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Foreword

Eric Goubault]

LIST/DTSI/SLA, CEA Saclay
91191 Gif-sur-Ywvette, France

The main mathematical disciplines that have been used in theoretical com-
puter science are discrete mathematics (especially, graph theory and ordered
structures), logics (mostly proof theory for all kinds of logics, classical, intu-
itionistic, modal etc.) and category theory (cartesian closed categories, topoi
etc.). General Topology has also been used for instance in denotational seman-
tics, with relations to ordered structures in particular.

Recently, ideas and notions from mainstream “geometric” topology and al-
gebraic topology have entered the scene in Concurrency Theory and Distributed
Systems Theory (some of them based on older ideas). They have been applied
in particular to problems dealing with coordination of multi-processor and dis-
tributed systems. Among those are techniques borrowed from algebraic and
geometric topology: Simplicial techniques have led to new theoretical bounds
for coordination problems. Higher dimensional automata have been modelled
as cubical sets with a partial order reflecting the time flows, and their homotopy
properties allow to reason about a system’s global behaviour.

This workshop aims at bringing together researchers from both the math-
ematical (geometry, topology, algebraic topology etc.) and computer scientific
side (concurrency theorists, semanticians, researchers in distributed systems
etc.) with an active interest in these or related developments.

It follows the first workshop on the subject “Geometric and Topological
Methods in Concurrency Theory” which has been held in Aalborg, Denmark,
in June 1999. Then came GETCO’00 in Pennstate, USA, GETCO’01 in Aal-
borg, Denmark, all associated with CONCUR. GETCO’02 was associated with
DISC’02 in Toulouse, and GETCO’03 was held jointly with CMCIM’03, asso-
ciated with CONCUR in Marseille. This year’s GETCO’04 workshop is again
associated with DISC, in Amsterdam.

The Workshop has been financially supported by the Basic Research In-
stitute in Computer Science (Aarhus, Denmark), which I thank very warmly.
I also wish to thank the referees, the authors and the programme committee
members for their very precise and timely job. Many thanks are also due to
Michael Mislove who kindly supported the workshop by letting us submit the
papers through the Electronic Notes in Theoretical Computer Science.

In organizing the workshop—setting up the website, keeping track of the
submissions, getting the preproceedings ready, etc.—Ulrich Fahrenberg and Em-
manuel Haucourt have done an excellent job, and I thank them for that.

Last but not least, I wish to thank the organizers of DISC 2004, Jaap-Henk
Hoepman, Paul Vitanyi, and Rachid Guerraoui, for their cooperation regarding
this workshop.

1Email: Eric.Goubault@cea.fr
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On the Asynchronous Computability Theorem
(Early Draft)*

Rachid Guerraoui Petr Kouznetsov Bastian Pochon

Distributed Programming Laboratory
EPFL

Abstract

The impossibility of wait-free set agreement [1,5, 8], can be seen as a corollary to a more general
result: the characterization of asynchronous wait-free solvable tasks. Such a characterization, presented
in the form of the asynchronous computability theorem, was first formulated and proved by Herlihy and
Shavit [7], and then was reformulated and proved in a different manner by Borowsky and Gafni [3].
In fact, the characterization criterion defined in [3] turned out to be more convenient for impossibility
results and, in particular, for the impossibility of wait-free set agreement. Interestingly, the criterion of [7]
can be derived from the one of [3] through showing a purely geometrical result by means of distributed
algorithms. Unfortunately, the characterization criterion is given in [3] just as a side result and the proof
of the equivalence of the two criteria above is hard to digest. In this short note, we revisit the proofs of
the characterization criteria of [3,7] trying to bridge our personal “knowledge gap”. We believe this note
can be of interest for other researchers who try to apply geometrical methods in distributed computing.

1 Introduction

In 1993, Herlihy and Shavit proposed an elegant way to characterize wait-free computable tasks [5-7]. Es-
sentially, they reduced the question of wait-free computability of a given decision task to verifying certain
purely geometrical properties. They showed that any decision task T' can be associated with a pair of geo-
metrical structures, called simplicial complexes, an input complex 7 and output complex O, and a relation
A C T x O, the task specification of T, that carries every input vector to a non-empty set of output vectors.
The following theorem from [7] gives necessary and sufficient conditions for a decision task to be wait-free
solvable in the read-write memory model.

Theorem 1 A decision task (Z,0,A) is wait-free solvable using read-write memory if and only if there
exists a chromatic subdivision o of T and a color-preserving map p : 0(Z) — O such that for each simplex
S € o(I), u(S) € carrier(S,T).

Theorem 1 gives a geometrical criterion of wait-free solvability. A natural question comes: can we find
an efficient algorithm to verify this criterion? Unfortunately, the answer is “no”: the problem of wait-free
computability is actually undecidable (for three or more participating processes) [4]. In other words, no wait-
free solvability criterion would be efficient. So the question of whether the criteria of Theorem 1 is efficient
in general is not theoretically interesting. However, it can be interesting to see whether the characterization
is convenient with respect to some specific tasks in distributed computing.

In 1997, Borowsky and Gafni proposed an alternative criterion [3], formulated as follows:

*In 2004, the Godel Prize for outstanding papers in the area of theoretical computer science was awarded to Maurice Herlihy
and Nir Shavit for their paper " The Topological Structure of Asynchronous Computability” (J. ACM, 1999), and to Mike Saks
and Fotios Zaharoglou for their paper ”Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowledge” (STAM
J. Computing, 2000). The very same result was simultaneously obtained by Elizabeth Borowsky and Eli Gafni [1], but it has
never been published as a journal paper, which is a necessary condition for the Gddel Prize.



Theorem 2 A decision task (Z,0,A) is wait-free solvable using read-write memory if and only if there
exists an iterated standard chromatic subdivision x® of T and a color-preserving map p : x*(Z) — O such
that for each simplex S € x¥(I), u(S) € carrier(S,T).

Clearly, since no efficient criterion of wait-free solvability exists [4], these two criteria are computationally
equivalent. However, the set of conditions in Theorem 2 is more restrictive: any chromatic subdivision of
Theorem 1 is substituted by an iterated standard chromatic subdivision. In this sense, Theorem 2 is more
convenient for showing impossibility results. In particular, the impossibility of set agreement becomes almost
straightforward.

In this note, we first briefly sketch how these two criteria are obtained in, respectively, [7] and [3]. Then
we revisit the derivation of Theorem 1 from Theorem 2 conjectured in [3] and we point out the main steps
of its proof.

2 Herlihy and Shavit’s criterion
Theorem 1 is proved in [7] using the following arguments.

= Assume a task T = (Z,0,A) has a wait-free solution using read-write memory. Let P(Z) be the
corresponding protocol complex constituted by states of the system resulting from running all possible
execution of the protocol, and let ¢ be the corresponding decision map that applies to the final local
states of P(T).

Applying quite involved arguments, we can shown that P(Z) has a span, that is, there is a chromatic
subdivision ¢(Z) and a color-preserving map ¢ from o(Z) to P(Z) such that, for every simplex S € o(7),
¢(S) € P(carrier(S,T)). Clearly, such a span (o,¢) and the composition of ¢ and the decision map ¢
of P implies the result. The existence of the span is established by the fact that the protocol complex
P(Z) is sufficiently connected.

< Assume now that there is a subdivision ¢ of Z and a map p satisfying the conditions of Theorem 1. To
show that the task is wait-free solvable, it is sufficient to solve the chromatic simplex agreement task
on the subdivided complex o(Z): the task has 7 as an input complex and ¢(Z) as an output complex.
Let S be an input simplex of the task. Every process starts with a vertex of S of its color and must
decide on a vertex of o(S) of its color, such that all decided vertexes constitute a simplex of o(S).

The simplex agreement protocol of [7] works as follows. It first solves the simplex agreement on the
iterated standard chromatic subdivision x™ (T) (using the iterated participated set protocol [2]). Using
a variation of approzimate agreement or e-agreement, it is shown that, for sufficiently large K, there
is a simplicial color-preserving map ¢: x*(Z) — o(Z).

As a result, task T is solved as follows. Processes solve chromatic simplex agreement on x*(Z) and
then apply map ¢ to their resulting views. Every process ends up with a vertex of o(Z) so that all
vertexes constitute a simplex of (7). Then processes apply p and obtain a simplex of O satisfying
the task specification.

3 Borowsky and Gafni’s criterion

In [3], a different approach has been taken. A new computation model, called the iterated immediate snapshot
model is introduced. A nice property of this model is that its k-round full information protocol complex
has the structure of a recursive standard chromatic subdivision x¥(Z) [7]. That is, a task is solvable in the
iterated immediate snapshot model if and only if, for some sufficiently large K, there exists a color-preserving
map p that maps every simplex S of x¥(Z) to a simplex of carrier(S,T).

The (one-shot) variant of the model was first introduced in [2] where it is shown to be implementable
in the read-write memory model. Thus, any task solvable in the iterated immediate snapshot model is also
solvable in the read-write memory model. In fact, the converse is also true: any read-write memory protocol
that employs a bounded number of reads and writes can be simulated in the iterated immediate snapshot



model. Since any read-write memory protocol that solves a task can be shown (applying Kénig’s lemma) to
employ only a bounded number of reads and writes, we have the result.

Now the fact that the read-write memory model and the iterated immediate snapshot model have the
same power of task solvability leads to Theorem 2.!

4 Derivation of Theorem 1 from Theorem 2

In [3], an alternative way to derive Theorem 1 is proposed. In fact, having the equivalence between the two
models presented above, the necessity part of Theorem 1 is now straightforward: we can just take x¥ as o.
The proof of the sufficiency part is based on the following (purely geometrical) result.

Theorem 3 Let o be a chromatic subdivision of a simplex S™. For some K € N, there exists a color and
carrier preserving map ¢ from x¥(S™) to a(S™).

Theorem 3 and the fact that any decision task solvable in the iterated immediate snapshot model is
solvable in the read-write model immediately imply the sufficiency part of Theorem 1.

Now we briefly sketch the proof of Theorem 3. Since any decision task solvable in the read-write memory
model is solvable in the iterated immediate snapshot model, it is sufficient to show that the chromatic simplex
agreement on a subdivided simplex S™ is solvable in the read-write memory model.

We first recall the following topological result (a corollary to the simplicial approximation theorem is
recalled:

Lemma 4 Let o be a chromatic subdivision of a simplex S™. For some K € N, there exists a carrier
preserving map ¢ from the iterated barycentric subdivision BSD¥(S™) to o(S™).

Note that, since BSD¥X is not a chromatic subdivision, y is just carrier preserving now. We can define
a straightforward carrier preserving map from the standard chromatic subdivision x(S™) to BSD(S™). The
previous result can hence be refined as follows:

Lemma 5 Let o be a chromatic subdivision of a simplex S™. There exists K and a carrier preserving map
¢ from the iterated standard chromatic subdivision x¥(S™) to a(S™).

The lemma above implies that the non-chromatic simplex agreement over a subdivided simplex S™ (called
n-NCSA in [3]) is wait-free solvable in the read-write memory model. For sufficiently large K, there exists a
carrier preserving map ¢ from x*(S") to ¢(S™). Now the aim is to show that a color-preserving map indeed
exists.

First, we make the following observation. Let C' be an m-connected complex. Consider any set U of
k < m + 1 vertexes of C. Since C is m-connected, we can associate U with a subcomplex of C' that is
homeomorphic to some subdivided simplex S*. We can thus solve k-NCSA on the subdivided simplex, say
in K steps. Let p be the corresponding carrier preserving map from y* (S*) to the subdivision of S*. In
fact, we can assure that this map p agrees with the corresponding map defined for any subset of the vertexes
in U. Since there is only a finite number of such sets of vertexes in C', there is an upper bound on all such
K’s. We conclude that there exists K € N and a map [t, such that a non-chromatic simplex agreement can
be solved for any subset of at most m + 1 vertexes C' in K rounds applying a decision map f.

Now we are ready to present an algorithm that solves the chromatic simplex agreement over a subdivided
simplex o(S™).

The algorithm proceeds in rounds. We first give a description of the first round. Consider a barycentric
subdivision of ¢(S™), BSD(c(S™)). Every process runs a NCSA protocol on BSD(o(S™)) and decides on a
vertex of BSD(o(S™)). Every such vertex is a barycenter of a simplex s; of o(S™). Moreover:

(1) all such simplexes s; have a non-empty intersection;

(2) the union of these simplexes is a simplex of o(S™).

!The central result of [3] is namely the emulation of any read-write memory protocol in the iterated immediate snapshot
model.



Then every process p; writes s; in its designated register and takes a memory snapshot. Let {s;};cs be the
result of the snapshot. If a vertex of p;’s color is Njess;, then p; decides on this vertex and terminates.
Otherwise p; computes a “core”, denoted by core;, as a Ujegs; minus a vertex of p;’s color (if any) found in
Ujessj. The core represents the vertexes on which processes other than p; could have decided in this round.
Since Njcss; is non-empty, at least one process decides in the round.

Now consider round % of the algorithm. From round k — 1, every (not yet decided) process carries its
core;. First, p; chooses a vertex of its color in the link of the core in ¢(S™), writes the its choice into the
memory together with core; and takes a memory snapshot. Since o(S™) is n-connected, the link of any
intersection of the cores is “sufficiently” connected. The process then runs the NCSA algorithm on the
barycentric subdivision of the link, writes the decided simplex in its register, takes a snapshot, etc. Note
that since we restrict ourselves to the link of the intersection of the cores, no two processes can decide on
vertexes which do not belong to the same simplex. Further, if a process decides on a vertex in round k&, this
vertex will stay in all cores of all subsequent rounds. Finally, since at least one process decides every round,
the algorithm terminates in at most n + 1 rounds.
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An Axiomatic Approach to Computing the
Connectivity of Synchronous and Asynchronous
Systems

Maurice Herlihy* Sergio Rajsbaum! Mark Tuttle?

Abstract

We present a unified, axiomatic approach to proving lower bounds
for the k-set agreement problem in both synchronous and asynchronous
message-passing models. The proof involves constructing the set of reach-
able states, proving that these states are highly connected, and then ap-
pealing to a well-known topological result that high connectivity implies
that set agreement is impossible. We construct the set of reachable states
in an iterative fashion using a round operator that we define, and our proof
of connectivity is an inductive proof based on this iterative construction
and simple properties of the round operator.

1 Introduction

The consensus problem [18] has received a great deal of attention. In this
problem, n + 1 processors begin with input values, and all must agree on one of
these values as their output value. Fischer, Lynch, and Paterson [7] surprised
the world by showing that solving consensus is impossible in an asynchronous
system if one processor is allowed to fail. This leads one to wonder if there is any
way to weaken consensus to obtain a problem that can be solved in the presence
of k—1 failures but not in the presence of k failures. Chaudhuri [5] defined the k-
set agreement problem and conjectured that this was one such problem, and a
trio of papers [4, 13, 19] proved that she was right. The k-set agreement problem
is a generalization of consensus, where we relax the requirement that processors
agree on a single value: the set of output values chosen by the processors may
contain as many as k distinct values, and not just 1.

Set agreement (and in particular consensus) has been studied in both syn-
chronous and asynchronous models of computation, but mostly independently.

*Brown University, @Computer Science Department, Providence, @RI 02912;
mph@cs.brown.edu.

TInstituto de Matemadticas, Universidad Nacional Auténoma de México, Ciudad Universi-
taria, D.F. 04510, Mexico; rajsbaum@math.unam.mx

tHP Labs, One Cambridge Center, Cambridge, MA 02142; mark.tuttle@hp.com.



Indeed, prior proofs for these models appeared to have little in common, as
reflected by the organization of a main textbook in the area [14], where the
first part is devoted to synchronous systems and the second part of the book
to asynchronous systems. Recent work has been uncovering more and more
features and structure in common to both models e.g. [8, 12, 15, 16]. However,
these results are in the form of transformations between models, or on proofs
that have a similar structure in both models. Only [15] describes an abstract
model that encompasses both models, with clearly identified properties that are
needed to carry out consensus impossibility results. To go from consensus to
set agreement a big step in complexity is encountered, since one must deal with
higher dimensional topology instead of just graphs, as discovered by the trio of
papers [4, 13, 19] mentioned above. The contribution of this paper is to present
a new axiomatic approach were set consensus impossibility proofs can be derived
in a uniform manner for both synchronous and asynchronous models.

All known proofs for the set agreement lower bound depend — either explic-
itly or implicitly — on a deep connection between computation and topology.
These proofs essentially consider the simplicial complex representing all pos-
sible reachable states of a set agreement protocol, and then argue about the
connectivity of this complex. These lower bounds for set agreement follow from
the observation that set agreement cannot be solved if the complex of reachable
states is sufficiently highly-connected. This connection between connectivity
and set agreement has been established both in a generic way [11] and in ways
specialized to particular models of computation [1, 4, 6, 10, 11, 12, 19]. Once
the connection has been established, however, the problem reduces to reasoning
about the connectivity of a protocol’s reachable complex.

The primary contribution of this work is a new, substantially simpler proof
of how the connectivity of the synchronous and asynchronous complexes evolve
over time. Our proof depends on two key insights:

1. The notion of a round operator that maps a global state to the set of
global states reachable from this state by one round of computation, an
operator satisfying a few simple algebraic properties.

2. The notion of an absorbing poset organizing the set of global states into
a partial order, from which the connectivity proof follows easily using the
round operator’s algebraic properties.

We believe this new approach has several novel and elegant features. First,
we are able to isolate a small set of elementary combinatorial properties of the
round operator that suffice to establish the connection with classical topology
in a model-independent way. Second, these properties require only local reason-
ing about how the computation evolves from one round to the next. Finally,
most connectivity arguments can be difficult to follow because they mix seman-
tic, combinatorial, and topological arguments. Those arguments are cleanly
separated here. The round operator definition relies on semantics: it is a com-
binatorial restatement of the properties of the synchronous model. Once the
round operator is defined, however, we need no further appeals to properties of



the original model. We reason in a purely combinatorial way about intersections
of global states, and how they can be placed in a partial order. Once these com-
binatorial arguments are in place, we appeal directly to well-known theorems
of topology to establish connectivity. These topology theorems are treated as
“black boxes,” in the sense that we apply them directly without any need to
make additional topological arguments. Furthermore, our absorbing posets are
very similar to shellable complexes e.g. [3] so we have uncovered yet one more
link between the work of topologists and distributed computing.

For lack of space most of the proofs have been omitted, but appear in the
full paper.

2 Preliminaries

2.1 Models

We consider two (standard) message-passing models, the synchronous and asyn-
chronous models. In both models, we restrict our attention to computations with
a round structure: the initial state of each processor is its input value, and com-
putation proceeds in a sequence of rounds. In each round, each processor sends
messages to other processors, receives messages sent to it by the other proces-
sors in that round, performs some internal computation, and changes state. We
assume that processors are following a full-information protocol, which means
that each processor sends its entire local state to every processor in every round.
This is a standard assumption to make when proving lower bounds. A processor
can fail by crashing in the middle of a round, in which case it sends its state
only to a subset of the processors in that round. Once a processor crashes, it
never sends another message after that.

In the synchronous model [2, 14], all processors execute round r at the same
time, and processor P fails to receive a message from processor @), then ) must
have crashed, either in that round or in the previous round.

In the asynchronous model, there is no bound on processor step time nor on
message delivery time, so a crashed processor cannot be distinguished from a
slow processor. Our results, however, depend only on the unbounded message
delivery time. Since our goal is to prove impossibility results, we are free to
restrict our attention to executions in which processors take steps at a regular
pace, and only message delivery times are delayed. In the behaviors we consider,
messages from one processor to another are delivered in FIFO order, but when
one message from P to @ is delivered, all outstanding messages from P to )
are delivered at the same time.

It is convenient to recast the asynchronous model in the following omissions-
failure form. There are at most f potentially faulty processors. At each round,
the nonfaulty processors broadcast their states to all processors (including the
faulty processors). Each faulty processor broadcasts its state to some subset of
the processors, and may omit to send to the others. Processors never crash. It
can be shown that k-set agreement lower bounds in this omissions failure model



Figure 1: A global state S and the set S1(S) of global states after one round
from S.

carry over to the standard asynchronous crash-failure model; see [9] for a similar
argument.

2.2 Combinatorial Topology

We represent the local state of a processor with a vertex labeled with that
processor’s id and its local state. We represent a global state as a set of labeled
vertexes, labeled with distinct processors, representing the local state of each
processor in that global state. In topology, a simplex is a set of vertexes, and a
complez is a set of simplexes that is closed under containment. The dimension
of a simplex is equal to its number of vertexes minus one. Applications of
topology to distributed computing often assume that these vertexes are points
in space and that the simplex is the convex hull of these points in order to be
able to use standard topology results. As you read this paper, you might find it
helpful to think of simplexes in this way, but in the purely combinatorial work
done in this paper, a simplex is just a set of vertexes.

As an example, consider the simplex and complex illustrated in Figure 1.
On the left side, we see a simplex representing an initial global state in which
processors P, @@, and R start with input values 0, 2, and 1. Each vertex is
labeled with a processor’s id and its local state (which is just its input value
in this case). On the right we see a complex representing the set of states that
arise after one round of computation from this initial state if one processor is
allowed to crash. The labeling of the vertexes is represented schematically by a
processor id such as P and a string of processor ids such as PQ). The string PQ is
intended to represent the fact that P heard from processors P and @ during the
round but not from R, since R failed that round. (We are omitting input values
on the right for notational simplicity.) The simplexes that represent states after
one round are the 2-dimensional triangle in the center and the 1-dimensional
edges that radiate from the triangle (including the edges of the triangle itself).
The central triangle represents the state after a round in which no processor
fails. Each edge represents a state after one processor failed. For example, the



edge with vertexes labeled P; PQR and Q; PQ represent the global state after
a round in which R fails by sending a message to P and not sending to Q: P
heard from all three processors, but @ did not hear from R.

What we do in this paper is define round operators like the round operator &y
that maps the simplex S on the left of Figure 1 to the complex S;(S) on the
right, and then reason about the connectivity of §1(S). Informally, connectivity
in dimension 0 is just ordinary graph connectivity, and connectivity in higher
dimensions means that there are no “holes” of that dimension in the complex.
When we reason about connectivity, we often talk about the connectivity of
a simplex S when we really mean the connectivity of the induced complex
consisting of S and all of its faces. For example, both of the complexes in
Figure 1 are O-connected since they are connected in the graph theoretic sense.
In fact, the complex on the left is also 1-connected, but the complex on the right
is not since there are “holes” formed by the three cycles of 1-dimensional edges.

Given a simplex S, a labeling of S from a set V' is a new simplex constructed
by replacing each vertex s of S with a pair (s,v), where v € V.

Given a simplex S and a set V', we define the pseudosphere P(S,V) to be
this set of labelings of S with elements of V. (We call P(S,V) a pseudosphere
because is has some of the topological properties of a sphere.) The face S is
called the base simplex of the pseudosphere, and given a simplex 7" of a pseudo-
sphere P (S, V), we define base(T') to be the base simplex S of the pseudosphere.

The input complex for k-set agreement is P (.S, V'), the pseudosphere in which
each vertex is labeled with an input from a set V, where |V| > k. The set of
all reachable states of a protocol P with initial states P(S,V) is the protocol
complex C = C(P(S,V)). The fundamental connection between k-set agreement
and connectivity is expressed in the following theorem (e.g. [11]):

Theorem 1: Let P be a protocol, and let C be its protocol complex. If C is
(k — 1)-connected, then P cannot solve k-set agreement.

Thus, our main task will be to prove that C is (k — 1)-connected. Proving
that a union of complexes is connected is made easier by the following theorem?.

Notice that if A and B are complexes then both AU B and AN B are complexes.

Theorem 2 (Mayer-Vietoris): Let A, B be two complexes. Then AU B is ¢-
connected if A and B are c-connected and AN B is (¢ — 1)-connected.

Think about the special one-dimensional case of this statement: a graph that
is the union of subgraphs A, B is 0-connected (connected in the graph theoretic
sense) if A and B are 0-connected and AN B is —1-connected (nonempty).

To prove that a complex C is c-connected, we split C into subcomplexes with
less and less simplexes, and apply repeatedly the Mayer-Vietoris theorem. At
the bottom of this recursion, we get complexes with just one simplex, and use
the following fact.

1 Actually this theorem is a well-known corollary of the Mayer-Vietoris sequence, which is
described in most algebraic topology textbooks; see for example [20] Chapter 4, Section 6.



Theorem 3: A simplex of dimension at least ¢ is (¢ — 1)-connected.

In this paper all we need to assume from topology is the previous two the-
orems. Both are very basic algebraic topology facts that appear in standard
textbooks such as [17, 20].

3 Absorbing Posets and Round Operators

The codimension of two simplexes Sy and S is a measure of how much they
have in common defined by

codim(Sp, S1) = max {dim(S;) — dim(N;S;)}

where dim(f)) = —1 is the dimension of the empty simplex. Two useful proper-
ties of this definition are that if S C T then

codim(S,T) = dim(T") — dim(S),
and if S C X C T then
codim(S,T) = codim(S, X) + codim(X,T).
Let S be a nonempty set of simplexes, and < a partial order on S.

Definition 4: We say that (S, =) is an absorbing poset if for every two sim-
plexes S and T in § with T" £ S there is a Ts in S, Ts < T such that

SATCTsNT (1)
codim(Ts, T) =1 (2)
codim(SNT,Ts) < codim(S,T). (3)

The first two properties say that when considering pairwise intersections
of simplexes — as we will frequently do in our Mayer-Vietoris arguments —
pairs of high codimension are “absorbed” by pairs of low codimension, and we
can restrict our attention to pairs of simplexes of codimension one. The third
property just says that T's satisfies the same property that S and T do, namely,
codim(SNT,X) < codim(S,T) for X = S,T. An absorbing poset is almost
equivalent to a shellable complez [3]. In a shellable complex, Equations 2 and 3
apply only to principal faces (“facets”) of the complex, while our construction
allows one complex in S to be a proper face of another. It follows that every
absorbing poset induces a shellable complex, but not vice-versa.

Lemma 5: If A is a set of simplexes such that every pair of simplexes has
codimension 1, then (A, <) is an absorbing poset, where < is any total order

on A.

10



Proof: For any simplexes S and T in A such that S < T, pick Ts = S.
Substituting S for T, it is easy to check that the three conditions of Definition 4
are satisfied:

SNTCSNT
codim(S,T) =1
codim(SNT,S) < codim(S,T).

3.1 Axioms

A simplicial operator Q is a family of maps. Each map Q, carries a simplex
of dimension m > ¢ to a nonempty set of simplexes, where each simplex has
dimension at most m. The subscript ¢ is the operator’s degree. For ¢ < 0, it is
convenient to define Q(S) to be the empty set. Note that Q,(0) = () for all ¢,
and Qg (5) # 0 for any nonempty simplex S.

Simplicial operators extend naturally to sets of simplexes. If A is a set of
simplexes,

Qu(A) = | Qi(A). (4)
AcA
The exact meaning of the operator will vary from model to model. In the
synchronous message-passing model, ¢ is the number of processors that can
crash in each round. In the asynchronous model, £ is the number of processors
that remain partially silent in each round.

We use Q1 Q¢(S) to denote the composition of Qy and Q, applied to S, Q;(S)
to denote the r-fold composition of Q, applied to S, and ||Q}(S)| to denote the
simplicial complex induced by the set Qj(S) (i.e., closed under containment).

The first axiom says that the states reachable after the failure of ¢ processors
are reachable after the failure of even more processors.

Axiom 1:
Qu(S) C 9 ()

when ¢ < m.

The next axiom describes multi-round executions. We introduce a model-
specific, integer-valued linear function ¢. Informally, ¢(f) is the number of
failures needed in a round to hide the existence of f faulty processors. We will
see that in the synchronous model, faulty processors crash, so ¢(f) = 0. In the
asynchronous model, faulty processors fail to send messages, so ¢(f) = f.

Axiom 2: Let k > £. For all r > 0, if ¢ = codim(So, S1),

12k Qe(So) I N Q1 Qe(SII = 15— g(c) Le—c(So N S

11



The right-hand-side of this equation is the set of states for processors that
cannot tell whether the initial state was Sy or S1. The processors that can tell
the difference must be silenced in the first round, requiring an extra c failures,
and must be kept silent for the remaining rounds, requiring ¢(c) extra failures
in each subsequent round.

Axiom 3: For every simplex S, Q,(S) is an absorbing poset.

4 Theorems and Lemmas
Lemma 6: Let i > j. Forallr >0,if SCT,
197 2 (D € 1971 () Lie (D)
where ¢ = codim(S,T).
Proof: By Axiom 2,
Q% Qe(So)ll N 125 Le(SI = Q- () Le—c(So N S1)|
where ¢ = codim(Sp, S1), implying that
| Qk—g(e) Le—c(So N S1)| € [[QxQe(So)
The claim follows by setting S = Sy NSy, T =Sy, i =k — ¢(c), and j = £ —c.

Lemma 7: If (S, <) is an absorbing poset, and S, T, and T are defined as in
Definition 4, then

codim(SNT,Ts NT) < codim(S,T).

Proof: Because SNT C TsNT, codim(SNT,Ts NT) is just the number of
vertexes in T's N'T but not in SNT.

There are two cases to consider. First, suppose there is a vertex in T but
not in Tg. It follows that

codim(SNT, TsNT) < codim(SNT,T) < codim(S,T).

Second, suppose instead that T" C Ts. Because T and Ts are distinct, there is
vertex in Ts but not in T'. It follows that

codim(SNT,T) < codim(SNT,Ts).

By Equation 3,
codim(SNT,Ts) < codim(S,T).
Combining these inequalities yields the bound.

The next lemma states that every state reachable with a certain number of
failures is also reachable with more failures.

12



Lemma 8:
Q1 0L(S) C QQum(S).
when j < /¢ and k < m.

Proof: We argue by induction on > 0. When r = 0, the claim follows from
Axiom 1.

Suppose r > 0. Since Q;lek(S) - Q?ilQm(S) by the induction hypothe-
sis, we have

Q[Qk(S) = Q571 Qk(S) € Q59,1 Qm(S) € QA (S) = Q7 Qm(S5).
]

Lemma 9: Let (S,=) be an absorbing poset, and let T' € S be a maximal
simplex with respect to <. We claim that the following sets are both absorbing
posets: (£, =), where £ ={L|L € § — {T'}}, and (M, <), where M = {T}.

Lemma 10: Let (A, <) be an absorbing poset containing more than one sim-
plex, and let A € A be a maximal simplex with regards to <. For each B # A
in A, there exists a Ap € A satisfying the three conditions of Definition 4. We
claim that the set

B={AgpNABecA-{A}}

is an absorbing poset for any total order < on the elements of A — {A}

Lemma 11: If every simplex in 9} Q¢(A) has dimension at least d, then so
does every simplex in A.

Lemma 12: Let Q) Q, be a composition of simplicial operators where k > £.
If (S, <) is an absorbing poset then for every two simplexes S and T in § with
T A S there is a Ts in S with Ts =< T, such that

19k Le(S)I N QL Qe(T)l € 12k Le(Ts) [ N | Le(T|
codim(Ts,T) =1
codim(SNT,Ts) < codim(S,T).

Lemma 13: If (A, <) is an absorbing poset where £ is the minimum dimension
of any simplex in A, then ||A|| is (¢ — 1)-connected.

Theorem 14: Let Q) Q, be a composition of simplicial operators where k > ¢,
and (A, <) an absorbing poset. If every simplex in Q% Qy(A) has dimension at
least ¢, then || Q7. Q¢(A)| is (¢ — 1)-connected.

13



5 The Synchronous Model

We assume a standard synchronous message-passing model with crash fail-
ures [2, 14]. The system has n + 1 processors, and at most f of them can
crash in any given execution. Each processor begins in an initial state consist-
ing of its input value, and computation proceeds in a sequence of rounds. In
each round, each processor sends messages to other processors, receives mes-
sages sent to it by the other processors in that round, performs some internal
computation, and changes state. We assume that processors are following a
full-information protocol, which means that each processor sends its entire local
state to every processor in every round. This is a standard assumption to make
when proving lower bounds. A processor can fail by crashing in the middle of a
round, in which case it sends its state only to a subset of the processors in that
round. Once a processor crashes, it never sends another message after that

A simplex X is between two simplexes T and Rif T'C X C R. We use [T : R]
to denote the set of simplexes between T" and R.

Definition 15: Given simplexes S, T, and R, the pseudosphere P(S,[T : R])
is the set of all possible labelings of S with simplexes between T" and R.

We call this set a pseudosphere because the induced complex has some of the
topological properties of a sphere. The simplex S is called the base simplex of
the pseudosphere, and given a simplex X of a pseudosphere P(S, [T : R]), we
define base(X) to be S.

Given a simplex S and a set D of processors, let F' = S/D be the face of S
obtained from S by deleting the vertexes labeled with processors in D. The set
of states reachable from S by one round of synchronous computation in which
the processors in D fail can be represented by the pseudosphere P(F,[F : S]),
the set of all possible labelings of F' with simplexes between F' and S.

Next, we define the failure operator. Given a simplex S and an integer
£ > 0, the ¢-failure operator Fy(S) maps S to the set of all faces F' of S with
codim(F,S) < ¢, which is the set of all faces obtained by deleting at most ¢
vertexes from S. This models the sets of at most ¢ processors that can fail in
one round of computation from S.

Definition 16: For every integer ¢ > 0, the synchronous round operator Sg(S)
is defined by

S(S)= |J PWEIF:S).
FeF,(S)

We now check that the synchronous round operator satisfies our axioms.
Lemma 17: S, satisfies Axiom 1:
5(8) C S (S)

when ¢ < m.

10
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Proof: Since ¢ < m implies F¢(S) C F,,(5), it follows that

SS)= |J PwIF:SDc | PEIF:S]) =8n(S).
FeF,(S) FeF,,(S)

In this model, the integer-valued linear function ¢ is simply ¢(f) = 0.
Lemma 18: Let k > ¢. For all r > 0, if ¢ = codim(Sy, S1),
[SESe(So)ll N 1SESe (S € [|SkSe—c(So N S1)l-
Lemma 19: Let k > ¢. For all r > 0, if ¢ = codim/(Sy, S1),
[SkSe—c(So NS € [|SESe(So) [l N [|SESe(S1)l
Corollary 20: Sy satisfies Axiom 2: Let k > £. For all r > 0, if ¢ = codim(Sy, S1),
[S%Se(So) [l VIISESe (Sl = Sk Se—e(So N S)-

To show that Sy satisfies Axiom 3, we impose a partial order on simplexes
of 8¢(S). Recall that

S(S)= |J PWEIF:S).
FeF,(S)

This expression suggests a lexicographic order. We will combine a total order
on simplexes F' in Fy(S) with a partial order on simplexes of each P(F, [F : S]).

We assume a total order <;q on processor ids, which induces a total order on
the vertexes of a simplex. We begin by imposing a lexicographic total order on
the faces F' of S. First we order the faces by decreasing dimension, so that large
faces occur before small faces. Then we order faces of the same dimension with
a rather arbitrary rule based on our total order on processor ids: we order F'
before G if the smallest processor id labeling vertexes in F' and not G comes
before the smallest processor id labeling G and not F'. Formally:

Definition 21: Define the total order < on the faces of a simplex S by F' <; G
if

1. dim(F') > dim(G) or
2. dim(F) = dim(G) and pr <iq pg where

pr = min {ids(F) — ids(G)} and pg = min{ids(G) — ids(F)}.

Define FF <; Gif F <y Gor F=G.

Next we order the simplexes in a pseudosphere P(F, [F : S]) using the fol-
lowing face ordering: we order A before B if, for each vertex v of the base
simplex F, the face of S labeling v in A comes before the face of S labeling v
in B. Formally:

11
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Definition 22: Define the partial order <, on the simplexes of a pseudo-
sphere P(F,[F : S]) by A <, B if and only if A, <; B, for each vertex v in F,
where A, and B, are the simplexes labeling the vertex v in A and B.

Now we order S¢(5) lexicographically using the face and pseudosphere or-
ders: we order the simplexes in a pseudosphere P(F, [F : S]) before the simplexes
in a pseudosphere P(G,[G : S]) if F is ordered before G in the face ordering,
and we order the simplexes within a single pseudosphere using the pseudosphere
ordering. Formally:

Definition 23: Define the partial order <,. on the simplexes in S¢(S) by A4 =,
B if and only if

1. different pseudospheres: base(A) <y base(B) or
2. same pseudosphere: base(A) = base(B) and A <, B

Theorem 24: S, satisfies Axiom 3: For every simplex S, (S¢(95),=<,) is an
absorbing poset.

Theorem 25: Assume n + 1 > f + k + 1. No synchronous protocol for k-
set agreement halts in fewer than | f/k] + 1 rounds in the presence of f crash
failures.

Proof: Suppose there is a protocol that halts in fewer than | f/k| + 1 rounds,
and assume without loss of generality that it halts in exactly » = | f/k] rounds in
every execution. Consider the subset of executions in which at most k processors
halt in every round. For the input complex P(S,V), the set of final states of
such executions is S} (P(S,V)). Every simplex in this complex has dimension at
least k. By Theorem 14, this complex is (k — 1)-connected, and by Theorem 1,
the protocol cannot solve k-set agreement.

6 Asynchronous Model

Informally, the asynchronous round operator A, (S) is defined as follows. There
are at most ¢ faulty processors in each round, although the set of faulty proces-
sors can change from round to round. Faulty processors never crash, but they
can omit sending messages. In each round, all nonfaulty processors send their
states to all the processors (including faulty ones), while the faulty processors
send messages to an arbitrary subset of processors (perhaps none).

Definition 26: For every integer ¢ > 0, the asynchronous round operator Ay(S)
is defined by

AS)= | P(S[F:9)).

FeF,(S)

12
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At each asynchronous round every processor is labeled with states that include

all nonfaulty processors and some subset of faulty processors. Compare with

Definition 16. Notice that every simplex in A (.S) has the same dimension as S.
We now check that the asynchronous round operator satisfies our axioms.

Lemma 27: A, satisfies Axiom 1:
A(S) € A (S)
when ¢ < m.
Proof: Since ¢ < m implies F¢(S) C F,,(5), it follows that
AS)= | PEIFSHS | PSIF:S) = An(S).
FeF,(S) FeF,,(S)
In this model, the integer-valued linear function ¢ is simply ¢(f) = f.
Lemma 28: Let k > ¢. For all r > 0, if ¢ = codim/(Sy, S1),
[ARA(So) | N[ AR A (S € | A, Ae—e(So N S
Lemma 29: Let k > ¢. For all r > 0, if ¢ = codim/(Sy, S1),
AR —cAe—e(So N SV S [l ARA(So) [l N (| AR Ae (S]]

Corollary 30: A, satisfies Axiom 2: Let ¥ > ¢. For all r > 0, if ¢ =
codim(Sp, S1),

[ARA(So) || O [ AR A (S]] = |A,—cAe—c(So N S1)-

To show that A, satisfies Axiom 3, we impose a partial order on simplexes
of A;(S). Recall that

A(S)= | P(SIF:S)).

FG}—[(S)

If F' C F, then P(S,[F' :S]) C P(S,[F : S]), so we can restrict our attention
to faces of codimension ¢. Unlike in the synchronous model, where simplexes
have varying dimensions, all simplexes in this set are labelings of S, and all have
dimension n.

We use the same total order <;q on processor ids, the same total order <y on
the faces of a simplex S. Next we order the simplexes in A,(S) using this face
ordering: we order A before B if, for each vertex v of the base simplex S the
face of F' labeling v in A comes before the face of F' labeling v in B. Formally:

Definition 31: Define the partial order <, on the simplexes of A;(S) by A <, B
if and only if A, <; B, for each vertex v in S, where A, and B, are the sim-
plexes labeling the vertex v in A and B.

Theorem 32: A, satisfies Axiom 3: For every simplex S, (A.(S),=p) is an
absorbing poset.

Theorem 33: No asynchronous protocol for k-set agreement exists in the pres-

ence of k crash failures.
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1 Introduction

The interest in sensor networks and the way they may
control the behavior of a system, being a vehicle, air-
plane, satellite, or other devices is rapidly growing. The
agreement functions used to ensure smooth and stable
control while retecting the changes in the environment
are of great interest.

An abstraction of many agreement functions is the
consensus problem, where a set of n processors get input
values from some set V' and must agree on a value. There
is always a non-triviality validity requirement that speci-
Tes restrictions on the decided value as a function of the
input values and the failure pattern of the execution. This
is a fundamental problem in distributed computing that
has been widely studied for more than two decades due
to its theoretical and practical interest (e.g., [11, 1, 5]).
Research on consensus concentrated on the above, one-
shot setting where processors start with their input val-
ues, and have to solve consensus once. Real distributed
systems often need to solve consensus repeatedly, on in-
puts received one after the other. Thus, researchers have
also investigated continuous versions of consensus where
processors have to adapt their consensus decisions con-
tinuously (e.g. [6, 10]).

A typical situation where continuous consensus prob-
lems arise is systems that read values from replicated sen-
sors [13]. A fault-tolerant consensus algorithm is needed
to decide on a single reading because sensors usually do



not give the exact same reading of a physical parame-
ter, or because some sensors can fail. Although in the
simplest (and most often considered in theory) version
of consensus the validity requirement is that a decided
value must have been the reading of at least one sen-
sor, in many real settings it is desired that the decided
value is a value that has been produced by a majority of
the sensors. These and other non-trivial validity require-
ments are possible, but they all imply that as the readings
of the sensors change because the physical parameters
that are sampled change, the consensus value will have
to change: in the extreme case, all sensors can change
their readings from one single value to another, forcing
the consensus decision to change accordingly.

Although processors sometimes have to change their
outputs during the repeated executions of a consensus al-
gorithm, we prefer continuous consensus algorithms that
are stable, i.e., in which the number of times the decision
value is changed is as small as possible. Usually averag-
ing functions are used in an independent way from sam-
ple to sample, sometimes combined with agreement pro-
tocols (e.g. [12]), and hence, there is no attempt to max-
imize stability. There are several reasons for preferring
a stable consensus system (more are described in [6]).
Some sensors are discrete and are used to control actu-
ators, which may also be discrete. There is the possible
operational ampliTcation of decision changes, say turn-
ing an engine on and off. The energy or other resources
consumed are sometimes proportional to the number of
transitions; e.g. turning an engine on and off takes en-
ergy, time, and reduces its lifetime; some related work in
VLSI is [3]. Our results may be useful to study problems
(e.g. [9]) about the number of infuencing variables in
boolean functions.

In [6] we initiated a study of the stability of continuous
consensus systems for the binary case of |V| = 2. We
deTned an abstract formalization of a continuous con-
sensus system and the stability measures. The formal-
ization is not tied to any specilc model of computation,
in order to understand the basic stability issues. We con-
sidered memoryless systems where consecutive one-shot
consensus executions are independent, versus the stabil-
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ity of systems that can keep memory of previous execu-
tions. We also studied the stability of symmetric systems
where decisions are taken solely on the basis of the dis-
tribution of the different input values, but not on what
speciIc sensor or processor produced a particular input
value. We characterized the stability of systems accord-
ing to their memory and symmetry properties, proving
tight upper and lower bounds for the various cases.

Results: In this paper we extend the results of [6] to
the case of multivalued inputs and outputs, |V| > 2. It
turns out that this generalization provides a rich set of
problems, some much more interesting than those of the
binary case, where we used topological techniques and
higher dimensional complexes.

Let ¢ be the number of sensors that may crash-fail. The
validity requirement of [6] is that the decision value is an
input of some processor, and that if less than ¢ + 1 inputs
are equal to a value b, then the consensus value must be
1 — b (to make sure the decision is the value of a correct
sensor). For the case of a multi-valued consensus system,
we consider two extensions of this requirement:

Exact value system (EV): requires that the output will be
the value of a correct input.

Range value system (RV): requires that the output will be
in the range of the correct inputs.

First we show that EV implies that n > |V'|t + 1. For
RV we prove that it is suflcient to have n > 2¢ 4 1.
The instability of a consensus system with memory is
analyzed proving that it is » in the cases where n is the
smallest possible value. The investigation of the rest of
the cases for EV systems results in range of instability
values as a function of n, |V| and ¢.

Lower bounds for the case of memoryless system are
obtained for symmetric functions. The lower bounds are
achieved using a technique to subdivide a simplex from
[7] and Sperner’s Lemma. This can be seen as a gen-
eralization of Lemma 2 in [8]: from having a change in
the decision values in one dimension (ordering the input
values in a line from one extreme to the other where two
consecutive input vectors differ in exactly one input) to
the case of several dimensions where the border between



the different extreme values is a simplex.

We also present an upper bound for a memoryless
symmetric system, which is about a factor of 2 away from
our lower bound. An interesting open question is to close
this gap. Details can be found in [4].

2 Symmetric Memoryless Systems

In this section we detail our results for the case in which
memory is not used, in other words the last decision val-
ues are not a part of the input to the consensus function.
Moreother, the systems that we will refer to are symmet-
ric, meaning that the decision function is oblivious to the
order of the input values, i.c., for every Z and ¥/, where ¥
is a permutation of Z, f (%) = f ().

The idea is to use Sperner’s Lemma, and in a sense,
to generalize the case of [8]. We denote the set of pos-
sible input vectors by A, namely each such vector has
v (non negative integer) components and the sum of the
components is exactly n. We put the input vectors in a
space of dimension v. The input vectors in which one
component is n and all the rest are zero form a simplex,
in fact (v — 1)—simplex. The rest of the vertices are all
convex combination of the above vertices, and therefore
reside within the simplex. A subdivision of a simplex is a
partition of the simplex into simplices, such that the sum
of the volumes of the dividing simplices equals the vol-
ume of the original simplex, and any two dividing sim-
plices do not intersect. We can use Sperner’s Lemma to
conclude that there is a dividing simplex such that its v
vertices have v distinct decision values.

There are several ways to deTne such a subdivision,
fortunately we found (in [7]) a partition that serves us
well, in Tnding a geodesic path of length v + 1 in every
dividing simplex. In particular, we have such a path in
the dividing simplex that has different function value for
each vertex in its convex.

We will now prove that for any EV system D with a
symmetric function f, instability(D) > vt + 1. To do
so, we will use the edgewise subdivision of a simplex,
deTned in [7].
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Let S be a d—simplex, spanned by 170, 171, e V. An
edgewise subdivision is a function that, given an integer
k, transforms every point X € S into a color scheme M,
which is deTned by a matrix as follows:

X1,0 X1,1 X1,5
M= X?,o X?,1 X?,j
Xk,0 Xk,1 Xk,j

where ;7 < d. Each entry of the matrix is an integer
from 0 through d, the columns are pairwise different, and
the entries appear in non-decreasing order when read like
English text:

X1,0 < x1,0 << x20 S-S Xy
The color scheme deTnes j + 1 independent vector
. - - k-,
Vo, Vits .., Vit where Vi* = % _21 Vy;, which span a j-
1=

simplex. By applying the function to every point)? €S
we obtain a subdivision of § into subsimplices, some of
them are d—simplices.

Lemma 2.1 Let S be a (v — 1)—simplex, spanned by

%,ﬁ,...,ﬁ,,l,whemﬁ- =n- 0§11, and:
= 1 m=k
5m[k]_{ 0 m#k

Let @ be a vertex of any (v — 1)—simplex in the edgewise
subdivision of S using k = n. Then for every 1 <1 < v,
d [i] is an integer.

Proof: Let @ correspond to a column j in some color
scheme M. Then,

Z vxt,j [1] = Z” ' gXl,j [i] = ngu [4]

=1 =1 =1

S|~

a[ﬂ:%

Since &, [m] is always integer, then @ [i] is also integer. m

We will deTne A = {(aw,01,...,0-1) ]
a e NU{0}, a0 +0a1+...+,—1 =n} as be-
fore. Lemma 2.1 implies that for every vertex a of a



v — 1)—simplex of the edgewise subdivision of S,
1)—simpl f the edgewi bdivisi fS
a€ A. WewilldeTne f : A — V as follows:

f(@) = £y — 1))

and we will color every vertex a of the subdivision with
f(@). Since it holds that for every @ € A such that
f(@) = b, #b(@) > t+1 > 0, then the coloring is
a Sperner coloring, and according to Sperner’s lemma
there must exist in the subdivision a subsimplex S* such
that all its vertices’ colors are pairwise different.

Lemma 2.2 Let S be a d—simplex spanned by
VO,Vl, Vd, such that for every 0 < 1 < d, V

n - 5 Let S* be a d—simplex of the edgewise sabdl—
VlSIOI’L of S uszng the lnteger n, when S* lS spanned by
VO,VI,.. Vd ThenVO — Vl .= Vd — VO isa
geodesic path with minimal changes.

Now we can prove the main theorem:

Theorem 2.3 For every EV system D with a symmetric
function f, instability(D) > vt + 1.

Proof: f is deTned over A, which subdivides S us-
ing the edgewise subdivision (Lemma 2.1). We will use
f to color the vertices in A. According to Sperner’s
Lemma, there is a (v — 1)—simplex in the subdivision
so that the colors of its vertices are pairwise different.
Let @y, d1,...,d, € A be the vertices spanning S.

As shown above, for every 1, b, it holds that #b(a;) >
t, and for every b there exists % such that #b(d;,) >
t + 1, where 4, # 14, for every by # ba. Without loss
of generality, we will assume #0(dy) > ¢+ 1. Then dy
corresponds to the input vector (1. .. (v — 1)*0Z.

According to Lemma 2.2, ay — a1 — ... = @y, — Go
is a geodesic path with minimal changes. Let ¢; the color
that change between d; and d@; forevery 0 < j <wv—1,
and let ¢, = v. Now, for every step 4 we start with an in-
put vector corresponding to @ moqd v, and will switch an
input value ¢; mod v t0 (¢ mod v + 1) mod v, thus arriv-
ing to an input vector corresponding t0 ;1) mod »- We
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can repeat these steps vt + 1 times, for every input value
b # co, the original input vector holds #b(dy) > ¢, and
also #0(dp) > ¢+ 1. And since the colors of the vertices
are pairwise different, then the values of f over the ver-
tices are pairwise different, and therefore the values of
f over the input vectors corresponding to the vertices are
pairwise different (between pairs corresponding to differ-
ent vertices), then this path yields vt + 1 changes to the
consensus value. n

Acknowledgment: It is a pleasure to thank Ronen Peretz
and Nir Shavit for their comments.

References

[1] H. Attiya and J. Welch, Distributed Computing: Fundamentals,
Simulations and Advanced Topics, McGraw-Hill, 1998.

S. Chaudhuri, “More choices allow more faults: Set consen-
sus problems in totally asynchronous systems,” Inf. and Comp.,
105(1):132-158, 1993.

A.P. Chandrakasan and R.W. Brodersen, Low power digital
CMOS design, Kluwer Academic Publishers, 1995.

L. Davidovitch, S. Dolev and S. Rajsbaum. “Consensus Con-
tinue? Stability of Multi-Valued Continuous Consensus!”,
Technical Report #2004-03, Department of Computer Science,
Ben-Gurion University, May 2004.

S. Dolev, Self-Stabilization, MIT Press, 2000.

S. Dolev, and S. Rajsbaum, “Stability of Long-lived Consen-
us”, Journal of Computer and System Sciences, Vol. 67, Issue
1, pp. 26-45, August 2003.

H. Edelsbrunner and D. R. Grayson, “Edgewise subdivision of
a simplex”, Discrete Comput. Geom. 24,2000, 707-719

M.J. Fischer, N.A. Lynch and M.S. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process,” Journal of the
ACM 32, 1985, pp. 374-382.

J. Kahn, G. Kalai and N. Linial, “The Intuence of Variables on
Boolean Functions,” Proc. of the IEEE FOCS, 1988.

L. Lamport, “The part-time parliament,” ACM Trans. on Comp.
Systems, vol. 16 (2):133-169, May 1998.

N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Pub-
lishers, Inc. 1996.

K. Marzullo, “Tolerating failures of continuous-valued sen-
sors,” ACM Trans. on Comp. Systems, 8(4):284-304, Nov. 1990.

H. Kopetz and P. Verissimo, “Real Time and Dependability
Concepts,” chapter 16, pp.411-446 in Sape Mullender (ed.),
Distributed Systems, ACM Press, 1993.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]



The Complexity of Early Deciding Set Agreement:
How can Topology help?

Rachid Guerraoui and Bastian Pochon
Distributed Programming Laboratory
EPFL, Switzerland

Contact author : Bastian Pochon

Email : Bastian.Pochon@EPFL.ch
Phone : +41-21-6935267
Address : Laboratoire de Programmation Distribuée
Batiment INR
EPFL
CH-1015 Lausanne, Switzerland
Category : Regular paper
Abstract

The aim of this paper is to pose a challenge to the experts of (algebraic) topology techniques.
We present an early deciding algorithm that solves the set agreement problem, i.e., the problem
which triggered research on applying topology techniques to distributed computing. We conjecture
the algorithm to be optimal, and we discuss the need and challenges of applying topology techniques
to prove the lower bound.

25



The Complexity of Early Deciding Set Agreement:
How can Topology help?

Rachid Guerraoui and Bastian Pochon
Distributed Programming Laboratory
EPFL, Switzerland

Abstract

The aim of this paper is to pose a challenge to the experts of (algebraic) topology techniques.
We present an early deciding algorithm that solves the set agreement problem, i.e., the problem
which triggered research on applying topology techniques to distributed computing. We conjec-
ture the algorithm to be optimal, and we discuss the need and challenges of applying topology
techniques to prove the lower bound.

1 Introduction

Results about the set agreement problem are intriguing, in the sense that they present an intrin-
sic trade-off between the number of processes in a system, the degree of coordination that these
processes can reach, and the number of failures that can be tolerated [3]. Set agreement is a gener-
alization of the widely studied consensus problem [4], in which each process is supposed to propose
a value, and eventually decide on some value that was initially proposed, such that every correct
eventually decides (just like in consensus). In contrast with consensus however, processes may not
decide on more than k distinct values. Hence set agreement is also referred to as k-set agreement.

K-set agreement was introduced in [2]. The paper also introduced k-set agreement algorithms
in the asynchronous model® when less than k processes may crash. In [6], techniques borrowed from
algebraic topology were first used to prove the impossibility of k-set agreement in an asynchronous
model where k processes may crash. In [3, 5], tight lower bounds were derived for set agreement in
the synchronous model prone to process crash. The framework presented in [5] uses the tools from
algebraic topology introduced in [6] and allows for proving lower bounds in both the asynchronous
and the synchronous models.

Early deciding algorithms are those the efficiency of which depends on the effective number of
failures in a given run, rather than on the (total) number of failures that can be tolerated. The
effective number of failures is traditionally denoted by f, whereas the total number of failures that
are tolerated is denoted by t. In practice, failures rarely happen, and it makes sense to devise
algorithms that decide earlier when fewer failures occur. For uniform consensus, Charron-Bost and
Schiper [1] have shown that there is a significant improvement on the efficiency when considering
the effective number of failures. More precisely, they propose a uniform consensus algorithm in
which every process that decides, decides by round f 4 2 in any run with f failures. This bound is
shown to be tight [1, 7].

To the best of our knowledge, no result for set agreement have been presented in the context of
early deciding algorithms. In the present paper, we give an early deciding set agreement algorithm.

'In the asynchronous model, there is no bound on process relative speed and message communication delay.
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We conjecture this algorithm to be optimal, and we discuss the need and challenges of applying
topology techniques to prove the lower bounds.

The rest of the paper is organized as follows. Section 2 gives our system model. Section 3
presents our early deciding algorithm. Section 4 discusses the optimality of this result.

2 Model

We consider a set of N = n + 1 processes II = {po,...,pn}. Processes communicate by message-
passing. We consider that communication channels are reliable. Processes execute in a synchronous,
round-based model [8]. A run is a sequence of rounds. Every round is composed of three phases.
In the first phase, every process broadcasts a message to all the other processes. In the second
phase, every process receives all the messages sent to it during the round. In the third phase, every
process may perform a local computation, before starting the next round. Processes may fail by
crashing. A process that crashes does not execute any step, and is said to be faulty. Processes that
do not crash are said to be correct. When process p; crashes in round r, a subset of the messages
that p; sends in round r (possibly the empty set) is received by the end of round r. A message
broadcast in round r by a process that does not crash in round r is received, at the end of round
r, by every process that reaches the end of round r. We consider that there are at most t < N
processes that may fail in any run.

3 An Algorithm

Figure 1 presents an early deciding k-set agreement algorithm. For ¢t < N — k (or equivalently,
t < n — k), this algorithm achieves the following bounds: (1) for 0 < |f/k] < [t/k]| — 2, every
process that decides, decides by round | f/k| + 2, and (2) for | f/k] > |t/k]| — 1, every process that
decides, decides by round |f/k| + 1. Note that this is a strict generalization of the tight lower
bounds on uniform consensus [1, 7].2

In the algorithm, every process p; sends its estimate value est; in every round. At the end of
every round, p; updates est; with the minimum estimate value received from any other process. The
intuition behind set agreement achieved by the algorithm is as follows. In round r, if p; observes
that k& — 1 processes, or less, crash in that round, then process p; knows all but at most k£ — 1 values
among the smallest values remaining in the system. Process p; can thus safely decide on est; if p;
reaches the end of the next round.

We give an intuition of why the algorithm is faster when | f/k| = |t/k]| — 1. Note that in this
case, every process that decides, decides by round |f/k| 4+ 1. At the end of round |t/k] — 1, the
processes have more than k£ distinct estimate values only if there remain 2k — 1 processes or less
that are still allowed to crash. In round |[t/k] — 1, every process that detects k — 1 or less new
crashes may safely decide at the end of round |¢t/k]. The reason is the following. First, if £ — 1
or less processes crash in round [t/k|, then at most £ — 1 distinct estimate values remain in the
system, and it is safe to decide for any process. In contrast, if more than k& — 1 processes crash
in round [¢/k], then k — 1 or less processes may still crash. Denote by z the number of processes
that detect less than k& — 1 process crashes in round [t/k|. These x processes decide at the end of
round [t/k]. Assume that they immediately crash after deciding. Thus there are at most k —1 —
processes that may still crash in the last round [¢/k| + 1. At the end of that round [t/k| + 1, at

2For uniform consensus, the tight lower bound is f + 2, for 0 < f <t —2, and f+ 1, for f >t —1 [1].
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At process p;:
1: halt := 0 ; decided := deciding := false
2: 8" =0, 1<r<|t/k]+1

3: procedure propose(v;)

4 est; == v;

5. for r from 1 to |t/k] + 1 do

6: if decided or deciding then send (r, DEC, est;) to all
7: else send (r, EST, est;) to all

8 if deciding then

9: decide(est;) ; return

10: else if decided then

11: return

12: else if received any (r, DEC, est;) then

13: est; := est;j ; deciding := true

14: else

15: S” .= {(estj, j) | (r, EST, est;) is received in round r from p;}
16: halt :=TI\ Uest, iyesr 153

17: est; := min{est;|(estj,j) € S"}

18: if r=|t/k| and |S"| > N — k|t/k] + 1 then

19: decided := true ; decide(est;)
20: else if |halt| < rk then

21: deciding = true

22:  decide(est;)

23: return

Figure 1: An early deciding k-set agreement algorithm (code for process p;)

most k — x values may be decided (if £ — 1 — x processes crash). In total, processes decide at most
on z + (k — x) distinct values.

In the following proofs, we denote the local copy of a variable var at process p; by var;, and the
value of var; at the end of round r by var]. crashed” denotes the set of processes that crash before
completing round r, ests” denotes the set of estimate values of every process at the end of round
r. By definition, round 0 ends when the algorithm starts. No process decides by round 0. We first
prove three general claims about the algorithm of Figure 1.

Claim 1 ests” C ests™ 1.

Proof: The proof of the claim is straightforward: for any process p;, est] € ests L. O

Claim 2 If at the end of round 0 < r < |t/k| no process has decided, and at most | processes crash
in round r + 1, then |ests" ™ <1+ 1.

Proof: Consider that the conditions of the claim hold and assume by contradiction that |ests™ 1| >
[ + 2. By assumption, there are [ + 2 processes with distinct estimate values at the end of round

r+1. Denote by qo, . .., q+1 these processes, such that estgjl < est;:fl, for 0 <7 <Il+1. Processes
qo, - - - ,q; do not send estgjl, ceey estg;rl in round r + 1; otherwise, g;+1 receives one of the smallest
4
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I+ 1 estimate values in round r+ 1. Thus there are [+ 1 processes which send values corresponding
to estggrl, e estgfl in round r + 1 and which crash in round r + 1; otherwise, ¢;11 receives one of
the smallest [ + 1 estimate value in round r 4+ 1. This contradicts our assumption that at most [
processes crash in round r + 1. O

Claim 3 If, at the end of round 1 < r < |t/k]|, no process has decided, and |ests"| > k + 1, then
|crashed| > rk.

Proof: We prove the claim by induction. For the base case r = 1, assume that the conditions of
the claim hold. That is, at the end of round 1, there exist k£ 4 1 distinct processes qq, - . ., g with
distinct estimate values. By Claim 2, |crashed!| > k. Assume the claim for round 7 — 1, and assume
the conditions of the claim hold at round r. We prove the claim for round r. By assumption, there
are k+ 1 processes qo, . . . , qx at the end of round r with £+ 1 distinct estimates. By Claim 1, k+1
processes necessarily reach the end of round r» — 1 with £+ 1 distinct estimates. Thus Claim 3 holds
at round 7 — 1 (induction hypothesis), and thus, |crashed '] > (r — 1)k. By Claim 2, at least k
processes crash in round 7. Thus |crashed”| > k + |crashed ~| > rk. O

The next proposition asserts the correctness of the algorithm.
Proposition 4 The algorithm in Fig. 1 solves k-set agreement.

Proof: Validity and Termination are obvious. To prove k-ket agreement, we consider the lowest
round 7 in which some process decides. Let p; be one of the processes that decides in round r. We
consider three mutually exclusive cases: (1) p; decides in round 2 <r < [t/k| —1, (2) p; decides in
round r = [t/k], and (3) p; decides in round r = |t/k] 4+ 1. (In the algorithm, no process decides
before round 2.)

Case 1. p; necessarily decides at line 9, and thus executes line 21 in round r — 1, where deciding
is set to true. (Because no process decides before p;, p; may not receive any DEC message before
deciding; and because r < |t/k] — 1, p; may not decide at line 19.) In round r — 1, p; executes
line 21 only if p; evaluates |crashed | < rk at line 20. Thus, from Claim 3, there are at most k
distinct estimates at the end of round r — 1, which ensures agreement.

Case 2. There are two cases to consider: (1) p; decides at line 9, after executing line 21 at
the end of round r — 1, or (2) p; decides at line 19. (Because no process decides before p;, p;
may not receive any DEC message before deciding.) In case (1), p; executes line 21 in round r — 1
only if p; evaluates |crashed” *1] < rk at line 20. Thus, from Claim 3, there are at most k distinct
estimates at the end of round r — 1, which ensures agreement. In case (2), we consider ests"~!. If
lests" 1| < k, agreement is ensured thereafter. Thus consider that |ests"™1| > k + 1. By Claim 3,
there exist k + 1 distinct processes with different estimates at the end of round r — 1 only if
|crashed ™| > k(r—1) = k([t/k] —1) > t — 2k +1, or, equivalently, only if at most 2k — 1 processes
may crash in the two subsequent rounds (rounds |¢t/k] and [t/k]| + 1). In round |t/k], p; decides
at line 19 only if p; receives at least n — k|t/k] + 1 messages. Thus, by Claim 2, the processes that
decide at the end of round |¢/k], including p;, decide on at most k distinct values. Denote by x the
number of processes that effectively crash in round |t/k|, and by y the number of processes that
decide at the end of round |t/k|. We distinguish two cases: (a) z < k — 1, and (b) x > k. In case
(a), by Claim 2, k — 1 values or less remain in the system at the end of round |t/k]; agreement is
then ensured. In case (b), at most 2k — 1 — 2 < k — 1 processes may crash among the processes
that decide at the end of round [¢/k| and the processes that take part to round [¢/k| + 1. We
claim that the total number of distinct decision values is at most k. Indeed, denote by ¥ .,.,sp, the
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number of processes that decide at the end of round |¢/k| and then immediately crash. In round
[t/k] +1, at most k — 1 —y,.,.,sp, May crash. By Claim 2 processes that decide at the end of round
|t/k] +1 may decide on at most k — y ..}, distinct estimate values. Hence the maximum number
of decided values is (k — ¥ .r0sh) + Yerash = k-

Case 3. By contradiction, consider that, at the end of round |¢/k| + 1, there exist k+ 1 distinct
processes qo, - - . , ¢, with different estimates, and which decide on their estimates. By Claim 1, there
exist k + 1 processes with distinct estimates at the end of round » — 1. By Claim 3 and because
r = |t/k| +1, |crashed ™| > k(r — 1) = k|t/k] >t — k. By Claim 2, there exist k processes that
crash in round |t/k|+ 1. Thus |crashed”| > k + |crashed ™| = k + k[t/k] > t. A contradiction. O

The next proposition asserts the efficiency of the algorithm.

Proposition 5 In any run with 0 < f <t failures, any process that decides, decides
1. by round | f/k|+2,if 0 < [f/k] < |t/k] —2, and
2. by round | f/k] +1,if | f/k] > |t/k] — 1.

Proof: We proceed by separating both cases.

Case 1. Assume a run with f failures, such that | f/k| < [t/k] — 2. By contradiction, assume
that there exists a process p; for which |halt]| > rk, for r = [ f/k] 4+ 1. (If |halt;| < rk, then p;
decides at line 9 in the next round.) Process p; does not decide in round r; in particular, p; does
not receive any DEC message in round r. We have |halt]| > rk = (| f/k] + )k = | f/k]k+k > f.
A contradiction.

Case 2. Assume a run with f failures, such that |f/k| > [t/k] — 1. First assume that
| f/k| = |t/k] — 1, and assume by contradiction that there exists a process p; that does not decide
by round r = |f/k] + 1. Thus p; does not receive any DEC message in round r. Assume by
contradiction that p; does not decide at line 19. Thus |S"| < N — k[t/k] + 1, and f > k|t/k] — 1.
This implies in turn that |f/k] > |t/k|] — 1. A contradiction. When |f/k| = [t/k], then any
process that decides, decides by round | f/k] +1 = [t/k] + 1. O

4 Discussion

We conjecture our early deciding set agreement algorithm to be tight. For the case k = 1, we fall
back on uniform consensus, for which the lower bound of f 4+ 2, for 0 < f <¢—2, and f + 1, for
f>t—1,is known to be tight [1, 7]. For k£ > 1, we envisage a proof based on notions of algebraic
topology, along the lines of [6, 5]. We discuss here why the techniques presented in [6, 5] do not
apply, and we propose a possible line of research to address this open question.

The principle behind the proofs in [6, 5] is (1) to associate a so-called protocol complex to the set
of all executions of the processes of a full-information protocol in a given model, and (2) to observe
that such a protocol complex presents a topological obstruction that prevents it to be mapped
onto the output complex of k-set agreement.? The obstruction that is used is (k — 1)-connectivity.
Indeed, Theorem 6 in [5] relates the (k — 1)-connectivity of a protocol complex for k-set agreement
in any model, with the impossibility of solving k-set agreement in that model.

Connectivity leads to impossibility because we assume that the processes all need to decide at
the end of the same round. Indeed, one can applies Sperner’s lemma to show that there exists at

3The output complex represents the set of all possible final states of the processes, according to the specification
of k-set agreement.
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least one execution where more than k values are decided, when the protocol complex is (k — 1)-
connected [6, 5]. On the other hand, in the algorithm presented in this paper, the processes may
actually decide faster than |t/k| + 1, the tight lower bound for k-set agreement [3, 5].* Why is that
possible? Is there any contradiction?

In fact, there is no contradiction. Processes may actually decide faster than the lower bound of
|t/k] 4+ 1, because, in the early deciding case, the processes are not forced to necessarily decide all
at the end of the same round. In other word, even so the protocol complex is still (k — 1)-connected
after, say, round r < [t/k| 4+ 1, some processes may already decide, provided that these processes
span a subcomplex within the full protocol complex that is, at least, not (k — 1)-connected.

The lower bound proof we envisage is (1) to consider, inductively on f and within the proto-
col complex of a full-information protocol in the synchronous model prone to process crash, the
subcomplex spanned by those processes which see f failures, or less, after (| f/k] 4+ 1) rounds, and
(2) to show that these processes still cannot decide at that round. For the latter point, it is not
clear whether (k — 1)-connectivity is a strong enough condition, or if a stronger (more restrictive)
property on protocol complexes is required.
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CONTEXT FOR MODELS OF CONCURRENCY

PETER BUBENIK

ABSTRACT. Many categories have been used to model concurrency. Us-
ing any of these, the challenge is to reduce a given model to a smaller rep-
resentation which nevertheless preserves the relevant computer-scientific
information. That is, one wants to replace a given model with a simpler
model with the same dihomotopy-type. Unfortunately, the obvious def-
inition of dihomotopy equivalence is too coarse. This paper introduces
the notion of context to refine the notion of dihomotopy equivalence.

1. INTRODUCTION

Various algebraic topological models are being used for studying concur-
rency. Among them are precubical complexes [Gou95|, d-spaces [Gra03,
Gra02], local pospaces [FGR99], and FLOW [Gau03]. For a given concur-
rent system, each of these categories provides a model which captures the
relevant computer-scientific properties of the system.

These categories are large in two senses. They are large ‘locally’ in that
a given model contains many paths which correspond to executions which
are essentially equivalent. They are also large ‘globally’ in that a given
concurrent system has a large number of models within the category. The
size of these categories is a strength in terms of their descriptive power.
However, for calculational purposes one would like to reduce these models
to a smaller, possibly even discrete, representation.

A major goal of current research in this area is to introduce equivalences
to obtain such smaller representations, which nevertheless still retain the
relevant computer-scientific properties.

On the local front progress has been made in reducing the path space of
a given model using dihomotopy equivalences of paths and the fundamental
category [Gra03]. Ome global approach is to pass to the component cate-
gory [FRGHO04, Rau03]. In this paper we introduce another global approach,
which is perhaps more geometric and which is compatible with the model
categoric approach of [Bub04].

In the classical (undirected) topological case, the solution to this ‘global’
problem is well-understood. The equivalent spaces are the homotopy equiv-
alent ones, or perhaps the weak-homotopy equivalent ones. So for example,
all of the contractible spaces (those homotopy equivalent to a point) are
equivalent.

In the directed case there is a similar notion of dihomotopy equivalence
(which will be defined in the next section). However this notion is too coarse.

Date: August 19, 2004.
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-

=

FIGURE 1. I, I x1I, X, and o}

Example 1.1. Let I be the unit interval [0,1] with a direction given by
the usual ordering of the real numbers. Let I x I be [0,1] x [0,1] with the
ordering (z,y) < (2/,y’) if and only if x < 2’ and y < y'. Let X be the
space in Figure 1 given by attaching two coples of T at thelr centers. Then
as will be shown explicitly in Example 2.6, I I'x T and X are all dihomotopy
equivalent to a point. However I models an execution with one initial state
and one final state while X models an execution with two initial states and
two final states.

Clearly a stronger notion of equivalence is needed. Since Tand I x T
both have one initial state and one final state and all execution paths seem
to be essentially equivalent it seems natural that we should look for a def-
inition of equivalence under which these are equivalent. However even this
‘equivalence’ has a pitfall.

For a notion of equivalence to be practical it should continue to hold
under certain ‘pastings’. Roughly speaking, if we make the same addition
to equivalent models we should still have equivalent models (This will be
made precise in the next section).

Ty
FIGURE 2. A hypothetical equivalence

Example 1.2. Assume we have an equivalence IxI—Tasin Figure 2.
Consider the following pasting on I'x I. Let O be the space in Figure 1
constructed by attaching two copies of I at their initial points and at the
final points.! Let 61 and 62 be two copies of O. For i = 1,2 let a;,b; € @
denote the initial and final points of GZ Now choose two points x,y € IxT
such that neither x < y nor y < x. Let 2’y € I be the images of x and y
under the assumed equivalence (Figure 2). Then either 2/ < ¢’ or ¢/ < a’,
since I is totally ordered.

If ' < ¢/ then identify b; and z and identify ag and y. Call thls space
B and denote C' the space obtained by collapsing IxICBtol using the
given equivalence (Figure 3). Then there is an execution path from a; to by
in C but not in B. So the models B and C' are not equivalent. A similar

IThis is M.Grandis’ ordered circle T O' [Gra03, Section 1.2].
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by

a1<:> , a
0

by

FiGURE 3. A map B — C which should not be an equivalence

construction is possible if ¢y’ < /. Thus from this point of view I'xTand T
should not be equivalent.

This gives a good indication of the current state of affairs for determining
a global notion equivalence. We don’t even know whether or not I'x I and
I should be equivalent.

In this paper we introduce the idea of context. Whether or not Tand IxT
are equivalent depends on the context. If we permit pastings as in Exam-
ple 1.2, then they are not equivalent. However if we only permit pastings to
the initial and final points of I'and I x I then they are equivalent. Again,
we will make this precise in the next section. From the computer-scientific
point of view this can be interpreted as follows. We cannot expect equiv-
alent concurrent systems to still be equivalent after arbitrary (but equal)
changes. However, if equal additions are made in a suitably modular way,
then the resulting systems should still be equivalent.

2. CONTEXT FOR DIHOMOTOPY EQUIVALENCES

In this section we make precise the intuitive ideas presented in the intro-
duction.

Definition 2.1. e A partial order on a topological space U is a reflex-
ive, transitive, anti-symmetric relation <. If U has a partial order <
which is a closed subset of U x U under the product topology, then
call U a pospace.

o A dimap f: (Uy,<1) — (Uz,<2) is a continuous map f : Uy — Uy
such that <y y implies that f(z) <o f(y).

e A product of pospaces (Up,<;) and (Uz,<3) is a pospace whose
underlying topological space is U; x Uy and whose order relations is
given by (z,y) < (2/,y/) if and only if x <; 2’ and y <5 /.

e A subspace A of a pospace U inherits a pospace structure under the
definition x <4 y if and only if <y y. This is called a sub-pospace.

Definition 2.2. Let Pospace be the the category whose object are pospaces
and whose morphisms are dimaps.

For the sake of simplicity we will work with pospaces but one should be
able to easily extend or adapt the constructions presented here for other
models of concurrency.
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4 PETER BUBENIK

Let [ = ([0,1], <) where < is the usual ordering of R. A dipath in a
pospace B is a dimap I — B. If I; and Iy are two copies of I, then let

X = (I 1 I5)/ ~ where ()1 ~ (3)2 (see Figure 1).

Definition 2.3. e Given dimaps f,g : B — C € Pospace, ¢ is a
dihomotopy? from f to g if ¢ : B x I—Ce¢ Pospace, ¢|py (0} = f
and @|py 1y = g- In this case write ¢ : f — g.
e Write f ~ g if there is a chain of dihomotopies f — f1 «— fo —
. < fn — g. This is an equivalence relation.
e A dimap f: B — C is a dihomotopy equivalence if there is a dimap
g : C — B such that go f ~ Idp and f og ~Id¢. In this case write
B~C.

Our explicit dihomotopies will often be of the following form.

Definition 2.4. Let f,g: B — C be two dimaps. If such a map exists let

the linear interpolation between f and g be the map H : B X I—C given
by H(b,t) = (1 =) f(b) + tg(b).

Remark 2.5. Note that there is no guarantee that such a map exists. How-
ever one can check that it does for the cases we will consider.

Example 2.6. We will show that under Definition 2.3, I I'x I and X are
dihomotopy equivalent to a point. Let f : I— *, g1k — I be the constant
map and the inclusion of the point to 1 € I. Then fog =1d, and it remains
to show that Idy ~ go f. Let H : I'x I — T be the linear interpolation
between Id; and g o f. That is,

H(z,t) = (1—tz+t
= x+t(l—x)
Then H is a dimap and is the desired homotopy Id — g o f.

In exactly the same way one can show that the constant map f : IxT — %
is a dihomotopy equivalence with g : x — I x I given by g(x) = (1,1).

To show that the constant map f : X — x is a dihomotopy equivalence
with g(*) = (1)1 = ()2 is slightly more complicated. Again fog =1Id,. To
show Id ¢ ~ g o f we will construct a chain of dihomotopies Id ¢ My A2
go f. Let h:)z—n)?begivenby

1 1
_ if r < =
T 2 ne 2
x otherwise

Let Hy be the linear interpolation between Id ¢ and h and let Hy be the
linear interpolation between g o f and h. Then H; and Hs are dimaps and
are the desired dihomotopies.

-

We will show that in the right context it is no longer true that f, I'xT ,
and X are dihomotopy equivalent to a point.

2This is the notion of dihomotopy in [Gra03] which is stronger than the notion of
dihomotopy in [FGR99] (which uses I instead of I).
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CONTEXT FOR MODELS OF CONCURRENCY 5

Definition 2.7. Let the context be an object A € Pospace. Instead of
working in the category Pospace we will work in the category A | Pospace
of pospaces under A. The objects of A | Pospace are dimaps A 5, B
where B € ObPospace. The morphisms in A | Pospace are dimaps

A
N
!

Example 2.8. For example if A = S® = {a,b} then B € Ob A | Pospace
is a pospace with two marked points. An important example is I with
ti(a) = 0 and ¢5(b) = 1.

B

C

such that foip = tc.

Definition 2.9. e Given dimaps f,g: B — C € A | Pospace, ¢ is a
dihomotopy from f to g if ¢ : B X I—-Be Pospace, ¢|py 0y = [,
Plpx1y = g, and for all @ € A, ¢(tp(a),t) = tc(a). In this case
write ¢ : f — g.

o Write f ~ g if there is a chain of dihomotopies f — f1 «— fo —
.« fn — g. This is an equivalence relation.
e A dimap f: B — C is a dihomotopy equivalence if there is a dimap
g:C — B such that go f ~ Idp and f og ~ Id¢. In this case write
B~C.

We can think of this as dihomotopy rel A. In case the context A is one
point or two points we get pointed and bipointed dihomotopies. However
we will see that this notion is useful for more general contexts.

Example 2.10. Let us return to the example above. In the context of its
end points I is no longer dihomotopic to a point. There is a dimap

making the diagram commute, but there is no map g : * — I making the
diagram commute. The same statement is true for I x I and X.

Example 2.11. In the context of S° = {a,b} let 17(a) = 0, ¢tz(b) = 1,
tp (@) = (0,0), and ¢y, 7(b) = (1,1). We claim that in this context I and
I'x I are dihomotopy equivalent. Let f : I'xT — I and g : I > TxT
be given by f(x,y) = max(z,y) and g(z) = (x,z). Then f and g are both
dimaps, fog =1Id;and go f(z,y) = (max(z,y), max(z,y)). It remains to
construct a dihomotopy rel SY from Id ixitogof.

Let ¢ be the linear interpolation (see Definition 2.4) of Ids 7 and go f.
That is,

Qb(iﬂ, Y, t) = (1 - t)(iE, y) + t(max(x, y)7 max(:r, y))
= (z +t(max(z,y) — ),y + t(max(z,y) = y)).
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6 PETER BUBENIK

Then ¢ is the desired dihomotopy rel {a,b}.
Hence I x I and I are dihomotopy equivalent in the given context.

We will now introduce some definitions and prove some lemmas that will
allow us to relate dihomotopy rel A to the fundamental category. Further-
more it will enable us to quickly see that certain spaces are not dihomotopy
equivalent in a given context.

Definition 2.12. Let B € Pospace and let x,y € B.

e Recall that a dipath is a dimap ~ : I — B.

e Given dipaths 1,72 : I — B such that y1(0) = ~2(0) = z and
71(1) = 72(2) = y. Then ~; and 72 are dihomotopy equivalent if
71 2~ 72 in 8° | Pospace where t7(a) =0, t.(b) =1, tp(a) = z, and
tp(b) = y. In this case write 1 ~ 5.

e Let 71 (B)(x,y) be the set of dihomotopy equivalence classes of dimaps
from z to y. The fundamental category of B is the category 71 (B)
which has the same objects as B but the morphisms between x and
y are the elements of 7y (B)(z,y).3

Lemma 2.13. Given dihomotopic dipaths v ~ ~' : I = B and a dimap
f:B—C, then fovy~ fo~ are dihomotopic dipaths.

Proof. Since v ~ +' there is a chain of dihomotopies 7 A, Y1 22 Y2 s,
H, Hpy1 o, foH1 foH>2 foH3 foHp
. —— 7. Then foy —— foy < fox
oH, . . . .
fovm JoHni1, f o~/ is a chain of dihomotopies from f o~ to fo~/'. O

Corollary 2.14. For a dimap f : B — C and x,y € B there is an induced

map 1(f) : 1(B)(,y) — T(C)(f(z), f(y)) mapping [y] — [f o r]. That
is, a dimap f: B — C induces a functor 71(f) : 71(B) — 71(C).

Lemma 2.15. Given dihomotopy equivalent dimaps f ~ g : B — C €
A | Pospace and a dipath v : I — B such that v(0) = tg(a) and y(1) =
tp(b) where a,b € A then f o~ ~ go~ are dihomotopy equivalent dipaths.

Proof. Since f ~ ¢ there is a chain of dihomotopies f LN fi il fo Hs,

H’” . —
A S g For 1< i< n+1, let H = Hyo(yx I). Then
foy — fioy = faooy — ... «—— f,o07 —— gois a chain of
dihomotopies of dipaths. O

Proposition 2.16. If f : B — C € A | Pospace is a dihomotopy equiva-
lence then for all a,b € A the induced map 71(f)(a,b) : T1(B)(tp(a),tp(b)) —
71(C)(tc(a),to(b)) is an isomorphism.

Proof. Let a,b € A and let 7,7 : I — B be dipaths such that ~(0) =
7' (0) = tp(a) and v(1) = 4/(1) = tp(b). Assume that f : B — C €
A | Pospace is a dihomotopy equivalence. Then there is a dimap g : C' —
B € A | Pospace such that go f ~Idg and f o g ~ Id¢.

Assume that fovy ~ fo~/. Using Lemma 2.13 v =Idgoy ~go fovy ~
go for ~Idgoy =+'. Therefore 71 (f)(a,b) is injective.

3This differs from the definition of fundamental category in [FRGHO4] where the equiv-
alence classes of dimaps use I and not I.
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CONTEXT FOR MODELS OF CONCURRENCY 7

Also let ¢ : I — C be a dipath in C with ¢(0) = tc(a) and ¢(1) = v (b).
Then g o ¢ is a dimap in B with g o ¢(0) = tp(a) and go ¢(1) = tp(b). By
Lemma 2.15 ¢ = Id¢ o ~ fogo@. Therefore 71 (f)(a,b) is surjective. Thus
71(f)(a,b) is an isomorphism as claimed. O

Example 2.17. Let A = S° = {a,b} and choose any points z,y € I x I
such that £ y and y £ . Then 7y(I x I)(z,y) and 71 (I x I)(y,z)

are empty. However for any dimap f : IxI =T (see Figure 2), either
flx) < f(y) or f(y) < f(x) since I is totally ordered. Therefore one of

= =

71 (1) (f(x), f(y)) and 71(I)(f(y), f(y)) is nonempty. So in the context of
i jla) =z and ¢y 7(b) = v, I x I'is not dihomotopy equivalent to I since

there can be no dihomotopy equivalence f : I x I — I such that 71 (f)(a, b)
is an isomorphism.

Example 2.18. Let X be the space defined earlier (see Figure 1). In the
context of its four endpoints (0)1, (0)2, (1)1, and (1)2, X is not dihomotopy
equivalent to I since there are no dipaths from (0); to (0)2 and from (1); to

(1)2.

vt

FIGURE 4. I x I with a square removed

Example 2.19. In this example we show that in the context of the points
(0,0) and (1,1), I'x I with a square removed from its interior is dihomotopy
equivalent to its boundary.

Let A = SY = {a,b}. Let B be the sub-pospace of I x I in Figure 4
given by {(z,y) € I x f| it is not true that % <x< %,% <y< %} Let
v5(a) = (0,0) and let 1p(b) = (1,1). Let C be the boundary of I x I with
tc(a) = (0,0) and ¢c(b) = (1,1).

Iy

W= Wi =
L L L
t t t

Fy

ol 1+ %2 1

FIGURE 5. The graphs of Fy, F5, and Fb o F.
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8 PETER BUBENIK

Let Fy : [0,1] — [0, 1] be given by the mapping

1

if x < =

z ifz<g
1 1 2
r— 9 2r—- f-<xr< -
-5 ifgse<g

2

1 ifx> -

ifz> g

Let F» : [0,1] — [0, 1] be given by the mapping

1

0 ifx<=

x 3
3 L f—<zx<1

5~ 5 ifg<e

See Figure 5 for graphs of Fy, Fb, and F5 o F}.

Let f: B — C and g : C — B be given by f(x,y) = (Fs 0o Fi(z),Fs o
Fi(y)) and g(z,y) = (x,y). Also let h : B — B be given by h(z,y) =
(Fi(x), Fi(x)). One can check that f, g, and h are dimaps.

We will now give explicit dihomotopies rel A showing that go f ~ Id g rel
Aand fog~Idg rel A. Let

Hi(z,y,t) = (1 —t)(z,y) + t(F1(z), F1(y)).
Then H; : Idg = h is a dihomotopy rel A. Similarly let
Hy(z,y,t) = (1 —t)(Fa 0 Fi(x), F2 o Fi(y)) + t(F1(z), Fi(y))-

Then Hs : go f = h is a dihomotopy rel A. Therefore go f ~Idp rel A as
claimed. Furthermore since C' is a sub-pospace of B and fog= f =go f,
the above dihomotopies restrict to C showing that f o g~ Id¢ rel A.

We remark that using Definition 2.4, H; is a linear interpolation between
Idp and h, and H- is a linear interpolation between g o f and h.

b

a >

FIGURE 6. The swiss flag with labeled points {a, b, ¢, d}

Example 2.20. The swiss flag.

In this example we give an explicit dihomotopy between the famous swiss
flag pospace in Figure 6 and the one-dimensional sub-pospace in Figure 7
in the context of four points.

Let A be the discrete pospace {a, b, ¢,d}. Let B be the sub-pospace of IxT
given in Figure 6 with the cross removed and tp(a) = (0,0), ¢tp(b) = (1,1),
tg(c) = (%,%), and tp(d) = (%,%) Let C be the subspace of B given in
Figure 7 with the same marked points.
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b

a

FIGURE 7. A sub-pospace of the swiss flag with the same
labeled points {a,b,c,d}

Let g : C — B be the dimap given by g(z,y) = (x,y). Let f: B — C
be the dimap given by f(z,y) = f1o fso fo 0 fi(x,y) where fi, fo, f3, and
f1 are defined below. As in the previous example we will give a chain of
dihomotopies rel A to show that Idg ~ go f. Since C is a subspace of B
and go f = f = fog this will restrict to a chain of dihomotopies rel A which

show that Idc ~ f o g. As a result we will have that B ~ C.

( 1
(max(z,y), max(z,y)) if0<z< =3 0<
1 11
= fo<z< -, =<
file,y) = () H0sz<eg
1 11
= fo<y< -, =<
(r,3) Oy,
{ (z,y) otherwise
( 4 4
(min(z,y), min(z,y)) if = <z<l1, = <
4 4
- if - <z<ly<
(x é) if§< <l,z <
5 Ty=Y=n
{ (z,y) otherwise
( 2 2 1 2
(max(x,y - g),max(:v—i— gay)) if g <z< ga
2 2 1 2
(max(x,y—l— g),max(x - gay)) if g < Yy < ga
4
folm,y) = (max(z,y), max(z,y)) if g <z< 5
2 2 2 3
29— 2 fZ<p<
Cro-2)y it2<as?,
2 2 2 3
Y (Y ifZ<y<?
(@, s +2y - )y ifg<y<y,
{ (z,y) otherwise
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( 1 21 2
3 3 2 3 1
2 o2 _ if2<p<y==2
3 3 2 3 1
292 _ if2<y<S o=z
@,z -2z -y) fssysco=¢
{ (z,y) otherwise

Let Hy, Hy, Hs, and Hy be the linear interpolations (see Definition 2.4)
between Idg and fi, fo o f1 and f1, fo o fi and f3o fo o f1, and f and
f3 o foo f1. Then these give a chain of dihomotopies

H H. H: H.
Idg = f1 < fao fi = f3o fao f— f=go [.
Therefore Idg >~ g o f. Restricting to C gives a chain of dihomotopies

showing Ide ~ f = f og. Hence B is dihomotopy equivalent to C rel
{a,b,c,d}.

3. PUSHOUTS OF DIHOMOTOPY EQUIVALENCES

In this section we elaborate on the statement made in the introduction
that dihomotopy equivalences should be preserved by ‘pastings’. In fact we
discuss the construction of a homotopy theory for concurrency. In order that
we do not lose focus from the main ideas of this paper, we will defer the
details of the definitions and constructions of this section to the appendix.

An excellent framework for a homotopy theory on a category is given
by a model structure on the category [Hov99]. A category with a model
structure and all small limits and colimits is called a model category. A model
structure has three special classes of morphisms: fibrations, cofibrations, and
weak equivalences which satisfy certain axioms (see Appendix A for the full
definition).

The category Pospace has all small limits and colimits. However it is
too restrictive to model many concurrent systems (for example pospaces
cannot contain loops). Though all of our examples are in Pospace a better
framework for concurrency is the category LoPospc of local pospaces. A
local pospace is a topological space such that each point has a neighborhood
which is a pospace and that these local orders are compatible (for a precise

definition see Appendix B).

FicUrE 8. The local pospace St

Example 3.1. An example of a local pospaces is the directed circle S in
Figure 8 obtained by identifying the endpoints of I. While S* does not have
a transitive, anti-symmetric order, locally it has the structure of the pospace
1.

Unfortunately, unlike Pospace, LoPospc does not contain all small col-
imits. However there is a formal method of enlarging a category to one
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CONTEXT FOR MODELS OF CONCURRENCY 11

with all small limits and colimits.* Furthermore this larger category has a
canonical model structure! [Dug01] For details on how this theory can be
applied to LoPospc see the appendix and [Bub04]. In the appendix we
give a more precise version of the following theorem (Theorem B.4) which
is proved in [Bub04].

Theorem 3.2. Let C = LoPospc. Then C is a subcategory of a model cate-
gory UC. The morphisms in C that are cofibrations are the monomorphisms
and the morphisms in C that are weak equivalences are the isomorphisms.

From the point of view of just C , this model structure is almost trivial.
However one can localize UC with respect to a set M of morphisms in C to
obtain a new category UC/M. UC/M has the same objects and cofibra-
tions as UC but the morphisms in M are now weak equivalences [Dug01].
The problem is to choose a good set of morphisms M. For example, we can
take M to be the set of dihomotopy equivalences in C.

One of the key properties of UC and UC/M is that they are left proper.
That is, the pushout of a weak equivalence over a cofibration is a weak
equivalence.

G —f> C
I
D —g> E
In particular in UC/M if f € M then g is a weak equivalence.

Example 3.3. Recall the dihomotopy equivalence f : I x I — I of Exam-
ple 2.11. Also recall the inclusions of I x I and I into B and C (see Figure 3)
given in Example 1.2 where attachments are made at the points x,y € IxT
and 2,y € I (see Figure 2). We have the following pushout diagram.

-

r

]

B

f

<M~y

;= C

Since the inclusion j is a cofibration, we get a weak equivalence between B
and C. However as discussed in Example 1.2, from a certain point of view
B should not be equivalent to C.

The solution to this problem is to work with A | LoPospc instead of
LoPospc where the choice of context A € ObLoPospc depends on the
pushouts that one would like to consider.

In the example above the right context is clearly the points z,y € IxT
and 2,y € I. So A = {a,b}, tp (@) =z, 1y 7(b) =y, ty(a) = 2, and
t7(b) = y'. As discussed in Example 2.17 the map f is not a dihomotopy
equivalence rel A. So we are not forced to conclude that there is a weak
equivalence between B and C.

4Again more details in the appendix (one passes to the category of simplicial
presheaves [Dug01]).
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[]

a bcd e a bcd e

FIGURE 9. The spaces B and B’. Subspaces of I x I with a
square removed and labelled points {a, b, ¢, d, e}

[]

FIGURE 10. The spaces C and C’. Subspaces of I x I with
a square removed and labelled points {a,b, ¢, d, e}

In the following two examples we examine the ‘pastings’ of two copies of
I'x I with a square removed. We show how choosing the right context allows
us to find a one-dimensional sub-pospace which is dihomotopy equivalent to
the pushout.

Unlike the previous section, we will not give explicit dihomotopy equiva-
lences in these two examples.

Example 3.4. Let A be the discrete space {a,b,c d,e}. Let B be the
subspace of I x I in Figure 9 with the square {(z,y) | 1 o< icy<i)
removed. Let tp(a) = (0,0), tp(b) = (130,0) B(c) = (5,0), tp(d) = (170,0),
and tp(e) = (1,0).

Let C be the subspace of I x I’ in Figure 10 with the square {(z,y) | % <
< 3,2 <y< 32} removed. Let tp(a) = (0,1), tp(b) = (3,1), tplc) =
(3,1), u5(d) = (170, 1), and tp(e) = (1,1).

Let B’ be the subspace of I'x I in Figure 9 with the square {(z,) |0 < 2 <
%, 0 < y < 1} removed. Then there is a dihomotopy equivalence f : B =B
rel A. One can construct the required dihomotopies by stretching the region
% <y< % first to y = 1 and then to y = 0. Next one stretches the region
% <z< % first to z = % and then to x = 0. All this is done while leaving
the five marked points fixed.

Similarly there is a dihomotopy equivalence g : ¢ = C’ rel A where C’
is the subspace of I x I in Figure 10 with the square {(z, Y3 <z <1,0<
y < 1} removed.

Let D be the space obtained by attaching B along its bottom edge to
the top edge of C'. Notice that D € Ob A | Pospace and the inclusions
i:B— Dand j:C — D are dimaps in A | Pospace.
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FIGURE 11. The pospaces F and F’
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FIGURE 12. The pospaces G and G’

Now take the following pushout.
~ /
B —f> B
L
D——=E
f/
Then F is the pospace obtained by attaching the bottom edge of B’ to the
top edge of C. Since C includes into F we can take the following pushout.

C—g>C'

|

E 7> F
Now F' is the pospace in Figure 11 obtained by attaching the bottom edge
of B’ to the top edge of C".

Finally F'is dihomotopy equlvalent rel A to the space G in Figure 12. Con-
sider F' and G as sub- pospaces of I'x I. The dihomotopy is obtained by first
collapsing the square [, 1] x [3, 1] using (z,y) — (max(z,y), max(z,y)), and
then collapsing the square |0, %] x [0, 3] using (z,y) — (min(z,y), min(z, y))

Thus in the context of A, D is equivalent to G.

Example 3.5. Let A, B, C, B’ and C’ be as in the previous example,
except that the marked points on B and B’ are taken to be on the top edge,
and the marked points on C' and C’ are taken to be on the bottom edge.
Let D’ be the space obtained by attaching C' along its bottom edge to the
top edge of B.

Then as in the previous example D’ is weak equivalent to F’ where F” is
the pospace in Figure 11 obtained by attaching the bottom edge of C’ to
the top edge of B’.

Finally F’ is dihomotopy equivalent rel A to the following space G’ in
Figure 12. Consider F’' and G’ as sub-pospaces of I'xI. The dihomotopy
is obtained by collapsing the regions [%, 1] x [0, 1] using (z,y) — (=, %), and

12
then collapsing the square [0, 3] x [3,1] using (z,y) — (z, 3).
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Thus in the context of A, D’ is equivalent to G’.

Example 3.6. Finally we give an example which requires a non-discrete
context. Let X = I x I. We will show that if we want to use X to construct

a certain space Z then the appropriate context is the undirected unit interval
1.

7 ot

Ficure 13. X and Y with the images of I marked

Let ¢ : I — X be the inclusion of the anti-diagonal, given by ¢ — (¢t,1—t)
(see Figure 13). Let Y = I x I and let ¢ : I — Y be the inclusion of
the central line, given by t — (¢, %) (see Figure 13). Define the pospace
Z obtained by gluing X and Y together along the images of I, using the

following pushout.
I X
o]

Y——Z
Y

®
—_

We claim that if we want to consider this pushout then the proper context
is A =1 with ¢ : A — X as given above.

For a € I let po = tx(¢(a)), p2 = ty(a,0) and pl, = ty(a,1). Notice
that for s # ¢ € I there does not exist a path in Z from p? to p;.

Now let A be some context and let f: X — X’ be some dihomotopy rel
A. Let Z' be defined by the following pushout.

X—f>X’

|

Z—g>Zl

Assume there exists s # ¢ € I such that f(ps) = f(p:). We claim that there
is a path from g(p?) to g(p}). In Y (and hence in Z) there is a path from
pY to ps and a path from p; to p;. The concatenation of the images of these
paths under g gives the desired path in Z’.

Therefore the map g should not be an equivalence, and thus there should
not have been an equivalence f such that f(ps) = f(p¢) for some s £t € I.
We can prevent this difficulty if we use the context A = I together with
p:A—X.
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APPENDIX A. MODEL CATEGORIES

In this section we define model categories, and show how a given small
category can be embedded into a universal model category. For more details
see [Dug01, Bub04].

Definition A.1. A model category is a category C with three distinguished
classes of morphisms: weak equivalences, cofibrations, and fibrations satis-
fying the following conditions:

(1) C contains all small limits and colimits.

(2) If there exist morphisms f, g and g o f and two of them are weak
equivalences then so is the third.

(3) Weak equivalences, cofibrations, and fibrations are closed under re-
tracts.

(4) Given any commutative diagram

A—X

|

B——Y

such that i is a cofibration and p is a fibration, then if either i or p
is also a weak equivalence then there exists a map B — X making
the diagram commute.

(5) Any map may be factored as a cofibration followed by a fibration
which is a weak equivalence, and as a cofibration which is a weak
equivalence followed by a fibration.

Next we define the category of simplicial presheaves.

Definition A.2. e The simplicial category A is the category whose

objects are [n] = {0,1,...,n} for n > 0 and whose morphisms are
maps [ : [n] — [k] such that x <y implies that f(z) < f(y).

e The category of simplicial sets sSet is the category Set®” whose
objects are contravariant functors from A to the category of sets
Set and whose morphisms are natural transformations.

e Let C be a small category. Then sPre(C) is the category sSetC””
whose objects are the contravariant functors from C to sSet and
whose morphisms are natural transformations.

Remark A.3. An important fact is that there is an embedding C — sPre(C).

The category sSet has a model structure in which the cofibrations are
the monomorphisms and the weak equivalences are the morphisms f such
that |f| the geometric realization of f is a weak equivalence in the category
of topological spaces (that is, it induces isomorphisms between homotopy
groups). For more details see [Hov99].

The category of simplicial presheaves has a canonical model structure,
called the cofibrant model structure, where the weak equivalences and the
cofibrations are defined objectwise. That is, a morphism f in sPre(C) is
a weak equivalence or cofibration if and only if for each X € ObC the
morphism f(X) is a weak equivalence or cofibration in sSet.
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Now one can localize this model category with respect some set of mor-
phisms M to get a new model category sPre(C)/M. This model category
has the same objects, but in addition to the previous weak equivalences, the
morphisms in M are now weak equivalences. For example if C = LoPospc
then one could localize with respect to all dihomotopy equivalences (it makes
sense to say this because of the embedding of C in sPre(C)).

APPENDIX B. LOCAL POSPACES

In this section we give a precise definition of the category LoPospc of
local pospaces and use it to give a more precise version of Theorem 3.2.
Local pospaces are defined in [FGR99, Bub04]. Here we follow [Bub04].

Definition B.1. e Given a topological space M, an order atlas on
M is an open cover’ U = {U;} indexed by a set I such that each
U, is a pospace and that the orders are compatible. That is, given
z,yc U;NUj;, x <; y if and only if  <; .

o Let U = {U;} and V = {V;} be two order atlases. Then V is said to
be a refinement of U if for any U; and any = € U; there exists a Vj
containing x which is a sub-pospace of U;.

e Two order atlases are said to be equivalent if they have a common
refinement. One can check that this defines an equivalence relation.

e Define a local pospace to be a topological space together with an
equivalence class of order atlases.

e Define a dimap of local pospaces f : (M,U) — (N,V) to be a con-
tinuous map f : M — N such that for any choice of V = {V;} € V
there is some choice of U = {U;} € U such that for all 7, j the partial
map f : U; — Vj is a dimap of pospaces.

Definition B.2. Define LoPospc to be the category whose objects are local
pospaces whose underlying topological spaces are subsets of R” for some n,
and whose morphisms are dimaps between local pospaces.

Remark B.3. Notice that we have restricted the class of local pospaces in
our category. This is done precisely so that LoPospc is a small category,
which is used to apply the machinery of Appendix A. For the purposes of
concurrency, this does not seem to be a significant limitation. Furthermore,
it may be possible that any local pospace can be ‘found’ in sPre(LoPospc).
Nevertheless, a consequence of this, is that the category Pospace in Def-
inition 2.2 is not a subcategory of LoPospc. Of course one could define a
new category Pospace’ whose objects are those pospaces whose underly-
ing topological spaces are subsets of R"™ for some n. Then Pospace’ is a
subcategory of LoPospc. All of our examples are in Pospace’.

We can now give a more precise version of Theorem 3.2.

Theorem B.4 ([Bub04]). There exists a model structure on sPre(LoPospc)
such that cofibrations are the monomorphisms. Furthermore the morphisms
in LoPospc which are weak equivalences in sPre(LoPospc) are just the
isomorphisms.

5That is, each U; is an open subset of M, and M = U;c1U;.

48



CONTEXT FOR MODELS OF CONCURRENCY 17

REFERENCES

[Bub04]  Peter Bubenik. Towards a model category structure for local pospaces. 2004,
http://igat.epfl.ch/bubenik /papers/.

[Dug0l]  Daniel Dugger. Universal homotopy theories. Adv. Math., 164(1):144-176,
2001.

[FGR99] Lisbeth Fajstrup, Eric Goubault, and Martin Raussen. Algebraic topology and
concurrency. to appear in Theoretical Computer Science, 1999. Also preprint
R-99-2008, Dept. of Mathematical Sciences, Aalborg University, Aalborg, Den-
mark.

[FRGHO04] L. Fajstrup, M. Raussen, E. Goubault, and E. Haucourt. Components of the
fundamental category. Appl. Categ. Structures, 12(1):81-108, 2004. Homotopy
theory.

[Gau03]  Philippe Gaucher. A model category for the homotopy theory of concurrency.
Homology Homotopy Appl., 5(1):549-599, 2003.

[Gou95]  Eric Goubault. The geometry of concurrency. PhD thesis, Ecole Normale
Superieure, 1995, http://www.dmi.ens.fr/ goubault.

[Gra02]  Marco Grandis. Directed homotopy theory. II. Homotopy constructs. Theory
Appl. Categ., 10:No. 14, 369-391 (electronic), 2002.

[Gra03] Marco Grandis. Directed homotopy theory. 1. Cah. Topol. Géom. Différ.
Catég., 44(4):281-316, 2003.

[Hov99] Mark Hovey. Model categories, volume 63 of Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, 1999.

[Rau03]  Martin Raussen. State spaces and dipaths up to dihomotopy. Homology Ho-
motopy Appl., 5(2):257-280 (electronic), 2003. Algebraic topological methods
in computer science (Stanford, CA, 2001).

INSTITUT DE GEOMETRIE, ALGEBRE ET TOPOLOGIE, BATIMENT BCH, 1015-LAUSANNE,
SWITZERLAND

E-mail address: peter.bubenik@epfl.ch

URL: http://igat.epfl.ch/bubenik/

49



50



A framework for component categories

Emmanuel Haucourt

June 2, 2004

Abstract
This paper provides further developments in the study of component categories which have been
intrduced in [FGHRO4]. In particular, the component category functor is seen as a left adjoint hence
preserves pushouts. This property is applied to prove a Van Kampen like theorem for component cat-
egories!. The original purpose of component categories is to suitably reduce the size of fundamental
categories®. We take advantage of this fact to define the cohomology of a directed geometrical shape as
the cohomology of its component category®.

1 Introduction

Given a small category C and a subcategory ¥ of C, we define the quotient category C/x applying results
developed in [BBP99]. Indeed, the size of m ()?) /s decreases as the one of ¥ increases. As one can expect,
ifY=m ()—f) then m; ()_())/g is {*}. Then the component category of a pospace )_(Z is defined as 771()_())/2
where X is the greatest weak-equivalences subcategory of C and m; ()?) the fundamental category of

)_f. We have in mind that ¥ is made of the dipaths* of )_(>5 along which “no choice is made” so we do not
lose information removing themS5.

The previous construction can be done in a category whose objects are taken in the class of pairs (C,X),
such a pair is called a system over C, where C is an object of a subcategory of CAT and ¥ C C. The idea
is to equip the objects C of a sub-category of CAT with a sub-poset of the poset of all subcategories of C.
Then we define the quotient functor sending (C,X) on C/s. The component category is obtained when ¥
is optimal i.e. when the size of C/x is minimal without loss of relevant information. Several examples are
given, involving different subcategories of CAT, and we define component categories of pospaces, local
pospaces and d-spaces.

Some proofs of technical points are skipped and the paper is organized in the following way:

(i) Pospaces, local pospaces and d-spaces are defined. Concrete but informal examples are given to make
the reader understand what component categories should be.

(i) General congruences and some related tools are described.

(#3) A general theorem describes a framework in which the component category functor can be defined. As
we shall see, this theorem makes the component category functor a left adjoint.

(iv) The previous theorem is applied to define the component category of pospaces, local pospaces and
d-spaces. We check that we have obtained what was expected.

(v) Preservation of colimits by component category functor is applied to prove Van Kampen like theorems
for component category (instead of fundamental category). Examples are given.

I This last point is very important to make effective calculations.

2in concrete examples fundemental category is as “big” as IR while the component category is “finitely generated”.
3Cohomology of small categories is defined in [BW85] and [Bau91].

4or execution traces from a computer scientist point of view.

5seen as the space of states of a computer on which a program runs.

Sprecisely, they are not removed but turned into identities.
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Figure 1: Square with centered hole and Swiss flag
(vi) A form of directed cohomology is defined as the cohomology of the component category.

2 Geometrical intuition of component categories through exam-
ples

Component categories first appear in [FGHRO04] in order to reduce the size of the fundamental category.
Pospaces are certainly the simplest model of directed topology one may find.

Definition 1 (Pospaces) A pospace is a triple (X, 7x,<x) where (X, 7x) is a topological space, (X, <x)
is a poset and <x 1is a closed subset of (X,7x) x (X,7x). A dimap from a pospace (X,7x,<x) to a
pospace (Y, 1v,<y) is a set-theoretic function f from X to Y inducing a continuous map from (X,7x) to
(Y, 7v) and an increasing map from (X,<x) to (Y,<y). The collection of po-spaces together with dimaps
between them form a category denoted POSPC. Isomorphisms of POSPC are called dihomeomorphisms
and are bijective (one-to-one, onto) dimaps whose inverse is also a dimap. Monomorphisms (respectively
epimorphisms) are one-to-one (respectively onto) dimaps.

N
The unit segment [0, 1] with classical topology and order is a pospace as well as all its products with product
—

topology and order. [0,1] is in fact the “standard” example in the sense that it is the cogenerator” of the
category of compact pospaces®. The examples of figure 1 are built up from the unit square with classical
topology and order in which “holes” have been dug. In each case the underlying spaces are divided into
“components” which give the set of objects of the component category, their borders are drawn with the
dotten lines. Two components sharing a frontier are “neighbours” and we put a unique “prime arrow”
between neihbour components, the source component being the left most bottom most one. The morphisms

of the component category are “generated” by those “prime arrows”. In the first example, the component

category is free, in the “swiss flag” example (figure 1) it is not the case any more because we have BB,

AB_ _ 9D 5 A% The two examples of figure 2 are not dihomeomorphic since their component

categorles are clearly not 1somorph1c it suffices to compare how many morphisms go from the left most
bottom most object to the right most upper most one.

Before going further in the study of examples, let me emphasize the fact that we “read” the dipaths of the
pospace in its component category. In mathematical terms, we have a lifting property which says that any
morphism of the fundamental category is represented by a unique morphism of the component category,
conversely, any morphism of the component category represents a morphism of the fundamental one. This
property can be found in [FGHRO04], it is also given for free provided we define the component category by

"see [Bor94a] for the definition.
8i.e. the underlying topological space is compact.
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Figure 2: Two possible configurations of two holes in a square

means of generalized congruences, see [BBP99] and the description of the component category given in the
rest of the paper. Next examples are 3—dimensional, the unit cube (with classical topology and order) with
a centered hole is shown on the left side of figure 3. The right side picture depicts its components, whose
border are represented by “walls”:

In figure 5, the blue parallelepipeds are holes and the red cube is a deadlock area, i.e. any dipath entering
in it will not go beyond the deep right upper corner of the red cube. On the right side, the corresponding
component category is depicted, but the conventions of representation are different, vertices are components,
edges are elementary arrows and faces represent relations between morphisms. By the way, this convention
of representation induces a “dimensional duality”, components are 3—dimensional subpospaces of the cube
and they are represented by points, which are 0—dimensional. Faces of the components are 2—dimensional
subpospaces and they are represented by “elementary arrows” (hence 1 — dimensional) from component to
the neighbour it shares the face with. A segment shared by four faces is a 1— dimensional subpospace and is

FIRN
A
faces. This relation can be seen as a 2 — dimensional arrow provided we turn the component category into
a 2—category adding a trivial groupoid between 8o« and § oy. One can even go further with a point of the
pospace shared by six segments all of them being shared by four faces, which makes us reach 3—categories,
see figure 4.

This “duality” property has been practically applied by Eric Goubault to write a program which provides

a 3-dimensional “view” of the component category of the 3-dimensional pospaces. A detailed description of
the method is available in [Gou03a]. The right side picture of figure 5 has been produced by this program.

represented by a relation between the four “elementary arrows” representing the four

3 Generalized congruences

This section is devoted to generalized congruences have been formalized in [BBP99].

Definition 2 (Generalized Congruences [BBP99]) A generalized congruence on a small category C, is
an equivalence relation ~, on Ob(C) and a partial equivalence relation ~,, on Mo(C)* (the set of all non-
empty finite sequences of morphisms of C) satisfying the following conditions (- is the usual concatenation,
the a’s, B’s and v’s range over Mo(C)):
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Figure 3: The cube with a centered hole

. This example is related to 3—philosophers problem.

Figure 4: Dimensional duality

The point at the center of
the left side figure is repre-
sented by a 3—morphism
(the grey filling on the
right side figure) in a suit-
able 3—category built up
from the component cate-

gory.



Figure 5: Three philosophers diner

® (Bns-sB0) - (apy ey a0) ~m (Vg5 -, 0) = tgt(ap) ~o sTc(Bo)
o (Bn, s 00) ~m (Qp, ...,a0) = tgt(Bn) ~o tgt(ap) and sre(Bo) ~o sre(ag)
o X~y = idy ~py idy

o (Bny--sB0) ~m (Qp, ...,a0) and (8g,-..,00) ~m (Vr,---»Y0) and tgt(Brn) ~o src(do) =
(5117 '"750) : (ﬂn: "'7/80) ~m ('Y’r: "'7’70) : (apa ---,040)

o sre(f) =tgt(a) = (Boa) ~n (B,a)

Theorem 1 (Quotient Category [BBP99]) Given (~,,~p) a generalized congruence on a small cate-
gory C, we define the quotient category C/. by

. 0b(C;-) = {[a]~. /2 € OB(C)}
o s7([(ns s 10) ) = [57¢(0)]m, and tgt([(rs s Y0) ) = [t (),
o (B s BNl © [(@ps s @)y = [(Bay s B0) - (G ey 0)
Moreover, there is a quotient functor Q. : C — Cn, defined by Q-(z) = [z]~. and Qu(y) = [Y]~,.. Qn

enjoys the following universal property, for any functor f : C — Ca, if ~C~y then lg : C;. — Co making
the following diagram commutes

Still, we have the following facts :
e g is a monomorphism iff ~p=~
L] ~Qo =~

o ()~ is an extremal epimorphism
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Lemma 1 ([BBP99]) Generalized congruences on a given small category, ordered by componentwise inclu-
sion form a complete lattice whose meets are componentwise intersections. The total relation which identifies
all objects and all non-empty finite sequences of morphisms is a generalized congruence, precisely T of the
lattice, while (=os(c),0) is L. Thus, for an arbitrary pair of relations R, on Ob(C) and Ry on Mo(C)*,
there is a least generalized congruence containing (R,, Rm).

4 The Component Category functor

4.1 Loop Free, One Way and Directed categories

Pureness first apprears in [FGHRO04] and is an unavoidable technical tool to study component categories,
indeed, good properties of C/y, directly depend on pureness of ¥. In ideas, if ¥ consists of execution paths®
along with nothing happens then if o a € ¥ it is expectable that 5,a € X too. It is also a convenient way
to define loop free, one way and directed categories.

Definition 3 A sub-category B of C is pure in C iff Vf,g morphisms of C with src(g) = tgt(f), go f €
B= f,g€B.

Pureness is a kind of generalization of convexity in poset framework, indeed, a subposet (A4, <4) of a poset
(X, <x) is convex iff A’ is a pure subcategory of X', where A’ and X' are the small categories coresponding
to A and X.

Definition 4 A loop free cateory is a category whose subcategory of endomorphisms is pure and discrete
10

A one way cateory is a category whose subcategory of isomorphisms is pure and discrete.!!

A directed cateory or d-category is a category whose subcategory of isomorphisms is pure. Loop free,
one way and directed small categories respectively form full, complete and co-complete subcategories of CAT
respectively denoted LFCAT, OWCAT, dCAT.

The fundamental category of a pospace is obviously loop free, the one of a local pospace is one way, but
it is much harder to prove, and I conjecture that the one of a d-space is directed, it is in fact the reason why I
called them “directed”, roughly speaking, it comes from the fact that dX is stable under direparametrization
(see definition 12).

Conjecture 1 We have the inclusion functors LFCAT“—— OWCAT“—— dCAT“—— CAT each

of which having a left adjoint 2. Moreover, we have the following commutative diagram

POSPC~—— LPOSPC~—— dSPC

LFCAT“— OWCAT“—— dCAT

4.2 Weak Equivalences Subcategory

Next materials are directly related to the choice of a ¥ such that C/x is the component category of C. As we
shall see, all the rest of the subsection, in particular the existence of a non empty Weak Equivalences subcat-
egory, holds for any directed category C. Then the component category of a pospace/local pospace/directed
space, is defined as the component category of its fundamental category.

9it is a computer science point of view.
o

10i.e. for all diagram in C, a and S are identities. Hence C has no “loops”, whence the name.

B
11 A one way category might have loops, but each loop is either clockwise or unclockwise never both at the time.
12in fact, LFCAT, OWCAT, dCAT are respectively reflective subcategories of OWCAT, dCAT, CAT but it is of no use
in this paper.

56



4.2.1 Yoneda inversible morphisms, Left /Right extension properties and Weak Equivalences
Subcategories

Definition 5 ([FGHRO4]) Let C be a category. A morphism o of C is said to be Yoneda revertible iff
Vz € 0b(C), (Clz,sre(o)] # 0 = v € m(C)[z, sre(a)] — o o) is bijective and Yy € Ob(C), (Cltgt(c),y] #
0 = v € Cltgt(o),y] = v o o) is bijective.

Definition 5 is closely related to representable functors of C and Yoneda’s lemma (see [Bor94a]), however,
the restriction Vz € Ob(C), (C[z, sre(o)] # ... and Vy € Ob(C), (C[tgt(c),y] # §... cannot be removed, other-
wise, a Yoneda inversible morphism would necessarily be an isomorphism which is silly for loop free and one
way categories whose only isomorphisms are identities. From a computer science point of view, the subtle
difference between Yoneda inversible morphisms and isomorphisms give an theoretical method for deadlock
detection, but we will not develop this remark here. In all examples given in section 2, any dipath join-
ing two points of the same component give rise to a Yoneda inversible morphism of the fundamental category.

Lemma 2 Let C be any (small) category, x,y objects of C and 01,02 € Clz,y] Yoneda inversible, 3f1, fa €
Is0(C)[y,y],02 = f1 001,01 = f2 002 and 3g1,92 € Is0(C)[r,],00 = 01 091,01 = 020 gs.

PROOF. C[y, y] # 0 hence by definition of Yoneda inversible applied to o1, 3!f1 € C[y, y] such that o2 = fio07.
Exchanging o1 and o3, 3! f> € Cly,y] such that o1 = f2 0 g9. In particular, s = fio(fa002) = (fi0 f2) 009
and 01 = fa o (fi o 01) = (f2 o fi) 0 01, but, by definition of Yoneda inversible, id, is the only morphism of
h € Cly,y] such that oo = h o os. It is also only morphism of h € C[y,y] such that o1 = hooy. It follows
that fio fa = fao fi =idy ie. fi1,fo € Iso(Mo(C)). It works the same way for the g’s.

Corollary 1 Let C be a (small) category such that Iso(C) is dicrete, then given x,y objects of C, Clz,y] N
{Yoneda inversibles} is either § or a singleton.

Remark 1 Any isomorphism is Yoneda inversible morphism, and a composition of Yoneda inversible mor-
phisms is a Yoneda inversible morphism. Moreover, if L is loop-free and o is a Yoneda inversible morphism
of L then L[src(o),tgt(c)] = {o}.

To prove the last point, note that v € L[src(o), sre(o)] — o oy € L[src(o),tgt(o)] is a bijection. Up to
now, this definition has only proved its relevance in loop-free cases. First, we recall from [FGHRO04] that the
Y-zigzag connected component of z in £ denoted C, is the subcategory of £ whose objects are those
connected to z by a zigzag of morphisms of ¥ and satisfying for all objects y, z of Cy, Cyly, 2] = L[y, 2] N X.

Definition 6 Right Eztension Property
Y has the right extension property with respect to C iff Vy :y' — o', Vo : 2 — 2' € 8, o' : y — ¢/,
Iy 1y — x such that 0 o' =y o', i.e. the following diagram is commutative:

Y

H’ 4 N 3[
o ex , =1
4 \

r N
y' T
% Ae):
.’BI

Left Eextension Prpoerty is obtained “dualizing” definition 6

Definition 7 (Eric Goubault) '3 Let C be a small category, ¥ C Mo(C) is a WE-subcategory iff (by
definition) X is stable under composition (of C) and satisfies

13in directed categories framework, this definition is equivalent to Eric Goubault’s one.
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1 Iso(C) C ¥ C Yoneda(C)™

2 ¥ is stable under pushouts and pullbacks (with any morphism in C), it means that we ¥ has both REP
and LEP with respect to C and further the commutative squares provided by REP and LEP can be
chosen in order to be respectively pullback and pushout squares in C.

Eric Goubault, in [Gou03b], has changed the definition of Weak Equivalences subcategory of [FGHR04]'5
replacing left and right extension axiom by pushout/pullback stability axiom, providing an extremly handy
tool. Indeed, any WE-subcategory of any small category C is pure (will be proved later) and has left and
right extension properties (it is obvious). Moreover, if Iso(C) is pure in C (i.e. C is directed) then C has a
C-biggest WE-subcategory.

4.2.2 Locale of the Weak Equivalences of a small category

We give several results which will be combined to prove that the collection of WE-subcategories of a small
category C such that Iso(C) is pure in C forms locale. We recall that a locale is a poset (L, <r) such that
YU C L,U has a least upper bound and a greatest lower bound (it is a complete lattice) and V(b;);es €

L' Va€eL, an (VjeJ b]‘) = V,es(@aAbj) (see [Bor94b] or [Joh82]). Lemma 3 is due to Eric Goubault,

it is the reason for definition 7. Indeed, in [FGHRO04], we had to enforce the pureness of ¥ by an axiom,
unfortunately, the resulting definition was not “stable” in the sense that the subcategory generated by two
pure subcategory is not, in general, pure.

Lemma 3 Let C be a small category such that Iso(C) is pure in C. Then any WE-subcategory of C is pure
inC.

PROOF. Take o0 € ¥ and fi,fo» € Mo(C) such that ¢ = fy o f;. By 37¢ point of definition 7, we have
a o' € ¥ and f{ which form a pushout square and a unique ¢ € Mo(C) making the push-out diagram

id % f2

7,75 . . . : .
AN commutative. By pureness of Iso(C) in C, f! and g are isomorphisms, hence by 2" point

of definition 7, belongs to X. So by 1°¢ point of definition 7, fo = g oo’ € ¥. The same way, using the
pull-back (instead of push-out) extension property, one proves that f; € X. Thus X is pure in C.

Lemma 4 Let C be a small category. If Iso(C) is pure in C then Iso(C) is a WE-subcategory of C.

PROOF. 1% point of definition 7 is obviously satisfied. So is the 2" because if g o f = id then, by pureness
of Iso(C), f,g € Iso(C). Any isomorphism is Yoneda inversible (remark 1) hence the 4** point in satisfied.

foa'_1 /4 \\\ id o f
Ve N
Let 0 € Iso(C) and f € Mo(C) be, then we have { pushout . and \ Pullback  _ so the 374 point
N 7/
o f o lof N < 7 id

is also satisfied.

Lemma 5 If (X;)jes is a non empty family of WE subcategories of a small category C then [
WE-subcategory of C.

jeg Xj is a

147s0(C) and Yoneda(C) are subcategories of C respectively generated by isomorphisms and Yoneda inversible morphisms of
C.
15definition of [FGHRO4] was itself inspired by the notion of calculus of fractions, see [GZ67] and [Bor94a).
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PROOF. [;c; T; obviously enjoys the 1°,2"% and 4** point of definition 7. Suppose o € ;¢ T; and f €
Z1
fT S ohesy,
s N
Mo(C) with sre(f) = sre(o). Take ji,j2 € J, since 0 € ¥;, we have a push out square 7 pushout >

g f
Z2
£ 7N _oi€5,
7/ N
and also 7 pushout O because o € ¥;,. By uniqueness (up to isomorphism) of the pushout, we have
g f

an isomorphism 7 from x5 to z; such that of = 700}. By 27? point of definition 7 and for any isomorphism is
a retract (both left and right), 7 € ,, which is stable under composition (1% point), thus o] = 700} € £,.
fi /4 \\\ 71€N;es X
/ N
¥, and we have 7 pushout . The

By the same argument, Vj € J,07 € E; i.e. 01 € [;¢;

0€N;es i f
same proof holds for pull-backs.

Lemma 6 If (X;);cs is a non empty family of WE subcategories of a small category C then &JjGJ Y isa
WE-subcategory of C. Where L+Jj€J Y; is the least sub-category of C including all the 3;’s.

PROOF. By definition, L+JJ-€J ¥, ={opo..0o01/forn € N* {j1,....jn} C J and Vk € {1,...,n}o;, € £;, }, 1°¢
point of definition 7 immediately follows. The 2"? one is obvious for the family is non empty and the 4t* one

because a composition of Yoneda inversible morphisms is Yoneda inversible (see remark 1). Take o,,0...00; €
;e Xj with n € IN*, {j1,..,Jn} C J, Yk € {1,...,n}or € I, and f € Mo(C) with src(o1) = sre(f). We

have fT . With a finite induction (apply consecutively the 37¢ point of definition 7
S -
T1€85, on €Y,
01€%5, 0, €5,
— — > — — >
A ‘\ A . . ..
for ¥;,,...,X;.), we have f |pushout| f, fn—1 Ipushout| f. . Now, it is a general fact that a “composition”
[ [ [
g1E€X; on€Xj,

A
of push-out squares is a push-out square (see [Bor94a]) hence fT pushout | f» . It works
|

Uﬂo...ooleLﬂjeJ 3

analoguously for pull-backs, thus the 3" point of definition 7 is satisfied.

Lemma 7 Let C be a (small) category. If A is a pure subcategory C then for all families (C;)jecs of subcat-
egories of C, AN (UjeJCj) =W;es(ANC)

ProoF. The inclusion AN (L+J e C]‘) 2 ;e (ANC;) is always satisfied. Indeed, if f is an element of the

right member, then one has n € IN*, {j1,...,jn} CJ,Vk € {1,...,n}o, € ANE,, and f =0op0..00;. Now
A is a subcategory of C and in particular Yk € {1,...,n}oy € A, hence f € Mo(A). Conversely, suppose that
we have n € IN*, {j1,...,Jn} C J,Vk € {1,...,n}or € £, and f = op0...001 € Mo(A), by pureness of A,
On, -y 01 € Mo(A). Then Vk € {1,...,n}o, € ANX;, and f is an element of the left member.
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Remark 2 IfC satisfies the following property: V1,72 € Mo(C),y2071 =72 = 1 =id and 201 =7 =
v2 = id, then the converse of lemma 7 is true.

PrROOF. Take 73 0y, € Mo(A) where 5,71 € Mo(C). Set C1 := {m1} and C2 := {72} and apply the
distributivity for the family {C1,C2}. If v1 € Mo(A) and v2 &€ Mo(A) then (ANC) W (ANCs) = 0
while AN (C1 WC) = {y20m}. v & Mo(A) and v € Mo(A) then (ANCy) W (ANCs) = {72} while
AN(C1YC2) = {72,207} and 2 # ¥2 0y by the property of C, precisely, if we had vy, = 2 0y1, we would
have v1 = idsyc(4,) hence id,.(,,) € Mo(A) because A is a subcategory of C.

The required property is true if C is a groupoid or a loop-free category. In fact, having 4N (L+J ied Cj) =

;e (A NC)) is equivalent to the existence of the right adjoint of the functor AN_: ({subcategories of
C},C) — ({subcategories of C}, C), where the continuous lattice ({subcategories of C},C) is seen as a
complete and co-complete small category. The equivalence directly comes from the special adjoint functor
theorem . This equivalence is related to the link between locales and complete Heyting algebras, see
[Bor94b] for further details.

Corollary 2 Let (X;);cs be a family of WE-subcategories of a (small) category C such that Iso(C) is pure
in C and ¥ o WE-subcategory of C. Then ¥ N (lﬂjeJ Ej) =, (ENE;).

PRrROOF. By lemma 3, ¥ is pure in C, the result follows by lemma 7. Note that the hypothesis that all the
Y;’s are WE-subcategories is not used in the proof.

Remark 3 () and | are associative over the family of subcategories of a small category C.

Theorem 2 Let C be a small category such that Iso(C) is pure in C (i.e. C is directed). Then, the family
of WE-subcategories of C is not empty and, together with C it forms a locale whose l.u.b. operator is | and
g.1.b operator is (. Moreover, the least element of this locale (“bottom”) is Iso(C).

PRrROOF. Axioms of a locale are given by lemmas 5, 6 and corollary 2.

As it is explained in [Bor94b] and [Joh82], notion of locale generalizes notion of family of open subsets of a
topological space, thus, theorem 2 gives us a kind of topology over C as soon as Iso(C) is pure in C. This
pureness hypothesis is actually very “natural”. Ideologicaly, if we want to consider an isomorphism of C as
a path that can be run forward, which is the case when C is a fundamental category, it geometricaly makes
sense to expect that all its subpaths can also be run forward i.e. are isomorphisms. When this “geometrical”
assuption is fulfilled by a small category C, roughly speaking, C describes the arc-wise connectedness of a
“geometrical shape”.

4.3 Quotient of a small category by one of its subcategory : C/x

Given ¥ a subcategory of a small category C, we can define C/s := C/. where ~ is the least generalized
congruence on C containing (0, { (idyyi(r), 0), (0, 5TCsre(0)) [0 € Mo(E)}) (by lemma 1).

Theorem 3 (Description and universal property of C/Y)

Given a small category C and ¥ C Mo(C), closed under composition (in fact, take X a subcategory of C).
Let (~o,5,~m,s) be the least generalized congruence containing (0, {(idg¢(5),0), (0,idsre(0)) /0 € B}). Then
Vz,y € Ob(C),x ~o5 iff there is a X-zig-zag between z and y. Y(Bn, ..., Bo), (@m, .., (t0) ~o x-composable
sequences (i.e. src(ait1) ~o,x tgt(a;) and sre(aiy1) ~o,x tgt(a;)), we have (Bn, ..., Bo) ~m,x (Qm, ..., o) iff

there is a finite sequence of “elementary transformation” from (i, ...,00) to (Bn, ..., Bo), where an “elemen-
tary transformation” is either
1 . , .
@ (Qny ey Qi 1,0, Qi1 w0y 00) ~p sy (A ey Qi 1, i sre(o) OT idigi(o)s Qi1, -y o) if 0 € B

or

o (Qnyoe Qg Qg1 Qiy Qi 1505, Q0) ~py s (Qny ooy Qiga, Qg1 © QG Q1,4 v, ) if sTC(i11) = tgt(a).

10
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C/X is caracterized by the following universal property, Vf € CAT[C,C'], if Vo € X, f(o) = id then 3lg eCAT|C,C/X]

such that
¢/
D,
commutes
[ —— . ]
C 7 C

Moreover, if Cq —f>Cz satisfies f(X1) C Xa then 3 C1 /%y —h>C2/Eg making the following diagram
commutes

Cl ! C2
Qs, = Qs,
Cl/El —h> C2/E2

Where Qs is the quotient functor (refer to theorem 1) associated to the gemeralized congruence induced by
Y. g is also denoted f/x, x,, and in the same stream of notation h is denoted f/x.

Definition of the component category

The component category of a directed category C is defined as C/t, ., where Ty g(c) is the biggest
weak equivalence subcategory of C. Given a pospace/local pospace/directed space X, the component catego-
ry of X is defined as the component category of 71 (X), the fundamental category of X.

It makes sense by theorem 2 and 1. Remark we have not the functoriality yet. Next theorem establishes
a relation between connectedness '8 and component category of the fundamental groupoid of a topological
space.

Theorem 4 Let G be a groupoid, then Mo(G) is the C-biggest WE-subcategory of G. Moreover G/ yro(g) is
(isomorphic to) the set (prcisely a disrcete category seen as its set of objects) of zigzag connected component
of G. If G := T1(X,7x) the fundamental groupoid of topological space (X,7x), then G/no(g) is the set of
arc-wise connected components of (X, 7x).

PROOF. Any isomorphism is both left and right retractions, thus, by 1% property of WE-subcategories, if
G has a WE-subcategory, it is necessarily Mo(G) which is stable under composition. By remark 1, each
morphism of a groupoid is Yoneda inversible hence 2" and 37 point of definition 7 are satisfied. Finally, it
is a general fact that if o is an isomorphism, then any morphism f such that sre(f) = sre(o) has a push-out
along o and any morphism g such that tgt(g) = tgt(c) has a pull-back along o, thus we have the 3"¢ point
of definition 7.

Then each morphism of G is identified with the identity of its source and target. Two objects x,y of G are
identified iff there is a zigzag between them (note that, since G is a groupoid, it is equivalent to G[z, y] # 0).

Remark 4 Any free category is obviously a one-way category, so we can always define the component cate-
gory of a free category. For example, the component category of the monoid (IN,+) seen as a small category
is (IN,4). More generally, (IN,+) is also the component category of the free categories generated by the

—_—

—
following graphs C , / \ , T l ... Compared to these examples, S* can be seen as a

continuous generalization'” .

16in the classical algebraic topology sense.

N
175till, note that the fundamental category of 71 (S!) is not free as described in section 2.

11
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Theorem 5 Let C be a small category and ¥ a wide subcategory of C.

If C is loop-free and X is a pure subcategory of Yoneda inversible morphisms admitting left and right exten-
sion properties then C/¥ is loop-free.

If ¥ is pure in C then C/X is one-way.

Theorem 6 For any small category C, C/x,,,, is loop-free. Where ¥y,0p is the subcategory of C generated
2l

by morphisms o such that 3, fy € Mo(C), , it is not necessarily commutative.
—_—

(o8
Note that X;,,p is a pure subcategory of C

Definition 8 A category is thin iff its biggest weak equivalences subcategory is discrete. TLFCAT, TOW-
CAT and TdCAT are the full sub categories of thin loop-free categories of LFCAT, OWCAT and dCAT.

Conjecture 2 Let L be a small loop-free category and X the biggest WE-subcategory of L. Then L]/X is
thin (see definition 8).
4.4 Functoriality of component categories

Next theorem gives the general framework in which component category can be defined as a functor. As
pointed out in the abstract, the idea is to equip any small category C of our scope of interest with a
subcategory of distinguished morphisms (called “inessential” in [FGHRO04]) which are unformally those along
with “nothing happens”.

Theorem 7 (General framework for component category functor)
Let K be a subcategory of CAT and ® be an “assignment” which gives to each C object of K a subposet
of (Sb(C), C) (which is the complete partial order of subcategories of C) with “top” and “bottom” elements.
Then we define K® the categorgy whose objects are pairs (C,X) where C is an object of K and ¥ € ®(C) and
KQ[(C1, %1), (C2, E2)] := {f €K[C1,(o]/Vo € E1, f(0) #id = f(0) € Ea}.

(i) Vf €K[C1,Ca]Vo € To(c,), flo) #id= f(0) € Ta(c,)
(i4) Vf €K[C1,C2]Vo € Lo(cy), f(o) #id= f(0) € La(cy)
(i13) For all C object of K, VX € ®(C)

(a) Lg(cy Cid(C)
(b) Qs : C — C/X is a morphism of K (hence C/X is an object of K)
(c) Vf €K®[(C,X),(C", X)), f/x:C/E—C" and f/s s :C/E — C'/Z' '8 are morphisms of K

Then we have
o (iiia) = (ii)
e If (i) is satisfied then R is well defined and U 4 R
o If (ii) is satisfied then L is well defined and L 41U
o [If (ii1) is satisfied then Comp® is well defined and Comp® 4 L

18see lemma 3 for notations f/x and fl/ss-

12
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Where

Comp®

U is the obvious forgetful functor.

Given C €K, L(C) := (C, La(«c), R(C) := (C, Ta(c)), Comp®(C,%) :=C/x.

Given f : C1 — Ca, R(f) is the induced morphism from (C1, Ta(c,)) to (C2, Ta(c,)) (i-e- UR(f)) = f)
L(f) is the induced morphism from (C1, La(c,)) to (C2, La(c,)) (i-e. U(L(f)) = f) and

for all f €KO[(C131), (Cz, Ta)], Comp®(f) = fs, ..

Proor.

(idia) = (ii):

Take f €K[C1,Cs] and o € Lg(c,) by (ii), o is an identity so necessarily f(o) is an identity.

(1) =>UAR:

R is well defined because the object part does not raise any problem and (7) is exactly the assumption we
need to ensure that morphism of K from C; to Cs induces a morphism of K& from (C1, T(c,)) to (C2, Ta(c,))-
The unit of the ajunction is n x) : (C,X) — (C, Ts(c)), which is a morphism of K® since ¥ C Tg(c). The
co-unit is e¢ := id¢. Given f: (C,X) — (C',Y'), put g := U(f), it is clearly the only morphism of K such
that f = goide and f = R(g) o x). The naturality of 7 is obvious.

(i5) = L1 U:

L is well defined because the object part does not raise any problem and (i¢) is exactly the assumption we
need to ensure that morphism of K from C; to C; induces a morphism of K& from (C1, Lg(c,)) to (C2, La(c,))-
The unit of the ajunction is ¢ = ide the co-unit is £(¢ 5 : (C, La(c)) — (C,X) which is a morphism of K&
because Lgc) € . Given a morphism f €K[Cy,C2], setting g := (¢ x) o L(f), we have f = nc o L(g) i.e.
f=L(g).

(iii) = CC® 4 L:

The object part of CC® is well defined by (iiib), the morphism part of CC® is well defined by (iiic)
(f/zx : C/% — C'/¥" is a morphism of K). The unit of the adjunction is the only morphism 7 5 :
(C,%) — (C/%, Lg(c/x)) such that U(nex)) = @x, @Qx is in K by (iiib), moreover Vo € ¥, Qx(0) is an
identity, hence by definition of K®, 5 x) is in K®. Let f : (C,¥) — (C', Lg(c’)) morphism of K, it
follows that Vo € X, f(0) # id = f(0) € Lo(cr), however, by (iiia), Loy C id(C') then Vo € X, f(o) is
an identity. So we can apply lemma 3, f/x is the only morphism of small categories from C/¥ to C' such that
U(f) = f/s°Qx. Tt follows that f/s is the only morphism of K (cf (iiic)) such that f = L(f/x) o ne x)-
Naturality of N(c,x) 1s a consequence of uniqueness property of lemma, 3.

Definition of the component category functor by means of theorem 7

It suffices to set K:=LFCAT and ®(C) := WE(C), (i) and (iiia) are satisfied because Lg(c) := {idy/z €
0b(C)}. By theorem 5, VX € WP(C), C/X is a loop-free category, since LFCAT is a full sub-category of
CAT, (ii1b) and (iiic) are also satisfied. Note that (¢) is not necessarily satisfied, hence we do not have, in
general, the functor R.

We can do the same setting K:i=OWCAT and ®(C) := WE(C), (ii) and (iita) are satisfied because
Loy = {ids/x € Ob(C)}. By theorem 5, VX € WP(C), C/X is a one-way category, since OWCAT

is a full sub-category of CAT, (iiib) and (iiic) are also satisfied. Once again, (¢) is not necessarily satisfied,
hence we do not have, in general, the functor R.

13
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For directed categories, things are slightly more intricate, the reason is that the least weak equivalences
subcategory of a directed category C might contain isomorphisms which are not identities, hence (iiia) of
theorem 7 is not necessarily satisfied. However, by theorem 1, OWCAT is a reflective subcategory of dCAT
hence, if L 4(dCAT—OWCAT) we define the compoent categroy functor as Compow o L where Compow
is the component category functor defined in the case of one way categories. It is natural, isomorphisms are
Yoneda inversible so they have to be turned into identities, the fact that we have to identify them before
applying theorem 7 is just a technical twist which does not change the underlying philosophy of the method.

4.5 Comments and examples
4.5.1 Is there any relation with weak equivalences in model categories ?

In our context, morphisms of the weak eaquivalence subcategory of C are be called weak equivalences.
However, these weak equivalences are far from model categories ones. There is a slight analogy between
them, due to the pushout/pullback stability property but it does not really go further. In fact, the main
difference is that, in model categories, the weak equivalences are (almost) always given by an intrisic property
of the morphisms, for example in SPC the category of topological spaces, weak equivalences are continuous
maps giving rise to isomorphisms bewteen homotopy groups in all dimensions. This definition just depends
on the map and its domains and codomains, in some sense, it is local. On the other hand, weak equivalences
in our context are defined as part of a subcategory which is defined in a global way. Let us consider

— —

T:= {(;U,y)/O <z,y;r+y < 1} and C:= {(a:,y)/(] < z,y < 1} with classical topology and order. Tt

is easy to check that in wl(?) as well as in 7r1(8), all morphisms are Yoneda inversible. (8) clearly
—

has all pushouts and pullbacks hence any morphism of 71(C) is a weak equivalence while the only weak

— —
equivalences of 71 (T') are identities. The reason is that for any non identical morphism o of 71 (T') one can
find a morphism + so that the (right) extension property is not fulfilled. The last example emphasizes the
global and geometric aspect of our weak equivalence definition.

4.5.2 Detailed calculation of the component category of the “L” pospace

The idea is to find morphisms that are “obviously” not weak equivalences and to check the remaining one
form a weak equivalence subcategory. Let L be the pospace depicted in figure 6 with classical topology and
order. Given (z,y) < (z,3') there is, up to dihomotopy, a unique morphism from (z,y) to (z’,y'), hence any
morphism is Yoneda inversible. Now suppose that a morphism ¢ crosses the vertical dotted segment, then
take v a morphism which crosses the horizontal one. Clearly, the right extension property is not satisfied
by o. Now it is easy to check that the subcategory made of the morphisms of 71 (L) which do not cross any
dotted segments are weak equivalences. By the way, note that if a morphism has its source or target exactly
on the dotted line, it is still a weak equivalence. This is due to topological properties of components which
have been deeper studied in [FGHRO04].

N
4.5.3 Component category of the torus T? with a hole

Take the directed square with a hole (see figure 1) then identity [0,1] x {0} = [0,1] x {1} and {0} x [0,1] =

{1} x [0,1]. We obtain a local pospace whose underlying topological space is a torus with a hole and where

the local order is clockwise on the “small” and “large” generators, denote 7' this local pospace. Figure 7

represents 7' with the identifications described above. Then it comes that we have three components'®.
iz fe

YA

The component category is the free category generated by B A C

N4

9B gc
Indeed, we can prove that morphisms that crosses a dotted segment are not Yoneda inversible. Precisely,

19which are connected up to identification.

14
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Figure 6: The “L” pospace

N
Figure 7: Directed torus T2 -unfold representation-
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the morphisms of the fundamental category they induce are both monic and epic making the correponding
set theoretic maps are one-to-one but not onto (see definition 5). The dipaths « and § on figure 7 are not
dihomotopic, the right hand part shows the “only” dihomotopy one could image. In fact, @ and 8 are not
even homotopic, it is a classical algebraic topology problem.

5 Tool for calculation of component categories

The presentation given above could let the reader think that theorem 7 is useless to define component
categories, and forgeting the functoriality question, he is right! The point is that, in concrete case, we want
to be able to calculate component categories and, in order to do so, we need efficient tools. Ones of the
most classical results towards calculation of fundamental groups, groupoids and categories are Van Kampen
theorems?®. The idea of the theorem is as follows, given a geometrical shape X (classical or directed), instead
of directly calculating the fundamental object of X, split X into two parts, say A and B whose fundamental
objects are known (or at least easier to calculate) then “glue” the fundamental objects of A and B to have
the fundamental object of X. If you see a geometrical shape as a program and its fundamental object
as an abstract interpretation (see [CC92]) of this program, then Van Kampen theorem becomes a kind of
“compositionality” result. Technical details of Van Kampen theorem are of out of the scope of this paper,
so we just give an unformal statement.

In theorems 8 and 9, xSPC are xCAT are taken by pair according to the following table

Table 5

*SPC *CAT
POSPC LFCAT
LPOSPC | OWCAT
dSPC dCAT

where xSPC is the domain of the fundamental category functor m and xCAT its codomain.

Theorem 8 (Van Kampen for fundamental category) Let}l,)?2 be sub-objects of)_(z (object of xSPC)
such that the underlymg topologtcal space of X 18 the unzon of the mterzors of the underlying topological
— — = —

spaces 0fX1 and Xz and let Xo = X1 ﬂXz i1 : Xo — Xl,zz Xo — X2,]1 X1 Xandjr: Xo—> X
the inclusion maps. Then we have the following push-out squares

N —
X ™ (X)
N N
1 2 m1(j1) m1(J2)
AN e AN
)_()1 push—out 5()2 m (5()1) push—out et (}2)
AN v N 7
11 12 m (11) m (12)
NS AN e
— —
Xo m1(Xo)

respectively in xSPC and xCAT.

Theorem 9 (Van Kampen for component category)

Let X1, Xz be sub-objects of X3 (object of xSPC) such that the underlymg topologzcal space of X3 s

the umon of the mtemors of the underlymg topologzcal spaces of X1 and Xg and let Xo = X1 N X2
Xo — Xl,zz Xo — X2,]1 X1 — X3 and jo : X2 — X3 the mcluswn maps.

Moreover, we suppose that X1, Yo are WE-subcategories of m (X1), m (_XQ), m1(J1)(Z1) W71 (J2)(E2) (also

20there are several versions depending on the framework : see [Mas91] and [Swi02] for groups, [Hig71] for groupoids, [Gra03]
for categories.

P —
2lwith respect to the underlying topology of X.
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denoted ¥3) is a WE-subcategory of 7T1(}3), m1(11)(Zo) C (X1) and 71 (i2)(Xo) C (X2) (i.e. m1(i1),m1 (i)
are morphisms of xCAT® ).
then

i1,42,J1 and ja give rise to i},1y,j1 and j, morphisms of xCAT® and we have

(1 (X3), 5s)

.1 .

(m1(X1),%1) push out in (m1(X2), T2)

\ *CAT® /
—
(m1(Xo), Zo)

and
.
Comp®(m(X3),E3)

o Compa(

— . —
Comp®(m1(X1),X1) push out in Comp®(m1(X2),X2)

*CAT
m\ Comp®(iy)

Comp@(wl(}o),zo)

The proof of theorem 9 requires three cases, one for each line of table 5. POSPC/LFCAT case can be
found in [Gou95]. dSPC/dCAT is available in [Gra03]. In all the cases one might define the fundamental
category of a local pospace as the fundamental category of its corresponding directed space see theorem 1.
PROOF. Theorem 8 gives us pushout squares in xSPC and ?CAT:

N —
X m1(X)
/ \j (j( = (J2)
1 2 m1(J1 m1(J2
AN AN
— — — —
X1 push—out Xo m (Xl) push—out T (X2)
AN . : e
i1 io w1 (i1) m (42)
NS AN i
— —
Xo m1(Xo)

We have to prove that m; (7(0), T (}1), 1 ()?2) and m; ()?'3) respectively equiped with Xg, ¥, ¥ and X3 give
— —
rise to a pushout square in xCAT®. Given f1 : (m1(X1),%1) — (£,X) and f1 : (m1(X2),X2) — (£, %)
—
morphisms of xCAT® such that f10i1 = faois, by hypothesis, Ak : 71 (X3) — £ (morphism of xCAT) such
that fi = hoj; and fo = hoja. It remains to see that h gives rise to a morphism of xCAT® i.e. h(X3) C X.
By hypothesis, X3 = j1(X1) |§ j2(22) so any element of 3 can be written ja(aant1)-j1(a2n)- ... j2(a1)-j1 (o)
where V& € {0, ey n}, a9y, € Y1 and Qopy1 € 22, SO h(]g (a2n+1) 'jl (azn) e ]2 (011) 'jl (OL())) = (hOjg)(a2n+1) .
(hoji)(azn) .- (hoj2)(en) - (hoji)(eo) = faleant1) - fi(azn) - - falen) - fileo) € T since fi, f> are
morphisms of xCAT®, hence h gives rise to a morphism of xCAT® from (m;(X3),X3) to (£,X). Thus
we have a pushout square in xCAT®. Now by theorem 7, we know that Comp® is a left adjoint hence??
preserves colimits and, in particular, pushouts.
N

Theorem 9 does not necessarily give the biggest WE-subcategory of 71 (X3), so one has to guess what this

biggest WE-subcategory is in order to choose appropriate ¥; and X5, the choice of ¥ is not as important,

22general facts of category theory see [Bor94al.
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and once ¥; and ¥, are given, it might be possible to take ¥y as the biggest WE-subcategory of m ()?0)
satisfying 71 (i1)(Zo) C (1) and 71 (42)(Z) C (X2). A very simple application of theorem 9 to calculate the
component category of the first example given in section 2.

y.—».

/ N

y.—>.

pushout

pushout ----
,,,,, _ " ]

I POSPC ] ' ®X  TLECAT

R

Let us come back to the example of the rectangle with two holes:

| Pushout
] m D
L POSPC R
=
i2 . il
which gives, by theorem 9
18
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e — 0 —0
e— 06— 0
o — 06— 0

J2 il
D Pushout i
} n , } }
o——=e¢ - LFCAT ST
} } _>T

p—
[

In this figure, rectangle filled with grey color are not commutative. The holes of the geometrical shape are
represented by non-commutative squares in the component category.

Applying theorem 9 we can also prove that the component category of the cube with a centered cubical
hole has 26 objects®®. It can be represented in IR® putting an object in the “center” of each vertex, edge
and face (8 vertices + 12 edges + 6 faces = 26 objects). Morphisms are generated by arrows from a point
to its “closer neighbours in the future”, for example those of (0,0,0) are (0,0, 1), (0, 3,0) and (},0,0) while
(1,1,1) has no such neighbours. In order to have the hypothesis of theorem 9 satisfied, we split the cube
into two parts so that, following notation of theorem 8, Xo :=]%+ — €, & + €[x[0,1] x [0,1]. It is the analog of
the previous example in three dimensions.

6 Towards directed cohomology

In [BW85] and [Bau91] a cohomology of small categories is presented by means of natural systems of factor-

N
ization. The idea would be to define the cohomology of a directed geometrical object X as the cohomology
of its fundamental category?*. However, as we have already pointed it out, the fundamental category has
often as many objects as IR. Still, there is only few of them which is relevant, and finding them amounts to
—
calculate the component category. Thus, the cohomology of X could be defined as the cohomology of the
—

component category of X. For example, with this definition, the fourth and fifth examples given in section
2 are distinguished by their first cohomology groups.

In this paragraph, “cubical” pospace means a disjoint union of unit cubes of dimension n in which finitely
many parallelepipeds2® have been dug out. As we have remarked in the previous paragraph, the choice of
a “good” natural system is influenced by “good” properties of the small category we want to calculate the
cohomology groups.

23geometrically, picture the Rubik’s cube, the interior cube is the hole, all other cubes give an object.

24it is abusive to write “the” cohomology of a small category because, as far as I know, it depends on the natural system one
has put on the small category one wants to calculate “the” cohomology. Hence, it becomes a part of the art to choose a good
natural system. In partical cases, the component category of )? has good properties which induce an “obviously” interesting
natural system.

25with faces parallel to the faces of the unit cube.
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Definition 9 o A morphism v is said prime iff for any morphisms yn,...,Yo such that v = y, o ... 0
Y,3% € {1,...,n},v; # id.

e A category C is generated by primes iff any non trivial morphism of C can be written as a finite
composition of prime morphisms.

e A category C is homogeneous iff C is generated by primes and for all composable sequences of prime
morphisms (Y, ..., Y0) and (Y1, .., 7'o) we have (yp0...0%) = (¥, 0...09y) = n=n'. n+1 is the
length of v, 0...07.

o A category C is said strongly homogeneous iff C is generated by primes and Vz,y € Ob(C)AN,,, such
that for all composable sequences of prime morphisms (Yn, -..,Y0) with src(yo) = x and tgt(yn) =y we
have n = N, . In this case, length depends only on src and tgt.

e A category C is said bounded iff the length of the composable sequences of C whose elements are not
trivial are bounded, i.e. ANc € IN such that for all composable sequences (Yn,-.-,Y0) satisfying v; # id,
we have n < Ng¢.

e A category C is said weakly bounded iff Vy € Mo(C), Maz({n € IN/I(ap, ..., o) such that a,o0...0
ap}) < +o0

The relations existing between these properties are given in the following diagram

Free

Strongly Homogeneous === Homogeneous

Bounded === Weakly Bounded

ﬂ

Direct generated by Primes

ﬂ

Loop-free === 150 is discrete

Skeletal

Prime morphisms generalize prime numbers, indeed, the monoid (IN, +) seen as a small category has prime
morphisms which are exactly the prime numbers. In fact, it is homogeneous by the famous prime number

.
decomposition theorem. In particular, m; (S*) is homogeneous. The notion of direct categories is related to
model category theory, see [Hov99] or [Hir03] for further details.

Definition 10 A linear extension of a small category C is a functor f : C — X such thatVy € Mo(C), f(v) =
id = v = id and where X is an ordinal®® i.e. a poset whose any non empty subset has a minimum.

A direct category is a small category having a linear extension. An inverse category is a small category
whose dual is direct.

Conjecture 3 The component category of a cubical pospace is homogeneous. Moreover, if its underlying
space is connected, the component category is bounded.

26see [Hov99] or [Kun80] or any set theory textbook for the definition.
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In general it is not strongly homogeneous as shown by the right side of figure 2 nor bounded because it is
always possible to have a infinite disjoint union of connected cubical pospaces Cy U ... U C), U ... such that
Vn € IN, C), has a composable sequence of prime morphisms of length n. Being homogeneous induces a
natural system as follows. Given a small category C, the category of factorizations of C (denoted FC) is
given by Ob(FC) = Mo(C) and FC|a, ] is the collection of pairs (v2,71) € C[tgt(c), tgt(8)]xC[src(B), sre(a)]
such that 8 = 75 o @0, 27. Given a small category C, a natural system (of abelian groups)?® on C is
a functor D : FC —Ab, where Ab is the category of abelian groups and group morphisms between them.

Lemma 8 Let C be a homogeneous small category. We define a natural system on C setting D(v) :=
Zlength(Y) gnd for

o
" < - >w
s
D(ya,%1) : (Tn, ..., x1) € Ztength(e) s (0, ............... 30, T, ey 1,0, e, ,0) € Ztength(B) yith length(vys)
length(vs) times length(yy) times

zeros on the left side of x,, and length(y1) zeros on the right side of 1.

Instead of a (boring and) formal proof that we actually have a functor, observe the following example,
suppose length(y1) = 1, length(ys) = 2, length(B) = 6, then necesarily, length(a) = 3 and D(vs,71) is an
abelian group embedding pictured by the following diagram:

© x {0} x 7 x

SR

VA X VA X 7 X

x {0}

$

x Z

N==—N
N<==—N

X

It is important to notice that the image of a morphism of FC only depends on the length of 71,72 and a.

7 Dealing with loops: the fundamental monoid

N
As one can notice, the category POSPC does not contain any satifactory model of the directed circle “S1”.
—

Indeed, the only authorized paths of S are the clockwise ones?®. The problem is to modelize this idea. What
order relation should equip S! in order to make it a pospaces whose dipaths are exactly the clockwise ones?

Suppose that such arelation < exists, in particular, ¢ E?l—) (cos(—27t), sin(—2mt)) is clockwise, so we should
have V¢ € [0,1], (0,1) < (cos(—2nt),sin(—2nt)) < (0,1) hence, by antisymmetry, (cos(—2nt), sin(—2nt)) =
(0,1) which is a contradiction. A naive solution consists of weakening the definition of a pospace asking <
be a preorder instead of an order relation. But then, by transitivity, Vt,t' € [0,1], (cos(2nt),sin(27t)) <

(cos(2nt"), sin(2nt")) so ¢ €r— (cos(—2nt), sin(—27t)) which is anticlockwise would also be directed. Marco
Grandis approach consists of equiping a topological space X with a set of distinguished paths denoted dX
and submited to some conditions. The elements of dX are naturaly called the directed paths. Then it suffices
to equip S' with the set of all clockwise paths to obtain a model of directed circle. It is also possible to have
a model of directed circle by covering S! with open subsets, each of which being suitably equiped with and
order relation < that locally makes S' a pospace.

Besides, the fact that a pospace does not have loops makes its fundamental category loop-free, in particular
it has no endomorphisms. As a direct consequence, trying to define the “fundamental monoid” of a pospace

X as m (}?)[m,x] is sound but pointless because 7y ()?’)[:v, z] = {id;}. Introducing loops in our models, the
“fundamental monoid” becomes relevant.

27If C is small then so is FIC. Moreover, if C is loop-free then so is FC.
28see [BW85] and [Bau91] for further details.
29obviously we could have choose the anticlokwise ones
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Ideas related to the definition of local pospaces are borrowed from the ones of differential geometry and
smooth manifold theory, for a deeper analogy see [LFR99] and [Sok02].

Definition 11 (Local Pospaces) A local pospace is a triple (X, 7x,<x) such that (X, 7x) is a topologi-
cal space, <x a relation on X and Vz € X3U an open neighbourhood of x such that (U, 7y, <y) is a pospace.
Tu and <y are respectively the restriction of Tx and <x to U. An atlas of (X,7x,<x) is an open covering
(Us)ier of (X, 7x) such thatVi € I, (U;, 1y, <u,) is a pospace. Alocal dimap f: (X,7x,<x) = (Y, 7v,<vy)
is a continuous map between underlying topological spaces such that 3(U;) ey atlas of (X, 7x,<x) I(Vj)jes
atlas of (Y,7y,<y) satisfying Vj € J, fu,v, : © € U;j — f(x) €V; is a dimap (i.e. a morphism of
POSPC). Local pospaces and local dimaps organize themselves in a category denoted LPOSPC.

— —
As [0,1] is the standard example of pospace, the directed circle S* is the standard example of local pospace,
its relation is described by means of maps 6y : = €]0,27[— (cos(z),sin(z))S! and 6; : z €] — 7, 7[>
(cos(z),sin(x))S?t setting Y,y €]0, 2], 6o(z) < Oo(y) if + < y and Vx,y €] — 7, 7|, 01(x) < 61(y) if z < y.
The next definition is due to Marco Grandis in [Gra03] 3¢

Definition 12 (d-spaces) A directed space or d-space is a triple (X, 7x,dX) where (X, 7x) is a topo-
logical space and dX C {paths of (X,7x)} with the following conditions

(i) {constant paths} C dX

(i) for all 8 : [0,1] — [0,1] continuous and increasing, for all v € dX, yo 8 € dX (dX is stable under
di-reparametrization)

(#3) for all v1,v2 € dX,v2 0v1 € dX (dX is stable under concatenation)

A d-map from (X,7x,dX) to (Y,7y,dY) is a continuous map f from (X,7x) to (Y,7y) such that ¥y €
dX fo~vedY d-spaces and d-maps organize themselves in a category denoted dSPC.

Remark that we have the “obvious” inclusion functors POSPC—— LPOSPC~——— dSPC . Now
let us focus on two examples:

— — — —
Denoting 1 (S') the fundamental category of S!, we have Vo €51, m(S%)[z, z]
X isomorphic to IN. Compare IN to the fundamental group of the circle. Precisely,

=
m(S!) can be described the following way, for each z,y € S* there is a distin-
guished arrow a, , and the family of distinguished arrows is submitted to the
y following axiom, Vz,y,z € S*, ay. 0 sy = Qg ., where y € (z,2). Here, (z,2)
is the clockwise open arc from z to z. Intuitively, the distinguished arrow from

T 65?1 toy 6.5?1 is the clockwise path from z to y on the directed circle, see the
left side figure. Then Vv € 7r1(5_’>1)[:c,y] Jn € IN such that v = (ay,y)" 0 sy
and Vv € 7r1(§1)[$,a:] dln € IN such that v = (ay,¢)". Hence we could define the
fundamental monoid of S_’)l as (N, +).

The idea of the fundamental monoid is attractive but does not work because, in general, it depends on the
base point x:

N The left side picture can easily be described as a local pospace or a di-

rected space denoted )? in both cases. Adapting the description of the
fundamental category of 571, it is easy to describe the one of )?‘ Then
) we observe that m ()?)[x,z] =~ (N,+) in MON - the category of monoids -
while ¢ ()_())[y,y] = {e}. The base Boint dependence makes impossible to

define the fundamental monoid of X as the straightforward generalization
of the fundamental group.

30[Gra03] also contains a definition of local pospace which differs from the presently given one.
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N
In addition, the component category of S! is its fundamental one. Indeed, none of the morphisms a; , of

— —
m1(S') is Yoneda inversible. By definition, if a; , were Yoneda inversible then, since 71 (S)[y,z] # 0, we
would have a morphism g from y to x such that g o ay , = id,, which is impossible. Hence, as any arrow of

N

71 (S1) can be written as a composition of a’s, none of them is Yoneda inversible.

More generaly, given a small category C and ¢ € C[z, z], an endomorphism of C such that Vn € N e™ # id,,

if e = y 04, then v and ¢ are not Yoneda inversible. The argument is exactly the same as in the case of
—

m(SY). Tt follows that, even if the definition remains sound, the component category does not reduce the

size of a small category when it contains endomorphisms like . In particular it does not reduce the size of
—

the fundamental category of a local pospace or a directed space which “contains” S!. Still the next result
can provide a way to solve this problem:

Proposition 1 Let C be a small category. Suppose that o : x — y is a morphism of C:

(i) It V6 € C[z,z] Ay € Cly,y] such that 0 0§ = o o then the map @, : § € Clz,z] —> v € Cly,y] is a
morphism of monoids

(i1) If Vv € Cly,y] 36 € C[z, z] such that yoo = o o then the map U, : v € Cly,y] —> § € Clz,x] is a
morphism of monoids

(i1i) I£ V6 € Clz,z] 3y € Cly,y] such that 606 = yoo and Vv € Cly,y] 30 € C[z, ] such that yoo =00d

then U, 0 &, = Idc[; ) and @, 0 ¥, = Idc[y 4

PROOF. 0 oid, = idy oo, thus ®,(id,) = idy,. Moreover, g o (62 0 6;) = (fba(éz ) 61)) oo and oo (43 ©

81) =(0o0by)0d = (@0(52) o a) 08 = ®,(dz)0(c0d) = ((1)0—(62)) ° (<I>,,(61)) o o. By uniqueness,
D, (62 081) = Py;(d2) 0o D,;(01), hence ®, is a morphism of monoids. The same holds for ¥, dualizing
everything. Suppose we have the hypothesis of the third point, then 0 0§ = ®,(0) 0o 0 = 7 0 ¥,(P,(4)),
hence, by uniqueness, ¥, (®,(d)) = §. The same way, ®,(¥,(v)) = 7.

Proposition 2 Let C be a small category. Suppose that o : © —> y is a morphism of C such that f, : 6 €
Clz,z] —> 00 d € Cl[z,y] and g, : v € C[z,z] —> yo o € Clz,y] are bijective. Then the hypothesis of the
third point of proposition 1 are satisfied.

PROOF. Given § € C[z, z], by definition of the bijections f and g, v := g, !(c046) is the only element of C[y, y]
such that o 0§ = y o 0. Of course, given v € C[y,y], by defintion of the bijections f and g, § :== f;}(yo0)
is the only element of C[z,z] such that 7o o = o o 4. In particular, ®, =g, ' o f, and ¥, = f, ' o g,.

Corollary 3 Any Yoneda inversible morphism satisfies the hypothesis of proposition 2

For example, we remark that Vz,y € S*, a,,, satisfies the hypothesis of the third point of proposition 2
and of proposition 2, nevertheless, as we have already seen, they are not Yoneda inversible.
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A Dihomotopy Double Category of a Po-Space
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Abstract

We introduce a dihomotopy invariant of a po-space in dimension 2, its dihomotopy
double category. This is a generalisation both of the fundamental category of a po-
space, and of the double homotopy groupoid of a topological space. We conjecture
a van Kampen theorem for the dihomotopy double category, thus making available
a tool for calculations.

1 Introduction

The fundamental category, together with its component category, of a (lo-
cal) po-space is a fundamental tool in the “geometric” analysis of concurrent
systems, see [8,11,10,15,9,13] for some accounts of its uses.

In “ordinary” algebraic topology, as opposed to the “directed topology” of
local po-spaces, one has analogues of the fundamental group in all dimensions.
An analogue of the fundamental category in dimensions other than 1 has
hitherto been missing.

The search for higher dihomotopy invariants is complicated by the fact that
the proper counterpart to the fundamental category in ordinary topology is not
the fundamental group, but the fundamental groupoid, cf. [2], of a topological
space. Higher homotopy groupoids for topological spaces have been known
since [4,5], but these are defined for filtered spaces and seem to resist any
transfer to the directed setting.

Following up on a paper [12], Brown et.al. [3] define a notion of homotopy
double groupoid for a topological space without a presupposed filtration. The
present article constructs an analogue of this structure for directed topology.

2 The Singular Cubical Set of a Po-Space

A po-space is a partially ordered topological space such that the order is closed
in the product topology. The category of po-spaces and monotone continuous

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs
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maps (dimaps) is denoted polop. Note [14] that a po-space is Hausdorff.
The singular cubical set of a po-space X is the graded set RX = {R, X },en,
where
R, X = poTop(f”,X)

together with face maps 67 : R, X — R, 1 X (i = 1,...,n,v = 0,1), de-
generacies ¢; : R,X — R,1X (i =1,...,n+ 1), connections 7/ : R, X —
Ryt X (n>1,i=1,...,n, v = 0,1), and partially defined compositions
+i: R, X xR, X — R, X (1=1,...,n). Here I denotes the (totally) ordered
unit interval, I" its n-fold product with the product order, and the natural
numbers include zero.

With this structure, RX is a cubical set with connections and compositions
in the sense of [4,1]. We will only need the cubical structure in dimensions
0 through 3, so we give an account of the definition of the structure only for
these dimensions. For a full account see [4,1].

We will in general denote points in Ry X = X by x,y, dipaths in R; X by
a,b, disquares in Ry X by u,v, and dicubes in R3X by «a, 3. The definition of
the structure maps in dimensions 0 to 3 is as follows:

0 = a(v) u(s) = u(v, ) u(s) = u(s, )
da(s, t) = a(y,s,t) dsa(s,t) = a(s,v,t) da(s,t) = a(s,t,v)
e1x(s) =x era(s,t) = a(t) eqa(s,t) = a(s)
equ(r, s, t) = u(s,t) equ(r, s,t) = u(r,t) esu(r, s, t) = u(r, s)
1a(s,t) = a(max(s, t)) via(s,t) = a(min(s,t))
YWu(r, s,t) = u(max(r, s),t) yiu(r, s, t) = u(min(r, s), t)
you(r, s,t) = u(r, max(s,t)) You(r, s,t) = u(r,min(s,t))

In that our n-cubes are directed, we miss the reflection maps, given by
reversing n-cubes in one or more variables, of the standard singular cubical
set [4]. This will have the effect that some relations defined by filling in n-cubes
which are equivalences in [3], are not symmetric in our setting.

3 The Dipath Category

The one-dimensional part of our dihomotopy double category consists of di-
paths modulo reparametrisation. Let a,b € Ry X, then we say that a and b
are thinly equivalent, a ~7 b, if there exist surjective dimaps ¢, : I T
such that a o ¢ = bo . That is, a and b are thinly equivalent if there are
reparametrisations of a and b that coincide.

Proposition 3.1 The relation ~r is an equivalence on R1X and a congru-
ence with respect to +1. Also, 10Ya +1 a ~p a ~p a +1 e10la for any

2
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a € RiX, and if a,b,c € R1X are such that §{a = 8% and 51b = 8¢, then
a+y (b+1¢) ~r (a+1b) 41 c.

We denote p1 X = Ry X/~r. As a ~7 bimplies da = 0b, we can define face
maps 07 : ;1 X — RoyX by 07(a) = (d7a), and concatenation of paths passes
to the quotient by (a) +; (b) = (a +; b), defined if and only if §](a) = §9(b).

Composing the degeneracies €1 : RgX — R;X with the quotient map
yields maps €1 : RgX — p1 X, and the operation 4+; on p; X is associative
with units e1(x), x € X. Hence the pair (p; X, RyX) is a category, the dipath
category of X. By abuse of notation, we shall also denote this category by
p1X; note that, contrary to usual (non-directed) paths, dipaths are in general
not reversible, hence p; X is in general not a groupoid.

If f: X —Y isadimap, and a ~7 bin X, then also foa ~p fobin Y,
hence f induces a morphism of categories f*: p1 X — p1Y, and p; is a functor
polop — Cat.

4 The Dihomotopy Double Category

Before we can enter dimension 2, we need to express the relation ~7 in a more
“cubical” way. We say that a disquare u € Ry X is thin if it has a factorisation

wl? =T —X

If, in addition, 69u and diu are degenerate, we call u a thin elementary diho-
motopy and write u : 0Yu ~% d{u or simply d{u ~% diu.

Lemma 4.1 The relation ~r is the transitive, symmetric closure of the rela-
tion ~%.

We want to define an equivalence relation on Ry X, relating disquares which
are dihomotopy equivalent relative to the boundary 9I%. As we were quoti-
enting out reparametrisations in dimension 1 however, we need to take this
into account in defining our equivalence relation.

The equivalence relation =7 to be defined on Ry X will introduce a struc-
ture of edge-symmetric double category on the triple (RoX /=7, p1 X, RoX).
The following ought to be the shortest possible definition of edge-symmetric
double category: A double category is an internal category in the category of
small categories, and it is said to be edge-symmetric if the object set of the
morphisms object equals the morphism set of the objects object.

As all the double categories in this paper are edge-symmetric, we shall
henceforth omit the word “edge-symmetric.”

We say that a dicube o € R3X has thin boundary if the four faces d%c,

4o are thin elementary dihomotopies; note that this implies that the four
horizontal edges 0505« are degenerate. If o has thin boundary, we write
a: 8a =5 6aor just 8% =5 6, and we let =7 be the symmetric, transitive
closure of =%..
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Proposition 4.2 The relation =r is an equivalence on Ry X and a congru-
ence with respect to +1 and 4. If u =r v, then §Yu ~7 §Yv, i = 1,2, and if
a ~71 b, then g,a =7 ¢;b, 1 =1, 2.

We denote the quotient po X = Ry X /=7 and its elements by (u); by the
lemma we can introduce face maps and degeneracies 6} : po X — p1 X, € :
;X — p2X by

0 (u) = (0fu)  eifa) = (€ia)

The triple (p2X, p1X, Ry X), which we by another abuse of notation also shall
denote py X, is a cubical set with these mappings.
The following technical lemma will allow us to define compositions in ps X.

Lemma 4.3 Let u,v € Ry X such that u(s,t) = P(é1(s),¥1(t)), v(s,t) =
P(¢a(s),12(t)) for some ¢1,11, pa, s I — I, P € RyX, and assume that
1 (V) = ¢o(v), V1(v) = Ya(v) forv=0,1. Then u = v.

Corollary 4.4 Given u,v € RyX such that 6iu ~p 8%, then there ewist
U =1 u, © = v such that 610 = 00, and similarly with 6% replaced by &%
throughout.

Proof. By lemma 4.1 we have surjective reparametrisation ¢, : I — I such
that diu o ¢ = 6Yv o 1p. Define 4, © by (s, t) = u(s, d(t)), 0(s,t) = v(s, ¥ (t)).
Then §{a = 0%0, and u =7 @, v =7 0 by lemma 4.3. For the statement with ¢¥
replaced with 6%, @ and v are given by u(s,t) = u(¢(s),t), 0(s,t) = v(¢(s),t).0

We are ready to define operations +1, +9 on poX. Let (u), (v) € po X,
and assume first that 0} (u) = 69(v). Then 6iu ~7 %, hence by corollary 4.4
there are disquares @ =7 u, © =7 v such that 6{ta = 099, and we can define
(u) +1 (v) = (G +1 0). If 63(u) = 69(v), we can apply the second statement of

corollary 4.4 similarly.

Proposition 4.5 The operations 41, +2 on p: X are well-defined and intro-
duce two category structures on the pair (poX, p1X), with identities £1{a),
eo(ay, (a) € ;X respectively. Also, the maps 67 : poX — mX, g;: ;X —
p2 X are morphisms of categories, and

((w) +1 (v)) +2 ((w) +1 (2) = ((w) +2 (w)) +1 ((v) +2 (2)) (1)

whenever both sides are defined.

In other words, the triple (p2X, p1 X, RoX) forms a double category, the
dihomotopy double category of X. We shall again abuse notation and also
denote this double category by p.X; noting that a dimap f : X — Y maps
cubes with thin boundary to cubes with thin boundary, we see that f induces
a morphism of double categories f*: po X — poY.

4
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5 Ongoing and Future Work

We conjecture that the relation =7 is related to dihomotopy in dimension 2
in the following way, where ~ is dihomotopy, i.e. the equivalence generated
by the elementary relation “u ~® v € Ry X iff there exists a € R3X such that
u = 0%a, v = i, and the four other faces of o are degenerate:”

Conjecture 5.1 Given u,v € Ry X such that é5u, d5v are degenerate, then
u ~ v if and only if u =7 v.

This is analogous to the result in [12,3].

The connections 72,71 : R X — Ry X induce mappings 7{,7; : ;1 X —
p2X, which are connections in the sense of [7] and hence introduce a thin
structure on p, X. We conjecture that thinness in Ry X is equivalent to thinness
in p X:

Conjecture 5.2 An element (u) € paX is thin if and only if there ezists
v € Ro X such that v is thin and u =7 v.

Conjecture 5.2 is the major stepping stone towards the following van Kam-
pen theorem for the dihomotopy double category, analogous to [6]:

Conjecture 5.3 Let X € polop, and let U be a covering of X by po-spaces,
i.e. such that J, g, intU = X. For all U,V € U, let agy : UNV — U,
by :UNV =V, cy: U — X be the inclusions, and consider the diagram
i the category of double categories

|_| p2(UNV) Z:; |_| p2U C—*>p2X
UVeu Ueu

where a*, b*, c* are the disjoint unions of the induced mappings aj;, birv, ;-
Then c* s the coequaliser of a* and b*.

As to future directions of research, there are two obvious things to do.
One is to transfer the notion of components [9,13] to the dihomotopy double
category, which would then make it usable for actual computations.

The other is to generalise the dihomotopy double category to local po-
spaces. This is not a trivial task, as local po-spaces admit non-constant loops,
while po-spaces don’t, a fact we have made strategic use of in the above
considerations.
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