last law says a parallel composition refuses to hear if either
component does. Refusal to hear means no one can speak (Axiom 1 below).

Next, predicates onp ands, defined by induction:p↓ (“ p is stable”, needed for SR1),p/b
(“ p wants to join a group bound forb”, needed for SR2), andb]s (“there is no roomb in s”,
to create rooms). Again,x is fresh. “Implies”, “and” and “or” are written⇒, ∧ and∨.

0↓ (x?p)↓ (a∗ p)↓ (b↑p)/b b]0 b](a′.a:p) b](a[p]) if a 6= b
p↓ ⇒ (νx.p)↓ p/b ⇒ (νx.p)/b b]s⇒ b](νx.s)
p↓ ∧ q↓ ⇒ (p|q)↓ p/b∨q/b⇒ (p|q)/b b]s∧b]t ⇒ b](s|t)

Finally, s−→s′ defined below says the rooms can reduce tos′. Notep≡ q⇒ a[p]≡ a[q].

1. b[〈x?p+a!q〉|r]−→b[q|(r/a)] if r/a 6=⊥
2. a[q|b↑p]−→a[q]|a.b:p if ¬q/b 3. a.b:p|b[q]−→b[p|q] if q↓
4. a[q|b⇑p]−→b?a[q]|a.b:p 5. a.b:p|a?b[q]−→b[p|q]
6. νx.(s|a.x:p)−→νx.(s|x[p]) if x]s
7. s−→s′⇒ s|t−→s′|t 8. s−→s′⇒ νx.s−→νx.s′

9. s≡ t ∧ s−→s′ ∧ s′ ≡ t ′⇒ t−→ t ′

Becausea↑p refuses to hear, Axiom 1 enforces SR3. It also says speech is autonomous
(even though it has to wait for departing processes); the absence of an axiomb[p]−→b[p/a]
(where thea would have to plucked out of thin air) says hearing is not. Axiom 2 directly
enforces SR2, and Axiom 3 enforces SR1. Axioms 4 and 5 deal with holding exits and rooms.
Axiom 6 says that there is a unique room for each name. Rules 7, 8 and 9 are simple. The
rules−→s′ ∧ t−→ t ′ ⇒ s|t−→s′|t ′ may be added, but the actual parallelism cannot be detected!

Encodings Much encoding can be done as in theπ-calculus, but using rooms instead of
channels. To get/putb on channela, go to rooma and hear/sayb.

Let a† pdef= 〈x?0+ a!p〉. To implement the recursive definitionA(x)def= p, make a room
A[A∗o?x?o↑p] and a caller from roomo replacesA(v) by A⇑A†o†v†0. Thena!q, which will
saya and becomeq, ignoring all it hears, can be implemented byXdef= 〈x?X +a!q〉.

Let a??p be defined bya??p/a ≡ p and a??p/b ≡ 0 if a 6= b. It can be implemented
in room o by νm.x?m⇑(x†o↑0|a∗ o↑p). If x = a then p|0 returns to free the held roomo,
else just 0 returns. The grouping is essential otherwise 0 could return first, andp might lose
broadcasts. The roommwith its replicator inside, can be garbage collected after this one use.
The triggered replicator in fact permits the encoding of a full case construct.

The λ -calculus has also been encoded in MBS following Milner’sπ-calculus encoding,
as has the handshake (i.e. the essentials of theπ-calculus) following a simple protocol in a
room representing the channel.

Alternative formulation Priorities (attached, as in [10], to autonomous actions) are implicit
in the SR’s (exit>speech>termination). I now think that by “mumbling” at an even higher
level, the hold can be programmed as well, and walkers can revert froma.b:p to b.p and
rooms fromc?a[p] to a[p]. A process has the priority of its highest priority speech or exit, and
will refuse to hear speech at lower priority. Processes can always enter a room. The mumble
τ can be heard but not understood (p/τ = p). It can also allow subroutine callers to decide
who goes first (sayτ before you go). It would still be bothersome to do without SR2.

211



Conclusions This paper presents work at such an early stage because it seems to capture
an interesting model, with which it is possible and even fun to program. MBS needs more
exploration through examples, and a decision on the formulation (prioritised or not), before
an observational theory can be attempted. Questions such as whether MBS can be derived
from theπ-calculus come even later (the answer can build on [2, 12]).

Acknowledgements MBS was presented to colleagues at Chalmers and at Imperial, Queen
Mary, and Cambridge. I am grateful for their detailed comments and encouragement. My
main debt is to Ulf Norell, who has implemented MBS in Haskell. We are working together
on the encodings, through which we saw the need for the “hold” primitive.

References

[1] Jørgen H. Andersen, Ed Harcourt, and K. V. S. Prasad. A machine verified distributed
sorting algorithm. Technical Report RS-96-4, BRICS, February 1996.

[2] Cristian Ene and Traian Muntean. Expressivness of point-to-point versus broadcast com-
munications. InFundamentals of Computation Theory, LNCS 1684, 1999.

[3] Cristian Ene and Traian Muntean. A broadcast-based calculus for communicating sys-
tems. InIPDPS, page 149. IEEE Computer Society, 2001.

[4] E. Giménez. An application of co-inductive types in coq: verification of the alternating
bit protocol. InTypes for Proofs and Programs, LNCS 1158. Springer, 1995.

[5] Ed Harcourt, Pawel Paczkowski, and K.V.S. Prasad. A framework for representing pa-
rameterised processes. Technical report, Chalmers Univ., Dept. of Computer Sci., 1995.

[6] Matthew Hennessy and Julian Rathke. Bisimulations for a calculus of broadcasting
systems.Theor. Comput. Sci., 200(1-2):225–260, 1998.

[7] Sebastian Nanz and Chris Hankin. Formal security analysis for ad-hoc networks. In
2004 Workshop on Views on Designing Complex Architectures (VODCA’04), 2004.

[8] Sebastian Nanz and Chris Hankin. Static analysis of routing protocols for ad-hoc net-
works. InSIGPLAN, IFIP WG 1.7 Issues in the Theory of Security (WITS), 2004.

[9] Karol Ostrovsky, K. V. S. Prasad, and Walid Taha. Towards a primitive higher order
calculus of broadcasting systems. InPPDP, pages 2–13. ACM, 2002.

[10] K. V. S. Prasad. A calculus of broadcasting systems.Sci. Comput. Program., 25, 1995.

[11] K. V. S. Prasad. Broadcasting in time. InCoordination, LNCS 1061. Springer, 1996.

[12] K. V. S. Prasad. Broadcast calculus interpreted in CCS upto bisimulation.Electr. Notes
Theor. Comput. Sci., 52(1), 2001.

[13] D. Sands and M. Weichert. From Gamma to CBS: Refining Multiset Transformations
with Broadcasting Processes. InHICSS31. IEEE Computer Society Press, 1997.

212



Process calculi and life science

Corrado Priami
University of Trento

June 7, 2005

Abstract

This short note briefly surveys the renewed connection between computer science and
life science. The paradigm shift recently observed in biology implies a new approach to
bioinformatics as well. We claim that a shift from algorithms to language theory is the
right step to do. In particular, due to the characteristics of biological systems, we argue
that process calculi could be the right abstraction to supportdynamicbioinformatics and
open new scenarios in the computer science and biology research.

Advances in technology development made possible the construction of high-throughput tools
and their application to the realm of life. The consequence is that a huge amount of data is
produced faster and faster and mechanical devices are needed simply to store the results of the
new experiments. Furthermore the conclusion of the human genome project are unrevealed
the basic bricks of life in their structure and position within DNA.

The computer science support to life scientists in this revolutionary enhancement of bi-
ology was essential to make them handle the information that they was able to produce. In
particular, data base theory to store information, data mining techniques to examine sets of
data, visualization tools to make data correlations comprehensible. However the most relevant
part of this support, usually included in the bioinformatics keyword, was the algorithms over
strings that allowed the sequenzing and comparison of genomes.

The computing power and the efficiency of algorithms is not however the key issue in the
recent successes of biology research. The main ingredient is instead the abstraction identified
to represent DNA: a language over an alphabet made up of four characters. As it has always
been in the past the main breakthroughs in science have been possible after the identification
of right abstractions for complex real phenomena.

In the meantime, biology is observing a paradigm shift from the classical reductionist ap-
proach to a systemic view of the living systems. In particular, the focus is mainly moved from
the structure to the functions of the constituents of biological systems. Hence, life scientists
needs new abstraction to model and analyse the dynamic evolution in time and space of the
systems in hand. In different words, they need a behavioural theory of biological systems.
Many approaches are under investigation in the new systems biology approach [5] where the
notion of network of interacting components is taking a primary role.

The basic approach to systems biology is described by the following steps

1. Build a model of the biological system in hand,

213



2. perform high-throughput experiments to test the model,

3. tune/validate the model through the feedback loop.

Since computer science is an experimental science, we can devise the following step

1. Build a model of a computer system (SW or HW),

2. Implement and test it,

3. tune/validate the model or the implementation according to the feedback.

In both approaches above the first item corresponds to the generation of hypotheses, the
second to testing of the hypotheses through experiments and the last to tuning and validation of
the process through modification of the model or of the experiments. In a provoking way, we
could say that systems biology is computer science in the applicative domain of life science.

In order to find the right abstraction for systems biology we need first identify the main
characteristics of the biological systems under investigation. By examining some literature
on systems biology it appears that everyone agree that the relevant systems are made up of
bio-components

interpreted as information and computational devices,

having millions of simultaneous computational threads active (e.g., metabolic networks,
gene regulatory networks, signaling pathways),

such that components interaction changes the future behavior of the overall system,

and such that interactions occur only if components are correctly located (e.g., they are
close enough or they are not divided by membranes).

Figure 1:From structure to functions in biology is matched by a transition from syntax to semantics
in computer science.

The description above immediately resembles the one of distributed and mobile systems
and hence we look at formalisms developed to study these computer science systems and we
check whether they can be applied to biological systems as well. In particular we consider
process calculi for mobility (e.g., [7, 2, 16] as the main modeling, simulation and analysis
tool. The main idea is that passing from structures to functions in biology can be matched

214



by a transition from syntax (the DNA abstraction) to semantics (the behaviour) in computer
science (see Fig. 1).

According to the intuition above, the basic abstraction mechanisms are as follows assum-
ing to work at a molecular level.

Molecule are abstracted as processes;

the affinity of interaction between molecules is modeled through the existence of shared
channel between the processes representing the molecules;

the actual interaction between molecules is represented by communication;

the modification of the behaviour of the biological system following an interaction is
rendered by the change of the processes/channels state.

Since the temporal/spatial evolution of biological systems is mainly driven by quantities
representing chemical and physical parameters, we need to pass from a qualitative description
of systems to a quantitative one. The tool we adopt for this scale up of models is stochastic
process calculi [9, 10].

Intensive research has been performed to include performance evaluation and prediction in
process calculi model that produced clean models supported by a set of high quality software
tools. Furthermore, the introduction of stochastic information in the calculi unlocked the
world of simulation. Indeed, it is enough to equip the calculi with a stochastic (rather than
deterministic) run-time support to make the execution of a program a simulation.

Some simulators have been developed especially to be applied in the biological domain
implementing a variant of the stochasticπ-calculus [13, 8]. They essentially select the enabled
action to be performed according to the Gillespie algorithm developed to simulate chemical
reactions [3, 4].

Preliminary results in this field have been obtained in modeling a set of interesting bio-
logical systems and some analysis and simulation have been carried out [14, 15, 6]. However
the strategy adopted up to now was to apply calculi defined with computer systems in mind to
biology. We are now trying the opposite strategy. We are defining calculi inspired by biology
so that they are better suited to modeling, analysing and simulating living systems (examples
are [11, 12, 1]. Then we will apply the new family of calculi to computer systems to see
whether the bio-mimetic approach can further inspire and enhance our comprehension of how
computer artificial systems can be modeled, designed and implemeted.

References

[1] L. Cardelli. Brane Calculi. InCMSB ’04, volume 3082 ofLNBI. Springer, 2005.

[2] L. Cardelli and A. D. Gordon. Mobile ambients. InFoundations of Software Science
and Computation Structures: First International Conference, FOSSACS ’98. Springer-
Verlag, Berlin Germany, 1998.

[3] D.T. Gillespie. A general method for numerically simulating the stochastic time evolu-
tion of coupled chemical species.Journal of Computational Physic, 22:403–434, 1976.

215



[4] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions.Journal of
Physical Chemistry, 81(25):2340–2361, 1977.

[5] H. Kitano. Foundations of System Biology. MIT Press, 2002.

[6] P. Lecca, C. Priami, P. Quaglia, B. Rossi, C. Laudanna, and G. Costantin. Language
modeling and simulation of autoreactive lymphocytes recruitment in inflamed brain ves-
sels. 2003. To appear in SIMULATION: Transactions of The Society for Modeling and
Simulation International.

[7] R. Milner. Communicating and mobile systems: theπ-calculus. Cambridge Universtity
Press, 1999.

[8] A. Phillips and L. Cardelli. A correct abstract machine for the stochastic pi-calculus. In
BioConcur ’04, ENTCS. Elsevier, to appear.

[9] C. Priami. Stochasticπ-calculus.The Computer Journal, 38(6):578–589, 1995.

[10] C. Priami. Language-based performance prediction for distributed and mobile systems.
Information and Computation, 175, 2002.

[11] C. Priami and P. Quaglia. Beta binders for biological interactions. InCMSB ’04, volume
3082 ofLNBI. Springer, 2005.

[12] C. Priami and P. Quaglia. Operational patterns in beta-binders. InTransactions on
Computational Systems Biology, volume 3380 ofLNCS. Springer, 2005.

[13] C. Priami, A. Regev, W. Silverman, and E. Shapiro. Application of a stochastic name-
passing calculus to representation and simulation of molecular processes.Information
Processing Letters, 80(1):25–31, 2001.

[14] A. Regev. Representation and simulation of molecular pathways in the stochasticπ-
calculus. InProceedings of the 2nd workshop on Computation of Biochemical Pathways
and Genetic Networks, 2001.

[15] A. Regev, W. Silverman, and E. Shapiro. Representing biomolecular processes with
computer process algebra:π-calculus programs of signal transduction pathways. In
American Association for Artificial Intelligence Pubblication, 2000.

[16] D. Sangiorgi and D. Walker.Theπ-calculus: a Theory of Mobile Processes. Cambridge
Universtity Press, 2001.

216



Confluence thanks to extensional determinism

A.W. Roscoe∗

Oxford University Computing Laboratory

May 24, 2005

Abstract

A process is extensionally deterministic if, after any trace s and given any
event a, it is either certain to accept or certain to refuse a (stably) after s.
We show how several process algebras are capable of expressing this property
and how they agree on the equivalence of deterministic processes. A number
of important properties of processes P , including confluence, can be captured
in terms of the determinism of some context C [P ].

1 Introduction

The first reaction of those used to thinking operationally about processes will natu-
rally be to try to understand questions about them in that way. Operational semantics
explain naturally how nondeterminism arises in process algebra: either through the
uncertainty caused by the availability of τ actions or through ambiguous branching
on actions. It is therefore natural to come up with an operational characterisation
of determinism, examples being the banning of τ actions and ambiguous branching,
and Milner’s concepts of confluent and weakly determinate processes.

Process algebraists are familiar with the issue of deciding just when two nonde-
terministic processes are equivalent: one of our problems has been the tremendous
range of congruences that make sense for that purpose. This short paper shows that
we can agree about the rest of the processes, namely the deterministic ones, and gain
insight in one formalism from the results and definitions known about another.

CSP has long (e.g., [1, 2]) provided what we can term an extensional definition of a
deterministic process: one that is divergence-free, and never has both the trace s 〈̂a〉
and the failure (s , {a}). Under a standard interpretation of what it means to interact
with an LTS, this precisely corresponds to the statement that, after any trace s and
for any event a, if {a} is offered, that either it is certain a will occur or it is certain it
will be refused stably. It is most naturally decided in terms of the failures-divergences

∗bill.roscoe@comlab.ox.ac.uk

1

217



representation of a process. There are several algorithms for deciding whether or not
a finite-state process is deterministic: see [6, 7]. The failures-divergences model is [8]
fully abstract with respect to the question of whether a process is deterministic.

This definition of determinism transfers to any language with an LTS-based se-
mantics since the sets of failures and divergences of a process are easily calculated
from the LTS. In particular it makes sense for CCS, or more comfortably CCS in
which unguarded recursions are banned, or are (following Walker [11]) labelled ⊥ and
treated as divergent. It also translates into the language of testing [3]: a process P is
deterministic if and only if P may t ⇔ P must t if t is of the form s 〈̂ω〉, for s a finite
trace and ω the “success” flag. It is straightforward to verify that, over LTS’s, these
two definitions are equivalent. Both support the informal description of determinism
as the property of being reliably testable: the same test on different occasions will
yield the same result.

They are a little different from Milner’s concept of weak determinacy [4, 5], which
is that if P

s
=⇒ Q and P

s
=⇒ Q ′ then Q and Q ′ are weakly bisimilar. But not much

different: if P is divergence-free then this is equivalent too.

It is well known in both process algebras that two deterministic/weakly determi-
nate processes are equivalent/weakly bisimilar if and only if they have the same set
of traces. We can conclude that in CSP and CCS:

• The sets of extensionally deterministic processes (namely the deterministic/
divergence-free weakly determinate ones) are in effect the same.

• Both process algebras are capable of identifying them, and have (perhaps mod-
ulo an initial τ) the same equality theory for them.

We exploit this “confluence” of CCS and CSP in the rest of this paper.

2 Security

[10, 6] identified the provable lack of information flow from H to L (sets that parti-
tion P ’s alphabet) with the determinism of the lazy abstraction LH (P) (where the
events of H are concealed but made available to P nondeterministically rather than
eagerly as they are in conventional hiding). A natural way of describing LH (P) is
as (P ‖

H
ChaosH ) \ H , where ChaosH = STOP u ?x : H → ChaosH is the most

nondeterministic divergence-free process over H . We always assume P is divergence
free in this section.

The strict treatment of divergence in CSP causes a problem: if an infinite sequence
of H events occur without an L event it throws the value of the CSP term above to
bottom. The solution to this in CSP has been to postulate the divergence to be
absent, for example by using the stable failures model to calculate the above value.
There is an alternative arising from the confluence of process algebras.

218



Proposition 2.1 The lazy abstraction LH (P) is deterministic if and only if the
term (P ‖

H
ChaosH ) \ H (interpreted in the standard operational semantics of CSP)

is weakly determinate.

For various reasons ChaosH cannot, in CCS, be said to be the most nondetermin-
istic process. It would be interesting to investigate whether the abstraction defini-
tion (P ‖

H
ChaosH ) \ H (either with the above or some CSP-equivalent but CCS-

inequivalent definition of ChaosH ) has properties in CCS-style equivalences which are
analogous to the other uses lazy abstraction has in CSP (see Chapter 12 of [6]).

3 Confluence and functionality

In [4, 5], Milner introduced the idea of a confluent process: P such that if P
s

=⇒ Q1

and P
t

=⇒ Q2 then there exists R with Q1
t−s
=⇒ R and Q2

s−t
=⇒ R where s − t

is the trace consisting of s with the events of t deleted according to multiplicity
from the beginning. (For example 〈a, b, c, c, b, a〉 − 〈d , c, b, a, c〉 = 〈b, a〉.) We may
clearly broaden this to encompass the two R’s being different but weakly bisimilar.
Confluence is easily seen to imply weak determinacy. This means

• Two confluent processes are weakly bisimilar if and only if they have the same
traces.

• A process is confluent if and only if it is weakly determinate and has a confluent
trace set (namely one which has s (̂t − s) if it has s and t).

Confluent processes have many attractive properties. In [9] the author established
that they are useful tools in the area of buffer tolerance (the study of when we can
establish properties of buffered systems by checking their buffer-less analogues). The
following proposition is taken from there.

Proposition 3.1 The process P is confluent and divergence-free if and only the pro-
cess C ∗[P ], in which a one-place inwards-pointing buffer is placed on every individual
event of P , is extensionally deterministic.

The “only if” part of this result is a straightforward consequence of standard prop-
erties of confluent processes (in fact, if P is confluent, then so is C ∗[P ]). The “if”
part consists of showing first that P itself is deterministic, and then showing that
its trace set is confluent: any failure of this generates a piece of externally-visible
nondeterminism in C ∗[P ]. The correspondence of CCS and CSP for extensionally
deterministic processes easily establishes that the above also holds in CCS. In fact
the proof can be adapted to establish the following slightly stronger result.

Proposition 3.2 P is confluent if and only if C ∗[P ] is weakly determinate.

219



In [9] the author derived a similar result for functional processes: ones where each
output stream is a prefix of a function of the input streams, which cannot refuse to
input when there is no output pending and which cannot refuse to output when there
is. It was shown there that (modulo a requirement that its structure of inputs is
confluent) a process is functional if and only if putting an unbounded deterministic
buffer (this time appropriately oriented) on each input and output channel creates
a deterministic process. A finitary characterisation in terms of output determinism,
where the ability to output and the value of each channel’s output is completely
determined by the trace, was also given. For example, a process P with two channels
is a buffer (in the usual CSP sense [6], which makes sense widely) if and only if

BT [P ] = COPY and COPY >>P is output deterministic.

where COPY is a one-place buffer and BT [P ] places P in parallel with a process
that transmits external inputs to P and P ’s outputs to the environment, ensuring
that the lengths of its input and output traces differ by at most 1. BT [P ] = COPY
shows that the function that P computes (which exists by the output determinism
condition) is the identity function. This gives a very finitary check of an infinitary
specification, which works equally well in CSP and CCS.

References

[1] S.D. Brookes, C.A.R. Hoare and A.W. Roscoe, A theory of communicating sequential
processes, Journal of the ACM 31, 3, 560–599, 1984.

[2] S.D. Brookes and A.W. Roscoe, An improved failures model for CSP, Proceedings of
the Pittsburgh seminar on concurrency, Springer LNCS 197, 1985.

[3] R. de Nicola and M. Hennessy, Testing equivalences for processes, TCS 34, 1, 83–134,
1987.

[4] R. Milner, A calculus of communicating systems, Springer LNCS 92, 1980.

[5] R. Milner, Communication and concurrency, Prentice Hall, 1989.

[6] A.W. Roscoe The theory and practice of concurrency, Prentice-Hall, 1998.

[7] A.W. Roscoe, Finitary refinement checks for infinitary specifications, Proc CPA 2004.

[8] A.W. Roscoe, Revivals, stuckness and reponsiveness, Unpublished manuscript (2005)
available from web.comlab.ox.ac.uk/oucl/work/bill.roscoe/pubs.html

[9] A.W. Roscoe, The pursuit of buffer tolerance, Unpublished manuscript (2005) avail-
able from web.comlab.ox.ac.uk/oucl/work/bill.roscoe/pubs.html

[10] A.W. Roscoe, J.C.P. Woodcock and L. Wulf, Non-interference through determinism,
Journal of Computer Security 4, 1, 27–54, 1996.

[11] D.J. Walker, Bisimulation and divergence in CCS, Information and Computation 85
pp202–241 (1990).

220



Bisimulation and co-induction: some problems

Davide Sangiorgi

University of Bologna, Italy
http://www.cs.unibo.it/~sangio/

June 6, 2005

Bisimulation and, more generally, co-induction, can be regarded as one of

the most important contributions to Computer Science that stem from the work

on algebraic process calculi. Nowadays, bisimulation and the co-inductive tech-

niques developed from the idea of bisimulation are widely used, not only in

Concurrency, but, more broadly, in Computer Science, in a number of areas:

functional languages, object-oriented languages, type theory, data types, do-

mains, databases, compiler optimisations, program analysis, veri�cation tools,

etc.. For instance, in type theory bisimulation and co-inductive techniques have

been used: to prove soundness of type systems; to de�ne the meaning of equal-

ity between (recursive) types and then to axiomatise and prove such equalities;

to de�ne co-inductive types and manipulate in�nite proofs in theorem provers.

Also, the development of Final Semantics, an area of Mathematics based on

co-algebras and category theory and that gives us a riche and deep perspective

on the meaning of co-indiction and its duality with induction, has been largely

motivated by the interest in bisimulation.

Below I brie
y three directions for future work related to the notion of

bisimulation.

The classical notion of bisimulation is de�ned on a Labelled Transition Sys-

tem (LTS) thus, where � is the set of all states of the LTS:

a relation R � ��� is a bisimulation if

(P1; P2) 2 R and P1

�

�! P 0

1
imply:

there is P 0

2
such that P2

�

�! P 0

2
and (P 0

1
; P 0

2
) 2 R,

and the converse, on the actions from P2. (1)

Bisimilarity is then de�ned as the union of all bisimulations. When the states of

the LTS are processes, bisimilarity can be taken as the de�nition of behavioural

equality for them.

The de�nition of bisimilarity is an example of co-inductive de�nition; the

bisimulation proof method is an example of co-inductive proof method.

Bisimulation is continuously applied to new formalisms. Often these for-

malisms bring in new requirements that make the classical de�nition (1) inap-

1

221



propriate. An example are higher-order process languages, that is, languages in

which processes, or terms including processes, can move or be communicated.

Consider for instance processes A
def
= ahP jQi:0 and B

def
= ahQjP i:0. These pro-

cesses can only perform one action, at a. In this action, A emits P jQ (the

parallel composition of the processes P and Q), B emits QjP . Thus, if P and

Q are syntactically di�erent, the two processes are distinguished according to

de�nition (1). Hence, an important algebraic law such as the commutativity of

parallel composition is broken. (The problem in this speci�c example can be

overcome by requiring bisimilarity rather than identity on the processes emitted

in a higher-order output action. This form of bisimulation, called higher-order

bisimulation, [Tho90, AGR88], is however troublesome in other situations, see

[San96] for discussions.)

Other examples of languages in which de�nition (1) is over-discriminating

are typed languages of mobile processes such as the pi-calculus [Mil99, SW01],

and calculi for security such as the spi-calculus [AG99]. In these cases, as in the

case of higher-order processes, matching transitions of bisimilar processes should

not necessarily be identical. Further, the knowledge (on the type of values, on

secrecy keys, etc.) that the external observer has acquired is signi�cant and,

for instance, implies that not all actions of the processes are observable. (See

[BS98, AG98, BDP99] for more details.)

But if de�nition (1) cannot be used, what is, and how can we �nd, the

\right" de�nition? A method that has been extensively used is based on barbed

bisimulation [MS92, SW01], or variants of it (such as [HY95], sometimes called

reduction-closed barbed congruence). Barbed bisimulation can be uniformly ap-

plied to di�erent formalisms because we equip a global observer with a minimal

ability to observe actions and/or process states. We then obtain an equivalence,

namely indistinguishablility under global observations. This in turn induces a

congruence over agents, namely equivalence in all contexts, called barbed con-

gruence. In barbed bisimulation, the bisimulation game is only played on the

interactions of processes, as opposed to visible actions such as input and output.

The only checks performed on visible actions are represented by an observability

predicate that gives the external observer visibility of the channel at which an

action occurs.

Context-based behavioural equalities like barbed congruence su�er from the

universal quanti�cation on contexts, that makes it very hard to prove process

equalities following the de�nition, and makes mechanical checking impossible.

However, barbed congruence can guide us to �nd direct characterisations, as

forms of labelled bisimilarity without quanti�cation on contexts. For instance,

de�nition (1) is a direct characterisation of barbed congruence in CCS.

Unfortunately, deriving a labelled bisimilarity from barbed bisimulation may

require a lot of ingenuity. Further, proofs tend to be very sensitive to the

language adopted { a small modi�cation to the language can have dramatic

consequences. A general methodology for deriving labelled bisimilarity starting

from the syntax and the operational semantics of the language is missing here.

The value of this methodology would depend on whether it is robust (applicable

2

222



to a broad range of language), and algorithmic (based on a number of steps each

of which as elementary as possible). Sewell's contextual labelled transitions

[Sew02] can be seen as a progress in this direction.

Another important and related issue is that when bisimilarity departs from

the classical de�nition (1) it may be hard to establish its properties. For in-

stance, in higher-order process calculi it may be hard to prove that a labelled

bisimilarity is a congruence relation. In sequential higher-order languages, con-

gruence properties of bisimilarity are usually established using Howe's technique

[How96]. However, in Concurrency such a technique appears to work only in

a limited number of cases. Some progress in this direction has been made

[San96, MH02, JR03], but doubts remain on how general and powerful these

techniques are.

A third challenging direction for future work that I would like to mention

is the enhancement of the bisimulation (and more generally, the co-induction)

proof method. I discuss this below.

In the clauses of de�nition (1) the same relation R is mentioned in the

hypothesis and in the thesis. In other words, when we check the bisimilarity

clause on a pair (P1; P2), all needed pairs of derivatives, like (P 0

1
; P 0

2
), must be

present in R. We cannot discard any such pair of derivatives from R, or even

\manipulate" its process components. In this way, a bisimulation relation often

contains many pairs strongly related with each other, in the sense that, at least,

the bisimilarity between the processes in some of these pairs implies that between

the processes in other pairs. (For instance, in a process algebra a bisimulation

relation might contain pairs of processes obtainable from other pairs through

application of algebraic laws for bisimilarity, or obtainable as combinations of

other pairs and of the operators of the language.) These redundancies can make

both the de�nition and the veri�cation of a bisimulation relation annoyingly

heavy and tedious: It is diÆcult at the beginning to guess all pairs which are

needed; and the clause of (1) must be checked on all pairs introduced.

As an example, let P be a non-deadlocked process from a CCS-like language,

and !P the process de�ned thus: !P
def
= P j !P . Process !P represents the

replication of P , i.e., a countable number of copies of P in parallel. (In certain

process algebras, e.g., the pi-calculus, replication is the only form of recursion

allowed, since it gives enough expressive power and enjoys interesting algebraic

properties.) A property that we naturally expect to hold is that duplication

of replication has no behavioural e�ect, i.e, !P j !P � !P (where � is the

bisimilarity relation). To prove this, we would like to use the singleton relation

S
def
= f( !P j !P ; !P )g :

But S is easily seen not to be a bisimulation relation. If we add pairs of processes

to S so to make it into a bisimulation relation, then we might �nd that the

3

223



simplest solution is to take the in�nite relation

R
def
= f (Q1; Q2) : for some R,

Q1 � R j !P j !P and Q2 � R j !Pg :

The size augmentation in passing from S to R is rather discouraging. But it

does somehow seems unnecessary, for the bisimilarity between the two processes

in S already implies that between the processes of all pairs of R.

Some techniques have been proposed that do allow us to relieve the work

involved with the bisimulation proof method. For instance, on the previous

example, the \bisimulation up to context and up to bisimilarity" technique

indeed allows us to prove the property !P j !P � !P simply using the singleton

S [San98]. In this technique, the pair of derivatives P 0

1
and P 0

2
in (1) need not

be in R. It is suÆcient to �nd processes P 00

1
; P 00

2
, and a context C[�] such that,

for i = 1; 2,

P 0

i
� C[P 00

i
]; (2)

and then only the pair (P 00

1
; P 00

2
) has to be in R. Intuitively, the reason why

this technique is sound is that bisimilarity is a congruence, in particular it is

preserved by all contexts and it is transitive. Hence, from P 00

1
� P 00

2
we can

infer C[P 00

1
] � C[P 00

2
], and then from this and (2) we can conclude P 0

1
� P 0

2
by

transitivity.

In summary, by enhancements of the bisimilarity proof method I refer to

methods that allow us to prove bisimilarity results using relations that are

strictly included in a bisimulation. Such relations should be as small as possible;

precisely, they should have no \redundant" pairs, in the sense discussed above.

However, the precise meaning of \redundant" is not clear. Intuitions can be

deceptive here. For instance, one might reasonably think that the \bisimulation

up to context and up to bisimilarity" technique is always sound if bisimilarity

is a congruence. But this is not true; see [San98] for counterexamples.

\Bisimilarity up-to" techniques are heavily used in languages for mobility

and in concurrent higher-order languages. The proofs of several basic results

of the theory of these languages seem infeasible without them. However, most

of these techniques have been introduced in a rather ad-hoc fashion, to solve

speci�c problems on speci�c languages.

We need to understand better what is an enhancement of the bisimulation

proof method: what makes an enhancement sound and why, and how it can be

used. Here again, it would be highly desirable to have general results, applicable

to di�erent languages.

References

[AG98] Mart��n Abadi and Andrew D. Gordon. A bisimulation method for

cryptographic protocols. In Chris Hankin, editor, Proc. ESOP'98, vol-

ume 1381 of Lecture Notes in Computer Science, pages 12{26. Springer

Verlag, 1998.

4

224



[AG99] Mart��n Abadi and Andrew D. Gordon. A calculus for cryptographic

protocols: The spi calculus. Information and Computation, 148(1):1{

70, 10 January 1999.

[AGR88] E. Astesiano, A. Giovini, and G. Reggio. Generalized bisimulation in

relational speci�cations. In STACS '88, volume 294 of Lecture Notes

in Computer Science, pages 207{226. Springer Verlag, 1988.

[BDP99] M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryp-

tographic processes. In Proc. LICS'99, pages 157{166. IEEE, Com-

puter Society Press, July 1999.

[BS98] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi

without matching. In Proc. 13th LICS Conf. IEEE Computer Society

Press, 1998.

[How96] D. J. Howe. Proving congruence of bisimulation in functional pro-

gramming languages. Information and Computation, 124(2):103{112,

1996.

[HY95] K. Honda and N. Yoshida. On reduction-based process semantics.

Theoretical Computer Science, 152(2):437{486, 1995.

[JR03] A. Je�rey and J. Rathke. Contextual equivalence for higher-order pi-

calculus revisited. In Proc. MFPS XIX, volume 83 of ENTCS. Elsevier

Science Publishers, 2003.

[MH02] M. Merro and M. Hennessy. Bisimulation congruences in Safe Ambi-

ents. In Proc. 29th POPL. ACM Press, 2002.

[Mil99] R. Milner. Communicating and Mobile Systems: the �-Calculus. Cam-

bridge University Press, 1999.

[MS92] R. Milner and D. Sangiorgi. Barbed bisimulation. In W. Kuich, editor,

Proc. 19th ICALP, volume 623 of Lecture Notes in Computer Science,

pages 685{695. Springer Verlag, 1992.

[San96] D. Sangiorgi. Bisimulation for Higher-Order Process Calculi. Infor-

mation and Computation, 131(2):141{178, 1996.

[San98] D. Sangiorgi. On the bisimulation proof method. Journal of Mathe-

matical Structures in Computer Science, 8:447{479, 1998.

[Sew02] P. Sewell. From rewrite rules to bisimulation congruences. Theoretical

Computer Science, 274:183{230, 2002.

[SW01] D. Sangiorgi and D. Walker. The �-calculus: a Theory of Mobile

Processes. Cambridge University Press, 2001.

[Tho90] B. Thomsen. Calculi for Higher Order Communicating Systems. PhD

thesis, Department of Computing, Imperial College, 1990.

5

225



Process Calculi: The End?

Peter Sewell
University of Cambridge

June 5, 2005

Abstract

Research on process algebra over the last 25 years has produced an astonishing num-
ber of models of nondeterministic and concurrent systems. There are hundreds of calculi
and equivalences, many equipped with sophisticated proof techniques or model-checking
algorithms.

Looking back, is this a shocking disaster or a huge success? I will argue that it is both.
In this varied menagerie of models it is often impossible to reuse proof techniques, tools,
and metatheory. We are far from having one or two ‘standard’ calculi which together
suffice for almost all applications, and some might think this disastrous. On the other
hand, these models address a very wide variety of phenomena (synchronisation, naming,
time, locality, probability, etc.), prompted by many different applications (communication
protocols, security protocols, concurrent and distributed programming languages, bioin-
formatics, control systems, and many more). From this point of view one should certainly
not aim for a single calculus covering all phenomena — instead, the most significant prod-
uct over these 25 years is a repertoire of idioms and techniques for operational semantics,
for both modelling and reasoning, that can readily be applied in new situations.

I will illustrate this with some lessons learned from modelling the real-world TCP and
UDP network protocols. Here we found it convenient to use a process-calculus structure
at the top level (with a particular synchronisation algebra over parallel compositions of
certain timed transition systems), but the internal details of protocol endpoints were best
specified in another style, directly in higher-order logic.

Such applications (including many by other groups) suggest to me that we have
reached the end of the beginning: there are still highly challenging technical problems,
but we also understand enough to be able to focus outwards, where our idioms and tech-
niques can be used very fruitfully.

226



Process Algebra as Modelling.

Chris Tofts
Hewlett-Packard Laboratories Bristol

chris.tofts@hp.com

June 24, 2005

Abstract

After 25 years of research (19 personally) into process algebras, I ask what areas of
mathematics other than the analysis of concurrent computation could or indeed should
its basic approach be applied? In particular, I identify the two areas of reductionism and
model comprehension, upon which I believe that process algebra has the potential to have
a major impact.

1 Introduction

It is a very dull piece of mathematics which solely addresses the problem it was originally
designed for. After 25 years of research effort on process algbera, it is interesting to ask the
question ‘what other problems (can) does it solve?’ If we were to assume that an alternative
solution to the problem of verifying interacting concurrent systems provided a complete and
elegant solution to those issues would there still be a role for process algebra - or should the
activity be mothballed?

My personal belief is that the underlying philosophy of process algebra gives us insight
into two long standing difficult areas:

• comprehension through composition;

• representing mildy heteregeneous interacting systems for Markov chain analysis.

The first item can be summarised as the ‘reductionism vs holism’ debate. In its simplest terms
the proponents of each side of this debate adopt positions of: ‘all systems can be understood
in terms of their components’, and ‘some systems can only be understood as wholes’, respec-
tively. Since (almost arbitrary) composition is thesine qua nonof process algebra, if it cannot
add to this debate then it is probably deficient in its fundamental construction. The second
problem concerns those systems that are often described as being ‘complex’ or having ‘emer-
gent’ properties. Complexity in these systems does not arise as a consequence of a very large
number of interacting components, for if the numbers were that large then statistical physics
techniques would apply. Nor are these problems the result of truly vast state spaces, since

227



again the techniques of continuous probabilistic mathematics could be exploited. These prob-
lems lie in themiddle, where there are a either a middle sized number (10-1000)1 of states
in the components or a middle sized number of different components (4-100) and they are
present in middle sized quantities (5-1000). It is in these settings that ‘traditional’ applied
mathematical techniques tend to suffer.

2 Reductionism vs Holism

The main confusion in this area seems to lie between the methods of understanding the be-
haviour of systems and the methods of calculating the behaviour of systems. The fundamen-
tal problem being that the two activities should be supported by the same mathemaics. As
a primary counter example, the behaviour of the transistor was predicted using quantuum
mechanics, however this is not the approach currently taken to calculating the behaviour of
circuits.

If we accept that the physical universe around us is formed from parts and it is the peculiar
interaction of those parts which gives rise to the phenomena we see, then an appropriate
mathematics would have to have the following properties:

• representation of ‘parts’ with arbitrary behaviour;

• represenation of arbitrary interaction mechanisms between the ‘parts’.

The family of approaches that is termed process algebras would at first sight be general enough
to cope with both of these requirements. More interestingly, is the application of Robert de
Simone’s result on synchronous process algebras in this area. If we can assume a bound
on the descriptive complexity of the interaction between parts, say recursively enumerability,
then we may be able to give a complete account, at least of the computational aspects, just
using calculi of the complexity of Meije or SCCS.

It is important to recognise what this may achieve. We may well be able to give a ‘true’
account of the components and their interactions which give rise to complex physical phe-
nomena. However, this does not imply that we shall be able to calculate effectively with such
representations. Finally, as a consequence of the free semantic interpretation of the action
within process algebra, we can choose the level of abstraction (and consequent calculational
difficulty) which our models will entail. In principle within the same calculi with the ap-
propriate understanding of process abstraction we may be able to give a formal account of
the relationships between the necessary abstraction levels. Process algebra may permit us to
demonstrate that the whole is never greater than the sum of the parts, if you do the summation
correctly.

3 Heterogenous interacting systems

To simplfy the following discussion I will use the ‘lazy’ nomeclature of complex to describe
the class of systems under discussion. In this setting there are many practical problems for the
modeller:

1These numbers are actually the grossest approximations and are meant to be purely indicative.

228



• convincing themself that they have captured the problem correctly;

• interpreting the results from the analysis;

• presenting the results to those who need them.

Most practical modelling exercises take place in order to support decision making, even in the
most abstract accademic setting this is often a question as to whether we persue one line of
research or another (or even build one particle accellarator design or another). Given the cost
of making incorrect decisions there is a common belief that the models which support these
decisions need to be suitably complex and detailed. Since the primary skill of an applied
mathematician is the removal of unnecessary complexity and detail this leads almost imme-
diately to a conflict between the model constructor and the model user (or decision maker).
So called ‘individual based models’ have become increasingly popular as they appear to pro-
vide a solution to the comprehension problem since the fundamental entities in the model are
individuals whose behaviour all of the parties to the modelling exercise can agree on. How-
ever, this approach to modelling largely engenders a position where the only form of analysis
possible is to study the system through simulation.

From a process algebraic perspective we have two advantages:

• we can ‘validate’ the individual components;

• we can track the contribution of component state on the whole system.

Both of these properties permit us a more convincing account as to why the model is ‘cor-
rect’ and how to comprehend its predictions. Even if we are forced to resort to simulation in
order to analyse systems then the process algebraic view can add to our understanding. For
the object oriented class of discrete event simulation languages, which can be viewed as start-
ing from Nygaard and Dahl’sSimula, process algebras can provide an elegant and effective
semantic basis. Indeed, starting from Birtwistle’s simulation oriented abstraction of Simula,
Demos, it is possible to derive a language which is expressively identical to a value passing
version of SCCS, whilst retaining the ease of modelling (programming) of the original system.
In many cases this permits us to exploit human guided abstraction and comparison through
execution until we reach the point where the model can be resolved by analytic techniques, as
implemented in HOLOS.

Simply viewing process algebra as a notation for complicated Markov chain systems has
benefits. One problem with Markov chains is identifying the state space. In any non-trivial
context this can be highly error prone. By forming the state space as a composition on inter-
acting processes, this construction is essentially automatic. Indeed, the underlying algebra can
be exploited to reduce the state space, via identity, on the fly. More importantly when particu-
lar structures are identified within the state space of a large Markov chain it can be difficult to
relate this back to the originating system. When the state space is contructed from a process
algebraic source, and consequently enumerated by the state names of the components, it is
possible to recover all of the underlying component states and thus interpret the behaviour in
terms of the original system. This approach has proved extremely powerful in modelling of
animal behaviour and evolutionary systems.

229



4 Conclusions and Problems

Process algebra has significant potential to influence modelling activities outwith theoretical
computer science. The two areas I identified above are simply the most immediate ones from
my own experience and prejudices. I wonder how the development of process algebra would
have proceeded if a view similar to Nygaard’s on Simula:

Simula is a problem description language, which with the addition of input and
output statements could be executed on a digital computer.

had been applied to the development of process algebra. Combining these views with the
(essentially) automata based probabilistic calculational approaches of Marcel Neuts in the
mid 1980s may have lead to the primary applications of process algebra being substantively
different to the current ones.

It is traditional in time based reviews of a subject area to end with some problems which
one considers of sufficient interest to mention and the following are ones I feel are the most
interesting:

0. Does the physical universe exploit non RE describable combinators?

1. Does the de Simone result hold in synchronous calculi extended with physical phenom-
ena?

2. Is the limiting approximation to asynchrony valid in this space?

3. What is the appropriate notion of abstraction to capture the activities of applied mathe-
maticians?

4. Can we exploit the information bound of finite structural state systems mutually observ-
ing?

5. What is the relationship between probabilistic process algebra and the effective calcu-
lational techniques of Marcel Neuts?

6. What is the appropriate notion of abstraction within probablistic settings?

7. How do we connect process algbera with dynamical systems theory?

8. Why do theoretical computer scientists concentrate on detail complexity?

9. Why is the function the dominant mode of system understanding?

230



Constraint-Based Concurrency and Beyond

Kazunori Ueda
Waseda University

June 7, 2005

Abstract

Constraint-based concurrency is a simple and elegant formalism of concurrency with
monotonic mobile channels, whose history started in early 1980’s as a subfield of logic
programming. Although it has hardly been recognized as process calculi, a close connec-
tion exists between them. In this paper we try to convey the essence of constraint-based
concurrency to the process calculi community. We also describe how it smoothly evolved
into LMNtal (pronounced “elemental”), a language model based on hierarchical graph
rewriting.

1 Constraint-Based Concurrency

Constraint-based concurrency [4] (henceforth referred to as CBC), also known as the cc (con-
current constraint) formalism, is a simple framework of concurrency that features (i) asyn-
chronous communication, (ii) channel mobility, (iii) polyadicity and data structuring mech-
anisms, and (iv) nonstrictness (i.e., computing with partial information). All these features
originate from the use of constraints and single-assignment (a.k.a. logical) variables for rep-
resenting data and communication. A message is written to a channel bytelling a constraint
(on the value of a channel) to themonotonicstore, and is then read nondestructively byasking
if a certain constraint is entailed from the store.

CBC has been remarkably stable; all the above features were available essentially in its
present form by mid 1980’s in concurrent logic programming languages [3], except that they
were not defined in general terms of constraint programming originally. Also, the concept
was tested through a lot of experiences in programming and implementation [2].

Guarded Horn Clauses (GHC) [1] can be regarded as embodying the smallest fragment
of CBC, whose simplified syntax and the small-step semantics are shown in Figures 1 and
2, respectively. Here, the triple

〈
B,C,P

〉
consists of a processB, a multisetC of equations

representing the store, and a programP. E denotes the standard syntactic equality theory over
finite terms and atomic formulas.

Although CBC has hardly been recognized as process calculi (which I would callname-
based concurrency), a close connection exists between them. Most importantly, a careful look
at constraint-based communication reveals the highly local nature of constraint store, which
is often (mis)understood to be a global, shared entity. Channels in CBC are fresh local names

231



(program)P ::= set ofR’s
(rule) R ::= A :- B (or !∀(A.B))

(body/process)B ::= multiset ofG’s
(goal)G ::= T1 = T2 | A

(non-unification atom)A ::= p(T1, . . .,Tn), p 6= ‘=’
(term)T ::= (as in first-order logic)

Figure 1: Simplified syntax of GHC

(Par)

〈
B1,C,P

〉 ¡→ 〈
B′

1,C
′,P

〉〈
B1∪B2,C,P

〉 ¡→ 〈
B′

1∪B2,C′,P
〉 (Tell) 〈{t1= t2},C,P

〉 ¡→ 〈
/0,C∪{t1= t2},P

〉
(Ask) 〈{b},C,{h:- B}∪P

〉
¡→ 〈

B,C∪{b=h},{h:- B}∪P
〉

(
E |= ∀(

C⇒∃vars(h)(b=h)
)

andvars(h:- B)∩ (vars(b)∪vars(C)) = /0

)

Figure 2: Reduction semantics of GHC

that cannot be forged by the third party, and fresh channels can be exported and imported only
by using existing channels.

The tell operation,T1=T2, subsumes two operations in process calculi, namely output
and channel fusion. The ask operation also subsumes two operations, input (synchronization
and value passing) and match (value checking). The alternative syntax of a rule,!∀(A.B),
indicates that it combines ask, choice, reduction, hiding and replication.

On the process calculi side, the most important variant of theπ-calculus should be the
asynchronousπ-calculus, and some variants including Lπ andπI limited the use of names in
pursuit of nicer semantical properties. All these objectives have been achieved naturally in
CBC.

Once appropriate type systems are incorporated into the both camps, constraint-based and
name-based communications exhibit more affinities. We have developed mode and linearity
systems for constraint-based concurrency, which are concerned with the polarity and multi-
plicity of communication and prescribe the ways in which communication channels can be
used [4]. A linear type system for theπ-calculus also guarantees that only one process holds
a write capability and uses it once. These restrictions on the both camps leave no sharp differ-
ence between destructive and nondestructive read.

2 The Language Model LMNtal

Our recent work has been to design and implement LMNtal (pronounced “elemental”) [5],
a model and a language based on hierarchical graph rewriting that uses logical variables to
represent connectivity and membranes to represent hierarchies. LMNtal is an outcome of the
attempt to unify CBC and Constraint Handling Rules, the two notable extensions to concurrent
logic programming. LMNtal can be viewed also as a multiset rewriting language equipped

232



(Process) P ::= 0 | p(X1, . . . ,Xm) | P,P | {P} | T :- T

(Process template)T ::= 0 | p(X1, . . . ,Xm) | T,T | {T} | T :- T
| @p | $p[X1, . . . ,Xm|A] | p(*X1, . . . ,*Xn)

(Residual) A ::= [] | *X

Figure 3: Syntax of LMNtal

(E1) 0,P≡ P (E2) P,Q≡ Q,P (E3) P,(Q,R) ≡ (P,Q),R
(E4) P≡ P[Y/X] if X is a local link ofP

(E5) P≡ P′ ⇒ P,Q≡ P′,Q (E6) P≡ P′ ⇒{P} ≡ {P′}
(E7) X=X ≡ 0 (E8) X=Y ≡Y=X

(E9) X=Y, P≡ P[Y/X] if P is an atom andX occurs free inP
(E10) {X=Y, P} ≡ X=Y, {P} if exactly one ofX andY occurs free inP

(R1)
P¡→ P′

P,Q¡→ P′,Q
(R2)

P¡→ P′

{P} ¡→ {P′} (R3)
Q≡ P P¡→ P′ P′ ≡ Q′

Q¡→ Q′

(R4) {X=Y,P} ¡→ X=Y, {P} if X andY occur free in{X=Y,P}
(R5) X=Y, {P} ¡→ {X=Y,P} if X andY occur free inP

(R6) Tθ ,(T :-U) ¡→Uθ ,(T :-U)

Figure 4: Structural Congruence and Reduction Relation of LMNtal

with links, where multisets are supported by the membrane construct that allows both nesting
and mobility and links are represented by logical variables that essentially work as linear local
names. The LMNtal system running on a Java platform is now available on the web [6].

The syntax of LMNtal is given in Figure 3, where two syntactic categories,links (de-
noted byX) andnames(denoted byp), are presupposed. The name= is reserved for atomic
processes for connecting two arguments.

A processP must observe the followinglink condition: Each link inP (excluding those
links occurring in rules) may occurat most twice.

Intuitively, 0 is an inert process;p(X1, . . . ,Xm) (m¸ 0) is anatomwith m links; P,P is
parallel composition called amolecule; {P}, a cell, is a process grouped by the membrane
{ }; andT :- T is a rewrite rule for processes. Rewrite rules must observe several syntactic
conditions (details omitted) on possible occurrences of symbols, which are to guarantee that
reduction preserves the link condition. Arule context, @p, is to match a (possibly empty)
multiset of rules within a cell, while aprocess context, $p[X1, . . . ,Xm|A] (m¸ 0), is to match
processes other than rules within a cell. The arguments of a process context specify what links
may or must occur free. When the residualA is of the form∗X, it specifies that links other than
the must-occur linksX1, . . . ,Xm may occur free, and is itself bound to those may-occur links.
The final form,p(*X1, . . . ,*Xn) (n> 0), represents anaggregateof atoms, whose multiplicity
is determined by the number of links held by each∗Xi .

The operational semantics of LMNtal (Figure 4) consists of two parts, namely structural
congruence (E1)–(E10) and the reduction relation (R1)–(R6). Note that (E4) representsα-

233



conversion. (E9)–(E10) are absorption/emission rules of= for atoms and cells, respectively.
Computation proceeds by rewriting processes using rules collocated in the same “place”

of the nested membrane structure. (R1)–(R3) are standard structural rules, and (R4)–(R5) are
the mobility rules of=. The central rule of LMNtal is (R6). The substitutionθ in (R6) (details
omitted) is used to “instantiate” rule contexts, process contexts and aggregates. The major
challenge in the design of the operational semantics has been the proper treatment of interplay
between graph structures formed by links and hierarchical structures formed by membranes
(that may be crossed by links).

We give two simple programs examples. Two lists, represented byc (cons) nodes andn
(nil) nodes, can be concatenated using the following two rules:

append(X0,Y,Z0), c(A,X,X0) :- c(A,Z,Z0), append(X,Y,Z)

append(X0,Y,Z0), n(X0) :- Y=Z0

N-to-1 stream merging can be written using membranes as follows:

{i(X0),o(Y0),$p[|*Z]}, c(A,X,X0) :- c(A,Y,Y0), {i(X),o(Y),$p[|*Z]}

Here, the membrane of the left-hand side recordsn (¸ 1) input streams with the namei and
one output stream with the nameo. The process context$p[|*Z] is to match the rest of the
input streams and pass them to the right-hand side.

LMNtal is intended to serve as a truly general-purpose language covering various plat-
forms ranging from wide-area to embedded computation and programming by self-organization,
and there is a lot of ongoing and future work toward the goal. Also, we are interested in various
kinds of symmetry found in rewrite rules of GHC and LMNtal programs. Programs written
bearing symmetry in mind exhibit important properties such as invariants and reversibility,
which are something more than beauty, and we believe symmetry plays important roles in our
thought in programming and reasoning about programs.

References

[1] Ueda, K., Guarded Horn Clauses. ICOT Tech. Report TR-103, ICOT, Tokyo, 1985. Also
in Logic Programming ’85, LNCS 221, Springer, 1986, pp. 168–179.

[2] Shapiro, E. Y., Warren, D. H. D., Fuchi, K., Kowalski, R. A., Furukawa, K., Ueda,
K., Kahn, K. M., Chikayama, T. and Tick, E., The Fifth Generation Project: Personal
Perspectives.Comm. ACM, Vol. 36, No. 3 (1993), pp. 46–103.

[3] Ueda, K., Concurrent Logic/Constraint Programming: The Next 10 Years. InThe Logic
Programming Paradigm: A 25-Year Perspective, Apt, K. R., Marek, V. W., Truszczynski
M., and Warren D. S. (eds.), Springer, 1999, pp. 53–71.

[4] Ueda, K., Resource-Passing Concurrent Programming. InProc. TACS 2001, LNCS
2215, Springer, 2001, pp. 95–126.

[5] Ueda, K., LMNtal: A Language Model with Links and Membranes. inProc. WMC5,
LNCS 3365, Springer, 2005, pp. 110–125.

[6] LMNtal homepage.http://www.ueda.info.waseda.ac.jp/lmntal/

234



Type-Based Security for Mobile Computing
Integrity, Secrecy and Liveness

Nobuko Yoshida, Department of Computing, Imperial College London

1 Background

Nowadays the use of mobile code is widespread throughout computing scenes, from intra-net applications in corporation to
migrating code in active network to dynamic content in the world-wide web to telephony applications [36, 43, 51]. One of the
principal benefits of mobile code (as found in Java and CLR) is to allowextensibility[12, 50], where a piece of code migrates
from a source node to a target node and gets linked to the run-time environment of the target, to serve its purposes. Such
extensibility leads to rich repertoire of new functionalities, including dynamic, tightly-coupled use of remote computational
resources not restricted by network bandwidth/latency, multi-media applications where real-time interaction with resources
are essential, and incremental software/service addition/update. This open characteristic of mobile computation poses a
new challenge in software safety: the infrastructure is required to manage security mechanisms by which pieces of code
with different origins and functionalities, embodying different principals, can safely interact in the presence of mobility and
dynamic linkage. This paper demonstrates how we can develop basic technologies to solve these security issues concerning
mobile programs using well-defined mathematical models, namely typed mobile processes, and applies them to establishment
of programming language disciplines [2, 51]. The proposals of this paper are partly related to the main themes of the author’s
EPSRC Advanced Fellowship. In the following, we first discuss the main three issues and how we can achieve its aims.

1.1 Security Issues on Mobile Computation

Let us assume a simple e-commerce mobile agent, acting as a customer, which moves through different sites on the Internet
in order to perform commercial transactions. The agent may be equipped with a buying list and orders on behalf of its owner
as its script (program) and perform complex interactions with virtual shops. It may also change its behaviour depending
on, e.g. prices of goods. Then there are three major issues arising during the interaction between agents (clients) and shops
(hosts).

• the agent may jeopardise theintegrity of the host; for example, the agent may delete or modify sensitive information
such as the sales account of the shop.

• the agent may violate theprivacy, or thesecrecyof the host; for example, the agent may transfer credit card numbers
stored at the host to the public channels.

• the agent may interfere with theavailability, or theliveness[45] of services; for example, after an initial interaction,
the agent may not return the acknowledgement, entering into an infinite loop. Then the host cannot proceed further
(this is one form of the so-calleddenial of service attacks).

Note, dually, the agents may suffer from the same kinds of threats caused by malicious or erroneous hosts. This paper
sketches the author’s idea on how to solve the above three central security issues concentrating on code mobility, by the
development of a general theory of processes which is directly applicable to practical, real-life programming languages.

1.2 Type-Based Approach for Security and Current Technical Problems

In the 1990s, most new software was written in languages such as C, C++ and Java, which all feature varying degrees of static
type checking. In current applications, the main property guaranteed by typing systems is still very simple type soundness:
“well-typed programs do not go wrong”, e.g. do not apply integer if it is typed as string. Violations of type soundness
constitute real security threats, and many researchers have shown type soundness of subset of C and Java can detect such
threats, e.g. [7, 11, 33]. However, technically speaking, three security issues, integrity, privacy of data and liveness, are not
easily guaranteed by simple type safety; for example, in the current security architecture of Java and C#, the basic type
checking is done before execution, but access control is done dynamically in a restricted and adhoc manner, whose effects are
difficult for most programmers to predict and even to interpret [8]. Against this background, one of the urgent issues which

235



has not yet been satisfactorily addressed isstatic, in particular, type-based verification of mobile code for properties beyond
simple type safety.

At the research level, static typing systems in sequential and functional programs have been used successfully for guaran-
teeing termination of programs, for controlling privileges and capabilities (e.g. [8, 41]), and for reasoning about information
flow of programs (e.g. [9]). In this context, one recent successful research development is a commercial achievement on Proof
Carrying Code (PCC) [14, 40], which ensures the safety of mobile code statically. One important point is that this approach is
crucially backed up bysemanticsandtypes— Hoare logics as a specification logic and the typedλ-calculus (a variant of Ed-
inburgh Logical Framework (LF) [15]) for representing certificates of mobile code and for formally checking untrusted code.
This framework opens a wide possibility to use a formal foundation to control code mobility by static checking. On the other
hand, the current version of PCC [14] cannot deal with distribution, concurrent or non-deterministic programs as transferable
code. In fact, there is a lack of formal foundations of typing, logics and semantics to even express (not to speak of proving)
desired security properties of mobile programs when they includenon-determinism, communication, concurrencyanddistri-
bution, in contrast to sequential programs. As another example, the resource preservation guaranteed by strong normalisation
has been one of the main reasons for SwitchWare Project to develop their typed programming language for active networks
(PLAN) [42] on the basis of a simply typedλ-calculus. Jif [34] designs a secrecy type discipline for a major subset of Java
and studies its implementation involving possibly untrusted hosts. Currently, incorporation of concurrency, communication
and program distribution has not been considered in these languages, even though these elements are essential to modern
software.

From these observations, we have the following questions:

• can we construct a static typing system beyond simple type safety, extending the accumulated theories of functional
and sequential types to mobile processes?

• can we use types of processes to design secure mobile languages?

• can we apply theories of process calculi for the use of real applications in this domain?

We seek to give a positive answer to the above questions by demonstrating the effectiveness of a general semantic theory
of typed mobile processes in practice. The technical programme is built on recent advances in access controls for mobility
[17, 56, 59], secrecy [22, 27, 29, 60] and type theory for liveness and linearity of communication [3, 4, 10, 18, 30, 37, 54, 57].

2 A Use of Mobile Processes

Instead of using particular programming languages, the main efforts concentrate on theπ-calculus and its higher-order ex-
tension (called HOπ-calculus [35, 44, 59]). There are two basic reasons for this. First, theπ-calculus can faithfully embed
major programming language constructs using its single communication primitive,name passing.Moreover, when equipped
with basic type structures related to Game Semantics [1, 26, 32], these embeddings can precisely capture the semantics of the
source languages without loss of information. We have obtained the key results in representability, fully abstract embeddings
(which intuitively says no information is lost when representing programs into theπ-calculus) for a wide realm of program-
ming language classes: including PCF [3], the strong normalisingλ-calculus with sum and product types [57], polymorphism
[4] and controls [30]. This feature is particularly useful for secrecy analysis.

Secondly the HOπ-calculus represents the general form of program mobility with parameterised process passing, which
subsumes and generalises program mobility used in practice. With the type structure introduced in [56, 59], it can represent
a variety of safety concerns in real-life computing. The above mentioned faithfulness in embedding will also extend to the
HOπ-calculus.

These observations indicate that, by developing advanced type systems using these formalisms, we can obtain a general
technology which is directly applicable to a wide range of individual languages, inheriting the accumulated techniques from
both concurrency theory and the study of type disciplines in functional and sequential languages. Since the early stage of the
π-calculus study, researchers developed a framework in which functions and processes can be reasoned about uniformly. In
particular, embedding is the key: for example, starting from a new encoding of theλ-calculus in the asynchronousπ-calculus,
we could formalise aλ-calculus which can perform the optimal reduction [53]; we established the theory of combinators of
the asynchronousπ-calculus [24, 25] which can be used to characterise expressiveness of mobile processes [55]; and we
discovered a fully-abstract call-by-value Game Semantics via an encoding of the call-by-valueλ-calculus into theπ-calculus
[26]. Recently from Hennessy-Milner Logic [16] of linearly typed processes [19], we established Hoare Logic for imperative

236



higher-order functions with general aliasing [5, 28, 31], solving an open problem going back 25 years to work of Cartwright-
Oppen and Moriss. This logic can reason program examples which are hard to be verified using existing Hoare-like Logics.

3 Type-Based Approaches and Applications

We aim to extend the fine-grained typing system of the HOπ to handle not only access control but also secrecy and liveness in
mobile program, and finally, use it as the basis for designing languages of safe mobile systems. The following lists feasibility
and recent two applications obtained from type-based approaches.

Access Control: In [59], we proposed a new typing system for the HOπ-calculus which can ensure access control of
resources. In this typing system, processes may be assigned different types depending on their intended use. This is in
contrast to the previous work on types for mobile processes where all processes are typed by a unique constant type. Further I
recently discovered new expressive existential and dependent types by which the original typability of [59] was significantly
enlarged [56]. The resulting fine-grained typing facilitates the management of access rights and provides host protection from
potentially malicious mobile code.

Liveness: In [57], we proposed a linear typing system which can guarantee strong normalisation (SN) of theπ-calculus. In
[60], we also studied its effect to the equational theory (bisimulation). As a consequence, the type discipline ensures a basic
form of liveness property(cf. [45]) where a designated output action eventually happens. The formalism is general enough
for representing strongly normalisingλ-calculi fully abstractly (which in practice means that non-trivial forms of remote
procedural call can be represented).

Secrecy: In [22, 27], we proposed a typing system in which secure information flow is guaranteed by static type checking.
This typing system is used as a tool for programming language analysis of the secure multi-threaded imperative calculus of
Volpano and Smith [48]. Our result is used by Smith [47] to enlarge typability of the original imperative language [48].

Applications: The first example is to formalise semantics for distributed Java, precisely capturing RMI and class loading
activity in polymorphic distributed applications [2]. We use the HOπ-calculus for a design of new explicit code mobility
primitives as well as a representation of runtime of distributed objects. Furthermore, it has been used to verify the correctness
of Kelly et al’s implementation for Java RMI aggregation optimisation [52]. The same idea of the optimisation was made in
the early 1980s by the designers of distributed object-oriented languages, but no proof of the correctness could be given at
that time. A technique of behavioural equivalences of theπ-calculus [23] could be applied to it after 25 years.

The second example is to establish an advanced typing system of a Web Services language: linear and session types are
being adapted to the W3C official standardisation for a Web Services Choreography Description Language (WS-CDL) [51],
for which the author has been working as an Invited Expert with Robin Milner and Kohei Honda.

4 Towards an Integrated Framework for Safety of Mobile Code

In order to achieve the goal, we tackle these issues at three different levels (base language, mobility and application). For
base language and mobility, we useπ-calculus [20, 38] and the higher-orderπ-calculus [35, 44, 59]. For the application level,
we use two different formalisms: one is a subset of Java [6, 11, 33], extending distribution [2], and another is a core language
for WS-CDL [51]. The generality of the (HO)π-calculus plays an essential rôle; the resulting framework is, by instantiation,
applicable to individual practical languages. Concretely, the task is divided into the following three threads:

(base language level)Establishing an integrated framework of the typing systems of theπ-calculus which can fully ab-
stractly embed various language primitives such as assignment, procedure call, polymorphism, controls and objects.
The framework should in particular capture basic liveness property and is enhanced by secrecy.

(mobility level) Developing the basic typing systems of the higher-orderπ-calculus (HOπ-calculus) by further extending
the typing system for the HOπ-calculus introduced in [59] in order to investigate more advanced access control and
location primitives [17]. We then merge it to ensure secrecy and liveness based on the results of the base language
level, obtaining a powerful typed meta-language for source code mobility.

(application level) Designing a subset of multi-threaded Java with explicit code mobility primitive [2] and its typing system
which can ensure three security concerns, based on the typing systems developed in the mobility level. We also design
a core set of WS-CDL [51], and extend it to an inclusion of a code mobility primitive. We prove their correctness

237



(safety) via fully abstract translation into the HOπ-calculus. For the use in the framework of PCC [14, 40], we also
plan to construct automatic verification tools, based on Hoare Logic for imperative higher-order functions with general
aliasing [5, 28, 31].

References

[1] Abramsky, S., Jagadeesan, R. and Malacaria, P., Full Abstraction for PCF, 1994.Info. & Comp.163 (2000), 409-470.
[2] A. Ahern and N. Yoshida, Formalising Java RMI with Explicit Code Mobility, To appear inOOPSLA’05, the 20th ACM ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications, October 2005. Full version available from www.doc.ic.ac.uk/˜aja/dcbl.html,
Department of Computing Technical Report, Imperial College London, 2005/01, 2005.

[3] Berger, M., Honda, K. and Yoshida, N., Sequentiality and theπ-Calculus,TLCA01, LNCS 2044, pp.29–45, Springer, 2001.
[4] Berger, M., Honda, K. and Yoshida, N., Genericity and theπ-Calculus, FoSSaCs’03, LNCS, Springer-Verlag, 2003. A full version will appear in

Journal of ACM Acta Informatica, ACM, 2005.
[5] Berger, M., Honda, K. and Yoshida, N., Logical Analysis of Aliasing in Imperative Higher-Order Functions, To appear inICFP’05, ACM

International Conference on Functional Programming, September, 2005.
[6] Bierman, G.M., Parkinson, M.J and Pitts, A.M., MJ: an imperative core calculus for Java and Java with effects, UCAM-CL-TR-563, Cambridge, 2003.
[7] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang and James Cheney, Region-Based Memory Management in Cyclone,

PLDI’02, ACM, 2002.
[8] Fornet, C. and Gordon, A.D., Stack Inspection: theory and variants, POPL, ACM, 2002.
[9] Denning, D. and Denning, P., Certification of programs for secure information flow.Communication of ACM, ACM, 20:504–513, 1997.

[10] M. Dezani-Ciancaglini, N. Yoshida, A. Ahern and S. Drossopoulou, A Distributed Object-Oriented Language with Session Types, International
Symposium on Trustworthy Global Computing, To appear in Proc. TGC, Lecture Notes in Computer Science, Springer-Verlag, 2005.

[11] SLURP Project, Department of Computing, Imperial College, London, http://binarylord.com/slurp/.
[12] Grimm, R. and Bershad, B., Separating Access Control Policy, Enforcement, and Functionality in Extensible Systems, ACM Tra. on Comp. Sys.,

19(1), Feb., 36–70, 2001.
[13] Gay, S., A Framework for the Formalisation of Pi-Calculus Type Systems in Isabelle/HOL,Proc. TPHOLs01, Springer, LNCS, 2001.
[14] Fox Project,http::/www-2.cs.cmu.edu/˜fox/pcc.html
[15] Harper, R., Honsell, F., and Plotkin, G., A framework for defining logics,Journal of the Association for Computing Machinery40(1), 143–184, 1993.
[16] Hennessy, M. and Milner, R., Algebraic laws for nondeterminism and concurrency, J. ACM 32(1), pp.137–161, 1985.
[17] Hennessy, M., Rathke, J. and Yoshida, N., SafeDpi: a language for controlling mobile code, FoSSaCs’04, LNCS, Springer, 2004, A full version will

appear inJournal of ACM Acta Informatica, ACM, 2005.
[18] Honda, K., Composing Processes,POPL’96, pp.344-357, ACM Press, 1996.
[19] Honda, K., From Process Logic to Program Logic,ICFP’04, ACM International Conference on Functional Programming, September, 2004, ACM

Press.
[20] Honda, K. and Tokoro, M., An Object Calculus for Asynchronous Communication.ECOOP’91, LNCS 512, pp.133–147, Springer 1991.
[21] Kohei Honda, Vasco T. Vasconcelos and Makoto Kubo, Language primitives and type disciplines for structured communication-based programming,

ESOP’98, LNCS 1381, 22–138, 1998, Springer.
[22] Honda, K., Vasconcelos, V. and Yoshida, N, Secure Information Flow as Typed Process Behaviour,ESOP’00, LNCS 1782, pp.180–199, Springer,

2000.
[23] Honda, K. and Yoshida, N., On Reduction-Based Process Semantics.FSTTCS’13, LNCS 761, pp. 373–387, Springer-Verlag, December 1993. Full

version appeared inTCS, pp.437–486, No.151, North-Holland, 1995.
[24] Honda, K. and Yoshida, N., Combinatory Representation of Mobile Processes,POPL ’94, Conference Record of the 21st Annual Symposium on

Principles of Programming Languages, pp.348–360, ACM SIGACT-SIGPLAN, January 1994.
[25] Honda, K. and Yoshida, N., Replication in Concurrent Combinators,TACS ’94, Proceedings of the Second Conference on Theoretical Aspects of

Computer Software, Lecture Notes in Computer Science 789, pp.786–805, Springer-Verlag, April 1994.

[26] Honda, K. and Yoshida, N. Game-theoretic analysis of call-by-value computation.TCS, 221 (1999), 393–456, 1999.
[27] Honda, K. and Yoshida, N., A Uniform Type Structure for Secure Information Flow,POPL ’02, pp.81–92, ACM SIGACT-SIGPLAN, ACM Press,

2002.
[28] Kohei Honda and Nobuko Yoshida, A Compositional Program Logic for Polymorphic Higher-Order Functions,Proc. PPDP’2004, 6th ACM-

SIGPLAN International Conference on Principles and Practice of Declarative Programming, ACM Press, 2004.
[29] Honda, K. and Yoshida, N., Noninterference through Flow Analysis, 58 pages,Journal of Functional Programming, CPU, March, 2005.
[30] Honda, K., Yoshida, N. and Berger, M., Controls in theπ-Calculus,Proc. CW ’04, ACM Press, 2004.
[31] Honda, K., Yoshida, N. and Berger, M., An Observationally Complete Program Logic for Imperative Higher-Order Functions,LICS ’05, IEEE

Symposium on Logic and Computer Science, IEEE, 2005.
[32] Hyland, M. and Ong, L., ”On Full Abstraction for PCF”: I, II and III.Info. & Comp.163 (2000), 285-408.
[33] Igarashi, A., Pierce, B. and Wadler, P., Featherweight Java: A Minimal Core Calculus for Java and GJ. TOPLAS, 23(3):396-450, May 2001.
[34] Jif (Java plus Information Flow) Project, http://www.cs.cornell.edu/jif/
[35] Jeffrey, A. and Rathke, J., Contextual equivalence for higher-order pi-calculus revisited, MFPS XIX, Montreal 2003.
[36] Knapik, M. and Johnson, J.,Developing Intelligent Agents for Distributed Systems, McGraw Hill, 1998.
[37] Kobayashi, N., Pierce, B., and Turner, D., Linear types andπ-calculus,POPL’96, 358–371, 1996.

[38] Milner, R., Parrow, J.G. and Walker, D.J., A Calculus of Mobile Processes.Information and Computation, 100(1), pp.1–77, 1992.
[39] Sabelfeld, A. and Meyers, A., Language-Based Information Flow Security, IEEE Journal on Selected Areas in Communications, 21(1), January 2003.
[40] Necula, G., Proof-carrying code.POPL’97, pp.106–119, ACM, 1997.
[41] Pottier, F., Skalka, C. and Smith, S., A systematic approach to access control.ESOP01, LNCS 30–45, Springer, 2001.

238



[42] PLAN: A Packet Language for Active Networks, SwitchWare Project, http://www.cis.upenn.edu/˜switchware/.
[43] RIFML, the Reactive Intelligence Framework, Enigmatec Corporation Ltd, http://www.enigmatec.net/.
[44] Sangiorgi, D.,Expressing Mobility in Process Algebras: First Order and Higher Order Paradigms. Ph.D. Thesis, Univ. of Edinburgh, 1992.
[45] Schneier, F,On Concurrent Programming, Springer, 1997.
[46] Vasconcelos, V. and Honda, K., Principal Typing Scheme for Polyadicπ-Calculus.CONCUR’93, LNCS 715, pp.524-538, Springer, 1993.
[47] Smith, G., A New Type System for Secure Information Flow,CSFW’01, IEEE, 2001.
[48] Smith, G. and Volpano, D., Secure information flow in a multi-threaded imperative language, pp.355–364,POPL’98, ACM, 1998.
[49] VerifiCard, a European Project for Smard Card Verification,http://www.verificard.org.
[50] Wallach, D.S, et al., Extensible security architectures for Java. SOSP, 116–128, IEEE, 1997.
[51] Choreography Description Language, W3-CDL, Web Services Choreography Working Group, http://www.w3.org/2002/ws/chor/.
[52] Kwok Yeung and Paul Kelly, Optimizing Java RMI programs by communication restructuring,Middleware’03, LNCS 2672, 324-343, 2003, Springer.
[53] Yoshida, N., Optimal Reduction in Weakλ-calculus with Shared Environments,FPCA ’93, Functional Programming and Computer Architecture,

pp.243–242, ACM SIGACT-SIGPLAN, June, 1993.
[54] Yoshida, N., Graph Types for Monadic Mobile Processes,FST/TCS’16, LNCS 1180, pp. 371–386, Springer-Verlag, 1996. Full version as LFCS

Technical Report, LECS-LFCS-96-350, 1996.
[55] Yoshida, N., Minimality and Separation Results on Asynchronous Mobile Processes: Representability Theorems by Concurrent Combinators,

Journal of Theoretical Computer Science, Volume 274, Issue 1, 6 March 2002, Page 231–276, 2002, North Holland.
[56] Yoshida, N., Channel Dependency Types for Higher-Order Mobile Processes,POPL ’04, Conference Record of the 31st Annual Symposium on

Principles of Programming Languages, ACM SIGACT-SIGPLAN, ACM Press, 2004.
[57] Yoshida, N., Berger, M. and Honda, K., Strong Normalisation in theπ-Calculus,Proc. LICS ’01, pp.311-322, IEEE, 2001. The full version is in

Journal of Information and Computation, 191 (2004) 145–202, Elsevier Science, 2004.
[58] Yoshida, N. and Hennessy, M., Subtyping and Locality in Distributed Higher Order Processes.Proc. CONCUR’99, LNCS 1664, pp.557–573,

Springer-Verlag, 1999.
[59] Yoshida, N. and Hennessy, M., Assigning Types to Processes,Info.&.Comp, 174(2), pp. 143-179, Academic Press, 2002.Proc. LICS ’01, the 16th

Annual IEEE Symposium on Logic and Computer Science, pp.311-322, IEEE, June, 2001.
[60] Yoshida, N., Honda, K. and Berger, M., Linearity and Bisimulation,Proc. FoSSaCs’02, LNCS 2303, pp.417–433, Springer-Verlag, France, 2002.

239



Recent BRICS Notes Series Publications

NS-05-3 Luca Aceto and Andrew D. Gordon, editors.Short Contribu-
tions from the Workshop on Algebraic Process Calculi: The First
Twenty Five Years and Beyond, PA ’05,(Bertinoro, Forl ı̀, Italy,
August 1–5, 2005), June 2005. vi+239 pp.

NS-05-2 Luca Aceto and Willem Jan Fokkink.The Quest for Equational
Axiomatizations of Parallel Composition: Status and Open Prob-
lems. May 2005. 7 pp. To appear in a volume of the BRICS
Notes Series devoted to the workshop “Algebraic Process Cal-
culi: The First Twenty Five Years and Beyond”, August 1–
5, 2005, University of Bologna Residential Center Bertinoro
(Forl ı̀), Italy.

NS-05-1 Luca Aceto, Magnus Mar Halldorsson, and Anna Inǵolfsdóttir.
What is Theoretical Computer Science?April 2005. 13 pp.

NS-04-2 Patrick Cousot, Lisbeth Fajstrup, Eric Goubault, Maurice
Herlihy, Martin Raußen, and Vladimiro Sassone, editors.Pre-
liminary Proceedings of the Workshop on Geometry and Topol-
ogy in Concurrency and Distributed Computing, GETCO ’04,
(Amsterdam, The Netherlands, October 4, 2004), September
2004. vi+80.

NS-04-1 Luca Aceto, Willem Jan Fokkink, and Irek Ulidowski, editors.
Preliminary Proceedings of the Workshop on Structural Opera-
tional Semantics, SOS ’04,(London, United Kingdom, August
30, 2004), August 2004. vi+56.

NS-03-4 Michael I. Schwartzbach, editor.PLAN-X 2004 Informal Pro-
ceedings,(Venice, Italy, 13 January, 2004), December 2003.
ii+95.

NS-03-3 Luca Aceto, Zolt́an Ésik, Willem Jan Fokkink, and Anna
Ingólfsdóttir, editors. Slide Reprints from the Workshop on Pro-
cess Algebra: Open Problems and Future Directions, PA ’03,
(Bologna, Italy, 21–25 July, 2003), November 2003. vi+138.

NS-03-2 Luca Aceto. Some of My Favourite Results in Classic Process
Algebra. September 2003. 21 pp. Appears in theBulletin of the
EATCS, volume 81, pp. 89–108, October 2003.


	Foreword
	Organising Committee
	Contents
	S. Abramsky. What are the fundamental structures of concurrency? We still don’t know!
	L. Aceto, W. Fokkink. The Quest for Equational Axiomatizations of Parallel Composition: Status and Open Problems
	The Story So Far
	The Future
	The Heritage of Formal Language Theory

	R.M. Amadio, G. Boudol, F. Boussinot, I. Castellani. Reactive concurrent programming revisited
	J.C.M. Baeten, J.A. Bergstra. Six Themes for Future Concurrency Research
	J.C.M. Baeten, M. Bravetti. A generic process algebra
	C. Baier, H. Hermanns, J.-P. Katoen, V. Wolf. Bisimulation and Simulation Relationsfor Markov Chains
	M. Berger. An Interview with Robin Milner
	J.A. Bergstra. ACP style process algebras: is the designrationale still valid?
	M. Bernardo. Markovian Testing Equivalence vs.Markovian Bisimulation Equivalence
	T. Bolognesi. Process algebra under the light of Wolfram’s NKS
	M. Bravetti. Stochastic and Real Time in Process Algebra: A Conceptual Overview
	M. Bravetti, H. Hermanns, J.-P. Katoen. YMCA: Why Markov Chain Algebra?
	M. Bravetti, G. Zavattaro. Service Oriented Computing: a new challenge for Process Algebras
	S. Brookes. Retracing CSP
	M.G. Buscemi, U. Montanari. A Compositional Coalgebraic Model of a Fragment of Fusion Calculus
	N. Busi, G. Zavattaro. A Process Algebraic View of Coordination
	S. Carpineti, C. Laneve. A rude contract language for web services
	P.J.L. Cuijpers, M.A. Reniers. Topological Aspects of Hybrid Processes(a treatment using non-standard analysis)
	R. De Nicola. From Process Calculi to KLAIM and back
	Z. Ésik. Cascade products and temporal logics on finite trees
	R. Fuzzati, U. Nestmann. Much Ado About Nothing?
	R. van Glabbeek. On Specifying Timeouts
	A.D. Gordon. V for Virtual
	A Calculus of Virtual Machines and Virtual Discs
	Using V to Model Operations on Virtual PCs
	Conclusion and Future Research

	C. Grabmayer,  J.W. Klop, B. Luttik. Reflections on a Geometry of Processes
	J.F. Groote, A. Mathijssen, M. van Weerdenburg, Y. Usenko. From μCRL to mCRL2
	J.F. Groote, M.A. Reniers, Y.S. Usenko. Discretization of Timed Automata in Timed μCRL à la Regions and Zones
	R. Grosu, S.A. Smolka. Monte Carlo Methods for Process Algebra
	T. Hoare. Why ever CSP?
	K. Honda. Process Algebras in the Age of Ubiquitous Computing
	K.G. Larsen. One 2 Many 2 One – Evolution of Timed SystemsModeling and Analysis
	I. Lee, A. Philippou, O. Sokolsky. A Family of Resource-Bound Real-Time Process Algebras
	G. Lüttgen, M. Mendler. When 1 Clock Is Not Enough
	B. Luttik. What is algebraic in process theory?
	S. Maffeis. Process calculi and peer-to-peer Web data integration
	C.A. Middelburg. Conditionals in Algebraic Process Calculi
	D. Miller. A Proof Theoretic Approach to Operational Semantics
	G. J. Milne. Modelling Dynamically Changing Hardware Structure
	R. Milner. Pervasive process calculus
	M.W. Mislove. On Combining Probability and Nondeterminism
	MR. Mousavi. Towards SOS Meta-Theory for Language-Based Security
	J. Ouaknine, S. Schneider. Timed CSP: A Retrospective
	C. Palamidessi. Probabilistic and nondeterministic aspects of Anonymity
	I. Phillips, I. Ulidowski. Operational Semantics of Reversibility in Process Algebra
	A. Ponse and M.B. van der Zwaag. ACP and Belnap’s Logic
	K.V.S. Prasad. A Prospectus for Mobile Broadcasting Systems
	C. Priami. Process calculi and life science
	A.W. Roscoe. Confluence thanks to extensional determinism
	D. Sangiorgi. Bisimulation and co-induction: some problems
	P. Sewell. Process Calculi: The End?
	C. Tofts. Process Algebra as Modelling
	K. Ueda. Constraint-Based Concurrency and Beyond
	N. Yoshida. Type-Based Security for Mobile Computing Integrity, Secrecy and Liveness
	Binder1.pdf
	Pages from BRICS-NS-05-3-pdfbody.pdf
	29-Honda.pdf




